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Identifying Transport Behavior of Single-Molecule Trajectories
Benjamin M. Regner,1,2,* Daniel M. Tartakovsky,1 and Terrence J. Sejnowski2,3
1Department of Mechanical and Aerospace Engineering and 2Division of Biological Studies Sciences, University of California at San Diego,
La Jolla, California; and 3Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California
ABSTRACT Models of biological diffusion-reaction systems require accurate classification of the underlying diffusive dy-
namics (e.g., Fickian, subdiffusive, or superdiffusive). We use a renormalization group operator to identify the anomalous
(non-Fickian) diffusion behavior from a short trajectory of a single molecule. The method provides quantitative information about
the underlying stochastic process, including its anomalous scaling exponent. The classification algorithm is first validated on
simulated trajectories of known scaling. Then it is applied to experimental trajectories of microspheres diffusing in cytoplasm,
revealing heterogeneous diffusive dynamics. The simplicity and robustness of this classification algorithm makes it an effective
tool for analysis of rare stochastic events that occur in complex biological systems.
INTRODUCTION
Stochastic fluctuations arise in biological systems at all
length and timescales. An example is the diffusion of bio-
molecules, driven by thermal fluctuations, providing trans-
port for biochemical processes. A familiar process that
can generate such behavior is Brownian motion, although
in biological systems the explicit assumption that particles
are dilute is often violated. Diffusion processes that do not
produce Brownian statistics are said to exhibit anomalous
(non-Fickian) diffusion. Occurrence of anomalous diffusion
has been reported in diverse phenomena, and has enriched
understanding of biological systems (1).

Particle trajectories produced by single-molecule experi-
ments are particularly suitable for characterizing biological
diffusion behavior. A particle trajectory consists of M loca-
tions Xi ¼ X(ti), which the particle occupies at times t ¼ ti.
This trajectory is represented by a sequence of time-ordered
random variables

X ¼ fXigMi¼ 0:

Anomalous behavior arises when a trajectory has nonzero

drift, correlated increments, nonstationary increments, or
some combination (2). Equivalently, Brownian motion is
observed when these conditions are absent. The trajectory
of a particle undergoing Brownian motion exhibits a
mean-square displacement (MSD) that grows linearly with
time t. Anomalous diffusion typically produces an MSD,
hX2i, which is a nonlinear function of t, e.g., a power law

hX2iðtÞ ¼ Dat
a;

0<a<2;
(1)
Submitted November 25, 2013, and accepted for publication October 8,

2014.

*Correspondence: bmregner@salk.edu

Editor: Antoine van Oijen.

� 2014 by the Biophysical Society

0006-3495/14/11/2345/7 $2.00
Here Da is the diffusion coefficient, and h,i denotes an
average over an ensemble of random trajectories. For sta-
tionary processes considered in this analysis, the exponent
a is assumed constant throughout the time-course. The pro-
cess X is called subdiffusive if the exponent a < 1, and
superdiffusive if exponent a > 1 (3). A time-averaged
MSD (TAMSD) can be used to analyze single trajectories
and is defined for the ith trajectory by

X2
i ðD; tÞ ¼ 1

t � D

Z t�D

0

½Xiðt0 þ DÞ � Xiðt0Þ�2dt0; (2)

where D is a lag time (4).
Although many experiments use TAMSD as a key statis-

tic characterizing the observed dynamics, a number of
studies have demonstrated that it can be a problematic
metric for classification in certain cases (2,5,6). In response,
a number of algorithms have been proposed for process
classification, such as p-variation (7), autocorrelation func-
tions (8), higher order moments (9), and an ergodicity
breaking parameter (10). Alternatively, approaches have
been developed with a focus on experimental trajectories
using empirical evidence of deviation from Brownian mo-
tion (11–13).

A recently proposed framework based on a renormaliza-
tion group operator (RGO) (2,14,15) provides a promising
alternative. A random trajectory X has a set of increments
I ¼ fIigMi¼0, with each increment computed as Ii ¼ Xiþ1 –
Xi. An RGO Rp,n can be defined by

�
Rp;nI

�
i
h

Xðiþ1Þn�1

k¼ in

Ik
np
;

p>0;

nR1;

(3)
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and a new replica trajectory J is determined as Jp,ni¼ (Rp,nI)i.
For a fixed p, a sequence I is called a fixed point of the RGO
if the relationship

Jp;n ¼d I (4)

holds for all n R 1, where ¼d means equal in distribution
(16). A process that is a fixed point with scaling p is said

to be p-diffusive, or p-self-similar, and is related to the anom-
alous diffusion exponent by a¼ 2p (2). A generalization is a
random RGO, in which the scaling is a random variable P
(14). In this framework, a single experimental trajectory is
a realization of a process that samples a scaling distribution
fP(p). Here, we propose an algorithm to determine the anom-
alous diffusion exponent distribution fP(p) of a stochastic
trajectory. The goal is to obtain p from single, short trajec-
tories of experimental data; other methods may be more
appropriate for analytic processes (17).
METHODS

Classification algorithm

The proposed algorithm consists of the following four steps:

1. A single trajectory X is transformed into the increment process I and the

empirical cumulative distribution function (CDF), FI
0(x), of I is

computed.

2. A constrained optimization is performed on a goodness-of-fit statistic

comparing empirical CDFs. Although other options exist, good results

were found by minimizing the goodness-of-fit statistic from Kuiper’s

two-sample test (18),

gP;n ¼ sup
x

��F0
I ðxÞ � FP;n

J ðxÞ��� inf
x

��F0
I ðxÞ � FP;n

J ðxÞ��; (5)

where FP,n
J (x) is an empirical CDF of JP,n ¼ Rp,nI.

3. Optimization is repeated for many values of n to obtain corresponding

best-fit values of p and are plotted as a histogram to obtain a distribution

fP(p) for a given realization.

4. The scaling exponent is computed as a ¼ 2p, where p is the mean of the

empirical distribution fP; the corresponding diffusion coefficient is

defined by Da ¼ s2I/(2dt
ad), where s2I(t) is the variance of I, dt is the

time step, and d is the spatial dimension (19).

The use of increments IDi ¼ XiþD � Xi for a lag time D (the number of

time steps) improves estimation of Da. The diffusion coefficient is then

calculated as

Da ¼ 1

M

XM
D¼ 1

s2
IDðtÞ

2dðDdtÞa: (6)

This calculation also acts as an indicator of the accuracy of the calculated

scaling. If an estimate of p is inaccurate, then D (D) will change signifi-
a

cantly with D, indicating a poor fit.

A trivial extension is to perform the operation over a population of trajec-

tories to produce an ensemble distribution. This is analogous to other

methods of computing the average scaling, but has the advantage that

each trajectory is treated individually, a fact particularly useful when the

population contains a mixture of processes. Further refinements, such as

subdividing the trajectories into subtrajectories or performing a moving

window analysis, can be used to obtain information local in time.
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Stochastic processes

Several stochastic processes are used below to validate the proposed algo-

rithm. Brownian motion Bt is a time series of Gaussian-distributed random

variables with zero mean and unit variance. A Lèvy flight Lt can be gener-

ated by taking step increments from a stable distribution S(aL,b,0) with b¼
0 (20). Note the distribution parameter aL is different from the anomalous

diffusion exponent a. The analytical MSD of Lt scales like t2=aL , and is

therefore 1/aL-diffusive (21). Fractional Brownian motion (fBM) is denoted

BH
t and defined with initial condition BH

0 ¼ 0, zero mean hBH
ti ¼ 0, and a

two-point correlation,�
BH

t B
H
s

� ¼ �jtj2H þ jsj2H � jt � sj2H��2;
whereH is the Hurst exponent. In this work, fBM is simulated using the cir-

culant method as implemented in the R package dvfBm (22,23). It can be
shown that BH
t is H-diffusive.
RESULTS

Validation

The proposed classification scheme produces a distribution
of scaling exponents for each individual trajectory, and pro-
vides an estimate of the mean and variance from the single-
trajectory scaling distribution fP(p). In Fig. 1, trajectories
generated by three stochastic processes described above
are analyzed using the TAMSD and compared to the pro-
posed RGO method. Ensemble averages (N ¼ 105) are
shown as a dashed line. In all cases, the use of the RGO
method reduces the dispersion of the estimated scaling.
Fig. 1 a exhibits the Bt trajectories computed with TAMSD
(black) and the RGO algorithm (gray). A similar compari-
son for BH

t is provided in Fig. 1 b for H ¼ 0.25 and 0.75.
For H ¼ 0.25, the RGO method (light blue) converges to
the ensemble mean much more slowly than TAMSD (dark
blue), whereas the convergence rates of TAMSD (dark
orange), and RGO (light orange) are nearly identical for
H ¼ 0.75. In Fig. 1 c, the TAMSD analysis of Lt for aL ¼
0.5 and 1.0 incorrectly predicts a scaling of p ¼ 0.5 (dark
purple) compared to the analytically derived scaling p ¼
1/aL (24). The RGO method correctly characterizes the tra-
jectories for aL ¼ 0.5 (green) and 1.0 (light purple).

A subtle point is determining the limits of accurately
characterizing a stochastic trajectory. Jeon et al. (25) intro-
duced an ergodicity-breaking parameter

xi ¼ X2
i

�	
X2




as a means of analysis of pre-ergodic data. Previously, we
used this parameter to distinguish between stochastic pro-

cesses (26). Fig. 2 exhibits the mean x obtained with such
analysis for Bt and BH

t. It shows weak ergodicity breaking
for short (M < 100) trajectories, which is in agreement
with the weak ergodicity breaking at short times previously
observed for BH

t (27). This is also true for Bt, an ergodic
process, suggesting there is insufficient information in a
short trajectory to accurately characterize the underlying



FIGURE 1 Empirical cumulative distribution of p estimated from single trajectories. The anomalous diffusion exponent p is estimated using the TAMSD

and the proposed RGO method from single trajectories of lengthM. Distributions are computed from N¼ 105 realizations. (Dashed lines) Ensemble average

for each method. (a) Bt trajectories are analyzed using TAMSD (black) and the RGOmethod (gray). The standard error for each trajectory estimate is plotted

for the RGO case, but cannot be computed using TAMSD. A small decrease in dispersion is seen using the RGOmethod. (b) BH
t trajectories are analyzed for

two values of H ¼ 0.25 and 0.75. The TAMSD method produces a more accurate ensemble average for H ¼ 0.25 (dark blue) in comparison to the RGO

method (light blue). In the case ofH¼ 0.75, both TAMSD (dark orange) and RGO (light orange) have similar performance, with the RGOmethod producing

less dispersion. (c) Lt trajectories are analyzed for two scalings aL ¼ 0.5 and 1 (p ¼ 2.0 and 1.0). Importantly, the TAMSD (dark purple) computes an incor-

rect scaling of p ¼ 0.5 for both aL ¼ 0.5 (green) and aL ¼ 1 (light purple), which the RGO method accurately characterizes.

a b
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process. Therefore, an accurate determination of the anom-
alous scaling exponent from single-trajectory data is under-
mined by the scarcity of data and pre-ergodic convergence
associated with short trajectories.

Experimental data typically consist of a few trajectories
that are short in time. Ten realizations of BH

t are simulated
withH¼ 0.25 and 0.75, forM¼ 1000 time steps. Their repre-
sentative distributions fP are shown in Fig. 3, a and b, forH¼
0.25 andH¼ 0.75, respectively. In all cases, good agreement
with the scaling of the underlying process is observed. The
exact scaling, d(x � P), where d is the Dirac delta function,
FIGURE 2 Pre-ergodic analysis of stochastic processes. The mean x of

the ergodicity parameter distribution f(x) is plotted against lag time D. A

comparison is made between Brownian motion and fractional Brownian

motion with several Hurst exponents. Importantly, these processes show

weak ergodicity breaking in a pre-ergodic regime. This limits accurate clas-

sification of short (M < 100) single trajectories generated by these pro-

cesses. To see this figure in color, go online.
is replaced with a finite-width distribution that accounts for
uncertainty introduced by the trajectory’s short length. An
ensemble histogram of the population of 10 trajectories
with H¼ 0.25 in Fig. 3 c shows weak convergence to the ex-
pected mean. A mixed population of 10 trajectories from
each H in Fig. 3 d demonstrates that the algorithm robustly
c d

FIGURE 3 RGO analysis of fBM data. Ten trajectories of a fractional

Brownian motion BH
t are simulated for H ¼ 0.25 and H ¼ 0.75 over

1000 time steps. Our algorithm is applied to these trajectories to obtain dis-

tributions of the critical exponent P. (a and b) Single-trajectory histograms

for H ¼ 0.25 and H ¼ 0.75, respectively. (c) Ensemble histogram from a

population of 10 trajectories with H ¼ 0.25. (d) Ensemble histogram of

all trajectories combined, revealing an expected bimodal distribution that

ensemble methods would fail to detect.

Biophysical Journal 107(10) 2345–2351
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recovers a bimodal distribution for the mixture case without
additional constraints on the algorithm.
c d

FIGURE 5 RGO analysis of experimental data. (a and b) Representative

histograms of the empirical scaling distribution fP(p) of individual trajec-

tories from the extract and nocodazole cases, respectively. Three examples

are shown with each color indicating results from a single trajectory. (c and

d) Ensemble histograms for the two cases. In the extract case, subdiffusive

behavior is observed, which was not indicated by the MSD analysis.

Similarly, weak superdiffusive behavior is observed in the nocodazole

case, suggesting incomplete depolymerization of microtubules. The large

mass at P ¼ 0 is due to occasional calculation of negative scaling expo-

nents due to short trajectory size, but physical processes have the constraint

p > 0.
Experimental data analysis

The validated classification algorithm is used to analyze
previously reported data (26). Briefly summarizing, we ob-
tained three-dimensional particle trajectories of a fluores-
cent microsphere, diameter 1 mm, diffusing in a cellular
extract prepared from Xenopus oocytes. Another set of tra-
jectories was also obtained from the same extract treated
with nocodazole, which is known to depolymerize microtu-
bules. For all experiments, the total acquisition time per
three-dimensional volume was 86 ms. Previously, an
MSD-based analysis, using Eq. 1, classified transport as
superdiffusive along microtubules in the extract case (a ¼
1.5 for both short and long times; and Da ¼ 0.014 and
0.038 in short- and long-time analyses). The units for all
experimental diffusion coefficients are mm2/sa, in agreement
with Eq. 1. Addition of nocodazole led to subdiffusive trans-
port at short times (a ¼ 0.6), and classical diffusion (a ¼
1.0) at long times; in both cases, Da ¼ 0.16 (26). Fig. 4 ex-
hibits the resulting MSDs.

Fig. 5 presents the results obtained with our classification
algorithm for the extract (left column) and nocodazole (right
column) cases. Distributions from single representative tra-
jectories are shown in Fig. 5, a and b. Both cases exhibit
a

b

FIGURE 4 Ensemble MSD of individual TAMSDs from each experi-

mental trajectories. (a) At short times, transport is superdiffusive in the

extract case (due to active transport along microtubules) and subdiffusive

in the nocodazole case. (b) At long times, transport is superdiffusive in

the extract case and Fickian in the nocodazole case. To see this figure in

color, go online.

Biophysical Journal 107(10) 2345–2351
superdiffusive and subdiffusive signatures, although they
are less evident in the nocodazole case. These results indi-
cate that the experimentally observed trajectories are char-
acterized by process transitions. In the extract case this is
not surprising, inasmuch as the dynamics of microtubule
transport include rapid switching between on- and off-states
as the microsphere interacts with the microtubules (28).

Superdiffusive transport in the nocodazole case suggests
incomplete depolymerization of the microtubules, which re-
mained undetected by the MSD analysis. Fig. 5, c and d,
shows ensemble population distributions, with N ¼ 38 in
the extract case and N ¼ 19 in the nocodazole case. In the
extract case, multiple scalings occur during the time course
of the collected data. The ensemble distributions reveal that
in the case of nocodazole, whereas the majority of trajec-
tories undergo subdiffusion, there is a strong signature of
superdiffusive transport. Table 1 contains the values of the
diffusion coefficient Da computed with Eq. S1. The MSD
and RGO methods predict similar values of Da, with the
small disagreement attributed to the MSD’s use of Eq. 1,
in which Da is sensitive to the fitting of a.
Comparison to previous methods

Applying the renormalization group method using a moving
window provides a useful comparison to alternative charac-
terization methods. In this case, we compare a/2 from the
classic TAMSD method, the Dev parameter derived by



TABLE 1 Diffusion coefficients calculated with the MSD and

RGO methods for different time windows

Short time Da Long time Da

MSD RGO MSD RGO

Extract 0.014 0.029 0.038 0.046

Nocodazole 0.16 0.043 0.17 0.126

Units are mm2/sa.
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Huet et al. (11), and a velocity correlation parameter SCI
derived by Bouzigues and Dahan (11,13). We compare
this with the mean scaling p and the evolution of the full dis-
tribution fP(p) over time. In all cases a window size of 41
time points is used.

A comparison is first made using simulated data of known
scaling. The simulated trajectory is a concatenation of three
distinct walks, each with 200 time steps:

1. A fractional Brownian motion with H ¼ 0.25,
2. A fractional Brownian motion with H ¼ 0.75, and
3. A Lèvy flight with aL ¼ 1.

The computed characterization is shown in Fig. 6 in the left
column (Simulation). The TAMSD method works well for
the fBM cases, but fails to find the correct scaling for the
a1

b1

c1

d1

e1

f1

a

b

c

d

e

f2

FIGURE 6 Moving window analysis of simulated and extract trajectories. (a1)

H ¼ 0.25, the next 200 points are an fBM with H ¼ 0.75, and the last 200 points

trajectory uses a window size of 41. (a2) Experimental trajectory of microspher

proposed algorithm. (c1,2) a/2 calculated using a moving window time-average

by Huet et al. (11). (e1,2) The parameter SCI proposed by Bouzigues and D

algorithm. Although the distributions are sparsely populated due to the small win

shown. In the extract case, the distribution suggests Brownian motion in the i

600 time points. To see this figure in color, go online.
Lévy flight, as expected from Fig. 1. The mean p is noisy,
but varies around the expected scaling for each distinct pro-
cess. The parameterDev gives some qualitative information,
but it is not clear how to map Dev to the actual scaling expo-
nent. This method also fails to distinguish a Lévy flight. The
correlation SCI only gives a rough qualitative sense of the
change in underlying scaling, but no quantitative informa-
tion. Finally, the full distribution fP(p) gives a good sense
of the local fluctuations around the underlying scaling expo-
nent, despite containing limited samples per time point due
to the small window size.

These methods are also applied to one experimental tra-
jectory shown in the right column (Extract) of Fig. 6. In
this case, similar features are seen to the simulation case,
although the parameters are noisier due to particle location
uncertainty in experimental data. The particle appears to un-
dergo Brownian motion in the beginning of the trajectory,
switching to subdiffusive behavior at ~500–600 time points.
CONCLUSION

We have shown that renormalizaion group operators are an
effective method for determining the scaling exponent of
2

2

2

2

2

Simulated trajectory; first 200 points are a fractional Brownian motion with

are a Lévy flight with aL ¼ 1. All moving windows for the analysis of this

e diffusing in cellular extract. (b1,2) The mean value p computed using the

d mean-squared displacement analysis. (d1,2) The parameter Dev proposed

ahan (13). (f1,2) The full distribution fP(p) computed using the proposed

dow size, the random scaling for each process as it varies with time is clearly

nitial segment followed by a transition to subdiffusive behavior of ~500–

Biophysical Journal 107(10) 2345–2351
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discrete stochastic processes and experimental data. The
analysis suggests that whereas fluctuations in short-time
windows can produce improbable sequences that scale
differently from the underlying process, their average
behavior is sufficient to correctly estimate the scaling expo-
nent and to classify the process. Many biological phenom-
ena are characterized by broad distributions for which it
may be difficult (or even inappropriate) to assign a single
value of the scaling exponent a. The observed distributions
are likely generated by process transitions, which reflect the
presence of multiple transport mechanisms (e.g., free diffu-
sion, varieties of cytoskeletal transport, and active transport
through pores) that may act upon biomolecules during
different time windows or events (29). From a regulatory
perspective, diverse transport mechanisms with different
scaling would provide a powerful means of control over
biochemical pathways. The assortment of scalings seen in
Fig. 5 is evidence of diversity in microtubule transport.
The MSD analysis of individual trajectories of diffusing
chromosomal loci (30) provides further support for this
conclusion. The MSD-based estimates of the scaling expo-
nents for individual trajectories were collected into a histo-
gram shown in Fig. 2 a of Javer et al. (30). It is similar to the
histogram for the extract case shown in Fig. 5 c. The pro-
posed algorithm could also be used to classify the distinct
short-time diffusive behaviors observed in different subcel-
lular regions reported by Javer et al. (30).

Nonstationary transport has been previously observed in
the cytoplasm and plasma membrane of living cells
(31,32), in which the distribution of anomalous diffusion ex-
ponents was a function of time and the process generating
the dynamics, i.e., fP(pjt,At), where Ai is a specific stochas-
tic process. Here, we have assumed that the dynamics are
stationary over the acquisition time, so the anomalous expo-
nent is only a function of the generating stochastic process
fP(p | At). In previous experiments, nonstationary behavior
was apparent on a timescale of 100 s (31), similar to the
timescale of the experiments presented here. Therefore,
we are at the limit of applicability of the proposed method
for stationary processes. However, classifying nonstationary
processes using short trajectories is ill-posed in many cases,
due to a combination of limited statistical information and
an unknown rate of change in dynamics. Without sufficient
accumulation of statistical information, i.e., many time
points, accurately classifying such a process would be diffi-
cult at best. In addition, the proposed method does not prop-
erly characterize fundamentally nonstationary processes.
Assuming sufficient data, a similar method to the one pro-
posed here could be developed using a different RGO,
similar to previous analytical work (17), but the details
remain unresolved.

In summary, we developed a classification technique to
analyze short trajectories of a single biomolecule based on
an RGO (2), which allows computing both the anomalous
scaling exponent and diffusion coefficient of a biomole-
Biophysical Journal 107(10) 2345–2351
cule’s motion. The RGO-based classification alleviates
key impediments to accurate identification of anomalous
transport, which stem from scarcity of observed biomole-
cule trajectories, short duration of observation, and mea-
surement errors. After validation on simulated stochastic
processes, we used the proposed method to analyze trajec-
tories of diffusing microspheres observed in several biolog-
ical environments. The RGO approach identified multiple
transport processes affecting the observed particle migra-
tion, revealing behavior that had been missed in a previous
analysis. The RGO method could be used to analyze single
trial data from other sources in which transitions are likely
to occur.

This research was supported by the Howard Hughes Medical Institute, Na-

tional Institutes of Health grant No. MH079076, the Salk Innovation Award,
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