
Lawrence Berkeley National Laboratory
LBL Publications

Title
ArQTiC: A full-stack software package for simulating materials on quantum computers

Permalink
https://escholarship.org/uc/item/24t2k3xn

Authors
Bassman, Lindsay
Powers, Connor
Jong, Wibe A de

Publication Date
2021-06-08
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/24t2k3xn
https://escholarship.org
http://www.cdlib.org/


ArQTiC: A full-stack software package for simulating materials on quantum computers

Lindsay Bassman,1 Connor Powers,2 and Wibe A. de Jong1

1Lawrence Berkeley National Lab, Berkeley, CA 94720
2University of Southern California, Los Angeles, CA 90089

ArQTiC is an open-source, full-stack software package built for the simulations of materials on
quantum computers. It currently can simulate materials that can be modeled by any Hamiltonian
derived from a generic, one-dimensional, time-dependent Heisenberg Hamiltonain. ArQTiC in-
cludes modules for generating quantum programs for real- and imaginary-time evolution, quantum
circuit optimization, connection to various quantum backends via the cloud, and post-processing
of quantum results. By enabling users to seamlessly perform and analyze materials simulations on
quantum computers by simply providing a minimal input text file, ArQTiC opens this field to a
broader community of scientists from a wider range of scientific domains.

I. INTRODUCTION

Quantum computers are an emerging technology,
which are poised to revolutionize the computational sci-
ences [1–4]. Using quantum bits, or qubits, as the units of
information processing, quantum computers can capital-
ize on purely quantum phenomenon such as superposition
and entanglement to achieve exponential speed-ups and
memory reductions compared to their classical counter-
parts for some applications. Originally conceived of for
the simulation of quantum systems [5], quantum comput-
ers were later rigorously proven to offer a computational
advantage in this area [6–8]. Indeed, the simulation of
quantum materials is seen as one the most promising ap-
plications for quantum computers in the near term [9].
Quantum materials are materials in which quantum ef-
fects at the microscopic level give rise to exotic phases or
other emergent behaviors at the macroscopic level [10].
An explosion of research into quantum materials over the
last decade suggests that such materials will be crucial for
the development of next-generation technologies [11–13].
Thus, elucidating the properties and dynamics of quan-
tum materials through simulation is a much anticipated
milestone for near-term quantum computers.

At present, the software available for designing and
executing simulations of quantum materials on quantum
computers is in a nascent stage, often requiring a great
deal of domain knowledge in quantum computation. At
the most fundamental level, a program run on a quantum
computer is a sequence of physical operations performed
on the qubits (e.g., electromagentic pulses). However,
much like writing code for classical computers in binary,
writing code for quantum computers in terms of pulses
can be cumbersome and difficult. To alleviate this bur-
den, layers of abstraction can be sequentially added atop
the pulse-level programming layer to facilitate writing
quantum programs.

The current hierarchy of sequentially abstracted pro-
gramming layers for quantum computing is shown in Fig-
ure 1a. At the bottom, the qubit implementation dictates
which physical operations can be applied to the qubits.
Abstracting one layer above this involves representing the
simulation in terms of an optimized native-gate circuit,

which is a serial list of quantum logic gates acting on
the qubits, with native gates having a one-to-one corre-
spondence with implementable operations on the qubits.
Sitting a level above native-gate circuits are arbitrary-
gate (i.e., any unitary matrix) circuits. Note that while
native-gates are backend-dependent, arbitrary-gates are
backend-agnostic, allowing greater flexibility. Abstract-
ing one layer above gates, simulations can be designed us-
ing high-level programming models based on application-
focused libraries. This is currently one of the more under-
developed layers. Finally, at the top resides the algo-
rithm which abstracts away all implementation details
and solely describes the general process by which the sys-
tem of qubits should be manipulated. Figure 1b shows
analogous programming levels in standard classical com-
puters for comparison.

FIG. 1. Programming layers for quantum (a) and classical
(b) computers.

In the noisy intermediate-scale quantum (NISQ) era
[14], developing code to run on quantum computers gen-
erally involves programming at the gate level. Further-
more, different quantum backends (either the real quan-
tum processors or quantum simulators, which simulate
quantum computers with classical computers) use their
own hardware-specific language, making it difficult to
port simulation code written for one quantum machine
to another. Together, this presents a large barrier to en-
try for researchers from other relevant areas of science,
such as chemistry, materials science, and condensed mat-
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ter physics, who can provide a wealth of new perspec-
tives and insights for materials simulations on quantum
computers. To hasten progress, we have developed an
open-source, backend-agnostic, high-level programming
library called Architecture for Time-dependent Circuits
(ArQTiC), to facilitate research in this area for scientists
from a diverse range of backgrounds by lowering this bar-
rier to entry.

As a full-stack software package, ArQTiC provides ac-
cess to each of the programming layers presented in Fig-
ure 1a. At the top layer, ArQTiC implements two ma-
jor algorithms for material simulation: (i) Hamiltonian
evolution based the Trotter decomposition [6, 15], and
(ii) imaginary-time evolution via the quantum imaginary
time evolution (QITE) algorithm [16]. The former is
useful for studying the dynamic behavior of materials
and their properties, while the latter can be used to find
ground- and excited-state energies as well as for generat-
ing thermal states, which can be used to compute prop-
erties of materials at finite temperatures.

To aid the user in implementing these algorithms, Ar-
QTiC provides a high-level programming library specific
to the application of simulating materials on quantum
computers. At the gate-level, ArQTic provides automatic
optimization of the quantum circuit using state-of-the-art
circuit synthesis and compilation tools, and can translate
circuits into several different languages targeting different
quantum backends. Furthermore, ArQTic can connect
with the IBM and Rigetti quantum computers via the
cloud to execute the circuits. Finally, ArQTiC provides
post-processing and analysis of the data returned via the
cloud from the quantum backend. The full code, as well
as an array of python notebooks demonstrating various
simulation uses cases (including the illustrative examples
given in Section III), are available on GitHub [17]. By
giving users the ability to easily generate, optimize, exe-
cute, and post-process quantum circuits simulating ma-
terials on quantum computers, ArQTiC in essence brings
this important class of simulations to the masses.

II. SOFTWARE DESCRIPTION

ArQTiC offers a full-stack solution for the simulation
of materials on quantum computers. Taking as input a
simple text file, in which the user defines various simula-
tion parameters, ArQTiC can generate, optimize, and ex-
ecute circuits for the quantum simulation, as well as post-
process experimental results all with only a few high-level
functions calls. This enables researchers from a range
of physical sciences to easily perform their own materi-
als simulations on quantum computers without needing
to understand the low-level mechanics and intricacies of
quantum computation.

A blueprint of the ArQTiC programming library is
shown in Figure 2, depicting the various modules. The
central data structure is the Simulation Generator, which
contains all the information relevant for the simulation.

FIG. 2. Blueprint diagram ArQTiC modules. The Simulation
Generator is the central data structure, which is instantiated
through reading in a user-provided input text file. The Simu-
lator Generator interacts with all other modules of ArQTiC,
including program generation, circuit optimization, connec-
tion to quantum backends, and post-processing.

It is instantiated by reading in a user-provided input text
file. The Simulation Generator is what interfaces with
all other modules of ArQTiC to perform a simulation,
including modules for program (i.e. quantum circuit)
generation, circuit optimization, connection to quantum
backends via the cloud, and post-processing.

Figure 3 shows a workflow diagram, which illustrates
how all the modules of ArQTiC come together to seam-
lessly provide a user with materials simulation results
from a quantum backend given just a simple input text
file. Note that the boxes in Figures 2 and 3 are color
coordinated to demonstrate the correspondence between
modules in ArQTiC and subsections of the workflow.
Performing a simulation with ArQTiC begins with a sim-
ple input text file providing the user-defined parameters
of the system Hamiltonian as well as other relevant sim-
ulation parameters. Sample input files are provided in
the illustrative examples in Section III. Currently, Ar-
QTiC can generate simulations for materials which can
be modeled with a time-dependent Heisenberg Hamilto-
nian in one-dimension of the form

H(t) =
∑
α

n−1∑
i=1

Jαi (t)σαi σ
α
i+1 +

∑
α

n∑
i=1

hαi (t)σαi (1)

where α ∈ [x, y, z], n is the number of spins in the sys-
tem, Jαi is the time-dependent strength of the exchange
interaction between nearest neighbor spins i and i+ 1 in
the α-direction, hαi is the time-dependent strength of the
external magnetic field in the α-direction acting on spin i,
and σαi is the α-Pauli matrix acting on qubit i. The large
amount of freedom in defining the parameters in Equa-
tion 1 makes this Hamiltonian quite versatile in its ability
to model a wide range of systems including ubiquitous
models such as the transverse field Ising model (TFIM),
the XY model, and the XXZ chain. The parity of the
Jαi parameters can be chosen to simulate ferromagnetic
or antiferromagnetic systems, while setting their values
to be uniform across all spin pairs versus randomly var-
ied allows one to simulate ordered or disordered systems
(such as spin glasses [18]), respectively. Finally, specify-



3

FIG. 3. ArQTiC workflow diagram. The top row of boxes summarizes the flow of information from the input text file, through
the high-level programming layer, to the gate programming layer, down to pulse scheduling for circuit execution on the qubits.
The bottom rows shows optional outputs at each stage of the workflow. The starred components denote the main contributions
of ArQTiC.

ing a time-dependent function for the external magnetic
field amplitude, allows one to simulate laser pulses on
material of interest[19, 20].

Once the system of interest has been determined, the
user can set the Hamiltonian parameters appropriately
in the input file, along with other relevant details of the
simulation. The Simulation Generator object is then in-
stantiated by reading in the input file. It can then be
used to generate programs, which are ArQTiC’s native
intermediate representation of the quantum circuit that
performs the material simulation. A program is essen-
tially a backend-agnostic list of arbitrary gates. The ad-
vantage of working with this intermediate representation
is that the gate-level circuit can be designed once and
simply translated into any other language required by a
specific backend. Currently, ArQTiC supports convert-
ing its programs into Qiskit [21], PyQuil [22], and Cirq
[23]. In particular, this makes it easy to run the same
simulation on multiple different quantum backends for
comparison.

The creation of a new program relies on algorithms
for real- and imaginary-time evolution under a given sys-
tem Hamiltonian. Separate modules exist for generat-
ing a high-level programs for either real-time evolution
based on Trotter decomposition [6, 15] or imaginary-
time evolution based on QITE [16]. One or the other
will be called depending on a boolean flag set in the
input file. Real-time evolution can be simulated un-
der a time-independent or time-dependent Hamiltonian
with ArQTiC. Time-independent Hamiltonians are gen-
erally used for simulating quantum quenches, whereby
the material system is initialized in the ground state of
one Hamiltonian, but is made to evolve under a differ-
ent Hamiltonian [24–27]. Quenching from one Hamil-
tonian to the other can be viewed as instantaneously
changing the environment of the material, thereby al-
tering its Hamiltonian. These types of simulations aim
to answer fundamental questions about many-body lo-
calization, the mechanisms and timescales of thermaliza-
tion, the changes to or development of collective order
(e.g., ferromagentism, superconductivity, topological or-
der) under a quench, the universality of the dynamics in

quenches near critical points, and more [24].

Simulations under time-dependent Hamiltonians [28]
can be useful within a few different paradigms. First,
they can be used to simulate dynamic processes, such as
scattering [29]. Second, they can be used to simulate ma-
terials in dynamic environments, such a time-dependent
external magnetic field [20, 30]. A third use-case is for
finding the ground state of a material through adiabatic
quantum evolution [31]. Here, the material is initialized
in the ground state of an initial Hamiltonian HI , which
is presumed to be easy to prepare on the quantum com-
puter. The material is then evolved under a parameter-
dependent Hamiltonian H(s) = (1− s)HI + sHP , which
slowly (adiabatically) transforms from the initial Hamil-
tonian HI to the problem Hamiltonian HP as the pa-
rameter s is varied from 0 to 1. The adiabatic theorem
states that if the system is initialized in the ground state
of HI and s is varied from 0 to 1 slowly enough, the sys-
tem will remain in the instantaneous ground state of the
Hamiltonian H(s). Thus, at the end of the protocol, the
system will be in the ground state of the problem Hamil-
tonian HP , which is, in general, difficult to prepare. In
this way, simulation with a time-dependent Hamiltonian
within ArQTiC can be used to generate the ground state
and measure the ground-state energy of various Hamil-
tonians.

ArQTiC can also generate programs for imaginary-
time evolution. These simulations are useful for two main
applications. The first is for computing the ground-state
energy of a material. As a system is evolved in imaginary
time, the lowest energy states begins to dominate the sys-
tem’s wavefunction. Therefore, simulating the evolution
of the material through imaginary time will cause mea-
surements of the system’s energy to result in the ground-
state energy with higher and higher probability. The sec-
ond application for imaginary time evolution is for gener-
ating pseudo-thermal states, which can be used to com-
pute properties of materials at finite temperatures. In
particular, these pseudo-thermal states are called mini-
mally entangled typical thermal states (METTS) and are
generated in a Markov chain according to the METTS
algorithm [32]. On a quantum computer, the QITE al-
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gorithm can be used to generate the METTS, via the so-
called QMETTS algorithm [16]. The average over mea-
surements of an observable in an ensemble of METTS
will give the thermal average of that observable for the
material at a given finite temperature [33].

Once a program has been created by the Simula-
tor Generator, it must be translated into an optimized,
native-gate quantum circuit targeting the quantum back-
end selected by the user. In the NISQ era, circuit opti-
mization is equivalent to circuit minimization. This is be-
cause currently available quantum computers suffer from
high gate-error rates and short qubit decoherence times,
causing simulation results to lose fidelity as the quan-
tum circuit gets larger. ArQTiC offers several choices
for circuit optimization. The first option uses the native
circuit compiler of the chosen target quantum backend.
For example, if the user wishes to run the simulation on
the Rigetti quantum computer, ArQTiC will translate
the program into a PyQuil circuit and call PyQuil’s na-
tive compilation function on the circuit. The second op-
tion is to use a popular, state-of-the-art circuit optimizer
called tket [34]. The final option is a domain-specific
option that can produce optimal constant-depth circuits
for real-time evolution. Here, domain-specific refers to
the fact that this circuit optimization technique can only
be implemented for special system Hamiltonians, which
are outlined in Ref. [35]. For generic Hamiltonians, cir-
cuits for real-time evolution are expected to grow at least
linearly in size with simulation time. Due to NISQ-era
constraints on circuit size, this in turn limits the length of
time that can feasibly be simulated on quantum comput-
ers. The domain-specific constant-depth circuits, how-
ever, enable simulations out to arbitrarily long times.

Once an optimized quantum circuit has been gener-
ated, the Simulation Generator can connect via the cloud
to either the IBM or Rigetti quantum computers, and
send the circuits for execution. Upon job completion, re-
sults are sent back via the cloud and stored by the Simu-
lator Generator for post-processing and analysis. Results
from the quantum backend are returned in the form of
counts of the number of times each qubit was measured
to be 0 or 1. Thus, post-processing of the data is required
to deduce the observable of interest, such as the value of
some time-dependent material property. If requested by
the user in the input file, ArQTiC can automatically plot
the results and save the figures to file.

III. ILLUSTRATIVE EXAMPLES

A. Dynamic Simulation

In this example, we demonstrate Anderson localization
in a 5-site transverse field XY model when a transverse
field is applied randomly across all spins. The Hamilto-

nian for the system is given by:

H =

n−1∑
i=1

(σxi σ
x
i+1 + σyi σ

y
i+1) +

n∑
i=1

biσ
z
i (2)

where n is the number of spins in the chain, σαi is the
α-th Pauli matrix acting on spin i, and bi is the strength
of the external magnetic field acting on spin i and is ran-
domly selected for each spin from a uniform distribution
centered around zero. The system is initialized with an
excitation in the spin-chain, modeled by flipping the first
spin to a spin-down while keeping the remaining spins in
the spin-up state. The system is then evolved through
time according to Hamiltonian 2. To track the displace-
ment of the excitation through time, the excitation dis-
placement [36] is measured at each time-step, given by
the observable:

N =
n∑
i=1

(i− 1)
1− σzi

2
(3)

Results from dynamic simulations on IBM’s
“ibmq santiago” device are shown in Fig. 4 for a
system with zero external magnetic field (Fig. 4a) and
for a system with a randomized external magnetic field
drawn from a uniform distribution between -3 and 3 for
each spin (Fig. 4b). As the transverse field XY model
is one of the special Hamiltonians in the domain of the
constant-depth circuit optimizer, we show simulation
results for circuits compiled with IBM’s native circuit
transpiler (red dot-dashed lines) versus simulation
results for the constant-depth circuits compiled with
ArQTiC’s domain-specific circuit optimizer (blue dashed
lines). For reference, the ground-truth is depicted with
the solid black lines.

FIG. 4. Results of simulating a 5-site transverse field XY
spin chain with an initial single-spin excitation with (a) no
external magnetic field and (b) randomized transverse ex-
ternal magnetic fields applied to each spin, resulting in lo-
calization of the initial excitation. Noiseless ground truth
curves are plotted in solid black, results from simulations run
on IBM’s ”ibmq santiago” quantum computer are plotted in
dashed red, and results from constant-depth simulations run
on the same quantum computer are plotted in dot-dashed
blue.

As seen in Fig. 4a, when no external magnetic field
is applied, the excitation is displaced nearly the length
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of the spin chain before gradually settling towards the
center of the chain. However, when bi coefficients are
pulled randomly from a uniform distribution between -3
and 3, the excitation is confined to oscillating near the
beginning of the chain as seen in Fig. 4b, demonstrating
the Anderson localization mechanism [36].

Fig. 4 also showcases the domain-specific, constant-
depth circuit optimization capabilities built into ArQTiC
based on work presented in Ref. [35]. Comparing the
results from the IBM-compiled circuits to the constant-
depth circuits demonstrates the improvement in simula-
tion fidelity achieved with constant-depth circuits. Im-
portantly, while results from the IBM-compiled quantum
circuits do not show significantly different behavior for
zero versus random external magnetic fields, the results
from the constant-depth circuits do. Thus, while the
constant-depth results may not be exactly quantitatively
accurate, they do demonstrate the trend of Anderson lo-
calization, while the IBM-compiled results do not.

The input file required to perform a constant-depth dy-
namics simulation of this system with randomized mag-
netic field coefficients, visualized by the blue dashed
curve in Fig. 4b, is shown in Fig. 5.

FIG. 5. The ArQTiC input file required to perform a noiseless
dynamics simulation of excitation displacement within an XY
spin chain with a randomized Z-direction magnetic field with
strengths between -3 and 3 applied to each spin. The first
spin is flipped to create the single-spin initial excitation of
this example. This input file would create the ground truth
curve shown in Fig. 4b.

The input file shown in Fig. 5 can be reconfigured to
produce the dot-dashed line in Fig. 4b by either chang-
ing the constant depth parameter to “False” or com-

pletely removing the parameter from the input file. If the
QCQS parameter is set to “QS”, which will run the sim-
ulation on a noise-free quantum simulator, the input file
will produce the solid ground truth curve shown in Fig.
4b. A tutorial for performing this simulation end-to-end
can be found on GitHub [17].

B. QITE Simulation

In this example, we demonstrate how to use ArQTiC
to find the ground state energy of a material via QITE
[16]. Our system of interest is a 3-spin TFIM with open
boundary conditions. The Hamiltonian for this system
can be written as:

H = Jz

n−1∑
i=1

σzi σ
z
i+1 + hx

n∑
i=1

σxi (4)

where σαi is the α-th Pauli operator acting on spin i,
Jz gives the strength of the exchange coupling between
nearest neighbor spins, hx gives the strength of the ex-
ternal magnetic field acting uniformly on all the spins,
and n gives the number of spins in the system. The
QITE algorithm works by evolving the system through
an imaginary time it ≡ β by applying the evolution op-
erator U = e−βH . The difficultly with evolving a system
through imaginary time on a quantum computer is that
this operator U is not unitary (quantum computers can
only perform unitary operators on qubits). The QITE
algorithm is able to generate a unitary approximation to
this operator by sequentially building up a quantum cir-
cuit with a set of sub-circuits. Each sub-circuit carries
out approximate unitary evolution through an imaginary
time-step of size ∆β. The sub-circuit for each subsequent
∆β depends on measured expectation values from the to-
tal circuit up to the previous time-step.

FIG. 6. Convergence to the ground state energy (black dashed
line) of the 3-spin TFIM spin-chain via QITE. Different col-
ored lines correspond to different initial product states of the
systems.

Figure 6 shows how the measured final energy of the
system (colored, solid lines) converges to its ground state
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(black, dashed line) as the number of imaginary time-
steps is increased. Different colored lines correspond to
starting the system in different initial product states.
As shown, all initial states converge to the expected
ground state in about eight imaginary time-steps of size
∆β = 0.3. A sample input file used to generate these
results with ArQTiC is shown in Figure 7. A tutorial for
performing this simulation end-to-end can be found on
GitHub [17].

FIG. 7. The ArQTiC input file required to perform a ground
state energy calculation with QITE. This input file can be
used to generate the green curve shown in Fig. 6

.

IV. CONCLUSION

We have presented ArQTiC, an open-source, full-
stack programming library for performing simulations

of materials on quantum computers. ArQTiC can gen-
erate programs (i.e., quantum circuits) for both real-
and imaginary-time evolution of a system under a gen-
eralized, time-dependent, one-dimensional Heisenberg
Hamiltonian. By constraining certain parameters, this
Hamiltonian can be used to simulate various paradig-
matic materials Hamiltonians of great interest including
the TFIM, the (transverse) XY model, the XXZ chain,
and more. By simply providing the system Hamiltonian
parameters and a few other simulation parameters, the
user can rely on ArQTiC to seamlessly generate, opti-
mize, and execute materials simulations on various quan-
tum backends, as well as post-process and analyze the
quantum results. The full code, as well as tutorial-style
demonstrations of a number of various simulation use
cases can be found on GitHub [17]. By allowing a broader
community of scientists to easily perform simulations of
materials on quantum computers, ArQTiC paves the way
towards accelerated progress in both learning more about
quantum materials, as well as designing new quantum al-
gorithms for materials simulations.
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[19] D. Shin, H. Hübener, U. De Giovannini, H. Jin, A. Rubio,

and N. Park, Nature Communications 9, 638 (2018).
[20] L. Bassman, K. Liu, A. Krishnamoorthy, T. Linker,

Y. Geng, D. Shebib, S. Fukushima, F. Shimojo, R. K.
Kalia, A. Nakano, et al., Physical Review B 101, 184305
(2020).

[21] H. Abraham, AduOffei, R. Agarwal, I. Y. Akhalwaya,
G. Aleksandrowicz, T. Alexander, M. Amy, E. Arbel,
Arijit02, A. Asfaw, A. Avkhadiev, C. Azaustre, AzizN-
goueya, A. Banerjee, A. Bansal, P. Barkoutsos, A. Bar-
nawal, G. Barron, G. S. Barron, L. Bello, Y. Ben-
Haim, D. Bevenius, A. Bhobe, L. S. Bishop, C. Blank,
S. Bolos, S. Bosch, Brandon, S. Bravyi, Bryce-Fuller,
D. Bucher, A. Burov, F. Cabrera, P. Calpin, L. Capel-
luto, J. Carballo, G. Carrascal, A. Chen, C.-F. Chen,
E. Chen, J. C. Chen, R. Chen, J. M. Chow, S. Churchill,
C. Claus, C. Clauss, R. Cocking, F. Correa, A. J.
Cross, A. W. Cross, S. Cross, J. Cruz-Benito, C. Cul-
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