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ABSTRACT

This paper proposes a system, entitled Concealer that allows
sharing time-varying spatial data (e.g., as produced by sensors)
in encrypted form to an untrusted third-party service provider
to provide location-based applications (involving aggregation
queries over selected regions over time windows) to users. Con-
cealer exploits carefully selected encryption techniques to use
indexes supported by database systems and combines ways to
add fake tuples in order to realize an efficient system that pro-
tects against leakage based on output-size. Thus, the design of
Concealer overcomes two limitations of existing symmetric
searchable encryption (SSE) techniques: (i) it avoids the need
of specialized data structures that limit usability/practicality of
SSE in large scale deployments, and (ii) it avoids information
leakages based on the output-size, which may leak data distribu-
tions. Experimental results validate the efficiency of the proposed
algorithms over a spatial time-series dataset (collected from a
smart space) and TPC-H datasets, each of 136 Million rows, the
size of which prior approaches have not scaled to.

1 INTRODUCTION

We consider the problem wherein trusted data producers (DP)
share users’ spatial time-series data in the encrypted form with
untrusted service providers (SP) to empower SP to build value-
added applications for users. Examples include a cellular company
sharing data about the cell tower a user’s mobile phone is con-
nected to, or a map service (e.g., Google Map) sharing the user’s
GPS coordinates with a third-party providing location-based
applications. Another example is an organization/university pro-
viding WiFi connectivity data about the access point a user’s
device is connected to, for applications such as building dynamic
occupancy maps [1]. We classify applications supported by SP
using user’s data into two classes:
(1) Aggregate Applications that aggregate data of multiple

users to build novel applications. Examples include occu-
pancy of different regions, heat maps, and count of distinct
visitors to a given region over a period of time. Such applica-
tions are already supported by several service providers, e.g.,
Google Maps supports information about busy-status and
wait times at stores such as restaurants and shopping malls.
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(2) Individualized Applications that allow users to ask
queries based on their own past movements, e.g., locations
a person spent the most time during a given time interval,
finding the number of people came in contact with, and/or
other aggregate operations on user’s data. Such applications
can be very useful for several contexts including exposure
tracing in the context of infectious diseases [43].
Implementing applications at the (untrusted) SP requires: (i)

DP to appropriately encrypt data prior to sharing with SP,
(ii) SP to be able to execute queries on behalf of the user over
the encrypted data, and (iii) the user to be able to decrypt the
encrypted answers returned by 𝑆𝑃 . Realizing such a data-sharing
architecture leads to the following three requirements, (of which
the first two are relatively straightforward, while the third re-
quires a careful design of a new cryptographic technique that
this paper focuses on):

R1: Query formulation by the user. Given that data is en-
crypted byDP and is hosted at SP, the user needs to formulate
the query to enable SP to execute it over encrypted data. The
users can formulate an appropriate encrypted query, if they know
the key used for encryption by DP. However, DP cannot share
the key with users to prevent them from decrypting the entire
dataset. A trivial way to overcome this problem is to involveDP
in processing queries. Particularly, a user can submit queries to
DP that converts the query into appropriate trapdoors to be
executed on encrypted data at SP, fetches the partial results
from SP, and processes the fetched rows, before producing the
final answer to users. Such an architecture incurs significant over-
head at DP, which essentially requires DP to mediate every
user query, essentially pushing them to act as a surrogate SP.
Thus, the first requirement is how users can formulate ap-

propriate encrypted querieswithout involvingDP in query

processing.
We can overcome this requirement trivially by using secure

hardware (e.g., Intel Software Guard eXtensions1 (SGX) [11]) at
SP that works as a trusted agent of DP. SGX receives queries
encrypted using the public key of SGX (which we assume to
known to all) from users, decrypts the query, converts the query
into appropriate secure trapdoors, and provides the answer.

R2: Preventing SP from impersonating a user. Since we do
not wish to involve DP during query processing, all users ask
queries directly to SP. Such query representations should not
empower SP to mimic/masquerade as a legitimate user to gain
access to the cleartext data from the answers to the query. Thus,
1Recent Intel CPUs introduced SGX that allows us to create a small trusted execution environ-
ment, called enclave that is isolated and protected from the rest of the system. SGX protects
computations from the operating system (controlled by the third-party) and from numerous
applications/system-level attacks. Unfortunately, existing implementations of SGX are prone
to side-channel attacks that exploit one of the microarchitectural components of CPUs, e.g.,
cache-lines, branch execution, page-table access [24, 45, 46], and power attacks. Nevertheless,
systems T-SGX [40] and Sanctum [12] have evolved to overcome such attacks, and it is believed
that future versions of SGX will be resilient to those attacks.
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Techniques Frequent and fast insertion Fast query execution DBMS supported index Preventing attacks

Data distribution Output-size Access-patterns

DET (Always Encrypt [4]) 1 1 Yes No No No
NDET (Arx [37] or Always Encrypt [4]) 2 2 or 3 Yes Yes No No
Indexable-SSE (PB [26]- or IB [27]-Tree) 4 2 No∗ No No No
Indexable-SSE with ORAM (Blind Seer [35]) 4 4 No∗ No No Yes
Non-indexable-SSE [13, 41] 2 4 No No No No
SGX system (Opaque [48]) 2 3 No No No No
MPC or SS (Jana [5]) 4 4 No Yes No Yes
Concealer 1 1 Yes Yes Yes Yes (partial)

Table 1: Comparing different techniques vs Concealer. Note: 1: Very fast, 2: Fast, 3: Slow. 4: Very slow. ∗: Indexable SSEs
build their own indexes and their index traversal techniques are not in-built in existing commercial DBMS.

the second requirement is how will the system prevent SP

to mimic as a user and execute a query.
We overcome this requirement trivially by building a list of

registered users, who are allowed to execute queries on the en-
crypted data (after a negotiation between users and DP) at DP
and provides it in encrypted form to SP. The registry contains
credential information (e.g., public/private key and authentica-
tion information of users) about the users who are interested
in SP applications. Thus, before generating any trapdoor by
SGX, it first authenticates the user and provides the final answers
encrypted using the public key of the user.

R3: Selecting the appropriate encryption technique. Spatial
time-series data brings in new challenges (as compared to other
datasets) in terms of a large amount of the dataset and dynami-
cally arriving data. Also, spatial time-series data show new op-
portunities in terms of limited types of queries (i.e., not involving
complex operations such as join and nested queries). Particularly,
the data encryption and storage must sustain the data generation
rate, i.e., the encryption mechanism must support dynamic inser-
tion without the high overhead. Further, cryptographic query exe-
cution time should scale to millions of records. Finally, the system
must support strong security properties such that the ciphertext
representation and query execution do not reveal information
about the data to SP. Note that ciphertext representation leaks
data distribution only when deterministic encryption (DET) is
used. Query execution leaks information about data due to search-
and access-patterns leakages, and volume/output-size leakage.
In §1.1, we discuss these leakages and argue that none of the ex-
isting cryptographic query processing techniques satisfy all the
above requirements. Thus, the third requirement is how to de-

sign a system that has efficient data encryption and query

execution techniques, and not prone to such leakages.

Concealer. We design, develop, and implement a secure
spatial time-series database, entitled Concealer. This paper fo-
cuses on how Concealer addresses the above-mentioned third
requirement, and below, we briefly discuss the proposed solution
to the requirement R3. In short, Concealer is carefully designed
to support a high rate of data arrival, and large data sets, but
it only supports a limited nature of spatial time-series queries
required by the domain of interest. To a degree, Concealer
can be considered more of a vertical technology compared to
general-purpose horizontal solutions, which as will be discussed
in §1.1, lack the ability to support application/data that motivates
Concealer.

Concealer, for fast data encryption and minimum crypto-
graphic overheads on each tuple, uses a variant of deterministic
encryption that produces secure ciphertext (that does not reveal
data distribution) and is fast enough to encrypt tuples (≈37,185
tuples/min). Further, Concealer exploits the index supported
by MySQL. Note that we do not use any specialized index (e.g.,

PB-tree [26] and IB-Tree [27]) and do not require to build the en-
tire index for each insertion at the trusted side. Since Concealer
users an index supported by DBMS, it supports efficient query
execution. For a point query on 136M rows, Concealer needs
at most 0.9s. Thus, our implementation of DET and the use of
indexes supported by DBMS satisfy the requirements of fast data
insertion and fast query execution.

To address the security challenge during query execution,Con-
cealer (i) prevents output-size by fixing the unit of data retrieval
of the form of bins, formed over the tuples of a given time period;
care is taken to ensure that each bin must be of identical size (by
implementing a variant of bin-packing algorithm [10]), and (ii)
hides partial access-patterns, due to retrieving a fixed bin having
different tuples corresponding to different sensor readings (with
different location/time/other values) for any query correspond-
ing to the element of the bin. That means the adversary observes:
which fixed tuples are fetched for a set of queries including the
real query posed by the user. However, the adversary cannot find
which of the fetched tuples satisfy the user query. Since our focus
is on practical system implementation, we relax the complete
access-pattern hiding requirements. The exact security offered
by Concealer will be discussed in §7.

Since we fetch a bin of several tuples, to filter the useless
tuples that do not meet the query predicates, SGX at SP filters
them, (while also hides complete access-patterns inside SGX by
performing oblivious operations). Further, to verify the integrity
of the data before producing the answer, Concealer provides a
non-mandatory hash-chain-based verification.

Evaluation. We evaluate Concealer on a real WiFi dataset col-
lected from at UCI. To evaluate its scalability, we executed the
algorithms on 136M rows, the size that previous existing crypto-
graphic techniques cannot support. We also compare Concealer
against SGX-based Opaque [48]. To the best of our knowledge,
there is no system that supports identical security properties
(hiding output-size and hiding partial access-patterns, while sup-
porting indexes for efficient processing). Our algorithms can be
used to deal with non-time-series datasets also; thus, to evalu-
ate algorithms’ practicality, we evaluate aggregation queries on
136M rows LineItem table of TPC-H benchmark.

1.1 Comparison & Advantages of Concealer

Wediscuss common leakages from cryptographic solutions, argue
that they do not satisfy the requirements of fast data insertion,
fast query execution, and/or security against leakages (see Table 1
for a comparison).
Leakages. Cryptographic techniques show the following leak-
ages:
(1) Data distribution leakage from the storage [9]: allows an ad-

versary to learn the frequency-count of each value by just
observing ciphertext. DET reveals such information.
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(2) Search- and access-patterns leakages [9, 19]: occur during
query execution. Search-pattern leakages allow an adver-
sary to learn if and when a query is executed, while access-
patterns leakage allows learning which tuples are retrieved
(by observing the (physical) address/location of encrypted
tuples) to answer a query. Practical techniques, such as order-
preserving encryption (OPE) [3], DET, symmetric search-
able encryption (SSE) [26, 27], and secure hardware-based
techniques [4, 16, 38, 39, 48], reveal the access-patterns. In
contrast, non-efficient techniques (e.g., secret-sharing [5, 7]
or oblivious RAM (ORAM) based techniques) hide access-
patterns.

(3) Volume/output-size leakage [9]: allows an adversary (having
some background knowledge) can deduce the data by simply
observing the size of outputs (or the number of qualifying
tuples). [9, 19, 30] showed that output-size may also leak
data distribution. Access-patterns revealing techniques implic-
itly disclose the output-size. Moreover, the seminal work [22]
showed that the output-size revealed even due to access-
pattern hiding techniques enables the attacker to reconstruct
the dataset. A possible solution is adding fake tuples with
the real data, thereby each value has an identical number
of tuples and using indexable SSEs. However, [30] showed
that it will be even more expensive than simply scanning
the entire database in SGX (or download the data at DP to
execute the query locally). Existing output-size preventing
solutions, e.g., Kamara et al. [21] or Patel et al. [36], suffer
from one major problem: [21] fetches 𝛼 ×max, 𝛼 > 2, rows,
while [36] fetches 2 ×max rows with additional secure stor-
age of some rows (which is the function of DB size), where
max is the maximum number of rows a value can have. Thus,
both [21] and [36] fetch more than the desired rows, i.e.,max.
Moreover, both [21] and [36] cannot deal with dynamic data.

Existing techniques in terms of data insertion, query ex-

ecution, and leakages. Existing encrypted search techniques
differ in their support for dynamic data, efficient query execution,
and offered security properties. For instance, DET supports very
efficient insertion and query processing, while its ciphertext data
leaks data distribution.

Non-indexable techniques/systems (e.g., SSE [13, 41], secret-
sharing (SS) [5, 7], secure hardware-based systems [48]) allow fast
data insertions by just encrypting the data, but have inefficient
query response time, due to unavailability of an index, and hence,
reading the entire data. SS hides search- and access-patterns,
while others reveal. Moreover, all such techniques are prone to
output-size leakage.

In contrast, indexable techniques/systems (e.g., indexable SSEs
(such as PB-Tree [26], IB-Tree [27]) and secure hardware-based
index [29]) have faster query execution, but show slow data inser-
tion rate, due to building the entire index at the trusted side for
each data insertion; e.g., [35] showed that creating a secure index
over 100M rows took more than 1 hour. Moreover, these index-
able techniques use specialized indexes that require specialized
encryption and tree traversal protocols that are not supported in
the existing standard database systems. This, in turn, limits their
usability in dealing with large-scale time-series datasets. All such
indexable solutions reveal output-size. While indexable solutions
mixed with ORAM (e.g., [35]) hide search- and access-patterns,
they are not efficient for query processing (due to several rounds
of interaction between the data owner and the server to answer
a query). In summary, spatial time-series data adds complexity

since (i) it can be very large, and (ii) arrives dynamically (possibly
a high velocity). Existing techniques, as discussed above, are not
suitable to support secure data processing over such data.

Advantages of Concealer. (i) Frequent data insert. We deal
with frequent bulk data insertions (which is a requirement of
spatial time-series datasets). (ii) Deal with large-size data. We
handle large-sized data with several attributes and large-sized
domain efficiently, as our experimental results will show in §9.
(iii) Output-size prevention. While Concealer satisfies the stan-
dard security notion (supported by existing SSEs), i.e., indistin-
guishability under chosen keyword attacks (IND-CKA) [13], it
also prevents output-size attacks, unlike IND-CKA. (iv) Oblivious
processing in SGX. As we use the current SGX architecture, suf-
fering from side-channel attacks (e.g., cache-line, branch shadow,
and page-fault attack [24, 45, 46]) that enable the adversary to
deduce information based on access-patterns in SGX. Thus, we
incorporate techniques to deal with these attacks.

1.2 Scoping the Problem

There are other aspects, for them either solutions exist or this
paper does not deal with them, as: (i) Key management. We
do not focus on building/improving key infrastructure for pub-
lic/private keys, as well as, key generation and sharing between
SGX and DP. Further, changing the keys of encrypted data and
re-encrypting the data is out of the scope of this paper, though
one may use the recent approach [20] to do so. Also, we do not
focus on SGX remote attestation. (ii) Man-in-the-middle (MiM)
or replay attacks. There could be a possibility of MiM and replay
attacks on SGX during attestation and query execution. We do
not deal with both issues, and techniques [15] can be used to
avoid such attacks. (iii) Inference from the number of rows. Since
we send data in epochs, different numbers of tuples in different
epochs (e.g., epochs for day vs night time) may reveal information
about the user. This can be prevented by sending the same num-
ber of rows in each epoch (equals to the maximum rows in any
epoch). The current implementation of Concealer does not deal
with this issue. (iv) Inference from occupancy count. Occupancy
information mixed with background knowledge reveals the pres-
ence/absence of a person at a location (e.g., offices). We do not
deal with these inferences, and differential privacy techniques
mixed with SGX [8, 47] can be used to deal with such issues.

1.3 Outline of the Paper

The other sections of the papers are organized as follows:
(1) §2 provides an overview of the entities involved in Con-

cealer, its architecture, and a high-level description of the
proposed algorithms.

(2) §3 provides the details of data encryption and data outsourc-
ing algorithms.

(3) §4 and §5 provide the details of algorithms for point queries
and range queries, respectively.

(4) §6 provides the algorithm for dynamic data insertion, and §8
provides an algorithm to deal with information leakages due
to the query workload.

(5) §7 provides the security properties satisfies by Concealer
and discusses the information leakages due to different query
execution algorithms.

(6) §9 provides experimental results of Concealer and compares
them against different cryptographic techniques.

3
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Figure 1: Concealermodel.

2 CONCEALER OVERVIEW

This section provides an overview of entities involved in Con-
cealer and its architecture with a high-level overview of algo-
rithms.

2.1 Entities and Assumptions

Concealer consists of the following three entities:
• Data provider DP: is a trusted entity that collects user’s
spatial time-series data as part of its regular operation (e.g.,
providing cellular service to users).DP shares such data in en-
crypted form with service providers SP.DP, also, maintains
a registry, one per SP, that contains a list of identification
information of users, who have registered to use the applica-
tion provided by the corresponding SP (i.e., can run queries
at that SP). As will be clear, this registry helps to restrict the
users to request individualized applications about other users.
• Service provider SP: is an untrusted entity that develops
location-based applications (as mentioned in §1) over en-
crypted data. To do so, SP hosts secure hardware, SGX, that
works as a trusted agent ofDP.2 SGX andDP share a secret
key 𝑠𝑘 (used for encryption/ decryption of data), and this key
is unknown to all other entities.
An untrusted SP may try to learn user’s data passively by
either observing the data retrieved by SGX or exploiting side-
channel attacks on SGX during query execution. It may further
learn user’s data by actively injecting the fake data into the
database and then observing the corresponding ciphertext
and query access-patterns. We assume that SP knows back-
ground information, e.g., metadata, the schema of the relation,
the number of tuples, and the domain of attributes. However,
the adversarial SP cannot alter anything within the secure
hardware and cannot decrypt the data, due to the unavail-
ability of the encryption key. Such assumptions are similar to
those considered in the past work related to SGX-based com-
putation [16, 38, 39, 48], work on attacks based on background
knowledge in [22, 31], and location-based services [32].
• User or data consumer U: that uses the services of DP
(such as cellular or WiFi connectivity) and queries to SP.
We assume thatU have their public and private keys, which
are used to authenticateU at SP (via SGX against registry).
As mentioned in §1, U can request both aggregate and in-
dividualized queries. While U is trusted with the data that
corresponds to themselves, they are not trusted with data be-
longing to other users. Finally, we assume that whileU can

2The assumption of secure hardware at untrusted third-partymachines is consistent with emerg-
ing system architectures; e.g., Intel machines are equipped with SGX [2].

execute the aggregation queries, they do not collude with SP,
i.e., they do not share cleartext results of any query with SP.

2.2 Architecture

Concealer (Figure 1) consists of the following phases:

Phase 0: Preliminary step: Announcement of SP by DP.

As a new SP is added into the system, DP announces about
the SP to all their users. Only interested users inform to DP
if they want to use SP’s application. Information of such users,
their device-id, and authentication information is stored by DP
in the registry.

Phase 1: Data upload byDP.DP collects spatial time-series
data of the form ⟨𝑙𝑖 , 𝑡𝑖 , 𝑜𝑖 ⟩ ( 1 ), where 𝑙𝑖 is the location, 𝑡𝑖 is the
time, and 𝑜𝑖 is the observed value at 𝑙𝑖 and 𝑡𝑖 . For instance, in
the case of WiFi data, the location may correspond to the region
covered by a specific WiFi access-point, and the observation
corresponds to a particular device-id connected to that access-
point at a given time.DP encrypts the data using the mechanism
given in §3 and provides the encrypted data to SP ( 2 ) along
with encrypted registry and verifiable tags (to verify the data
integrity at SP by SGX).

Concealer considers the data as a relation 𝑅 with three at-
tributes: T (time), L (location), and O (observation). Table 2a
shows an example of the cleartext spatial time-series data, (which
will be used in this paper to explain Concealer). In Table 2a, we
have added a row-id 𝑟𝑖 (1 ≤ 𝑖 ≤ 6) to refer to individual rows
of Table 2a. Table 2c shows an example of the encrypted spatial
time-series data as the output of Concealer.

Phase 2:Query generation atU.A query𝑄 = ⟨qa, att⟩, where
qa is an aggregation (count, maximum, minimum, top-k, and
average) or selection operation for a given condition, and att is a
set of attributes with predicates on which query will be executed,
is submitted to SP ( 3 ). qa is always encrypted to prevent SP
to know the query values.

Phase 3:Query processing atSP.SP holds encrypted spatial
time-series dataset and the user query (submitted to the secure
hardware SGX). SGX, first, authenticate the user, and then, trans-
lates the query into a set of appropriate secured query trapdoors
to fetch the tuples from the databases ( 4 ). Note that since the in-
dividualized application is executed for the user itself, trapdoors
are only generated if the authentication process succeeds to find
that the user is wishing to know his past behavior.

The trapdoors are generated by following themethods of §4 for
point queries or the method of §5 for range queries. On receiving
encrypted tuples from the database ( 5 ), the secure hardware,

4



L T O
𝑟1 𝑙1 𝑡1 𝑜1

𝑟2 𝑙1 𝑡2 𝑜2

𝑟3 𝑙2 𝑡3 𝑜2

𝑟4 𝑙1 𝑡4 𝑜1

𝑟5 𝑙2 𝑡5 𝑜3

𝑟6 𝑙3 𝑡6 𝑜2
(a) A relation 𝑅 in

cleartext at DP.

𝑐𝑖𝑑1
{1,1}

= {𝑟4, 𝑟6} 𝑐𝑖𝑑2
{1,2}

= {𝑟5}

𝑐𝑖𝑑1
{2,1}

= {𝑟1, 𝑟2} 𝑐𝑖𝑑3
{2,2}

= {𝑟3}

𝑙1, 𝑙3 𝑙2
𝑐𝑒𝑙𝑙_𝑖𝑑[] = {𝑐𝑖𝑑1, 𝑐𝑖𝑑2, 𝑐𝑖𝑑1, 𝑐𝑖𝑑3} 𝑐_𝑡𝑢𝑝𝑙𝑒[] = {4, 1, 1}

𝑡1, 𝑡2, 𝑡3

𝑡4 𝑡5, 𝑡6

(b) The grid created at DP for rows of Table 2a.

L O Tuple Index(L, T)
𝑟 ′1 E𝑘 (𝑙1 | |𝑡1) E𝑘 (𝑜1 | |𝑡1) E𝑘 (𝑙1 | |𝑡1 | |𝑜1) E𝑘 (cid1 | |1)
𝑟 ′7 End (fake) End (fake) End (fake) E𝑘 (f | |1)
𝑟 ′2 E𝑘 (𝑙1 | |𝑡2) E𝑘 (𝑜2 | |𝑡2) E𝑘 (𝑙1 | |𝑡2 | |𝑜2) E𝑘 (cid1 | |2)
𝑟 ′3 E𝑘 (𝑙2 | |𝑡3) E𝑘 (𝑜2 | |𝑡3) E𝑘 (𝑙2 | |𝑡3 | |𝑜2) E𝑘 (cid3 | |1)
𝑟8 End (fake) End (fake) End (fake) E𝑘 (f | |2)
𝑟 ′4 E𝑘 (𝑙1 | |𝑡4) E𝑘 (𝑜1 | |𝑡4) E𝑘 (𝑙1 | |𝑡4 | |𝑜1) E𝑘 (cid1 | |3)
𝑟 ′5 E𝑘 (𝑙2 | |𝑡5) E𝑘 (𝑜3 | |𝑡5) E𝑘 (𝑙2 | |𝑡5 | |𝑜3) E𝑘 (cid2 | |1)
𝑟 ′6 E𝑘 (𝑙3 | |𝑡6) E𝑘 (𝑜2 | |𝑡6) E𝑘 (𝑙3 | |𝑡6 | |𝑜2) E𝑘 (cid1 | |4)

Ecell_id [2, 2] = End ( {cid1, cid2, cid1, cid3 })
Ec_tuple [3] = End ( {4, 1, 1})

(c) Encrypted data with encrypted counters at SP.
Table 2: Input time-series relation and output of data encryption algorithm.

first, optionally checks their integrity using verifiable tags, and
if find they have not tampered, decrypts them, if necessary, and
obliviously processes them to produce the final answer to the
user ( 6 ).

Phase 4: Answer decryption at U. On receiving the answer,
U decrypts them.

2.3 Algorithm Overview

Before going into details of Concealer’s data encryption and
query execution algorithms, we first explain them at the high-
level.

Data encryptionmethod atDP: partitions the time into slots,
called epochs, and for each epoch, it executes the encryption
method that consists of the following three stages:
Stage 1: Setup. Assume that we want to deal with two attributes
(𝐴 and 𝐵), (e.g., location and time). This stage: (i) creates a grid of
size, say 𝑥 ×𝑦, (ii) sub-partitions the time into 𝑦 subintervals, e.g.,
for an epoch of 9-10am, creates 𝑦 subintervals as: 9:00-9:10, 9:11-
9:20, and so on, and (iii) using a hash function, say H, allocates
𝑥 values of 𝐴 attributes over 𝑥 columns, allocates 𝑦 values (or 𝑦
subintervals) of 𝐵 attribute to 𝑦 rows, and allocates some cell-ids
< 𝑥 × 𝑦 (each with their counters initialized to zero) over the
grid cells. (Such grid-creation steps can be used for more than
two columns trivially and extended for non-time-series dataset.)
Stage 2: Encryption: In this stage, each sensor reading is en-
crypted and a verifiable tag is produced for integrity verification,
as: (i) a tuple 𝑡𝑖 is allocated to a grid cell corresponding to its de-
sired column (e.g., location and time) values using a hash function,
the counter value of the cell-id is increased by one and attached
with the tuples, and the tuples is encrypted to produce secure
ciphertext with the encrypted counter value as a new attribute
value, (ii) a hash-chain is created over the encrypted tuple values
of the same cell-id for integrity verification (and verify false data
injection or data deletion by SP, and (iii) encrypted fake tuples
are added (to prevent output-size leakage at SP).
Stage 3: Sharing: This stage sends encrypted real and fake tuples
with encrypted verifiable tags and encrypted cell-id, counter
information to SP.

Example. Table 2a shows six cleartext rows of an epoch. A
2 × 2 grid with three cell-ids cid1, cid2, and cid3 is shown in
Table 2b. Six cleartext rows are distributed over different cells of
the grid. Table 2c shows the output of the encryption algorithm
with fake tuples to prevent the output-size attack at SP and
an index column created over the cell-ids. Encrypted Table 2c
with counters and cell-ids (written below Table 2b) in encrypted
form is given to SP. Details of the encryption method and

example will be given in §3.■

Data insertion into DBMS at SP: On receiving the en-
crypted data from DP, SP inserts the data into DBMS that
creates/modifies the index based on the counters associated with
each tuple.

Query execution at SP: as a pre-processing, the enclave at
SP, first, authenticates the user, as mentioned in Phase 3 of §2.3,
and then, executes the query, as follows:
Point queries. Consider a query on a location 𝑙 and time 𝑡 . For
answering this, the enclave at SP executes the following steps:
(i) first execute the hash function H on query predicate 𝑙 and 𝑡
to know the cell-id, say cid𝑧 , that was allocated by DP to 𝑙 and
𝑡 , (ii) using the information of cell-id and counter information,
which was sent byDP, create static bins of a fixed size (to prevent
output-size leakage), (iii) among the created bins, find a bin, say
𝐵𝑖 that has the cell-id cid𝑧 that was obtained in the first step above,
and (iv) fetch data from DBMS corresponding to the bin 𝐵𝑖 , and
(v) verify the integrity of data (if needed), obliviously process the
data against query predicate in the enclave, and decrypt only the
desired data.
Range queries. A range query, of course, can be executed by fol-
lowing the above point query method by converting the range
query into several point queries. However, to avoid the overhead
of several point queries, we create static bins of fixed size over the
fixed-sized groups of subintervals and fetch such bins to answer
the query by following point queries’ step (v). Following §3,§4,§5
will describe these algorithms in details, and then §9will com-
pare these algorithms on different datasets and against different
systems.

Example. Underlying DBMS at SP creates an index over
Index column of Table 2c. SGX creates two bins over cell-ids’s
as 𝐵1 : ⟨cid1⟩, 𝐵2 : ⟨cid2, 𝑓 | |1, 𝑓 | |2⟩. Note that both bins corre-
sponds to four rows—𝐵1 will fetch 𝑟1, 𝑟2, 𝑟4, 𝑟6, and 𝐵2 will fetch
𝑟3, 𝑟5, 𝑓 | |1, 𝑓 | |2 rows. Thus, the output size will be the same. Now,
consider a query 𝑄 = ⟨count, (𝑙2, 𝑡5)⟩ over Table 2c. Here, SGX
will know that it needs to fetch rows corresponding to the bin hav-
ing cid2, by generating four trapdoors: E𝑘 (cid2 | |1), E𝑘 (cid3 | |1),
E𝑘 (𝑓 | |1), and E𝑘 (𝑓 | |2). Finally, based on the retrieve rows, SGX
produces the final answer.■

3 DATA ENCRYPTION AT DATA PROVIDER

Concealer stores data in discredited time slots, called epochs
or rounds. Epoch duration is selected based upon the latency re-
quirements of SP. Executing queries over multiple epochs could
lead to inference attacks, and for dealing with it, we will present
a method in §6. This section describes Algorithm 1, which is
executed at DP, for encrypting time-series data (assuming with
three attributes location L, time T , and object O) belonging to
one epoch. (In our experiments §9, we will consider different
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datasets with multiple columns.) Algorithm 1 uses determin-
istic encryption (DET) to support fast query execution. Since
DET produces the same ciphertext for more than one occurrence
of the same location and object, to ensure ciphertext indistin-
guishability, we concatenate each occurrence of the location and
observation values with the corresponding timestamp.

In Concealer, queries retrieve a subset of tuples based on
predicates specified over attributes, such as L, O, or both.
Queries, further, are always associated with ranges over time (see
Table 4). Thus, to support the efficient execution of such queries,
Concealer creates a cell-based index over query attributes (e.g.,
L and/or O) along with time. For simplicity, Algorithm 1 illus-
trates how a cell-based index is created for location and time
attributes, Index(L,T). Similar indexes can also be created for
other attributes, such as Index(O,T) and Index(L,O,T). De-
tails of Algorithm 1 is given below:

Key generation (Lines 2). Since using a single key over mul-
tiple epochs will result in the identical ciphertext of a value,
Concealer produces a key for encryption for each epoch, as
𝑘 ← 𝑠𝑘 | |eid, where 𝑠𝑘 is the secure key shared between SGX
and DP, eid is the epoch-id, which is the starting timestamp
of the epoch, and | | denotes concatenation. Thus, encrypting a
value 𝑣 using 𝑘 in two different epochs will produce different
ciphertexts. (Only the first eid and epoch duration is provided
to SGX to generate other eid to decrypt the data during query
execution.)

Tuple encryption (Lines 4-11). As the tuple arrives, it got ap-
propriately encrypted (Line 6) usingDET. Note that by encryption
over the concatenated time with location and object values, re-
sults in a unique value in the entire relation. Now, in order to
allocate the cell value to be used as the index, we proceed as
follows: Let |L| be the number of locations and |T | be the dura-
tion of the epoch. Concealer maps the set of location |L| into a
range of values from 1 to 𝑥 ≤ |L| using a simple hash function.
It, furthermore, partitions |T | into𝑦 > 1 subintervals of duration,
|T |/𝑦, which are then mapped using a hash function into 𝑦 > 1
values. Thus, all tuples of the epoch are distributed randomly
over the grid of 𝑥 × 𝑦 (see Example 3 below). Then, 𝑢 cell-ids
(𝑢 < 𝑥 × 𝑦) are allocated to grid cells. To refer to the cell-id of a
cell, we use the notation cid {𝑝,𝑞 }𝑧 that shows that the cell {𝑝, 𝑞}
is assigned a cell-id cid𝑧 . In Step 3 of query execution §4.2, it will
be clear that we will fetch tuples to answer any query based on
cell-ids, instead of directly using query predicates.

Here, we keep two vectors: (i) cell_id of length 𝑥 × 𝑦 to keep
the cell-id allocated to each cell of the grid, and (ii) c_tuple of
length 𝑢 to store the number of tuples that have been allocated
the same cell-id. During processing a 𝑗 th tuple, we increment the
current counter value of the number of tuples that have the same
cell-id by one using c_tuple, and encrypts it. This value will be
allocated to Index(L,T)⟩ attribute of the 𝑗 th (Lines 9-10).

Allocating fake tuples (Lines 12 -15). Since SP will read the
data from DBMS into the enclave, different numbers of rows
according to different queries may reveal information about the
encrypted data. Thus, to fetch an equal number of rows for any
query,DP needs to share some fake rows. There are twomethods
for adding the fake rows:
(i) Equal number of real and fake rows: This is the simplest method
for adding the fake rows. Here, DP adds ciphertext secure fake
tuples. The reason of adding the same number of real and fake
rows is dependent on the property of the bin-packing algorithm,

Algorithm 1: Data encryption algorithm.
Inputs: 𝑅: a relation. H: A hash function. E() : An encryption function.
𝑠𝑘 : a secret key.

Outputs: 𝐸 (𝑅) : the encrypted relation.
1 Variables: ∀𝑐𝑡 ← 0, where 1 ≤ 𝑡 ≤ 𝑟 . 𝑥 ← #H(Domain(L)) ,

𝑦 ← #H(Domain(T)) , cell_id [𝑥, 𝑦 ] ← 0, c_tuple [𝑢 ] ← 0.
2 Function key_gen(sk) begin

3 𝑘 ← (𝑠𝑘 | |eid)
4 Function encrypt_data(R) begin

5 for 𝑗 ∈ (0, 𝑛 − 1) do
6 Eo 𝑗 ← E𝑘 (𝑜 𝑗 | |𝑡 𝑗 ) , El 𝑗 ← E𝑘 (l𝑗 | |𝑡 𝑗 ) ,

Er 𝑗 ← E𝑘 (𝑣𝑗 | |𝑙 𝑗 | |𝑡 𝑗 )
7 Function Cell-Formation(𝒋th tuple) begin

8 𝑝 ← H(𝑙 𝑗 ) , 𝑞 ← H(𝑡 𝑗 ) , cid{𝑝,𝑞}𝑧 ← cell_id [𝑝,𝑞 ]
9 𝑐𝑡 ← c_tuple [cid{𝑝,𝑞}𝑧 ] ← c_tuple [cid{𝑝,𝑞}𝑧 ] + 1

10 Ec 𝑗 ← 𝐸𝑘 (cid{𝑝,𝑞}𝑧 | |𝑐𝑡 )
11 return 𝐸 (𝑅) ← ⟨Eo 𝑗 , El 𝑗 , Er 𝑗 , Ec 𝑗 ⟩
12 Function add_fake_tuples() begin

13 for 𝑗 ∈ (0, 𝑛 − 1) do
14 Generate fake Eo 𝑗 , El 𝑗 , and Er 𝑗 , and Ec 𝑗 ← E𝑘 (𝑓 | | 𝑗)
15 Append the 𝑗 th fake tuple to the relation 𝐸 (𝑅)
16 Function HashChain(c_tuple[𝒖], ⟨Eo, El, Er⟩) begin

17 for 𝑗 ∈ 𝑐_𝑡𝑢𝑝𝑙𝑒 [], ∀𝑝 tuples with same cell-id do

18 ℎ
𝑗

𝑙
← 𝐻 (𝐸𝑙𝑝 ) | | (𝐻 (𝐸𝑙𝑝−1) | | (. . . | | (𝐻 (𝐸𝑙2) | |𝐻 (𝐸𝑙1))) . . .)))

19 ℎ
𝑗
𝑜 ←
𝐻 (𝐸𝑜𝑝 ) | | (𝐻 (𝐸𝑜𝑝−1) | | (. . . | | (𝐻 (𝐸𝑜2) | |𝐻 (𝐸𝑜1))) . . .)))

20 ℎ
𝑗
𝑟 ←
𝐻 (𝐸𝑟𝑝 ) | | (𝐻 (𝐸𝑟𝑝−1) | | (. . . | | (𝐻 (𝐸𝑟2) | |𝐻 (𝐸𝑟1))) . . .)))

21 𝐸ℎ𝑙 𝑗 ← 𝐸 (ℎ 𝑗

𝑙
) , 𝐸ℎ𝑜 𝑗 ← 𝐸 (𝑜 𝑗

𝑙
) , 𝐸ℎ𝑟 𝑗 ← 𝐸 (ℎ 𝑗

𝑟 )
22 Function Transmit (𝑬 (𝑹), cell_id[𝒙, 𝒚], c_tuple[𝒖]) begin

23 Ecell_id [𝑥, 𝑦 ] ← End (cell_id [𝑥, 𝑦 ]) ,
Ec_tuple [𝑢 ] ← End (c_tuple [𝑢 ])

24 Permute all the tuples of the encrypted relation 𝐸 (𝑅)
25 Send 𝐸 (𝑅) , Ecell_id [𝑥, 𝑦 ], Ec_tuple [𝑢 ], 𝐸ℎ𝑙 𝑗 , 𝐸ℎ𝑜 𝑗 , 𝐸ℎ𝑟 𝑗

which we will explain in §4.2 (Theorem 4.1).3 In Index attribute,
a 𝑗 th fake tuple contains an encrypted identifier with the tuple-id
𝑗 , denoted by E𝑘 (𝑓 | | 𝑗), where 𝑓 is an identifier (known to only
DP) to distinguish real and fake tuples.
(ii) By simulating the bin-creation method: To reduce the number
of fake rows to be sent, we use this method in which DP simu-
lates the bin-packing algorithm (as will be explained in §4.2) and
finds the total number of fake rows required in all bins such that
their sizes must be identical. Then, DP share such ciphertext
secure fake tuples with their Index values, as in the previous
method. As will be clear soon by Theorem 4.1 in §4.1, in the
worst case, both the fake tuple generation methods send the
same number of fake tuples, i.e., an equal number of real and
fake tuples.

Hash-chain creations (an optional step) Line 16-21. DP
creates hash chains over encrypted tuples allocated an identi-
cal cell-id, as follows: let 𝑝 be the numbers of tuples allocated
the same cell-ids. Consider 𝑝 encrypted location ciphertext as:
𝐸 (𝑙1), 𝐸 (𝑙2), . . . , 𝐸 (𝑙𝑝 ). Now, DP executes a hash function as fol-
lows:

ℎ𝑙1 ← 𝐻 (𝐸 (𝑙1))
ℎ𝑙2 ← 𝐻 (𝐸 (𝑙2) | |ℎ𝑙1)

. . .

ℎ𝑙 ← 𝐻 (𝐸 (𝑙𝑝 ) | |ℎ𝑙 (𝑝−1) )
In the same way, hash digests for other columns are computed,

and the final hash digest (i.e., ℎ𝑙 ) is encrypted that works as a
verifiable tag at SP.
Sending data (Line 22-25). Finally,DP permutes all encrypted
tuples of the epoch to mix fake and real tuples in the relation
3For 𝑛 real tuples, we add a little bit more than 𝑛 fake tuples in the worst case (Theorem 4.1).
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and sends them with the two encrypted vectors Ecell_id [] and
Ec_tuple[] and encrypted hash digests.4

Example 3. Now, we explain with the help of an example how
encryption algorithm works. Consider six rows of Table 2a as the
rows of an epoch, and we wish to encrypt those tuples with index
on attributes L and T . Assume that Algorithm 1 creates a 2 × 2
grid (see Table 2b) with three cell-ids: cid1, cid2, and cid3. Ta-
ble 2b shows two vectors cell_id [] and c_tuple[] corresponding
to L and T attributes. Values in c_tuple[] show that the num-
ber of tuples has been allocated the same cell-id. For instance,
c_tuple[1] = 4 shows that four tuples are allocated the same
cell-id (i.e., cid1). In Table 2b, for explanation purposes, we show
which rows of Table 2a correspond to which cell; however, this
information is not stored, only information of vectors cell_id []
and c_tuple[] is stored.

The complete output of Algorithm 1 is shown in Table 2c
for cleartext data shown in Table 2a, where Index(L,T) is the
column on which DBMS creates an index. In Table 2c, E refers to
DET, End refers to a non-deterministic encryption function, and
𝑘 be the key used to encrypt the data of the epoch. In addition,
we create three hash chains, one hash chain per cell-id. Also, note
that this example needs only 2 fake tuples to prevent output-size
leakage at SP.■

4 POINT QUERY EXECUTION

This section develops a bin-packing-based (BPB) method for
executing point queries. Later, §5 will develop a method for range
queries. The objectives of BPB method are twofold: first, create
identical-size bins to prevent leakages due to output-size, (i.e.,
when reading some parts of the data from disk to the enclave),
and second, show that the addition of at most 𝑛 fake tuples is
enough in the worst case to prevent output-size leakage, where 𝑛
is the number of real tuples. BPB method partitions the values of
c_tuple[] into almost equal-sized bins, using which a query can
be executed. Note that bins are created only once, prior to the
first query execution. This section, first, presents the bin-creation
method, and then, BPB query execution method.

4.1 Bin Creation

Bins are created inside the enclave using a bin-packing algorithm,
after decrypting vector Ec_tuple[].
Bin-packing algorithms. A bin-packing algorithm places the
given inputs having different sizes to bins of size at least as big as
the size of the largest input, without partitioning an input, while
tries to use the minimum number of bins. First-Fit Decreasing
(FFD) and Best-Fit Decreasing (BFD) [10] are the most notable
bin-packing algorithms and ensure that all the bins (except only
one bin) are at least half-full.

In our context, 𝑢 cell-ids (cid1, cid2, . . . , cid𝑢 ) are inputs to
a bin-packing algorithm, and the number of tuples having the
same cell-id is considered as a weight of the input. Letmax be the
maximum number of tuples having the same cell-id cid𝑖 . Thus,
we create bins of size at least |𝑏 | = max and execute FFD or BFD
over 𝑢 different cell-ids, resulting in |Bin| bins as an output of
the bin-packing algorithm.

The minimum number of bins. Let 𝑛 be the number of real
tuples sent by DP, i.e., 𝑛 =

∑𝑖=𝑢
𝑖=1 c_tuple[𝑖]. Let |𝑏 | be the size

of each bin. Thus, it is required to divide 𝑛 inputs into at least
⌈𝑛/|𝑏 |⌉ bins.
4The size of both vectors is significantly smaller (see experimental section §9.1).

Theorem 4.1. (Upper bounds on the number of bins and
fake tuples) The above bin-packing method using a bin size |𝑏 |
achieves the following upper bounds: the number of bins and the
number of fake tuples sent by DP are at most 2𝑛

|𝑏 | and at most

𝑛 + |𝑏 |2 , respectively, where 𝑛 ≫ |𝑏 | is the number of real tuples
sent by DP.

Proof. A bin 𝑏𝑖 can hold inputs whose sum of the sizes is at
most |𝑏 |. Since the FFD or BFD bin-packing algorithm ensures
that all the bins (except only one bin) are at least half-full, each
bin of size |𝑏 | has at least all those cell-ids whose associated
number of tuples is at least |𝑏 |/2. Thus, all 𝑛 real tuples can be
placed in at most 𝑛/(|𝑏 |/2) bins, each of size |𝑏 |. Further, since
all such 2𝑛/|𝑏 | bins are at least half-full, except the last one, we
need at most 𝑛 + (|𝑏 |/2) more tuples to have all the bins with |𝑏 |
tuples. Thus, DP sends at most 𝑛 + (|𝑏 |/2) ≈ 𝑛 fake tuples with
𝑛 real tuples. □

Equi-sized bins. The output bins of FFD/BFD may have differ-
ent numbers of tuples. Thus, we pad each bin with fake tuples,
thereby all bins have |𝑏 | tuples. Let tuple𝑏𝑖 < |𝑏 | be the number
of tuples assigned to an 𝑖th bin (denoted by 𝑏𝑖 ). Here, the ids (i.e.,
the value of Index column) of fake tuples allocated to the bin 𝑏𝑖
will be |𝑏 | − tuple𝑏𝑖 , and all these fake tuple ids cannot be used for
padding in any other bin. Thus, for padding, we create disjoint
sets of fake tuple ids (see the example below to understand the
reason).

Example 4.1. Assume five cell-ids cid1, cid2, . . . , cid5 having the
following number of tuples c_tuple[5] = {79, 2, 73, 7, 7}. Here,
cid1 has the maximum number of tuples; hence, the bin-size
is at least 79. After executing FFD bin-packing algorithm, we
obtain three bins, each of size 79: 𝑏1: ⟨cid1⟩, 𝑏2: ⟨cid3, cid2⟩, and
𝑏3: ⟨cid5, cid4⟩. Here, bins 𝑏2 and 𝑏3 needs 4 and 65 fake tuples,
respectively. One can think of sending only 65 fake tuples to
access bins 𝑏2 and 𝑏3 to have size 79. However, in the absence
of access-pattern hiding techniques, the adversary will observe
that any 4 tuples out of 65 fake tuples are accessed in both bins.
It will reveal that these four tuples are surely fake, and thus, the
adversary may deduce that the bin size of 𝑏2 is 75. Thus, DP
needs to send 69 fake tuples in this example.■

4.2 Bin-Packing-based (BPB) Query

Execution

We present BPB method (see pseudocode in Algorithm 2) based
on the created bins (over location and time attributes). A sim-
ilar method can be extended for other attributes. BPB method
contains the following four steps:

Step 0: Bin-creation. By following FFD or BFD as described
above, this step creates bins over cell-ids (c_tuple[]), if bins do
not exist.

Step 1: Cell identification (Lines 2-4). The objective of this
step is to find a cell of the grid corresponding to the requested
location and time. A query𝑄𝑒 = ⟨qa, (L = 𝑙,T = 𝑡)⟩ is submitted
to the enclave that, on the query predicates 𝑙 and 𝑡 , applies the
hash function H, which was also used byDP (in Cell-Formation
function, Line 8 of Algorithm 1). Thus, the enclave knows the cell,
say {𝑝, 𝑞}, corresponds to 𝑙 and 𝑡 . Based on the cell {𝑝, 𝑞} and
using the vector cell_id [], it knows the cell-id, say cid𝑧 , allocated
to the cell {𝑝, 𝑞}.
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Algorithm 2: Bin-packing-based query execution
method.
Inputs: ⟨qa, (L = 𝑙, T = 𝑡 ) ⟩: a query 𝑞𝑎 involving predicates over L
and T attributes. cell_id [𝑥, 𝑦 ], c_tuple [𝑢 ], H: A hash function, E𝑘 () :
An encryption function using a key 𝑘
|Bin |: the number of bins. b [𝑖 ] [ 𝑗 ]: 𝑖 th bin having 𝑗 cell-ids, where 𝑗 > 0.
Outputs: A set of ciphertext queries.

1 Function Query_Execution(⟨qa, (L = l, T = t) ⟩) begin

2 Function Find_cell(l, t) begin

3 𝑝 ← H(𝑙) , 𝑞 ← H(𝑡 ) , cid𝑧 ← cell_id [𝑝,𝑞 ]
4 return cid𝑧 ; break
5 Function Find_bin(cidz, |Bin |, b[∗][∗]) begin

6 for desired ∈ (0, |Bin | − 1) do
7 if cid𝑧 ∈ b [desired ] [∗] then
8 return b [desired ] [∗]; break
9 Function Formulate_queries(b[desired][∗]) begin

10 for ∀𝑗 ∈ (b [desired ] [ 𝑗 ]) do
11 cell_id ← b [desired ] [ 𝑗 ], counter ← c_tuple [cell_id ]
12 ∀counter , generate ciphertexts E𝑘 (cell_id | |counter)

Step 2: Bin identification (Lines 5-8). Based on the output
of Step 1, i.e., the cell-id cid𝑧 , this step finds a bin 𝑏𝑖 that con-
tains cid𝑧 . Bin 𝑏𝑖 may contain several other cell-ids along with
identities of the first and the last fake tuples required for 𝑏𝑖 .

Step 3: Query formulation (Lines 9-12). After knowing all
cell-ids that are required to be fetched for bin 𝑏𝑖 , the enclave
formulates appropriate ciphertexts that are used as queries. Let
the set of cell-ids in 𝑏𝑖 be𝐶1,𝐶2, . . . ,𝐶𝛼 , containing #1, #2, . . . , #𝛼
records, respectively. Let the fake tuple range for 𝑏𝑖 be 𝑓𝑙 and
𝑓ℎ (let #𝑓 = 𝑓ℎ − 𝑓𝑙 be the number of fake tuples that have to be
retrieved for 𝑏𝑖 ). The enclave generates #𝑖 number of queries, as:
E𝑘 (𝐶𝑝 | | 𝑗), where 1 ≤ 𝑗 ≤ #𝑖 for each cell𝐶𝑝 corresponding to 𝑏𝑖
and 𝑘 is the key obtained by concatenating 𝑠𝑘 and epoch-id (as
mentioned in Line 2 of Algorithm 1). Also, it generates #𝑓 fake
queries, one for each of the fake tuples associated with 𝑏𝑖 .
Advantage of cell-ids. Now, observe that a bin may contain sev-
eral locations and time values (or any desired attribute value).
Fetching data using cell-id does not need to maintain fine-grain
information about the number of tuples per location per time.

Step 4: Integrity verification and final answers filtering.

We may optionally verify the integrity of the retrieved tuples.
To do so, the enclave, first, creates a hash chain over the real
encrypted tuples having the same cell-id, by following the same
steps asDP followed (Lines 16 of Algorithm 1). Then, it compares
the final hash digest against the decrypted verifiable tag, provided
by DP.

Now, to answer the query, the enclave, first, filters those tuples
that do not qualify the query predicate, since all tuples of a bin
may not correspond to the answer. Thus, decrypting each tuple to
check against the query 𝑄𝑒 = ⟨qa, (L = 𝑙,T = 𝑡)⟩ may increase
the computation cost. To do so, after implementing the above-
mentioned Step 3, the enclave generates appropriate filter values
(E𝑘 (𝑙𝑖 | |𝑡𝑖 ) or E𝑘 (o𝑖 | |𝑡𝑖 ), which are identical to the created by
DP using Algorithm 1); while, at the same time, DBMS executes
queries on the encrypted data. On receiving encrypted tuples
from DBMS, the enclave performs string-matching operations
using filters and decrypts only the desired tuples, if necessary.

Example 4.2. Consider the cells created in Example 3.1, i.e.,
cell_id [] = cid1, cid2, cid1, cid4 and c_tuple[] = {4, 1, 1}. Now,
assume that there are two bins, namely b1 : ⟨cid1⟩ and b2 :
⟨cid2, cid3⟩. Consider a query 𝑄 = ⟨count, (𝑙2, 𝑡5)⟩, i.e., find the
number of people at location 𝑙2 at time 𝑡5 on the data shown in
Table 2c. Here, after implementing Step 1 and Step 2 of BPB
method, the enclave knows that cell-id cid2 satisfies the query,
and hence, the tuples corresponding to bin 𝑏2 are required to

max(int x,int y){
bool getX = ogreator(x, y),
return omove(getX, x, y)
}

(a) Oblivious maxi-

mum.

mov rcx, x
mov rdx, y
cmp rcx, rdx
setg al
retn

(b) Oblivious com-

pare: ogreator.

mov rcx, cond
mov rdx, x
mov rax, y
test rcx, rcx
cmovz rax, rdx
retn

(c) Oblivious

move: omove.

Figure 2: Register-oblivious operators [33].

be fetched. Thus, in Step 3, the enclave generates the following
four queries: E𝑘 (cid2 | |1), E𝑘 (cid3 | |1), E𝑘 (𝑓 | |1), and E𝑘 (𝑓 | |2).
Finally, in Step 4, the filtering via string matching is executed
over the retrieved four tuples against E𝑘 (𝑙2 | |𝑡5). Since all the four
retrieved tuples have a filter on location and time values, here
is no need to decrypt the tuple that does not match the filter
E𝑘 (𝑙2 | |𝑡5).■

4.3 Oblivious Trapdoor Creation & Filtering

Steps

Steps for generating trapdoor (Step 3) and answer filtering (Step
4), in §4.2, were not oblivious due to side-channel attacks (i.e.,
access-patterns revealed via cache-lines and branching opera-
tions) on the enclave. Thus, we describe how can the enclave
produce queries and process final answers obliviously for pre-
venting side-channel attacks.

Step 3. Let #𝐶𝑚𝑎𝑥 be the maximum cells required to form a
bin. Let #𝑚𝑎𝑥 be the maximum tuples with a cell-id. Let #𝑖 be
the number of tuples with a cell-id 𝐶𝑖 . For a bin 𝑏𝑖 , the enclave
generates #𝐶𝑚𝑎𝑥 × #𝑚𝑎𝑥 numbers of queries: E𝑘 (𝐶𝑖 | | 𝑗, 𝑣), where
1 ≤ 𝑗 ≤ #𝑚𝑎𝑥 ,𝐶𝑖 ≤ #𝐶𝑚𝑎𝑥 , and 𝑣 = 1 if 𝑗 ≤ #𝑖 and𝐶𝑖 is required
for 𝑏𝑖 ; otherwise, 𝑣 = 0. Note that this step produces the same
number of queries for each cell and each bin.

Let #fmax be the maximum fake tuples required for a bin. Let
#fb𝑖 be the maximum fake tuples required for 𝑏𝑖 . The enclave
generates #fmax number of fake queries: E𝑘 (𝑓 | | 𝑗, 𝑣), where 1 ≤
𝑗 ≤ #fmax and 𝑣 = 1 if 𝑗 ≤ #fb𝑖 ; otherwise, 0. This step produces
the same number of fake queries for any bin. Finally, the enclave
sorts all real and fake queries based on value 𝑣 using a data-
independent sorting algorithm (e.g., bitonic sort [6]), such that all
queries with 𝑣 = 1 precede other queries, and sends only queries
with 𝑣 = 1 to the DBMS.

Step 4. The enclave reads all retrieved tuples and appends 𝑣 = 1
to each tuple if they satisfy the query/filter; otherwise, 𝑣 = 0.
Particularly, an 𝑖th tuple is checked against each filter, and once
it matches one of the filters, 𝑣 = 1 remains unchanged; while
the value of 𝑣 = 1 is overwritten for remaining filters checking
on the 𝑖th tuple. It hides that which filter has matched against
a tuple. Then, based on 𝑣-value, it sorts all tuples using a data-
independent algorithm.5 (After this all tuples with 𝑣 = 1 are
decrypted and checked against the query by following the same
procedure, if needed.)
Branch-oblivious computation. Note that after either generating
an equal number of queries for any bin or filtering the retrieved
tuples using a data-oblivious sort, the entire computation is still
vulnerable to an adversary that can observe conditional branches,
i.e., an if-else statement used in the comparison. Thus, to over-
come such an attack, we use the idea proposed by [33]. [33]
suggested that any computation on registers cannot be observed
5If all tuples can reside in the enclave, then bitonic sort is enough. Otherwise, to obliviously sort
the tuples, we use column sort [25] instead of the standard external merge sort.
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𝑇4 cid {1,1}1 = 40 cid {1,2}6 = 30 cid {1,2}7 = 2 cid {1,4}11 = 9

𝑇3 cid {2,1}2 = 50 cid {2,2}7 = 50 cid {2,3}6 = 21 cid {2,4}9 = 60

𝑇2 cid {3,1}3 = 60 cid {3,2}11 = 40 cid {3,3}4 = 45 cid {3,4}8 = 48

𝑇1 cid {4,1}3 = 40 cid {4,2}10 = 50 cid {4,3}10 = 10 cid {4,4}5 = 50

𝑙1 𝑙2 𝑙3 𝑙4

Table 3: A 4 × 4 grid.

by an adversary since register contents are not accessible to any
code outside of the enclave; thus, register-to-register computa-
tion is oblivious. For this, [33] proposed two operators: omove
and ogreater, as shown in Figure 2. For any comparison in the
enclave, we use these two operators. Readers may find additional
details in [33].

5 RANGE QUERY EXECUTION

This section develops an algorithm for executing range queries,
by modifying BPB method, given in §4.2. For simplicity, we con-
sider a range condition on time attribute. For illustration pur-
poses, this section uses a 4×4 grid (see Table 3, which was created
by DP using Algorithm 1, §3) corresponding to location and
time attributes of a relation. In this grid, 11 cell-ids are used, and
a number in a cell shows the number of tuples allocated to the
cell. The notation𝑇𝑖 shows an 𝑖th sub-time interval (after creating
a grid using Algorithm 1 §3).

5.1 Trivial Solution: Converting a Range

Query into Many Point Queries

Recall that the data provider outsources two vectors cell_id [] and
c_tuple[]. Based on these vectors, a trivial method depending
on the bin-packing-based method can be developed to answer a
range query, as follows:
(1) Find all cells and their cell-ids that cover the requested range

(by implementing Step 1 of BPB method §4.2).
(2) Find all those bins that cover the desired cells-ids (by imple-

menting Step 2 of BPB method §4.2).
(3) Fetch all tuples corresponding to the bins by forming appro-

priate queries (using Step 3 of BPB method §4.2) and process
all retrieved tuples inside the secure hardware (using Step 4
of BPB method §4.2).

But, converting a range query into many point queries may not
be efficient, in terms of the number of tuples to be fetched from
the cloud and/or the number of tuples to be processed by the
secure hardware; see the following example.
Example 5.1. After implementing the bin-packing-algorithm
on the cell-ids c_tuple[11] (see Table 3), we may obtain the fol-
lowing six bins: 𝑏1 : ⟨cid3⟩, 𝑏2 : ⟨cid9, cid1⟩, 𝑏3 : ⟨cid10, cid4⟩,
𝑏4 : ⟨cid7, cid8⟩, 𝑏5 : ⟨cid6, cid11⟩, and 𝑏6 : ⟨cid2, cid5⟩. Consider
a query to count the number of tuples at the location 𝑙1 during
a given time interval that is covered by 𝑇2 to 𝑇4. This query is
satisfied by cells-ids cid1, cid2, and cid3. The cell-ids cid1, cid2,
and cid3 belong to bins 𝑏2, 𝑏6, and 𝑏1, respectively. Thus, we need
to fetch tuples corresponding to three bins: 𝑏1, 𝑏2, and 𝑏6, i.e.,
fetching 300 tuples from the cloud, while only 150 tuples satisfy
the query.

5.2 Enhanced Bin-Packing-Based (eBPB)

Method

eBPB method requires DP to send the number of tuples
in each cell of the grid with the vector cell_id []. Thus, it
avoids sending the vector c_tuple[]. For example, for the
grid shown in Table 3, cell_id [4, 4] = {(1, 40), (6, 30), (7, 2),
(11, 9), (2, 50), (7, 50), (6, 21), (9, 60), (3, 60), (11, 40), (4, 45),
(8, 48), (3, 40), (10, 50), (10, 10), (5, 50)}. This information helps
us in creating bins more efficiently for a range query, as follows:

Step 1: Preliminary step. The enclave decrypts the encrypted
vector Ecell_id [].
Step 2: Finding top-ℓ cell-ids. Find top-ℓ cells having the max-
imum number of tuples in one of the locations, where ℓ is the
number of cells required to answer the range query. Say, loca-
tion 𝑙𝑖 has top-ℓ cells that have the maximum number of tuples,
denoted by bsize tuples.

Step 3: Create bins. Execute this step either if ℓ cells required
for the current query are more than the cells required for any
previously executed query or it is the first query. Fix the bin size
to bsize and execute FFD that takes cid {𝑝,𝑞 }𝑧 as inputs and the
number of tuples having cid {𝑝,𝑞 }𝑧 as the weight of the input. If
the bin does not have bsize number of tuples, add fake tuples to
the bin. It results in |𝐵𝑖𝑛 | number of bins and then, use all such
bins for answering any range covered by ℓ cells.

Step 4: Query formulation andfinal answers filtering. Find
the desired bin satisfying the range query and formulate appro-
priate queries, as we formed in Step 3 of BPB method §4.2. The
DBMS executes all queries and provides the desired tuples to
the enclave. The enclave executes the final processing of the
query, likewise Step 4 of BPB method §4.2. Note that for oblivious
query formulation and result filtering, we use the same method as
described in §4.3.

Example 5.2.1. Consider a query to count the number of tuples
at the location 𝑙1 during a given time interval that is covered by
𝑇2 to 𝑇4. This query spans over three cells; see Table 3. Here, the
maximum number of tuples in any three cells at locations 𝑙1, 𝑙2,
𝑙3, and 𝑙4 are 60+50+40 = 150, 50+50+40 = 140, 45+21+5 = 71,
and 60 + 50 + 48 = 158, respectively. Thus, the bin of size 158 can
satisfy any query that spans over any three cells (arranged in a
column) of the grid. ■

Example 5.2.2: attack on eBPB. Consider the following queries
on data shown in Table 3: (𝑄1) retrieve the number of tuples
having location 𝑙1 during a given time interval that is covered
by 𝑇1 and 𝑇2, and (𝑄2) retrieve the number of tuples having
location 𝑙1 during a given time interval that is covered by 𝑇2 and
𝑇3. Answering𝑄1 and𝑄2 may reveal the number of tuples having
𝑇1, 𝑇2, and 𝑇3, as: in answering 𝑄2 we do not retrieve 40 tuples
(corresponding to {4, 1} cell) that were sent in answering 𝑄1
and retrieve 50 new tuples (corresponding to {2, 1} cell). It, also,
reveals that 60 tuples (corresponding to {3, 1} cell) belong to 𝑇2.
Note that all such information was not revealed, prior to query
execution, due to the ciphertext indistinguishable dataset.■

5.3 Highly Secured Range Query—

winSecRange

We, briefly, explain a method to prevent the above-mentioned at-
tacks on a range query. Particularly, we fix the length of a range,
say _ > 1, and discretize 𝑛 domain values, say 𝑣1, 𝑣2, . . . , 𝑣𝑛 ,
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into ⌈𝑛
_
⌉ intervals (denoted by I𝑖 , 1 ≤ 𝑖 ≤ ⌈𝑛

_
⌉), as: I1 =

{𝑣1, 𝑣2, . . . , 𝑣_}, . . ., I⌈𝑛
_
⌉ = {𝑣𝑛−_, . . . , 𝑣𝑛−1, 𝑣𝑛}. Here, the bin

size equals to the maximum number of tuples belonging to an
interval, and bins are created for each interval only once. For
example, consider 12 domain values: 𝑣1, 𝑣2, . . . 𝑣12, and _ = 3.
Thus, we obtain intervals: I1 = {𝑣1, 𝑣2, 𝑣3}, I2 = {𝑣4, 𝑣5, 𝑣6},
I3 = {𝑣7, 𝑣8, 𝑣9}, and I4 = {𝑣10, 𝑣11, 𝑣12}. Here, four bins are cre-
ated, each of size equals to the maximum number of tuples in
any of the intervals. Now, we can answer a range query of length
𝛽 by using one of the following methods:
(1) 𝛽 ≤ _ and 𝛽 ∈ I𝑖 : Here, the entire range exists in I𝑖 ; hence,

we retrieve only a single entire bin satisfying the range. E.g.,
if a range is [𝑣1, 𝑣2], then we need to retrieve the bin corre-
sponding to I1.

(2) 𝛽 ≤ _ and 𝛽 ∈ {I𝑖 ,I𝑗 }: It may be possible that 𝛽 ≤ _ but
the range 𝛽 lies in I𝑖 and I𝑗 , 𝑖 ≠ 𝑗 . Thus, we need to retrieve
two bins that cover I𝑖 and I𝑗 , and hence, we also prevent the
attack due to sliding the time window (see Example 5.2.2).
For example, if a range is [𝑣2, 𝑣4], then we need to retrieve
the bins corresponding to I1 and I2.

(3) 𝛽 = 𝑧 ×_: Here, a range may belong to at most 𝑧 + 2 intervals.
Thus, wemay fetch at most 𝑧+1 bins satisfying the query. E.g.,
if a range is [𝑣3, 𝑣8], then this range is satisfied by intervals
I1, I2, and I3; thus, we fetch bins corresponding to I1, I2,
and I3.

6 SUPPORTING DYNAMIC INSERTION

Dynamic insertion in Concealer is supported by batching up-
dates into rounds/epochs, similar to [14]. Tuples inserted in an
𝑖th period are said to belong to the round rd𝑖 or epoch eid𝑖 . The
insertion algorithm is straightforward. Concealer applies Algo-
rithm 1 on tuples of epochs prior to sending them to SP. Note
that since Algorithm 1 for distinct rounds is executed indepen-
dently, the tuples corresponding to the given attribute value (e.g.,
location-id) may be associated with different bins in different
rounds. Retrieving tuples of a given attribute value across dif-
ferent rounds needs to be done carefully, since it might result in
leakage, as shown next.

Example 6.1. Consider that the bin size is three, and we have
the following four bins for each round of data insertion, where a
bin 𝑏𝑖 stores tuples of a location 𝑙 𝑗 :

rd1 : 𝑏1 : ⟨𝑙1, 𝑙2, 𝑙3⟩ 𝑏2 : ⟨𝑙4, 𝑙4, 𝑙4⟩ 𝑏3 : ⟨𝑙5, 𝑙5, 𝑙5⟩ 𝑏4 : ⟨𝑙6, 𝑙6, 𝑙6⟩
rd2 : 𝑏 ′1 : ⟨𝑙1, 𝑙1, 𝑙1⟩ 𝑏 ′2 : ⟨𝑙2, 𝑙2, 𝑙2⟩ 𝑏 ′3 : ⟨𝑙3, 𝑙3, 𝑙3⟩ 𝑏 ′4 : ⟨𝑙4, 𝑙5, 𝑙6⟩

Now, answering a query for 𝑙1 fetches bins 𝑏1 and 𝑏 ′1; a query
for 𝑙2 fetches 𝑏1 and 𝑏 ′2; and a query for 𝑙3 fetches 𝑏1 and 𝑏

′
3. Note

that here 𝑏1 is retrieved with three new bins (𝑏 ′1, 𝑏
′
2, 𝑏
′
3); it reveals

that 𝑏1 has three distinct locations. Similarly, 𝑏 ′4 will be retrieved
with three older bins (𝑏2, 𝑏3, and 𝑏4). Thus, the query execution
on older and newer data reveals additional information to the
adversary. ■

To prevent such attacks, we need to appropriately modify our
query execution methods. In our technique, we will assume that
bins across all rounds are of a fixed size, |𝑏 |,6 and the number of
tuples for a given attribute value (i.e., location) fits within a bin
(i.e., ≤ |𝑏 |). Our idea is inspired by Path-ORAM [42], while we
overcome the limitation of Path-ORAM that achieves indistin-
guishability for query execution by keeping a meta-index struc-
ture at the trust entity. Note that Path-ORAM builds a binary tree
index on the records. To retrieve a single record, Path-ORAM
6We are not interested in hiding different numbers of tuples in different rounds, but using fake
tuples it can be prevented, if desired.

fetches O(log𝑛) records and rewrites them under a different
encryption. Since Path-ORAM uses an external data structure,
it cannot be used for our purpose as argued in §1. Below, we
provide our modified query execution strategy.

Executing queries. Let 𝑟𝑑𝑖 , 𝑟𝑑 𝑗 , 𝑟𝑑𝑘 , and 𝑟𝑑𝑙 be four consecutive
rounds of data insertion. Let 𝑞 be a query that spans over 𝑟𝑑 𝑗 , 𝑟𝑑𝑘 ,
and 𝑟𝑑𝑙 rounds; however, only rounds 𝑟𝑑 𝑗 and 𝑟𝑑𝑙 have bins that
satisfy query 𝑞. For answering 𝑞, the modified query execution
method takes the following three steps: (i) The enclave fetches the
desired bin from 𝑟𝑑 𝑗 and 𝑟𝑑𝑙 rounds by following methods given
in §4.2 and §5, with randomly selected log |Bin| − 1 additional
bins from each 𝑟𝑑 𝑗 and 𝑟𝑑𝑙 round, where |Bin| are created for
each round using Algorithm 2. (ii) The enclave fetches log |Bin|
bins from round 𝑟𝑑𝑘 , to hide the fact that 𝑟𝑑𝑘 does not satisfy
the query. (iii) For round 𝑟𝑑𝑥 , 𝑥 ∈ { 𝑗, 𝑘, 𝑙}, the enclave, first,
permutes the retrieved data of 𝑟𝑑𝑥 and encrypts with a new key.7
The newly encrypted data replaces the older data of 𝑟𝑑𝑥 .
Aside. Since we rewrite tuples of retrieved bins, when asking a
query for another value belonging to the previously fetched bin
(e.g., query for 𝑙2 in Example 6.1), the adversary cannot link bins
of different rounds of data insertion based on attribute values in
the bins.

7 SECURITY PROPERTIES

This section presents the desired security requirements, discusses
which requirements are satisfied by Concealer, and information
leakages from the algorithms. To develop applications on top of
spatial time-series dataset at an untrusted SP, a system needs
to satisfy the following security properties:

Ciphertext indistinguishability: property requires that any
two or more occurrences of a cleartext value look different in
the ciphertext. Thus, by observing the ciphertext, an adversary
cannot learn anything about encrypted data. Concealer satisfies
this property by producing unique ciphertext for each tuple by
Algorithm 1 (Line 7).

Data integrity: property requires that if the adversary injects
any false data into the real dataset, it must be detected by a trusted
entity. Concealer ensures integrity property by maintaining
hash chains over the encrypted tuples and sharing encrypted
verifiable tags, which helps SGX to detect any inconsistency
between the actual data shared byDP and the data SGX accesses
from the disk at SP.
Query execution security: requires satisfying output-size pre-
vention, indistinguishability under chosen keyword attacks (IND-
CKA), and forward privacy.

Output-size prevention: property requires that the number of
tuples corresponding to a value, e.g.,L, (or a value corresponding
to a combination of attributes, e.g., L and T ) i.e., the volume
of the value, is not revealed, and only the maximum output-
size/volume of the value is revealed. Concealer ensures this
property by retrieving a fixed-size bin from DBMS into SGX,
regardless of the query predicates.

IND-CKA. IND-CKA [13] prevents leakages other than what an
adversary can gain through information about (i) metadata, i.e.,
size of database/index, known as setup leakage 𝔏𝑠 in [13], and
(ii) query execution that results in query leakage 𝔏𝑞 in [13] and
includes search-patterns and access-patterns. Again, note that
7The key 𝑘 for re-encryption is generated as: 𝑘 ← 𝑠𝑘 | |eid | |counter , where SGX maintains a
counter for each round,and increment it by one whenever the data of a round is read in SGX
and rewritten.
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by revealing the access-patterns, IND-CKA is prone to attacks
based on the output-size.

While Concealer leaks 𝔏𝑠 by the size of database/index and
𝔏𝑞 by fetching data in the form of a bin, it does not reveal infor-
mation based on the output-size, except a constant output-size
for all query predicates. (Also, since by fetching a bin, it does
not reveal which rows of the bin satisfy the answer, it hides par-
tial access-patterns.) Thus, Concealer improves the security
guarantees of IND-CKA.

Forward privacy: property requires that newly inserted tuples
cannot be linked to previous search queries, i.e., the adversary
that have collected trapdoors for previous queries, cannot use
them to match newly added tuples. Concealer ensures forward
privacy by, first, producing a different ciphertext of an identical
value over two different epochs using two different keys (as
mentioned in §3), and then, re-encrypting the tuples of different
epochs using different keys during query execution spanning
over multiple epochs (as mentioned in §6).

Now, we discuss leakages from different query execution meth-
ods, as follows:

BPB information leakage discussion. BPB method prevents
the attacks based on output-size by fetching an identical number
of tuples for answering any query. It reveals the dataset and index
sizes stored in DBMS (as 𝔏𝑠 condition of IND-CKA [13]). BPB
method, also, reveals partial access- and search-patterns, which
means that for a group of queries it reveals a fixed bin of tuples,
and thus, hides which of the tuples of bin satisfy a particular
query (𝔏𝑞 conditions of IND-CKA). Recall that an index, e.g.,
B-tree index, on the desired attribute is created by the underlying
DBMS. To show that the index will not lead to additional leakages
other than 𝔏𝑠 and 𝔏𝑞 , we follow the identical strategy to prove a
technique is IND-CKA secure or not. In short, we need to show
that a simulator not having the original data can also produce the
index attribute based on 𝔏 = {𝔏𝑠 , 𝔏𝑞}, i.e., BPB method is secure
if a “fake” attribute can mimic the real index attribute, (and hence,
mimic the real index). Note that like SSEs, the simulator having
only 𝔏 can generate a fake dataset, and hence, the index attribute
can mimic the real index attribute; thus, the adversary cannot
deduce additional information based on 𝔏.

Also, note that in oblivious Step 3, the enclave generates the
same number of real/fake queries regardless of a bin and sorts
them using a data-independent algorithm, which hides access-
patterns in SGX. Also, it processes all retrieved tuples against
the query and does oblivious sorting in Step 4. Thus, it also does
not reveal access-patterns (by missing any tuple to process).

eBPB and winSecRange information leakage discussion.

eBPB method incurs leakages 𝔏𝑠 and 𝔏𝑞 . Based on 𝔏𝑞 , we may
reveal that a range query is spanning over at most ℓ cells. Hence,
it may also reveal the exact data distribution, by fetching the same
real tuple multiple times for multiple range queries, which we
illustrated in Example 5.2.2. To overcome such information leak-
age, winSecRange fetches a fixed size interval, regardless of the
query range. Thus, while winSecRange reveals 𝔏𝑠 and 𝔏𝑞 , it does
not reveal any information based on the output-size.

Insert operation information leakage discussion. Our in-
sert operation satisfies forward privacy property. Since for en-
crypting tuples of an epoch, we generate a key that is unique
among all keys generated for any epoch. Thus, based on the pre-
vious query trapdoors, the adversary cannot use them to link new

tuples. Furthermore, our insert operation hides the distribution
leakage due to executing queries over multiple epochs, since we
fetch additional tuples from each epoch that lies in the query
range and re-write all tuples.

8 PREVENTING ATTACKS DUE TO QUERY

WORKLOAD

The (identical-sized) bins formed over different cell-ids may con-
tain different numbers of cell-ids, and that indicates bins may
have different numbers of attribute values. Thus, retrieval of bins
may reveal data distribution, when executing multiple queries
(under the assumption of uniform query workload, i.e., a query
may arrive for each domain value).
Example 8.1. Consider 12 bins (𝑏1, 𝑏2, . . . , 𝑏12) of an identical
size having the following number of unique values: 1, 2, 9, 1, 2,
10, 1, 1, 1, 8, 2, 7, respectively. Here, if the query workload is
uniformly distributed, then all bins will be retrieved different
numbers of times. For instance, bins 𝑏1, 𝑏4, 𝑏7, 𝑏8, 𝑏9 will be
retrieved only once, while bin 𝑏6 will be retrieved 10 times. It
may reveal that bin 𝑏6 may have 10 unique values, while bins
𝑏1, 𝑏4, 𝑏7, 𝑏8, 𝑏9 have only a single value in each. Thus, having
equal-sized bins does not help us in preventing data distribution
due to query execution.

To prevent such an attack, our objective is to retrieve all the
bins almost an equal number of times, under the assumption of
uniform query workload. To achieve this, we create super-bins
over the bins created in §4.2 or in §5, as follows:
(1) Sort all the bins in decreasing order of the number of unique

values in a bin. Note that all bins have an equal number of
rows, but an unequal number of unique values.

(2) Select 𝑓 > 1 such that 𝑓 divides the number of bins evenly
and create 𝑓 super-bin.

(3) Select 𝑓 largest bins from the sorted order and allocate one in
each super-bin. At the end of this step, all 𝑓 super-bin must
have one bin.

(4) In the 𝑖th > 1 iteration, select the next bin, say 𝑏 𝑗 from the
sorted order and find a super-bin, say 𝑆𝑘 , that is containing
𝑖 − 1 number of bins and have the fewest number of unique
values in all the allocated bins to the super-bin 𝑆𝑘 . Allocate
the bin 𝑏 𝑗 to the super-bin 𝑆𝑘 . Otherwise, select a different
super-bin.

Now, for answering a query, the secure hardware will execute
the steps given in §4.2 (to create bins to answer point queries)
or the steps given in §5 (to create bins to answer range queries).
After that to avoid workload attack, the secure hardware executes
the above-mentioned steps on the created bins. For example,
to avoid the workload attack on 12 bins given in Example 8.1,
the following four super-bins may be created: 𝑆1: ⟨𝑏6, 𝑏7, 𝑏4⟩, 𝑆2:
⟨𝑏3, 𝑏5, 𝑏8⟩, 𝑆3: ⟨𝑏10, 𝑏2, 𝑏9⟩, 𝑆4: ⟨𝑏12, 𝑏11, 𝑏1⟩. Now, observe that
under the assumption of uniform query distribution, 𝑆1, 𝑆2, 𝑆3,
𝑆4 will be fetched 12, 12, 11, 10 times, respectively.

9 EXPERIMENTAL EVALUATION

This section shows the experimental results of Concealer under
various settings and compares them against prior cryptographic
approaches.

9.1 Datasets, Queries, and Setup

Dataset 1: Spatial time-series data generation. To get a real
spatial time-series dataset, we took our organization WiFi user
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Queries Execution (filtering, decryption, and final processing) by the secure hardware

Location and time attributes
Q1: # observations at 𝑙𝑖 during time 𝑡1 to 𝑡𝑥 SM using the filters 𝐸𝑙1 ← 𝐸𝑘 (𝑙𝑖 | |𝑡1) , 𝐸𝑙2 ← E𝑘 (𝑙𝑖 | |𝑡2) , . . ., 𝐸𝑙𝑘 ← E𝑘 (𝑙𝑖 | |𝑡𝑥 ) . No decryption needed.
Q2: Locations that have top-k observations during 𝑡1 to 𝑡𝑥 SM using the filters 𝐸𝑙𝑚 ← E𝑘 (𝑙𝑖 | |𝑡 𝑗 ) where 𝑖 ∈ Domain(L) and 𝑗 ∈ {𝑡1, 𝑡𝑥 }, and then, decrypt

E𝑘 (𝑙 | |𝑡 | |𝑜) of qualified tuples only for final processing.Q3: Locations that have at least 10 observations during 𝑡1 to
𝑡𝑥

Observation and time attributes
Q4: Which locations have an observation 𝑜𝑖 during 𝑡1 to 𝑡𝑥 SM using Eo 𝑗 ← E𝑘 (𝑜𝑖 | |𝑡 𝑗 ) , 𝑗 ∈ {𝑡1, 𝑡𝑥 }, and then, decrypt E𝑘 (𝑙 | |𝑜 | |𝑡 ) of qualified tuples to know

locations.

Observation, location, and time attributes
Q5: # an observation 𝑜𝑖 has happened at 𝑙𝑖 during 𝑡1 to 𝑡𝑥 SM using Eo 𝑗 ← E𝑘 (𝑜𝑖 | |𝑡 𝑗 | |𝑙𝑖 ) , where 𝑗 ∈ {𝑡1, 𝑡𝑥 }. No decryption needed.

Table 4: Sample queries. Notation: SM: String matching.

connectivity dataset over 202 days having 136M(illion) rows.
The IT department manages more than 2000 WiFi access-points
(AP) by which they collect tuples of the form ⟨𝑙𝑖 , 𝑡𝑖 , 𝑜𝑖 ⟩ on which
they implemented Algorithm 1 prior to sending WiFi data to us.
In this data, each of 2000+ APs is considered as a location. We
created two types ofWiFi datasets: (i) a small dataset of 26MWiFi
connectivity rows collected over 44 days, and (ii) a large dataset
of 136M rows (of 14GB) collected over 202 days. For Concealer
Algorithm 1, which produces encrypted data as shown in Table 2c,
we fixed a grid of 490 × 16, 000 and allocated 87,000 cell-ids that
resulted in two vectors cell_id [] and c_tuple[] of size 31MB. Data
was encrypted using AES-256. This dataset has also skewed over
the number of tuples at locations in a given time. For example,
the minimum number of rows at all locations in an hour was
≈6,000, while the maximum number of rows at all locations in
an hour was ≈50,000.
Dataset 2: TPC-H dataset. Since WiFi dataset has only three
columns, to evaluate Concealer’s practicality in other types
of data with more columns, we used 136M rows of LineItem ta-
ble of TPC-H benchmark. We selected nine columns (Orderkey
(OK), Partkey (PK), Suppkey(SK), Linenumber (LN), Quantity,
Extendedprice, Discount, Tax, Returnflag). This dataset contains
large domain values, also; e.g., in OK column, the domain value
varies for 1 to 34M. We created (i) two indexes on attributes
⟨OK, LN⟩ and ⟨OK, PK, SK, LN⟩, (ii) two filters on concatenated
values of ⟨OK, LN⟩ and ⟨OK, PK, SK, LN⟩, and (iii) one value
that is the encryption of the concatenated values of all remain-
ing five attributes. We used a 112, 000 × 7 grid for index ⟨OK,
LN⟩ and a 1500 × 100 × 10 × 7 grid for index ⟨OK, PK, SK, LN⟩.
Each grid was allocated 87,000 cell-ids. The size of cell_id [] and
c_tuple[] vectors for both grids was 54MB. Data is encrypted
using Algorithm 1 and AES-256.

Queries. Table 4 lists sample queries supported by Concealer
on spatial time-series data. These queries as mentioned in §2.1
provide two applications: aggregate (Q1-Q3) and individualized
(Q4-Q5). On TPH-C data, we executed count, sum, min/max
queries.

Setup. The IT department (worked as DP) had a machine of
16GB RAM. Our side (worked as SP) had a 16GB RAM Intel
Xeon E3 machine with Intel SGX. At SP, MySQL is used to store
data, and ≈8,000 lines of code in C language is written query
execution.

We evaluate both versions of Concealer depending on the
security of SGX: (i) one that assumes SGX to be completely secure
against side-channel attacks, denoted byConcealer, and (ii) an-
other that assumes SGX is not secure against side-channel attack
(cache-line, branch shadow, page-fault attacks) and hence per-
forms the oblivious computation in SGX (given in §4.3). denoted

by Concealer+. In all our experiments, we show the overhead
of preventing the side-channel attacks using red color.

9.2 Concealer Evaluation

This section evaluates Concealer on different aspects such as
scalability, dynamic data insertion, the impact of the range length,
and the number of cell-ids.

Exp 1: Throughput. Since Concealer is designed to deal with
data collected during an epoch arriving continuously over time,
we measured the throughput (rows/minute) that Concealer can
sustain to evaluate its overhead at the ingestion time. Algorithm 1
can encrypt ≈37,185 WiFi connectivity tuple per minute. Also, it
sustains our organization-level workload on the relatively weaker
machine used for hosting Concealer.

Exp 2: Scalability of Concealer. To evaluate the scalability
of Concealer, we compare the five queries as specified in Table 4
on two WiFi datasets.

Point query. For point query, we executed a variant of Q1 when
the time is fixed to be a point (instead of a range). Table 5 shows
the average time taken by 5 randomly selected point queries
(each executed 10 times). Note that, in Concealer, since the time
taken by point queries is dependent upon the number of tuples
allocated to the same cell-id (i.e., the bin size) that was 2,378 rows
from small and 6,095 rows from large datasets. Table 5 shows
that Concealer with secure SGX using BPB method took 0.23s
on small and 0.90s on large datasets, while Concealer+ with the
current non-secure SGX using BPB method took 0.37s on small
and 1.38s on large datasets. Time in Concealer+ increases

compared to Concealer, since we need to obliviously form
the queries and obliviously filter the tuples in Concealer+, (and
that implements a data-independent sorting algorithm; see §4.3).
Here, executing the same query on cleartext data took 0.03s on
small and 0.05s on large datasets.

Small dataset (26M) Large dataset (136M)
Cleartext processing 0.03s 0.05s
Concealer (secure SGX) 0.23s 0.90s
Concealer+ (non-secure SGX) 0.37s 1.38s

Table 5: Exp 2: Scalability of point query.

Range queries. To evaluate range queries, we set the default
time range for queries Q1-Q5 specified in Table 4 to 20min (Exp 4
will study the impact of different range lengths). Figures 3 and 4
show the results as an average over 5 queries (each executed 10
times). We compare BPB, eBPB (§5.2), and winSecRange (§5.3)
with both Concealer and Concealer+.

Recall that BPBmethod answers a range query by converting it
into many point queries and fetches bins corresponding to each
point query; while eBPB method fetches rows corresponding
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Figure 3: Exp 2: Range queries on 26M tuples.
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Figure 4: Exp 2: Range queries on 136M tuples.
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Figure 5: Exp 3: Range length impact.

to top-ℓ cells, which cover the given range. In Concealer, a
cell covers ≈18min. Thus, for a range of 20min, BPB and eBPB
methods fetch at most 3 bins and at most 3 cells, respectively,
for query Q1. Thus, for answering Q1, BPB fetches ≈6K rows
from small and ≈18K rows from large datasets, and eBPB fetches
≈1.5K rows from small and ≈3K rows from the large dataset.
Since eBPB retrieves few numbers of rows compared to BPB,
in sSGX, eBPB performs better than BPB (see Figures 3 and 4).
Concealer+ again takes more time compared to Concealer for
both eBPB and BPB, due to oblivious operations. Note that in
queries Q2-Q5, we use more locations; thus, the number of rows
retrieved changes accordingly, and hence, the processing time
also changes, as shown in Figures 3 and 4.

For winSecRange, we set the range length on the time attribute
to 8 hours in case of small and ≈1-day in case of large datasets.
Thus, by fetching data for 1-day in the case of the large dataset,
the enclave can execute any range query that is of a smaller time
length. As expected, winSecRange took more time to execute
range queries on both datasets, since it fetches and processes
more rows (≈70K rows from small and ≈400K from large dat-
sets). While it takes more time compared to BPB and eBPB, it
prevents the attack by sliding the time window (as shown in
Example 5.2.2), thereby, prevents revealing output-size attacks
due to the sliding time window. Further, winSecRange under
Concealer+ took more time compared to winSecRange under
Concealer, due to oblivious operations. Recall that under Con-
cealer, SGX architecture is vulnerable to side-channel attacks.

Exp 3. Impact of range length. Figure 5 shows the impact of
the length in a range query on Concealer, by executing Q1
(see Table 4) with different time lengths over the large dataset
and compares three approaches BPB, eBPB, and winSecRange. In
Concealer, a cell covers ≈18min. Thus, for instance, for a range
of 100min, BPB and eBPBmethods fetch atmost 7 bins and atmost
7 cells, respectively. As expected, as the length of range increases,
the number of rows to be fetched from the DBMS also increases,
thereby, the processing time at secure hardware increases. As
mentioned in Exp 2, for the large dataset, the range length is set

to ≈1-day for winSecRange method; hence, fetching/processing
more tuples takes more time and remains almost constant for the
given length of queries.

Exp 4.: Verification overhead. SGX executes verification proto-
cols by forming a hash chain on the retrieved tuples, and thus, the
verification overhead is propositional to the number of retrieved
tuples. In the point query, Concealer retrieves the minimum
number of rows, i.e., 2,378 rows from small and 6,095 rows from
large datasets, and verifying such rows took at most 0.09s and
0.16s, respectively. On the other hand, winSecRange method
fetches the maximum number of rows, i.e., ≈70K rows from small
and ≈400K from large datsets, and verifying such rows took at
most 0.8s and 3s, respectively. Note that the verification overhead
is not very high.

Point query winSecRange
#retrieved rows 2,376 6,095 70,000 400,000
Query execution time 0.23 0.9 11 71
Verification overhead 0.09 0.16 0.8 3

Table 6: Exp 4: Query execution time vs verification over-

head.

Exp 5. Impact of dynamic insertion. We also investigated
how does Concealer support dynamic insertion of WiFi dataset.
We initiated Algorithm 1 for an hour of WiFi data at the peak
hour, which included ≈50K tuples. For each insertion round, the
grid size was 20 × 1, 250 with 400 allocated cell-ids, and vectors
cell_id [] and c_tuple[] of size ≈100KB were generated. In non-
peak hours, we received at least ≈6K real rows. Recall that we
are not interested in hiding peak vs non-peak hour data. Thus,
all rows of each hour were sent using Algorithm 1. The query
execution performance on dynamically inserted data depends
on the number of rounds over which a query spans. For each
round, we need to load the two vectors and fetch log |Bin| bins, as
described in §6. For peak hour data, we obtained 146 bins storing
≈400 tuples, in each, using BPB method (§4.2) that resulted in
≈3K row retrieval. On this data, it took at most ≈4s to execute a
query, re-encrypting tuples, and writing them, for Concealer.

Exp 6. Impact of bin-size. As we create bins over real tuples
and fake tuples, we study the impact of bin-size on the number of
real and fake tuples included in a bin. We vary the bin-size from
6,100 to 7,900 for answering a point query; see Figure 6. As we
know, first-fit-decreasing (FFD) ensures that all the bins should
be half-full, except for the last one. On our dataset, FFD works
well, and the bins contain most of the real tuples, as shown in
Figure 6. It shows that while changing the bin-size, we do not
add more fake tuples to each bin.

Exp 7. Impact of the number of cells. Concealer is based on
the number of cell-ids allocated to the grid to execute a query.
The number of cell-ids impacts the performance of the query
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Figure 6: Exp 6: Impact of bin-size.

execution significantly. To measure the impact of the number of
cell-ids, we allocated a different number of cell-ids to our grid of
16, 000 × 490 and executed a point query over the large dataset.
Figure 7 shows that when we allocate only a few cell-ids to the
grid, we need to fetch a significant amount of data from the
DBMS, since several cells of the grid hold the same cell-id, which
in turn increase the bin-size. In contrast, as the number of cell-ids
increases, we need to fetch lesser data from the DBMS, since by
allocating several cells-ids, a cell-id is allocated to fewer tuples,
which, in turn, decrease the bin-size.
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Figure 8: Exp 8: Query performance on TPC-H data.

Exp 8. Concealer on TPC-H data. To evaluate Con-
cealer’s practicality in other types of queries, we executed two-
dimensional (2D) and four-dimensional (4D) count, sum, maxi-
mum, and minimum queries on LineItem table using Concealer.
2D (and 4D) queries involved OK and LN (and OK, PK, SK and LN)
attributes. Similar to the point query execution on WiFi dataset,
2D and 4D queries on TPC-H data require to fetch tuples allo-
cated the same cell-id (in the same bin) according to Algorithm 2.
Thus, the query execution performance is dependent on the bin
size, which was 400 rows for 2D grid and 6,258 for 4D grid. The
query execution results are shown in Figure 8.

Figure 8 shows that Concealer using BPBmethod took ≈1s to
2s on TPC-H dataset. Also, observe that the performance of count
queries is ≈36%–40% better than the others queries, since count
queries do not need to decrypt retrieved rows and it executed
string matching on the filter column to produce the answer. In
contrast, other queries that require exact values of the attributes
decrypt retrieved rows, and hence, incur the overhead.

9.3 Other Cryptographic Techniques

Since in our setting SP uses secure hardware, we need to com-
pare against a system that can support database operations us-
ing SGX. Thus, we selected an open-source SGX-based system:
Opaque [48].

Comparison between Opaque and Concealer. Opaque sup-
ports mechanisms to execute databases queries on encrypted
data by first reading the entire data in the enclave, decrypting
them, and then providing the answer. Note that both Opaque
and Concealer assume that SGX is secure against side-channel
attacks, and hence, both reveal access-patterns. Thus, this is a
fair comparison of the two systems, while Concealer avoids
reading the entire dataset due to using the index and pushing
down the selection predicate. Under this comparison, we execute
point and range queries using Opaque and Concealer.

Further, note that since Concealer+ completely hides access-
patterns inside SGX and partially hides access-patterns when
fetching data in the form of fixed-size bins from the disk, we do
not directly compare Concealer+ and Opaque due to different
level of security offered by two systems.

Exp 9: Point queries on WiFi data. Opaque took more than
10min on both WiFi datasets for executing a variant of Q1 when
the time is fixed to be a point, since Opaque requires reading the
entire dataset. For the same query, Concealer took at most 0.23s
on 26M and 0.9s on 136M rows.

Further, to execute the same query, Concealer+ took ≈1.4s.
Thus, it shows that Concealer+, which hides access-patterns
inside the enclave and prevents the output-size attack, is signifi-
cantly better than Opaque.

Exp 10: Range queries on WiFi data. In all range queries Q1-
Q5 on WiFi data, Concealer’s eBPB and winSecRange algo-
rithms take at most 4s and 71.9s over the large dataset compared
to Opaque that took at least 10min in any query; see Table 7.

Further, note that to execute the same queries, Concealer+
takes at most 90s over the large dataset, which shows better
performance of Concealer+ than Opaque in the case of range
queries also.

System Q1 Q2 Q3 Q4 Q5
Opaque >10 m >10 m >10 m >10 m >10 m
Concealer eBPB 3.6 s 2.8 s 3.4 s 3 s 4s
Concealer winSecRange 70 s 67.2 s 71.9 s 70.2 s 68.9 s

Table 7: Exp 10: Range queries: Opaque vs Concealer.

Note. Except for Opaque, we did not experimentally compare
Concealer against cryptographic techniques, since such tech-
niques either offer different security levels [14, 23, 26, 27], or
do not scale to large-sized data (e.g., [5, 18]) for which we have
designed Concealer, or are not publicly available. Thus, we
decide to compare Concealer results with the reported result
in different papers. Previous works on secure OLAP queries
either support limited operations, reveal data due to DET or
OPE, or scale to a smaller dataset. For example, Monomi [44],
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Seabed [34], [17], and [28] reveal data due to DET or OPE. Nev-
ertheless, Seabed supports a huge dataset (≈1.75B rows). Novel
SSEs, e.g., [14, 23, 26, 27], are very efficient, as given in their exper-
iments; however, they provide results over 5M rows and suscepti-
ble to output-size attacks. We also checked access-pattern-hiding
cryptographic work (e.g., DSSE [18] and Jana [5]) that are prone
to output-size attacks; however, as expected, these systems are
slow due to using highly secure cryptographic techniques that
incur overheads and/or do not support a large-sized dataset. For
example, an industrial MPC-based system Jana took 9 hours to
insert 1M LineItem TPC-H rows, while executing a simple query
took 532s.

10 CONCLUSION

This paper proposed Concealer that blends a carefully chosen
encryption method with mechanisms to add fake tuples and ex-
ploits secure hardware to efficiently answer OLAP-style queries.
We applied Concealer to real spatial time-series datasets, as well
as, synthetic TPC-H data, and demonstrated scalability to large-
sized data. Since Concealer allows indexing, its performance
is similar to SSEs.Concealer offers two key advantages over
existing SSEs: first, it does not require new data structures to in-
corporate into databases and leverages existing index structures
of modern databases. Second (and perhaps more importantly),
Concealer offers a higher level of security, in addition to being
IND-CKA, which existing SSEs are, by preventing leakage of data
distributions via output-size.
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