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Abstract 

 
Ligand Desolvation in Molecular Docking (How, Why, and With What?) 

 
Michael McLeod Mysinger 

 

Ultimately, our bodies are biochemical factories of diabolical complexity. As 

scaffolds, reactors, engines, and signals, proteins are our essential building-blocks. Drugs, 

with their potential to alleviate symptoms or cure disease, are often small molecules that 

amplify or extinguish protein function in just the right way. Molecular docking attempts to 

understand and predict how those small molecule drugs interact with their protein targets 

inside us. In isolation, both ligand and protein are bathed in water – to bind one another, 

some water must necessarily depart. At its core, this dissertation is about how to account for 

desolvation of the ligand upon protein binding. To highlight why ligand desolvation is 

important, we discover new chemical probes for CXCR4, a protein target implicated in 

cancer and HIV. En route, we create the LogAUC metric and the DUD-E benchmarking 

dataset to better assess retrospective docking performance. 

Our rapid context-dependent ligand desolvation scoring term relates the 

Generalized-Born effective Born radii for every ligand atom to a fractional desolvation, and 

then uses this fraction to scale an atom-by-atom decomposition of the full transfer free 

energy. In a test that fails with no desolvation, our method properly discriminates ligands 

from highly charges molecules. The method is also flexible, performing well whether the 

protein binding site is charged or neutral, open or closed.  

vii 



We first retrospectively test ligand desolvation on the 40 original DUD targets, but 

discover many ways to improve that benchmark. So we construct DUD-E, an improved set 

with more diverse and biomedically relevant targets, totaling 102 proteins with 22,886 

clustered ligands, each with 50 property-matched decoys. To ensure chemotype diversity we 

cluster the ligands by Bemis-Murcko frameworks. To improve decoys, we add net charge as 

an additional matched physico-chemical property, and only include the most dissimilar 

decoys by topology. To test our method prospectively, we screen both a homology model 

and then a crystal structure of CXCR4. Several of our novel scaffolds are potent and 

relatively small, with IC50 values as low as 306 nM, ligand efficiencies as high as 0.36, and 

substantial efficacy in blocking cellular chemotaxis. 
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Introduction 

 

My first task as a new lab member was simple, just test an implementation of ligand 

desolvation we had already been using several years on our new DUD benchmarking dataset 

spanning 40 protein targets1. After a few weeks learning the mechanics of molecular docking, 

the answer was clear, we were better off not using ligand desolvation at all. This was my one 

true chance to listen, to abandon the long slog of algorithm development for the easy and 

level path of new ligand discovery. Instead I stubbornly plowed ahead, following a tortuous 

path that touched the deepest dungeons of our docking toolchain. 

 But I have skipped a little too far ahead, as I have not yet described ligand 

desolvation and why it is important. The tiniest of molecules, such as aspirin or caffeine, can 

have profound effects on our biochemistry, easing our symptoms or even curing disease. 

These molecules often act by binding a target protein, such as cyclooxygenase-2 in the case 

of aspirin, altering its normal function. A computational tool that predicts how and when 

such tiny molecules bind their larger protein targets has enormous potential, to predict new 

molecules that perturb countless protein functions. These small molecules may just be useful 

to manipulate biochemical pathways, advancing our scientific understanding, or they might 

be optimized into pharmaceuticals, fundamentally altering our lives. 

Molecular docking is a tool to solve this binding problem, ideally with the speed to 

search and then prioritize from among the millions of small molecules currently 

purchasable2. To achieve speed, a somewhat crude scoring function is used both to pick the 

best ligand binding orientation (pose) and to rank the small molecules for their predicted 

binding potential. The physics-based scoring function in DOCK evolved3 to consist of two 
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terms representing shape-complementarity (van der Waals) and charge-charge interactions 

(electrostatics). While they capture the basic ligand-protein interaction energy, they neglect 

that both ligand and protein interact with a third party. 

Water is life's matter and matrix, mother and medium. There is no life 
without water. 

 
-- Albert Szent-Gyorgyi, Nobel Prize winner in Medicine 

 
Water solvates both ligand and protein, and must depart to allow binding. For charged 

molecules this desolvation energy is large, opposing ligand binding. Yet the electrostatics 

energies are also large for charged molecules, often favoring binding. The small net 

difference determines whether a ligand will bind the protein tightly or prefer to remain alone 

in water. For small molecules of a similar size that bind the same protein site, the relative 

difference in receptor desolvation is small. So we focus on computing the desolvation of the 

ligands, both accurately and at docking speeds.  

Without the counter-balance of ligand desolvation, electrostatics overpowers the 

docking score, such that the molecules with the highest charges get the best scores. To first 

approximation, particularly in enclosed binding sites, the move from bulk water to burial 

inside the protein is much like the transfer from a water phase to an organic one. So the full 

transfer free energy was used as an approximation to ligand desolvation4, 5. This indeed 

counter-balances electrostatics and removes the highly charged molecules, but goes too far, 

over-penalizing more open binding sites. This balance between the magnitude of the ligand 

desolvation term and electrostatics would turn out to be critical to making ligand desolvation 

perform well. 

Meanwhile, my advisor Brian Shoichet recognized the shortcomings of full 

desolvation, and devised a solution. He would decompose the full transfer free energy on an 

atomic basis and scale each atom’s contribution by its own context-dependent desolvation 
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fraction. After receiving tenure in 2002, he even had time to code this ligand desolvation 

method himself.  

If you recall, I mentioned earlier that when I started this project the initial 

benchmarking tests showed that we got much better results if we just ignored ligand 

desolvation. After ruling out my inexperience with DOCK as the culprit, we were faced with 

three possible sources of ligand desolvation’s failure – either the theory, the implementation, 

or the benchmarking set was flawed. So I checked each one, and all three were wrong. The 

theory was missing the ligand radius, and it seems like the integral boundary condition was 

fudged to achieve the right magnitude. The implementation, while exemplary Fortran 77 

code, was not used during ligand minimization and was not available in any debugging tools. 

More critically, it was not interpolated, and so its high magnitude, stair-like jumps 

occasionally caused a small polar group (tail) to relegate the rest of a large molecule into an 

unfavorable position (wagging dog). A clever hack to mitigate this effect unfortunately 

confounded and befuddled me through months of early testing results. And the 

benchmarking set, well that rabbit hole eventually became chapter three of this thesis. 

As all of the puzzle pieces began to click into place, a situation similar to Goldilocks 

and the Three Bears6 emerged. Desolvation energies can strongly depend on the protein 

surface boundary, even more than the type of theory7. Context-dependent desolvation was 

still too strong, relative to electrostatics, when using the larger solvent-accessible surface of 

the protein. So we switched to the smallest surface (van der Waals) and then the next 

smallest (Connolly molecular surface), which were both too weak. Only by accounting for 

the solvent-excluded volume that occurs as ligand approaches protein were we able to 

adequately balance ligand desolvation and electrostatics. Technically this required calculating 
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and then integrating over millions of different surfaces, and to convince Brian to use the 

method, I had to speed it up by over 100 fold. 

The final obstacle was the benchmarking set. Originally, ignoring desolvation was 

strongly preferred in charged binding sites. Like attracts like, so charged binding sites have 

charged ligands. Yet the DUD decoys were more neutral, as only 15% of all DUD decoys 

were charged versus 42% of the ligands8. So with no desolvation in the charged binding sites, 

the charged ligands got better, uncompensated scores than the more neutral decoys. This is 

the same performance bias that motivated property-matching of decoys to ligands in DUD, 

except we now needed to include net charge as an additional property. Rebuilding the decoys 

to be charge-matched, especially in an automated way, took at least a year of work by itself, 

but would also be the genesis of DUD-E in chapter three. Still to get reliable results, we 

rebuilt the docking inputs from scratch, careful to be consistent for both ligands and decoys. 

Many of my improvements to the docking toolchain on the ligand side became part of 

ZINC2, while those on the receptor side bolstered our automated DOCKBlaster protocol9. 

I. Guide to the Chapters 

I have adapted three published first or co-first author journal articles to form this 

thesis. I introduce each chapter by a short “gloss”, which attempts to both summarize and to 

provide the larger context of that chapter. 

The first chapter introduces our method and implementation of a fast context-

dependent ligand desolvation scoring term. We show that, as expected, it discriminates 

against highly charge molecules and find versatile docking performance over the 40 tested 

DUD targets. But why did we develop the ligand desolvation method, if not to find new 

ligands for challenging protein targets? In the second chapter, we apply our ligand 
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desolvation method prospectively to discover potent and efficient small molecule inhibitors 

of CXCR4, a difficult protein-protein interface target strongly implicated in both cancer and 

HIV. Additionally, in parallel virtual screens to homology model and crystal structure, we 

show that CXCR4 was near the edge of our ability to find new ligands by homology, because 

it was far from known structures with scarce mutational data. But with what tool can new 

docking methods be tested in the future? Chapter three rebuilds the DUD benchmarking 

dataset from the ground up, while extending it to 102 targets with 22,886 ligands. We then 

use this DUD-E set to show that our physics-based ligand desolvation method solidly out-

performs using no desolvation term. We finally test a thinner dielectric layer for 

electrostatics, returning full circle to the balance with ligand desolvation. 

II. References 

1. Huang, N; Shoichet, BK; Irwin, JJ. "Benchmarking Sets for Molecular Docking" J Med Chem 
2006 49: 6789-6801. 

2. Irwin, JJ; Sterling, T; Mysinger, MM; Bolstad, ES; Coleman, RG. "Zinc - a Free Tool to Discover 
Chemistry for Biology" J Chem Inf Model 2012 doi: 10.1021/ci3001277. 

3. Meng, EC; Shoichet, BK; Kuntz, ID. "Automated Docking with Grid-Based Energy Evaluation" 
J Comput Chem 1992 13: 505-524. 

4. Shoichet, BK; Leach, AR; Kuntz, ID. "Ligand Solvation in Molecular Docking" Proteins 1999 34: 
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5. Wei, BQ; Baase, WA; Weaver, LH; Matthews, BW; Shoichet, BK. "A Model Binding Site for 
Testing Scoring Functions in Molecular Docking" J Mol Biol 2002 322: 339-355. 

6. Hassall, J. The Old Nursery Stories and Rhymes. Blackie and Son: 1904. 

7. Scarsi, M; Apostolakis, J; Caflisch, A. "Continuum Electrostatic Energies of Macromolecules in 
Aqueous Solutions" J Phys Chem A 1997 101: 8098-8106. 

8. Irwin, JJ. "Community Benchmarks for Virtual Screening" J Comput-Aided Mol Des 2008 22: 193-
199. 

9. Irwin, JJ; Shoichet, BK; Mysinger, MM; Huang, N; Colizzi, F; Wassam, P; Cao, Y. "Automated 
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Gloss to Chapter 1 

 

Through stubborn persistence and blind determination, we overcame many obstacles 

highlighted in the introduction, to eventually create our context-dependent ligand 

desolvation scoring term. The following chapter describes how we implemented and tested 

the resulting method. We first developed the LogAUC metric to quantify a docking 

algorithm’s ability to find (enrich) ligands before non-ligands, weighting early ligand retrieval 

more favorably. As net charge is a key property in desolvation, we generated charge-matched 

decoys for the DUD benchmarking dataset covering 40 protein targets. Upon testing our 

ligand desolvation term, we found that by incorporating atom-by-atom context we created a 

versatile method that performs well in many different protein binding sites – be they charged 

or neutral, open or closed.   

To compute ligand desolvation, we start with pre-calculated full transfer free energy, 

which emulates the ligand’s movement from water to protein in the binding process. 

Because some parts of the ligand interact with protein more and others with water more, we 

scale each atom’s transfer energy by its fractional desolvation. This fractional desolvation is 

pre-computed by numerical integration, based on Generalized-Born theory, by our sevsolv 

program. To achieve the right balance with electrostatics, we account for the solvent-

excluded volume (SEV) that forms when a ligand atom gets so close to the protein that even 

a single water cannot fit between them. This scoring term is physics based, and can be 

mostly pre-calculated, enabling rapid context-dependent ligand desolvation to be added to 

any docking program. 

 7



 8

We put the method through an extensive battery of tests, were it proved both 

versatile and high-performing. Our ligand desolvation term discriminated against highly 

charged molecules, as expected. Against challenging charge-matched decoys across 40 

targets, it performs slightly better than using no desolvation term, on average. More 

importantly, the context-dependence helps it perform consistently across protein types. Pose 

fidelity tests show it is working adequately, and that it enriches ligands for the right reasons. 

Even against experimentally determined non-binders, it still strongly enriches known ligands. 

 

 



 

 

 

Chapter 1: 
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in Molecular Docking 
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1.1 Abstract 

In structure-based screens for new ligands, a molecular docking algorithm must 

rapidly score many molecules in multiple configurations, accounting for both the ligand’s 

interactions with receptor and its competing interactions with solvent. Here we explore a 

context-dependent ligand desolvation scoring term for molecular docking. We relate the 

Generalized-Born effective Born radii for every ligand atom to a fractional desolvation, and 

then use this fraction to scale an atom-by-atom decomposition of the full transfer free 

energy. The fractional desolvation is pre-computed on a scoring grid by numerically 

integrating over the volume of receptor proximal, weighted by distance. To test this 

method’s performance, we dock ligands versus property-matched decoys over 40 DUD 

targets. Context-dependent desolvation better enriches ligands compared to both the raw full 

transfer free energy penalty and compared to ignoring desolvation altogether, though the 

improvement is modest. More compellingly, the new method improves docking 

performance across receptor types. Thus, whereas entirely ignoring desolvation works best 

for charged sites, and over-penalizing with full desolvation works well for neutral sites, the 

physically more correct context-dependent ligand desolvation is competitive across both 

types of targets. The method also reliably discriminates ligands from highly charged 

molecules, where ignoring desolvation performs poorly. Since this context-dependent ligand 

desolvation may be pre-calculated, it improves docking reliability with minimal cost to 

calculation time, and may be readily incorporated into any physics-based docking program. 
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1.2 Introduction 

Molecular docking is widely used to computationally screen large chemical libraries 

for small molecules that complement receptors of known structure1-4. Complementarity and 

ranking are calculated by a scoring function that is either based on empirically-fit 

descriptors5-9, knowledge-based potential functions10-12, or physics-based terms13-17. Physics-

based scoring functions borrow forcefield derived terms, such as van der Waals (vdW) and 

electrostatics to calculate the protein-ligand interaction energy18, 19. More problematic has 

been the representation of bulk water, which solvates the unbound ligand and protein, and 

differentially solvates the protein-ligand complex. Proper treatment of this net desolvation is 

essential, especially in polar or charged systems. This is because a large desolvation penalty 

opposes a large electrostatic interaction energy, while the much smaller net difference has a 

strong influence on binding affinity20-22. 

Desolvation is often subdivided into a polar electrostatic component and a non-polar 

component due to dispersion, hydrophobicity, and cavitation23. At a higher level of theory, 

when more computational power is available to analyze each ligand pose, molecular 

mechanics combined with Generalized-Born (GB) or Poisson-Boltzmann (PB) theory 

correlates to experimental solvation and occasionally even to binding affinities24-29. However, 

these methods remain at least five orders of magnitude slower than docking, which routinely 

screens more than 106 molecules, each in 103-105 configurations, highlighting the need for 

desolvation methods fast enough to be relevant to docking30. 

Early docking methods neglected desolvation entirely and thus favored large and 

highly charged molecules, since extra size and polarity increases the interaction energy 

without a compensating penalty for desolvation31. To remedy these problems without 

sacrificing speed, different approximations of desolvation have been investigated. A 
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common approach estimates the desolvation penalty as proportional to the solvent-

accessible surface area scaled by atomic solvation parameters11, 32-34. Whereas surface area is 

often approximated to be proportional to the non-polar component of desolvation, it fails to 

capture the electrostatic component properly. An alternative to surface area is provided by 

volume-based Gaussian envelopes35, 36, though these methods are only loosely related to 

electrostatics. In a recent effort to capture desolvation empirically, 1179 adjustable solvation 

parameters were fit to three different levels of potentials of mean force, where two levels 

were unique to every pair of 17 atom types37. Although well explored, both the variability in 

these atom-type approaches and the increasing number of parameters reflect the difficulty in 

representing the underlying physical terms. Another empirical approach approximates 

desolvation penalties based on displacement of ordered waters in the binding site8, 38-40, 

though calculating the energetic cost or advantage of such displacement remains an area of 

active research. 

The challenge of using physics-based desolvation in docking stems from the 

difficulties in calculating the energies accurately enough to balance what are often large 

magnitude terms, and doing so fast enough to be relevant. Thus other investigators have 

tried decomposing the electrostatics of ligand binding into components arising from partial 

ligand desolvation, partial receptor desolvation, and screened protein-ligand interactions. A 

faster implicit solvent model was recently generated by combining Lorentz-Debye-Sack 

theory with a first-shell approximation, using the fraction of solvent-accessible surface area 

to scale empirical covalent radii41. Though promising, this method has a non-linear 

relationship with what are thought to be more accurate Poisson-Boltzmann energies and its 

performance in docking screens remains to be fully explored. Majeux et al. estimate both 

ligand and receptor desolvation for fragments by combining the Coulomb field 
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approximation with a first-shell approximation, using empirical scaling to reduce the impact 

of those approximations42. Interestingly they also use grid-based numerical integration over 

volume elements, but for flexible ligands this has been slow as it requires a new ligand 

desolvation grid for each conformation.  

In prior desolvation methods from our group43 we modeled bound ligand as fully 

desolvated, approximating the ligand desolvation penalty as the full transfer free energy from 

high to low dielectric computed by the AMSOL program44. Whereas this removes the bias 

towards highly charged molecules, the magnitude of the desolvation penalty is often over-

estimated, being ideal only when the ligand is completely surrounded by the protein so that it 

resembles being fully immersed in organic solvent. A preferable idea would be to scale the 

full desolvation contribution of each atom, proportional to how much it is embedded in the 

low-dielectric medium (i.e. protein). This scaling factor is offered by Generalized-Born 

theory, where each atom has an effective Born radius that encapsulates geometric, context-

dependent information about that atoms relative desolvation45. We begin by relating the GB 

effective Born radii for every ligand atom to a fractional desolvation, and then use this 

fraction to scale an atom-by-atom decomposition of the full transfer free energy. To make 

this fast enough for docking, we pre-compute the fractional desolvation on a regular lattice 

grid for positions in the protein binding site. Correspondingly, we pre-calculate the atom-by-

atom transfer free energy for each molecule in the docking library. This results in a rapid 

context-dependent ligand desolvation model for molecular docking.  

The exact representation of the dielectric boundary can have more influence on the 

results than the difference between GB and PB46, but its explicit incorporation into 

molecular docking would be prohibitively expensive27. We therefore investigated a treatment 

of the local solvent-excluded volume (SEV) that captures the first-shell effects of solvent 
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exclusion, yet can be pre-calculated. This context-dependent desolvation term approaches 

the full transfer free energy as the ligand becomes fully engulfed in protein, and approaches 

the exact GB energy in the limit of a single ligand atom. While these are attractive theoretical 

properties, we needed to investigate if we can balance desolvation and interaction energy 

accurately enough to allow for enrichment of ligands in docking screens. Thus we measured 

the virtual screening performance of several ligand desolvation approximations on the 40 

DUD benchmarking targets against their property-matched decoys, in an effort to reduce 

background database bias47. To protect against database extrema, we also screened the 

ligands against highly-charged molecules pulled from the free ZINC database48. To better 

account for early enrichment when measuring virtual screening performance, we introduce 

the LogAUC metric. We finally investigate screening performance in two model binding sites 

against experimentally confirmed, as opposed to presumed, decoys43, 49. 

1.3 Methods 

I. Fractional Ligand Desolvation Scoring Term 

In GB theory45, the effective Born radius αi of a given atom can be expressed in 

terms of the normal atomic radii ai and a volume integral over all low dielectric space outside 

the atom itself, where the contribution of each occupied volume element dV diminishes with 

the distance r between it and atom i as follows:  
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A simple rearrangement allows us to express the fractional desolvation Di in terms of the 

volume integral 
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Checking boundary cases, when αi approaches ai then Di goes to 0 indicating the atom is 

completely surrounded by solvent, and conversely as αi approaches ∞ then Di goes to 1 

indicating complete desolvation. We can numerically integrate to find the fractional 

desolvation by constructing a three-dimensional grid and using the equation 
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where dV is the volume of one grid element and the summation runs over grid points inside 

the low dielectric region (Figure 1.1.A). 

To approximate ligand desolvation we previously assumed that the ligand becomes 

fully desolvated in the protein binding site31, 43, thus treating the desolvation penalty as the 

full transfer free energy from high-dielectric solvent to low-dielectric protein, as computed 

by AMSOL44. However, if we partition this full transfer free energy to the individual ligand 

atoms, obtaining ΔGi
trans, then we can multiply by the fractional desolvation Di of each ligand 

atom to estimate the total ligand desolvation penalty as 

i

ligand

i

trans
i

L
desolv DGG ∑Δ=Δ   Equation (4) 

This is an attractive way to account for ligand desolvation during molecular docking since 

the atomic desolvation penalties may be pre-computed, as can the fractional desolvation at 

any position in the binding site. During docking all that is required is multiplying the atomic 

transfer free energies by the fractional desolvation interpolated from the pre-calculated 

scoring grid. 
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II. Fractional Ligand Desolvation Implementation 

When the ligand and protein low-dielectric volumes do not overlap substantially, we 

can decompose the fractional desolvation into ligand, receptor, and solvent-excluded volume 

(SEV) components. We can readily pre-calculate the receptor component and use a  

 

Figure 1.1 Volume‐Based Desolvation Implementation 

A) Fractional desolvation numerical integration scheme: ai = radius of ligand atom i,  

rik = distance from ligand atom i to volume element k. 

B) Incorporating solvent-excluded volume: At close distance, a solvent-excluded volume (SEV) 

forms between protein (green) and ligand (yellow) where water probes (light blue) do not fit. We pre-

calculate the atomic SEV region (grey) while neglecting the neighboring SEV region (darker blue). 

C) Fractional desolvation plotted versus distance inside (+X) or outside (-X) an idealized solid low-

dielectric slab: Atomic SEV method (cyan) plotted versus molecular surface method (red). 
 

 

 16



first-shell approximation to pre-calculate the SEV component.  Admittedly, the portion of 

any ligand atoms’ desolvation that depends on the position of other ligand atoms remains 

expensive to compute, because it varies between ligand conformations. When we multiply 

fractional desolvation by atomic transfer free energy (Equation 4), we therefore neglect the 

ligand component. This can lead to errors in some circumstances, but since this term is 

included in the AMSOL-derived44 transfer free energies, expressing desolvation as a 

percentage of the initial transfer free energy partly compensates for this deficit (Table A.1.6 

gives an atom-by-atom estimate of this error for one challenging molecule). With these 

approximations, the fractional desolvation at every point depends only on the geometry of 

the receptor and can be pre-calculated.  

We initially used the dielectric boundary of the receptor alone to compute the 

fractional desolvation grid. However, solvation energies can strongly depend on the 

dielectric boundary, even more than the exact type of implicit solvation model used46. The 

ideal dielectric boundary for ligand desolvation is the molecular surface of the protein-ligand 

complex, but calculating this on-the-fly at the time of docking would be prohibitive, so we 

investigated a faster method. Upon ligand binding, a solvent-excluded volume, or gap, forms 

between the ligand and receptor where even a single water molecule cannot fit (Figure 

1.1.B). This SEV affects the fractional desolvation of the ligand, but generally depends on 

the pose of the ligand in the protein which is not known until the ligand is docked. To 

enable fractional desolvation pre-calculation, we assume for each ligand atom that we can 

independently account for the SEV due to it alone (grey region) while neglecting the SEV 

due to other atoms in the ligand (darker blue region). With this atomic SEV correction, our 

method reproduces the exact Generalized-Born energy in the limiting case of single ligand 
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atom. But even for molecules, neglecting distal excluded volume elements has only a modest 

effect since this term decays at 1/r4. 

The numerical integration of the fractional desolvation is encoded in a DOCK 

accessory program sevsolv. Pre-computing the atomic SEV correction involves re-

calculating the molecular surface for each ligand atom position in the grid and then 

numerically integrating using that new surface. The program computes the receptor 

molecular surface using the inkblot algorithm50, which generates evenly spaced points on a 

sphere at the solvent-accessible surface (SAS) distance (vdW + probe radius) using the 

golden section spiral algorithm, before removing inaccessible surface points inside other 

receptor atoms. The grid inside the SAS is tentatively assigned to low-dielectric, and then a 

water probe is placed at each accessible SAS point and the region inside each probe is re-

assigned back to high-dielectric. This effectively blots back to the molecular surface starting 

from the accessible SAS points. For the atomic SEV we keep track of how many receptor 

accessible SAS points are marking each grid point as solvent accessible, then for each grid 

point a ligand atom is placed there and a cubing algorithm finds all newly inaccessible 

receptor surface points. If none are found then this ligand atom position is either completely 

surrounded by solvent or completely buried in protein, and there is no atomic SEV 

correction. Otherwise, we find the ligand’s accessible SAS points and increment the marks of 

the grid points within a probe radius. For the newly inaccessible receptor SAS points we 

decrement the marks of grid points within probe radius and make the grid point low-

dielectric if no marks remain to cover it. Finally, we blot the region inside the ligand vdW as 

low-dielectric and compute the numerical integral over this new SEV surface. The current 

implementation takes under half an hour to generate the atomic SEV desolvation grid on a 

single 2008 CPU core for any of the 40 targets in DUD.  
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Here we use a 1.4 Å water probe radius and 1000 SAS points per atom, while the 

integration cutoff is 10 Å with a grid resolution of 0.5 Å. These choices were made as a 

compromise between speed and accuracy; the cost of the calculation rises as the third power 

of each of these terms. Since the cost of pre-calculating the desolvation grid is only paid 

once, before docking, should one want more accuracy it is available. For instance, for a 

probe atom buried in a 48 Å cube—a case where one might see maximal effects of 

truncation—the desolvation penalty changed by 3% in going from 0.5 Å to 0.33 Å 

resolution, and by an additional 1% to going to 0.167 Å resolution.  Correspondingly, the 

penalty changed by 6% in going from a 10 Å to a 20 Å cutoff (Figure A.1.4). The input radii 

were set to 1.6, 1.65, 1.9, 1.9, 1.9, 0, and 1.6 Å for O, N, C, S, P, H, and other protein atoms 

respectively. Unless noted otherwise, the assumed Born radius for all ligand atoms is 1.4 Å, a 

value intermediate between hydrogens and heavy atoms, and was chosen to enable one 

fractional desolvation grid to be used for all ligand atoms during docking; other 

implementations may be imagined where different desolvation grids are pre-calculated for 

each ligand atom type. 

Similarly, the atom-by-atom partitioning of the transfer free energy can be pre-

calculated and stored in the ligand database prior to docking. Here we further assume that 

the atomic transfer free energies are similar between all ligand conformers. This assumption 

could have a substantial effect on overall solvation energies for highly flexible or charged 

molecules; this is an area of ongoing research. To compute atom-by-atom transfer free 

energies we perform two AMSOL calculations using the SM5.42R solvation model with the 

semi-empircal AM1 Hamiltonian44, subtracting the results in water from those in hexadecane 

(dielectric = 2.06). From this procedure we obtain separate polar and non-polar atomic 
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transfer free energies, and the DOCK accessory mol2db stores them into the input 

flexibase51 as found in ZINC48. 

We add this ligand desolvation scoring term to DOCK 3.5.54, resulting in the 

following scoring function: 

L
desolvelecvdWscore GEEE Δ++=     Equation (5) 

where the vdW term is based on the AMBER united-atom force field52 and the electrostatics 

term is based on PB calculations by DELPHI50, as described previously13. The fractional 

desolvation is tri-linearly interpolated from the pre-computed desolvation scoring grid for 

each ligand atom position and multiplied by the polar and non-polar desolvation terms read 

from the ligand flexibase. 

III. DUD Database Docking 

To reduce enrichment bias and focus on the screening performance of molecular 

docking itself, the DUD benchmarking set property-matches decoys to known ligands47. In 

using the 40 DUD targets to examine enrichment performance of ligand desolvation 

methods, we found that we had to property-match ligands and decoys on net formal charge, 

a term which was originally neglected. Without net charge, the original DUD decoys were 

much more neutral than the ligands (Figure 1.2). To overcome this deficit we recalculated 

DUD, matching the original ligands to new computational decoys. We property-matched on 

the original five physical terms plus net molecular charge, creating an automated procedure 

that may be applied to any user specified set of ligands (see Chapter 3). 

The ligands and decoy sets of this charge-matched DUD database were built into 

input dockable flexibases by an updated ZINC48 procedure. To remove input structure bias, 

the molecules were converted to smiles by Openeye’s OEChem library53, stereo-chemically 
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enumerated and built into 3-D structures by Molecular Networks’ Corina54, protonated and 

tautomerized by Schrödinger’s Ligprep55, and then run through two AMSOL44 calculations 

to generate partial charges and atomic desolvation contributions as mentioned previously. 

Corina54 was run again to generate aliphatic ring puckers, and each ring is selected in turn to 

serve as the starting rigid fragment for conformational enumeration by Openeye’s Omega56. 

The conformational ensemble and atomic desolvation were combined by mol2db51 to 

generate the input docking hierarchies.  

Input parameters for docking and grid generation were as described previously47, 

except as noted. We preferentially used the semi-automated preparation of the receptor for 

the 13 targets where it was available. The bump limit was set to allow up to one steric clash, 

with a DISTMAP grid resolution of 0.333 Å. We performed 50 steps of simplex 

minimization for the best initial pose. In the electrostatic potential map calculations using 

DELPHI50, the exterior and interior dielectrics were set to 78.5 and 2.06 respectively, while 

the salt concentration was 0.145 M and the ion exclusion radius was 2 Å. 

IV. LogAUC Virtual Screening Metric 

Virtual screening performance is typically evaluated using enrichment or receiver 

operator characteristic (ROC) plots57, which measure the prioritization of annotated ligands 

versus known or presumed decoys among the highest ranking molecules. Often one wishes 

to over-weight molecules that rank among the very top of the “hit-list”, as these are the ones 

most likely to be tested for activity in an actual prospective experiment. Several approaches 

have been introduced to do so58, 59, here we adopt a variation of the standard ROC plot that, 

rather than plotting percentage of decoys found vs. percentage of annotated ligands, plots 

the log10 of the decoys found on the x-axis, which preferentially weights early enrichment.  
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The area under the curve (AUC) is a well-regarded metric to summarize the overall 

performance of a virtual screening campaign as a single number57. While ROC AUC can be 

formulated in alternate ways, it can mechanically be constructed by integrating under the 

ROC curve and interpreted as the fraction of the area under the ROC curve over the area 

under the best possible ROC curve, which happens to be 1. By analogy, in the case of our 

semilog ROC plot, we can construct the same fraction of the area under the current log 

curve over the area under the perfect log curve, and define that fraction as the LogAUC. The 

lone wrinkle is that the area under the perfect log curve is, in general, infinite. However, if 

we are practical and limit our focus to a region of log space we can actually measure, say 

above a certain threshold λ, then the perfect log area is finite in that region. 

Formally, we define LogAUCλ, where the log area computations run from λ to 1.0, 

and in this paper we refer to LogAUC0.001 as simply LogAUC. For integrating the area under 

the log curve we use an analytical formula derived by log transforming an individual 

trapezoidal segment. The y-intercept (b) of the line for a given trapezoidal segment is: 
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From parallel reasoning based on semilog ROC plots, Clark and Webster-Clark 

construct the pROC AUC metric58, which is similar to the numerator of LogAUC except 

that the area integration is over horizontal bars instead of vertical trapezoids. The advantage 

of constructing LogAUC as a fraction over the ideal area is that the choice of base for the 
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logarithm is irrelevant, because changing base simply results in a constant that cancels 

between numerator and denominator. Also, by explicitly defining the area of interest using λ 

and integrating vertically, we are able to avoid the singularity at xi=0 encountered in pROC. 

More importantly the fixed integration area means we can compare LogAUC values across 

databases of different sizes and across targets with different ratios of actives to inactives. 

While the recent NSQ_AUC metric60 also recognizes the need to normalize based on a 

perfect ROC curve, the multiplicative random curve based rescaling makes the metric harder 

to rationalize. In contrast LogAUCλ  is simply the percentage of the total area below a 

semilog ROC curve plotted from λ to 1, which intuitively feels like linear AUC, except that 

it’s derived from the semilog plot. The random line on a semilog ROC plot (dashed line, 

Figure 4) occupies only a sliver of the total area, and indeed its LogAUC is just 14.5%. In 

order to more easily see the performance above random enrichment, we report the “adjusted 

LogAUC” as the LogAUC minus this random LogAUC, so that positive values mean 

enrichments better than random and the maximum enrichment occurs at 85.5% adjusted 

LogAUC. 

V. Charge Outliers 

As noted previously31, a substantial problem of neglecting desolvation is that highly 

charged molecules pollute the top hit lists of polar targets. Since the revised DUD is 

property-matched on net charge, the enrichment of a given target’s ligands versus its own 

decoys fails to interrogate the ability of the desolvation penalty to penalize these highly 

charged hit list polluters. To address this issue, we pulled 500 random molecules from ZINC 

with each net charge of -4, -3, -2, +2, +3, and +4 to create a charge outlier database of 3000 

molecules. We then compared the enrichment of the ligands for each target against this 
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background database of random highly charged molecules, to see how competitive these 

random charge outliers were under the various scoring functions. 

VI. Pose Fidelity 

To check how ligand desolvation affected docked ligand poses, we investigated pose 

fidelity across the 114 protein-ligand complexes in the DOCK5 benchmark61. The 

automated DOCKBlaster62 procedure was used to prepare all calculations beginning with 

just the PDB code for 84 out of 114 targets, while the ligand three-letter ligand identifier was 

needed to build 16 additional targets. For the following targets manual intervention was 

needed, typically to fix ligand or cofactor parameters: 1FLR, 1IMB, 1AOE, 4COX, 1ETT, 

3CPA. The updated ligand flexibase building procedure described above in the DUD 

Database Docking section was used to generate input ligand databases, except that 

Schrödinger’s Epik63 replaced Ligprep55 for protomer and tautomer generation. 

VII. Model Binding Site Docking 

To test enrichment performance versus true experimental decoys, rather than the 

presumed DUD decoys, we docked against two model cavity sites where non-binders have 

been experimentally confirmed. The hydrophobic pocket introduced into T4 lysozyme by 

the Leu99 Ala substitution (L99A) accepts small apolar ligands. Previously, 73 ligands and 

64 experimental decoys have been determined for this cavity30, 43, 64-67. In contrast, the cavity 

introduced into cytochrome C peroxidase by the Trp191 Gly substitution (W191G) 

accepts charged ligands. Previously, 61 ligands and 26 experimental decoys have been 

determined for this charged cavity30, 49, 68, 69. We analyzed ROC curves for the ligands against 

either the experimental decoys alone or the experimental decoys seeded into a fragment-like 

subset of ZINC filtered only by molecular weight (30-250 Da). 
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1.4 Results 

Here we compare the performance of three ligand desolvation approximations: 

“none”, “full”, and “sev”. “None” lacks any scoring penalty for ligand desolvation, serving 

as a crude lower bound; while “full” uses the entire transfer free energy from water to 

hexadecane as the ligand desolvation penalty, serving as an upper bound. Our ligand 

desolvation term takes the per-atom contributions from the full desolvation penalty and 

scales them by the fractional desolvation each ligand atom experiences in Generalized-Born 

theory. The “sev” method computes fractional desolvation while further accounting for the 

solvent-excluded volume (gap) that arises between a single ligand atom and the receptor at 

close distances. 

To check that the fractional desolvation implementation is reasonable, we first 

looked at a low-dielectric slab infinite in the yz-plane covering half of all space with the 

dielectric boundary occurring at x=0 Å. Plotting the fractional desolvation in this idealized 

system using just the receptor’s molecular surface (ms) or the atomic SEV method (sev) 

shows several key features (Figure 1.1.C). The fractional desolvation approaches zero far 

away from the slab, but approaches a value slightly less than 1 (0.92) deep inside the slab. As 

complete desolvation can only be achieved when buried in an infinite slab70, the lower value 

is due to cutting off the numerical integral at 10 Å (Figure A.1.4.B). When straddling the 

dielectric wall at x=0 Å, the fractional desolvation is close to the envisioned one-half (0.51). 

Also, the “ms” and “sev” results are identical except for the region between 0 and 4 Å away 

from the slab, where the solvent-excluded volume between ligand and slab increases the 

fractional desolvation, as expected. 

Next we used the 40 diverse protein targets in the DUD benchmark47 to examine the 

overall virtual screening performance of our context-dependent ligand desolvation terms.  
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Figure 1.2 DUD Charge Distribution 

Percentage of new and original DUD molecules that have each given net charge. Over 40% of new 

and original ligands are charged, but only 15% of the original decoys are, while the new decoys 

closely match the charge distribution of the ligands. 
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DUD combines known ligands for each of the targets with decoys designed to be a 

challenging test of the predictive value added by docking. To remove enrichment biases due 

to simple physical properties, the decoys are property-matched to the ligands; and to ensure 

they are not actual binders, the decoys are selected to be topologically dissimilar from the 

ligands. Despite this physical property matching, we found it necessary to eliminate an 

additional property bias that is critical when looking at ligand desolvation, that of net 

molecular charge. When net charge was not property-matched, as in the original DUD, the 

resulting enrichments were artificially inflated for targets with highly charged ligands using 

no ligand desolvation, and conversely inflated for targets with neutral ligands using full 
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desolvation. We therefore recalculated the DUD decoys, retaining the same ligands, but 

adding net-charge as an additional matched property. While only 15% of the original DUD 

decoys were charged, around 40% of the new decoys are now charged, and the entire charge 

distribution of the new decoys now matches the ligands closely (Figure 1.2). This updated 

DUD database is available free of charge at http://dud.docking.org. 

With new DUD decoys in hand, we can compare the virtual screening performance 

of the three different approximations to ligand desolvation. After docking, we compute 

ROC curves for the DUD ligands versus their own decoys, using the adjusted LogAUC to 

summarize the performance of each curve. LogAUC equally weights the area under the 

curve in the decade between 0.1% and 1% with the other two decades with upper bounds of 

10% and 100%. This results in a metric with the attractive features of AUC, but biased 

towards early enrichment, and compares favorably to other early enrichment metrics (see 

Methods). 

The results for the no desolvation (“none”) and full desolvation (“full”) are highly 

target dependent, whereas the context dependent desolvation shows competitive enrichment 

across most targets (Figure 1.3, Table 1.1). In one set of targets (highlighted blue) where no 

desolvation outperforms full desolvation, which typically have charged or open binding sites, 

context-dependent ligand desolvation generally tracks no desolvation. For instance in poly-

ADP-ribose polymerase with its very open binding pocket, no desolvation gives 30.5% 

adjusted LogAUC, outperforming full desolvation at 16.4%, but context-dependent “sev” 

solvation falls just behind no desolvation at 28.2% adjusted LogAUC. In another set of 

targets (highlighted green) where full desolvation outperforms no desolvation, which 

typically have neutral or enclosed binding sites, context-dependent ligand desolvation adapts 
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to track the better performing full desolvation. For instance in HIV protease with its mostly 

enclosed binding pocket, no desolvation performs worst at 5.4% adjusted LogAUC, full  

 

Figure 1.3 DUD Enrichment Comparisons 

Comparison of adjusted LogAUC against DUD decoys over the 40 DUD targets. The docking 

calculations are identical except that “none” contains no ligand desolvation term, “full” uses the full 

ligand transfer free energy from water to organic solvent as the desolvation term, and “sev” uses 

context-dependent ligand desolvation while accounting for the local solvent-excluded volume as a 

ligand atom approaches the receptor. 
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desolvation performs better at 10.3%, while “sev” performs best at 11.6%. While no and full 

desolvation show considerable variation in enrichment from target-to-target, often switching 

from best to worst, context-dependent desolvation is more consistent across targets.  

For some targets both no and full desolvation perform similarly while “sev” 

desolvation outperforms both (highlighted red). Other targets are uninformative, either due 

to poor performance across the board (highlighted purple), or due to similar performance 

regardless of the ligand desolvation method (highlighted black). Averaged over all 40 targets, 

full desolvation performs worst with an average of 10.9% adjusted LogAUC while no 

desolvation averages a much better 14.3% and the atomic solvent-excluded volume method 

performs best with 15.0% adjusted LogAUC. We also include a table with the comparison of 

adjusted LogAUC to traditional AUC, plus ROC-based enrichment factors at 1 and 10% 

(Table A.1.1). 

Context-dependent ligand desolvation tracks no desolvation across the entire curve 

in those targets where no desolvation performs well (Figure 1.4), such as cyclin-dependent 

kinase 2 (panel A) and factor Xa (B), and tracks full desolvation across the entire curve in 

systems where it performs well, such as epidermal growth factor receptor (C), consistent 

with its ability to perform well in different receptor contexts. While context-dependent 

desolvation does not always match the best curve, it is usually able to at least interpolate 

between no and full ligand desolvation, as demonstrated in enoyl ACP reductase (D). In fact, 

context-dependent desolvation is particularly adept at improving early enrichment, as shown 

in cycloxygenase-2 (E) and dihydrofolate reductase (F). Semilog ROC plots of all 40 targets 

are also included (Figure A.1.3). We further analyzed how the ranks of the ligands and 

decoys change upon switching from no desolvation to “sev” desolvation (Figure A.1.5). For 

some targets, the difference between ranking with and without desolvation correlates highly  
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Table 1.1 Enrichments Against Matched Decoys over the 40 DUD Targets 
 

  Ligand Desolvation Type 
Adjusted LogAUCs Abbreviation none full sev 
Target Average 14.3 10.9 15.0 
angiotensin-converting enzyme acec 7.9 6.4 11.1 
acetylcholinesterase achec 6.1 4.3 8.5 
adenosine deaminase adae 10.4 2.0 2.3 
aldose reductase alr2b 10.7 14.4 13.4 
AmpC beta-lactamase ampce 0.5 1.3 6.7 
androgen receptor ard 7.1 7.9 6.3 
cyclin-dependent kinase 2 cdk2a 26.7 18.5 25.7 
catechol O-methyltransferase comtb 14.9 22.8 36.8 
cycloxygenase-1 cox1c 9.2 5.0 10.1 
cycloxygenase-2 cox2d 28.6 30.6 32.1 
dihydrofolate reductase dhfra 38.3 21.9 32.1 
epidermal growth factor receptor egfrb 13.8 23.7 28.3 
estrogen receptor agonists er_agonistd 10.8 9.4 7.7 
estrogen receptor antagonists er_antagonista 18.0 11.5 22.1 
fibroblast growth factor receptor kinase fgfr1e -1.5 1.8 -3.4 
factor Xa fxaa 19.6 9.9 16.5 
glycinamide ribonucleotide transformylase garta 38.8 10.1 48.6 
glycogen phosphorylase β gpbe 5.4 3.3 4.3 
glucocorticoid receptor gre 4.6 2.2 3.5 
HIV protease hivprb 5.4 10.3 11.6 
HIV reverse transcriptase hivrtd 6.0 7.1 8.1 
hydroxymethylglutaryl-CoA reductase hmgae 3.5 7.5 3.5 
heat shock protein 90 hsp90a 18.1 11.4 14.5 
enoyl ACP reductase inhaa 15.7 3.9 7.1 
mineralocorticoid receptor mra 42.0 34.1 40.0 
neuraminidase neuaa 35.5 -4.0 27.3 
p38 mitogen activated protein p38b 12.6 16.7 14.2 
poly-ADP-ribose polymerase parpa 30.5 16.4 28.2 
phosphodiesterase 5 pde5c 12.4 10.2 17.6 
platelet derived growth factor receptor 
kinase pdgfrbe 1.4 3.6 3.0 
purine nucleoside phosphorylase pnpb 7.1 10.5 10.3 
peroxisome proliferator activated receptor γ ppare 0.2 0.8 1.2 
progesterone receptor pre -0.9 0.9 -2.0 
retinoic X receptor α rxrd 33.2 35.6 34.3 
S-adenosyl-homocysteine hydrolase sahhd 14.2 17.0 16.1 
tyrosine kinase SRC srce 2.9 3.6 2.9 
thrombin thrombind 15.7 12.1 13.2 
thymidine kinase tka 15.4 8.7 10.2 
trypsin trypsina 20.9 14.2 16.2 
vascular endothelial growth factor receptor vegfr2d 8.6 8.9 9.8 

 

aNo desolvation performs much better than full. bFull desolvation performs better than none. cNo 

and full desolvation are similar but “sev” outperforms both. dAll desolvation models perform 

similarly. eAll desolvation models perform poorly. 

 

 30



A) B)

C) D)

E) F)

Figure 1.4 Selected DUD 

Enrichment Plots 

Individual semilog ROC plots 

highlight the adaptability of “sev” 

context-dependent desolvation, 

which properly tracks no 

desolvation in both panels A) 

cdk2 and B) fxa and properly 

tracks full desolvation in panel C) 

egfr. In the cases where it does 

not track the best curve, it 

typically takes intermediate values 

as shown in panel D) inha. Early 

enrichment is often improved the 

most, as shown in panels E) cox2 

and F) dhfr. 

 

for both ligands and decoys, while for other targets there is so much scatter as to defy 

generalization. However, where there is scatter in ligand ranks this is mirrored by scatter in 

the decoy ranks.  

Looking at the screening performance against property-matched decoys removes 

background database biases, allowing us to truly compare ligand desolvation methods. 

However, it fails to capture how they respond to extreme molecules, of the sort one might 

find when running large database screens. Ligand desolvation is particularly sensitive to 

differences in net charge, so we constructed a set of charge outliers having net charges from 

-4 to -2 and from +2 to +4, choosing 500 molecules of each type randomly from the ZINC 

database48. We docked the charge outliers to the 40 DUD targets, computed ROC curves 

against the charge outliers, and summarized them by their adjusted LogAUC (Figure 1.5).   
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Figure 1.5 Enrichment versus Random Charged Outliers 

Enrichment of the DUD ligands compared to a background of highly charged molecules selected 

randomly from ZINC. The smaller the ligand desolvation penalty, “full”>”sev”>”none”, the less we 

discriminate against the random charge outliers and thus get worse enrichments. 
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In sharp contrast to the performance against DUD decoys, where no desolvation performed 

competitively for many targets, its performance against charge outliers is very poor. 

Unfettered by a desolvation term, no desolvation often enriches the highly charged 

molecules more than the annotated ligands because the electrostatic interaction energy grows 

stronger as the ligands become more highly charged. By the same token, full desolvation 

performs well against charged outliers, much better than it does against DUD decoys, 

because it over-weights the ligand desolvation penalty. Context-dependent desolvation 

significantly enriches true ligands over these highly charged outliers, often tracking the 

superior discriminatory power of full desolvation, without over-weighting the ligand 

desolvation penalty. 

To examine how well the ligand desolvation approximations affect docked ligand 

pose, we used the 114 crystal-structures in the DOCK5 benchmark. While we were able to 

begin docking with all 114 structures, one target (1HSL) consistently failed during sphere 

matching and was discarded. The best scoring pose was below the usual threshold of 2 Å 

RMSD in 61 (none), 61 (full), and 54 (sev) of the remaining targets. In contrast, the gap from 

full desolvation to “sev” in number of successful predictions at thresholds of 1.5 Å and 2.5 

Å is 1 and 4 targets instead of 7. In most targets the poses are visually similar regardless of 

the ligand desolvation approximation used (Figure 1.6). In the protein tyrosine phosphatase 

1B (PTP1B) structure 1PTV (panel A), all three desolvation approximations lead to docked 

poses that closely match the crystallographic pose. However, the phosphate moiety remains 

singly protonated with “sev” and “full” desolvation. In another PTB1B structure 1C83 (B) 

and the acetyl cholinesterase structure 1ACJ (C), “sev” desolvation torques polar groups to 

more exposed positions, causing the crystallographic agreement to improve. In a few cases 

such as 1PDZ (D), “sev” desolvation spins the molecule out of alignment with the crystal  
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Figure 1.6 

Pose Fidelity 

Over most 

targets all three 

desolvation 

methods give 

similar poses, as 

in A) 1PTV.  

Occasionally 

context-

dependent “sev” 

desolvation 

improved poses, 

as in B) 1C83 and C) 1ACJ. For a few cases “sev” desolvation reduces pose fidelity, as in D) 1PDZ. 

The carbon atoms are colored as follows: receptor (white), crystallographic ligand (dark gray), no 

desolvation (blue), full desolvation (green), “sev” desolvation (purple). 

A) B)

C) D)

 

pose. Overall, pose fidelity with context-dependent ligand desolvation is similar to full or no 

desolvation. 

Though efforts are made during DUD decoy generation to ensure they are 

topologically dissimilar from the ligands, there is no guarantee that the decoys do not, in fact, 

bind. To examine the screening performance against validated decoys, we employed two 

artificial binding cavities, a small hydrophobic pocket created in T4 lysozyme by the 

Leu99 Ala substitution (L99A), and a charged binding pocket created in cytochrome C 

peroxidase by the Trp191 Gly substitution (W191G). In the enclosed hydrophobic pocket 

of L99A, we would expect full desolvation to be a good approximation (Figure 1.7.A), and 

indeed it gives the best LogAUC at 18.6 %, with “sev” tracking it at 15.5%, and no 

desolvation at -1.5%. In the enclosed but charged pocket of W191G (Figure 1.7.B), “sev” 

and full desolvation tie for the best LogAUC at 48.8%, with no desolvation lagging at 8.1% 
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adjusted LogAUC. Compared to the high enrichments we typically see against larger 

databases30, 49, overall enrichment against these experimental decoys is poor; but note that 

these are especially challenging decoys since most of them were experimentally tested due to 

strong scores in earlier docking screens. 

 

Figure 1.7 ROC for Experimental Decoys in Model Binding Sites 

ROC curves of known ligands versus experimental decoys for A) the small hydrophopic cavity of 

L99A T4 lysozyme and B) the negatively charged cavity in W191G cyctochrome C peroxidase. 

A) B)

 
 

1.5 Discussion 

At first blush it may seem surprising that docking programs ever discover new 

ligands for proteins, so many are the approximations made by their scoring functions. That 

they do so1-4 reflects, at least partly, a cancellation of errors among approximations. 

Whenever a term is improved by making it physically more correct it is easy to imagine that 

the new model may perform worse than the old by upsetting this prior cancellation of errors. 

Thus it is comforting that in moving to a more realistic model of ligand desolvation the 

results against the DUD benchmark do not deteriorate. More convincingly, context-

dependent desolvation confers improved stability to target-by-target and ligand-by-ligand 

variability. It is almost an aphorism in the field that different docking methods are better 
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suited to different targets, and this behavior may be seen when comparing no and full 

desolvation (Figure 1.3), where no desolvation often better enriches targets with charged 

ligands and more open binding sites such as DHFR, GART, and PARP, while full 

desolvation often better enriches targets with neutral ligands and more enclosed binding sites 

such as EGFR, HIVPR, and P38. In striking contrast, context-dependent desolvation, 

though still varying in performance from target-to-target, always gives either the best or 

second-best enrichments and does not swing wildly from best to worst. Even though no 

desolvation outperforms full desolvation against matched decoys, against charged outliers no 

desolvation performs only marginally better than random. Conversely, full desolvation has 

extraordinarily high enrichments against charged outliers, while context-dependent 

desolvation approaches full desolvation in its ability to discriminate against them (Figure 

1.5). This stability to variations in ligand preferences and binding site contexts reflects the 

better physical model in the context-dependent ligand desolvation penalties. 

Even with this improved stability, it would be comforting if “sev” desolvation gave 

substantially better enrichment than ignoring desolvation entirely; currently its overall 

improvement is marginally significant but certainly not substantial. Inspection of particular 

cases suggest that desolvation leads to worse enrichments largely in targets that bind more 

positive ligands. This made us wonder about the charge distribution in these ligands, which 

had significant charge localized on the hydrogen atoms.  We therefore explored using more 

reasonable radii for hydrogen and heavy atoms in our desolvation calculations, moving from 

treating all atoms as having a radius of 1.4 Å, to modeling hydrogens as size 1.0 and all heavy 

atoms as 1.8 Å. Encouragingly, enrichment improved substantially for the full DUD set, 

especially against targets recognizing positively charged ligands (Figure A.1.2).  The largest 

improvements occurred, for instance, in DHFR, INHA, and NEUA, whose ligands all have 
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key positively charged moieties. In overall enrichment, the adjusted LogAUC gap between 

no desolvation, at 14.3%, and “sev” desolvation, at 15.0%, widens from 0.7 to 1.5% in the 

process of giving the hydrogen atoms their own desolvation grid, resulting in an overall 

average enrichment of 15.8% LogAUC.  While this still leaves us with an overall 

performance improvement that remains small, it is comforting that as we move to better 

physical models the performance consistently improves without any fitting whatsoever.  This 

need not be the case—we rely so heavily on cancellation of errors in docking, that one might 

easily imagine models that are physically more correct but that actually reduce performance 

by our standard enrichment metrics.  Further improvement of our physical models, for 

instance by including receptor terms in desolvation and internal energy terms in the ligand, 

thus seems not only scholarly but pragmatic.   

Three results in this study may interest the specialist. First, we introduce a virtual 

screening metric, LogAUC, which tackles the “early enrichment” problem by computing the 

percentage of the ideal area that lies under the semilog enrichment curve. LogAUC shares 

many desirable characteristics with ROC AUC: as it is easily interpreted, robust, and 

independent of similar extensive variables57. Second, we introduce the atomic solvent-

excluded volume (sev) method to deal with the often neglected low-dielectric region that 

forms in the gaps between ligand and protein (Figure 1.1.B). This still allows pre-calculation 

of fractional desolvation while improving the desolvation penalty magnitude at no 

computational cost during docking, with only a moderate (~30 minute) pre-calculation cost 

per protein. Third, we provide a revised version of the DUD database which corrects some 

problems with the initial release, such as the inclusion of “decoys” that were in fact ligands, 

and adds a sixth physical property term against which to balance ligands and decoys — net 

charge. We also provide the charged outlier sets, which can be challenging for any method 
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that does not consider desolvation, explicitly or implicitly, and are meant to mimic molecules 

one will encounter in a large unbiased library screen, such as ZINC. The updated version of 

DUD is freely available at http://dud.docking.org. 

Certain caveats merit airing. We multiply the fractional desolvation by the entire 

transfer free energy, and this is formally correct only for the self-energy terms of polar 

desolvation. Simple multiplication is just an approximation for both the Coulombic term and 

non-polar desolvation. We additionally ignore the fractional desolvation due to the other 

ligand atoms. Exact treatment of these desolvation terms is possible, but as it would add 

substantially to the on-the-fly cost, it may be better left to subsequent re-scoring. Along the 

same lines, we use atomic desolvation energies derived from a single ligand conformation to 

represent all conformations docked. Although this is reasonable for many molecules, there 

will be others where the solvation energy changes substantially from conformation-to-

conformation. Whereas the calculation and storage costs of atomic solvation energies of 

every conformation of every ligand seemed daunting enough to ignore for this study, this 

term can be pre-calculated and so may merit further investigation. Finally, it should be clear 

that we only consider ligand desolvation here, and not its logical complement protein 

desolvation. Doing so will undoubtedly affect docking performance substantially, but this is 

a term that may be added without affecting the calculated ligand solvation term.  

Notwithstanding these caveats, an important result of this work is the incorporation 

of a physically reasonable model of ligand desolvation with negligible cost to docking run 

time. Thus, the total time to screen 134,000 flexible molecules of the new DUD set against 

all 40 targets was 2446 cpu hours without correcting for desolvation, while the total time to 

prosecute this screen with “sev” desolvation was 3862 cpu hours. The method thus 

incorporates critical aspects of higher-level solvation theory, while maintaining the speed 
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advantages of docking. This is achieved by pre-calculating most terms before docking, and as 

such this method should be applicable to any physics-based docking approach. 
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I. Supporting Information 

In Table A.1.1, we compare adjusted LogAUC to traditional AUC. In Figure A.1.2, 

we examine the effect of using separate desolvation grids for hydrogen and heavy atoms. In 

Figure A.1.3, we give all 40 ROC plots against property-matched DUD decoys. In Figure 

A.1.4, we show the effect of changing the grid spacing and integration cutoff. In Figure 

A.1.5, we compare the ligand and decoys ranks as “sev” desolvation is turned off or on. In 

Table A.1.6, we estimate the error in the self-energy term due to neglecting the ligand 

component of fractional desolvation. This information is included in Appendix A.1. 
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Gloss to Chapter 2 

 

Why did we create our context-dependent ligand desolvation method, if not to use it 

to find new ligands? In this chapter, we put it to the ultimate test, to find new inhibitors for 

the highly charged and solvent-exposed binding site of the chemokine receptor CXCR4. The 

natural chemokine ligand of CXCR4 is itself a protein; making the binding site we are trying 

to inhibit a notoriously difficult protein-protein interface1. Despite the challenge, by using 

our context-dependent ligand desolvation method and a new thin dielectric boundary in the 

electrostatics calculations, we achieved a great 17% hit rate in our prospective virtual screen 

against a CXCR4 crystal structure.  

CXCR4 belongs to a family of proteins, called G-protein coupled receptors 

(GPCRs), that are the protein targets of at least 30% of all drugs2. However, protein 

structures for this family are still rare and difficult to obtain. If we could use the few 

structures available to predict the structures of the rest of the family, then we could 

potentially use molecular docking to find new inhibitors for many of these important targets. 

For this study only four GPCR template structures were available, and all were very far in 

sequence homology from CXCR4. Nevertheless, we wanted to generate a homology model 

before crystal structure release, and use it to virtually screen for new CXCR4 inhibitors. 

Then, after crystal structure release, we would repeat the virtual screen and compare the 

prospective ligand discovery rates.  

This was a challenging project, not only because the homology modeling was 

difficult, but because docking to find inhibitors for a protein-protein interface was itself 
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uncertain. Indeed, without the modern ligand desolvation corrections I introduced, our lab 

found zero lead-like hits out of 37 attempts in CTX-M β-lactamase3, a charged and open 

cavity reminiscent of CXCR4. On at least three occasions Brian almost terminated the 

project, even calling for a vote at group meeting to determine the projects fate. But 

perseverance paid off, as we confirmed 4 hits out of 23 molecules (17%) predicted from the 

crystal structure, while we confirmed only 1 hit out of 24 molecules (4%) predicted from the 

homology model. In a similar experiment involving dual virtual screens in dopamine D3 

receptor4, a GPCR much closer to template structures, the homology model performed just 

as well as the crystal structure for prospective ligand discovery. Contrasting these two targets 

and four campaigns illuminates the limits of homology models, and thus the areas of the 

GPCR landscape that may be amenable to structure-based ligand discovery.  

Most exciting was that several of the novel scaffolds were potent and relatively small, 

with IC50 values as low as 306 nM, ligand efficiencies as high as 0.36, and substantial efficacy 

in blocking cellular chemotaxis. The potency and efficiency of these molecules has few 

precedents among protein-protein interface inhibitors, and supports structure-based efforts 

to discover new leads for chemokine GPCRs. 
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2.1 Abstract 

G-protein coupled receptors (GPCRs) are key signaling molecules and are intensely 

studied. Whereas small-molecule recognizing GPCRs have been successfully targeted for 

drug discovery, protein-recognizing GPCRs, such as the chemokine receptors, have few 

drugs or even good small molecule reagents. This reflects both the difficulties that attend 

protein-protein interface inhibitor discovery, and the lack of structures for these targets. 

Imminent structure determination of chemokine receptor CXCR4 motivated docking 

screens for new ligands against a homology model and subsequently the crystal structure. 

Over 3 million molecules were docked against the model and then against the crystal 

structure; 24 and 23 high-scoring compounds from the respective screens were tested 

experimentally. Docking against the model yielded only one antagonist, which resembled 

known ligands and lacked specificity, while the crystal structure docking yielded four that 

were chemically novel and apparently specific. Intriguingly, several of the novel scaffolds 

were potent and relatively small, with IC50 values as low as 306 nM, ligand efficiencies as 

high as 0.36, and substantial efficacy in blocking cellular chemotaxis. The potency and 

efficiency of these molecules has few precedents among protein-protein interface inhibitors, 

and supports structure-based efforts to discover new leads for chemokine GPCRs. 

2.2 Introduction 

G-protein coupled receptors (GPCRs) play a central role in many normal 

physiological pathways and altered diseased states, and are the targets of about 30% of 

marketed drugs1. Ligand discovery against small-molecule GPCRs such as the bioamine 

receptors has been particularly productive, as have structure-based screens against their 

crystal structures2-5. Targeting larger-molecule recognizing GPCRs has been more difficult. 
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Whereas multiple reagents are available for lipid and peptidergic GPCRs, their molecular 

weights are substantially higher than those typical for bioamine receptors and they are less 

ligand efficient. This reflects the challenges faced in ligand discovery against peptide-protein 

and lipid-protein interfaces. These difficulties are even more acute against chemokine 

GPCRs, which recognize folded proteins around 100 amino-acids in length and are thus 

protein-protein interface (PPI) targets6. Though there are several example drugs in this class, 

such as maraviroc, plerixafor, and vorapaxar, finding organic molecules with good affinity 

and the physical properties of oral drugs is notoriously difficult for PPI targets, as reflected 

in the high molecular weight and hydrophobicity of the few PPI drugs7. 

A public competition to predict ligand complexes with the structure of C-X-C 

chemokine receptor 4 (CXCR4) inspired us to bring structure-based discovery to bear 

against this key member of the chemokine family8. CXCR4 natively recognizes the CXCL12 

chemokine, an 8 kDa protein. Like many other PPI targets, CXCR4 plays a key signaling 

role: it is constitutively expressed in many organs and is implicated in chemotactic roles as 

diverse as lymphopoiesis, myelopoeisis, embryogenesis, angiogenesis, cardiogenesis, neuron 

migration and cerebral development9, 10. The receptor is involved in disease states such as 

myocardial infarction/reperfusion injury11, WHIM syndrome12, HIV infection13, and the 

growth and development of more than 20 different types of cancer14. Despite the intense 

interest, only a few potent and selective small molecule antagonists have been discovered for 

CXCR415-17. New ligand chemotypes, which a structure-based approach enables, might 

provide leads to perturb the critical biology for which CXCR4 is responsible.  

Notwithstanding intense effort, experimental structures of GPCRs remain scarce and 

so homology models are often used for GPCR ligand discovery18-21. Such models potentially 

enable structure-based discovery against many more targets than have been experimentally 
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determined, but their reliability has never been tested prospectively. From a technical 

perspective, the ability to compare a discovery campaign against a homology model to one 

against the subsequently released crystal structure might illuminate model viability in an 

unbiased and wholly prospective way. 

Thus we had two broad questions that we hoped to address in this study. First, can 

we discover biologically useful ligands for CXCR4 using a structure-based approach? 

Second, how does a prospective docking screen against a homology model of the receptor 

compare to that against the crystal structure? The first question reflects the intense biological 

interest in this target and its problematic status as a PPI, with all the challenges those present 

for ligand discovery. The second question might inform which parts of the class A GPCR 

family are good candidates for homology-based drug discovery. A prospective homology-

model driven program against the D3 receptor was recently shown to be as effective as one 

against its crystal structure22, but transmembrane sequence identity between D3 receptor and 

its nearest structural template is 42%. CXCR4 has at best 25% transmembrane sequence 

identity to the nearest template structure. If we can only rely on models with sequence 

identities as high as D3 receptor, then only about 10% of GPCRs might be modeled given 

current structural coverage; however, if 25% sequence identity suffices then over 70% are 

viable for structure-based ligand discovery. Experimental tests of docking hits against both 

model and crystal structure will potentially discover new ligands for CXCR4, and may also 

inform the general usefulness of distant GPCR homology models. 
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2.3 Results 

I. Homology Model Construction 

The effort began with calculating homology models for CXCR4. The GPCR Dock 

2010 Assessment8 challenged us to predict the orientation of the small molecule IT1t prior 

to release of the first CXCR4 structures23. We followed a strategy (Figure A.2.1) that used 

enrichment of known ligands to guide model selection, as pioneered in earlier studies19. 

Initial homology models were refined for sequence alignment of CXCR4 to the four 

crystallographic templates then available, β1 and β2 adrenergic receptors, adenosine A2A 

receptor and rhodopsin (Figure A.2.2). To expand backbone diversity, we used low-

frequency elastic normal modes to perturb template backbones24. We calculated 576 and 510 

homology models from the crystallographic templates and the perturbed structures, 

respectively. We docked known ChEMBL04 ligands25 and property-matched decoys to each 

model then measured the retrospective enrichment using adjusted LogAUC26. Enrichment is 

a widely used metric in docking, reflecting the ranking of known ligands selected from a 

database of decoy molecules, compared to what would be expected at random. This can 

either be expressed as overall enrichment over random, or, as we do here, a log-weighted 

enrichment to emphasize the highest ranking molecules, which are the most likely to be 

selected for testing. In the adjusted LogAUC metric, a value of 0% represents completely 

random selection. To select models, we also used the rank of the co-crystal ligand IT1t 

(though its bound structure was still unknown), the number of ligands interacting with the 

critical residue E7.39 (Ballesteros-Weinstein numbering27), and the complementarity between 

docked ligands and modeled binding-site. Five top models and their corresponding ligand 

IT1t binding positions were ultimately submitted to the competition.  
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Before release of the crystal structure we continued to develop homology models for 

prospective ligand discovery. In the final iteration we built 2044 homology models without 

ECL2, docking each to 60 known ligands and 2456 property-matched decoys. Overall, 36 

billion ligand orientations and 55 billion conformations were sampled, so over 64 trillion 

complexes completed within 176 cpu-days or 9 hours of wall clock time on our cluster. We 

selected one model based on the criteria mentioned above, upon which we generated 1000 

ECL2 variants. We selected a single loop model with ligand enrichment of 22% LogAUC for 

prospective screening. 

II. Homology Model Virtual Screen 

To predict new CXCR4 ligands from the prospective homology model, we used 

DOCK 3.6 to virtually screen the lead-like subset of ZINC28, i.e. molecules with molecular 

weights below 350, logP less than 3.5, and 7 or less rotatable bonds. Each of the 3.3 million 

molecules in ZINC was sampled in an average of 11,000 orientations and 2,700 

conformations, or 41 trillion complexes sampled overall. Each complex was scored for 

complementarity based on van der Waals (using a modified AMBER potential function) and 

electrostatic interaction energies (using potentials calculated with DelPhi), corrected for 

ligand desolvation26. The full screen took 372 cpu-days, or 18 hours of wall clock time on 

our cluster.  

We then selected molecules for experimental testing. Commonly, this takes the form 

of visually inspecting the top ranking 500 molecules or up to 1% of the docking-ranked 

database. It is well-known that docking scoring functions are approximate and incomplete, 

but less discussed are problems with compound representation in database libraries (e.g., 

incorrect ionization states, overly strained conformations, and simple lack of availability 
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from vendors). More generally, what makes a good lead molecule reflects a plurality of not 

only orthogonal but sometimes opposed criteria. For instance larger, hydrophobic molecules 

will often bind tighter and score better, but biological efficacy and solubility often favors 

smaller, less hydrophobic molecules. Whereas we prefer molecules that engage all of their 

functional groups with the protein, we also are looking for the formation of key, “warhead” 

interactions with tightly defined geometric criteria. These and other extra-thermodynamic 

criteria have not been reduced to a single function—and given their opposed nature it might 

be difficult to do so—but may be rapidly evaluated by the eye of the trained investigator. In 

CXCR4, molecules were rejected in rough order of importance due to: 1) wrong ionization 

state, 2) unavailability, 3) high internal energy, 4) unsatisfied polar interactions and 5) low hit 

diversity. Molecules were prioritized for key salt-bridges to E7.39 and at least one other 

anionic residue, plus a complementary fit to the binding-site.  

Prior to release of the crystal structure we purchased 24 high-ranking molecules for 

testing, all in the top 1800 (0.05%) of 3.3 million molecules docked. One of these inhibited 

CXCL12 induced calcium flux in cell culture, with an IC50 of 107 μM, a hit rate of 4% 

(Compound 1, Table 2.1, Figure 2.1.A). Compound 1 ranked 1725th and fit deep within the 

modeled binding-site, forming salt bridges to E7.39 and D6.58 in the putative docked complex 

(Figure 2.2.A). To measure chemical similarity to known CXCR4 ligands in ChEMBL0925, 

we represented compound 1 by a two-dimensional topological fingerprint, ECFP4, and 

compared the bits (features) using the Tanimoto coefficient (Tc), as is widely done in the 

field29. Despite a Tc of 0.36, indicating marginal novelty, the molecule was a combination of 

two previously observed chemotypes, so we did not consider it particularly novel. Moreover, 

specificity counterscreens suggested that compound 1 also inhibited the related chemokine 

receptor CCR2. 
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Table 2.1 CXCR4 Parallel Virtual Screen Hits 

Compound 1 discovered from homology model docking screen. Compounds 2-5 discovered from 

crystal structure docking screen. 
 

# Structure 
Calcium 
flux IC50 

[uM] 

Binding 
IC50 

[uM] 

LE 
Crystal 
Rank 

Model 
Rank 

Tc
a Closestb 

1 

 

107 N/A 0.26 37 1725 0.36 

 

2 

 

76 N/A 0.24 418 5380c 0.23 

 

3 

 

57 0.31 0.36 489 5800c 0.24 

 

4 

 

77 25.1 0.25 137 30898c 0.23 

 

5 

 

55 13.9 0.28 499 50121c 0.32 

 
 
a Tanimoto similarity to the most similar CXCR4 small molecule ligand in ChEMBL09 database  
b Most similar CXCR4 small molecule ligand in ChEMBL09 database  
c Ranks reported are not filtered for broken molecules 
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III. Crystal Structure Virtual Screen 

With the crystal structure released, we again screened the lead-like subset of ZINC, 

now composed of 4.2 million molecules28. Docking statistics were similar, with each 

molecule sampled in an average of 10,200 orientations and 2,100 conformations, or 87 

trillion complexes sampled overall (Supporting Methods). From among the top 0.03% of the 

docking hit list, we purchased 23 molecules for testing. Compounds 2-5 (17% hit rate) 

substantially inhibited CXCL12-induced calcium flux in cell culture, with IC50 values ranging 

from 55-77 μM (Table 2.1, Figure 2.1.B-E). In the docked poses, all four inhibitors formed 

salt bridges to E7.39 and D2.63 (Figure 2.2.C-F). Three formed salt-bridges through an  

 

Figure 2.1 Dose‐Response Curves for Inhibitors 1‐5 

(A-E) Percent calcium flux calculated as maximum minus minimum fluorescence as a percent of 

baseline (n=6). (F) [I125]-CXCL12 radioligand displacement by compound 3. 
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Figure 2.2 Docking Modes of Discovered Inhibitors 

(A) The homology model with compound 1 (blue) in the docking mode from the homology model. 

(B) The crystal structure with compound 1 (yellow) docked. (C) Compound 2 (yellow) docked to 

crystal structure and the co-crystal ligand pose of small molecule 1T1t (blue lines). (D-F) Compounds 

3-5 docked to crystal structure. 
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unprecedented imidazole functional group. Again comparing chemical similarity to known 

CXCR4 ligands, Tc values of 0.23-0.32 supports their novelty (Table 2.1). While all four 

inhibitors are also topologically distinct from one another, the similar docked poses suggest 

that compound 3 and 4 fall into the same structural class. All of the new compounds have 

molecular weights of 300-350 and calculated logP values of 0.5-3.5, placing them within the 

lead-like range30. 

IV. Biological Activity 

For biological relevance, compounds must not only inhibit calcium flux, but must 

also inhibit lymphocyte migration. All five ligands inhibited human THP-1 monocyte 

migration induced by CXCL12 in cell culture (Figure 2.3, Table A.2.1), with compounds 1 

and 2 almost completely inhibiting chemotaxis at 100 μM. 

Small molecules may perturb chemokine signaling without competitive displacement 

of the large chemokine protein, for instance binding under it in the TM part of the site31, 32.  

 

Figure 2.3 Inhibition of CXCL12 Induced Chemotaxis in THP‐1 Cells.  

(A) Following incubation with compound 1-5 the number of cells that migrated into the lower 

chamber was counted. (B) Schematic of the Transwell chemotaxis chamber. 
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Four of the five ligands modulated the binding of radiolabeled CXCL12 (Figure 2.1.F, 

Figure A.2.3). Compounds 3 and 5 disrupted CXCL12 binding with an IC50 of 306 nM and 

14 μM, respectively. Compound 1 reduced binding with an IC50 of 224 μM, but had a steep 

dose-response curve (aggregation counter screening, below). Compound 4, though 

efficacious as a signaling antagonist, actually increased CXCL12 binding, while compound 2 

did not modulate binding at all. These observations are consistent with the often allosteric 

binding of small molecules to chemokine receptors.  

Ligand efficiency (LE) corrects binding energies for size, dividing free energy of 

binding expressed as RT log(IC50) (in kcal/mol) by heavy atom count. While LE is 

notoriously low (poor) for PPI inhibitors, compound 3 has a LE of 0.36, putting it in the 

range of that for oral drugs. The four other compounds have LE values of 0.24-0.28 (Table 

2.1), more typical of PPI inhibitors. 

V. Model Analysis 

The release of the CXCR4 crystal structure allowed us to compare the prospective 

model against the experimental structure. In the prospectively screened model, ligand IT1t 

docks deep in the TM bundle, similar to ligand binding in the structural templates. In the 

CXCR4 crystal structure, IT1t binds higher in the site (Figure A.2.4), resulting in a poor 

RMSD of 9.5 Å between observed and predicted ligand position (Table A.2.2). Overall 

binding-site agreement was better, with a transmembrane binding-site heavy-atom RMSD of 

2.3 Å. Retrospective enrichment of known ligands was also high at 21% LogAUC (30% 

LogAUC before modeling ECL2), comparing favorably with the crystal structure at 28% 

LogAUC (Figure A.2.5.A). This placed it at the top of the enrichment distribution amongst 
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all the models we built, despite having an average binding-site RMSD to the crystal structure 

(Figure A.2.6).  

We were interested to compare our predicted model to those with higher fidelity to 

the in the GPCR Dock 2010 Assessment8, with a view to evaluating their usefulness for 

docking screens. We investigated the two top scoring models in the assessment, both of 

which predicted the IT1t ligand pose better than our model had, and computed their 

retrospective enrichment of ChEMBL04 ligands. These two models, VU-533 and COH-134 

led to ligand enrichments of 5% and 6% LogAUC, respectively, using our docking method 

(Table A.2.2, Figure A.2.5.A). We also docked the five newly discovered ligands and over 3 

million lead-like molecules in ZINC (Table A.2.3, Figure A.2.5.B); consistent with their 

modest retrospective enrichments of ChEMBL ligands, neither model ranked any of the new 

ligands well. Docked against the VU-5 model, the best scoring new ligand was compound 5 

with a rank of 3282, while none of the other four ligands ranked better than 312,000. 

Similarly, against the COH-1 the best ranked ligand was compound 1, which ranked 19,977, 

while no other ligand ranked above 63,000. These docking results take nothing away from 

the success of these models in the competition, but support the idea that even the field’s 

best models, at this level of sequence identity, may struggle to achieve a structural fidelity 

high enough to support new ligand discovery.  

Posing this question another way, we wondered if we ourselves had explored a 

model closer to the crystal structure, from among the several thousand calculated, that may 

have performed better in the docking. We retrospectively used ligand RMSD, known ligand 

enrichment, and binding site RMSD to select the most accurate model from among 2044 

loopless models we originally sampled. The selected model had a much improved ligand 

RMSD of 2.9 Å (compared to the 9.5 Å we had originally predicted, Table A.2.2). Despite 

58 



enriching known ligands well (LogAUC of 22%, Figure A.2.5.A), its performance was 

substantially below the 30% LogAUC found for the model that was ultimately used in the 

prospective docking. Indeed, when we docked the five new ligands against what was 

structurally the best of our sampled models, their rankings were mediocre: the top scoring of 

these molecules was compound 2, which ranked 15,344 of over 3 Million ZINC molecules 

docked, while three other new ligands ranked below 22,200. Meanwhile, for the truly 

prospective homology model, despite its poor predicting of the geometry of the 

crystallographic ligand IT1t, the top scoring new ligand in the docking was compound 1, 

which ranked 2803 of the 3.3 Million ZINC molecules docked, while compounds 2, 3, 4 and 

5 ranked 50121, 30898, 5380, and 5800, respectively. This suggests that a combination of 

geometric but also docking ranking criteria are appropriate in selecting models to be used for 

docking prediction, as has been suggested by others. Overall, it supports the idea that a 

certain minimum of sequence identity is required to be able to calculate a high fidelity model 

that can reliably select novel ligands, a point to which we will return. 

VI. Aggregation Counter Screen 

Colloidal aggregation constitutes perhaps the greatest source of false positives in 

screens against soluble proteins, but has not previously been observed for membrane-bound 

receptors. All of our ligands had Hill slopes in the calcium flux assay of 1.5 or higher, which 

is often associated with a colloidal-mechanism of inhibition. Though such a slope could be 

accounted for classically, by binding to a dimeric form of the receptor, as adopted in the 

crystal structure, all were counter-screened for non-specific inhibition due to aggregation35, 36. 

To test for aggregation under our exact assay conditions, spin-down precipitation was used 

to remove putative colloids37. After spin-down, the supernatant activity of compounds 1 to 5 
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was unaffected, while the activity of compound 6 (Table A.2.4) was sharply attenuated. Due 

to the high Hill slope of 5 and inhibition of the counter-screen enzyme cruzain at 200 µM 

(see SI), we cannot completely discount the aggregation of compound 1 at high 

concentration, though at its IC50 value of 107 µM it seems well-behaved. Conversely, 

compound 6 (Figure A.2.7) inhibits CXCR4 via a colloidal aggregation mechanism, which 

constitutes the first description of aggregation-based activity against membrane-bound 

receptors; this mechanism may merit future vigilance in GPCR screening efforts. The 

behavior of all four other antagonists was consistent with well-behaved, classical binding to 

CXCR4. 

2.4 Discussion 

Two key results emerge from this study. First, five CXCR4 inhibitors, in three new 

chemotypes, were discovered; they are all substantially smaller than most known CXCR4 

ligands giving them relatively favorable ligand efficiencies. Indeed the best of them, 

compound 3, a 306 nM antagonist of the receptor, has a ligand efficiency (LE) of 0.36; its 

good physical properties put it well-within the lead-like range of compounds that might be 

optimized as tools and bioactive molecules. All five ligands inhibit CXCR4-mediated 

chemotaxis in cell culture. The four inhibitors derived from the x-ray screen are specific for 

CXCR4 versus CCR2, a close homolog, and so may hold potential as reagents to modulate 

HIV infection, metastasis and inflammation. Second, we compare a blind prospective virtual 

screen against a GPCR homology model to both a subsequent screen against the crystal 

structure, and to a twin study against dopamine receptor D3 (DRD3)22. The CXCR4 

homology model had a hit rate of 4% , with a single antagonist of modest novelty and 

specificity; the crystal structure screen had a hit rate of 17%, with at least three of the four 
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ligands being novel and all four being specific. Conversely, docking against a DRD3 

homology model discovered as many ligands as docking against the crystal structure. 

Contrasting these two targets and four campaigns illuminates the areas of the GPCR 

landscape that may be amenable to structure-based ligand discovery.  

Protein-protein interfaces (PPI) are notoriously difficult to modulate with “drug-

like” organic molecules. Few PPI inhibitors possess a LE greater than 0.237; to achieve a 

reasonable affinity they are large and often hydrophobic, requiring extensive optimization to 

deliver them into biological milieus. In some ways CXCR4 is typical of PPI sites: at 20 Å 

across and 20 Å deep, its orthosteric site is much larger and more solvent exposed than 

those in biogenic amine GPCRs, for example, and bears a high net charge with at least five 

anionic residues. Conversely, CXCR4, though large, sports well-defined subsites where 

mixtures of charge and hydrophobic complementarity might be exploited by small 

molecules. Indeed the docking poses of the new inhibitors exploit such a subsite, also 

occupied by the co-crystal ligand, defined by E7.39 and D2.63. This may explain the unusually 

high LE (0.36) of compound 3, which is far above that expected for most PPI inhibitors, 

and indeed for the one approved CXCR4 drug, plerixafor (LE of 0.25). Antagonists for 

chemokine receptors are PPI inihibitors with typical LE of 0.2, although LE as high as 0.43 

(repertaxin, a CXCR1 inhbitor) have been reported38; the conserved nature of the chemokine 

receptor interface32, and the high LE of compound 3, suggest structure-based campaigns 

against additional chemokine receptors may also result in reagents with pharmaceutically 

relevant properties. Indeed maraviroc, a recently introduced HIV drug that targets the 

chemokine CCR5 receptor, has a ligand efficiency of 0.33 placing it within the range 

expected of most oral drugs; it is one of only a few PPI drugs on the market7.  
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From a technical perspective, it is interesting to ask why the CXCR4 homology 

model performed so much worse than either the dopamine D3 homology model or the 

crystal structure of CXCR4. One important contribution was ligand-bias in the database. A 

great advantage of docking against the dopamine receptor was the bias toward biogenic 

amine mimetics in even an “unbiased” library such as ZINC, which simply catalogs 

commercially available molecules. Thus, there were not only many dopaminergic-like 

molecules in ZINC to find, but also many analogs of these hits in ZINC, allowing an SAR 

by catalog campaign that drove affinity from 1.6 μM for an original docking hit to 81 nM for 

an optimized lead. This bias was also observed in docking screens against the adenosine A2a 

receptor4, 39 and the β2 adrenergic receptor3. Several lines of evidence suggest that the bias 

towards CXCR4-like ligands was much reduced in ZINC: there are relatively few molecules 

that share the same size and charge properties as known ligands, and in contrast to DRD3 

we found very few analogs in the database even for our newly discovered lead-like ligands. 

A larger contribution to the weakness of the prospective CXCR4 model screen was 

clearly accuracy of the model itself. The DRD3 model, with 42% sequence identity to its 

template, closely resembles the crystal structure (binding-site RMSD of 1.65 Å), and the large 

number of known ligands and ample mutational data helped to correctly predict the co-

crystal ligand pose (also 1.65 Å RMSD). This level of accuracy was sufficient to attain a 23% 

hit rate in a virtual screen of the DRD3 model. While the relatively poor 4% hit rate of the 

prospective CXCR4 homology model may simply reflect our ineptness, our models were 

competitive with the field, predicting the CXCR4-IT1t conformation better than all but a 

few models submitted to the public competition8. To further assess the overall state of 

CXCR4 homology modeling, we performed docking screens against the two most accurate 

competition CXCR4 models, assessing how well they ranked the five new ligands discovered 
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herein. Against these external models, retrospective enrichment of previously known 

CXCR4 ligands was poor, as was ranking of our five new hits. The relatively poor outcome 

of screening CXCR4 homology models versus screening a DRD3 homology model likely 

reflects the reduced accuracy that can be achieved at 25% vs 42% sequence identity to 

structural templates, even with the best homology models the field now offers.  

While developing more accurate homology models is not a goal of this study, the 

lesson we draw is that for GPCRs sharing 42% or better sequence identity with a 

structurally-determined template, and with sufficient mutant studies to predict ligand 

binding, accurate models may be within the reach of general approaches. For those targets 

with lower sequence identities, certainly in the 18 to 25% range that characterized the 

templates available to us, homology models accurate enough for predictive ligand discovery 

may be out of reach, even with domain expertise. Putting aside issues of disease-relevance 

and experimental pragmatism, which will naturally dominate, one might imagine an 

additional prioritization axis for future GPCR crystal structures that considers the number of 

new targets they enable to be reliably modeled.  

Those technical points should not obscure the key, biological result from this study: 

the ability to discover new chemical matter, with favorable physical properties, for this 

critical protein-protein interface. Given the difficulties for which these PPI targets are 

notorious, and a lack of favorable bias in the docking library, we were uncertain as to 

whether even the CXCR4 crystal structure would lead to new ligands. Instead, the 17% hit rate 

observed was substantial, certainly much higher than we have experienced with soluble 

enzymes40, 41 and three novel chemotypes emerged. The ligand with the highest affinity by 

radioligand displacement, compound 3, had an IC50 of 306 nM and a ligand efficiency of 

0.36. This is within the range of favorable leads for drug discovery, well above the 0.23 
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ligand efficiency expected for most PPI inhibitors7. All of the new inhibitors were active in 

cell culture, inhibiting CXCR4-mediated chemotaxis, the primary cellular endpoint for a 

chemokine receptor ligand, consistent with their promise as leads. More generally, this study 

suggests that structures of chemokine receptors will provide pragmatic templates for probe 

and drug discovery; such molecules are much needed for biological understanding and for 

treating devastating diseases in cancer, virology, and inflammation. 

2.5 Methods 

I. Homology Modeling and Docking 

Homology modeling and docking proceeded as described (Results, Supporting 

Methods). The large solvent exposed CXCR4 binding-site presents a challenge for docking: 

to compensate, we used a new procedure to balance electrostatics with rapid context-

dependent ligand desolvation26. We filled the CXCR4 pocket with a single layer of low-

dielectric spheres, excluding any spheres displaced from the surface to perturb the bulk-

dielectric minimally, while allowing the ligand to interact strongly with charged groups 

throughout the binding-site. The large binding cavity also presented a challenge for 

exhaustive ligand sampling. To compensate, we divided the binding pocket into three 

partially overlapping sub-sites for sampling and docked separately against each (this reduces 

number of orientations by about 34)42. A single scoring grid was used to represent the entire 

site. 

II. Calcium Flux‐based Assays 

THP-1 monocytes were resuspended in assay buffer containing FLIPR Calcium4 

dye. Compounds were added at 100 μM (single point) or the indicated concentrations (dose-

64 



response). After a 20 s baseline measurement, CXCL12 was added at 30 nM and resulting 

calcium response was measured for an additional 50 s. CCL2, a chemokine that targets 

CCR2 (a distinct receptor of THP-1 cells) was added as a control for compound specificity 

during the single point compound screening. Approximately 60 s after CXCL12 addition, 6 

nM CCL2 was added to each well and calcium mobilization was measured for an additional 

40 s. Percent calcium flux for each agonist was calculated from the maximum fluorescence 

minus the minimum fluorescence as a percent of baseline. A two-tailed student’s t-test 

between either the 30 nM CXCL12 control or the 6 nM CCL2 control, and the compound 

of interest was used to identify statistically significant inhibitory compounds (Figure 

A.2.8.a-b). For significant CXCR4 inhibitors, the assay was repeated in a dose-response 

format. 

III. Chemotaxis and Viability 

Chemotaxis experiments were performed in THP-1 cells as described (Supporting 

Methods). CXCL12 ligand (30 nM) and respective compounds (100 µM) was added to the 

lower chamber. Percent maximal migration was calculated as the number of migrated cells 

with compound divided by number that migrated to CXCL12 alone. 

IV. Radioligand Binding 

Binding studies were performed on pre-B leukemia REH cells as described 

(Supporting Methods). The competition binding assays were carried out using 50 pM [I125]-

CXCL12 as a tracer. 
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V. Counter‐Screens for Aggregation 

In spin-down counter screens for aggregation, compounds were centrifuged at 

16,000×G for 20 min. Supernatant was removed and used for calcium flux experiments as 

above. Cruzain inhibition assays were performed as reported36. 

VI. Compound Sources 

Compounds were obtained from the National Cancer Institute and commercial 

suppliers. All active compounds were tested for purity by LC/MS at UCSF and were judged 

pure by peak height and identity (Supporting Methods). 
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Gloss to Chapter 3 

 

By this point, our rapid context-dependent ligand desolvation term had given 

prospective hit rates of 17% and 25% in virtual screens to CXCR4 and DRD3, and looked 

promsing in several ongoing ligand discovery projects. Yet, in chapter one the desolvation 

method only did better than using no desolvation by a seemingly modest 0.7% average 

LogAUC, over the 40 DUD targets. Yet shockingly, I had performed many docking 

experiments to that charge-matched DUD set, and a 0.7% average gain was one of the 

largest perturbations I observed. Thus we started to believe we could build a better 

benchmarking set, with which we could better test future docking methods. Additionally, in 

making the charge-matched decoys for chapter one, I had automated, improved, and 

stabilized many stages of our docking toolchain, which would give me a head start at 

constructing this newer, larger, more ambitious benchmarking set.  

The Directoy of Useful Decoys (DUD)1, despite the acronym, had been hugely 

successful; so it was fun that an enhanced version became DUD-E, with homage to the 

movie “The Big Lebowski”. More and more diverse targets were included, to a total of 102. 

Ligands were improved by adding more, each with measured affinity, and then clustering 

them to improve diversity. Decoys were improved by adding net charge to propery-

matching, by adapting to chemical space during property-matching, and by using the most 

dissimilar decoys to reduce the number of decoys that might actually bind. 

We decomposed the changes in performance between DUD-E and DUD, to find 

that the DUD-E style decoys increase overall enrichment due to fewer false decoys, the new 
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ligands reduce enrichment due to diversity, and the new target preparations increase 

enrichment due to a large scale docking campaign that selected better crystal structures. We 

again examined our context-dependent ligand desolvation term, finding that in DUD-E it 

handily outperforms no desolvation by 3.8% average LogAUC over the 102 targets. To help 

the balance with electrostatics, we automate the thin electrostatic dielectric layer that we 

manually constructed for CXCR4 in chapter two. We find that thin layers improve average 

LogAUC by 1.0% on the 96 targets with automatically generated dielectric layers. This 

suggests that over a more comprehensive set of targets, and what we argue is a better set of 

ligands and decoys, the advantage of more physically correct treatments becomes more 

pronounced.  

While we expect this DUD-E release (http://dude.docking.org) to be used to test 

docking methods well into the future, it was also designed to be easy to refine and extend. In 

addition to ready to download canonical sets, all the data and many scripts used in the sets’ 

construction can also be downloaded. A decoy server (http://decoys.docking.org) is 

provided that uses the same algorithm which made DUD-E decoys, and takes any user 

supplied list of ligands. This enables challenging retrospective performance tests on any 

target of interest.   
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3.1 Abstract 

A key metric to assess molecular docking remains ligand enrichment against 

challenging decoys. Whereas the directory of useful decoys (DUD) benchmarking set has 

been widely used, clear areas for optimization have emerged. Here we describe an improved 

benchmarking set that includes more diverse and biomedically relevant targets, such as 

GPCRs and ion channels, totaling 102 proteins with 22,886 clustered ligands drawn from 

ChEMBL, each with 50 property-matched decoys drawn from ZINC. To ensure chemotype 

diversity we cluster the ligands of each target by Bemis-Murcko frameworks. To improve the 

decoys, we add net charge as an additional matched physico-chemical property, and only 

include those decoys that are most dissimilar, by topology, from the ligands. Further, we link 

every decoy with its particular ligand to enable detailed set decomposition. An online 

automated tool (http://decoys.docking.org) generates these improved matched decoys for 

any given ligand set. We test this dataset by docking ligands and decoys against all 102 

targets, using the results to improve the balance between ligand desolvation and 

electrostatics in DOCK 3.6. The full DUD-E benchmarking set is freely available at 

http://dude.docking.org. 

3.2 Introduction 

While molecular docking screens routinely leverage protein structure to discover new 

ligands1-4, quantitative assessment of their performance remains problematic5. Though 

prospective assessment of docking performance is irreplaceable6, 7, it is both time consuming 

and expensive. Since a general correlation between docking scores and affinities is beyond 

current methods8, 9, the field relies on ligand enrichment in docking hit lists to evaluate 

retrospective performance10-14. “Enrichment” measures how known ligands rank versus a 
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background of decoy molecules, and so depends not only on the nature of the ligands, but 

also on the background decoys. Thus to compare docking enrichments, a benchmarking set 

of ligands and decoys is needed.  

The original Directory of Useful Decoys (DUD) was designed to meet this 

benchmarking need while controlling for decoy bias on enrichment15, 16. Given a random 

drug-like set of decoys, Verdonk et. al. showed that targets which bind high molecular weight 

ligands naturally get higher enrichments, due to correlation between larger molecules and 

better docking scores17. In contrast, actual ligand binding affinities correlate with molecular 

size only for very small molecules18. Unable to separate the true correlations of simple 

molecular properties that aid prospective ligand discovery from the artificial correlations that 

arise from biases, it is informative to ask what value molecular docking adds beyond these 

properties. To this end, DUD decoys are matched to the physical chemistry of ligands on a 

target-by-target basis: by the properties of molecular weight, calculated logP, number of 

rotatable bonds, hydrogen bond donors and acceptors. To fulfill their role as negative 

controls, decoys should not actually bind, so DUD used 2-D similarity fingerprints to 

minimize the topological similarity between decoys and ligands. In short, DUD decoys were 

chosen to resemble ligands physically and so be challenging for docking, but at the same 

time be topologically dissimilar to minimize the likelihood of actual binding. 

Through intense use19-26, weaknesses in the original DUD set have appeared in both 

the ligands and decoys. Good and Oprea noted that a handful of chemotypes dominate 

many ligand sets, allowing high ranks for one scaffold to cause good overall enrichment27. 

One way to circumvent this problem is using chemotype retrieval metrics28, but another is to 

remove the “analog bias” from the database by clustering on ligand scaffolds. After 

clustering the 40 targets, Good’s subset of DUD contains only 13 targets with over 15 
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ligands, indicating a need for more targets with more ligands. Another important goal is to 

increase target diversity, for example by adding membrane domain proteins, none of which 

are represented in DUD.  

As there were weaknesses in the DUD ligands, this was also true of the decoys. 

Several investigators29-31 observed that despite property matching on logP, net formal charge 

is still imbalanced in DUD; 42% of all ligands are charged versus only 15% of decoys. 

Property matching of decoys to ligands could also be tightened by choosing decoys more 

embedded in ligand property-space32, 33. Despite a 2-D chemical dissimilarity filter to prevent 

decoys from being active, some original DUD decoys still appear to bind, and these false 

decoys artificially reduce docking enrichment32. Addressing both false decoys and decoy 

property embedding, Vogel et. al. released DEKOIS for the original 40 DUD targets. Gatica 

and Cavasotto generated ligand and decoy sets for 147 G Protein-Coupled Receptors 

(GPCRs) while adding net charge to property matching34. Very recently, a python GUI 

application was announced to generate property-matched decoys35. By ignoring synthetic 

feasibility, Wallach and Lilien generate virtual decoy sets for the original DUD targets with 

tighter property-matching33. Instead of generating computational decoys, the MUV set 

selects decoys for 17 targets that were negative in public high throughput screens36. Instead 

of generating decoys at all, REPROVIS-DB assembles ligand and database data from earlier 

successful virtual screens which are deemed reproducible37. 

Here we describe a new version of DUD that addresses these liabilities and develops 

new functionality. By drawing on ChEMBL0938, each DUD-Enhanced (DUD-E) ligand has 

a measured affinity supported by a literature reference. Though ligands are now typically 

clustered by Bemis-Murcko frameworks39 to reduce chemotype bias, there are still on 

average 224 ligands per target. The target list is expanded from 40 to 102, favoring targets 
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with many ligands and multiple40 structures. The additions include several drug relevant 

membrane proteins: five GPCRs, two ion channels, and two cytochrome P450s. Meanwhile, 

false decoys are reduced by more stringent filtering of topological dissimilarity. Where 

possible, measured experimental decoys are included. Finally, we consider how DUD-E 

performs as a benchmark versus the original DUD, and explore its use as a tool for 

evaluating and optimizing molecular docking.  

3.3 Results 

The ideal target for a benchmarking set would be well studied, with many measured 

ligand affinities and multiple, diverse co-crystal ligand structures. To this end, the enhanced 

DUD database (DUD-E) is largely based on the intersection of ChEMBL38, for ligand 

annotations and affinities, and the RCSB PDB40, for structures. As we sought targets to 

enlarge the set, the 40 original DUD targets were first priority, 38 of which we included. 

Platlet-derived growth factor receptor β was dropped, as it was a homology model. Estrogen 

receptor α (ESR1) is a single target in DUD-E, whereas it was split into agonist and 

antagonists previously. To enlarge the benchmarking set, we used three main criteria. First, 

we favored new target classes with pharmacological precedence. Second, we sought targets 

with many ligands and crystal structures, as they likely reflect a combination of target 

relevance and ease of study. Third, we preferred targets that could modestly enrich known 

ligands using fully automated docking, as these may be both easy to prepare and amenable to 

docking. Conversely, targets with mostly covalent ligands were de-prioritized. 

DUD-E targets are defined by their UniProt41 gene prefix, with data from each 

species being combined into a single dataset. While ChEMBL annotates ligands to a 

particular UniProt accession code, the ligand overlap between orthologous targets is 
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surprisingly small. For example, among 1555 unique ligands with affinities below 1 μM for 

the human dopamine D3 receptor and 744 ligands for the rat ortholog, only 85 ligands are in 

both sets. These two orthologs share 97% trans-membrane sequence identity (79% overall), 

so this low overlap suggests to us that ChEMBL ligand annotations are sparse, and do not 

typically reflect species specificity. Therefore we pooled the data for all species, defining a 

DUD-E target as a UniProt gene prefix (such as DRD3), and not the full gene_species pair 

(such as DRD3_HUMAN or P35462). 

The 102 targets span diverse protein categories, including 26 kinases, 15 proteases, 

11 nuclear receptors, 5 GPCRs, 2 ion channels, 2 cytochrome P450s, 36 other enzymes, and 

5 miscellaneous proteins (Figure 3.1). Altogether 66,695 raw ligands, defined as those with  

annotated affinities better than 1 μM to their target, molecular weights less than 600, and 

fewer than 20 rotatable bonds were extracted from ChEMBL09 (or the AmpC β-lactamase 

 

Figure 3.1 DUD‐E Target Classification 

Number of the 102 targets that belong to eight broad protein categories. 
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literature) (Table 3.1). That is an average of 654 ligands per target with a minimum of 40 

and a maximum of 3,090. Though negative binding is rarely reported, we also found 9,219 

experimental decoys (i.e. no measurable affinity up to 30 μM), with a maximum of 1,070 for 

cyclo-oxygenase-1 (PGH1). 

 

Table 3.1 Characteristics of DUD‐E 
 

 Total ChEMBL Manual 

# Targets 102 101 1 
 

 Total Average Minimum Maximum 

# Raw Ligands 66,695 653.9 40 3,090 

# Clustered Ligands 22,886 224.4 40 592 

# Experimental 

Decoys 
9,219 90.4 1 1070 

# Clustered Ligands 

Unique Charge States 
28,377 278.2 46 1030 

# Computational 

Decoys 
1,411,214 13,835 2,300 51,500 

 

With targets selected, we chose a single X-ray structure to represent each target in 

docking studies (Table 3.2, Table A.3.1). To find the structure most amenable to docking, 

we used an automated docking campaign to screen 3690 PDB structures against their 

clustered ligands and property-matched decoys (see below). Preference was given to higher 

resolution, to higher automated enrichment, and to the human ortholog. We avoided mutant 

structures, unresolved active site loops, extraneous bound peptides, or structures too 

constrained for many of that target’s ligands. Where we had domain knowledge, the most 

representative structure was preferred, for example a DFG-in structure for kinases or an 

antagonist structure for estrogen receptor α (ESR1). For 57 out of 102 targets, a DOCK 

Blaster42 prepared structure was used for DUD-E, directly from the automated tool chain. 

Another 45 targets required manual intervention, most due to simple errors in automated  
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Table 3.2 Overview of Representative Targets  

Class Id Description 
Total 

Ligands 

Clustered 

Ligands 

Matched 

Decoys 
PDB 

Log 

AUC  

(%) 

ROC

EF1 

AUC 

(%) 

CP2C9 Cytochrome P450 2C9 145 120 7,450 1R9O 7 3 60 Cytochrome 

P450 CP3A4 Cytochrome P450  

3A4 
302 170 11,800 3NXU 7 2 63 

AA2AR Adenosine A2a 

receptor 
3057 482 31,550 3EML 28 22 83 

ADRB1 Beta-1 adrenergic 

receptor 
648 247 15,850 2VT4 19 11 76 

GPCR 

 

CXCR4 C-X-C chemokine 

receptor type 4 
40 40 3,406 3ODU 36 18 90 

GRIA2 Glutamate receptor 

ionotropic, AMPA 2 
476 158 11,845 3KGC 23 23 71 Ion Channel 

GRIK1 Glutamate receptor 

ionotropic kainate 1 
136 101 6,550 1VSO 35 27 86 

AKT1 Serine/threonine-

protein kinase AKT 
585 293 16,450 3CQW 27 29 72 

MK10 c-Jun N-terminal  

kinase 3 
199 104 6,600 2ZDT 24 11 82 

Kinase 

 

MK14 MAP kinase p38 alpha 2205 578 35,850 2QD9 17 10 74 

KIF11 Kinesin-like protein 1 272 116 6,850 3CJO 34 35 77 Miscel-

laneous XIAP Inhibitor of  

apoptosis protein 3 
100 100 5,150 3HL5 52 55 88 

ESR1 Estrogen receptor 

alpha 
1297 383 20,685 1SJ0 18 15 67 

MCR Mineralocorticoid 

receptor 
201 94 5,150 2AA2 -4 2 36 

THB Thyroid hormone 

receptor beta-1 
246 103 7,450 1Q4X 36 38 79 

Nuclear 

Receptor 

PPARD Peroxisome proliferator-

activated receptor delta 
699 240 12,250 2ZNP 32 20 89 

FNTA Protein 

farnesyltransferase 

type I alpha 

1430 592 51,500 3E37 16 7 76 

HDAC8 Histone deacetylase 8 309 170 10,450 3F07 29 24 80 

HIVINT HIV type 1 integrase 167 100 6,650 3NF7 8 2 64 

KITH Thymidine kinase 57 57 2,850 2B8T 15 0 80 

PARP1 Poly [ADP-ribose] 

polymerase-1 
1031 508 30,050 3L3M 25 21 79 

Other 

Enzymes 

PUR2 GAR transformylase 50 50 2,700 1NJS 51 50 92 

DPP4 Dipeptidyl peptidase IV 1939 533 40,950 2I78 41 41 87 

FA10 Coagulation factor X 3090 537 28,325 3KL6 39 36 87 

LKHA4 Leukotriene A4 

hydrolase 
343 171 9,450 3CHP 18 4 82 

Protease 

MMP13 Matrix metallo-

proteinase 13 
1632 572 37,200 830C 12 5 71 
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preparation (e.g. incomplete metal atom preparation, missing cofactors, or non-standard 

amino acids). A select few needed expert intervention to arrive at modest enrichment, such 

as adding crystallographic waters, changing histidine protonation, flipping ambiguous side-

chains such as asparagine, or increasing a local dipole moment on a specific residue (a 

technique we often use prospectively to improve polar complementarity43, 44). In five targets 

we incorporated prior docking preparations used for prospective ligand discovery: adenosine 

A2A receptor (AA2AR)44, β1 adrenergic receptor (ADRB1), AmpC β-lactamase (AMPC), C-

X-C chemokine receptor type 4 (CXCR4)3, and dopamine D3 receptor (DRD3)45. 

To increase scaffold diversity and to make smaller, more manageable ligand sets, we 

clustered the raw ChEMBL ligands by their Bemis-Murcko frameworks39. These frameworks 

include ring systems of the molecule and connecting linkers, minus any side fragments. For 

example, the 7th largest Murcko cluster in kinesin-like protein 1 (KIF11) has seven ligands, all 

close analogs (Figure 3.2.A). If at least 100 frameworks are present, then we include only 

the highest affinity ligand from each framework. If fewer are available, we raise the number 

of ligands selected from each framework until we obtain more than 100 molecules, trading 

diversity for quantity. Returning to kinesin-like protein 1, we extracted only 70 Murcko 

frameworks (Figure 3.2.B). Out of 276 raw ligands, the five largest Murcko clusters contain 

146 ligands (53%). Selecting the 2 or 3 highest affinity ligands from each framework results 

in 98 and 118 ligands, respectively, so we stop at 3 ligands per framework. In the process we 

still manage to remove 158 lower affinity compounds from highly redundant clusters. In a 

few targets more than 600 ligands remain even after clustering, so we reduce the affinity 

threshold below 1 μM, in the sequence (300, 100, 30, 10, and 3 nM), until fewer than 600 

frameworks are found. For example, in adenosine A2A receptor there are 3096 raw ligands 
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resulting in 1099 frameworks at 1 μM, but we can reduce the number of frameworks to 483 

using a 30 nM affinity threshold (Figure 3.2.C).  

 

Figure 3.2 Ligand Clustering 

A) The 7th largest Murcko cluster of kinesin-like protein 1 (KIF11), showing both the scaffold (left) 

and all seven member ligands. B) Number of ligands in each of the 70 KIF11 Murcko frameworks. 

We remove lower affinity compounds over-represented clusters (above the green line), while 

retaining 100 ligands. C) Number of adenosine A2A receptor (AA2AR) Murcko clusters is plotted 

against affinity threshold. Fewer than 600 clusters are present using a 30 nM affinity threshold. 
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To examine the effect of clustering on docking enrichments, we docked the three 

targets with the highest and lowest fractions of clustered to raw ligands, of those with 

enough ligands to pick one ligand per Murcko cluster. To measure docking performance we 

use LogAUC, an aggregate metric that gives early enrichment more weight. As described 

previously31, LogAUC is completely analogous to AUC, but in the transformed space after 

you have zoomed in on early enrichment by taking the semilog of the x-axis. In tryptase β1 

(TRYB1), the target with the highest clustered fraction, clustering substantially decreases the 

LogAUC by 6%, whereas in the other five targets clustering increases the LogAUC (Table 

A.3.2). The mean absolute deviation over the six targets is 3.7% LogAUC, but in all cases 

the raw and clustered ROC curves have similar shapes (data not shown). Overall, we believe 

the clustered sets provide a better measure of docking performance with lower docking 

effort, and will be used in the remainder of this work.  

A key problem with the original DUD decoys was that they sometimes closely 

resembled the ligands – occasionally even being confirmed as binders. Enforcing 2-D 

topological dissimilarity between decoys and ligands should eliminate this problem in 

principle, but in practice critical ligand binding “warheads” often remain in the decoy set, e.g. 

amidine groups in factor Xa (FA10). By identifying these warheads in three targets (Figure 

3.3.A), we investigated how to eliminate false decoys. In the original DUD, CACTVS 

fingerprints were used to select decoys with Tanimoto coefficients (Tc) to ligands below 0.9, 

which is roughly similar to using Daylight fingerprints with Tc below 0.715. In recent work31 

we used Daylight fingerprints with a more restrictive Tc < 0.5. Using this filter on the 

enhanced DUD ligand sets, we still see 39%, 53%, and 96% of possible warhead bearing 

molecules passing through in factor Xa (FA10), glycinamide ribonucleotide transformylase 

(PUR2), and thymidine kinase (KITH), respectively (Figure 3.3.B). Using Daylight with Tc 
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< 0.325, we reduce FA10 warheads below 1%, but still see 14% and 34% in PUR2 and 

KITH. Clearly different targets and even different ligands require different absolute 

thresholds. To circumvent this, we remove a percentage of the most similar decoys for each  

ligand, sorted by maximum Tc to any ligand. This allows the effective absolute threshold to 

 

Figure 3.3 Decoy Generation 

A) Three key “warhead” groups from factor Xa (FA10), glycinamide ribonucleotide transformylase 

(PUR2), and thymidine kinase (KITH). B) Fraction of warheads remaining is plotted against the 

dissimilarity method. The dissimilarity methods consist of a fingerprint (Daylight or ECFP4) and 

either a hard cutoff or a fraction of the most dissimilar decoys to be retained. C) Property 

distributions of estrogen receptor α (ESR1) for both the 383 ligands (blue) and the 20,685 property-

matched decoys (red).  
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vary. Removing 50% of the decoys with Daylight was better in KITH, while removing 50% 

with ECFP4 was better in FA10 and PUR2. The final procedure of using ECFP4 

fingerprints and removing 75% of the decoys, results in 0.2%, 0%, and 5.8% of warheads 

remaining, substantially reducing the number of false decoys. Having refined the decoy 

dissimilarity procedure on three targets where we could define a warhead, we then applied it 

to all generated decoys.  

In addition to reducing false decoys, the DUD-E decoy generation procedure is 

extensively revised. Each decoy derives from a particular ligand, where decoy property 

ranges around the ligands properties adjust to seven possible widths. This adapts to local 

chemical space around each ligand, allowing more closely matched decoys. Also, net charge 

is added to the property matching, as it is a critical in electrostatics and desolvation. The 

improved property-matching can be seen in the property histograms for estrogen receptor α 

(ESR1) (Figure 3.3.C), as well as in the averages and standard deviations for all the targets 

(Table A.3.3). Using ZINC46 for the potential decoy pool makes the decoys purchasable, 

enabling experimental testing for actual binding to the target. As a result of this work, this 

enhanced decoy procedure has been fully automated, and is available online to generate 

DUD-E style decoys for any user supplied list of input ligands at http://decoys.docking.org. 

The original DUD paper15 showed that a property-matched decoy set is more 

challenging for docking than a random collection of molecules. Therefore, we compared 

enrichments using property-matched decoys to those using a random drug-like background, 

which consisted of all ChEMBL12 ligands with affinities better than 10 μM. Switching from 

a drug-like background to DUD-E property-matched decoys does reduce average 

enrichment over the 102 targets, from 26.8% to 24.4% LogAUC (Table A.3.4). Yet for 

three targets, the property-matched sets unexpectedly led to much better enrichment, by 

84 

http://decoys.docking.org/


more than 15% LogAUC. In both glutamate receptor ionotropic kainate 1 (GRIK1) and 

purine nucleoside phosphorylase (PNPH), the ligands have low molecular weights (Table 

A.3.3) and thus score poorly against the generally larger ChEMBL12 molecules, just as 

Verdonk17 suggests. In urokinase-type plasminogen activator (UROK), the top of the drug-

like docking hit list is dominated by decoys with amidine “warheads”. Since these are likely 

binders, the increased property-matched enrichment results from fewer false decoys. Indeed, 

the 2.4% LogAUC reduction that occurs upon switching to property-matched decoys arises 

from these two competing factors: property matching the decoys reduces enrichment, and 

reduction of false decoys increases enrichment. 

 

Table 3.3 Decomposition of Enrichment Changes between DUD and DUD‐E 

Incremental 

Change 

All 

Original 

New Style 

Decoys 

Switch 

Ligands 

Switch Target 

Preparation 

Decoys DUD DUD-E DUD-E DUD-E 

Ligands DUD DUD DUD-E DUD-E 

Receptor 

Preparation 
DUD DUD DUD DUD-E 

Average 

LogAUC* 
14.8 19.7 16.4 22.8 

 

*Over the 37 common targets (details in Table A.3.5) 

 

Overall, enrichment as measured by average LogAUC is 1.5 fold higher in DUD-E 

compared to the original DUD. To understand this, we first isolated the change due to the 

revised decoy generation procedure. Using the original DUD ligands and target preparations, 

but switching from original decoys to these revised decoys substantially increases the average 

enrichment over the 37 directly comparable targets from 14.8% to 19.7% LogAUC (Table 

3.3, Table A.3.5). With the new adaptive property-matching procedure incorporating net 
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charge, the revised decoys might have been expected to lower enrichment, but instead we 

see an overall increase. Inspecting the docking hit lists, we observe a dramatic decrease in 

high scoring decoys that resemble ligands to a degree that they might actually bind. Indeed, 

all three targets with identifiable warheads that we used to tune the dissimilarity procedure 

show large increases in enrichment: FA10 increases from 13% to 28% LogAUC, PUR2 from 

40% to 62% LogAUC, and KITH from 1% to 32% LogAUC. If we now isolate the switch 

from original ligands and revised decoys to both DUD-E ligands and decoys, we see a 

moderate decrease in average enrichment from 19.7% to 16.4% LogAUC. We attribute this 

decrease to the larger, more diverse clustered ligand lists in DUD-E. Lastly, switching the 

target preparation itself substantially increases enrichment from 16.4% to 22.8% LogAUC, 

which demonstrates the power of the large-scale docking campaign used to select 

representative, dockable structures. The overall effect is to dramatically increase average 

enrichment from 14.8% LogAUC in original DUD to 22.8% LogAUC in the fully revised 

DUD-E.  

A central motivation for any benchmarking set is to test, at least retrospectively, new 

methods. We wanted to explore how our recent context-dependent ligand desolvation 

method31 behaved against the DUD-E benchmark. We therefore used it to re-examine the 

utility of solvent-excluded volume (SEV) ligand desolvation versus using no desolvation 

term (None), or using the full transfer free energy from water to hexadecane (Full). In our 

initial study of these terms on the 40 original DUD targets, SEV improved upon None by 

just 0.7% average LogAUC. Conversely, over the 102 DUD-E targets, SEV substantially 

outperforms None by 3.8% LogAUC on average, with average LogAUC values of 20.6, 14.3, 

and 24.4% for None, Full, and SEV desolvation methods, respectively (Figure 3.4, Table 

A.3.4). Despite these average trends, ROC curves on individual targets can vary significantly  
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Figure 3.4 Desolvation Enrichment Comparisons over DUD‐E  

Docking results over DUD-E as measured by LogAUC. “None” has no ligand desolvation term, 

“SEV” uses solvent-excluded volume ligand desolvation, “Thin” employs a thin low-dielectric layer 

in the electrostatic calculations. 
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among the various methods (Figure 3.5). As in the original desolvation analysis, some 

targets are more amenable to full desolvation, such as catechol O-methyltransferase (COMT) 

and purine nucleoside phosphorylase (PNPH), while others are more amenable to no 

desolvation, such as factor X (FA10) and glycinamide ribonucleotide transformylase (PUR2). 

Against the DUD-E benchmark, SEV desolvation not only outperforms the other methods, 

but performs well in both types of targets. This suggests that over a more comprehensive set 

of targets, and what we argue is a better set of ligands and decoys, the advantage of the more 

physically correct SEV ligand desolvation treatment becomes more pronounced.  

Electrostatic interaction with the protein is a large term that opposes ligand 

desolvation, with their relative balance being critical for binding. Since we do not know the 

binding pose of putative ligands prior to docking, we need to approximate the region of low 

dielectric the ligand might occupy to pre-compute electrostatic grids. Previously, we used the 

negative image of the receptor (computed by SPHGEN) to construct this low dielectric 

region, but manual tweaking was often required. In the large open binding pocket of 

CXCR4, we observed that using a thin layer of low-dielectric around just the edge of the 

protein allowed ligands to interact with it, while reducing the bulk dielectric perturbation at 

the center of its large binding pocket3. Here we explore using an automated thin dielectric 

layer strategy across the entire DUD-E set. Visually, these new automated thinner dielectric 

layers are more physically realistic, even in the rare case when they are effectively thicker 

than the previous layers (due to a water probe being able to penetrate the prior layer). With 

these thin low-dielectric layers (Thin), the average LogAUC over the 102 targets improves 

from 24.4% to 24.9% (Figure 3.4, Table A.3.4). Six targets use manually prepared dielectric 

layers (AA2A2, ADRB1, AMPC, CDK2, CXCR4, and DRD3), and thus do not directly 

reflect the difference between automated dielectric layers. Excluding those six enlarges the  
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Figure 3.5 Representative ROC Plots 

ROC plots using no desolvation (None), solvent-excluded volume ligand desolvation (SEV), the thin 

low-dielectric layer (Thin), or a drug-like background that consists of all ChEMBL12 ligands with 

affinities better than 10 μM (Drug-like). The black dotted line represents the results expected from 

docking ligands randomly. LogAUC percentages are reported in the legend text. 
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average difference from 0.5% to 1.0% LogAUC. Admittedly, these are moderate differences, 

but they exemplify how DUD-E may be used to test new docking methods, and hint that as 

we progress docking models, enrichment will improve. 

 

Here we present three representative targets in greater detail to display a magnified 

view of DUD-E. 

I. Mineralocorticoid Receptor (MCR) 

MCR has the lowest enrichment in DUD-E. Across all 11 automatically docked 

structures, enrichment of DUD-E ligands to its decoys was negligible. Thus we selected the 

same PDB structure as the original DUD, 2AA2 at 1.95 Å resolution. While enrichment 

using the new DUD-E sets was worse than random at -4% LogAUC and 36% AUC (Table 

3.2), using the original DUD ligands and decoys gave 45% LogAUC and 76% AUC. Despite 

poor enrichment in DUD-E, building and docking the crystal ligand from scratch, ignoring 

crystallographic information, results in good pose agreement (Figure 3.6.A). Taken together 

we can rationalize the enrichment differences, as 13 of 15 original ligands share a polycyclic 

scaffold with the well-docked crystal ligand, while the 94 new ligands have much more 

scaffold diversity. Thus the reduced enrichment in DUD-E reflects increased chemotype 

diversity, as a result of including more ligands and clustering them by Bemis-Murcko 

frameworks. Of the four lowest enriching targets in DUD-E, three are nuclear hormone 

receptors, with glucocorticoid receptor (GCR) and androgen receptor (ANDR) joining 

MCR. These receptors all have hydrophobic pockets with flexible binding site residues such 

as methionine and leucine, so that a single rigid receptor may be incapable of docking all of 

their ligands. Thus these targets may be good tests of flexible receptor docking methods. 
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II. Thyroid Hormone Receptor β1 (THB) 

THB produced good enrichment when a structure with an open sub-pocket was 

selected. Enrichment for the 16 automatically docked structures varies significantly, ranging 

from 13% (1NQ0) to 37% LogAUC (1Q4X). The lower enriching structures have larger 

cavities near Arg320 (right side of Figure 3.6.B), opening to solvent in 1NQ0; the higher 

enriching structures have larger cavities at the other end of the binding site near Met420 (left 

side), opening to solvent in 1Q4X. We selected the automated preparation of 1Q4X despite 

its modest 2.80 Å resolution, because Thr273 is pushed away by the crystal ligand, making 

the left sub-pocket larger. Using SEV desolvation then yields enrichment statistics of 36% 

LogAUC, 79% AUC, and a ROC-based enrichment factor at 1% (EF1) of 38 (Table 3.2). 

The re-docked crystal ligand has excellent pose agreement (Figure 3.6.B). 

 

Figure 3.6 Representative Docking Poses 

Crystallographic ligand rebuilt and docked. A-F) Crystal pose (magenta) is compared to docked pose 

(green). In C) more ligand conformations generated and re-docked pose shown (tan). Key hydrogen 

bonds shown (black dotted lines). Partially transparent protein surface colored by atom type. 
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III. Serine/Threonine‐Protein Kinase AKT (AKT1) 

AKT1 is a newly added kinase that demonstrates several considerations during PDB 

structure selection. Whereas ten PDB structures were automatically docked, four got worse 

than random enrichment. All four correspond to structures of the Pleckstrin homology (PH) 

domain instead of the kinase domain. The structure with the best normal AUC, 3O96, 

corresponds to an allosteric site at the interface of the PH and kinase domains, not the 

traditional ATP binding pocket. While the best enriching structure by LogAUC, 3CQW at 

2.00 Å, corresponds to the canonical site, its non-standard phospho-threonine amino acid 

evades the automated protocol. Preparing that residue manually results in 27% LogAUC, 

72% AUC, and 29 EF1 (Table 3.2). Nevertheless, the re-docked ligand (green) fails to 

generate the crystal ligand pose (magenta) (Figure 3.6.C). The ligand, however, is quite small 

with one central rotatable bond, and requires a specific rotation about that bond to fit in the 

binding site. Lowering the RMSD threshold for ligand conformation generation allows that 

rotation to be sampled, restoring the correct ligand binding pose (tan) (Figure 3.6.C). 

3.4 Discussion 

Docking remains a field that is judged by hit-rates prospectively, and enrichment 

retrospectively, because it cannot now hope to calculate affinities or even monotonic rank 

order. Like protein structure prediction, docking remains highly empirical, and yet we would 

argue also highly pragmatic. Its reliance on “enrichment” has driven the development of 

benchmarking sets, first explored by Rognan11 and Jain12, recently investigated by Boeckler32 

and Cavasotto34; the most widely used and cited of these remains the Directory of Useful 

Decoys (DUD) set15. Despite its widespread adoption DUD retains serious liabilities, 

including a lack of ligand diversity, lack of property-matching to net charge, and too many 
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false decoys. This enhanced DUD (DUD-E) was developed to address these shortcomings. 

By expanding the target list, DUD-E is substantially more representative of 

pharmacologically relevant space. By carefully linking ligands to decoys, and by releasing the 

methods online, we enable flexible use and even dynamic extension of DUD-E. We illustrate 

use of these benchmarking sets by examining our new ligand desolvation method, and finally 

we test a tweak to electrostatics to better balance this ligand desolvation. 

Addressing major DUD shortcomings, we increase ligand diversity, improve decoy 

property-matching, and reduce false decoys that are likely to bind. When more than 100 

ligands are available, DUD-E ligands are clustered by Murcko scaffold to reduce “analogue 

bias”. With at least 40 ligands for every target, DUD-E provides robust enrichment metrics 

such as AUC and LogAUC. By property-matching decoys to each ligand individually while 

dynamically adapting to local chemical space, DUD-E decoy embedding is improved. Net 

charge, a key factor in ligand desolvation and electrostatics, is now property-matched. By 

selecting only the most dissimilar decoys for each ligand, the prevalence of false decoys is 

reduced. 

We decomposed the changes between DUD-E and DUD, finding that DUD-E style 

decoys increase overall enrichment, new clustered ligands reduce enrichment, and new target 

preparations increase enrichment. Generating new decoys for the original DUD ligands 

increases average enrichment by 5% LogAUC, where we expected that the revised property-

matching procedure would lower enrichment, as presented in the original DUD paper. 

However, to remove false decoys we now select only the 25% most dissimilar decoys, which 

results in this increased enrichment. This effect is much larger than we anticipated, indicating 

the original DUD decoys likely contain many ligand-like molecules. As expected, the larger, 

more diverse, clustered ligand sets reduce average enrichment by 3% LogAUC. The new 
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target preparations, carefully selected from a docking campaign to over 3500 structures, 

increase average enrichment by 6% LogAUC.  

DUD-E is built to be a better platform for refinement and extension. Targets are 

independent of one another, both in ligand and decoy sets, allowing target addition, deletion, 

or replacement. The same protocol used to generate decoys for DUD-E, is available online 

to generate decoys for any target given only a list of ligand structures, which enables anyone 

to extend DUD-E to new targets of interest. The decoy server pulls directly from a 

purchasable subset of the ZINC database, inheriting its improvements and purchasing 

updates46. The final decoy selection from the applicable pool of decoys is random where 

possible, allowing the generation of multiple decoys sets to test over-fitting to the canonical 

DUD-E decoys. Each decoy belongs to one and only one ligand, so if one wants to filter a 

ligand, then the corresponding decoys can be easily removed. For example, we provide raw 

ligand and decoy sets before clustering by Murcko frameworks. If a different clustering 

method was desired, which selected a different subset of the raw ligands, then the 

corresponding decoys could be retained (furthermore we provide the python script used to 

generate clustered subsets from raw sets). We also include extra data that allows some design 

decisions to be altered, for instance we include the marginal ligands which are active above 

our 1 μM cutoff. 

DUD-E should provide a more robust benchmarking set for exploring new docking 

methods, so we were keen to use it to explore the balance of ligand desolvation and 

electrostatics. Indeed, our new solvent-excluded volume (SEV) ligand desolvation algorithm 

shows a larger improvement over neglecting ligand desolvation using DUD-E, as compared 

to the original DUD. The larger increase when using the more physically realistic algorithm 

gives us further confidence in both the desolvation treatment and the new DUD-E dataset. 
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We finally use DUD-E to confirm a new hypothesis that a thin, more physically realistic 

dielectric layer, will help to better balance electrostatics with desolvation. 

 Certain caveats merit airing. Most importantly, DUD-E is a large dataset synthesized 

from several source databases, each of which is continuously evolving and improving. Thus 

individual errors are expected, though usually traceable to the source database at the time 

DUD-E was constructed. Also, some arbitrary choices and simplifying assumptions were 

made in the effort to provide one canonical dataset useful to compare docking algorithms. 

For instance, we assume a single PDB code can represent the target, but some targets are 

highly flexible, or they contain both orthosteric and allosteric binding pockets. 

Fundamentally, DUD and DUD-E are designed to measure value-added screening 

performance of 3-D methods over simple 1-D molecular properties. Decoys that might bind 

are removed using 2-D ligand similarity, so DUD-E is inappropriate to test 2-D methods. 

Through its construction, ligands light up against DUD-E decoys using these 2-D similarity 

methods, which create an artificially favorable enrichment bias for them. A final caution is 

that to filter more false decoys in DUD-E, we keep only a quarter of the most highly 

dissimilar decoys. However, while we show that this increased dissimilarity removes false 

decoys, it could also contribute to artificial increases in docking enrichment.  

Notwithstanding these caveats, DUD-E is substantially improved over the original 

DUD. It is a larger, more diverse dataset with better matched decoys that resemble ligands 

less, correcting many flaws in its predecessor. Though we anticipate that it will be most 

widely used in the instantiation we describe here, it was developed with the idea that it could 

be flexibly extended and evolved; the tools to do so are even provided online 

(http://dude.docking.org). We hope that it and its descendants will provide a useful tool for 
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docking evaluation in the community, until such time as a more fundamental measurement 

of docking performance is possible. 

3.5 Methods 

I. ChEMBL and RCSB PDB data extraction 

This enhanced DUD database has been constructed by combining ligand data from 

ChEMBL38 and structural data from RCSB PDB40. Ligands assigned to protein targets 

(ChEMBL confidence score ≥ 4) with affinities (IC50, EC50, Ki, Kd and log variants thereof) 

of 1 μM or better were extracted from the ChEMBL09 database38. Similarly, we assigned 

experimental decoys as molecules with no measurable affinity at 30 μM or higher (“>” 

relation only). The remaining ligands with affinities above 1 μM, and decoys with no 

measurable affinity below 30 μM, are included for completeness and designated “marginal”. 

Via ChEMBL, ligands are associated with a particular target sequence by UniProt41 accession 

code, and then mapped47 from UniProt accession codes to protein data bank (PDB) 

structures (X-ray only) using http://www.uniprot.org/docs/pdbtosp.txt, obtained on 

February 23, 2011. 

II. Target Selection Docking 

Preliminary docking calculations were performed on each PDB structure that 

mapped to ChEMBL ligands and contained a single, unambiguous co-crystal ligand as 

prepared by DOCK Blaster42. Property-matched computational decoys were generated by 

the automated decoy generation procedure below, using Daylight fingerprints with a 

Tanimoto coefficient (Tc) threshold below 0.5. These decoys were docked and compared to 

their cognate ligands using DOCK 3.6 with solvent-excluded volume (SEV) ligand 
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desolvation31. Balancing the parallel goals of diversity, drug relevance, many ligands and 

structures, and at least modest automated docking enrichment, we selected 119 tentative 

targets for the new DUD. This list was reduced to the final 102 targets by factors such as 

ligand and PDB duplication between targets (e.g. FNTB duplicates FNTA), low resolution 

structures (RAF1), sterically constrained binding sites (NR1H2, THA), or over-

representation (MK08, MTOR). 

III. Target Preparation 

For each target, we assembled all UniProt accession codes (species) with any raw 

ChEMBL compounds (ligands, decoys, marginal ligands, or marginal decoys). For only those 

accession codes, structures were extracted using the ChEMBL to PDB mapping, except 

P07700 was manually added to ADRB1 to include six more rare structures for that GPCR. 

This procedure neglects those PDB structures that belong to an accession code having no 

ChEMBL compounds. For example, 1KIM is the PDB structure of thymidine kinase 

(KITH) in the original DUD. This KITH structure is from herpes virus (UniProt P03176), 

an accession code with no raw compounds extracted from ChEMBL, and is thus not 

included in the ChEMBL/PDB intersection used to construct the new DUD. Still, 5025 

PDB codes were sent to an updated DOCK Blaster pipeline for automated docking 

preparation. In some cases, an unambiguous ligand could not be found to indicate the 

binding site, but we were able to assign 565 additional ligands by manually inspecting over 

1300 structures. Ultimately 3692 structures completed input grid preparation, and all but 2 

finished docking and enrichment analysis. Clustered ligands sets were docked to property-

matched decoys (both described below), using ECFP4 fingerprints and removing the most 

similar 75% of queried decoys. DOCK 3.6 was run using SEV ligand desolvation (as below). 
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For each target, enrichment, resolution, and organism were collected and sorted by 

enrichment in pdb_analyze.txt, available online at http://dude.docking.org. Crude notes on 

the selection process are recorded in pdb_selection.txt and the picked structure is listed in 

pdb_blessed.txt. AA2AR and DRD3 docking preparations were provided by Jens Carlson44, 

45, CXCR4 partially by Dahlia Weiss3, ADRB1 by Peter Kolb (personal communication), and 

AMPC by Sarah Barelier, Oliv Eidam, and Inbar Fish (unpublished results).  

IV. Ligand Preparation 

To prepare ligand sets for each target, ChEMBL affinities and log variants were first 

normalized to nM units. Salts were removed, charges were normalized, and properties were 

calculated using Molinspiration’s mib package (www.molinspiration.com). Ligands with 600 

Da or higher molecular weight or with 20 or more rotatable bonds were removed. Smiles 

were put in canonical form using OpenEye’s OEChem software48. Ligand sets from each 

species were combined, sorted by ascending normalized affinity, and then made unique 

based on canonical smiles. The same procedure was used to collate the experimental decoys, 

marginal ligands, and marginal decoys. For AmpC β-lactamase (AMPC), an original DUD 

target, the ChEMBL09 ligands are covalent in nature. To identify non-covalent ligands, we 

manually compiled ligands6, 43, 49, 50 with affinities below 5 mM and experimental decoys43, 51 

from the literature. 

V. Ligand Clustering 

To reduce the sometimes large number of ChEMBL ligands down to a manageable 

size, while also increasing scaffold diversity as suggested by Good and Oprea27, we clustered 

the ligands by their Bemis-Murcko frameworks39, as generated by Molinspiration’s mib. If 

there were 100 or more frameworks, we chose only the highest affinity ligand from each. If 
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there were fewer than 100 Murcko frameworks, we increased the number of highest affinity 

ligands taken from each until we achieved at least 100 ligands (or until all ligands were 

included). Conversely, if there were more than 600 Murcko frameworks, then we decreased 

the ligand affinity threshold in the sequence [1 μM, 300 nM, 100 nM, 30 nM, 10 nM, 3 nM] 

until fewer than 600 frameworks were present, where we then took the highest affinity ligand 

from each framework. While clustered ligand sets are the default, the full unclustered ligand 

sets and corresponding decoys are available. The script (subset_decoys.py) used to select the 

clustered subset given the ligand ids is provided with the full ligand set to enable other 

clustering algorithms or filtering methods to be substituted. 

VI. Automated Decoy Generation 

As in the original DUD, we property-matched decoys to ligands using molecular 

weight, estimated water-octanol partition coefficient (miLogP), rotatable bonds, hydrogen 

bond acceptors, and hydrogen bond donors, plus we added net charge. We generated all 

ligand protonation states in pH range 6-8 using Schrödinger’s Epik with arguments “-ph 7.0 

-pht 1.0 -tp 0.20”. Molecular properties were computed using Molinspiration’s mib. For each 

unique set of 6 properties, we aimed to generate 50 matched decoys. For example, a single 

input ligand predicted to have 2 alternate charges would get 50 decoys property-matched to 

each charge. Next a pool of decoys was selected from ZINC46 using a dynamic protocol that 

adapted to local chemical space by narrowing or widening windows in seven steps around 

the 6 properties. The goal was to return 3000 to 9000 potential decoys that matched the 

ligands’s reference protonation state (predicted most prevalent form at pH 7.05). In the final 

decoy procedure, ECFP4 fingerprints were generated by Scitegic’s Pipeline Pilot for ligands 

and potential decoys. The decoys were sorted by their maximum Tc to any ligand and the 
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most dissimilar 25% were retained through this dissimilarity filter. We then remove duplicate 

decoys between ligands by sorting decoys from least to most duplicated, and assigned each 

decoy to the ligand which has the least number of decoys already assigned. This ensures 

unique decoys were spread across the ligands as evenly as possible. Finally, if available, 50 

decoys were picked randomly from this de-duplicated list. 

VII. Original DUD Comparison 

For the original DUD comparison, we downloaded ligands and decoys from 

dud.docking.org, and prepared docking flexibases with our modern ZINC toolchain46. The 

original DUD target preparations were copies of the original, modified to perform SEV 

desolvation calculations as described previously31. We also generated DUD-E style 

automated decoys and flexibases for the original DUD ligands. The analysis was performed 

on the 37 directly comparable targets, excluding the original targets PDGFrb, ERagonist, and 

ERantagonist.  

VIII. Docking Calculations 

Except as noted, docking calculations were performed with DOCK 3.6 and solvent-

excluded volume (SEV) ligand desolvation as described previously31. Ligand conformations 

were generated by OpenEye’s Omega52. For sampling, the minimum number of graph 

matching nodes was changed to 3, and ligand overlap was changed to 0.1. Ligands were 

limited to between 5 and 100 heavy atoms. The timeout for an individual ligand hierarchy 

was 180 s. We performed 200 steps of simplex minimization, with initial translations of 0.2 

Å and initial rotations of 5°. The thin dielectric layer Delphi spheres were created by walking 

out each DMS (http://www.cgl.ucsf.edu/Overview/ftp/dms.zip) surface normal by 1.8 Å 
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and placing a sphere. This thin sphere layer is then used as input to makespheres1.pl in place 

of the usual SPHGEN spheres. The random background calculations were performed using 

SEV desolvation by seeding the DUD-E ligands into the entire ChEMBL12_10 subset of 

ZINC, which includes 273,375 ligands with annotated affinities below 10 μM. 

IX. Docking Metrics 

The area under the curve (AUC) of the receiver operating characteristic (ROC) is 

one common metric to measure docking performance. However, ROC plots often use a 

semi-log transformation of the x-axis to zoom in on early changes. As described previously31, 

LogAUC is completely analogous to AUC in this transformed space, measuring the 

percentage of the unit area under the curve. Formally, we use the adjusted LogAUC0.001 here, 

which spans three decades of log space and subtracts the LogAUC of the random curve 

(14.462%) so that random enrichment is 0%. We typically refer to the adjusted LogAUC0.001 

as either adjusted LogAUC or simply LogAUC. The ROC-based enrichment factor at 1% 

(EF1) is the % of ligands found when 1% of the decoys have been found, and is preferred 

over traditional enrichment factors53. 
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Chapter 4: 

Future Perspectives 

 

Science is always wrong. It never solves a problem without creating ten more.  

-- George Bernard Shaw 

 
By its very nature, the process of answering scientific questions raises new thoughts 

and leads to more hypotheses. Here I attempt to capture some of my musings pertaining to 

DOCK 3.6 itself, the balance of desolvation and electrostatics, and some possible ways to 

approach receptor desolvation. 

4.1 A DOCK State of Mind 

With solvent-excluded volume (SEV) based ligand desolvation, I believe the scoring 

function of DOCK is fast and yet surprisingly useful. The two pathologies we now 

experience most are ligand internal clashes and stranded ligand polar groups. Adding an 

internal energy scoring term would remove the ligand clashes we observe; yet incorporating 

this term permanently into DOCK will require changes to the conformational hierarchy. As 

they are large anti-correlated forces, treatment of ligand internal energy should 

simultaneously include desolvation to have the largest impact, for example in the global 

energy minimum search. Ironically, I believe that incorporating and balancing receptor 

desolvation will likely help with the stranded polar groups of the ligands. Any residual 

tendency to stand polar groups after incorporating receptor desolvation may be due to 

double counting ligand dispersion forces, by also including them in the non-polar ligand 
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desolvation term. Other scoring terms, especially entropy terms, are on the critical path 

towards enabling molecular docking to someday predict ligand binding affinities. However, I 

think the areas where DOCK fails completely today do not correspond to scoring 

deficiencies, but instead to inadequate sampling of the local environment.  

In creating DUD-E, I observed that the targets that were most recalcitrant to 

DOCK were typically either highly flexible proteins, or those that involved many water 

mediated interactions. While the lab has studied both of these phenomena academically1, 2, 

those methods have not been automated and efficiently incorporated into mainline DOCK. 

I believe the ability to address them routinely in DOCK is both worthwhile and sorely 

needed. To treat these effects in the past, we used multiple scoring grids, assumed to be 

independent. For receptor flexibility I think this is appropriate, but a method to 

automatically generate the relevant conformations is needed, taking as input an ensemble of 

receptor structures. However, I think water mediated interactions are a more natural fit to 

the ligand conformation ensemble. The conformational hierarchy could be extended past the 

physical ligand itself, into optional water shells beyond. With internal energy implemented, 

you could even incorporate estimates of the energy differences due to adding or removing 

the optional water molecules.  

4.2 Balance of Ligand Desolvation and Electrostatics 

 The balance of ligand desolvation and electrostatics has been critical in getting ligand 

desolvation to perform well. To date, however, my efforts have focused more on the ligand 

desolvation side. While SEV based ligand desolvation is near the right magnitude for 

balance, there are qualitative indications that it slightly over weights desolvation relative to 

electrostatics. This is surprising since we neglect even more solvent-excluded volume that 
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arises from neighboring ligand atoms. Thus I think the solution lies not on the ligand 

desolvation side, but on the electrostatics side.  

My hypothesis is that incorporating the SEV approximation into DelPhi, or another 

Poisson-Boltzman solver, will help docking in two ways. First, it will allow us to treat the 

dielectric boundary identically in the electrostatics and desolvation calculations, which will 

help the balance of electrostatics and desolvation. Second, it will reduce or eliminate our 

dependence on the kludge of dielectric spheres, which effectively require us to know where 

the ligands will bind before docking begins. Though this would be technically challenging, 

the optimized sevsolv code shows that it is possible to do the repeated surface generation 

and numerical integration fast enough. 

There are also a few things I believe would further improve our ligand desolvation 

term. First, we could help the balance with electrostatics by using more of the same 

parameters. While I modified the receptor radii of ligand desolvation to better match 

electrostatics, this was just a poor compromise because DelPhi has more atom types. Ideally 

sevsolv would just read the DelPhi parameter file and use its atom types directly. Second, in 

chapter one I explored the use of separate hydrogen and heavy atom grids for SEV 

desolvation. While this helped the overall average LogAUC by 0.8% in DUD, it has no 

effect (< 0.1%) on the overall enrichment in DUD-E. However, looking at the target-by-

target breakdown, I see that even in DUD-E the targets with positively charged ligands get 

substantially better (5% LogAUC range), while the targets with negatively charge ligands get 

substantially worse. I hypothesize that the reduced performance from the negative targets 

arises from increasing the heavy atom radius from 1.4 to 1.8 Å. We might be able keep the 

improvements for positive targets by leaving the hydrogen atom radius at 1.0 Å. , while 

hurting the negative targets less by reducing the heavy atom radius closer to 1.4 Å.. 
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Additionally, I think this sensitivity to increases in heavy atom radius is related to the fact 

that SEV desolvation already tends to be over-weighted relative to electrostatics. 

4.3 Adding Receptor Desolvation 

In the limit where ligands of a similar size bind to the exact same protein binding 

site, receptor desolvation differences between ligands are small. However, receptors typically 

accommodate a distribution of ligand sizes, and in many actual drug targets they contact 

multiple independent side pockets. Therefore receptor desolvation may be worth pursuing, 

so here I consider two alternate strategies to account for receptor desolvation: 1) flip our 

current ligand desolvation term around, or 2) use the novel, but unproven method, of 

Solvation Energy Density Occlusion (SEDO). 

In the first approach, we keep our ligand desolvation term and complement it with a 

similar scheme for the receptor. Due to the size of the protein, we would need to replace the 

semi-empirical AMSOL calculations with a pairwise-decomposable MM-GB/SA 

computation in order to get the initial polar and non-polar atomic contributions to the 

receptor’s desolvation energy. Then we could use the same volume-based approximation to 

scale the contributions as in chapter one, but now the ligand volume elements desolvate the 

receptor atoms. The receptor desolvation would then be given by: 

 ∑ ∑
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ Δ
=Δ

recnotligin

k

rec

j jk

R
jjR

desolv r
GadVG

_,_

44π  (Equation 1) 

where dV is the volume of a grid element, ΔGj
R is atomic contribution of receptor atom j, aj 

is the receptor atomic radii, and rjk is distance between receptor atom j and ligand volume 

element k. The part in brackets would be pre-calculated and stored on a grid. During 
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docking we would determine the volume elements of the ligand (and the excluded volume) 

and sum their desolvation contributions off the receptor desolvation grid. This approach is 

symmetrical to our ligand desolvation term, and could potentially be speed up by replacing 

the volume element summation with analytical pairwise approximations similar to those used 

in GB methods3. Another advantage of this approach is that it simply scales the atomic 

contributions ΔGj
R, so they could be enhanced with more sophisticated estimates (like 

explicit solvent) in the future. 

In the second approach, we could add a receptor desolvation term based on the 

Solvation Energy Density Occlusion (SEDO) method4. Here we write the electrostatic 

component of the desolvation free energy without approximation as (Equation 2), where S 

is the solvation energy density, given by (Equation 3). 

∫=Δ
expol dVxSG )(r    (Equation 2)  

( )wathexhexwatS DEDE ⋅−⋅=
π8
1

   (Equation 3) 

If we consider the approach of a second molecule, its effect on the first causes S to go to 

zero in the second molecule’s interior, as well as perturbing S around the second molecule. 

In SEDO we keep the first solvent occlusion effect while neglecting the second perturbation 

effect, giving (Equation 4) below: 

∫−=Δ
lig rec

R
desolv dVxSG )(r    (Equation 4) 

We can thus use the Poisson-Boltzman solver DelPhi to pre-compute S once for the 

receptor, and perform the volume integration during docking to estimate receptor 
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desolvation. The advantage of this approach is that it is conceptually simple, if indeed it can 

still be accurate enough after neglecting the perturbation of the second molecule.  
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Appendix A:  

Supporting Information 

 

A.1 Chapter 1 Supporting Information 

Table A.1.1 DUD Matched Decoys – Adjusted LogAUC versus AUC 

Adjusted LogAUC versus AUC compared against matched decoys over the 40 DUD targets. We also 

provide the ROC-derived enrichment factors (EF) at 1 and 10 %. “None” contains no ligand 

desolvation term, “SEV” uses a single context-dependent ligand desolvation map, “Full” uses the full 

ligand transfer free energy, and “Hsolv” uses two separate maps for hydrogen and heavy atoms. 
 

Method None SEV 

Metric LogAUC AUC EF1 EF10 LogAUC AUC EF1 EF10 

Average 14.3 68.8 8.6 3.3 15.0 68.7 11.6 3.2 

ace 7.9 59.7 4.1 3.1 11.1 59.5 12.2 2.9 

ache 6.1 67.4 0.0 1.2 8.5 68.4 0.0 2.6 

ada 10.4 66.0 4.4 2.6 2.3 59.2 0.0 0.4 

alr2 10.7 63.3 4.4 3.5 13.4 65.0 4.4 3.5 

ampc 0.5 58.7 0.0 0.5 6.7 66.9 0.0 1.0 

ar 7.1 58.9 5.4 2.3 6.3 58.9 4.1 1.9 

cdk2 26.7 78.7 20.0 4.8 25.7 78.0 22.0 5.2 

comt 14.9 83.3 0.0 2.7 36.8 92.0 27.3 7.3 

cox1 9.2 59.7 8.3 2.5 10.1 58.0 12.5 2.5 

cox2 28.6 81.6 28.4 5.8 32.1 81.2 29.7 5.3 

dhfr 38.3 88.4 24.4 8.3 32.1 83.7 26.9 6.1 

egfr 13.8 72.9 6.1 3.5 28.3 85.6 21.7 5.4 

er_agonist 10.8 66.0 3.0 3.0 7.7 63.9 0.0 2.4 

er_antagonist 18.0 69.2 18.0 3.1 22.1 70.7 23.1 3.6 

fgfr1 -1.5 41.7 0.9 1.2 -3.4 47.1 0.0 0.3 

fxa 19.6 80.3 12.1 3.9 16.5 78.4 7.1 3.4 

gart 38.8 89.4 19.1 7.1 48.6 90.5 66.7 7.6 

gpb 5.4 65.3 0.0 1.2 4.3 63.2 0.0 1.0 

gr 4.6 53.6 7.7 1.2 3.5 54.3 3.9 1.8 
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Method None SEV 

Metric LogAUC AUC EF1 EF10 LogAUC AUC EF1 EF10 

hivpr 5.4 52.0 3.8 2.6 11.6 56.2 13.2 2.8 

hivrt 6.0 59.9 2.6 1.8 8.1 60.5 7.7 2.3 

hmga 3.5 50.7 0.0 2.3 3.5 49.2 0.0 2.0 

hsp90 18.1 82.2 4.4 3.5 14.5 71.4 17.4 2.2 

inha 15.7 73.9 7.1 3.4 7.1 67.3 0.0 2.2 

mr 42.0 72.0 53.3 6.0 40.0 72.0 46.7 6.0 

neua 35.5 90.8 12.2 7.1 27.3 75.3 18.4 6.5 

p38 12.6 69.8 4.3 3.3 14.2 73.4 4.7 4.0 

parp 30.5 88.9 12.1 7.9 28.2 86.0 12.1 6.7 

pde5 12.4 65.5 16.0 3.0 17.6 72.1 16.0 2.8 

pdgfrb 1.4 55.0 1.3 1.2 3.0 56.7 2.6 1.3 

pnp 7.1 62.1 4.0 2.0 10.3 62.7 12.0 2.0 

ppar 0.2 55.4 0.0 0.6 1.2 57.4 0.0 0.6 

pr -0.9 50.0 0.0 0.7 -2.0 49.7 0.0 0.4 

rxr 33.2 80.1 30.0 6.5 34.3 77.2 40.0 4.5 

sahh 14.2 80.1 0.0 3.8 16.1 81.8 0.0 4.4 

src 2.9 54.1 3.2 1.1 2.9 59.0 0.7 1.4 

thrombin 15.7 75.6 6.2 4.0 13.2 68.7 6.2 2.8 

tk 15.4 77.4 4.6 3.2 10.2 75.3 0.0 2.7 

trypsin 20.9 87.0 6.8 2.7 16.2 80.3 2.3 4.1 

vegfr2 8.6 65.6 5.5 2.3 9.8 71.8 2.7 2.2 

 

Method Full Hsolv 

Metric LogAUC AUC EF1 EF10 LogAUC AUC EF1 EF10 

Average 10.9 66.6 6.2 2.6 15.8 68.4 13.2 3.3 

ace 6.4 56.4 6.1 2.0 11.5 59.8 12.2 2.9 

ache 4.3 64.4 0.0 1.1 10.9 70.7 1.0 3.2 

ada 2.0 58.4 0.0 0.4 3.1 59.9 0.0 1.3 

alr2 14.4 71.5 4.4 3.9 13.6 67.1 4.4 3.5 

ampc 1.3 58.3 0.0 0.0 7.5 70.1 0.0 1.4 

ar 7.9 60.2 6.8 3.0 7.1 59.5 4.1 2.4 

cdk2 18.5 70.7 12.0 4.0 26.2 77.1 24.0 4.6 

comt 22.8 79.6 9.1 4.6 39.8 92.9 36.4 8.2 

cox1 5.0 59.0 0.0 2.9 10.3 57.4 16.7 2.5 

cox2 30.6 81.2 29.0 5.5 32.3 81.1 29.4 5.4 
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Method Full Hsolv 

Metric LogAUC AUC EF1 EF10 LogAUC AUC EF1 EF10 

dhfr 21.9 80.6 7.0 5.7 47.5 86.6 50.8 7.2 

egfr 23.7 79.2 14.8 5.1 28.4 83.1 24.2 5.2 

er_agonist 9.4 67.0 1.5 2.5 7.7 64.0 0.0 2.2 

er_antagonist 11.5 72.8 5.1 1.8 22.6 74.0 23.1 3.6 

fgfr1 1.8 61.3 0.0 0.7 -7.1 34.4 0.0 0.1 

fxa 9.9 70.3 1.4 2.5 19.5 78.1 13.5 3.8 

gart 10.1 77.0 0.0 1.0 44.8 89.6 47.6 7.6 

gpb 3.3 62.7 0.0 1.0 3.7 62.1 0.0 0.8 

gr 2.2 54.5 1.3 1.8 3.4 54.4 5.1 1.5 

hivpr 10.3 59.6 13.2 2.3 10.7 52.9 15.1 2.5 

hivrt 7.1 60.1 5.1 1.8 7.1 59.7 7.7 1.8 

hmga 7.5 61.6 2.9 2.6 2.8 49.1 0.0 1.7 

hsp90 11.4 70.1 4.4 2.6 13.1 69.4 13.0 2.2 

inha 3.9 59.1 0.0 1.8 17.5 74.4 11.8 3.8 

mr 34.1 70.9 33.3 6.0 41.8 72.5 53.3 6.0 

neua -4.0 38.6 0.0 1.0 35.0 75.3 30.6 6.9 

p38 16.7 74.5 9.8 3.7 14.7 71.2 6.6 3.9 

parp 16.4 75.9 6.1 3.9 25.7 86.1 9.1 7.0 

pde5 10.2 67.0 6.0 3.0 18.0 70.8 12.0 2.8 

pdgfrb 3.6 58.3 2.6 1.2 2.8 56.4 1.9 1.2 

pnp 10.5 63.5 8.0 2.0 10.0 62.6 16.0 2.0 

ppar 0.8 56.3 0.0 0.7 0.9 57.0 0.0 0.6 

pr 0.9 56.0 0.0 0.4 -1.2 51.6 0.0 0.4 

rxr 35.6 78.2 45.0 6.5 34.0 77.4 40.0 5.5 

sahh 17.0 82.2 0.0 5.0 15.6 81.3 0.0 4.7 

src 3.6 63.0 0.7 1.0 0.7 51.7 1.3 1.3 

thrombin 12.1 67.0 6.2 2.5 14.9 71.0 12.3 3.4 

tk 8.7 74.2 0.0 1.4 10.1 75.4 0.0 2.3 

trypsin 14.2 76.0 4.6 3.0 15.8 80.9 2.3 3.4 

vegfr2 8.9 67.9 2.7 2.1 9.1 65.9 4.1 2.1 
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Figure A.1.2 Using Separate Hydrogen and Heavy Atom Desolvation Grids 

Graph of adjusted LogAUC against matched decoys, showing the effect of using SEV desolvation 

with separate desolvation maps for hydrogen and heavy atoms (hydrogen-sev). 
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Figure A.1.3 All DUD Enrichment Plots versus Matched Decoys  

ROC plots for each of the 40 DUD targets against matched decoys. Each legend contains the 

adjusted LogAUCs. 
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Figure A.1.3 All DUD Enrichment Plots versus Matched Decoys (Continued) 
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Figure A.1.3 All DUD Enrichment Plots versus Matched Decoys (Continued) 
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Figure A.1.3 All DUD Enrichment Plots versus Matched Decoys (Continued) 
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Figure A.1.3 All DUD Enrichment Plots versus Matched Decoys (Continued) 
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Figure A.1.4 Effect of Changing Grid Parameters 

Fractional desolvation for a fully desolvated atom (centered in a 48 Å cube of carbon atoms spaced 2 

Å apart). A) Smaller grid resolutions indicate greater sampling, resulting in better exclusion of grid 

points inside the probe ligand atom. B) Increased integration cutoffs lead to fractional desolvation 

values closer to 1 (as expected). 
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Figure A.1.5 Rank Comparison 

Comparison of ligand (blue) and own matched decoy (red) ranks when using “none” or “sev” 

desolvation. A) gart, B) dhfr, C) cox1, and D) fxa. 

A) B)

C) D)
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I. Analysis of Error in Self‐Energy Term 

Here we estimate the error in the self-energy term of the electrostatic component of 

ligand desolvation that arises from the fact that we neglect the ligand component of 

fractional desolvation. In generalized-born (GB) theory, the “true” self-energy term of ligand 

desolvation would be given by equation A.1.1, where εp and εW are the protein and water 

dielectrics, and αi
L and αi

LR are the effective born radii of the ligand alone and the ligand-

receptor complex. Our context-dependent approximation is to multiply the fractional 

desolvation, including the receptor and solvent-excluded volume components but not the 

ligand component, by the transfer free energy computed by AMSOL. Since AMSOL is based 

on generalized-born, our self-energy term is approximately that in equation A.1.2, which 

simplifies to equation A.1.3. The error is thus given by the difference of equations A.1.3 and 

A.1.1, as shown in equation A.1.4. 

(Equation A.1.1) 
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(Equation A.1.4) 
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We can then use our sevsolv program with the dielectric boundary set to the 

molecular surface to numerically integrate the effective born radii of all the ligand atoms, in 

all three situations above: on the ligand alone, on the receptor alone, and on the final ligand-

receptor complex. Additionally, we can estimate the effective born radii using “sev” method, 

which includes the receptor and atomic solvent-excluded volume. In this table, we estimate 

this error for the best pose of the rebuilt and re-docked crystallographic ligand of Factor Xa 

in DUD (pdb code 1F0R). We compute the error in the energies by scaling with the total 

atomic transfer free energy as computed by AMSOL instead of Aqi
2 as found in equation 

A.1.4. 

 

Table A.1.6: Analysis of Error in Self‐Energy Term 

Atom 

Total Atomic 

Desolvation 

(kcal/mol) 

1/alpha 

(LR) 

1/alpha 

(L) 

1/alph

a (R) 

a/(alpha(L) 

* alpha(R)) 

Error 

(1/alpha(LR)) 

Error 

(kcal/ 

mol) 

N1 -9.60 0.29 0.35 0.65 0.32 0.03 -0.32 

C2 0.62 0.19 0.30 0.59 0.25 0.06 0.04 

C3 -2.23 0.17 0.34 0.51 0.24 0.07 -0.16 

C4 1.09 0.14 0.34 0.47 0.22 0.08 0.09 

N5 -6.84 0.16 0.31 0.52 0.22 0.06 -0.43 

C6 4.84 0.20 0.33 0.57 0.26 0.07 0.32 

O7 -4.38 0.29 0.44 0.56 0.34 0.05 -0.24 

C8 2.00 0.14 0.35 0.45 0.22 0.08 0.15 

H9 0.85 0.19 0.38 0.56 0.29 0.10 0.09 

H10 1.87 0.16 0.42 0.44 0.26 0.10 0.18 

H11 1.67 0.25 0.43 0.52 0.32 0.06 0.11 

H12 2.48 0.11 0.42 0.41 0.24 0.13 0.33 

H13 1.47 0.18 0.43 0.41 0.25 0.07 0.10 

S14 12.58 0.27 0.32 0.65 0.29 0.03 0.33 

H15 6.56 0.40 0.46 0.66 0.42 0.02 0.13 
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Atom 

Total Atomic 

Desolvation 

(kcal/mol) 

1/alpha 

(LR) 

1/alpha 

(L) 

a/(alpha(L) 

* alpha(R)) 

Error 

(1/alpha(LR)) 

Error 

(kcal/ 

mol) 

1/alph

a (R) 

C16 -3.10 0.25 0.31 0.67 0.29 0.04 -0.11 

O17 -0.56 0.29 0.41 0.60 0.35 0.05 -0.03 

O18 -0.09 0.42 0.45 0.69 0.43 0.01 0.00 

C19 -1.60 0.27 0.39 0.55 0.30 0.03 -0.04 

C20 -1.01 0.20 0.38 0.49 0.26 0.06 -0.06 

C21 -1.21 0.21 0.33 0.57 0.26 0.05 -0.06 

C22 -0.67 0.28 0.33 0.66 0.30 0.03 -0.02 

C23 -0.35 0.31 0.35 0.69 0.34 0.02 -0.01 

N24 -0.80 0.36 0.40 0.68 0.38 0.02 -0.02 

C25 -0.01 0.34 0.40 0.65 0.36 0.02 0.00 

H26 2.96 0.38 0.52 0.52 0.38 0.00 0.01 

H27 1.63 0.17 0.50 0.41 0.29 0.12 0.20 

H28 0.70 0.44 0.46 0.70 0.45 0.01 0.01 

H29 2.64 0.49 0.53 0.68 0.50 0.01 0.02 

S30 -0.34 0.21 0.35 0.55 0.27 0.06 -0.02 

C31 -2.50 0.10 0.31 0.39 0.17 0.07 -0.17 

H32 2.19 0.22 0.46 0.44 0.29 0.07 0.16 

H33 0.61 0.15 0.44 0.42 0.26 0.11 0.07 

C34 -1.41 0.10 0.35 0.35 0.17 0.07 -0.09 

C35 -3.02 0.08 0.36 0.28 0.14 0.06 -0.19 

C36 0.12 0.07 0.33 0.28 0.13 0.06 0.01 

C37 -4.36 0.07 0.38 0.20 0.11 0.04 -0.17 

C38 2.14 0.07 0.40 0.18 0.10 0.03 0.07 

C39 9.29 0.08 0.36 0.24 0.12 0.04 0.37 

C40 -3.51 0.08 0.31 0.27 0.12 0.04 -0.15 

C41 -1.51 0.09 0.33 0.36 0.16 0.08 -0.11 

N42 -17.02 0.11 0.46 0.24 0.15 0.05 -0.78 

N43 -12.28 0.08 0.41 0.22 0.12 0.05 -0.58 

H44 3.24 0.16 0.46 0.35 0.23 0.07 0.22 

H45 3.50 0.08 0.49 0.24 0.17 0.09 0.32 

H46 4.61 0.07 0.50 0.19 0.13 0.07 0.30 

H47 6.59 0.07 0.53 0.16 0.12 0.06 0.36 

H48 1.85 0.09 0.43 0.33 0.20 0.11 0.20 

H49 9.42 0.10 0.50 0.26 0.18 0.08 0.72 

H50 11.75 0.14 0.55 0.22 0.17 0.03 0.40 

H51 15.15 0.08 0.51 0.20 0.14 0.06 0.93 

Sum 36.02           2.45 

124 



 

A.2 Chapter 2 Supporting Information 

I. Supporting Results 

Competition Models. Based on ligand IT1t RMSD and ligand-protein contacts, our best 

competition1 model (#5) placed 5th out of 106. Even our worst model (#2) placed 0.4 

standard deviations above the mean of other predictions. We were helped by correct 

modeling of D2.63, implicated for ligand binding by the limited mutational data2, which 

required introduction of a single residue gap in CXCR4 at the top of helix II. Still, even our 

best model had a 6.1 Å ligand RMSD from the crystal structure, suggesting that there were 

substantial differences between them. Conversely, the binding site similarity was more 

reasonable, with a TM binding site heavy-atom RMSD of 2.2 Å (Table A.2.2). 

Counter-Screen for Aggregation. To further investigate the role of promiscuous 

aggregation, all compounds were tested for inhibition of soluble enzymes AmpC β-lactamase 

and the thiol-protease cruzain (Table A.2.4, Figure A.2.9); these are widely used as counter-

screens for aggregation-based inhibition3, 4. Consistent with the spin-down result, compound 

6 inhibited cruzain with an IC50 value of 2 μM in the absence of the non-ionic detergent 

Triton X-100. Detergent addition increased (made worse) the apparent IC50 by 8-fold. We 

also investigated particle formation by dynamic light scattering (DLS), where compound 6 

formed particles of radius 757 nm that scattered light at over 3 million counts/s at 100 μM. 

All observations are consistent with its status as a colloidal aggregator at relevant 

concentrations, so it was not considered a hit. Conversely, compounds 1-5 were better 

behaved. Although DLS particle formation was observed for compounds 2-4 at their 

CXCR4 calcium-flux IC50 concentration, with sizes between 60 and 92 nm, no compound 

inhibited AmpC at concentrations up to 100 μM. We observed some inhibition of cruzain, 
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but it was not reversible by even 0.1% Triton X-100. In fact, compounds 2-4 only inhibited 

cruzain at values substantially higher than their IC50 values in the calcium flux or radioligand 

binding assays. For instance, compound 3 showed 40% inhibition at 300 μM against cruzain, 

but its IC50 value in the radioligand assay was 306 nM. Taking these results together, we 

conclude that whereas compound 6 likely acts via promiscuous, aggregation-based 

inhibition, compounds 1-5 are well-behaved and act as specific inhibitors against CXCR4. 

The one caution would be for compound 1, whose steep dose-response curve (Hill slope of 

5) in the calcium flux assay and inhibition properties against cruzain may suggest some 

aggregation at the upper end of the concentrations measured here. 
 

II. Supporting Methods 

A flowchart (Figure A.2.1) visually illustrates our overall homology modeling 

procedure.  

Alignment. To prepare for alignment, we truncated extraneous parts, like the T4 lysozyme 

insertion, from the four template crystal structures: rhodopsin, PDB ID code 1U195; β1 

adrenergic receptor, 2VT46; β2 adrenergic receptor, 2RH17; and A2A adenosine receptor, 

3EML8. We then used PROMALS-3D9 to align those four structures, the human sequences 

of the CXCR and CCR receptors, as well as 12 related sequences, diverse in both sequence 

similarity and organism, as identified by the Basic Local Alignment Search Tool (BLAST)10, 

such that 30 sequences were initially aligned. While this generally produced good alignment 

in the trans-membrane regions, the more distantly related extra-cellular loops required 

extensive manual adjustment, using more closely related sequences to build a plausible 

manual alignment. For example, adjusting the alignment to create an isoleucine insertion 

(BW 4.61, Ballesteros-Weinstein numbering11) at the top of β1 and β2 relative to all the other 

structures increases hydrophobic and hydrophilic residue overlap in the early part of extra-

126 



cellular loop 2 (ECL2). Even in the trans-membrane region, D2.63 in CXCR4, implicated to 

be important for binding by mutational data2 initially lay outside the central GPCR binding 

site. To compensate, we introduced a single residue gap in CXCR4 at the top of helix II, 

experimenting with several different gap positions, to find the best compromise such that 

D2.63 went into binding site while minimally disturbing the protein backbone. This gap was 

found to be critical in correctly modeling that region in the GPCR Dock 2010 assessment 

study1. 

 

Normal-Mode Based Virtual Template Generation. In addition to the four 

crystallographic templates mentioned earlier, we built additional homology models using 

computationally generated templates based on normal mode perturbations of elastic network 

models of the 4 crystallographic templates. Using Yang and Sharp's 3K-ENM program12 we 

generated 198, 361, 350, and 455 backbone perturbations for 1U19, 2RH1, 2VT4, and 

3EML, respectively. These were clustered by trans-membrane helix RMSD using K-means 

clustering13 to obtain 128 representative structures for each of the four crystallographic 

templates. These additional 512 structures were then used as templates for further homology 

modeling and docking.   

 

Homology Modeling. MODELLER v9.8 was used for homology model generation14. Four 

conserved aromatic residue sidechains were constrained to preserve the dihedral angles 

found in the template structures. These were W4.50, W6.48, Y6.51 and Y6.52 (Ballesteros-

Weinstein numbering11). For each of the four crystallographic templates we built 64 

homology models. For 1U19, 2VT4, and 2RH1, we generated 4 homology models for each 

of the 128 normal-mode based templates, while for 3EML we generated only 2 per normal-
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mode template, as this template initially gave less promising docked poses for known 

ligands. With 4 modeling failures, we generated and docked a total of 2044 homology 

models. 

 

Homology Model Docking. To inform homology model selection, we measured how well 

the various homology models were able to retrospectively enrich the known CXCR4 ligands 

in ChEMBL0415. We docked 60 known ligands, excluding any large macrocyclic or peptidic 

ligands because of conformational sampling constraints. To better determine the enrichment 

due to molecular docking itself, and not simple 1-dimensional chemical properties, we 

generated 35 DUD16 style property-matched decoys for each ligand using an automated 

procedure (M.M.M. and B.K.S., see Chapter 3), docking 2516 molecules for each homology 

model. To quantify overall enrichment while giving extra weight to early enrichment, we 

used the adjusted LogAUC metric17. LogAUC is completely analogous to ROC AUC, being 

the area under curve divided the maximum possible area, except it is computed after taking 

the log of the x-axis to zoom in on early enrichment. As a metric, it shares attractive features 

with ROC AUC, as it is easily interpreted, robust, and independent of similar extensive 

variables18. 

Initial docking failed because extra-cellular loop 2 invaded the central GPCR binding 

pocket. Thus, prior to docking we removed ECL2 (residues 173-195) and the linear 

unmodeled N and C-terminal residues (1-35 and 320-352). Even with ECL2 removed, the 

binding pocket was often still ill-formed for rigid protein docking, due to large number of 

aromatic side-chains that had a tendency to crowd the binding pocket. To create initial space 

we used PyMol to align the crystallographic ligands from 2VT4 and 3EML (cyanopindolol 

and ZM241385, respectively) into the homology model, and then used Jacobson's Protein 
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Local Optimization Program (PLOP) to optimize the local protein side chains around the 

aligned ligands19. After docking, the best looking pose of ligand IT1t was selected and that 

pose was used as the basis of PLOP side-chain optimization in the next run. After several 

rounds, this bootstrapping procedure resulted in a stable, plausible pose of ligand IT1t. All 

future docking used this IT1t pose as the basis for PLOP side-chain optimization and as the 

starting point for DOCK matching sphere generation. 

Molecular docking was performed with DOCK 3.6 including rapid context-

dependent ligand desolvation using the solvent-excluded volume method with a single 

solvation grid for all atoms17. Parameters for docking were the same as in17 except as noted. 

Matching spheres were still generated as described in16 except the target number of spheres 

was 60 instead of 35. The bin size for both receptor and ligand were still set to 0.4 Å but the 

overlap size was reduced to 0.1 Å. Final energies were computed after 100 steps of rigid-

body minimization. Docking flexibase were generated as described previously17 where 

Schrödinger’s Epik20 replaced Ligprep for protomer and tautomer generation. 

 

Model Selection. We examined several criteria to select the model to carry forward to the 

loop building stage. We measured the enrichment using adjusted LogAUC17, both for the 

overall set of 60 small molecule CXCR4 ligands, as well as two subsets: 1) ligands that 

resembled ligand IT1t, and 2) other non-peptidic, non-macrocyclic ligands. We noted the 

rank of ligand IT1t rank in the 2516 docked ligand and decoys. The ROC-based enrichment 

factor at 1% of the decoys was tabulated for each model. We also calculated the number of 

ligands whose single best pose had a nitrogen atom within 3.4 Å of E7.39, the most important 

residue for ligand binding in the limited mutational data that was available2, 21. Finally, in 

perhaps the most important and yet most qualitative measure, we looked at the docking 
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poses. For the top 100 or so models by quantitative measures, we manually looked through 

the poses to ensure that the binding site looked reasonable and that the IT1t-like ligands 

poses had good protein contacts and were similar to one another. 

 

Loop Modeling. We then choose a single model to carry forward for loop modeling with 

Rosetta22. 500 ECL2 models were generated using the fragment-based loop modeling 

application in Rosetta v3.1. The CXCR4 ECL2 was defined as residues 171-198 to add 

flexibility to the tops of the connecting TM domains. Briefly, the centroid remodel and 

subsequent full-atom refine options were implemented, using the quick cyclic coordinate 

descent (CCD) method for refinement and loop closure after Monte Carlo fragment 

sampling. Fragment libraries were generated automatically by the Robetta server23, in order 

to predict possible secondary structure elements in the CXCR4 ECL2. Two length 

constraints were used in the loop modeling. The first was to enforce the conserved disulfide 

bond between C186 and C109 by using a harmonic potential centered at 2.05 Å, with a 

standard deviation of 0.1 Å. The second, in order to anchor the resultant loop close to the 

ligand by burying a tryptophan side-chain, was a harmonic potential between W195 and the 

ligand, centered at 4.5 Å with a standard deviation of 0.5 Å. The +2 charged ligand in the 

final, docked pose was taken into account during the whole loop modeling procedure, with 

Rosetta parameters for the ligand being generated from OpenBabel 2.2.3 

(http://openbabel.sourceforge.net) and the Rosetta-provided molfile_to_params script. 500 

more ECL2 models were produced from a modified input structure, in which the rotamers 

of 3 residue side-chains (F199, Q200, and I259) were altered away from the ligand in order 

to open up the binding site, where we used same loop modeling procedure as above. The 

1,000 ECL2 loop-models generated by Rosetta were stripped of polar hydrogens, and then 

130 



sent directly to docking grid generation. Docking was otherwise the same as described 

above.  

 

Homology Model Virtual Screen. Using the same model selection criteria as above, we 

selected a single homology model with ECL2 to carry forward for a blind prospective 

experimental screen. We docked the ZINC24 lead-like set, which at that time contained 3.312 

million molecules, using the same docking procedure as above. Docking resulted in 

molecules that bound much higher (more extra-cellular) in the putative active site than 

previously known GPCR crystallographic ligands. Perhaps naively in retrospect, we manually 

added matching spheres to sample more orientations at the bottom of the active site. After 

filtering for chemotypes that were mischarged by Epik20 or simply broken during our 

database preparation, we eventually looked through the top 900 scoring molecules from 

both runs, one with automated and one with manual matching spheres. Since these two runs 

used the same scoring grids, we can take the best result from either, and use the combined 

result to generate the final virtual screening statistics. We report the combined rank after 

filtering for mischarged and broken molecules. After looking through these poses, we 

narrowed the list manually, selecting 24 molecules for purchasing and experimental testing. 

Tanimoto coefficients were calculated to the best ChEMBL0915 CXCR4 ligand using 

Pipeline Pilot from Accelrys using ECFP4 fingerprints folded to 1024-bits.  

 

Crystal Structure Preparation. For docking, we had to choose from numerous CXCR4 

structures simultaneously published25 by Wu et al.: several CXCR4 structures in complex with 

ligand IT1t and one in complex the cyclic peptide CVX15. Additionally, the best resolution 

(2.5 Å) ligand IT1t structure, 3ODU, has two CXCR4 copies in the asymmetric unit. 
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Whereas 3ODU has 2 lipids that invade each copy of the TM helical bundle, the peptide 

structure, 3OE0, is free of any lipid perturbations but has a lower resolution (2.9 Å). Thus, 

which binding site to use for prospective screening was not entirely straightforward. So we 

manually assigned histidine protonation states in all the binding sites, and docked the known 

ChEMBL0415 ligands and the corresponding DUD-style16 property-matched decoys. 

Including lipid during docking did not help enrichment for both 3ODU binding sites, and 

was not considered further. Further, the 3ODU B chain binding site had smaller 

experimental B-factors, and the invading lipid head group, although charged, was much 

further away from ligand IT1t. The 3ODU B chain also proved adequate at enriching known 

ligands against DUD-style decoys, and was thus selected for prospective testing. 

Still, the binding site in CXCR4 seemed like a historically challenging site for 

docking, being enormous, highly charged, and highly solvent exposed. In particular the 

enormity of the site caused a particular dilemma for how to fill the active site with low-

dielectric spheres before calculating the electrostatic grid with Delphi26. Our usual automatic 

procedure produced low-dielectric near the crystallographic ligand, but left 2/3 of the 

binding pocket empty. Thus charge-charge interactions with the numerous carboxylic acids 

in the binding cavity that were not close to where ligand IT1t bound would be too highly 

screened by solvent, potentially preventing us from finding some novel ligands. Manually 

filling the entire pocket with low-dielectric spheres on the other hand, results in 

overweighting charge-charge interactions for atoms placed at the center of the cavity, even 

though they are relatively far away from the protein. Our new solution was to create a single 

layer of low-dielectric spheres all over the binding pocket, but not extending into the center 

of the pocket. Thus ligand-protein interaction remained strong everywhere, while changing 
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bulk electrostatics as little as possible. For prospective screening, we combined this 

electrostatic treatment with solvent-excluded volume based ligand desolvation17. 

The large binding cavity also presented a challenge for exhaustive ligand sampling. 

To compensate, we created one set of scoring grids that covered the entire binding site, but 

divided the binding pocket into three partially overlapping sub-sites, one centered next to 

E7.39, one centered next to D2.63, and one centered where the napthalen-2-yl-3-alanine residue 

of CVX15 binds in 3OE0. We used 60 matching spheres in the E7.39 and D2.63 sites and 45 in 

the deeper, more remote naphthalene site. We then docked the ZINC24 lead-like set, which 

now contained 4.17 million compounds, to all three sub-sites and took the best scoring pose 

generated from any of the three. The net effect was to divide the enormous sampling 

problem into three sub-problems and then combine the results since the same scoring grids 

where used. After filtering out problematic molecules, we manually looked through the top 

500 molecules, selecting 23 molecules for purchasing and experimental testing. We used 

TravelDepth to highlight depth in some figures of the CXCR4 cavity27. 

 

Compound Sources. Compounds were obtained from the following sources: compound 1 

Developmental Therapeutics Program at the National Cancer Institute, compounds 2-4 

from Chembridge and compound 5 from Princeton Biomolecular Research. All compounds 

were sourced at 95% or greater purity as described by the vendors. All active compounds 

were further tested for purity by LC/MS, at UCSF, and were found to be pure as judged by 

peak height and identity. 

 

Compound Solubility and Auto-fluorescence. Compound stocks were prepared in 

dimethylsulfoxide (DMSO) to either 10 mM or 100 mM. To test for solubility, compounds 
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were resuspended in assay buffer: Hanks buffered saline solution (HBSS), 20 mM HEPES 

(pH 7.4), 0.5% (w/v) bovine serum albumin (BSA), and either 1% (v/v) DMSO 

(compounds 1 and 5) or 0.5% (v/v) DMSO (compounds 2-4 and 6). Absorbance was 

measured from 620-820 nm and percent transmittance was calculated at 620 nm using a 

FlexStation 3 Microplate Reader (Molecular Devices). Subsequent analysis of cellular calcium 

flux utilizes fluorescence excitation and emission at 485 nm and 515 nm, respectively. The 

fluorescence emission spectrum for each compound was scanned from 500 nm to 620 nm at 

an excitation of 485 nm. No compound exhibited a fluorescence spectrum distinct from the 

vehicle control indicating compatibility with the assay. 

 

Calcium Flux-based Assays. THP-1 monocytes obtained from American Type Culture 

Collection were washed twice and resuspended in 96-well format at 2×105 cells/well in assay 

buffer containing FLIPR Calcium4 dye (Molecular Devices) as per manufacturer’s 

instructions. Compounds were added for a final concentration of 100μM (single point) or 

the indicated concentrations (dose-response) and the plates were then incubated for 1 h at 

37°C in 5% CO2. Fluorescence was measured at 37 °C using a FlexStation3 Microplate 

Reader with excitation and emission wavelengths at 485 nm and 515 nm, respectively. After 

a 20 s baseline measurement, CXCL12 was added for a final concentration of 30 nM and the 

resulting calcium response was measured for an additional 50 s. CCL2, a chemokine that 

targets CCR2 – a distinct receptor of THP-1 cells, was then added as a control for 

compound specificity. Approximately 60 s after CXCL12 addition, 6 nM CCL2 was added to 

each well and the calcium mobilization was measured for an additional 40 s. Percent calcium 

flux for each agonist was calculated from the maximum fluorescence minus the minimum 

fluorescence as a percent of baseline. A two-tailed student’s t-test between either the 30 nM 

134 



CXCL12 control or the 6 nM CCL2 control, and the compound of interest was used to 

identify statistically significant inhibitory compounds (Figure A.2.8). For significant CXCR4 

inhibitors, the assay was repeated in a dose-response format, where IC50 values were 

determined by non-linear fitting to a four parameter logistic function.  

 

Chemotaxis and Viability. Chemotaxis experiments were performed using Transwell (5 

μm pore size; Costar) in 24-well format. CXCL12 ligand (30 nM) and respective compounds 

(100 µM) were re-suspended in RPMI 1640 containing 0.2% (w/v) BSA and 600 µL was 

added to the lower chamber; samples were prepared in triplicate and two runs performed. 

THP-1 cells were washed twice and resuspended at 5×106 cells/mL and 100 μM compound. 

100 μL cell solution was added to the upper chamber and added to a TC-treated 96-well 

plate (BD Falcon) for viability studies. Both plates were incubated for 3 h at 37°C in 5% 

CO2. Final DMSO concentration was 0.1% for compounds 1-4 and 1% for compound 5. 

Migrated cells were counted using a TC-10 Automated Cell Counter (BioRad) and 

hemocytometer. Percent maximal migration was number of migrated cells with compound 

divided by number that migrated to CXCL12 alone. Cell viability was number of cells 

excluding Trypan Blue stain divided by total cell number; experiments were performed in 

duplicate. 

 

Radioligand Binding. Binding studies were performed on pre-B leukemia REH cells. Cells 

were resuspended in binding buffer (50 mM HEPES, pH 7.4, 5 mM MgCl2 1 mM CaCl2 and 

0.2% BSA) and seeded in 96-wells in increasing concentrations of unlabeled competitor. The 

competition binding assays were carried out at 4°C for 1 h using 50 pM [I125]-CXCL12 

(PerkinElmer Life and Analytical Sciences, Waltham, MA) as a tracer. A combi cell 
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harvester was used to remove the excess tracer (Molecular Devices, Menlo Park, CA). The 

samples were captured on glass-fiber filter paper (Skatron Instruments INC. USA). The 

counts were measured using a Wallace Wizard 1470 gamma counter (PerkinElmer Life and 

Analytical Sciences, Waltham, MA). Experiments were performed in duplicate. 
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IV. Supporting Tables 

Table A.2.1 Chemotaxis and Cell Viability 

Inhibition of CXCL12 mediated chemotaxis in THP-1 cells by compounds 1-5 at 100 µM and cell 

viability at 3 hours. 
 

Compound 
Maximal 

Migration (%) 

Cell Viability 

(%) 

CXCL12 100 ± 21 97.2 ± 1.0 

1 3.2 ± 4.8 95.3 ± 2.4 

2 1.4 ± 1.6 95.0 ± 0.8 

3 8.8 ± 5.1 96.5 ± 1.0 

4 40 ± 8.9 97.3 ± 1.0 

5 6.6 ± 3.9 96.0 ± 0.8 

plerixafor 

(AMD3100) 

2.9 ± 2.6 98.0 ± 0.0 

DMSO 

control 

4.3 ± 4.9 97.1 ± 1.0 
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Table A.2.2 Model Performance 

Model performance for the prospectively docked model, the two highest scoring competition 

models: the de Graaf et al. model (VU-5) and the Vaidehi et al. model (COH-1), a homology model 

we retrospectively found to be closest to the crystal structure, and the competition homology models 

we submitted to 2010 GPCR Docking Assessment. 
 

 

Trans-

membrane 

backbone 

RMSD (Å) 

TM 

bindingsite 

heavy-

atom 

RMSD (Å) 

Ligand IT1t 

RMSD (Å) 

LogAUC 

(%) 

ROC 

EF1 

(fold) 

Prospective 

model docked 

3.5 2.2  

(6.7*) 

9.5 30 

(21*) 

38 

(15*) 

VU-5 3.1 4.0  

(5.1*) 

4.9 4 

(5*) 

2 

(3*) 

COH-1 5.2 3.6  

(5.6*) 

6.0 5 

(6*) 

2 

(5*) 

Our retrospective 

best homology 

model 

4.2 2.6 2.9 22 22 

Competition 

model #1 

3.6 2.1 7.7 14 3 

Competition 

model #2  

3.5 2.9 7.2 9 10 

Competition  

model #3 

3.3 2.2 7.3 14 10 

Competition 

model #4 

3.2 2.5 5.1 15 3 

Competition 

model #5† 

3.3 2.0 6.1 8 0 

 

* with ecl2 modeled 
† placed 5th in competition 
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Table A.2.3 Inhibitor Ranks 

Ranking of the five newly discovered ligands against the background of the ZINC lead-like set for 

the crystal structure, the prospective homology model, the two highest scoring competition models: 

the de Graaf et al. model (VU-5) and the Vaidehi et al. model (COH-1), and the model we 

retrospectively found to be closest to the crystal structure. 

# Structure Crystal 
Prospective 

Model 
VU-5 COH-1 

Retrospective 

best model 

1 

 

55 2803 312290 19977 326177 

2 

 

521 50121 2037738 440711 15344 

3 

 

604 30898 1186418 117316 20330 

4 

 

178 5380 412852 63803 22123 

5 

 

620 5800 3282 107651 15823 

Range (min- 
max) 

55- 
620 

2803- 
50121 

3282-
2037738 

19977-
440711 

15344-
326177 

ChEMBL04 LogAUC (%) 28 21 4.8 6.2 22 
 

*Ranks reported are not filtered for broken molecules.  
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Table A.2.4 Aggregation Counter Screens 

Aggregation counter screening assays of compounds 1-6 discovered by docking screens and screened 

for inhibition of CXCL12 induced calcium flux. 
 

# Structure 
IC50 

(μM) a 

Hill 

Slope a 

DLS 

Intensity 

(count/s) 

DLS 

R 

(nm) 

Cruzain 

Dose-

Response 

IC50 (µM) 

No / 0.1% 

Triton X 

Before/After 

Spindown 

Assay 

(% calcium 

flux relative to 

CXCL12) 

AmpC % 

Remaining 

Activity 

(at concen-

tration) 

1 

 

107 -5.0 11845 32.5 73 / 92 66% / 62% 
101%  

(100 µM) 

2 

 

76 -2.4 164956 60.3 233 / 207 43% / 32% 
96%  

(80 µM) 

3 

 

57 -2.1 543409 77.6 - / - 48% / 31% 
95%  

(60 µM) 

4 

 

77 -1.5 1198000 92.3 258 / 307 58% / 47% 
98%  

(80 µM) 

5 

 

55 -2.9 68565 

 

121.2 

 

17 / 10 26% / 16% 
99%  

(60 µM) 

6 

 

103 -10 3009770 757.4 2 / 15 36% / 108% 
101%  

(100 µM) 

 

a From CXCL12 induced calcium flux DR curves  
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V. Supporting Figures 

Figure A.2.1 Flowchart of Homology Modeling Process 
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Figure A.2.2 CXCR4 Alignment with Available GPCR Templates 

BW residues are marked as A, binding site residues as B, and transmembrane helix regions as H. 

Sequence alignment image was generated in PFAAT (http://pfaat.sourceforge.net) with default 

coloring. 
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Figure A.2.3 Radioligand Binding Assays   

All figures show pooled data from 2 to 5 assays in REH cells [(n=2, compound 1), (n=3, CXCL12, 

compound 3, 5-6), (n=4, compound 2) or (n=5, compound 4 and DMSO alone)] independent 

experiments performed in duplicate, ± S.E.M. DMSO alone had a minor effect, increasing [125I]-

CXCL12 binding, however not to the degree as compound 4. IC50s, LogIC50, ± S.E.M. : CXCL12 

(1.5 nM, -8.8 ± 0.1), Compound 1 (225 µM, -3.6 ± 0.2), Compound 2 (-), Compound 3 (306 nM, -6.5 

± 0.2), Compound 4 (2.16 µM, -5.7 ± 0.3), Compound 5 (14 µM, -4.9 ± 0.2). 
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Figure A.2.4 Binding Site Comparison 

(A) Rhodopsin (1U19) structure with retinal (yellow). (B) The CXCR4 homology model used for 

virtual screening, with the 1T1t small molecule (yellow).  (C) The CXCR4/1T1t crystal structure 

(3ODU). Depth of the binding site is indicated, as calculated by Travel Depth27. 
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Figure A.2.5 Retrospective Enrichment of CXCR4 Models 

ROC enrichment curves of the crystal structure (blue), the prospective homology model (green), the 

retrospective best homology model (red), the VU-5 model (cyan) and the COH-1 model (magenta). 

(A) Retrospective enrichment of the known ChEMBL04 CXCR4 ligands against property matched 

decoys. (B) Retrospective enrichment of the five newly discovered ligands against the ZINC lead-like 

database background. 
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Figure A.2.6 Loopless Homology Model Statistics 

Distributions of the 2044 loopless homology models generated, from which the prospective model 

was picked. The prospective model is marked with a pink star. (A) Retrospective enrichment of the 

known ChEMBL04 CXCR4 ligands. (B) Binding-site RMSD. (C) Ligand RMSD. (D) Enrichment 

was not found to correlate with binding-site RMSD, one measure of model accuracy. (E) Binding-site 

RMSD did correlate to some extent with normalized DOPE score, a measure of model quality. (F) 

Normalized DOPE score does not correlate with retrospective enrichment. 
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Figure A.2.7 Promiscuous Aggregator Inhibiting Membrane Protein 

Compound 6, not reported as a hit, showed substantial inhibition in the calcium flux assay (top) but 

had a steep dose response curve in both calcium flux and direct binding assays (bottom), often a red 

flag for aggregation. Indeed, in further screening, this compound was found to be an aggregator 

which inhibits cruzain in a detergent sensitive manner. 
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Figure A.2.8 Testing for CXCR4‐Specific Inhibitors  

THP-1 monocytes were incubated with either (A) DMSO or (B) 100 μM compound for 1 h. Cells 

were stimulated with 30 nM CXCL12 at ~20 s and then exposed to 6 nM CCL2 at ~80 s. The 

resulting calcium response to each agonist was measured as the maximum peak height minus the 

baseline signal. A two-tailed Student’s t-test between either the 30 nM CXCL12 control or the 6 nM 

CCL2 control, and the compound of interest was used to identify statistically significant inhibitory 

compounds. (C) Dose-response curve of plerixafor in calcium flux assay. (D) Dose-response curve of 

CXCL12 in calcium flux assay. 
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Figure A.2.9 Aggregation Dose‐Response Conterscreen Against Cruzain 

Dose-response curves of cruzain inhibition measured with and without the detergent Triton X for 

compounds 1-6. Compound 3 in the presence of 0.1% Triton dose-response curve does not 

converge, and therefore no trend line is shown. 
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A.3 Chapter 3 Supporting Information 

Table A.3.1: Full Target List 
 

Id Class Description 
Total 

Ligands 

Clustered 

Ligands 

Experi-

mental 

Decoys 

Matched 

Decoys 
PDB 

Log 

AUC 

(%) 

ROC

EF1 

AUC 

(%) 

AA2AR GPCR 
Adenosine A2a 

receptor 
3057 482 192 31,550 3EML 28 22 83 

ABL1 Kinase 
Tyrosine-protein 

kinase ABL 
409 182 84 10,750 2HZI 26 19 81 

ACE Protease 
Angiotensin-

converting enzyme 
749 282 55 16,900 3BKL 22 20 72 

ACES 
Other 

Enzymes 
Acetylcholinesterase 1581 453 487 26,250 1E66 25 20 81 

ADA 
Other 

Enzymes 

Adenosine 

deaminase 
98 93 42 5,450 2E1W 24 22 76 

ADA17 Protease ADAM17 1341 532 31 35,900 2OI0 26 22 77 

ADRB1 GPCR 
Beta-1 adrenergic 

receptor 
648 247 69 15,850 2VT4 19 11 76 

ADRB2 GPCR 
Beta-2 adrenergic 

receptor 
602 231 118 15,000 3NY8 12 4 69 

AKT1 Kinase 
Serine/threonine-

protein kinase AKT 
585 293 53 16,450 

3CQ

W 
27 29 72 

AKT2 Kinase 
Serine/threonine-

protein kinase AKT2 
234 117 23 6,900 3D0E 16 8 77 

ALDR 
Other 

Enzymes 
Aldose reductase 604 159 78 9,000 2HV5 31 33 76 

AMPC 
Other 

Enzymes 
Beta-lactamase 48 48 84 2,850 1L2S 16 8 79 

ANDR 
Nuclear 

Receptor 
Androgen Receptor 1046 269 19 14,350 2AM9 5 6 51 

AOFB 
Other 

Enzymes 

Monoamine oxidase 

B 
438 122 129 6,900 1S3B 17 8 75 

BACE1 Protease Beta-secretase 1 595 283 41 18,100 3L5D 11 8 66 

BRAF Kinase 
Serine/threonine-

protein kinase B-raf 
317 152 28 9,950 3D4Q 22 11 83 

CAH2 
Other 

Enzymes 

Carbonic anhydrase 

II 
1924 492 27 31,172 1BCD 12 3 73 

CASP3 Protease Caspase-3 470 199 37 10,700 2CNK 16 12 72 

CDK2 Kinase 
Cyclin-dependent 

kinase 2 
1310 474 136 27,850 1H00 21 14 79 

COMT 
Other 

Enzymes 

Catechol O-

methyltransferase 
41 41 1 3,850 

3BW

M 
34 22 89 

CP2C9 
Cytochrome 

P450 

Cytochrome P450 

2C9 
145 120 176 7,450 1R9O 7 3 60 

CP3A4 
Cytochrome 

P450 

Cytochrome P450 

3A4 
302 170 267 11,800 3NXU 7 2 63 
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Id Class Description 
Total 

Ligands 

Clustered 

Ligands 

Experi-

mental 

Decoys 

Matched 

Decoys 
PDB 

Log 

AUC 

(%) 

ROC

EF1 

AUC 

(%) 

CSF1R Kinase 

Macrophage colony 

stimulating factor 

receptor 

385 166 5 12,150 3KRJ 32 25 86 

CXCR4 GPCR 
C-X-C chemokine 

receptor type 4 
40 40 14 3,406 3ODU 36 18 90 

DEF 
Other 

Enzymes 
Peptide deformylase 171 102 8 5,700 1LRU 23 22 69 

DHI1 
Other 

Enzymes 

11-beta-

hydroxysteroid 

dehydrogenase 1 

836 387 29 19,350 3FRJ 11 6 68 

DPP4 Protease 
Dipeptidyl peptidase 

IV 
1939 533 167 40,950 2I78 41 41 87 

DRD3 GPCR 
Dopamine D3 

receptor 
2113 480 14 34,050 3PBL 13 4 69 

DYR 
Other 

Enzymes 

Dihydrofolate 

reductase 
1082 231 117 17,200 3NXO 43 44 87 

EGFR Kinase 

Epidermal growth 

factor receptor 

erbB1 

1612 542 407 35,050 2RGP 29 22 84 

ESR1 
Nuclear 

Receptor 

Estrogen receptor 

alpha 
1297 383 136 20,685 1SJ0 18 15 67 

ESR2 
Nuclear 

Receptor 

Estrogen receptor 

beta 
1343 367 126 20,199 2FSZ 19 18 65 

FA10 Protease Coagulation factor X 3090 537 176 28,325 3KL6 39 36 87 

FA7 Protease 
Coagulation factor 

VII 
303 114 39 6,250 1W7X 56 66 88 

FABP4 
Miscel-

laneous 

Fatty acid binding 

protein adipocyte 
47 47 16 2,750 2NNQ 46 43 90 

FAK1 Kinase 
Focal adhesion 

kinase 1 
101 100 11 5,350 3BZ3 24 20 75 

FGFR1 Kinase 
Fibroblast growth 

factor receptor 1 
327 139 146 8,700 3C4F 18 13 73 

FKB1A 
Other 

Enzymes 

FK506-binding 

protein 1A 
159 111 68 5,800 1J4H 16 9 75 

FNTA 
Other 

Enzymes 

Protein 

farnesyltransferase 

type I alpha subunit 

1430 592 132 51,500 3E37 16 7 76 

FPPS 
Other 

Enzymes 

Farnesyl 

diphosphate 

synthase 

85 85 27 8,850 1ZW5 51 67 84 

GCR 
Nuclear 

Receptor 

Glucocorticoid 

receptor 
972 258 6 15,000 3BQD 4 9 44 

GLCM 
Other 

Enzymes 

Beta-

glucocerebrosidase 
54 54 27 3,800 2V3F 30 24 81 

GRIA2 Ion Channel 
Glutamate receptor 

ionotropic, AMPA 2 
476 158 201 11,845 3KGC 23 23 71 

GRIK1 Ion Channel 
Glutamate receptor 

ionotropic kainate 1 
136 101 235 6,550 1VSO 35 27 86 
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Id Class Description 
Total 

Ligands 

Clustered 

Ligands 

Experi-

mental 

Decoys 

Matched 

Decoys 
PDB 

Log 

AUC 

(%) 

ROC

EF1 

AUC 

(%) 

HDAC2 
Other 

Enzymes 

Histone deacetylase 

2 
407 185 62 10,300 3MAX 24 20 77 

HDAC8 
Other 

Enzymes 

Histone deacetylase 

8 
309 170 73 10,450 3F07 29 24 80 

HIVINT 
Other 

Enzymes 

Human 

immunodeficiency 

virus type 1 

integrase 

167 100 268 6,650 3NF7 8 2 64 

HIVPR Protease 

Human 

immunodeficiency 

virus type 1 

protease 

1468 536 96 35,750 1XL2 7 5 60 

HIVRT 
Other 

Enzymes 

Human 

immunodeficiency 

virus type 1 reverse 

transcriptase 

1178 338 258 18,891 3LAN 11 7 64 

HMDH 
Other 

Enzymes 

HMG-CoA 

reductase 
527 170 8 8,750 3CCW 26 24 74 

HS90A 
Miscel-

laneous 

Heat shock protein 

HSP 90-alpha 
88 88 25 4,850 1UYG 15 3 69 

HXK4 
Other 

Enzymes 
Hexokinase type IV 136 92 14 4,700 3F9M 25 17 80 

IGF1R Kinase 
Insulin-like growth 

factor I receptor 
370 148 75 9,300 2OJ9 18 5 79 

INHA 
Other 

Enzymes 

Enoyl-[acyl-carrier-

protein] reductase 
44 44 22 2,300 2H7L 19 2 85 

ITAL 
Miscel-

laneous 

Leukocyte adhesion 

glycoprotein LFA-1 

alpha 

324 138 29 8,500 2ICA 15 14 66 

JAK2 Kinase 
Tyrosine-protein 

kinase JAK2 
246 130 6 6,500 3LPB 29 23 82 

KIF11 
Miscel-

laneous 

Kinesin-like protein 

1 
272 116 29 6,850 3CJO 34 35 77 

KIT Kinase 
Stem cell growth 

factor receptor 
378 166 8 10,450 3G0E 12 4 73 

KITH 
Other 

Enzymes 
Thymidine kinase 57 57 68 2,850 2B8T 15 0 80 

KPCB Kinase 
Protein kinase C 

beta 
331 135 153 8,700 2I0E 15 17 61 

LCK Kinase 
Tyrosine-protein 

kinase LCK 
916 420 148 27,400 2OF2 25 16 82 

LKHA4 Protease 
Leukotriene A4 

hydrolase 
343 171 21 9,450 3CHP 18 4 82 

MAPK2 Kinase 

MAP kinase-

activated protein 

kinase 2 

184 101 81 6,150 3M2W 33 27 86 

MCR 
Nuclear 

Receptor 

Mineralocorticoid 

receptor 
201 94 2 5,150 2AA2 -4 2 36 
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Id Class Description 
Total 

Ligands 

Clustered 

Ligands 

Experi-

mental 

Decoys 

Matched 

Decoys 
PDB 

Log 

AUC 

(%) 

ROC

EF1 

AUC 

(%) 

MET Kinase 
Hepatocyte growth 

factor receptor 
333 166 17 11,250 3LQ8 24 16 80 

MK01 Kinase MAP kinase ERK2 79 79 35 4,550 2OJG 19 9 79 

MK10 Kinase 
c-Jun N-terminal 

kinase 3 
199 104 23 6,600 2ZDT 24 11 82 

MK14 Kinase 
MAP kinase p38 

alpha 
2205 578 73 35,850 2QD9 17 10 74 

MMP13 Protease 

Matrix 

metalloproteinase 

13 

1632 572 26 37,200 830C 12 5 71 

MP2K1 Kinase 

Dual specificity 

mitogen-activated 

protein kinase 

kinase 1 

308 121 12 8,150 3EQH 16 4 78 

NOS1 
Other 

Enzymes 

Nitric-oxide 

synthase, brain 
311 100 73 8,050 1QW6 19 11 78 

NRAM 
Other 

Enzymes 
Neuraminidase 200 98 21 6,200 1B9V 44 46 93 

PA2GA 
Other 

Enzymes 

Phospholipase A2 

group IIA 
173 99 14 5,150 1KVO 26 29 72 

PARP1 
Other 

Enzymes 

Poly [ADP-ribose] 

polymerase-1 
1031 508 12 30,050 3L3M 25 21 79 

PDE5A 
Other 

Enzymes 

Phosphodiesterase 

5A 
958 398 93 27,550 1UDT 17 11 72 

PGH1 
Other 

Enzymes 
Cyclooxygenase-1 534 195 1070 10,800 2OYU 3 5 53 

PGH2 
Other 

Enzymes 
Cyclooxygenase-2 1707 435 444 23,150 3LN1 13 13 62 

PLK1 Kinase 
Serine/threonine-

protein kinase PLK1 
227 107 46 6,800 2OWB 28 19 84 

PNPH 
Other 

Enzymes 

Purine nucleoside 

phosphorylase 
225 103 10 6,950 3BGS 39 42 81 

PPARA 
Nuclear 

Receptor 

Peroxisome 

proliferator-activated 

receptor alpha 

1040 373 82 19,399 2P54 19 5 81 

PPARD 
Nuclear 

Receptor 

Peroxisome 

proliferator-activated 

receptor delta 

699 240 79 12,250 2ZNP 32 20 89 

PPARG 
Nuclear 

Receptor 

Peroxisome 

proliferator-activated 

receptor gamma 

1245 484 43 25,300 2GTK 21 12 80 

PRGR 
Nuclear 

Receptor 

Progesterone 

receptor 
1114 293 1 15,650 3KBA 8 8 56 

PTN1 
Other 

Enzymes 

Protein-tyrosine 

phosphatase 1B 
264 130 153 7,250 2AZR 36 30 84 

PUR2 
Other 

Enzymes 
GAR transformylase 50 50 12 2,700 1NJS 51 50 92 

PYGM 
Other 

Enzymes 

Muscle glycogen 

phosphorylase 
77 77 7 3,950 1C8K 17 9 72 

154 



Id Class Description 
Total 

Ligands 

Clustered 

Ligands 

Experi-

mental 

Decoys 

Matched 

Decoys 
PDB 

Log 

AUC 

(%) 

ROC

EF1 

AUC 

(%) 

PYRD 
Other 

Enzymes 

Dihydroorotate 

dehydrogenase 
226 111 88 6,450 1D3G 30 28 83 

RENI Protease Renin 391 104 46 6,958 3G6Z 21 19 66 

ROCK1 Kinase 
Rho-associated 

protein kinase 1 
216 100 15 6,300 2ETR 17 10 74 

RXRA 
Nuclear 

Receptor 

Retinoid X receptor 

alpha 
298 131 7 6,950 1MV9 25 24 71 

SAHH 
Other 

Enzymes 

Adenosylhomocystei

nase 
63 63 5 3,450 1LI4 39 33 85 

SRC Kinase 
Tyrosine-protein 

kinase SRC 
1269 524 287 34,500 3EL8 18 9 77 

TGFR1 Kinase 
TGF-beta receptor 

type I 
235 133 7 8,500 3HMM 36 28 88 

THB 
Nuclear 

Receptor 

Thyroid hormone 

receptor beta-1 
246 103 29 7,450 1Q4X 36 38 79 

THRB Protease Thrombin 2109 461 255 27,004 1YPE 32 30 81 

TRY1 Protease Trypsin I 924 449 117 25,980 2AYW 57 62 93 

TRYB1 Protease Tryptase beta-1 216 148 16 7,650 2ZEC 37 31 87 

TYSY 
Other 

Enzymes 

Thymidylate 

synthase 
390 109 63 6,750 1SYN 28 21 82 

UROK Protease 

Urokinase-type 

plasminogen 

activator 

372 162 44 9,850 1SQT 65 72 95 

VGFR2 Kinase 

Vascular endothelial 

growth factor 

receptor 2 

2320 409 142 24,950 2P2I 21 12 79 

WEE1 Kinase 

Serine/threonine-

protein kinase 

WEE1 

221 102 15 6,150 3BIZ 52 55 91 

XIAP 
Miscel-

laneous 

Inhibitor of 

apoptosis protein 3 
100 100 7 5,150 3HL5 52 55 88 

 

Table A.3.2: Effect of Clustering on Enrichment 
 

Target 
Raw 

Ligands 
Clustered 
Ligands 

Clustered 
Percentage 

Raw 
LogAUC 

(%) 

Clustered 
LogAUC 

(%) 
TRYB1 216 148 69 43 37 
CP3A4 302 170 56 5 7 
HDAC8 309 170 55 25 29 

…   …   
VGFR2 2320 409 18 16 21 
FA10 3090 537 17 37 39 

AA2AR 3057 482 16 24 28 
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Table A.3.3: Ligand and Decoy Property Distribution 
 

Average 
(Standard 
Deviation) 

Molecular 
Weight 

[Daltons] 
logP Rotable 

Bonds 

Hydrogen 
Bond 

Acceptors 

Hydrogen 
Bond Donors Net Charge 

Target Ligs Decs Ligs Decs Ligs Decs Ligs Decs Ligs Decs Ligs Decs 

AA2AR 409.8 
(74.9) 

401.9 
(71.8) 

2.4 
(1.3) 

2.4 
(1.4) 

5.1 
(2.4) 

5.4 
(2.3) 

8.8 
(2.4) 

7.8 
(1.9) 

2.9 
(1.6) 

2.5 
(1.3) 

0.4 
(0.7) 

0.3 
(0.6) 

ABL1 465.9 
(79.7) 

446.8 
(69.1) 

4.3 
(1.3) 

4.0 
(1.3) 

5.8 
(2.0) 

5.9 
(2.2) 

7.2 
(1.5) 

6.6 
(1.4) 

2.6 
(1.2) 

2.3 
(1.0) 

0.5 
(0.6) 

0.5 
(0.6) 

ACE 416.0 
(80.7) 

390.6 
(77.8) 

0.8 
(1.5) 

1.8 
(1.6) 

8.2 
(2.9) 

6.5 
(2.6) 

6.8 
(1.8) 

7.4 
(1.8) 

1.5 
(1.3) 

0.9 
(1.0) 

-1.2 
(0.5) 

-1.1 
(0.5) 

ACES 443.8 
(91.3) 

415.8 
(76.4) 

4.5 
(2.6) 

3.9 
(1.8) 

8.5 
(3.8) 

7.0 
(2.9) 

5.4 
(1.8) 

5.4 
(1.9) 

2.4 
(1.5) 

2.0 
(1.1) 

1.2 
(0.7) 

0.9 
(0.6) 

ADA 324.1 
(74.6) 

323.9 
(72.1) 

2.0 
(1.4) 

2.0 
(1.3) 

7.1 
(2.5) 

6.2 
(2.1) 

6.5 
(1.4) 

5.9 
(1.4) 

3.3 
(1.1) 

3.2 
(0.9) 

0.3 
(0.5) 

0.3 
(0.5) 

ADA17 475.8 
(62.8) 

451.3 
(52.5) 

2.6 
(1.2) 

2.9 
(1.4) 

7.0 
(1.9) 

6.8 
(2.0) 

8.6 
(1.6) 

8.0 
(1.5) 

2.6 
(1.2) 

2.3 
(1.1) 

-0.0 
(0.5) 

-0.0 
(0.6) 

ADRB1 443.4 
(86.5) 

417.1 
(73.7) 

3.4 
(1.5) 

3.2 
(1.5) 

9.6 
(3.3) 

7.9 
(2.6) 

6.6 
(2.0) 

6.6 
(2.1) 

3.9 
(1.4) 

3.2 
(1.1) 

0.6 
(0.7) 

0.5 
(0.6) 

ADRB2 453.4 
(98.4) 

421.1 
(79.6) 

3.3 
(1.5) 

3.2 
(1.6) 

9.9 
(3.5) 

8.1 
(2.8) 

6.9 
(2.3) 

6.7 
(2.2) 

4.0 
(1.6) 

3.1 
(1.2) 

0.6 
(0.6) 

0.5 
(0.6) 

AKT1 449.5 
(71.6) 

422.2 
(67.1) 

3.7 
(1.5) 

3.2 
(1.6) 

6.4 
(1.8) 

6.3 
(2.1) 

6.9 
(1.9) 

6.4 
(1.8) 

4.0 
(1.4) 

3.3 
(1.2) 

0.9 
(0.6) 

0.9 
(0.6) 

AKT2 450.9 
(88.8) 

424.0 
(81.9) 

3.2 
(1.9) 

3.0 
(1.9) 

5.3 
(1.9) 

5.9 
(2.1) 

7.6 
(1.9) 

6.7 
(1.8) 

4.3 
(1.7) 

3.5 
(1.4) 

0.8 
(0.5) 

0.8 
(0.5) 

ALDR 351.7 
(65.9) 

340.7 
(65.1) 

2.4 
(1.5) 

2.4 
(1.5) 

3.6 
(2.2) 

4.0 
(1.9) 

6.0 
(1.9) 

5.7 
(1.6) 

0.8 
(1.2) 

0.7 
(1.1) 

-0.8 
(0.5) 

-0.8 
(0.5) 

AMPC 293.4 
(63.7) 

294.9 
(65.3) 

1.8 
(1.4) 

1.9 
(1.4) 

3.8 
(1.4) 

3.7 
(1.6) 

5.8 
(1.4) 

5.7 
(1.4) 

0.6 
(0.7) 

0.6 
(0.6) 

-1.5 
(0.6) 

-1.5 
(0.5) 

ANDR 368.1 
(71.6) 

358.1 
(71.6) 

3.8 
(1.4) 

3.8 
(1.4) 

3.0 
(2.6) 

3.4 
(2.0) 

4.2 
(2.0) 

4.1 
(1.9) 

0.9 
(0.8) 

0.9 
(0.8) 

0.0 
(0.3) 

0.0 
(0.3) 

AOFB 278.4 
(67.3) 

277.2 
(64.7) 

2.9 
(1.3) 

2.9 
(1.2) 

3.6 
(2.3) 

3.3 
(1.9) 

3.7 
(1.6) 

3.7 
(1.5) 

1.2 
(1.1) 

1.2 
(1.0) 

0.3 
(0.5) 

0.3 
(0.5) 

BACE1 508.9 
(68.9) 

466.6 
(53.4) 

4.0 
(1.4) 

3.9 
(1.5) 

8.6 
(3.8) 

7.4 
(2.8) 

7.1 
(1.4) 

6.9 
(1.7) 

3.8 
(1.1) 

2.9 
(0.9) 

0.7 
(0.5) 

0.6 
(0.5) 

BRAF 456.6 
(83.4) 

439.0 
(69.6) 

4.0 
(1.3) 

3.8 
(1.3) 

5.8 
(2.2) 

5.8 
(2.3) 

7.2 
(1.6) 

6.6 
(1.5) 

2.7 
(1.2) 

2.4 
(1.0) 

0.4 
(0.6) 

0.4 
(0.6) 

CAH2 406.6 
(97.3) 

382.0 
(83.0) 

0.9 
(1.8) 

1.5 
(1.6) 

6.0 
(2.9) 

5.6 
(2.4) 

8.1 
(2.6) 

7.4 
(2.1) 

3.5 
(1.6) 

2.8 
(1.3) 

-0.1 
(0.8) 

-0.0 
(0.7) 

CASP3 461.8 
(80.6) 

437.3 
(66.1) 

1.9 
(1.6) 

2.5 
(1.5) 

9.1 
(4.2) 

7.7 
(3.1) 

9.1 
(2.5) 

8.2 
(1.9) 

1.9 
(1.3) 

1.4 
(1.3) 

-0.4 
(0.8) 

-0.2 
(0.7) 

CDK2 394.9 
(74.0) 

386.0 
(72.1) 

2.9 
(1.2) 

2.8 
(1.3) 

4.8 
(2.0) 

5.1 
(2.1) 

7.2 
(1.8) 

6.6 
(1.7) 

3.0 
(1.4) 

2.8 
(1.2) 

0.2 
(0.6) 

0.2 
(0.6) 

COMT 291.8 
(76.7) 

300.0 
(74.8) 

2.3 
(1.2) 

2.1 
(1.2) 

4.1 
(2.1) 

3.8 
(1.9) 

7.0 
(1.6) 

6.2 
(1.6) 

1.8 
(0.9) 

1.6 
(0.9) 

-0.5 
(0.6) 

-0.5 
(0.6) 

CP2C9 
422.5 
(107.8

) 

406.9 
(93.1) 

4.1 
(1.4) 

4.0 
(1.3) 

6.0 
(2.6) 

5.6 
(2.5) 

5.7 
(2.0) 

5.6 
(2.0) 

1.5 
(1.3) 

1.4 
(1.2) 

-0.1 
(0.7) 

-0.1 
(0.7) 

CP3A4 449.7 
(97.1) 

428.6 
(83.1) 

4.0 
(1.5) 

3.9 
(1.4) 

6.6 
(3.4) 

6.2 
(2.9) 

6.5 
(2.3) 

6.1 
(2.0) 

2.0 
(1.6) 

1.7 
(1.3) 

0.4 
(0.6) 

0.4 
(0.6) 

CSF1R 436.9 
(66.6) 

424.4 
(59.5) 

3.5 
(1.1) 

3.3 
(1.2) 

5.3 
(2.0) 

5.4 
(2.2) 

7.3 
(1.8) 

6.7 
(1.6) 

2.7 
(1.4) 

2.4 
(1.1) 

0.4 
(0.7) 

0.4 
(0.7) 

CXCR4 394.0 
(65.2) 

368.3 
(58.6) 

2.4 
(1.4) 

2.8 
(1.3) 

6.1 
(1.5) 

6.0 
(1.9) 

5.1 
(1.2) 

5.1 
(1.6) 

3.8 
(1.9) 

3.4 
(1.3) 

1.8 
(0.9) 

1.6 
(0.6) 

DEF 383.7 
(83.9) 

375.2 
(76.6) 

2.5 
(1.2) 

2.6 
(1.2) 

7.1 
(3.3) 

6.4 
(2.9) 

6.7 
(1.4) 

6.5 
(1.4) 

2.5 
(0.9) 

2.4 
(0.8) 

0.1 
(0.4) 

0.1 
(0.4) 

DHI1 392.8 
(77.3) 

384.3 
(72.9) 

3.8 
(1.1) 

3.9 
(1.1) 

4.6 
(1.8) 

4.4 
(1.8) 

4.8 
(1.5) 

4.8 
(1.5) 

1.0 
(1.0) 

0.9 
(1.0) 

0.0 
(0.5) 

0.0 
(0.5) 

DPP4 377.4 
(63.5) 

362.3 
(65.9) 

1.6 
(1.4) 

1.9 
(1.4) 

4.5 
(1.8) 

4.9 
(1.9) 

6.2 
(1.5) 

6.0 
(1.6) 

2.8 
(1.0) 

2.7 
(0.9) 

0.7 
(0.6) 

0.7 
(0.6) 

DRD3 418.4 
(73.9) 

406.0 
(71.5) 

4.4 
(1.2) 

4.2 
(1.2) 

6.4 
(2.4) 

6.1 
(2.4) 

4.8 
(1.5) 

4.8 
(1.6) 

1.7 
(0.9) 

1.6 
(0.9) 

0.8 
(0.5) 

0.8 
(0.5) 

DYR 381.7 
(82.7) 

361.1 
(81.8) 

1.9 
(2.1) 

1.9 
(1.7) 

5.5 
(3.1) 

5.3 
(2.3) 

7.8 
(2.8) 

6.6 
(2.5) 

5.1 
(1.2) 

4.1 
(1.1) 

0.1 
(1.1) 

0.3 
(0.8) 

156 



Average 
(Standard 
Deviation) 

Molecular 
Weight 

[Daltons] 
logP Rotable 

Bonds 

Hydrogen 
Bond 

Acceptors 

Hydrogen 
Bond Donors Net Charge 

Target Ligs Decs Ligs Decs Ligs Decs Ligs Decs Ligs Decs Ligs Decs 

EGFR 449.0 
(82.6) 

434.1 
(71.2) 

4.2 
(1.2) 

3.9 
(1.2) 

6.7 
(2.6) 

6.2 
(2.5) 

7.1 
(1.9) 

6.6 
(1.7) 

2.4 
(1.2) 

2.2 
(1.1) 

0.4 
(0.6) 

0.4 
(0.6) 

ESR1 421.0 
(93.2) 

404.6 
(84.5) 

5.1 
(1.4) 

4.7 
(1.3) 

5.2 
(3.4) 

5.3 
(2.8) 

4.6 
(1.8) 

4.4 
(1.8) 

2.3 
(1.0) 

2.1 
(0.9) 

0.5 
(0.6) 

0.5 
(0.6) 

ESR2 410.2 
(95.3) 

394.6 
(86.8) 

4.9 
(1.5) 

4.5 
(1.4) 

4.9 
(3.3) 

5.2 
(2.8) 

4.6 
(1.9) 

4.4 
(1.9) 

2.3 
(1.0) 

2.1 
(0.8) 

0.5 
(0.6) 

0.5 
(0.6) 

FA10 513.5 
(48.8) 

470.9 
(48.4) 

2.9 
(1.6) 

3.1 
(1.8) 

7.1 
(2.1) 

6.9 
(2.2) 

8.6 
(1.9) 

7.9 
(1.9) 

3.9 
(2.3) 

2.9 
(1.6) 

0.7 
(0.7) 

0.5 
(0.7) 

FA7 472.1 
(66.8) 

427.5 
(67.7) 

2.9 
(1.8) 

2.4 
(2.0) 

8.2 
(2.5) 

6.9 
(2.5) 

8.1 
(1.9) 

7.8 
(2.3) 

6.2 
(1.6) 

4.8 
(1.3) 

0.6 
(0.8) 

0.5 
(0.8) 

FABP4 390.7 
(78.6) 

393.8 
(79.5) 

5.5 
(1.4) 

5.1 
(1.2) 

6.3 
(2.9) 

5.7 
(2.6) 

4.1 
(1.0) 

4.4 
(1.3) 

0.5 
(0.8) 

0.5 
(0.8) 

-0.9 
(0.4) 

-0.8 
(0.4) 

FAK1 438.1 
(58.0) 

433.1 
(53.7) 

3.4 
(0.8) 

3.3 
(0.8) 

7.0 
(2.1) 

6.6 
(2.0) 

8.3 
(1.6) 

7.7 
(1.4) 

2.4 
(1.2) 

2.2 
(1.1) 

0.2 
(0.6) 

0.2 
(0.6) 

FGFR1 448.7 
(78.7) 

430.0 
(70.4) 

3.7 
(1.6) 

3.4 
(1.5) 

5.7 
(3.1) 

5.9 
(2.6) 

7.7 
(1.5) 

6.8 
(1.5) 

3.2 
(1.2) 

2.8 
(1.1) 

0.5 
(0.6) 

0.5 
(0.6) 

FKB1A 440.4 
(65.2) 

429.7 
(58.4) 

4.0 
(1.4) 

4.0 
(1.4) 

8.4 
(2.8) 

7.7 
(2.3) 

6.2 
(1.9) 

6.0 
(1.7) 

0.2 
(0.5) 

0.3 
(0.5) 

-0.1 
(0.2) 

-0.1 
(0.2) 

FNTA 480.8 
(58.7) 

454.5 
(49.8) 

3.5 
(1.7) 

3.8 
(1.5) 

7.0 
(3.4) 

6.6 
(2.6) 

6.6 
(1.5) 

6.6 
(1.7) 

1.5 
(1.3) 

1.3 
(1.1) 

0.3 
(0.7) 

0.3 
(0.7) 

FPPS 292.0 
(40.6) 

311.2 
(69.8) 

-1.0 
(1.7) 

0.3 
(2.1) 

6.0 
(3.1) 

5.6 
(2.5) 

7.5 
(0.8) 

7.3 
(1.6) 

2.7 
(1.2) 

1.3 
(1.3) 

-2.1 
(0.9) 

-1.7 
(0.6) 

GCR 440.0 
(65.5) 

425.5 
(60.8) 

5.2 
(1.2) 

5.0 
(1.2) 

4.3 
(2.2) 

4.6 
(2.0) 

4.4 
(1.6) 

4.4 
(1.7) 

1.3 
(0.9) 

1.2 
(0.8) 

0.1 
(0.5) 

0.1 
(0.5) 

GLCM 352.9 
(93.4) 

344.7 
(93.6) 

1.9 
(2.2) 

1.8 
(1.9) 

7.7 
(4.8) 

6.5 
(3.3) 

6.5 
(1.9) 

6.3 
(2.2) 

4.8 
(2.1) 

4.0 
(1.5) 

0.6 
(0.6) 

0.5 
(0.6) 

GRIA2 362.7 
(89.6) 

353.8 
(81.3) 

1.0 
(2.1) 

1.3 
(2.0) 

5.2 
(4.4) 

5.1 
(2.9) 

8.2 
(2.4) 

7.3 
(2.0) 

2.5 
(2.2) 

1.9 
(1.6) 

-0.3 
(1.5) 

-0.4 
(1.2) 

GRIK1 313.4 
(94.5) 

314.9 
(81.3) 

-0.6 
(2.0) 

-0.1 
(1.8) 

4.5 
(2.4) 

4.6 
(2.0) 

7.9 
(2.3) 

7.5 
(1.7) 

2.5 
(1.1) 

2.0 
(1.1) 

-0.8 
(0.6) 

-0.8 
(0.6) 

HDAC2 390.2 
(84.6) 

381.9 
(75.9) 

3.3 
(1.3) 

3.2 
(1.2) 

7.9 
(2.7) 

6.9 
(2.4) 

6.3 
(1.8) 

6.0 
(1.8) 

3.1 
(1.2) 

2.8 
(1.1) 

0.2 
(0.5) 

0.2 
(0.5) 

HDAC8 384.4 
(80.1) 

376.2 
(71.6) 

3.3 
(1.3) 

3.2 
(1.3) 

7.4 
(2.4) 

6.6 
(2.2) 

6.1 
(1.8) 

5.8 
(1.7) 

2.9 
(1.1) 

2.7 
(1.0) 

0.3 
(0.6) 

0.3 
(0.6) 

HIVINT 383.1 
(78.0) 

371.2 
(69.8) 

1.9 
(1.4) 

2.1 
(1.3) 

5.2 
(2.5) 

4.9 
(2.0) 

7.2 
(2.3) 

6.7 
(2.0) 

2.1 
(1.9) 

1.9 
(1.6) 

-0.6 
(0.9) 

-0.5 
(0.7) 

HIVPR 512.2 
(75.6) 

472.2 
(57.8) 

5.1 
(1.5) 

4.6 
(1.5) 

9.3 
(3.2) 

7.8 
(2.7) 

6.9 
(2.2) 

6.9 
(2.1) 

2.3 
(1.8) 

1.7 
(1.4) 

-0.3 
(0.7) 

-0.3 
(0.7) 

HIVRT 357.9 
(68.6) 

352.4 
(66.1) 

3.2 
(1.8) 

3.2 
(1.6) 

4.3 
(2.5) 

4.2 
(2.1) 

5.5 
(2.5) 

5.2 
(2.0) 

1.5 
(1.2) 

1.4 
(1.2) 

-0.0 
(0.7) 

0.0 
(0.5) 

HMDH 471.8 
(69.5) 

446.3 
(55.1) 

4.3 
(1.5) 

4.2 
(1.6) 

9.0 
(2.8) 

7.6 
(2.5) 

6.1 
(2.0) 

6.5 
(2.0) 

2.0 
(1.0) 

1.3 
(0.8) 

-0.6 
(0.5) 

-0.6 
(0.5) 

HS90A 431.5 
(76.7) 

418.4 
(63.0) 

3.6 
(1.3) 

3.6 
(1.1) 

5.2 
(1.9) 

5.3 
(2.0) 

7.5 
(1.8) 

6.7 
(1.8) 

3.1 
(1.2) 

2.7 
(0.9) 

0.1 
(0.4) 

0.1 
(0.4) 

HXK4 419.7 
(53.8) 

417.0 
(53.1) 

3.3 
(1.0) 

3.3 
(1.0) 

6.2 
(1.8) 

5.7 
(1.7) 

7.1 
(1.2) 

6.9 
(1.2) 

1.4 
(0.7) 

1.4 
(0.7) 

-0.1 
(0.4) 

-0.1 
(0.4) 

IGF1R 498.5 
(62.9) 

464.4 
(52.0) 

4.3 
(1.4) 

3.7 
(1.5) 

6.6 
(1.9) 

6.6 
(2.2) 

8.3 
(1.8) 

7.1 
(1.7) 

3.8 
(1.4) 

3.0 
(1.1) 

0.6 
(0.6) 

0.5 
(0.6) 

INHA 344.4 
(55.8) 

347.6 
(55.7) 

5.1 
(0.8) 

4.8 
(0.8) 

6.1 
(2.5) 

5.2 
(2.0) 

4.0 
(1.1) 

3.6 
(1.1) 

1.2 
(0.8) 

1.1 
(0.7) 

-0.0 
(0.4) 

-0.0 
(0.4) 

ITAL 516.3 
(57.4) 

486.0 
(46.9) 

4.8 
(1.5) 

4.9 
(1.4) 

6.6 
(2.0) 

6.7 
(2.1) 

6.1 
(1.9) 

6.3 
(1.8) 

0.8 
(0.9) 

0.8 
(0.8) 

-0.1 
(0.6) 

-0.1 
(0.6) 

JAK2 417.1 
(81.5) 

407.9 
(75.2) 

3.0 
(1.1) 

3.0 
(1.2) 

5.0 
(2.2) 

5.2 
(2.0) 

7.5 
(1.8) 

7.0 
(1.6) 

2.2 
(1.2) 

2.1 
(1.1) 

0.4 
(0.7) 

0.4 
(0.7) 

KIF11 406.4 
(68.3) 

394.6 
(67.0) 

3.8 
(0.9) 

3.8 
(1.0) 

5.1 
(2.3) 

5.0 
(2.1) 

4.8 
(1.4) 

4.7 
(1.5) 

1.9 
(1.3) 

1.9 
(1.2) 

0.5 
(0.6) 

0.5 
(0.6) 

KIT 459.9 
(69.7) 

440.5 
(61.8) 

3.9 
(1.2) 

3.6 
(1.2) 

6.1 
(2.3) 

6.1 
(2.2) 

7.7 
(1.7) 

6.8 
(1.6) 

3.3 
(1.3) 

2.8 
(1.1) 

0.5 
(0.6) 

0.5 
(0.6) 

KITH 418.9 
(91.1) 

403.7 
(82.1) 

2.0 
(1.7) 

2.1 
(1.6) 

5.3 
(2.0) 

5.7 
(1.9) 

7.7 
(1.3) 

7.4 
(1.4) 

2.8 
(0.6) 

2.7 
(0.7) 

0.1 
(0.3) 

0.1 
(0.3) 

KPCB 466.6 
(72.8) 

437.7 
(59.9) 

3.9 
(1.2) 

3.6 
(1.4) 

4.7 
(3.6) 

5.2 
(2.6) 

7.5 
(2.0) 

6.6 
(1.8) 

2.8 
(1.9) 

2.2 
(1.5) 

0.3 
(0.9) 

0.3 
(0.7) 
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Average 
(Standard 
Deviation) 

Molecular 
Weight 

[Daltons] 
logP Rotable 

Bonds 

Hydrogen 
Bond 
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Hydrogen 
Bond Donors Net Charge 

Target Ligs Decs Ligs Decs Ligs Decs Ligs Decs Ligs Decs Ligs Decs 

LCK 465.8 
(80.6) 

443.3 
(65.9) 

4.5 
(1.4) 

4.0 
(1.4) 

5.9 
(2.3) 

6.0 
(2.3) 

7.5 
(1.8) 

6.6 
(1.6) 

3.0 
(1.4) 

2.5 
(1.1) 

0.5 
(0.7) 

0.5 
(0.6) 

LKHA4 372.8 
(73.8) 

370.9 
(76.0) 

4.0 
(1.7) 

3.9 
(1.6) 

7.5 
(2.1) 

6.5 
(2.1) 

4.9 
(1.8) 

4.8 
(1.8) 

1.7 
(1.1) 

1.6 
(1.1) 

0.4 
(0.6) 

0.4 
(0.6) 

MAPK2 374.9 
(74.1) 

362.7 
(73.2) 

2.5 
(1.8) 

2.4 
(1.7) 

3.2 
(1.8) 

4.0 
(1.8) 

6.3 
(1.5) 

5.8 
(1.6) 

3.2 
(1.3) 

2.9 
(1.1) 

0.2 
(0.6) 

0.2 
(0.6) 

MCR 411.4 
(46.3) 

405.3 
(49.4) 

4.8 
(1.3) 

4.6 
(1.2) 

4.6 
(2.4) 

4.6 
(1.9) 

4.7 
(1.5) 

4.6 
(1.5) 

1.1 
(1.0) 

1.1 
(1.0) 

-0.2 
(0.5) 

-0.2 
(0.5) 

MET 473.7 
(77.9) 

454.6 
(67.6) 

3.8 
(1.3) 

3.7 
(1.3) 

6.0 
(2.2) 

6.1 
(2.3) 

7.8 
(1.7) 

7.1 
(1.6) 

2.2 
(1.3) 

2.0 
(1.2) 

0.4 
(0.6) 

0.4 
(0.6) 

MK01 415.0 
(73.5) 

402.8 
(74.1) 

3.3 
(1.8) 

3.1 
(1.7) 

5.1 
(2.6) 

5.3 
(2.3) 

6.9 
(1.6) 

6.6 
(1.6) 

3.4 
(1.1) 

3.2 
(1.1) 

0.0 
(0.4) 

0.0 
(0.4) 

MK10 411.9 
(71.2) 

404.0 
(66.5) 

3.5 
(1.4) 

3.5 
(1.3) 

5.5 
(2.0) 

5.2 
(1.9) 

6.7 
(1.6) 

6.4 
(1.5) 

2.3 
(1.2) 

2.1 
(1.1) 

0.3 
(0.6) 

0.3 
(0.6) 

MK14 445.8 
(71.5) 

430.3 
(62.9) 

4.5 
(1.4) 

4.1 
(1.3) 

5.8 
(2.0) 

5.8 
(2.2) 

6.4 
(1.9) 

6.0 
(1.7) 

2.4 
(1.2) 

2.1 
(1.0) 

0.4 
(0.6) 

0.4 
(0.6) 

MMP13 473.5 
(62.5) 

449.8 
(53.1) 

2.6 
(1.4) 

2.8 
(1.5) 

7.5 
(2.2) 

7.0 
(2.2) 

8.6 
(1.7) 

8.0 
(1.5) 

2.0 
(0.9) 

1.8 
(1.0) 

-0.2 
(0.6) 

-0.2 
(0.6) 

MP2K1 454.5 
(80.1) 

436.6 
(78.1) 

4.1 
(1.6) 

3.9 
(1.6) 

6.8 
(2.9) 

6.6 
(2.6) 

6.8 
(1.7) 

6.5 
(1.5) 

2.8 
(1.7) 

2.5 
(1.4) 

0.4 
(0.6) 

0.4 
(0.6) 

NOS1 308.2 
(96.1) 

304.5 
(87.4) 

2.7 
(1.7) 

2.5 
(1.6) 

4.4 
(2.7) 

4.3 
(2.2) 

4.1 
(1.7) 

4.0 
(1.9) 

3.8 
(1.7) 

3.3 
(1.2) 

1.1 
(0.7) 

1.1 
(0.7) 

NRAM 343.8 
(51.2) 

333.6 
(61.6) 

-0.3 
(1.2) 

0.2 
(1.3) 

6.3 
(2.1) 

5.4 
(2.1) 

7.5 
(1.4) 

7.5 
(1.6) 

4.3 
(1.5) 

3.9 
(1.3) 

-0.1 
(0.5) 

-0.1 
(0.5) 

PA2GA 444.7 
(76.0) 

431.2 
(65.0) 

3.9 
(1.8) 

3.7 
(1.5) 

9.7 
(4.0) 

8.2 
(3.3) 

6.7 
(1.3) 

6.7 
(1.5) 

1.6 
(0.9) 

1.5 
(0.8) 

-0.7 
(0.6) 

-0.6 
(0.6) 

PARP1 361.3 
(86.4) 

350.9 
(84.4) 

2.3 
(1.3) 

2.3 
(1.3) 

3.6 
(1.8) 

4.1 
(1.9) 

5.9 
(1.9) 

5.6 
(1.9) 

2.4 
(1.3) 

2.4 
(1.2) 

0.4 
(0.6) 

0.4 
(0.6) 

PDE5A 454.5 
(82.4) 

439.8 
(68.8) 

3.5 
(1.2) 

3.4 
(1.2) 

6.5 
(2.8) 

6.2 
(2.5) 

8.3 
(2.1) 

7.5 
(1.8) 

1.4 
(1.0) 

1.4 
(1.0) 

0.2 
(0.7) 

0.2 
(0.7) 

PGH1 341.8 
(64.8) 

340.9 
(63.8) 

4.3 
(1.5) 

4.0 
(1.4) 

3.6 
(1.7) 

3.6 
(1.6) 

4.1 
(1.7) 

4.0 
(1.7) 

1.1 
(1.1) 

1.0 
(1.0) 

-0.3 
(0.5) 

-0.2 
(0.5) 

PGH2 375.3 
(68.7) 

369.4 
(67.8) 

4.0 
(1.4) 

3.9 
(1.4) 

4.2 
(1.8) 

4.0 
(1.7) 

4.5 
(1.6) 

4.5 
(1.6) 

0.8 
(0.9) 

0.7 
(0.9) 

-0.2 
(0.4) 

-0.2 
(0.4) 

PLK1 464.3 
(73.6) 

447.6 
(61.2) 

3.8 
(1.4) 

3.7 
(1.4) 

6.8 
(1.9) 

6.3 
(1.9) 

7.4 
(1.6) 

6.9 
(1.4) 

2.9 
(1.2) 

2.5 
(0.9) 

0.4 
(0.7) 

0.4 
(0.7) 

PNPH 277.7 
(44.9) 

273.8 
(50.9) 

0.1 
(1.7) 

0.3 
(1.7) 

3.3 
(1.9) 

4.1 
(1.8) 

7.0 
(1.8) 

6.2 
(1.6) 

4.4 
(1.7) 

3.8 
(1.6) 

-0.2 
(0.9) 

-0.2 
(0.9) 

PPARA 472.4 
(58.6) 

460.9 
(52.8) 

5.6 
(1.3) 

5.0 
(1.1) 

10.2 
(2.0) 

8.4 
(2.1) 

6.1 
(1.4) 

6.5 
(1.5) 

0.3 
(0.6) 

0.5 
(0.6) 

-0.8 
(0.4) 

-0.8 
(0.4) 

PPARD 484.5 
(56.5) 

463.2 
(45.9) 

5.8 
(1.5) 

5.1 
(1.2) 

9.9 
(1.6) 

8.1 
(1.8) 

5.8 
(1.5) 

6.4 
(1.4) 

0.2 
(0.5) 

0.4 
(0.6) 

-0.9 
(0.3) 

-0.9 
(0.3) 

PPARG 463.4 
(59.9) 

451.8 
(53.0) 

5.4 
(1.5) 

4.8 
(1.3) 

9.5 
(2.3) 

7.9 
(2.3) 

6.1 
(1.5) 

6.4 
(1.5) 

0.4 
(0.6) 

0.6 
(0.6) 

-0.8 
(0.5) 

-0.7 
(0.5) 

PRGR 368.7 
(72.6) 

360.8 
(71.1) 

4.8 
(1.2) 

4.6 
(1.2) 

2.9 
(2.1) 

3.5 
(1.8) 

3.6 
(1.3) 

3.6 
(1.3) 

1.0 
(0.7) 

0.9 
(0.6) 

0.0 
(0.3) 

0.0 
(0.3) 

PTN1 483.2 
(86.9) 

445.4 
(67.2) 

4.9 
(2.6) 

4.3 
(2.1) 

7.9 
(3.3) 

6.8 
(2.8) 

6.4 
(2.3) 

6.5 
(2.1) 

1.1 
(1.0) 

0.7 
(0.9) 

-1.2 
(0.8) 

-1.0 
(0.7) 

PUR2 463.5 
(27.4) 

418.1 
(50.5) 

-1.1 
(0.9) 

0.7 
(1.7) 

10.2 
(1.4) 

7.2 
(1.9) 

11.3 
(1.0) 

9.6 
(1.9) 

5.4 
(0.8) 

3.5 
(1.1) 

-1.9 
(0.3) 

-0.9 
(0.6) 

PYGM 412.2 
(75.1) 

397.9 
(68.5) 

3.3 
(1.4) 

3.1 
(1.3) 

5.4 
(2.3) 

5.2 
(2.2) 

7.1 
(1.7) 

6.9 
(1.6) 

1.6 
(1.3) 

1.5 
(1.4) 

-0.9 
(1.1) 

-0.9 
(1.1) 

PYRD 377.6 
(60.1) 

369.6 
(60.9) 

4.1 
(1.2) 

3.9 
(1.1) 

4.5 
(1.6) 

4.5 
(1.6) 

4.6 
(1.3) 

4.7 
(1.3) 

0.7 
(0.7) 

0.7 
(0.7) 

-0.7 
(0.4) 

-0.7 
(0.4) 

RENI 534.3 
(58.7) 

480.5 
(47.2) 

4.3 
(1.7) 

4.0 
(1.9) 

13.6 
(3.6) 

10.8 
(2.6) 

8.1 
(2.1) 

7.7 
(2.2) 

4.1 
(1.8) 

2.6 
(1.4) 

0.5 
(0.7) 

0.3 
(0.6) 

ROCK1 360.6 
(67.2) 

353.3 
(67.9) 

2.6 
(1.4) 

2.5 
(1.4) 

4.4 
(1.5) 

4.8 
(1.9) 

6.6 
(2.2) 

5.9 
(1.9) 

3.4 
(1.2) 

3.1 
(1.0) 

0.8 
(0.7) 

0.8 
(0.7) 

RXRA 407.8 
(66.8) 

412.4 
(58.6) 

6.4 
(1.2) 

5.5 
(0.9) 

5.4 
(2.3) 

5.0 
(2.1) 

3.7 
(1.6) 

4.7 
(1.5) 

0.2 
(0.5) 

0.4 
(0.6) 

-0.9 
(0.4) 

-0.8 
(0.4) 

SAHH 270.6 
(41.7) 

275.4 
(48.9) 

-0.3 
(0.9) 

-0.0 
(1.0) 

2.5 
(1.4) 

3.5 
(1.4) 

7.9 
(1.3) 

6.9 
(1.4) 

3.9 
(0.7) 

3.6 
(0.8) 

-0.1 
(0.4) 

-0.1 
(0.4) 
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Average 
(Standard 
Deviation) 

Molecular 
Weight 

[Daltons] 
logP Rotable 

Bonds 

Hydrogen 
Bond 

Acceptors 

Hydrogen 
Bond Donors Net Charge 

Target Ligs Decs Ligs Decs Ligs Decs Ligs Decs Ligs Decs Ligs Decs 

SRC 482.3 
(73.6) 

457.8 
(61.8) 

4.7 
(1.6) 

4.3 
(1.5) 

6.5 
(2.4) 

6.3 
(2.4) 

7.6 
(1.8) 

6.7 
(1.6) 

2.4 
(1.3) 

2.0 
(1.1) 

0.4 
(0.8) 

0.4 
(0.7) 

TGFR1 379.0 
(59.8) 

374.8 
(59.5) 

3.2 
(1.0) 

3.2 
(1.0) 

4.2 
(1.7) 

4.1 
(1.7) 

6.1 
(1.4) 

5.8 
(1.3) 

1.5 
(1.1) 

1.5 
(1.0) 

0.2 
(0.5) 

0.2 
(0.5) 

THB 461.0 
(69.5) 

442.6 
(58.3) 

4.6 
(1.2) 

4.3 
(1.2) 

6.0 
(2.2) 

6.0 
(2.1) 

6.8 
(2.5) 

6.5 
(2.1) 

1.5 
(0.9) 

1.1 
(0.9) 

-0.5 
(0.7) 

-0.5 
(0.7) 

THRB 489.9 
(58.2) 

436.4 
(53.4) 

1.2 
(1.7) 

1.9 
(1.8) 

9.2 
(2.7) 

7.3 
(2.4) 

9.2 
(1.8) 

8.4 
(2.0) 

5.3 
(1.9) 

3.9 
(1.4) 

0.7 
(0.7) 

0.4 
(0.7) 

TRY1 481.5 
(67.6) 

423.8 
(65.6) 

1.6 
(1.8) 

1.8 
(1.9) 

8.6 
(3.0) 

6.9 
(2.7) 

8.9 
(2.3) 

8.1 
(2.3) 

6.1 
(1.9) 

4.5 
(1.5) 

1.1 
(0.7) 

0.6 
(0.7) 

TRYB1 488.6 
(62.7) 

449.7 
(56.7) 

1.6 
(2.1) 

2.0 
(1.8) 

8.8 
(3.3) 

7.9 
(2.6) 

9.2 
(2.0) 

8.5 
(2.0) 

4.1 
(2.2) 

3.1 
(1.8) 

0.6 
(0.8) 

0.4 
(0.7) 

TYSY 452.2 
(93.4) 

407.0 
(79.6) 

0.7 
(2.3) 

1.9 
(1.9) 

7.1 
(3.3) 

5.8 
(2.5) 

9.4 
(3.0) 

7.8 
(2.4) 

3.0 
(1.4) 

2.0 
(1.5) 

-1.0 
(1.3) 

-0.5 
(0.9) 

UROK 403.6 
(80.1) 

375.0 
(79.8) 

2.8 
(1.8) 

2.2 
(1.8) 

5.8 
(2.8) 

5.5 
(2.4) 

6.5 
(2.4) 

6.4 
(2.5) 

5.5 
(1.5) 

4.4 
(1.2) 

0.8 
(0.8) 

0.6 
(0.8) 

VGFR2 449.9 
(69.8) 

432.0 
(62.9) 

4.0 
(1.5) 

3.6 
(1.4) 

5.9 
(2.2) 

6.0 
(2.2) 

7.3 
(1.7) 

6.6 
(1.6) 

2.7 
(1.4) 

2.3 
(1.1) 

0.5 
(0.6) 

0.5 
(0.6) 

WEE1 474.6 
(73.4) 

453.8 
(66.8) 

4.1 
(1.1) 

4.0 
(1.2) 

5.1 
(2.1) 

5.7 
(2.0) 

7.3 
(1.2) 

6.6 
(1.3) 

2.6 
(0.8) 

2.4 
(0.8) 

0.2 
(0.6) 

0.2 
(0.6) 

XIAP 484.1 
(73.7) 

440.9 
(59.0) 

1.6 
(1.8) 

2.2 
(1.6) 

8.5 
(2.4) 

7.4 
(2.2) 

8.0 
(1.9) 

7.9 
(2.3) 

5.1 
(1.7) 

4.0 
(1.2) 

0.8 
(0.7) 

0.6 
(0.7) 

 

Table A.3.4: Per Target Docking Enrichments 
 

Target None Full SEV Thin 
Drug-
like* 

Average 20.6 14.3 24.4 24.9 26.8 
AA2AR 20 25 28 3 25 
ABL1 27 13 26 23 27 
ACE 18 16 22 18 38 
ACES 18 15 25 23 27 
ADA 13 27 24 16 29 

ADA17 25 13 26 26 33 
ADRB1 23 3 19 12 20 
ADRB2 19 1 12 11 13 
AKT1 27 6 27 27 36 
AKT2 21 4 16 20 24 
ALDR 30 18 31 31 34 
AMPC 20 6 16 17 26 
ANDR 3 4 5 5 20 
AOFB 19 16 17 18 33 
BACE1 10 6 11 9 15 
BRAF 22 11 22 22 25 
CAH2 12 7 12 9 15 
CASP3 11 5 16 16 19 
CDK2 14 15 21 22 22 
COMT 19 30 34 31 38 
CP2C9 6 6 7 8 9 
CP3A4 6 8 7 7 4 
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Target None Full SEV Thin 
Drug-
like* 

CSF1R 21 24 32 35 26 
CXCR4 20 11 36 20 53 

DEF 17 23 23 26 25 
DHI1 8 10 11 12 22 
DPP4 36 26 41 41 36 
DRD3 14 8 13 10 17 
DYR 33 31 43 43 39 
EGFR 22 21 29 35 32 
ESR1 14 8 18 17 21 
ESR2 17 8 19 17 18 
FA10 33 11 39 43 41 
FA7 53 14 56 67 53 

FABP4 44 33 46 46 56 
FAK1 9 16 24 25 25 
FGFR1 24 9 18 16 18 
FKB1A 9 18 16 16 22 
FNTA 11 14 16 25 15 
FPPS 55 35 51 53 71 
GCR 1 4 4 3 9 

GLCM 16 32 30 31 33 
GRIA2 15 10 23 23 14 
GRIK1 36 6 35 35 18 
HDAC2 20 16 24 25 19 
HDAC8 25 20 29 29 18 
HIVINT 13 1 8 4 7 
HIVPR 4 5 7 8 7 
HIVRT 9 9 11 11 19 
HMDH 17 35 26 25 34 
HS90A 11 12 15 15 18 
HXK4 21 16 25 27 30 
IGF1R 8 8 18 25 22 
INHA 12 18 19 20 19 
ITAL 6 3 15 19 27 
JAK2 12 19 29 28 28 
KIF11 25 17 34 40 34 
KIT 7 7 12 11 17 

KITH 12 10 15 20 20 
KPCB 13 7 15 17 13 
LCK 18 14 25 22 28 

LKHA4 27 13 18 19 20 
MAPK2 15 19 33 43 30 
MCR -5 -4 -4 -4 0 
MET 30 8 24 24 27 

MK01 21 20 19 24 32 
MK10 14 21 24 27 25 
MK14 10 12 17 17 20 
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Target None Full SEV Thin 
Drug-
like* 

MMP13 22 2 12 12 21 
MP2K1 12 15 16 16 21 
NOS1 12 25 19 19 33 
NRAM 46 10 44 45 41 
PA2GA 16 21 26 28 37 
PARP1 22 17 25 37 21 
PDE5A 11 16 17 19 20 
PGH1 7 2 3 3 11 
PGH2 10 11 13 13 20 
PLK1 18 21 28 30 33 
PNPH 9 32 39 40 12 
PPARA 16 7 19 20 13 
PPARD 28 22 32 34 43 
PPARG 18 11 21 21 28 
PRGR 9 8 8 9 25 
PTN1 30 25 36 35 44 
PUR2 54 -13 51 53 48 
PYGM 16 2 17 18 9 
PYRD 29 14 30 30 33 
RENI 24 11 21 21 17 

ROCK1 11 10 17 11 19 
RXRA 30 18 25 27 32 
SAHH 24 39 39 38 58 
SRC 17 11 18 20 21 

TGFR1 30 27 36 37 33 
THB 33 38 36 37 37 
THRB 31 5 32 34 27 
TRY1 45 18 57 57 42 
TRYB1 43 5 37 37 29 
TYSY 31 7 28 27 21 
UROK 45 41 65 64 47 
VGFR2 17 13 21 20 22 
WEE1 39 31 52 64 55 
XIAP 61 7 52 60 53 

 

*Drug-like background made from all ChEMBL12 ligands with  

affinities below 10 μM 
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Table A.3.5: Comparison of DUD‐E and DUD 
 

 
Incremental Change 

All 
Original 

New 
Style 

Decoys 

Switch 
Ligands 

Switch 
Target 

Preparation 
Decoys DUD DUD-E DUD-E DUD-E 
Ligands DUD DUD DUD-E DUD-E 

Receptor Preparation DUD DUD DUD DUD-E 
LogAUC Average 14.8 19.7 16.4 22.8 

DUD-E Target DUD target  
ACE ace_auto 20 29 19 22 
ACES ache_auto 2 3 9 25 
ADA ada_semi 8 19 17 24 
ALDR alr2_auto 24 24 14 31 
AMPC ampc_auto 0 8 10 16 
ANDR ar_auto 19 3 3 5 
CDK2 cdk2_semi 21 28 25 21 
COMT comt_auto 31 27 33 34 
DYR dhfr_semi 13 30 19 43 
EGFR egfr_semi 25 32 28 29 
FA10 fxa_auto 13 28 25 39 

FGFR1 fgfr1_auto -10 -6 11 18 
GCR gr_auto 10 -3 -4 4 

HIVPR hivpr_semi 7 12 -2 7 
HIVRT hivrt_auto 6 8 8 11 
HMDH hmga_auto 20 14 16 26 
HS90A hsp90_semi 21 20 17 15 
INHA inha_auto 10 24 11 19 
KITH tk_auto 1 32 14 15 
MCR mr_auto 45 27 -4 -4 
MK14 p38_semi 4 19 16 17 
NRAM neua_auto 14 14 32 44 
PARP1 parp_semi 15 35 33 25 
PDE5A pde5_semi 18 18 17 17 
PGH1 cox1_auto 8 15 -4 3 
PGH2 cox2_auto 26 29 8 13 
PNPH pnp_auto 15 14 12 39 
PPARG ppar_auto -4 2 15 21 
PRGR pr_auto 4 -5 4 8 
PUR2 gart_semi 40 62 37 51 
PYGM gpb_semi 17 13 2 17 
RXRA rxr_auto 34 37 22 25 
SAHH sahh_auto 26 26 31 39 
SRC src_semi 1 10 19 18 
THRB thrombin_auto 27 39 28 32 
TRY1 trypsin_auto 15 31 53 57 

VGFR2 vegfr2_semi 3 11 15 21 
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