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Abstract. We introduce a solvable lattice model for supersymmetric LLT polynomials, also
known as super LLT polynomials, based upon particle interactions in super n-ribbon tableaux.
Using related Heisenberg operators on a Fock space, we prove Cauchy and Pieri identities
for super LLT polynomials, simultaneously generalizing the Cauchy, dual Cauchy, and Pieri
identities for LLT polynomials. Lastly, we construct a solvable semi-infinite Cauchy lattice
model with a surprising Yang–Baxter equation and examine its connections to the Pieri and
Cauchy identities.
Keywords. Lattice models, super LLT polynomials
Mathematics Subject Classifications. 05E05, 82B20, 05E10

1. Introduction

LLT polynomials, also known as ribbon functions, are a q-analog of products of Schur functions
and were first introduced by Lascoux, Leclerc, and Thibon in [LLT97] as a family of polynomials
realized as generating functions over n-ribbon tableaux. Like many other families of functions
which originated over tableaux, LLT polynomials have since been shown to satisfy certain nice
properties:
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• they are symmetric,

• they may be written as operators on a Fock space representation, in this case that of the
quantum group Uq(sln),

• they satisfy Cauchy and dual Cauchy identities

• they satisfy Pieri identities and branching rules, and

• they may be realized as the partition function of a lattice model.

The Cauchy and Pieri identities for LLT polynomials were first proved by Thomas Lam in
[Lam05], in which Lam also constructed a supersymmetric analogue of LLT polynomials, called
super LLT polynomials, defined as a generating function over super n-ribbon tableaux. By adding
an extra set of parameters, super LLT polynomials enable us to track vertical and horizontal
information about a tableaux at the same time, corresponding to considering two different
types of operators on the Fock space. In this paper, we prove a general Cauchy/dual Cauchy
identity for the super LLT polynomials, making a supersymmetric analogue of the approach
used in [Lam06] to prove general Cauchy identities for symmetric polynomials using Heisenberg
algebras. In fact, we find that the Cauchy identity for super LLT polynomials specializes to
both the Cauchy and dual Cauchy identities for LLT polynomials. This remarkable property
comes from the fact that the super LLT polynomials may be specialized to LLT polynomials in
two separate ways, corresponding to the relationship between a partition and its conjugate, or
equivalently to the duality between horizontal and vertical ribbon strips. Consequently, a dual
Cauchy identity for super LLT polynomials is merely a rephrasing of the Cauchy identity. Our
Cauchy identity also generalizes the Cauchy identity for metaplectic symmetric functions proven
by Brubaker, Buciumas, Bump, and Gustafsson in [BBBG20] and the (dual) Cauchy identity for
supersymmetric Schur polynomials; see Chapter 5 and Appendix A of [CW12] for a convenient
source. We also use a similar approach to prove Pieri rules and branching formulae for super
LLT polynomials, generalizing those for LLT polynomials proven by Lam in [Lam06].

A lattice model for LLT polynomials was first developed by Curran, Yost-Wolff, Zhang, and
Zhang [CYWZZ19], using the definition over n-ribbon tableaux, as a project co-advised by the
second author at the 2019 Algebra and Combinatorics REU at the University of Minnesota. This
model was proven solvable for n = 1, 2, 3, and was conjectured to be solvable for all n. Indepen-
dently, Corteel, Gitlin, Keating, Meza [CGKM22] developed a lattice model for coinversion LLT
polynomials using an alternate definition as generating polynomials over tuples of skew tableaux.
These tuples are related to ribbon tableaux by a weight-preserving bijection developed by Stanton
and White [SW85]. Since the coinversion LLT polynomials give the LLT polynomials up to a
correction factor of q depending only on the shape λ/µ, these lattice models are equivalent under
this bijection up to that factor of q, but the underlying structures of each reveal different properties
of the polynomials. Later, Aggarwal, Borodin and Wheeler [ABW21] developed a general lattice
model that specializes to both of the above models, which they use to reprove many interesting
combinatorial identities satisfied by these and similar families of symmetric polynomials.

In this paper, we generalize the model in [CYWZZ19] to a novel lattice model whose partition
function produces the super LLT polynomials. We then prove that this supersymmetric model
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is solvable, thus covering the solvability conjecture of [CYWZZ19], and use this solvability to
provide a lattice model proof of certain symmetry properties of the super LLT polynomials.
Recently, Gitlin and Keating [GK21] have independently generalized the coinversion LLT model
of [CGKM22] to produce coinversion supersymmetric LLT polynomials; see section 5 of [GK21]
for a discussion of the relationship between our supersymmetric models. Similarly, pieces of the
various models from Aggarwal, Borodin, and Wheeler [ABW21] can also be combined to give
superLLT models; see Section 4 of their sequel paper with Petrov [ABPW21] for an analogous
construction for supersymmetric Schur polynomials.

In Section 2, we recall the details of the definition of super LLT polynomials as a generating
function over n-ribbon tableaux. In Section 3, we reformulate these polynomials in terms of
operators generated from a Heisenberg algebra acting on a Fock space. In Section 4, we prove
Cauchy and Pieri identities for super LLT polynomials using these operators. Changing gears,
Section 5 introduces the (super)ribbon lattice model and proves that its partition function gives
the super LLT polynomial, thereby realizing the Heisenberg operators in lattice form. We then
show in Section 6 that this model is solvable for all n and use this solvability to reprove interesting
symmetry relations on the super LLT polynomials. Section 7 uses the lattice model to prove a
branching rule for super LLT polynomials. Finally, Section 8 introduces a semi-infinite Cauchy
model built from the ribbon model and Section 9 uses the Cauchy model to provide lattice model
proofs of the Pieri and Cauchy identities.

2. Background on tableaux and symmetric functions

Like many other interesting symmetric functions, super LLT polynomials arise as generating
functions over a specific class of tableaux.

A partition λ is a decreasing sequence λ = (λ1, λ2, . . . , λr) of nonnegative integers. The
length, or number of parts, of λ is denoted ℓ(λ) and the size of λ by |λ| = λ1+λ2+ . . .+λr. We
will occasionally use the notation λ ⊢ n to say λ partitions n. A composition α = (α1, . . . , αr) is
a non-ordered list of nonnegative integers; it is important not to confuse these with partitions. We
will also define mk(λ) as the number of parts λi = k and set λ′ as the conjugate partition of λ.

A partition λ = (λ1, λ2, . . . , λr) can be visualized by its Young diagram, which consists of
horizontal boxes arranged in left-justified rows, where the ith row contains λi boxes; abusing
notation, we will frequently conflate a partition with its Young diagram. If µ ⊂ λ for two
partitions λ, µ, that is if µi ⩽ λi for all i, then λ/µ is a skew shape or skew partition with size
|λ/µ| = |λ| − |µ|. We will identify a partition λ with the skew shape λ/∅, and will also identify
partitions that differ only by a sequence of parts λi = 0 when it should not cause any confusion.

Fillings of the Young diagram according to a given alphabet are called tableaux: there are
many different kinds of tableaux, each defined by different rules for how one fills the shape.
In this paper, we focus on ribbon tableaux, first defined by Stanton and White in [SW85]. Let
n be a fixed positive integer. An n-ribbon R is a skew shape λ/µ containing n boxes that is
connected and contains no 2 by 2 squares. The spin of a ribbon R is defined to be spin(R) :=
height(R)− 1.
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Example 2.1. Of the six arrangements possible of 3 boxes, four of them are 3-ribbons, which we
see below labelled by their spin. The last two are not 3-ribbons because they cannot be realized
as skew shapes λ/µ.

3-ribbons non-ribbons

2 1 0 1

Given a skew partition λ/µ, a tiling of λ/µ by n-ribbons is called a n-horizontal strip if the
top-right-most square of each ribbon touches the northern boundary of λ/µ (Figures 2.1 and 2.2).
A tiling is called a n-vertical strip if the bottom-left-most square of each ribbon lies along the
western boundary of λ/µ. Equivalently, a vertical strip is a collection of ribbons that, when
collectively flipped over the y = −x antidiagonal, produces a n-horizontal strip.

Figure 2.1: From left to right: a 3-horizontal strip, a non-example of a horizontal strip, a 3-vertical
strip, and a non-example of a vertical strip.

Figure 2.2: A horizontal 3-ribbon strip of shape (9, 8, 2, 2)/(6).

A tiling of λ/µ by n-ribbons labelled with positive integers is called a ribbon tableau. We
often fix an alphabet A = {1, . . . , ℓ}; then, given such a tableau, we can define a sequence of
partitions µ = λ0 ⊂ λ1 ⊂ · · · ⊂ λℓ = λ, where λi consists of the subshape of the tableau with
labels less than or equal to i.

Definition 2.2. A semistandard n-ribbon tableau (SSRT) of skew shape λ/µ for the alphabet
A = {1, . . . , ℓ} is a tiling of λ/µ with n-ribbons such that the induced sequence µ = λ0 ⊂ λ1 ⊂
· · · ⊂ λℓ = λ has the property that for each i the skew shape λi/λi−1 is a horizontal n-ribbon
strip. We define the weight of such a tableau to be the composition wt(T ) such that

wt(T )i = #{n-ribbons labelled i in T}
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and we define the spin of T to be the sum of the spins of the n-ribbon tiles of T . The set of all
semistandard n-ribbon tableaux is denoted by SSRTn(λ). Note that is not always possible to tile
a given partition λ with n-ribbons, and we will restrict our attention to partitions or skew shapes
that are tileable by n-ribbons.

We can now define the polynomials formerly known as n-ribbon Schur functions, first intro-
duced by Lascoux, Leclerc, and Thibon in [LLT97].

Definition 2.3. Let n ⩾ 1 be fixed and λ/µ a skew shape tileable by n-ribbons forA = {1, . . . , ℓ}.
Then for X = {x1, . . . , xℓ}, the (n-)LLT polynomial of shape λ/µ is defined as the generating
function

G(n)
λ/µ(X; q) =

∑
T∈SSRTn(λ/µ)

qspin(T )xwt(T ). (2.1)

Example 2.4. For example, suppose that λ = (3, 3), A = {1, 2}, and n = 2. The only possible
2-ribbon tableaux with shape λ and labels in A are those depicted below.

1 1 1 1 1 2 1 2 2 2 2 2 1
1
2

1
2

2

Then,
G(2)
(3,3)(x1, x2; q) = q3(x1

3 + x1
2x2 + x1x2

2 + x2
3) + q(x1

2x2 + x1x2
2).

Example 2.5. For a more complicated example, consider G(3)
λ/µ(X; q) where λ = (5, 4, 3, 3),

µ = (2, 1), and A = {1, 2}. We then consider tableaux of shape λ/µ filled with 3-ribbons.

2
1
1
1

2
1
1
2

2 2

1 1

2 2

1 2

So G(5,4,3,3)/(2,1)(x1, x2; q) = q4 (x31x2 + 2x21x
2
2 + x1x

2
2) . In contrast, G(5,4,3,3)/(2,1)(x1; q) = 0,

since filling this entire skew shape with ribbons labelled 1 will violate the requirement that λ1/µ
is a horizontal ribbon strip. In the other direction, the reader may verify that there will be many
more than 4 terms in G(5,4,3,3)/(2,1)(x1, x2, x3; q) or G(5,4,3,3)/(2,1)(x1, x2, x3, x4; q).

We will generally write G(n)
λ/µ(X; q) = Gλ/µ(X; q) when n is understood to be fixed. Note:

the LLT polynomials are q-analogues of the Schur functions in the sense that Gλ/µ(X; 1) is equal
to a product of n-Schur functions, as proven in [LLT97].

The central object of this paper is the supersymmetric generalization of the LLT polynomials,
known as super LLT polynomials. As with LLT polynomials, these polynomials may be expressed
as a generating function over tableaux, in this case super ribbon tableaux, which were first defined
in Lam in [Lam05].
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Definition 2.6. Choose a total order ≺ on two ordered alphabets A,A′. Let a super n-ribbon
tableau of shape λ/µ be a tiling by n-ribbons labeled in the alphabets A and A′ such that the
ribbon shapes labeled by a ∈ A form horizontal ribbon strips and those labeled by b ∈ A′ form
vertical ribbon strips. Furthermore, we require that the skew shapes generated by this labelling
respect the total order on A and A′. That is to say, the shape formed by removing the ribbons ≻ i
gives a skew shape λ≺i/µ for every i ∈ A ∪ A′. We denote the set of super n-ribbon tableaux of
shape λ/µ by sRTn(λ/µ).

In this paper, we will consistently choose the first alphabet to be a subset of our usual alphabet
of positive integers, soA = {1, 2, 3, . . . , r} under the usual ordering, and setA′ = {1′, 2′, . . . , s′}
under a similar ordering. The total ordering between the two will vary, although two common
choices we will use in examples will be 1 ≺ 1′ ≺ 2 ≺ 2′ ≺ · · · and 1 ≺ 2 ≺ · · · ≺ r ≺ 1′ ≺
2′ ≺ · · · ≺ s′.

Definition 2.7. Fix n ⩾ 1 and let λ/µ be a shape tileable by n-ribbons. The super LLT polynomial,
or super ribbon function, G(n)

λ/µ(X/Y ; q) is the generating function

G(n)
λ/µ(X/Y ; q) =

∑
T∈sRTn(λ/µ)

qspin(T )xwt(T )(−y)wt′(T )

where wt(T ),wt′(T ) are the weights in the alphabets A,A′ respectively.

Example 2.8. Suppose that λ = (3, 3), µ = ∅ and n = 2. Let A = {1, 2} and A′ = {1′} under
the total order 1 < 1′ < 2. The super ribbon tableaux in sRT (λ/µ) for this ordering, which
include those from Example 2.4, are

1 1 1 1 1 2 1 2 2 2 2 2 1 1 1′ 1 1′ 2 1′ 2 2

1
1
2

1
1
1′

1
1′

2
1

1′

1′
1
2 2

1
1′

2
1′

2
2

1′

1′
2

We then compute that

G(2)
(3,3)(X/Y ; q) = q3(x31 + x21x2 + x1x

2
2 + x32 − x21y1 − x1x2y1 − x22y1)

+ q(x21x2 + x1x
2
2 − x21y1 − 2x1x2y1 − x22y1 + x1y

2
1 + x2y

2
1).

Example 2.9. To continue the second skew shape example, consider G(3)
λ/µ(X/Y ; q) where

λ = (5, 4, 3, 3), µ = (2, 1), A = {1, 2}, and A′ = {1′, 2′}. We then consider tableaux of shape
λ/µ filled with 3-ribbons. For this example, let us use the ordering 1 < 1′ < 2 < 2′.

This polynomial has many terms, so for brevity, we include only the subset that are order 2
in each of X, Y and have spin q4 to show how quickly adding the second alphabet expands the
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number of terms. There are 18 such tableaux, which are shown below,

1′ 2′

1 1

1′ 2

1 1′

2 2′

1 1′

1′ 2′

1 2

1′ 2

1 2′

1′ 2

1′ 2

2 2′

1′ 2

2 2′

1 2′

1′
1
1
1′

1′
1
1
2′

2′
1
1
1′

2′
1
1
2′

1′
1
1′

2

2
1
1′
2′

2′
1
1′

2

2′
1
2
2′

2′
1′

2
2

2′
2
2
2′

which correspond to the terms

q4
(
x21y

2
1 + 2x21y1y2 + x21y

2
2 + 2x1x2y

2
1 + 6x1x2y1y2 + 2x1x2y

2
2 + x22y

2
1 + 2x22y1y2 + x22y

2
2

)
.

The reader may be interested to note that there are 29 more terms with order 2 in each variable,
3 with spin 1 and 26 with spin q2, which come from fillings of the following shapes:

Observe that in these examples, the super LLT polynomials are symmetric in the X and Y
variables separately. Also, while the set of tableaux in each example depends on the total order,
it turns out the super LLT polynomial does not: the reader may find it interesting to compute
the tableaux for the total order 1 < 2 < 1′ in Example 2.8 or the total order 1 < 2 < 1′ < 2′ in
Example 2.9 and note that they generate the same polynomials. These are in fact both general
properties of super LLT polynomials, and were originally proven in [Lam05] using the machinery
we will discuss in Section 3. We also reprove them using the solvability of lattice models in
Section 5.

Proposition 2.10 ([Lam05], Prop 30). The function Gλ/µ(X/Y ; q) is symmetric in each of X
and Y and does not depend on the total order fixed between A and A′.

It would be natural to suppose that the super LLT polynomials for a skew partition λ/µ and
its conjugate skew partition λ′/µ′ are closely related, since flipping a super ribbon tableau results
in a new super ribbon tableau for the conjugate shape. Combining this with Proposition 2.10
gives us a precise relationship between the two polynomials.

Proposition 2.11. Let λ′ denote the conjugate partition of λ. For any n and any skew parti-
tion λ/µ,

Gλ/µ(X/Y ; q) = (−1)
|λ−µ|

n q(n−1)
|λ−µ|

n Gλ′/µ′(Y/X; q−1).

Proof. Consider the left hand side as a generating function over super ribbon tableaux of shape
λ/µ under the alphabet A,A′. Given one of these tableau T , flipping it over the anti-diagonal
produces a new ribbon tableau T ′ of shape λ′/µ′ with the alphabets flipped, since horizontal
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ribbon strips become vertical strips and vice versa. We then compare the weights of T and T ′.
In T , ribbons labeled i ∈ A add a factor of xi and those labeled j ∈ A′ add a factor of (−yj).
In T ′, the alphabets swap roles, which amounts to changing the sign of each ribbon. That is, if
we let wt(−) be the weight in the horizontal alphabet and wt′(−) that in the vertical alphabet on
each side, we have

xwt(T )(−y)wt′(T ) = (−1)
|λ−µ|

n (−x)wt′(T ′)ywt(T
′).

For the sake of clarity, we maintain the same total order on our alphabets, regardless of the fact
that their roles have changed, since by Proposition 2.10 the polynomials are independent of the
chosen ordering. Regarding the power of q, each individual ribbon r has the property that its
spin satisfies s(r) + s(r′) = n− 1, so the full ribbon tableaux are related by

s(T ) + s(T ′) = (n− 1)
|λ− µ|
n

.

3. SuperLLT polynomials and Heisenberg algebra operators

Many symmetric polynomials may be represented using representations of a Heisenberg algebra
generalized from the fermion side of the classical Boson–Fermion correspondence. In this
context, elements of the algebra become operators on a Fock space indexed by partitions λ,
encoding the algebraic framework behind adding or removing boxes in the generating tableaux
shapes. Examining the interactions of these operators provides elegant proofs of identities that are
difficult or impossible to prove from the tableaux definition. Conversely, families of polynomials
generated by such operators may frequently be written as generating functions over tableaux
satisfying a similar list of identities (see [Lam06] for a convenient reference). In this section, we
introduce the operator definition for super LLT polynomials, which will be used in Section 4 to
prove Cauchy and Pieri identities.

In order to properly construct and examine relations between these operators, we first recall
a few concepts from symmetric function theory. Let Λ denote the ring of symmetric functions
over C, or more generally, over a field of characteristic 0. As is standard, let hk denote the
homogeneous symmetric functions, ek the elementary symmetric functions, and pk the power
sum symmetric functions. Define pλ := pλ1pλ2 · · · pλr for λ = (λ1, λ2 . . . , λr). Noting that pλ
form a basis for Λ, the expansions for hk and ek are

hk =
∑
λ⊢k

z−1
λ pλ ek = (−1)k

∑
λ⊢k

(−1)ℓ(λ)z−1
λ pλ

where zλ = 1m1(λ)m1(λ)! · · ·nmn(λ)mn(λ)!.
For the remainder of this section, fix a positive integer n. Let the Heisenberg algebra

H = H[ai] be the associative algebra with identity generated by the set {Bk : k ∈ Z \ 0}
such that

[Bj, Bk] = j · ak · δj,−k (3.1)

for some ak ∈ K, where K is a field of characteristic 0. For the purpose of this paper, we
will typically specialize to ak := 1−q2nk

1−q2k = 1 + q2k + · · · + q2k(n−1) ∈ C. This algebra and its
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representations are well studied, first by Lascoux, Leclerc, and Thibon [LLT97] and then by Lam
for generic ai [Lam06]. Here, we only need the original representation used by Lascoux, Leclerc,
and Thibon on the Fock space F generated over C by the symbols |λ⟩ for partitions λ. This space
is equipped with an inner product ⟨−,−⟩, so for notational convenience, we will simplify |λ⟩
to λ when it appears within the inner product, which is defined by ⟨λ, µ⟩ := δλµ. It is useful to
note that the actions of Bk and B−k on F are adjoint with respect to this inner product.

Let Bλ := Bλ1Bλ2 · · ·Bλℓ(λ) and define B−λ similarly. We define four operators within the
Heisenberg algebra:

Dk :=
∑
λ⊢k

z−1
λ Bλ D̃k := (−1)k

∑
λ⊢k

(−1)ℓ(λ)z−1
λ Bλ

Uk :=
∑
λ⊢k

z−1
λ B−λ Ũk := (−1)k

∑
λ⊢k

(−1)ℓ(λ)z−1
λ B−λ.

Note that we have designedDk (respectively D̃k) to relate toBλ in the same way as hk (respectively
ek) does to pλ.

Definition 3.1. Let λ, µ be partitions. Then, we define the generating functions

Fλ/µ(X/Y ; q) =
∑
α,β

Xα(−Y )β⟨Uαl
Uαl−1

· · ·Uα1ŨβmŨβm−1 · · · Ũβ1 · µ, λ⟩,

Gλ/µ(X/Y ; q) =
∑
α,β

Xα(−Y )β⟨Dαl
Dαl−1

· · ·Dα1D̃βmD̃βm−1 · · · D̃β1 · λ, µ⟩

where the sums run over all compositions α, β.

It is helpful to think of these as tableaux style definitions: the U operators add n-ribbon
strips to a tableaux of shape µ: Uk adding horizontal strips and Ũk vertical strips, and similarly,
the D operators remove n-ribbon strips from a tableaux of shape λ: Dk horizontal and D̃k

vertical. Note: in [Lam05], the operators Dk are denoted Vk. From this viewpoint, we realize
that both Fλ/µ and Gλ/µ recover the super LLT polynomials defined in the previous section. This
reformulation allowed Lam to prove the symmetry properties of super LLT polynomials stated in
Proposition 2.10, which are much more difficult to see from the tableaux definition. On the other
hand, using the operator definition, symmetry in X (respectively Y ) results from the fact that
the Dα (respectively D̃α) operators commute with themselves. Likewise, the fact that the total
order does not affect the polynomial comes from the fact that the Dα and D̃α operators commute.

We next consider the interaction between the actions of adding and removing ribbon strips of
different types. Let κ : Λ → C be the algebra homomorphism defined by κ(pk) = ak.

Lemma 3.2. We have the following identities as elements in H[ai]:

DbUa =
m∑
j=0

κ(hj)Ua−jDb−j D̃bŨa =
m∑
j=0

κ(hj)Ũa−jD̃b−j

D̃bUa =
m∑
j=0

κ(ej)Ua−jD̃b−j DbŨa =
m∑
j=0

κ(ej)Ũa−jDb−j
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where m = min{a, b}. Equivalently, setting U(x) := 1 +
∑

i⩾0 Uix
i and defining D(x), Ũ(x),

D̃(x) similarly, we have the following commutation relations

[D(y), U(x)] = [D̃(y), Ũ(x)] = 1 +
∑
i⩾0

κ(hi)(xy)
i

[D̃(y), U(x)] = [D(y), Ũ(x)] = 1 +
∑
i⩾0

κ(ei)(xy)
i

Proof. The relation of Db and Ua is proven as Lemma 8 in [Lam06]. We follow the general
thread of that proof for the remaining relations: consider the second desired identity with D̃b

and Ũa. Expanding via definition, the left hand side becomes

D̃bŨa = (−1)a(−1)b
∑
ρ⊢a
π⊢b

(−1)ℓ(ρ)+ℓ(π)z−1
ρ z−1

π BπB−ρ

Then, apply the commutation relation (3) to swap the order of positively and negatively-signed B
operators. Effectively, this process builds a smaller partition λ out of parts that are in both π and ρ;
we must account for all the ways to build a given λ in this manner. If µ = ρ \ λ and ν = π \ λ,
the expression above becomes

= (−1)a(−1)b
∑
ρ⊢a
π⊢b

(−1)ℓ(π)+ℓ(ρ)
∑
λ⊂ρ
λ⊂π

z−1
µ z−1

ν z−1
λ κ(pλ)B−µBν

Reindexing over the possible sizes j of λ, cancelling matching powers of -1, and using the
expansion of hj in terms of pλ, we have

=
m∑
j=0

(−1)a−j(−1)b−jκ(hj)
∑
µ⊢a−j
ν⊢b−j

(−1)ℓ(µ)+ℓ(ν)z−1
µ z−1

ν B−µBν

which by definition is the desired right hand side. The remaining identities follow similarly,
except that since we only have one tilde-type operator, the power of (−1)j+ℓ(λ) doesn’t cancel
out. Instead, it folds in with the κ(pλ) according to the expansion of ej in terms of pλ, to obtain a
coefficient of κ(ej) instead of κ(hj).

4. SuperLLT Cauchy and Pieri identities

Using this operator definition, we can construct generalized Cauchy and Pieri identities for Fλ/δ
and Gλ/δ. Note that these theorems will apply to any function that can be achieved through
specialization of ai in the operators, not just to super LLT polynomials, however, we will focus on
the implications for super LLT polynomials in this paper. See also Hardt [Har21] or Aggarwal,
Borodin, Petrov, and Wheeler [ABPW21] for interesting investigations of this identity in terms
of Hamiltonian operators. For instance, our Theorem 4.1 is similar to their Proposition 2.10 and
Proposition 3.7, respectively.
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Theorem 4.1. Let µ, ν be partitions. Then∑
λ

Fλ/µ(X/Y )Gλ/ν(W/Z) = [∗] ·
∑
λ

Fν/λ(X/Y )Gµ/λ(W/Z)

where

[∗] =
∏
i,j,k,ℓ

[D(wk), U(xi)] · [D̃(−zℓ), Ũ(−yj)] · [D̃(−zℓ), U(xi)] · [D(wk), Ũ(−yj)].

Proof. By definition, we have Fλ/µ(X/Y ) = ⟨· · ·U(x2)U(x1) · · · Ũ(−y2)Ũ(−y1) · µ, λ⟩
and Gλ/µ(X/Y ) = ⟨· · ·D(x2)D(x1) · · · D̃(−y2)D̃(−y1) · λ, µ⟩. Then using the properties
of the inner product and the commutation relation of Lemma 3.2, we have∑
λ

Fλ/µ(X/Y )Gλ/ν(W/Z) =
∑
λ

⟨· · ·U(x2)U(x1) · · · Ũ(−y2)Ũ(−y1) · µ, λ⟩

· ⟨· · ·D(w2)D(w1) · · · D̃(−z2)D̃(−z1) · λ, ν⟩
= ⟨· · ·D(w2)D(w1) · · · D̃(−z2)D̃(−z1) · · ·U(x2)U(x1) · · · Ũ(−y2)Ũ(−y1) · µ, ν⟩
= [∗]⟨· · ·U(x2)U(x1) · · · Ũ(−y2)Ũ(−y1) · · ·D(w2)D(w1) · · · D̃(−z2)D̃(−z1) · µ, ν⟩

= [∗] ·
∑
λ

⟨· · ·D(w2)D(w1) · · · D̃(−z2)D̃(−z1) · µ, λ⟩

· ⟨· · ·U(x2)U(x1) · · · Ũ(−y2)Ũ(−y1) · λ, ν⟩

= [∗] ·
∑
λ

Fν/λ(X/Y )Gµ/λ(W/Z).

Specializing µ and ν to an n-core partition gives a more “standard” Cauchy identity formula
with a sum side and a product side.

Corollary 4.2. For δ an n-core,

∑
λ:λ̃=δ

Gλ/δ(X/Y ; q)Gλ/δ(W/Z; q) =
∏
i,j,k,ℓ

n−1∏
t=0

(1− q2txizℓ)(1− q2tyjwk)

(1− q2txiwk)(1− q2tyjzℓ)
.

Proof. Set µ = ν = δ and consider Theorem 4.1, recalling that for the given Heisenberg
parameters ak = 1 + q2k + · · · q2k(n−1), both Fλ/µ and Gλ/µ produce the super LLT polyno-
mial Gλ/µ(X/Y ; q). There is only one nonzero term in the right-hand sum, because you cannot
take any n-ribbon strips away from an n-core, so the only term is 1 from α = β = ∅. It remains
then to simplify the commutation factor: we have

[D(y), U(x)] =
n−1∏
t=0

1

1− q2txy
and [D̃(y), U(x)] =

n−1∏
t=0

(1 + q2txy)

so taking the product over the appropriate combinations of signed x, y, z, w variables produces
the desired statement.
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Remark 4.3. Specializing Y = vX and Z = vW in Corollary 4.2 recovers the Cauchy identity
for metaplectic Whittaker functions Mn

λ(z) given in [BBBG20], as Mn
λ/µ(z) = Gnλ/µ(z/vz).

In search of a dual Cauchy Identity to match this Cauchy Identity, we revisit the Cauchy and
dual Cauchy identities for LLT polynomials: since Gλ/µ(X/0; q) = Gλ/µ(X; q), Corollary 4.2
recovers the Cauchy identity for LLT polynomials:

Corollary 4.4 (Cauchy identity for LLT). For an n-core δ,

∑
λ:λ̃=δ

Gλ/δ(X/0; q) · Gλ/δ(Y/0; q) =
∏
i,j

n−1∏
t=0

1

1− xiyjq2t
.

Using the relationship between G(X/Y ) and G(Y/X) developed in Proposition 2.11, we see
that q(n−1)

|λ−µ|
n Gλ′/µ′(X; q−1) = Gλ/µ(0/−X; q), so Corollary 4.2 also recovers the dual Cauchy

identity for LLT polynomials.

Corollary 4.5 (Dual Cauchy identity for LLT). For an n-core δ,

∏
i,j

n−1∏
t=0

(1 + xiyjq
2t) =

∑
λ

q(n−1)
|λ−µ|

n Gλ/µ(X/0; q) · Gλ′/µ′(Y/0; q−1)

=
∑
λ

Gλ/µ(X/0; q) · Gλ/µ(0/− Y ; q).

We may think of this relationship between dual Cauchy and Cauchy identities for the LLT
polynomials as the fact that not all semi-standard ribbon tableaux are also semi-standard (vertical)
ribbon tableaux, so comparing horizontal to vertical fillings will return only finitely many options
for tableaux shapes, but comparing horizontal to horizontal or vertical to vertical have infinitely
many partitions that may be admissibly filled. However, since super ribbon tableaux combine
the notions of “horizontally” and “vertically” semi-standard, the analogue of a dual Cauchy
Identity for super LLT polynomials is in fact the consequence of combining Proposition 2.11
with Corollary 4.2.

Corollary 4.6 (“Dual” Cauchy Identity for super LLT). For δ an n-core,

∑
λ:λ̃=δ

q(n−1)
|λ−µ|

n Gλ/δ(X/Y ; q)Gλ′/δ′(W/Z; q−1) =
∏
i,j,k,ℓ

n−1∏
t=0

(1 + q2txiwk)(1 + q2tyjzℓ)

(1 + q2txizℓ)(1 + q2tyjwk)
.

Note that Corollary 4.6 can also be proved directly using an argument similar to the proof of
Corollary 4.2, which we leave as an exercise to the reader.

We may apply the same machinery to obtain Pieri and branching rules for superLLT polyno-
mials. Let θ : Λ → Λ be the map defined by sending θ(pk) = akpk. Then, let

hk[ai](X) := θ(hk(X)) and ek[ai](X) := θ(ek(X)).

Equivalently, in plethystic notation, hk[ai](X) = hk[aiX] and ek[ai](X) = ek[aiX]. The
classical Pieri rules for Fλ/δ and Gλ/δ, for δ an n-core partition, are written in terms of hk.
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Theorem 4.7 (Lam [Lam06], Theorem 7). Let k ⩾ 1 and let λ be a partition with n-core δ. Then
F and G satisfy generalized Pieri identities

hk[ai](X)Fλ/δ(X) =
∑
µ

⟨Dk · µ, λ⟩Fµ/δ(X),

hk[ai](X)Gλ/δ(X) =
∑
µ

⟨Uk · λ, µ⟩Gµ/δ(X).

For supersymmetric polynomials, the interaction of different types of operators Uk, Dk

and Ũk, D̃k results in slightly more complicated Pieri rules.

Theorem 4.8. (Generalized supersymmetric Pieri identities) Let k ⩾ 1 and let λ be a partition
with n-core δ. Then, F and G satisfy four generalized Pieri identities( ∑

ℓ+m=k

eℓ[ai](Y ) · hm[ai](X)

)
Fλ/δ(X/Y ) =

∑
µ

⟨Dk · µ, λ⟩Fµ/δ(X/Y ),( ∑
ℓ+m=k

eℓ[ai](X) · hm[ai](Y )

)
Fλ/δ(X/Y ) =

∑
µ

⟨D̃k · µ, λ⟩Fµ/δ(X/Y ),( ∑
ℓ+m=k

eℓ[ai](Y ) · hm[ai](X)

)
Gλ/δ(X/Y ) =

∑
µ

⟨Uk · λ, µ⟩Gµ/δ(X/Y ),( ∑
ℓ+m=k

eℓ[ai](X) · hm[ai](Y )

)
Gλ/δ(X/Y ) =

∑
µ

⟨Ũk · λ, µ⟩Gµ/δ(X/Y ).

Proof. Let H(X; t) and E(X; t) be generating polynomials over h and e. That is,

H(X; t) =
∞∑
k=0

hk[ai](X)tk and E(X; t) =
∞∑
k=0

ek[ai](X)tk.

We will use these to simultaneously prove the Pieri rules for all k. To prove the first statement,
consider∑

µ

⟨D(t) · µ, λ⟩Fµ/δ(X/Y ) =
∑
µ

⟨D(t) · µ, λ⟩⟨· · ·U(x2)U(x1) · · · Ũ(−y2)Ũ(−y1) · δ, µ⟩

= ⟨D(t) · · ·U(x2)U(x1) · · · Ũ(−y2)Ũ(−y1) · δ, λ⟩
= [⋆] · ⟨· · ·U(x2)U(x1) · · · Ũ(−y2)Ũ(−y1)D(t) · δ, λ⟩,

where [⋆] =
∏

xi∈X [D(t), U(xi)] ·
∏

yj∈Y [D(t), Ũ(−yj)],

= [⋆] · ⟨· · ·U(x2)U(x1) · · · Ũ(−y2)Ũ(−y1) · δ, λ⟩
= [⋆] · Fλ/δ(X/Y ).
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where the penultimate line follows from the fact that the D(t) operator removes horizontal strips
from a partition, but δ is an n-core, so D(t) · δ = δ. A straightforward computation gives
that H(X; t) =

∏
xi∈X [D(t), U(xi)] and E(Y ; t) =

∏
yj∈Y [D(t), Ũ(−yj)]. Then, extracting the

coefficient of tk in each side of the equation yields the desired formula. The second equation
follows similarly, exchanging Dk and thus D(t) for D̃k and D̃(t).

For the third formula, the same method applies, however we note one slight difference after
we have commuted the operator U(t) past the operators generating G:∑

µ

⟨U(t) · λ, µ⟩Gµ/δ(X/Y ) =
∑
µ

⟨U(t) · λ, µ⟩⟨· · ·D(x2)D(x1) · · · D̃(−y2)D̃(−y1) · µ, δ⟩

...

= [⋆]⟨U(t) · · ·D(x2)D(x1) · · · D̃(−y2)D̃(−y1)λ, δ⟩,

where [⋆] =
∏

xi∈X [D(t), U(xi)] ·
∏

yj∈Y [D(t), Ũ(−yj)],

= [⋆]⟨· · ·D(x2)D(x1) · · · D̃(−y2)D̃(−y1)λ, δ⟩.

Since δ is again an n-core partition and U(t) adds horizontal strips, the only constribution to the
δ-th component of U(t) · · ·D(x2)D(x1) · · · D̃(−y2)D̃(−y1)λ comes from the constant term 1
in U(t). Rephrasing in terms of G and taking the coefficient of tk, we then recover the third
formula, and the proof of the fourth formula is analogous.

Inspired by this proof method, we may also state generalized branching rules for the F and G
polynomials.
Proposition 4.9. (Generalized branching rules) Let λ be a partition with n-core δ. Then, F
and G satisfy four generalized branching rules:

Fλ/δ((X ∪ {t})/Y ) =
∑
µ

⟨U(t) · µ, λ⟩Fµ/δ(X/Y ),

Fλ/δ(X/(Y ∪ {t})) =
∑
µ

⟨Ũ(t) · µ, λ⟩Fµ/δ(X/Y ),

Gλ/δ((X ∪ {t})/Y ) =
∑
µ

⟨D(t) · λ, µ⟩Gµ/δ(X/Y ),

Gλ/δ(X/(Y ∪ {t})) =
∑
µ

⟨D̃(t) · λ, µ⟩Gµ/δ(X/Y ).

Proof. These identities follow similarly to the Pieri rules, except without eliminating the t
parameter. For instance, for the first identity,

Fλ/δ((X ∪ {t})/Y ) = ⟨U(t) · · ·U(x2)U(x1) · · · Ũ(−y2)Ũ(−y1) · δ, λ⟩

=
∑
µ

⟨U(t) · µ, λ⟩⟨· · ·U(x2)U(x1) · · · Ũ(−y2)Ũ(−y1) · δ, µ⟩

=
∑
µ

⟨U(t) · µ, λ⟩Fµ/δ(X/Y ).
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Recalling that the U and Ũ operators commute, as do the D and D̃ operators, the remaining three
proofs are analogous.

Since both F andG specialize to superLLT polynomials under this choice of ai, we specialize
to the following corollary for superLLT polynomials.

Corollary 4.10. Let λ be a partition with n-core δ. Then the super LLT polynomial satisfies the
Pieri rules

E(Y ; t)H(X; t)Gλ/δ(X/Y ; q) =
∑
µ

Gµ/λ({t}/0; q) · Gµ/δ(X/Y ; q),

E(X;−t)H(Y ;−t)Gλ/δ(X/Y ; q) =
∑
µ

Gµ/λ(0/{t}; q) · Gµ/δ(X/Y ; q),

and the branching formulae

Gλ/δ((X ∪ {t})/Y ; q) =
∑
µ

Gλ/µ({t}/0; q) · Gµ/δ(X/Y ; q),

Gλ/δ(X/(Y ∪ {t}); q) =
∑
µ

Gλ/µ(0/{t}; q) · Gµ/δ(X/Y ; q).

Specifically, we prefer the generating function version that incorporates the t parameter as
this more closely mimics the lattice model constructions we will investigate in later sections.
Also, note that in the first identity, the only nonzero terms on the right hand side will be those
for which µ/λ is a horizontal strip, as otherwise Gµ/λ({t}/0; q) = 0. Similarly, the only nonzero
terms on the right hand side in the second identity are those for which µ/λ is a vertical strip. The
third and fourth are analogous upon replacing µ/λ with λ/µ.

Examining the way we apply these operators to add or remove horizontal and vertical strips,
from the view of particle interactions inside the individual ribbon, we can construct a lattice
model whose partition function gives the super LLT polynomials. In Section 8, we will then
investigate how we can see relationships between the Cauchy and Pieri identities above and a
solvable Cauchy lattice model built out of this lattice model.

5. A lattice model for super LLT polynomials

Many interesting classes of polynomials and special functions can be represented as the partition
functions of solvable lattice models, i.e. weighted functions on a grid system that satisfy Yang–
Baxter equations. In this section, we show that super LLT polynomials appear as the partition
functions of a n-ribbon lattice model, an n-stranded generalization of the 5 vertex lattice model
for Schur polynomials.

Throughout this section, fix an integer n ⩾ 1. To define a n-ribbon lattice model, construct
a two-dimensional square grid and place vertices at the intersections. Every vertical edge will
be assigned a label from the set {∧,∨}; this label is sometimes also called a “spin,” but we
will refrain from using that term to avoid confusion with the spin (q-power) of a ribbon. Every
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horizontal edge will be assigned an n-tuple of labels from the set {<,>}. However, distinguishing
this model from merely being a collapsed version of a grid n times taller, we will require a curious
condition on these tuple labels: given a vertex v, denote the north, south, east and west entries of
a vertex v by vN , vS, vE and vW respectively. Since vE and vW are both n-tuples, we denote the
i-th entry by vE(i) or vW (i) respectively.

Definition 5.1. We say a n-ribbon vertex v is admissible if it satisfies the following conditions:
1. The number of arrows pointing inwards equals the number of arrows pointing outwards.
2. The labels vE(i) = vW (i+ 1) for all i ∈ {1, 2, . . . , n− 1}. Note that vE(n) need not be

equal to vW (1).

We may visualize this condition by expanding the n-tuple-labelled horizontal edge of a vertex
into n horizontal edges with one distinguished edge to represent that from vW (1) to vE(n) (see
Figure 5.1). We will call this distinguished edge the twisted edge, and every other horizontal
edge will be called straight. Then we can summarize the second condition concisely by requiring
that arrows do not change along any straight (horizontal) edge.

vN

vS

vW vE

vS

vN
vE(n)

vE(n − 1)

vE(2)

vE(1)

vW (n)

vW (3)

vW (2)

vW (1)

Figure 5.1: Two renderings of a n-ribbon vertex, where the one on the left uses tuple labels
vW = (vW (1), · · · , vW (n)) and vE = (vE(1) · · · vE(n)) to collapse the strands. In both render-
ings, vN , vS ∈ {∧,∨} and vE(i), vW (i) ∈ {<,>}. We will tend to use the right one, as it is
more diagramatically convenient for our applications.

Note that while we display the twisted edge as “crossing” the straight edges, we think of this
vertex as a diagrammatic fusion of the n vertices obtained by crossing every horizontal edge
with the vertical edge (as opposed to 2n− 1 crossings seemingly displayed in Figure 5.1). (See
Remark 5.6 for a more detailed explanation of this process and its connection to other types of
lattice model fusion.)
Remark 5.2. The independent coinversion LLT polynomial lattice models of [CGKM22],
[ABW21], and [GK21] follow a similar rendering process, with the additional step that their
models fuse n consecutive columns together to obtain a vertex with n-tuple labels on every
edge. After this additional fusion, their weights may be obtained by careful specialization of the
R-matrix for the quantum group Uq(ŝl(1|n)), since each n-labelled strand may be associated to
an n-dimensional evaluation module for this quantum group. (See Section 5 of [ABW21] for
more detailed explanation.)

It is difficult to identify a quantum group module corresponding to our vertical edges, which
have 2 label options and would thus require a 2-dimensional module, so we cannot obtain the
weights in Figures 5.3 through this sort of specialization. However, fusing columns in our
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model in the same manner as [CGKM22] and [ABW21] would obtain a lattice model arising
from Uq(ŝl(1|n)) under a similar specialization. We hope that investigating this distinction
in future work will identify a suitable quantum module for the vertical edges in our existing
model, as this conundrum has arisen in several other lattice models relating to special functions
[BBBG19, BBBG21b, Fre20, Gra17].

We call a set of label conditions on the boundary edges of the grid a system, allowing the
labels on interior edges to vary. A given assignment of labels for all these interior edges is called
a state of that system. We say a state is admissible each of its vertices is admissible. Under the
stranded rendering, we see that an admissible state has chains of arrows travelling n vertices
without changing label. That is, that every left (respectively right) arrow occurring at vE(n) for
some vertex v must be followed by n− 1 consecutive left (respectively right) arrows as we travel
to the right along its strand before it is allowed to change label (see Figure 5.2). It is helpful to
think of this condition in terms of a path model for particles: if we consider particles travelling
through our lattice model along “up” and “left” arrows (where then edges labelled “down” or
“right” have no particle), this condition tells us that particles must travel in steps of n vertices
at a time. (See Figures 5.4 and 5.5 for examples of admissible states with only a single particle
travelling in one row, or Figures 5.6 and 5.7 for examples of admissible states with multiple
particles travelling in a single row.)

Figure 5.2: The vE(4) entry of the leftmost vertex is a left arrow, which must be following by 3
left arrows from the right.

Definition 5.3. Let λ/µ be a skew partition, r a positive integer, and A,A′ two ordered alphabets
such that |A| + |A′| = r with a total ordering between them that respects their individual
orderings. Define the system of boundary conditions Bλ/µ(X/Y ) on a n-ribbon lattice model,
letting ρ = (r, r − 1, . . . , 2, 1), as:

• there are r rows and λ1 + r columns,

• all edges on the left and right boundaries are labelled >,

• numbering the columns left to right starting with 1, edges on the bottom boundary that
appear as parts of λ+ ρ are labelled ∧, and all others are labelled ∨, and

• edges on the top boundary appearing as parts of µ+ ρ are labelled ∧, while all others are
labelled ∨.

• horizontal rows labelled i ∈ A have spectral parameters xi,

• vertical rows labelled i′ ∈ A′ have spectral parameters yi′ , and
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• reading from top to bottom, rows are labelled in increasing order according to the total
order.

We then define a generating function on the lattice model.

Definition 5.4. Let wt(v) denote the Boltzmann weight of a vertex. Define the Boltzmann weight
of a state s to be the product over the weights of its vertices and the Boltzmann weight of a system,
commonly known as the partition function of the system, to be the sum over the weights of its
states. That is,

wt(s) =
∏
v∈s

wt(v) and Z(B) := wt(B) =
∑
s∈B

wt(s).

Any vertex that is not admissible has weight 0. Given any admissible vertex v, its weight will
depend on whether it is in a horizontal strip row or a vertical strip row. We will suggestively
label the horizontal strip rows with numbers i ∈ A and assign them spectral parameters xi, while
the vertical strip rows will be labelled with numbers i′ ∈ A′ and have parameters yi′ .

We now define two sets of Boltzmann weights for the admissible vertices, all of which
are monomials in q and the spectral parameter xi or yi′ assigned to the row in which a vertex
appears. These weights are shown in Figure 5.3. Note that in this table, we label the different
types of vertices based on the edges pointing into the vertex from either the column edge or the
twisted edge. We may generally think of the twisted edge as controlling the power of the spectral
parameter and the straight edges as controlling the power of q.

Label SW NS SE NW EW NE

Vertex

wtH qs qs 0 1 qsxi qsxi
wtV qs 1 −yi′ 1 −yi′ 0

Figure 5.3: The weights wtH(v) of a vertex v in horizontal strip row i ∈ A and wtV (v) of a
vertex v in a vertical strip row i′ ∈ A′ for the n super ribbon lattice model, where s is the number
of left arrows in the circled area. To match the particle interpretation, “up” and “left” arrows are
colored red (contain a particle) and “down” and “right” arrows blue (no particle).

Remark 5.5. The two sets of weights may be related by the following standard procedure: in the
weights for a horizontal strip row (Figure 5.3), substitute q−1 for q and −yi′ for xi, then multiply
each weight by qs. Lastly, flip each vertical strand over the horizontal diagonal (e.g., SW becomes
NW, but NS stays NS).

This duality arises from the fact that flipping a horizontal ribbon strip over the antidiago-
nal y = −x obtains a vertical ribbon strip: compare the 3-ribbons in Figure 5.4 to each other: the
first and third examples trade places, while the second and fourth examples are sent to themselves.
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As discussed in Proposition 2.11, if T is an n-ribbon and T ′ its flip, then the spins of T and T ′

add to n− 1, the number of possible strands that can carry a power of q in the n-vertex. Similarly,
the two vertices that carry a power of xi for a horizontal ribbon strip are those on which a particle
leaves the ribbon (EW and NE), which after this process become (EW and SE), the two vertices
on which a particle can leave a ribbon in a vertical ribbon strip. The flip arises from the fact that
horizontal edges become vertical edges and vice versa under the flip, so arrows that were red are
now blue and vice versa.
Remark 5.6. The horizontal strip row weights depicted in Figure 5.3 may be obtained through a
graphical “fusion” procedure on the n smaller vertices obtained by taking each horizontal strand
crossing the single vertical strand. Given a vertex coming from a “straight” strand, let it have
weight q if the straight edge labels point left and weight 1 if the straight edge labels point right.
Given a vertex for a twisted horizontal edge, let it have weight 1 if it is type SW, or NS; weight 0
if it is type SE; weight xi if it is type EW or NE; and weight q−s if it is type NW . Overlaying
these n smaller vertices to obtain an n-ribbon vertex, multiply the weights of the individual
pieces together to obtain the weight of the n-ribbon vertex. The vertical strip row weights may be
obtained through an analogous procedure. Note that this process requires us to consider only n
of the 2n− 1 strand “intersections” visible in the way we have displayed the n-ribbon vertex.

These processes are combinatorial fusions in the sense of [BW20, BBBG20, BBBG21a,
BBBG21b], which generalize the graphical interpretation of the traditional fusion procedure
by Kulish, Reshetikhin, and Sklyanin for tensor products of quantum group modules and their
subquotients [KRS81]. (See Appendix B of [BW20] for a description of when combinatorial
fusion coincides with traditional fusion.)

Theorem 5.7. Given a skew partition λ/µ and a total order on alphabets A,A′, we have

Z
(
Bλ/µ(X/Y )

)
= G(n)

λ/µ(X/Y ; q).

To prove Theorem 5.7, we construct a weight preserving bijection between the set of all super
ribbon tableaux and the set of all admissible ribbon lattices with the corresponding boundary
conditions. We start with an important lemma about individual ribbons.

Lemma 5.8. There is a weight-preserving bijection between n-ribbons and ribbon lattice models
with one row and n+ 1 columns, using either set of weights from Figure 5.3.

Proof. The bijection itself is easy to describe: send the n-ribbon of shape λ/µ to the one-row
lattice model with boundary conditions Bλ/µ. To show that it is weight-preserving is a bit more
complicated, and we take this time to develop some machinery that will be useful later.

Consider an n-ribbon of shape λ/µ. Starting in the bottom right corner, label each vertical
(resp. horizontal) edge red (resp. blue) and number their positions increasingly along each of the
upper and lower edges of the ribbon. We call this the edge sequence path of the ribbon. Note
that red edges occur on labels that occur as parts of µ+ ρ on the top boundary and on labels in
λ+ ρ on the bottom boundary of the ribbon, and the largest label will always be n+ 1. We may
therefore think of the bijection heuristically as “stretching” the ribbon straight to lay atop the
lattice model.
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Figure 5.4: Edge sequence paths for the four 3-ribbons given in Example 2.1 and their corre-
sponding lattice states with weights from either weight set in Figure 5.3, where z = x or −y.
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Figure 5.5: The 6-ribbon for λ = (4, 4, 1), µ = (3, 0, 0) and its corresponding lattice model state
with weights included.

Claim: there is only one state for this model. Since a ribbon may not contain any 2 by 2
squares, we may assign a particle action to the red edges of the ribbon: along each n-ribbon, the
red dot in the upper right corner (labelled n+ 1) will travel to the lower left corner (labelled 1),
and all the remaining reds will travel up and to the left while retaining the same label. Thus,
aside from column 1 and column n + 1, all other columns have the same label on top and on
bottom. Coupling this with the fact that the side boundaries are all right arrows, the inner inner
labels of the lattice model are fully determined: the vertex in column 1 must be type EW, that in
column n + 1 must be type NS, and the remainder are either type NW (if column i is blue in
the ribbon) or type SW (if column i is red in the ribbon). The remaining labels are determined
by the fact that straight edges don’t change label across a vertex, so the strand from column 1 to
column n+ 1 is entirely left arrows and all the rest are right arrows.

Vertex types in hand, we return to the weighting. There are no SE or NE vertices in this
model, and the only internal left arrows occur on type SW vertices, so the two sets of weights in
Figures 5.3 give the same partition function for this model up to choice of the spectral parameter z,
which we specialize to xi or −yi′ respectively. Since we have a single state, the partition function
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is a monomial: the EW vertex gives a power of z and each SW vertex a power of q, while the
NW and NS vertices don’t change the weight, so our lattice model weight is q#SW z.

Recall that a lone ribbon has weight qheight−1z, where z is the desired spectral parameter.
Referring to Figure 5.5, note that the spin qheight−1 counts the number of intersections between
particles (i.e. the number of red columns between 1 and n+ 1), which are precisely the columns
that become SW vertices.

Proposition 5.9. Using the horizontal strip row weights from Figure 5.3, there is a weight-
preserving bijection between horizontal n-ribbon strips and one-row lattice models with non-zero
weight.

Proof. Sends a horizontal ribbon strip of shape λ/µ to the one row model with boundary condi-
tionsBλ/µ. To show this map is a bijection, we define an assignment of internal arrows that turns a
ribbon filling of this strip into an admissible state by “peeling off” successive ribbons. Starting at
the rightmost ribbon in the strip, assign left arrows as in Lemma 5.8 for each ribbon, momentarily
ignoring the right arrows. That is, a ribbon with edge sequence labels k, . . . , k + n for some k
will assign left arrows to the lattice model edges vk,E(n), vk+1,E(n− 1), . . . , vk+n,W (1), which
comprise the straight edge strand connecting vertices k and k + n. Once all ribbons have been
considered, fill the remaining edges with right arrows. Since no two ribbons start (or end) with
the same labels, these choices of left arrow edges will be distinct over all ribbons. Since the path
of left arrows assigned by the last ribbon starts with vE(n) on v1 and that of the first ribbon ends
with vE(1) on the last vertex, this assignment of left arrows will not impede the assignment of
straight edge right arrow paths dictated by the left and right boundary conditions.
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5 6 7
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9 10 11 12

1 2 3
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7 8
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10 11
12

x qx 1 q2 qx q 1 qx q 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12

Figure 5.6: The edge sequence path of a horizontal strip, and the corresponding single row lattice
state, with colors indicating movements of particles. The weight of this tableaux/state is q7x4.

To check that this is an admissible lattice state, we need to check that each vertex is one of
our admissible types: our assignment scheme ensures that straight edges won’t change label (i.e.
that vE(i) = vW (i+ 1) for all vertices v), so it suffices to check the twisted edge/vertical edge
combinations. As in Lemma 5.8, categorize by the coloring on the edge sequence, extending
the edge sequence through each individual ribbon involved. Reading from bottom boundary to
top boundary, if a column remains blue (no particle) throughout the entire strip, it generates a
NW vertex; if remains red (particle) throughout the entire strip, it gives a SW vertex. If it begins
red and ends blue, it makes a NS vertex, whereas if it begins blue and ends red it makes an EW
vertex. The final option is for a label to start blue, turn red, and return to blue, which occurs when
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a moving path passes through an intermediate ribbon to become another ribbon’s moving path
(see column 5 of Figures 5.6), which gives a NE vertex. Notice that there are no type SE vertices,
so this lattice will have non-zero weight.

We may reverse this entire process to produce a ribbon filling from a lattice model: starting
with the rightmost particle entering the lattice, start at the bottom boundary label for that column
and step the ribbon left for each column it passes with no other particles on the vertical or twisted
edge, and down if it “encounters” another particle. Repeat this process for the remainder of the
unfilled horizontal strip. Here it is important that the SE vertex is excluded, because this vertex
comes from allowing the bottom-left-most square of a ribbon to touch the upper boundary of
another ribbon rather than the bottom of the ribbon strip, which would violate the horizontal
ribbon strip condition.

That the map is weight preserving follows naturally from the path interpretation of the ribbon
lattices. In Lemma 5.8, the power of xi of the ribbon was assigned to the vertex where the long
path exited the ribbon (type EW). In a ribbon strip, we see that path can exit the ribbon in either
an EW vertex (if it is exiting the whole strip) or a NE vertex (if it is continuing into another
ribbon), so both of these vertices contribute to the power of xi. On the other hand, the power of q
counts the number of intersection of the paths, which is exactly the value of the spin as before,
and all vertex types with path intersections (all except type NW) increment these powers of q
accordingly.

Proposition 5.10. Using the vertical strip row weights from Figure 5.3, there is a weight-
preserving bijection between vertical n-ribbon strips and one-row lattice models with non-zero
weight.

Proof. Consider the same bijection as in Proposition 5.9, sending a vertical ribbon strip of
shape λ/µ to the one row model with boundary conditions Bλ/µ and assigning left arrows
according to Lemma 5.8 for each ribbon, then filling the remaining edges with right arrows.
Label colorings of the edge sequence that produce NW, SW, NS, and EW vertices remain the
same, but we also see SE vertices from labels that start red (particle), become blue (no particle),
and return to red. Note that there will be no NE vertices, since these come from allowing the
top-right-most square of a ribbon to touch the upper boundary of another ribbon rather than the
bottom boundary of the ribbon strip, which is not allowed in a vertical ribbon strip, so the state
will have nonzero weight. This also ensures that the reverse map will produce a vertical ribbon
strip.

Again, the preservation of weight follows naturally from the path interpretation of the ribbon
lattices. The weight of the lattice model obtains a power of (−yi′) from each time a travelling
particle exits out the top boundary. These exits occur on vertices of type SE and EW, and each
of them will come from a single n-ribbon in the vertical strip. To match the power of q, notice
that unlike the horizontal strip lattice, we cannot “bounce” an exiting travelling particle of one
ribbon out through another ribbon, so all the intersections contributing to the spin in the vertical
ribbon lattice happen on type SW vertices, which are precisely the labels mid-ribbon at which a
given ribbon takes a step up, and therefore contribute a single power of q to the weight of that
ribbon.

Proof of Theorem 5.7. Consider a super ribbon tableau of shape λ/µ under the total order ≺
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Figure 5.7: The edge sequence path of a vertical strip, and the corresponding single row lattice
state, with colors indicating movements of particles. The weight of this tableaux/state is q4(−y)4.
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Figure 5.8: The super ribbon tableaux from Example 2.9 with weight q4x22y21 , where the shaded
ribbons are labelled 1′ ∈ A′ and the blank ribbons 2 ∈ A, along with the corresponding
lattice model state. Recall that in this example, A = {1, 2}, A′ = {1′, 2′} and the ordering
is 1 < 1′ < 2 < 2′. Note that all of the colored particles travel straight up on rows x1 and y2, as
the labels 1, 2′ do not appear in this tableau.

on alphabetsA,A′. Stripping off ribbons label by label generates a series of skew shapes according
to the total order: we define a sequence of partitions λj such that the ribbon
strip labelled ij ∈ A ∪ A′ will have shape λij/λij−1

. Using this sequence, assign vertical edge la-
bels to the state with boundary conditions Bλ/µ(X/Y ). Thus, the columns will read
µ = λ0, λ1, . . . , λr+s = λ, so that the ij-th row is labelled λij on the bottom and λij−1

on the
top. (See Figure 5.8 for an example of this process.) Marshalling Propositions 5.9 and 5.10
together, this process defines a weight-preserving bijection and thus summing over all ribbon
tableaux/states, the partition function of this system equals the desired super LLT polynomial.
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6. Solvability of the ribbon lattice model

Lattice models satisfying a Yang–Baxter equation are called exactly solvable, or integrable. From
the lattice model perspective, the Yang Baxter equation gives a consistent way of effectively
permuting the weights of an admissible state without altering the partition function, thus providing
a useful tool for showing symmetry or recursion relations on the partition functions.

The Yang–Baxter Equation for a n-ribbon lattice model requires choosing Boltzmann weights
for a set of new diagonal vertices of in-degree 2n and out-degree 2n, called R(n)-vertices, such
that the partition functions of the two lattice models in (6.1) are equal for any set of fixed boundary
conditions. To differentiate, we will call the vertices of Section 5 rectangular from now on. For
a complete treatment of Yang–Baxter equations of 2-d square lattice models, we refer the reader
to [BBF11, Section 1 & 5] and [Bax89, Chapter 8 & 9].

Z


vi

vj

R
(n)
i,j

••
••

 = Z


vj

vi

R
(n)
i,j

••
••

 (6.1)

As we did with the horizontal and vertical strip row vertices (see Remark 5.6), we shall view
these R(n)-vertices as a combination of n diagonal R(1)-vertices, rather than the n2 intersections
visible in this graphical depiction. This combinatorial fusion will allow us to define the weight
of a R(n)-vertex as a product of weights of n overlaid R(1)-vertices.

Definition 6.1. Let r be a R(n)-vertex depicted as n stacked R(1) vertices. That is, depicting r as

I

JK

L

=

I1
I2
· · ·
In

Jn
· · ·
J2
J1

L1
L2
· · ·
Ln

Kn

· · ·
K2

K1

•
•
•
•

⇒ rk =
Ik

JkKk

Lk

•

where Ik, Jk, Kk, Lk ∈ {>,<} for k ∈ [n]. Then define wt(r) =
∏n

k=1wt(rk), where wt(rk) is
chosen from Figure 6.1 and depends on the types of rows being crossed.

Remark 6.2. As this construction is substantially different from visually similarR(n)-vertices used
in more traditional (i.e. non-twisted) lattice models, we may alternately index every intersection
of strands i and j shown in the R(n) vertex as rij , with labels Iij, Jij, Kij, Lij as in the diagram
above. Then define the weight of rij for i ̸= j to be

rij =

{
1 if Iij = Kij and Jij = Lij

0 else

so these off-central vertices must transmit their labels straight through along each strand to the
central n vertices rii := ri (which we will often mark • to remind the viewer of this distinction).
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Owing to the q-powers on the weights in Figures 5.3 necessary to match the super-LLT
polynomials, the weights of certain types of R(1)-vertices depend on the other types of vertices
appearing in the R(n) vertex. In each of the cases of swapping rows of the same type (horizontal -
horizontal or vertical - vertical) this dependence affects only powers of q on one type of vertex.
Considering swapping horizontal strip rows first, for the k-th piece rk in an R(n) vertex, let

θ = 2 ·#{rt = S|t > k},
σ = #{rt = SS|t > k}+#{rt = NN|t < k}+#{rt = W}.

Graphically, θ is 2 times the number of S-vertices below, and σ is the sum of the number of
SS-vertices below, the number of NN-vertices above, and the number of all W-vertices. To encode
this interpretation, we will thus write θ = #S ↓ and σ = #SS ↓ + #NN ↑ + #W . Similarly,
for rk in a R(n)-vertex swapping vertical strip rows, we will need:

θ′ = 2 ·#N ↓ and σ′ = #SS ↑ + #NN ↓ + #W.

Lastly, for rk in vertices that swap rows of different type, we need the quantities

θ′′ = 2 ·#E ↓ and σ′′ = #SS ↑ + #NN ↓ + #S.

label N SS W E NN S

rk

wtHH(rk) 0 xj xj xi xi qθxi−xj
qθ+σ

wtV V (rk) qσ
′
(yj − qθ

′
yi) yj yi yj yi 0

wtHV (rk) qσ
′′
(−yj) qσ

′′
(−yj) 0 q2(n−1)xi−qθ

′′
yj

qθ′′
qσ

′′
xi qσ

′′
xi

Figure 6.1: The weights for the k-th R(1)-vertex in an R(n)-vertex swapping rows i, j, where HH
denotes swapping horizontal strip rows, V V swapping vertical strip rows, and HV swapping a
horizontal strip row i with a vertical strip row j. Note that type VH weights do exist, however as
we do not need them for our proofs, we leave their computation as an exercise for the reader.

Example 6.3. For instance, if n = 4 and we consider the two vertices below, where the first



26 Michael J. Curran et al.

vertex is type HH and the second is type HV, we see that

wtHH

 •
•
•
•

=

NN
S
SS
E

 = xi ·
xi − xj
q2

· xj · xi

wtHV

 •
•
•
•

=

NN
E
SS
SS

 = q0xi ·
q2(n−1)xi − yj

q0
· q0(−yj) · q1(−yj).

Theorem 6.4. Together with the horizontal strip row weights in Figure 5.3, the HH Boltzmann
weights for R(n)-vertices given in Definition 6.1 give a solution to the Yang–Baxter equation for
any n ⩾ 1.

Proof. The key step to solving the Yang–Baxter equation for arbitrary n lies in using the property
that arrows do not change along the straight edges of rectangular vertices. This implies that
most of the interior edges are fixed under a given choice of boundary conditions: notice that
the bottom n− 1 pieces of the R(n)-vertex displayed in Equation (6.2) on the left hand side are
identical to the top n− 1 pieces of the R(n)-vertex on the right hand side.

The only edges that can vary are ϕ, ξ, ψ on the left hand side and θ, δ, σ on the right (labelled
in red in Equation (6.2)), which are connected to twisted or vertical edges (highlighted in blue
in Equation (6.2)), suggesting that these strands must be considered differently from the rest of
the lattice model. We thus divide the lattice model into two parts. The first part is the strands
connected to the twisted or vertical edges, which we will call the “underlying YBE.” The second
part is the remaining n− 1 R(1) vertices of the R(n) vertex, which we will call the “block” as it is
the same on both sides of the YBE, and its connected straight edge strands in the rectangular
vertices.

∑
ϕ,ξ,ψ

α

b1
b2
· · ·
bn

cn
· · ·
c2
c1

a

βn
· · ·
β2
β1

γ1
γ2
· · ·
γn

ϕ
b1
b2
· · ·

· · ·
c2
c1
ψ

ξ

•
•
•
•

=
∑
θ,σ,δ

α

βn
· · ·
β2
β1

γ1
γ2
· · ·
γn

γ2
· · ·
γn
θ

σ
βn
· · ·
β2

δ

a

cn
· · ·
c2
c1

b1
b2
· · ·
bn

•
•
•
•

(6.2)

To prove the YBE we must examine how the block interacts with the rectangular vertices
and with the underlying YBE. However, since the block is the same on both sides, its weight
will be the same on both sides, once we account for any interaction with the R(1) matrix of the
underlying YBE on each side. Therefore, it doesn’t matter where in the block a given vertex
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type occurs, only whether its weight is affected by or affects the weight of the underlying R(1)

vertex on each side. This approach allows us to divide the 24n+2 possible boundary conditions
into cases according to the boundary conditions (a, bn, cn, α, β1, γ1) of the underlying YBE, then
consider the effect of each of the 6 types of vertices that might show up in the block.

Since each vertex involved in the underlying YBE has an equal number of arrows going in
and coming out on these strands, the boundary conditions must observe the same property in
order to be admissible. Thus we have

(
6
3

)
= 20 cases determined by choosing 3 “in” arrows from

these 6 edges. However, several cases will have all states having weight 0 on both sides and thus
be vacuously true: specifically, when α = in, β1 = in (cases B1, B2, B4, and B5) or when bn =
out, a = out (cases B1, B3, B4, and B7). Note: in most of these cases, matching SE vertices
cause the 0 weight, but in B5 and B7, the extra term has a type N vertex, which is precisely why
type N must have weight 0.

Eliminating these six sets of boundary conditions, we are left with 14 sets to check, given in
Appendix A. In fact, since many of the vertices have similar weights, we may group into cases by
the number of states and the number of NW (“unusual”) vertices on each side of the YBE.

In Cases 1-3, there is only one state on each side, so the weight of either side will have the
form qaxbix

c
j

∏d−1
k=0(q

2kxi − xj) for some integers a, b, c, and d = #S. However, setting q = 1
recovers an 180 degree rotation of the Schur model S∆ of [BBF11] with t = 0, and our diagonal
weights specialize to their YBE solution, accounting for this rotation. Thus, the powers xbixcj
are equal on both sides, and it suffices to check that the powers of q appearing in each factor
match on both sides. Unfortunately, this method will not work for Cases 4 and 5, as there will
be multiple terms on one side that need to cancel properly to match the single term on the other
side: however, since the factors of x in the R-vertex weights do not depend on other vertices, we
will only need to consider those factors of x in the underlying YBE, as those in the block will be
equal on both sides. It may be helpful to the reader to refer to Examples 6.5 (for Case 1) and 6.6
(for Case 4) during the proof.

Case 1: Equations (A.1) to (A.8) First consider Equations (A.1) to (A.8), which each have one
state on each side of the YBE, but no NW vertices on either side. For example, Equation (A.1) is
given below.

b1
b2
· · ·

· · ·
c2
c1

βn
· · ·
β2

γ2
· · ·
γn

b1
b2
· · ·

· · ·
c2
c1

L

vj

vi

=

βn
· · ·
β2

γ2
· · ·
γn

γ2
· · ·
γn

βn
· · ·
β2

· · ·
c2
c1

b1
b2
· · ·

R

wi

wj

(A.1)

Denote the R(n)-vertex on the left hand side L and the one on the right hand side R. Denote
the ribbon vertices on the left hand side vj, vi and those on the right hand side wi, wj as illustrated
above, where i, j are row indices. Note that L1 and Rn are the “underlying” R(1) vertices. The
rest of the R(1) vertices are part of the “block,” so Lt+1 = Rt for t = 1, . . . , n− 1. To prove the
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YBE, we need to show

wt(vi) wt(vj)
n∏
t=1

wt(Lt) = wt(wi) wt(wj)
n∏
t=1

wt(Rt) (∗)

In Equations (A.1) to (A.8), none of vi, vj, wi, wj is of type NW, meaning that every left arrow
in {b1, · · · , bn−1, c1, · · · , cn−1} will contribute to a power of q in the weight of vj or vi. For the
same reason, every left arrow in {γ2, · · · , γn, β2, · · · , βn} will contribute to a power of q in the
weight of wi or wj . Let sγ be the number of left arrows in γ2, . . . , γn, sb be the number of left
arrows in b1, . . . , bn−1, and define sβ, sc similarly.

Then, by Definition 6.1, since any piece of L and R has the same number of in and out
arrows, we have sb+ sc = sγ + sβ , so the powers of q in wt(vi) wt(vj) and wt(wi) wt(wj) match.
Furthermore, neither L1 nor Rn are of type S, so the weight of the underlying YBE does not
depend on the vertices in the block. Therefore, it suffices to check that the part of the block’s
weight by the underlying YBE is the same on both sides, i.e., that

n∏
t=2

wt(Lt) =
n−1∏
t=1

wt(Rt)

Only type S vertices in the block can be affected by L1 or Rn, so the equality holds when there is
no S-vertex in the block. Otherwise, in Equations (A.1) to (A.4), L1 = NN or W and Rn = SS
or W , so each S vertex in the block “sees” L1 above on the left hand side and Rn below on the
right in its power of q−σ. Since the number of S vertices is the same in the block on the right
and left, this gives a power q−#S on both sides. In Equations (A.5) to (A.8), L1 = SS or E
and R1 = NN or E, so they do not affect the weight of S vertices in the block and we are done.

Example 6.5. Consider the following boundary conditions within Equation (A.1) of Case 1.

L
vj

vi

•
•
•
•

=

R
wi

wj

•
•
•
•

On the left hand side, wt(vi) = q2, wt(vj) = xj , and L1 is type NN and the S, SS, E vertices
are the block. We calculated in Example 6.3 that wt(L) = xi · q−1 · (q−1(xi − xj)xixj), where
the first factor is wt(L1), the last factor is the internal weight of the block, and the middle q−1

is the part of the block weight affected by L1. Thus this side has weight (xi − xj)x
2
ix

2
j . On the

right hand side, wt(wi) = qxi, wt(wj) = q, and R is made of vertices S, SS, E, SS from top to
bottom, where Rn is the SS. Similarly, wt(R) = xj · q−1 · (q−1(xi − xj)xixj), so this side also
has weight (xi − xj)x

2
ix

2
j and the YBE holds.
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Case 2: Equation (A.9) Next we look at Equation (A.9), which has one state on each side,
each with one NW vertex. Note that both L1 and Rn are type S.
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· · ·
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· · ·
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· · ·
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· · ·
γn

βn
· · ·
β2

· · ·
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b2
· · ·

R
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(A.9)

As in Case 1, we examine the different types of vertices that might appear in the block and
how each affects the underlying YBE. For each of type SS, NN, W, and E appearing in the block,
the total power of q acquired on either side is 0: for instance, a type SS vertex garners a power
of q−1 from L1 but a power of q from wt(vi) on the left hand side, and has no effect on the right.
Types NN, W, and E follow similarly.

Unlike Case 1, type S vertices in the block are slightly more complicated, as now L1 and Rn

affect the factor qθxi − xj . Checking the power qσ follows analogously to in Case 1. For this
additional factor, note that this part of the weight on each side depends only on the total number
of S vertices in the R(n) vertex: i.e., it will always be

∏d−1
k=0(xi − q−2kxj), where d = #S,

counting L1 on the left or Rn on the right. Thus, the factors coming from each S vertex cycle
to match on the left and right, with L1’s weight replacing that of the first S vertex on the right
and Rn’s weight replacing that of the last S vertex on the left.

Case 3: Equation (A.10) This case is the simplest case to check: the underlying YBE and the
block R-vertices have no interaction with each other, and none of the rectangular weights admit
additional powers of q, so we are done.

Case 4: Equations (A.11) and (A.12) The last four sets of boundary conditions each have one
side with two states and one side with one: we begin with those with the extra state on the left.
Consider Equation (A.11).
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β2

· · ·
c2
c1

b1
b2
· · ·

R

wi

wj

(A.11)

As in Case 2, type E, W, NN, and SS only affect the partition function by contributing powers
of q, which the reader may check match on each term and thus on each side.

However, unlike Cases 1-3, type S vertices in this block require us to consider the factors
involving xi, xj in the underlying YBE as well, since we need terms on the left to cancel correctly
to match the weight on the right. Let #(−) return the number of vertices of a given type in the
block, and recall the definitions of sb, sc, sβ , and sγ from Case 1.
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We consider the right hand side first: ignoring weights that are internal to the block and thus
constant across all states, we have a factor of qsγxi from wi and a factor of xi from Rn.

On the left hand side, the first state has wt(uj) = qsbxj and a factor of q−#(S)xi from K1,
since it is type NN and therefore contributes a power of q−1 to every type S vertex below it. In
the second term, wt(vj) = qsb , wt(vi) = qscxi, and wt(L1) =

q2#(S)xi−xj
q2#(S)+#(W )+#(SS) . So, ignoring

the weight internal to the block, the left hand side is

xi
(
qsb−#(S)xj + qsb+sc−#(W )−#(SS)xi − qsb+sc−2#(S)−#(W )−#(SS)xj

)
.

Noting that sb=#(W )+#(NN) (recall that type N has weight 0) and sc=#(W )+#(S)+#(SS),
so the xj terms cancel and the power of q on the xi term becomes #(W )+#(NN)+#(S) = sγ ,
so our YBE is satisfied.

Since rectangular vertex types SW and NS have the same weight, as do types EW and NE,
Equation (A.12) is follows similarly.

Example 6.6. Consider the following boundary conditions within Equation (A.13) of Case 4,
which use the same block (S,SS,E) as Example 6.5.

K
uj

ui

•
•
•
•

+

L
vj

vi

•
•
•
•

=

R
wi

wj

•
•
•
•

On the first left hand state, wt(ui) = 1, wt(uj) = xj, and K = NN, S, SS, E, so
wt(K) = q−1xi (q

−1(xi − xj)xixj)), where again the last factor is the internal block weight. On
the second state, wt(vi) = q2xi, wt(vj) = 1, and wt(L) = q−3(q2xi − xj) (q

−1(xi − xj)xixj),
because the composition of L is S, S, SS, E. Ignoring the internal block factor, adding these
weights gives

q−1xixj + q−1xi(q
2xi − xj) = qx2i .

On the right hand side, wt(wi) = qxi, wt(wj) = 1, and R is S, SS, E, E, so
wt(R) = xi (q

−1(xi − xj)x
2
ixj), so this side also has weight qx2i (q−1(xi − xj)x

2
ixj).

Case 5: Equations (A.13) and (A.14) The last two sets of boundary conditions work analo-
gously to Case 4, except that the additional state falls on the right hand side, and the two sets
of boundary conditions Equation (A.13) and Equation (A.14) differ by one extra power of xj
appearing in every term of Equation (A.14).

Theorem 6.7. Together with the V weights in Figure 5.3, the V V Boltzmann weights for R(n)-
vertices given in Figure 6.1 give a solution to the Yang–Baxter equation for any n ⩾ 1.

Proof. The proof is nearly identical to that of Theorem 6.4, so we sketch the broad strokes and
leave the details to the reader. Since the V weights in Figure 5.3 set type NE vertices to have
weight 0 instead of type SE as before, the set of boundary conditions to check is slightly different.
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The six weight 0 conditions in the proof of Theorem 6.4 will be nonzero cases, which the reader
may find in Appendix B as (B.1), (B.2), (B.3), (B.4), (B.5), and (B.7). Cases (A.2), (A.3), (A.4),
(A.9), (A.12), and (A.14) replace them as the weight 0 cases, and cases (A.6) and (A.8) both
acquire an additional state on one side, which we reproduce as cases (B.6) and (B.8). From there,
cases split by number of states per side of the YBE and number of SW vertices, as SW is now the
“unusual” vertex in terms of power of q:

• Case 1 (one state per side, no SW vertices): cases (A.1), (A.7), (A.10), (A.11), (A.13),
(B.1), (B.2), (B.3).

• Case 2 (one state per side, one SW vertex per side): cases (B.4).

• Case 3 (one state per side, two SW vertices per side): cases (A.5).

• Case 4 (two states on the left, one on the right): cases (B.5), (B.6), and (B.5) = (B.6).

• Case 5 (one state on the left, two on the right): cases (B.7), (B.8), and (B.7) = yi ·(B.8).

Theorem 6.8. Together with the weights in Figure 5.3, the HV Boltzmann weights for
R(n)-vertices given in Figure 6.1 give a solution to the Yang–Baxter equation for any n ⩾ 1.

Proof. Again, the proof is analogous to Theorem 6.4; however, it is important to note the order
of the row types: we can only attach a type HV vertex if the horizontal and vertical strip rows
are in the correct order, i.e., horizontal connects to the “i”-strand of the R(n)-vertex and vertical
connects to the “j”-strand of the vertex. With this in mind, the boundary conditions fall into the
following cases, as indexed in Appendices A and B:

• Case 0 (weight 0): (A.2), (A.3), (A.4), (B.1), (B.2), (B.3).

• Case 1 (one state per side, no unusual vertices): (A.1), (A.7), (A.9), (A.12), (A.14), (B.4),
(B.5), (B.7).

• Case 2 (one state per side, a horizontal NW): (A.10).

• Case 3 (one state per side, a vertical SW): (A.5).

• Case 4 (two states on the left, one on the right): (A.11), (B.6), (A.11) = (B.6).

• Case 5 (one state on the left, two on the right): conditions (A.13), (B.8), and (A.13) =
(B.8).

Proposition 6.9 ([Lam05], Prop 30). The function Gλ/µ(X/Y ; q) is symmetric in each of X
and Y and does not depend on the total order fixed between A and A′.

Proof. For a variable set X = (x1, . . . , xm), Y = (y1′ , . . . , yr′), consider the total ordering
1 < 2 < · · · < m < 1′ < 2′ · · · < r′. To prove each of these symmetries, we will use train argu-
ments with the Yang–Baxter equation for different row types proven in Theorems 6.4, 6.7, and 6.8.
For symmetry in X , consider the partition function of the following lattice model, where the
R(n)-vertex is attached to horizontal strip rows i, i+ 1:
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· · ·

· · ·

vi

vi+1

µ+ ρ

λ+ ρ

...

...

...

...

...

...

Since all of the edges on the right boundary point right, the only choice for each R(1)-vertex
is type E, which gives this system a total weight of xni · G

(n)
λ/µ(X/Y ; q). As in Theorem 6.4, push

the diagonal vertex all the way to the right, column by column, until it emerges into the right
boundary. This process results in the following system:

· · ·

· · · vi

vi+1

µ+ ρ

λ+ ρ

...

...

...

...

...

...

Similarly, theR(n)-vertex in this system must be n copies of the typeE vertex, so this side has
weight G(n)

λ/µ(siX/Y ; q) · xni , where siX = (x1, . . . , xi+1, xi, . . . , xm). Using Theorem 6.4, these
weights are equal, so G(n)

λ/µ(X/Y ; q) is symmetric in the X variables. The proof of symmetry in
the Y variables is nearly identical, attaching the R(n)-vertex to rows i′ and (i+1)′. To prove total
order, start with the system where all horizontal strip rows appear above all vertical strip rows,
and use the train argument with type HV R(n) vertices to move horizontal strip rows gradually
below vertical strip rows; since any total order respects the internal orderings on {1, . . . ,m}
and {1′, . . . , r′}, it is possible to achieve any total ordering desired and the resulting braid of allE
vertices will have the same weight on either side and thus cancel off as in previous cases.

7. Branching rules

The structure of the ribbon lattice gives rise to natural combinatorial proofs of branching rules
for super LLT polynomials: split the lattice between any two rows and compute the partition
function of a grid as two pieces versus as one whole. Splitting off a single row in the following
proposition (i.e. setting k = 1) will reproduce the branching rules of Corollary 4.10. In this way,
we see that the lattice model diagrammatically encodes the operators U(x) and Ũ(−y).
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Proposition 7.1. Given alphabets A,A′ and a total order, let zi stand in for the x or y variable
at position i in the total order. Let r = |A|+ |A′| and fix some k = 1, . . . , r. Then the super LLT
polynomials satisfy the following general branching rule:

G(n)
λ/µ(z1, . . . , zr; q) =

∑
γ

G(n)
λ/γ(zk+1, · · · , zr; q) · G(n)

γ/µ(z1, · · · , zk; q).

where the sum runs over all partitions γ. Note that the only nonzero terms in the sum will be
those γ for which both λ/γ and γ/µ admit super n-ribbon tableaux in the respective subsets of
the total order.

Specifically, we may describe these γ as partitions for which there exists a sequence of
compositions γ0 = µ+ ρ, γ1, . . . , γk = γ + ρ, γk+1, . . . , γr = λ+ ρ such that:

1. γi − γi−1 ∈ nZℓ(λ) for all i.

2. If row i is a horizontal strip row, (γi)j ̸= (γi−1)k for all j ̸= k.

3. If row i is a vertical strip row, (γi − γi−1)j ∈ {0, n} for all j.

Proof. Consider the boundary conditions Bλ/µ(X/Y ) and let zi denote the spectral parameter
on row i. Slicing the diagram horizontally along the vertical edges between rows k and k + 1,
consider all choices of labels for the sliced edges, which will each be of the form γ + ρ for some
partition γ.

· · ·

· · ·

k

k + 1

µ+ ρ

γ + ρ

λ+ ρ

...

...

...

...

...

...

Then rows 1, . . . , k will have boundary conditions Bγ/µ and rows k + 1, . . . , r will have
boundary conditions Bλ/µ. Note that the only nonzero terms in this sum will be those for γ such
that γ/µ, λ/γ are both tileable with n-ribbons such that ribbons labelled i form a horizontal strip
if zi = xi and a vertical strip if zi = yi.

Using the particle description of the model, the composition γi labels the columns between
row i− 1 and row i containing a particle. The first condition follows from the fact that particles
can only move along a row in multiples of n vertices. Within this condition, horizontal rows
require that the same label only appear in γi−1 and γi if it comes from a particle passing straight
up through the row, i.e. a type SW vertex as opposed to a type SE. On the other hand, vertical
rows require that each particle must either pass straight through or travel one single step of n
particles, since the type NE vertex which allows a particle to travel multiple sets of n particles
has weight 0.
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8. The superLLT Cauchy lattice model

A slight adaptation of the super LLT lattice model, obtained by reversing the direction of travel
of the particles from left to right, gives a combined solvable Cauchy model, suggestively named
to relate to our Cauchy identity in Section 4. In the manner of similar lattice model Cauchy
identities for other polynomials, our Cauchy model is formed by stacking rows of the alternate
model together with rows of the original model. We will use this combined model in Section 9 to
provide lattice model proofs of the superLLT Cauchy and Pieri identities developed in Section 4.

Label SW NS SE NW EW NE

Vertex

wtH̃ 0 qtxi qt qtxi qt 1
wtṼ −yi −yi qt 0 1 1

Figure 8.1: The weights of vertices lying in row i for the alternate n-super ribbon lattice model,
where t is the number of right arrows in the blue circled area.

Definition 8.1. Given a total ordering on alphabets B,B′, a skew partition λ/µ, and a positive
integer r, let the alternate model B̃λ/µ(X/Y ) be the lattice model with weights determined from
Figure 8.1 and boundary conditions as follows:

• edges on the left and right boundaries are labelled <,

• edges on the top boundary are labelled ∧ on parts of λ+ ρ and ∨ else (numbering columns
left to right starting with 1 as before),

• edges on the bottom boundary are labelled ∧ on parts of µ+ ρ and ∨ else,

• horizontal strip rows labelled i ∈ B have spectral parameters xi and use weights H̃ ,

• vertical strip rows labelled i′ ∈ B′ have spectral parameters yi′ and use weights Ṽ ,

• reading from top to bottom, rows are labelled in increasing order by to the total order.
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x qx 1 q2 qx q 1 qx q 1 1 1

1 2 3 4 5 6 7 8 9 10 11 12

Figure 8.2: The single horizontal strip row lattice state for µ = (4, 1), λ = (8, 6, 4, 3), and n = 4
in the alternate model. Note: the weight is q7x4, equal to that of the matching state in Figure 5.6.

Theorem 8.2. Given a skew partition λ/µ and a total order on alphabets B,B′, we have

Z
(
B̃λ/µ(X/Y )

)
= G(n)

λ/µ(X/Y ; q).

The proof of Theorem 8.2 is entirely analogous to that of Theorem 5.7, viewing particles
in the system as travelling up and right as opposed to up and left. It is helpful to think of this
alternate model as removing n ribbon strips from λ (on the top boundary) to reach µ (on the
bottom boundary), whereas our original model added n ribbon strips to µ (on the top boundary) to
obtain λ (on the bottom boundary). In this way, the alternate model corresponds to the polynomial
Gλ/µ from Section 3, whereas the original model corresponds to Fλ/µ.

This interpretation allows us to stack our original model atop or below this new one and
evaluate the results to give the sum sides of the generic Cauchy and Pieri identities for super LLT
polynomials. However, since horizontal ribbon strips may be arbitrarily long (i.e., their skew
partitions have arbitrarily large parts) and vertical ribbon strips may be arbitrarily tall (i.e., their
skew partitions have arbitrarily many parts), we need to modify the model slightly to account for
all possible partitions that could appear on the boundary between original and alternate models.
We do this by taking inspiration from the Fock space: given infinitely many columns indexed in Z
and a partition µ, place particles (up arrows) on parts of µ+ ρ as well as on non-positive columns.
This method produces an infinite sea of particles to the left of the columns involved in µ + ρ
and an infinite void of holes to the right, mimicking the particle-hole interaction of Hamiltonian
operators on the Fock space. Note: if the original model portion is all horizontal strip rows and
the alternate all vertical strip rows (or vice versa), the interaction between horizontal and vertical
ribbon strips will restrict the partitions so that only finitely many columns are necessary.

Definition 8.3. Consider four ordered alphabets A,A′, B,B′ together with total orderings ≺A

on A ∪ A′ and ≺B on B ∪ B′ that respect the orderings on A,A′ and B,B′ respectively. A
overarching total order I is a total ordering on A,A′, B,B′ that respects the individual orderings
on each alphabet as well as the intermediate total orderings ≺A and ≺B.

For example, let IA be the overarching total order where ai < bj for any ai ∈ A ∪ A′,
bj ∈ B ∪B′, and IB be the overarching total order where ai > bj for all ai ∈ A∪A′, bj ∈ B∪B′.

Definition 8.4. Consider two pairs of totally ordered alphabets A/A′ and B/B′, with spectral
parameters X/Y and W/Z, respectively. Let µ, ν be partitions, padded with zero parts to have
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· · ·

· · ·

· · ·

a1

a1′

b1

µ+ ρ

ν + ρ

...

...

...

...

... ...

Figure 8.3: An example of boundary conditions for the Cauchy lattice model, under the overarch-
ing order b1 < a1 < a1′ for A = {a1}, A′ = {ai′}, B = {b1}.

the same length, and define an overarching total order I on A,A′, B,B′ that respects all existing
orderings. We define the Cauchy system Cµ,ν,I(X/Y,W/Z) to have the following boundary
conditions and spectral parameters on a semi-infinite lattice:

• columns are labelled left to right with indices in Z, and designating a fixed column 1,

• edges on the top boundary are labelled by µ+ ρ in the manner described above,

• edges on the bottom boundary are labelled by ν + ρ,

• rows are labelled in increasing order from top to bottom according to the overarching total
order I ,

• horizontal strip rows labelled by A (respectively B) take weights wtH (respectively wtH̃)
and spectral parameters xi (respectively wi), and

• vertical strip rows labelled by A′ (respectively B′) take weights wtV (respectively wtṼ )
and spectral parameters yi′ (respectively zi′).

• side boundary edges on A/A′ rows are labelled > and those on B/B′ rows are labelled <.

Here, we consider the spectral parameters as formal variables in order to remove issues of
convergence of the partition function, since the semi-infinite model will produce infinitely many
states for some choices of boundary conditions on the Cauchy model.

Proposition 8.5. If we choose the overarching order IA, then

Z(Cµ,ν,IA(X/Y,W/Z)) =
∑
λ

Gλ/µ(X/Y ; q) · Gλ/ν(W/Z; q),

where the sum runs over all partitions λ. If instead we choose the order IB, then

Z(Cµ,ν,IB(X/Y,W/Z)) =
∑
λ

Gµ/λ(X/Y ; q) · Gν/λ(W/Z; q),

where the sum runs over all λ.



combinatorial theory 3 (2) (2023), #3 37

Proof. This proof is similar to that of Proposition 7.1. For the first case, the overarching order
places the A and A′ rows above the B and B′ rows. Slicing along the lattice model in between
these two pieces, the cut edge is labelled by λ+ ρ for some partition λ. Note: it is possible that λ
has more parts than µ or ν, in which case some of the particles travelling to fill parts of λ+ ρ
will be coming from the −∞, . . . , 0 columns. Since the partition function does not depend on
the column numbers at all, shifting the designated “1” column left to accommodate all travelling
particles results in the same partition function and is equivalent to padding µ, ν with zero parts
to have the same number of parts as λ. The top half then has boundary conditions Bλ/µ(X/Y )

and gives Gλ/µ(X/Y ; q), whereas the bottom half has boundary conditions B̃λ/ν(W/Z) and
gives Gλ/ν(W/Z). The second case follows similarly, with the additional note that any partition λ
such that µ/λ and ν/λ are both skew shapes will have at most the same number of parts as µ, ν.
If λ ̸⊂ µ or λ ̸⊂ ν then one of the super LLT polynomials in the sum will be zero, i.e. there will
be no non-zero filling of the lattice model, so we may sum over all partitions λ.

Theorem 8.6. Along with theR-vertex weights in Figure 8.4 and Appendix C, theH, H̃, V and Ṽ
weights satisfy mixed YBEs in all combinations.

As in the Yang–Baxter equation for the original superribbon model, factors of q appear on
many of these vertices, adjusting for the fact that there is one vertex with a different spin than the
others in each of models. These factors will be similar to the σ, σ′, and σ′′ appearing in Section 6.
For an R(1) vertex rk in a R(n) vertex, set

τ = #SS ↓ + #NN ↑ and κ = #SS ↑ + #NN ↓ .

Proof. These proofs are analogous to those of Theorems 6.4, 6.7, and 6.8 so we omit them for
length. The weights of type ÃB, which cross an alternate model Ã row past a original model B
row, are given in Figures 8.4 and 8.6. As we will not explicitly use the weights of type AB̃ in
this paper, they are displayed in Appendix C.

However, one new phenomenon arises in these weights: rather than the standard combinatorial
fusion of multiplying all n of the R(1) weights together to obtain the R(n) weight, as described
in Section 6, a curious “pre-fusion” of pairs of vertices occurs. For Cauchy model YBEs of
type ÃB, if the R(n) vertex contains t pairs of a type NN vertex appearing above a type SS
vertex, these paired NN and SS vertices combine into a “type NN/SS” R(2t)-vertex, whose
weight is not merely the product of the individual 2t vertices. Any remaining unpaired NN and
SS vertices retain their usual weight; for the sake of convention, we choose pairs from the outside
in, i.e., the first t NN vertices and the last t SS vertices, unpaired vertices “inside” the pre-fusing
vertices contribute change the weight of the prefusion vertex, whereas those “outside” do not.
The weight of a prefused vertex is prescribed by two cooperating recursive conditions arising
from the YBE, one that removes an NN vertex from the top and one that removes a SS vertex
from the bottom. Fusion into the R(n) vertex weight then proceeds by multiplication using this
new vertex. If this condition does not occur, for instance if all type SS vertices appear above any
type NN vertex, the normal fusion process occurs.

As prefusion vertices will not occur in our proofs in Section 9, we will postpone further
discussion of this structure to future papers, but Figure 8.6 gives the defining recursive conditions
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for type ÃB vertices and Figure 8.5 the resulting weights for prefused vertices with a single
NN/SS pair. The reader may also wish to consult Example 8.7 for some further examples of the
distinction between prefused and non-prefused vertices, or Example 8.8 for an example of how
this prefusion arises from the YBE.

Example 8.7. For instance, if n = 4, consider R(4) vertices of type H̃V swapping rows w and y,
displayed with their weight factors coming from each R(1) vertex below. In the five examples
below, we see that a single pair pre-fusion arises in the first three cases, no pre-fusion occurs in
the fourth, and that the entire vertex pre-fuses into a two pair pre-fusion vertex in the last case.
The pre-fusing vertices and their weights are displayed in green in each case.

•
•
•
•

=

S
NN
SS
E

•
•
•
•

=

NN
E
SS
SS

•
•
•
•

=

NN
SS
SS
SS

•
•
•
•

=

W
SS
NN
W

1
q2 − q4yw − 1
q(1− yw)

q4 − q6yw − 1
q3(1− yw)
−q2yw

q6 − q6yw − 1
−q2yw
−qyw

q
−yw
1
q

wt

 •
•
•
•

=
NN
NN

SS
SS

 = wt

q2−1


E
NN
NN
SS


− wt

q0+1+0


NN
NN
SS
S




= q4(1− yw)(q4 − q6yw − 1)− q2(q4 − q4yw − 1)

= q10(yw)2 − (q10 + q8 − q6 − q4)yw + (q8 − q6 − q4 + q2)

Similarly, for Cauchy model YBEs of type AB̃, this “pre-fusion” combines the first instance
of a type SS vertex with the first NN vertex below it to create “type SS/NN” vertex.

Example 8.8. For example, considering the Yang–Baxter equation mixing rows of types H̃
(with parameter w) and V (with parameter y) with the following boundary conditions, we see
that the pre-fusion weight is necessary to make the model solvable. If we replaced
wt(NN

SS
) = q2 − q2yw − 1 with wt(NN) · wt(SS) = −yw here, the partition functions on

each side would not match.

•

• y

wSS

S

−q2yw

+
•

• y

w

−q2yw(−yw)

SS

SS
=

•

•
w

y S

SS

−yw

+
•

•
w

y NN

SS

−yw(q2 − q2yw − 1)
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Label rk wtH̃H wtṼ H wtH̃V wtṼ V

W qτ (1− q2W↑xjzi)q
τ qτ qτ

S (1− q2n−2−2S↓xjwi) 1 1 1

SS* qW+SS+NN+N+Exjwi −xjzi · qSS↓+W −yjwi · qSS↓+E yjzj

NN* qW+SS+NN+N+E qNN↑+W qNN↑+E 1

N −qW+SS+NN+N+E −qn−1−S −qn−1−S (yjzi − q2N↓)qW+E

E qτ−W qτ+W (1− q2E↓yjwi)q
τ+W qτ+W

Figure 8.4: The weights for a normal (i.e. not “pre-fused”)R(1)-vertex in anR(n)-vertex swapping
rows i, j, where strand i is in the alternate model and strand j is in the original model. For the
sake of space, we have eliminated the # in these weights, so W := #W and so on.

Type Single NN/SS Pair Prefusion Weight
wtH̃H q2ι+2 − 1 + q2n−2−2#Sxw

wtṼ H q2ι+2 − q2ι+2#W+2xz − 1

wtH̃V q2ι+2 − q2ι+2#E+2yw − 1

wtṼ V yz + q2ι+2#N+2 − q2#N

Figure 8.5: The weights for a pre-fused NN/SS vertex with a single matched NN/SS pair in
anR(n) vertex of type ÃB swapping rows i, j. Let ι := the number of unpaired NN or SS vertices
inside the prefusing pair (See Example 8.7.) Note: these unpaired vertices will be all of one kind
(NN or SS), else there would be two matched pairs.

Remark 8.9. Unlike the R-vertices considered in Section 6, whose weights arise from a dia-
grammatic generalization of fusion of tensor products of quantum group modules, this set of
mixed R-vertices is fascinating because there is no currently known quantum algebraic object
that corresponds to this sort of “pre-fusion” procedure.

9. SuperLLT Pieri and Cauchy identities on the lattice model

In the spirit of previous lattice model proofs for Cauchy identities, such as that for factorial
Schur functions given in [BMN14], we use the Cauchy model to prove the Pieri and Cauchy
identities of Section 4 diagrammatically by attaching a braid of R(n) vertices to one side of the
semi-infinite Cauchy model (see Figure 9.8), and using the Yang–Baxter equation to pass this
braid through to the other side. Although the models in this section are semi-infinite, we may
ensure this computation is well-defined by identifying infinite swathes of columns with weight
one, thereby matching the truncation to a finite model with the same partition function. It would
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Type Top NN Recursion Bottom SS Recursion
wtH̃H

(
NN

∗

)
= 1

xw

(
qSS−2NN−E−N

(
∗
W

)
+
(
S

∗

)) (
∗
SS

)
= qNN−2SS−E−N

(
W

∗

)
−
(
∗
S

)

wtṼ H

(
NN

∗

)
= −1

xz

(
qSS−NN

(
∗
W

)
+qN+NN+E

(
S

∗

)) (
∗
SS

)
= qNN−SS

(
W

∗

)
−qN+SS+E

(
∗
S

)

wtH̃V

(
NN

∗

)
= −1

yw

(
qSS−NN

(
∗
E

)
−qN+NN+W

(
S

∗

)) (
∗
SS

)
= qNN−SS

(
E

∗

)
+qN+SS+W

(
∗
S

)

wtṼ V

(
NN

∗

)
= 1

yz

((
∗
N

)
+q2N+2SS+E+W

(
∗

NN

)) (
∗
SS

)
=

(
N

∗

)
+q2N+2NN+E+W

(
SS

∗

)

Figure 8.6: The weights for a “pre-fused” NN/SS vertex in an R(n) vertex swapping rows i, j,
where row i is in the alternate model and row j is in the original model. Note that the coefficients
refer to the number of vertices of a given type in their attached term, not the original vertex.

also be interesting to consider whether there is a generalization of the “infinite source” style
of model used in [BMP21] that would apply to superLLT polynomials, in effect collecting all
non-positive columns into one column on which infinitely many particles are allowed to travel.

In the case of the Pieri identity, the pre-fusion vertices discussed in Section 8 will not occur, so
it is an ideal starting point; in contrast, using this method to prove the Cauchy identity, pre-fusion
vertices arise and require careful bookkeeping of all possible combinations of vertex types on
each copy of the braid. For this section, the particle interpretation of the lattice model more
clearly illustrates the comparisons between the original and alternate models.

Lemma 9.1. Thinking of a Cauchy braid of mixed YBEs of either type ÃB or type AB̃ in terms
of particles passing through the lattice from bottom to top, the number of particles in the system
must remain constant. That is, for the n-strand Cauchy braid given by

β

γ

b

c

we must have #{particles entering from c or γ} = #{particles exiting from b or β}.

Proof. Considering first the case of type ÃB, color the six diagonal vertices with particles
according to the rule established for rows: particles travel along left arrows on original model
(i.e., B) strands and right arrows on alternate model (i.e., Ã) strands. Recall that the first label
(i.e., Ã here) is the SW-NE strand and the second (i.e., B here) is the SE-NW strand.

W S SS NN N E

Since each individual vertex obeys the desired condition, a Cauchy braid built out of admissible
vertices will as well. The statement follows similarly for type AB̃.
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· · ·

· · ·

· · ·

x1

y1

t

δ + ρ

λ+ ρ

· · ·

· · ·

· · ·x1

y1

t

δ + ρ

λ+ ρ

Figure 9.2: The Cauchy models used in Proposition 9.2 for X = {x1}, Y = {y1} and n = 4.

For ease of reference during the following proofs, we reprint the ribbon lattice vertices with
their particle interpretations for each type of model.

Label SW NS SE NW EW NE

Original Model
Particle Version

wtH = 0 wtV = 0

Alternate Model
Particle Version

wtH̃ = 0 wtṼ = 0

Figure 9.1: The six ribbon vertices with their particle interpretations for original model and
alternate model rows, noting which vertices vanish for each type of row.

Recall the generating functionsH(t) andE(t) from Section 4: for ai = 1+q2i+· · ·+q2i(n−1),

H(X; t) =
∏
i

n−1∏
k=0

1

(1− q2kxit)
and E(X; t) =

∏
i

n−1∏
k=0

(1− q2kxit).

Theorem 9.2. (Lattice Model Pieri Rule) Given alphabets X, Y , we have that

E(Y ; t) · Z (Cδ,λ,IB(X/Y, {t}/∅)) = (H(X; t))−1 Z (Cδ,λ,IA(X/Y, {t}/∅)) ,

E(X;−t)H(Y ;−t) · Z (Cδ,λ,IB(X/Y,∅/{t})) = Z (Cδ,λ,IA(X/Y,∅/{t})) .

Combining Theorem 9.2 with Proposition 8.5 gives a lattice model proof of Corollary 4.10.

Proof. For the right hand side of the first statement, consider the lattice model formed by attaching
a Cauchy braid onto the right side of Cδ,λ,IA(X/Y, {t}/∅), which has a single alternate model
horizontal strip row (with parameter t) below standard model rows for X/Y . (See the right hand
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side of Figure 9.2 for reference.) Consider all the possible states of this system: first, if no particles
pass through the braid, all of its vertices are of type S, giving weight

∏
i,j

∏n−1
k=0(1− q2kxit) =

(H(X; t))−1, and the rest of the lattice has boundary conditions Cδ,λ,IA .
For the remaining states, since particles only travel up and right on alternate model rows,

the only way for particles to enter the Cauchy braid and create vertices other than type S is by
travelling rightwards through the infinite void of particles on row t. States in this case will garner
an infinite number of factors of t and may be thought of as a µ→ ∞ term in the sum. Since we
will take the tk-th coefficient at the end to recover the Pieri rule, this term will not contribute to
that identity for any finite k.

On the other hand, by Theorem 8.6, the partition function of this system is equal to that
obtained by passing the Cauchy braid through to the left side, i.e. that with a Cauchy braid
attached on the left hand side of Cδ,λ,IB(X/Y, {t}/∅), where the alternate model horizontal strip
row is the top row. In this case, particles cannot travel infinitely on row t, since type SW vertices
have weight 0 and such a particle would cross one of the particles in the infinite sea on the left
hand side. Thus, particles travelling into the braid can only come from the leftmost n columns of
the infinite sea of particles. The particles in these first n columns will travel either straight up or
up through the braid, so chopping off these first n columns leaves boundary conditions Cδ,λ,IB for
the remaining portion of the state.

It remains to show that the partition function of these first n columns and the Cauchy braid
equals E(Y ; t). (The reader may wish to refer to Appendix D, which gives all states for this
subsystem for n = 2, X = {x1}, Y = {y1}.) In the remainder of the proof, we will renumber
these columns as 1, . . . , n for simplicity; we hope that this will not cause any confusion with the
original indexing. We will also generally split calculations into to the weight of the braid and the
weight of the columns, for readability.

We proceed by induction on the number of variables in Y , since E(Y ; t) is multiplicative.
For each step of this process, group states of the lattice model by the number of particles in
the braid and their entry rows. The boundary conditions restrict vertices in the braid to types S
(no particle), SS (particle turns northeast), and E (particle travels straight northeast), so once
a particle encounters a type SS vertex, it must travel straight out of the braid. Notably, there
cannot be any type NN vertices, so the pre-fusion phenomena will not occur. There are thus
(|X|+ |Y |+ 1)n possible fillings of this portion of the lattice model, as each particle can enter
the braid on any horizontal strip row in X , any vertical strip row in Y , or eschew the braid and
travel straight up. By Proposition 2.10, assume without loss of generality that the alphabet A/A′

is ordered 1 < 2 < · · · < 1′ < 2′ < . . . , so the spectral parameters read t, x1, x2, . . . , y1, y2, . . .
from top to bottom.

For the base case, let Y = {y1}. If all n particles enter the braid on row y1 (see Figure 9.3),
the R-matrix Ry1,t where this row crosses the H̃ row will be all type SS vertices, all other
R-vertices will be all type E, and the particles must all travel out across row t, garnering powers
of q along the way. Thus, this state of the subsystem has weight

∏n−1
k=0

(
q2k(−y1t)

)
, as

wt(braid) = qn−1(−y1t) · · · q1(−y1t) · (−y1t)
wt(columns) = qn−1 · · · q1 · 1.

This state gives the highest order term of E({y1}; t). Accordingly, states in whichm particles
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· · ·

· · ·

· · ·

xm

y1

t

...

...

δ + ρ

λ+ ρ

Figure 9.3: The state for the n = 3 base case in which all particles travel through the braid.

t

xm

xm−1

y1...

...
t

xm

xm−1

y1...

...
t

xm

xm−1

y1...

...

Figure 9.4: For n = 3, the process of moving particle i = 2 up through the braid. The weight
of the leftmost state swaps a power of (−y1t) from that of Figure 9.3 for a factor of q4xmt. The
second then swaps the q4xmt for a factor of q4(1− q6xmt)xm−1t. However, the last term swaps
this for q4(1−xmt−xm−1t+q

6xmtxm−1t), so adding them together, only the q4 ·1 term survives.

enter the braid on row y1 will give the terms with powers (y1t)n−m: starting with the n− 1-st
powers, we examine the effect of moving the entry point of one particle up row by row. If the
i-th particle (i.e., the one entering on column i) exits through the last horizontal strip row xm
instead (see the leftmost state in Figure 9.4), the the R-matrix Ry1,t will have a type S vertex in
the (n− i)-th position instead, and Rxm,t will have a type SS vertex in the (n− i)-th place, which
interacts with the type E vertices in the rest of Rxm,t. Also, the i-th vertex in row y1 changes to
type SW, so the result is

wt(braid) =
(
qn−2(−y1t) · · · q1(−y1t) · (−y1t)

)
·
(
qn−1(xmt) · qn−i

)
wt(columns) = qn−i ·

(
qn−1 · · · q1 · 1

)
That is, this change trades one factor of (−y1t) for q2n−2ixmt.

Continuing to move the braid entry point for this particle up row by row, referencing Figure 9.4,
we swap a factor of xkt for one of (1− q2n−2xkt)xk−1t at each step until we eventually reach the
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state in which the i-th particle travels straight up. The weight of this state is

q2n−2i

(∏
j

(1− q2n−2xjt)

)
n−2∏
k=0

q2k(−y1t)

which cancels off all the xjt terms obtained by previous states in which particle i moved. Thus,
the collective terms give a factor of q2n−2i ·

∏n−2
k=0

(
q2k(−y1t)

)
. Ranging over all i accounts for

each of the (n− 1)-st powers of (−y1t) appearing in E({y1}; t).
Similarly, states in whichm particles move up from row y1 at a time give all of the (n−m)-th

powers of (−y1t) appearing in E({y1}, t). Summing over m proves the base case.
Suppose that the inductive hypothesis holds for all i < k for some k. To incorporate an extra

row yk+1, move particles up from row k + 1 using the same careful bookkeeping as in the base
case. Referring to Figure 9.5, we see that the weight of the case where all n particles enter on
row k + 1, is (

n−1∏
k=0

(
q2k(−yk+1t)

))
· E({y1, . . . , yk}; t),

where the factor of E({yk}, t) arises from the Ryk,t vertex. As in the base case, moving m
particles up at a time gives us all the terms with a factor of (ykt)

n−m, each multiplied
by E({y1, . . . , yk}; t). Summing over all possible states then completes the proof of the first
statement.

t

yk

yk−1

yk+1...

...

Figure 9.5: For n = 3, the leftmost figure gives the case where all particles travel into the braid
on row yk+1. The remaining three states illustrate the process of moving particle i = 1 up from
row yk+1, and their weights sum to q2n−2(yk+1t)

n−1E({y1, . . . , yk}; t). The spectral parameters
for all four figures are listed at the far right.

For the second statement, consider the similar lattice model in which the alternate model row
is a vertical strip row with parameter t. As this process is entirely analogous to the proof above,
we note the main differences and leave the details for the reader.

Starting with the braid on the right as before, there cannot be any particles travelling through
the infinite void into the braid, since NW vertices have weight 0 for type Ṽ vertices, so the
partition function of this side is Cδ,λ,IA(X/Y,∅/{t}).
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Swapping the braid to the left hand side using the Yang–Baxter equation, the particle version
of the lattice admits the following interpretation: particles from the infinite sea can travel either
straight up or first left, then up, then right on the Ṽ row back to their starting column. (There are
other ways of interpreting the particle movement in each state, but we prefer this one for clarity
as to which factors arise in the weight.) However, since Ṽ allows the SW vertex, particles can
now travel arbitrarily far on V rows from within the sea to reach the braid, and once a particle
has moved into the braid, it leaves room for subsequent particles to move left onto the column it
has vacated. In any state, at most finitely many particles can move; cutting off the portion of the
infinite sea with moving particles leaves behind the boundary conditions for Cδ,λ,IB(X/Y,∅/{t})
in each case.

In these states, a particle that moves left one step of n columns (where travelling up through
the braid counts as a complete step) from a vertical strip row yj gains a factor of −q2kyjt, where k
is the number of columns with unmoving particles that have been passed by this particle. Carefully
indexing all possibilities of moving particles and the number of unmoving columns between them,
it is possible to obtain any weight of the form (−yjt)m1(−q2yjt)m2 · · · (−q2n−2yjt)

mn−1 , so states
in which particles only move on this row collect to give weight

∏n−1
k=0(1+ q

2kyjt)
−1 = H(yj;−t).

(See Figure 9.6 for examples when n = 3.)

(−yjt)3
(−yjt)

(−yjt)2
q4 (−yjt) q2

(−yjt)3
(−yjt) (−yjt)(−yjt)q4 (−yjt) q2

Figure 9.6: For n = 3, the states with weights (−yjt)4, (−q2yjt)3, and (−yjt)4(−q2yjt)3,
respectively, where only rows yj and t are shown and the label below each column is its weight.

Starting from the bottom row yℓ, note that a particle on a higher row can only move left if
the particle n steps to its left has already moved. (See Figure 9.7 for an example of how the
weights interact in this case for two original model vertical strip rows.) Furthermore, since the
SW vertex has weight 0 on original horizontal strip rows, at most n particles can move one step
of n columns each on these rows, gaining at most one factor each of xit, q2xit, . . . , q2(n−1)xit.
Applying a similar induction to that of the first statement, using the fact that both E(X;−t) and
H(Y ; t) are multiplicative, gives that the partition function on this side is

H(Y ;−t)E(X;−t) · Cδ,λ,IB(X/Y,∅/{t}).

Remark 9.3. This setup for the Cauchy model gives the Pieri identities of Theorem 4.8 for the
function Fλ/δ, but an analogous proof passing a single standard model strip through an alternate
model would give the analogous identities for Gλ/δ. Similarly, for the Cauchy identity, the braid
may be attached to either side: here, we find it more convenient to attach on the other side.
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t

yj

yk

...

(−yjt)2
q2(−yjt) q2

abc
q2(−yjt)
(−ykt)2 q2

(−yjt) q (−yjt)q2 q2

(−ykt) q

t

yj

yk

...

Figure 9.7: For n = 3, the states with weight (−ykt)2(−q4ykt) (left hand side) and
(−q2ykt)3(−yjt)2(−q4yjt) (right hand side), assuming j < k. Note that the row yk moving
particles on the right hand state are garnering the same factors as those in the middle state on
Figure 9.6.

b

c alternate

original alternate

original

β

γ

Figure 9.8: Braids of R(n) vertices attached to the Cauchy model; note the change of side from
Figure 9.2 and that both types of models may have more than one row.

Conjecture 9.4. [Lattice Model Cauchy Identity] Set β, c = “right” and γ, b = “left”. Attaching
a braid to the right hand side of the Cauchy model with ordering IB (as in the right hand figure
of Figure 9.8) gives the partition function

∏
i,j,k,ℓ

n−1∏
t=0

(1− q2txizℓ)(1− q2tyjwk)

(1− q2txiwk)
·
∑
λ

Gµ/λ(X/Y ; q) · Gν/λ(W/Z; q),

By the Yang–Baxter equation, this expression is equal to the partition function of the system
obtained by attaching a braid to the left hand side of the Cauchy model with ordering IA, which is(∏

j,ℓ

n−1∏
t=0

(1− q2tyjzℓ).
∑
λ

Gλ/µ(X/Y ; q) · Gλ/ν(W/Z; q)

)
+O(Y ∞)O(Z∞),

where O(Y ∞) denotes terms with infinitely many powers of spectral parameters in the set Y .

Remark 9.5. Setting β, c = “left” and γ, b = “right” and swapping sides on which the braid
attaches (i.e. using type ÃB instead of type AB̃ R-vertices) produces an analogous result.

The latter statement is actually fairly straightforward to prove, using the same techniques
as in the proof of Theorem 9.2. If no particles pass through the Cauchy braid, it has weight
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j,ℓ

∏n−1
t=0 (1− q2tyjzℓ) and the remaining piece of the lattice has boundary conditions Cµ,ν,IB ,

so Proposition 8.5 gives the first term. On the other hand, suppose a particle enters the Cauchy
braid: since all of the particles entering from boundary conditions are required to travel away
from the braid in the alternate model, we may think of this particle as originating in the braid,
travelling right through the alternate model, up into the original model, then back left into the
braid to create a loop. Since columns can only carry one particle at a time, this particle must
travel through the infinite sea in the alternate model before it can travel up into the original and
back through; however, horizontal strip rows have weight 0 on SE (respectively SW) vertices in
the original (respectively alternate) model, so infinitely many of these steps must occur in vertical
strip rows, amassing a weight of O(Y ∞) in the alternate model sea and O(Z∞) in the original
model sea.

The first claim is the more difficult, because it requires precisely evaluating the Cauchy braid
in circumstances where there may be particles travelling through the braid (in fact, looping as in
the previous case), taking into account the phenomena of pre-fusion as well. As the bookkeeping
for this process becomes significantly more complicated than that of Theorem 9.2, we will not
embark on that journey in this paper. However, note that excepting this difficulty, cutting off the
loops in any state on this side and considering the remaining boundary conditions, we see that
they match Cµ,ν,IA , so again Proposition 8.5 gives the desired sum over superLLT polynomials.
Remark 9.6. For circumstances where we only need finitely many columns to represent all
possible λ that could appear on the boundary (i.e., when the original model is all horizontal strip
rows and the alternate all vertical strip rows, or vice versa), the error terms in O(Y ∞)O(Z∞)
appearing in Conjecture 9.4 are zero, so truncating this Cauchy lattice model recovers precisely
the dual Cauchy identity for LLT polynomials discussed in Section 4.
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=

(A.10)

+ =

(A.11)

+ =

(A.12)

= +

(A.13)

= +

(A.14)

B. Reduced Yang–Baxter equation for column weights

When considering the YBE for the vertical strip weights, boundary conditions (A.2), (A.3), (A.4),
(A.9), (A.12), and (A.14) each contain a NE vertex and thus have weight 0 on both sides. They
are replaced by (B.1), (B.2), (B.3), (B.4), (B.5), (B.7), which each contain a SE vertex and had
weight 0 for the horizontal strip weights. Also, conditions (A.6) and (A.8) acquire an extra state
in this case (see (B.6) and (B.8), respectively).

=

(B.1)

=

(B.2)

=

(B.3)

=

(B.4)
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+ =

(B.5)

+ =

(B.6)

= +

(B.7)

= +

(B.8)

C. R(1) vertex weights for Cauchy mixed YBES of type AB̃

Let κ = #NN ↓ below +#SS above, and let τ = #SS below +#NN above.

Label wtHH̃ wtV H̃ wtHṼ wtV Ṽ

W q−τ (1−q2n−2−2#W↓xy)q−τ qκ−#E q−τ

S −q1−n+2κ(q2n−2+2#S↓xy− 1) −q1−n+2κ+#N −q1−n+2κ+#N −q1−n+κ+#N−τ

SS* qn−1−#NN↑ q#SS↑ q#SS↑ q−#NN↑

NN* xy · qn−1−#SS↓ −xy · q#NN↓ −xy · q#NN↓ xy · q−#SS↓

N qκ−τ+#S q2κ q2κ (1− q2#N↓xy)q2κ

E q−τ−#W qκ−#W (1− q2n−2−2#E↓xy)q−τ qτ−#W

Type Top SS Recursion Bottom NN Recursion
wtHH̃

(
SS

∗

)
= 1

xw

(
q−2SS−2S−E−W

(
∗
SS

)
+q2NN−2SS

(
∗
S

)) (
∗

NN

)
= q−2NN−2S−E−W

xw

(
NN

∗

)
+q2SS−2NN

(
S

∗

)

wtV H̃

(
SS

∗

)
= −1

wy

(
qNN−SS

(
∗
W

)
−q−SS−E−S

(
N

∗

)) (
∗

NN

)
qSS−NN

(
W

∗

)
−q−NN−S−E

(
∗
N

)

wtHṼ

(
SS

∗

)
= −1

xz

(
qNN−SS

(
∗
E

)
−q−SS−W−S

(
N

∗

)) (
∗

NN

)
= qSS−NN

(
E

∗

)
−q−NN−S−W

(
∗
N

)

wtV Ṽ

(
SS

∗

)
= 1

yz

(
qE+NN+S

(
∗
W

)
−
(
N

∗

)) (
∗

NN

)
= −

(
∗
N

)
+qSS+W+S

(
E

∗

)
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D. Fillings of the left-hand Pieri Cauchy braid and first n columns for n = 2,
X = {x1}, Y = {y1}, each with their weights.

•
••

•
· · ·

· · ·

· · ·

x1

y1

t

weight = (1− xt)(1− q2xt)

· · ·

· · ·

· · ·
•
••

•
x1

y1

t

(xt)(1− q2xt)

· · ·

· · ·

· · ·
•
••

•
x1

y1

t

q2(xt)(1− q2xt)

· · ·

· · ·

· · ·
•
••

•
x1

y1

t

q4(xt)2

· · ·

· · ·

· · ·
•
••

•
x1

y1

t

(1− q2xt)(−yt)

· · ·

· · ·

· · ·
•
••

•
x1

y1

t

q2(xt)(−yt)

· · ·

· · ·

· · ·
•
••

•
x1

y1

t

q2(1− q2xt)(−yt)

· · ·

· · ·

· · ·
•
••

•
x1

y1

t

q4(xt)(−yt)

· · ·

· · ·

· · ·
•
••

•
x1

y1

t

q2(yt)2
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