
UC Davis
UC Davis Previously Published Works

Title
Mass Spectrometry Imaging Reveals Heterogeneous Efavirenz Distribution within 
Putative HIV Reservoirs

Permalink
https://escholarship.org/uc/item/24t8q5mn

Journal
Antimicrobial Agents and Chemotherapy, 59(5)

ISSN
0066-4804

Authors
Thompson, Corbin G
Bokhart, Mark T
Sykes, Craig
et al.

Publication Date
2015-05-01

DOI
10.1128/aac.04952-14
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/24t8q5mn
https://escholarship.org/uc/item/24t8q5mn#author
https://escholarship.org
http://www.cdlib.org/


Mass Spectrometry Imaging Reveals Heterogeneous Efavirenz
Distribution within Putative HIV Reservoirs

Corbin G. Thompson,a Mark T. Bokhart,b Craig Sykes,a Lourdes Adamson,c Yuri Fedoriw,d Paul A. Luciw,c David C. Muddiman,b

Angela D. M. Kashuba,a Elias P. Rosenb

Division of Pharmacotherapy and Experimental Therapeutics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USAa; W. M. Keck FTMS Laboratory for
Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, USAb; University of California, Davis, California, USAc; School of
Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USAd

Persistent HIV replication within active viral reservoirs may be caused by inadequate antiretroviral penetration. Here, we used
mass spectrometry imaging with infrared matrix-assisted laser desorption– electrospray ionization to quantify the distribution
of efavirenz within tissues from a macaque dosed orally to a steady state. Intratissue efavirenz distribution was heterogeneous,
with the drug concentrating in the lamina propria of the colon, the primary follicles of lymph nodes, and the brain gray matter.
These are the first imaging data of an antiretroviral drug in active viral reservoirs.

Human immunodeficiency virus (HIV) replication has been
shown to persist in certain anatomic sites, known as active

viral reservoirs, despite treatment with highly active antiretroviral
(ARV) therapy (HAART) (1, 2). Understanding the factors that
contribute to the formation and propagation of these active viral
reservoirs is essential to the design of targeted therapies for HIV
eradication. It has been suggested that subtherapeutic drug con-
centrations in certain tissues resulting from poor drug penetration
may provide a favorable environment for reservoir formation and
drug-resistant viral variants (3). Several groups, including our
own, have assessed ARV penetration of tissues by directly measur-
ing drug concentrations by liquid chromatography-mass spec-
trometry (LC-MS) of homogenized whole tissue (4) or isolated
mononuclear cells (3, 5). Though these methods can provide use-
ful quantitative data, they do not have the ability to spatially define
the distribution of the drug within the tissue, as either the entire
sample is consumed in the homogenization process or spatial in-
formation is lost during cellular isolation. This is a critical limita-
tion of these methodologies, as our preliminary data have shown
that ARV distribution across tissue is not uniform (6).

MS imaging (MSI) offers an alternative strategy for quantifying
ARV distribution in tissues and cells that maintains the sensitivity
and specificity of LC-MS while preserving the spatial distribution
of analytes within tissue. Through stepwise interrogation of dis-
crete sample locations, MSI simultaneously collects information
that can be concatenated into images of multiple molecules and
their respective metabolites. This attribute is an important advan-
tage for the combinatorial nature of HAART and has already led to
the implementation of MSI in the drug development process (7).
One approach to MSI that is particularly well suited to the analysis
of small molecules is infrared matrix-assisted laser desorption–
electrospray ionization (IR-MALDESI) (8), which allows the de-
tection of ARVs in human tissue, as we have previously demon-
strated (9, 10).

Here, we used IR-MALDESI to characterize the ARV distribu-
tion in 11 nonhuman primate tissues implicated as viral reservoirs
(11–14). Further, we quantified the variability in ARV exposure
between tissues and compared this to LC-MS and immunohisto-
chemistry (IHC) data, allowing for absolute quantification of ob-
served ARV signal abundance and identification of the tissue

compartments or cellular populations where a drug may be con-
centrating. These data are the first quantitative images of the ARV
distribution in a macaque, an important species for studies of
HIV/simian immunodeficiency virus (SIV) therapy, and show
that MSI is a promising approach for evaluating ARV disposition
in HIV reservoirs (15).

One healthy male rhesus macaque (Macaca mulatta) was given
7 daily oral doses of 200 mg of efavirenz (EFV). This dose of EFV
equates to roughly 60 mg/kg and is consistent with standard treat-
ment doses for SIV (16, 17). Prior to necropsy, blood plasma and
cerebrospinal fluid were collected. The animal was euthanized by
pentobarbital overdose 24 h after the final dose of EFV, and nec-
ropsy was performed by the pathology staff at the California Na-
tional Primate Research Center. Tissue samples from the gastro-
intestinal (GI) tract (ileum, colon, rectum), central nervous
system (CNS; cerebellum, basal ganglia), lymph nodes (axillary,
iliac, mesenteric, inguinal), and spleen were snap-frozen on dry
ice and stored at �80°C until analysis (18). Calibration of the
IR-MALDESI response to EFV from the dosed tissue was con-
ducted by MSI of tissues from nondosed (“blank”) macaques
(Bioreclamation IVT, Baltimore, MD), matching dosed tissue
samples where possible, upon which a set of EFV standards were
pipetted. Prior to imaging, 10-�m sections of each tissue (dosed
and nondosed) were sliced and thaw mounted on a single glass
microscope slide uniformly coated with internal standards and
the tissue sections were spotted with 100 nl containing 0 to 5,000
pg of EFV before the sample slide was placed in the IR-MALDESI
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imaging source. Serial 10-�m sections were set aside for LC-
MS/MS and IHC analyses.

The IR-MALDESI MSI approach for analysis of tissue samples
has been described previously (8, 9). Briefly, tissue samples main-
tained at �10°C in the source chamber were ablated at a spot-to-
spot distance of 100 �m by two pulses of an IR laser (IR-Opolette
2371; Opotek, Carlsbad, CA, USA) that resulted in the complete
desorption of neutral molecules for a given volume element or
voxel. The desorbed neutral molecules were then ionized by an
orthogonal electrospray plume and sampled into a high-resolv-
ing-power Thermo Fisher Scientific Q Exactive (Bremen, Ger-
many) mass spectrometer for synchronized analysis (9). To gen-
erate images from mass spectrometry data, raw data from each
voxel were converted to the mzXML format with MSConvert soft-
ware (19). These mzXML files were interrogated with MSiReader,
a free software developed for processing of MSI data, from which
measurements such as tissue surface area can be made and images
of analyte distribution can be generated (20).

For LC-MS/MS analysis of EFV concentrations, serial 10-�m
tissue sections were homogenized in 1 ml of 70:30 acetonitrile–1
mM ammonium phosphate (pH 7.4) with a Precellys 24 tissue
homogenizer (Bertin Technologies, Montigny-le-Bretonneux,
France). A Shimadzu high-performance liquid chromatography
system was used for separation, and an AB SCIEX API 5000 mass
spectrometer (AB SCIEX, Foster City, CA, USA) equipped with a
turbo spray interface was used as the detector. The samples were
analyzed with a set of calibration standards (0.02 to 20 ng) and
quality control (QC) samples. The precision and accuracy of the
calibration standards and QC samples were within the acceptable
range of 15%. LC-MS/MS quantification of EFV in the homoge-
nate of each tissue section was compared to the summed MSI
response on a per-mass-of-tissue basis by using the MSI-derived
tissue surface area, the known section thickness, and an assumed
tissue density of 1.06 g/cm3. MSI quantitation and LC-MS/MS
analysis were performed by different individuals at separate insti-
tutions, and no data were shared before analyses were completed.

FIG 1 EFV distribution in macaque reservoir sites. Representative MSI images are shown on the left, with adjacent CD3� cell staining of serial colon (A), ileum
(B), inguinal lymph node (C), cerebellum (D), and spleen (E) tissue slices. MSI signal intensity is shown next to each image on a concentration-dependent scale.
The bottom of the scale (0) represents the presence of no EFV, while the top of the scale reflects the highest per-voxel EFV signal observed within each slice.
Brighter colors represent higher EFV concentrations.
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The LC-MS/MS data underwent QC by a designated individual
not directly involved in this study to ensure accuracy.

To verify tissue quality and assess architecture for comparison
with EFV distribution by MSI, serial sections of frozen tissue were
sliced at a 10-�m thickness, thaw mounted on glass slides, and
fixed in 100% ethanol for 10 min. After fixation, the tissues were
stained with hematoxylin and eosin by standard histological tech-
niques. IHC analysis of similarly prepared frozen tissue slices was
performed with human primary antibodies for CD3 (clone LN10;
Leica Biosystems, Buffalo Grove, IL), followed by staining with

secondary antibodies. All staining was performed with the Leica
Bond automated tissue stainer (Leica Biosystems).

MSI revealed heterogeneous intratissue EFV distribution into
several anatomic sites. Figure 1 showcases these findings for rep-
resentative tissues. When MSI images were compared with IHC
staining, interesting spatial distributions were noted. For example,
EFV was concentrated in the mucosa and lamina propria of the
colon (Fig. 1A), which corresponds to a high CD3� cell density on
IHC analysis. However, this distribution was not observed in the
ileum (Fig. 1B). The inguinal lymph node showed EFV in some,
but not all, primary follicles (Fig. 1C). EFV concentrated in the
gray matter of the cerebellum (Fig. 1D) and showed a homoge-
neous distribution in the spleen, testes, and axillary lymph nodes
(Fig. 1E). The heterogeneity of EFV distribution is quantified in
Table 1 by the dynamic range of the MSI response (expressed in
the base 10 logarithmic units decibels [dB]) in each tissue type that
can be observed in the images in Fig. 1. The dynamic range of the
EFV response was lower in tissues such as the basal ganglia and
lymph nodes, reflecting a more homogeneous EFV distribution,
whereas tissues such as the colon (37.6 dB) and rectum (26.8 dB)
had much larger differences between minimum and maximum
concentrations that suggest greater biological differences in drug
uptake.

Intertissue EFV quantitation is summarized in Table 2. LC-
MS/MS analysis demonstrated a 20-fold variability in total tissue
EFV exposure, with concentrations ranging from 1.2 �g/g in the
testes to 20.8 �g/g in the colon. A similar trend was observed in the
MSI quantification, though agreement varied between tissue
types. EFV concentrations determined by MSI and LC-MS/MS
were found to be in agreement (�30% difference) for half of the
tissues after correction for tissue size. In tissues such as the lymph
nodes, concentrations varied by as little as 8%. Tissues of the GI
tract demonstrated less agreement between techniques, with vari-
ations of up to �70%. Table 2 also compares EFV exposures in

TABLE 1 Variability of EFV MSI responses within dosed macaque
tissues

Tissue type

No. of ng/voxela

DR (dB)bMaximum Median Minimum

CNS
Cerebellum 1.8E�04 5.0E�03 6.5E�02 14.5
Basal ganglion 1.8E�03 9.2E�02 4.8E�02 5.8

Lymph node
Axillary 3.0E�04 4.2E�03 2.0E�03 11.8
Mesenteric 9.8E�03 2.6E�03 1.1E�03 9.5
Inguinal 2.7E�04 1.6E�03 8.1E�02 15.2
Iliac 4.0E�03 9.3E�02 3.4E�02 10.7
Spleen 4.2E�04 5.1E�03 1.4E�03 14.6

GI tract
Ileum 1.4E�04 3.7E�03 2.5E�03 7.5
Colon 8.7E�06 1.4E�04 1.5E�03 37.6
Rectum 1.6E�06 1.2E�04 3.4E�03 26.8
Testis 2.7E�03 5.9E�02 3.7E�02 8.6

a The EFV concentration within each voxel across the entire tissue slice was quantified
by using calibration standards.
b Dynamic range (DR), expressed in the logarithmic units decibels, was calculated as
DR � 10log10(maximum/minimum).

TABLE 2 Comparison of EFV quantitations in macaque tissues by MSI and LC-MS/MS

Tissue type

LC-MS/MS MSI

Differencec (%)
Concn (�g/g
tissue)a

Log increase over
plasma or CSFb

Concn (�g/g
tissue)

Log increase over
plasma or CSFb

CNS
Cerebellum 6.86 7.6 3.09 6.8 �54.89
Basal ganglion 2.01 6.4 1.67 6.2 �16.80

Lymph node
Axillary 3.91 2.0 3.33 1.8 �14.91
Mesenteric 3.82 2.0 3.12 1.8 �18.48
Inguinal 4.80 2.2 2.86 1.7 �40.38
Iliac 2.82 1.7 3.06 1.7 8.40
Spleen 5.01 2.2 3.61 1.9 �27.83

GI tract
Ileum 8.41 2.7 3.20 1.8 �61.94
Colon 20.77 3.6 6.12 2.4 �70.54
Rectum 20.69 3.6 8.22 2.7 �60.26
Testis 1.22 0.8 2.91 1.7 138.94

a On day 8, the concentrations in plasma and CSF were 541 and 3.30 ng/ml, respectively, as measured by LC-MS/MS.
b To compare tissue drug concentrations to plasma or CSF drug concentrations, tissue drug concentrations in �g/g were converted to ng/ml, assuming a tissue density of
approximately 1 g/ml, and then divided by the plasma or CSF drug concentration and converted to log units.
c The percent difference between methods was calculated by subtracting LC-MS/MS concentrations from MSI concentrations, dividing by the LC-MS/MS concentration, and
multiplying by 100.
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tissue and plasma. EFV achieved high exposure in the CNS, where
tissue drug concentrations were 6.8 to 7.6 log units higher than in
the CSF. EFV exposure was consistent among the lymph nodes,
with 1.7- to 2.2-log increases over plasma observed. In the GI tract,
EFV exposure was 3.6 log units higher than in plasma in the colon
and rectum and 2.7 log units higher in the ileum.

The persistence of HIV replication within anatomic reservoirs
necessitates the use of tissue pharmacology to inform the design of
effective treatment strategies. This requires knowledge of tissue
penetration to sites of action, as underscored by recent findings
that the 50 to 90% reduction of the EFV concentration in mono-
nuclear cells isolated from reservoir tissues relative to that in pe-
ripheral blood mononuclear cells was associated with persistent
viral replication in these tissues (3). This finding, in combination
with the fact that EFV receives widespread clinical use as a com-
ponent of Atripla (a fixed-dose combination of tenofovir, emtric-
itabine, and EFV dosed once daily) and is frequently included in
HIV treatment and cure research regimens for macaques, led us to
choose EFV for our evaluations.

The observed ARV drug distribution within these putative vi-
ral reservoirs reveals important information regarding tissue
pharmacology that can inform treatment strategy. The heteroge-
neous penetration of the lymphoid follicles by EFV suggests that
further quantification of effective drug exposure in these tissues is
required. Conversely, the abundance of EFV signal in the CD3�

cell populations of the gut is evidence that adequate EFV concen-
trations are likely reached in this compartment. Both of these find-
ings are consistent with previous studies that have examined tissue
EFV concentrations by LC-MS (5). The EFV distributions ob-
served here would not have been possible with traditional LC-MS
of tissue homogenates or isolated mononuclear cells; the hetero-
geneity of EFV distribution within tissue slices as measured by the
dynamic range of response (Table 1) is only measurable by MSI.
Moreover, our MSI analysis provides evidence that the use of
plasma or CSF as a surrogate for tissue drug concentrations may
be inappropriate without detailed quantification of these relation-
ships. The higher CNS tissue EFV concentrations than CSF EFV
concentrations (Table 2) and the concentration of EFV within the
gray matter of the cerebellum (Fig. 1) agree with brain microdi-
alysis data showing that CNS drug concentrations are higher than
CSF drug concentrations (21, 22).

The variability in the extent of EFV distribution between tissue
types suggests that biological processes, more than the cellular
populations present, drive the movement of EFV into tissues. The
nonhomogeneous distribution of EFV in tissues such as the colon
may be attributable to the physicochemical properties of EFV or to
active transport mechanisms. Our previous work identifying vari-
ables affecting ARV exposure in the female genital tract (another
putative viral reservoir) found that the efflux transporters MRP1
and MRP4 were associated with ARV penetration of this compart-
ment (23). While EFV is not a known substrate of these transport-
ers, other drug transporters such as MDR1 or BCRP may affect its
disposition and explain the areas of EFV concentration seen here
(24, 25).

There are several limitations of this analysis that should be
addressed, the most important of which is our limited sample size.
As this study was conducted with a single animal, the variability in
tissue drug distribution between animals remains unknown and
remains to be evaluated. Further, the assessment of EFV distribu-
tion shown in Fig. 1 is based on individual slices of tissue under

steady-state conditions. Repeated sectioning may reveal addi-
tional biological variability. Although EFV has a long plasma half-
life and a relatively flat blood plasma concentration-versus-time
curve, EFV exposure over the dosing interval could not be deter-
mined because sampling was performed only at the end of the
dosing interval. Additionally, we were unable to determine the
relationship between drug and viral dynamics in this uninfected
animal, though we selected tissues with previous evidence sup-
porting persistent HIV infection (11–14). Finally, only CD3 was
used to correlate IHC analysis with drug distribution. Though
visualization of the overall T cell compartment is informative,
future work will relate ARV localization to CD4� T cell distribu-
tion, as these cells are the most relevant for HIV infection.

This is the first study to apply MSI to ARV distribution in
potential tissue reservoirs of HIV infection. Using IR-MALDESI,
we have confirmed that ARV tissue distribution is heterogeneous
and that the distribution of a single ARV can vary greatly between
tissues within an individual. By comparison to the gold standard
of tissue quantification, LC-MS/MS, our analysis confirms the im-
portance of MSI for drug quantification. Future work will address
the existing limitations of our approach. For MSI, this will entail a
systematic exploration of factors, such as matrix effects or electro-
spray ionization capacity, that may influence the quantitative
agreement with LC-MS for different tissue types and drug expo-
sures. IR-MALDESI is sensitive to a wide variety of endogenous
lipids (the profiles of which vary between tissue types) that are
ablated and analyzed simultaneously with EFV. Any suppression
of the EFV response as a result of tissue-specific ablation and ion-
ization conditions is intended to be taken into account by per-
forming EFV calibrations with matching or closely related blank
tissue types and evaluating the IR-MALDESI response to an inter-
nal standard. However, a more thorough investigation of these
effects must be undertaken to improve analytical agreement. Ad-
ditionally, lower limits of detection of all ARVs and their active
metabolites within a drug regimen must be attained in order to
link tissue drug exposure and suppression of viral replication. We
will also evaluate ARV distribution in SIV/HIV-infected samples
to determine the effect of ARV disposition on viral expression.
Despite these limitations, these data show that MSI is a critical tool
for the disposition of ARVs within putative active HIV reservoirs,
which is an important step toward understanding how to eradi-
cate HIV infection.
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