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SIMULTANEOUS EQUATION SYSTEMS: A CONSISTENT ESTIMATOR
FOR UNKNOWN PARAMETERS IN CONFINED AQUIFERS!

Hugo A. Loaiciga and Miguel A. Marinio®

ABSTRACT: This paper presents criteria for establishing the identifi-
cation status of the inverse problem for confined aquifer flow. Three
linear estimation methods (ordinary least squares, two-stage least
squares, and three-stage least squares) and one nonlinear method
(maximum likelihood) are used to estimate the matrices of parameters
embedded in the partial differential equation characterizing confined
flow. Computational experience indicates several advantages of maxi-
mum likelihood over the linear methods.

(KEY TERMS: parameter estimation; ordinary least squares; two- and
three-stage least squares; maximum likelihood; inverse problem; finite-
element method.)

INTRODUCTION

The estimation of transmissivities and storativities by
statistical and other numerical techniques has received sub-
stantial attention in recent years. The estimation of ground-
water parameters has been approached in a variety of ways,
ranging from generalized least squares to nonlinear program-
ming (see, e.g., Yeh, 1975; Cooley, 1977, 1979, 1982; Neu-
man and Yakowitz, 1979; Yakowitz and Duckstein, 1980;
Neuman, 1980; Yeh and Yoon, 1981; Yeh, er al, 1983;
Kitanidis and Vomvoris, 1983; Aboufirassi and Marifio, 1984;
and Sadeghipour and Yeh, 1984). Previous studies on the in-
verse problem in ground-water flow point out the difficulties
stemming from the nonuniqueness and instability of param-
eter estimates (see, e.g., Yakowitz and Duckstein, 1980).

The objectives of this research are: (1) to develop criteria
to establish the identifiability status of the inverse problem
for confined ground-water flow; (2) to present three linear
methods to estimate the coefficient matrices that govern the
(discretized) ground-water flow equation; (3) to develop a
nonlinear (i.e., maximum likelihood, ML) method to estimate
directly transmissivities and storativities, as well as the coeffi-
cient matrices that govern the flow equation, and compare the
nonlinear method performance with those of the linear esti-
mation techniques; and (4) to establish the statistical proper-
ties of the linear and nonlinear estimation methods.

PROBLEM STATEMENT

Discretization of the Confined Aquifer Flow Equation

The equation of flow in a heterogeneous and isotropic
confined aquifer is

o (1dy+8 (719 = g9
ax(Tax)+ax(Tay)+F St W

in which ¢ denotes the piezometric head (units, L); T = T(x,y)
denotes transmissivity (units, L2T"1); S = S(x,y) represents
storativity (dimensionless); and F denotes either a distributed
(units, LT—1) or point (units, L3T—1) sink/source. Equa-
tion (1) can be discretized by the finite element method and
expressed as a linear first-order system of differential equa-
tions

A ¢ + B ¢ + F = 0 )
GxXG  GXx1 GxXG  GX1 GX1 Gx1

in which A is the conductance matrix; ¢ is the vector of un-
known heads in the flow domain (the dot indicates time
derivative); B is the capacity matrix; and F is a vector con-
taining boundary condition values as well as terms related to
the sink/source distribution. In Equation (2), only the sub-
set of unknown nodal heads is represented: known (i.e., pres-
cribed) nodal heads in the flow domain have been condensed
in typical fashion by the finite-element procedure. Equation
(2) can be rewritten as

6 =-Blag_-B1F

Co¢+DE (€))

By letting the initial condition ¢(0) = ¢, the system of dif-
ferential equations in Equation (3) has an analytical solution
for ¢(t), which is given by

lPaper No. 86045 of the Water Resources Bulletin. Discussions are open until April 1, 1988.
2Respectively, Assistant Professor of Geological Sciences, Department of Geological Sciences, Wright State University, Dayton, Ohio 45435; and
Professor of Civil Engineering and Water Science, University of California, 119 Veihmeyer Hall (LAWR), Davis, California 95616.
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8(t) = etClag+ f; e~"C DE(r)ir] @

(see, e.g., Polak and Wong, 1970, pp. 9-17). The matrix etC
in Equation (4) can be expressed as a function of t by the
method of interpolating polynomials (see, e.g., Gantmacher,
1959).

The continuous system of Equation (4) is discretized as
follows,

'E‘] 9, 1+tE = uy (%)

B
(E +nA) ¢, + [A(1-n) - A

t=1,2,...,n

in which 0 < n < 1; At is a time step; n is the number of
simulation periods; F, includes the effect of boundary condi-
tions and sink/sources; and u, is a white noise vector that
accounts for errors in measurements and modeling by Equa-
tion (1). It is assumed that

Euy) =0 (6)
[0::] = Zift=s
Bumg) = { ) GXG
0 otherwise )
—
= ¢
“
L/
“
.
f Impermeable
o

4>A(f)

7 /7 7 7

Y, Yy

Impermeable Barrier

System-Equation Notation
Equation (5) can be rewritten as

v ¢, + T Xp = Uy, Vit
GxG Gx1 GXK  KX1 Gx1

~
)
T'889T-2G.T L TTT 0T/I0p/WcY @\!M'AMJQ!BUW/SdHH wolj pepeojumod ‘v ‘286T ‘889TCSLT

in which
= .g_. + nA 9

v T (
T'= [A—¢ : M] (10§
3
T T T :
Xy < ®:_1» P.t) (HE
where the G x (K—G) matrix M and the K—G) x 1 vector gé

are determined by the nature of the boundary conditionss
and the sink/source distribution over the flow domain,

The aquifer shown in Figure 1 is used as an illustrative
case for the applicability of Equation (8). By using lineag
basis interpolation functions in the finite element discretiza=
tion of Equation (1), one obtains

1 e

ij|<

L/4 L/4

g

X ¥
Element 16Element 2®Element 3@ Element 4

Figure 1. Confined Aquifer Subject to Time-Dependent Boundary Conditions and a Discharge (of units L3T_1L—1) at x = L/2.

mm—
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Simultaneous Equation Systems: A Consistent Estimator for Unknown Parameters in Confined Aquifers

— e C— o ! = in which o' =1 — o; T and SO denote transmissivity and
S —~ 8 storativity of the ith element, respectively; and 2 = L/4,
o s \2’:3 © where L is the total aquifer length.
8 T [
geo o = Xt = [91(t-1),0(t—1),83(t—1);6 5,6 g, 5. 93, F}
e e ' in which F = nF(t) + (1-—m)F(t—1) is the averaged sink
—~ -
2= strength (see Figure 1); ¢ o = nop(t) + (1-mPa(t—1); ¢ o
- “"" . =] =] = [PA(t) — 9(t—1)] /At; $B and &B are defined similarly.
= é\ From Equations (13) and (14) it can be seen that K = 8 and
s “~h G = 3. The dependence of the elements of Y and T (ie.,
‘r:/g - f;}' “’ij and 7j;, respectively) on T® and SO G =1, 2, 3,4) is
o < 7 evident from Equations (12) and (13).
wl D uig The purpose of this study is to obtain statistically con-
o — “ « sistent (see, e.g., Rao, 1965, pp. 344-345) estimators of the
ailg oy °¢| g A elements of the matrices Y and I" which govern the equation
7l o | < of flow and of the covariance matrix B (see Equation 7).
,g "[_'1_' o~ e B o Such task is to be done via linear and nonlinear estimation.
= 6 = @l The identifiability status of the inverse problem, as well as
o & o E‘; the statistical properties of estimators are to bé addressed
I F o i RS also, and Equation (8) constitutes the basic relationship for
the analysis.
2 ) |
~ w
S & IDENTIFICATION STATUS OF
é < 25 THE INVERSE PROBLEM
[75] —~ =
._: o % u! a Identification Criteria
= e«‘é A'L The problem of identification is one of being able to
o | S’{:‘ determine all the (nonzero) elements of the matrices Y and
E o a | = I', as well as the covariance matrix Z. Notice that we look
Q "[;l““ % for estimators of l[Jij, Tij» and oj; (i.e., the elements of the
[1, & >~ matrices ¢, I, and 2, respectively;.
& ! s By premultiplying Equation (8) by y—! and solving for
¢, one obtains
= S
) % - (g1 -1
2| & 9, = (-v F)’it"'("/ Et)
=l< Z
Rz < = Mx +ept=1,2,...,n (15)
+ 2 ! 2 . . T, _ ,—t —INT .
e b= T = in which E(e ¢ ;) = ¥ Z(Y—1)1. As is shown subsequent-
Q E Q E ly, the G x K (full and unknown) matrix IT can be estimated
L-T.' - 2 E o > consistently by ordinary least squares (OLS). The identifica-
e - tion problem can then be stated as follows: *“‘given a con-
E_:E = sistent estimator of II (= —y~1I1), is it possible to estimate
L s 1 (consistently) ¢ and T, and if so, what are the properties of

;]

estimators?”’ It is important to point out that if Y and I’
can be estimated, then immediately one has all the informa-
tion required to simulate the discretized ground-water flow
Equation (8). The estimated covariance ¥ is useful to deter-
mine the properties of the estimators for ¢ and T

L= [7ij] =

543 _ WATER RESOURCES BULLETIN

85UB01 7 SUOWILLIOD BAIERID 3ot jdde ayy Aq peusenob ake ol VO ‘8N J0 S8|nJ 10} AIq1TaUIIUO AB]IA UO (SUOIIPUOD-PUE-SWIRI/LIY A8 | AeIq1[ulU0//Sdiy) SUORIPUOD PuUe SWLB | 84} 88S *[7202/60/08] Uo ARiqiauljuo AB|iMm B1LI0jiED JO AISRAIUN AQ X' TEB00CY 286T'889T-2SLT [TTTT 0T/I0P/W00 A8 | 1M AleIq 1 jpul|Uo//Stiy WOy pepeo|umod ‘t *286T '889T2SLT



Loaiciga and Marino

From Equation (15)

m =—y! T
(GXK) (GXG) (G*K) ' (16)
Thus,
yII = I 1an
The jth row (=1, 2, . . . ,G) of Equation (17) can be written
as
(‘l'jl 'l’jz- .. llfjc)n = —('le Y2 .- 'Yj[() (18)

The elements of the right- and left-hand side vectors of
Equation (18) can be rearranged so that their nonzero ele-
ments lead those that are equal to zero. The matrix II can
be conformally rearranged so that Equation (18) can be re-
written as

I n
T T A* Ar* T T
Wa Opn = —(yx 0xs)  (19)

in which ¥, and 0 o4 are the G2 x 1 and (G-G) x 1 sub-

vectors of nonzero and zero elements in the left-}axkand side
vector*of Equation (19); and 7  and 0 x4 are the K x 1 and
(K-K ) x 1 subvectors of nonzero and zero elements of the
right-hand side vector of Equation (19). The submatrices

HA*’ HA**’ HAA*’ and HAA** are of dimensions GA X K*,
GA x (K—K™), (G—G®) x K", and (G—-G2) x (K-K™), respec-
tively, and correspond to a conformally rearranged matrix IT
as required by the vector partition in Equation (19). Equa-
tion (19) leads to the following expressions,

Lliz HA* = —1}:
(20)
(1xG2) (GBxk*) (1xK™)
T T
| | 04x
va A = 1)
xR GAxEK')  1XK-K")

In Equations (20) and (21), it is possible to divide both
sides by any of the (nonzero) elements of Y, so that one

of the elements of Y5 can be normalized to unity. Then,

there are (GA—I) + K" unknown variables in the jth equa- °

tion. If Equation (21) could be solved for Yp, then 7

would be immediately determined from Equation (20). From
basic matrix theory (Graybill, 1983, pp. 149-178), it is
known that at least G= —1 equations are needed to solve for

lumoQ ‘v ‘286T '889TCSLT

¥y in Equation (21). The vector Y5 has GA-1 unknownz
elements since one of its elements can be normalized toﬂ
unity, as stated above. Therefore, it is required that

~

[35]

3
qreuuo//sdny wo.

op TG YETIIVICY

K-K'>GA—

since there are K — K" columns in A%

Equation (22) is only a necessary condition for identig
fiability, because even if it is satisfied, the columns of Il s
may not be linearly independent. A necessary and sufficient:

]

0T/

-¢SLT

X

condition for the identification of Y5 and 7 4 in the jth equa~;
tion is that the number of linearly independent columns of°°

HA** be equal to G —1,ie, é
A

rank(Ilpxs) = G~ — (3%
To summarize, the identification status of the jth equatio nf;

(see Equation 18),j =1, 2, ..., G, must belong to one o

the possible cases:
(1) K —K">GA— 1 and rank (Tlpes) = G® — 1, thef
jth equation is overidentified. There are multiple ways ofg
estimating cons1stently Yp and ¥«
(2) K- K" =G2 -1 and rank(Ilpas) = G2 — 1, theref
exists exact identification. It is possible to solve umquelyg
and consistently for Y, and 7y «.

(3) KK - K > GR _ 1 and rank(llpxs) < GA -1, orf
fK-—K*<GA —1, the equation is underidentified. In th1s“
case, it is not possible to estimate consistently the param-z
eters in Y and y+. This is equivalent to saying that theres

uluo Ka||/v\—‘au1

[reoe/e0/0€] u

pueswie] ay

//sd

1ju

are more unknowns than there are (independent) equatlonsﬂ
to estimate them,

&e“M Areiq

It is known that for well-posed problems the finite ele-5
ment method yields a matnx ¥ (see Equation 17) that is atﬂz
least tridiagonal (i.e. G = 2). Notice also that in Equatlon%
(21) the rank of HA** must be equal to or less than G2 — 1.2
Otherwise, i.e., if rank (Ipxs) = GA » Y would be a nullv
vector which contradlcts the known fact that Y, has atS
least two- nonzero’ elements. Therefore, the condition.giveng
by Equation (22) together with possibilities (1)—(3) cited“:f
above cover all the feasible cases that can be encountered ml
establishing the identification status for any of the G struc-c
tural equations (18).

It is shown next that the problem of estimating ¥ and I"o
in confined aquifer problems is most likely to be ovendenu-:
fied, so that there are different, but all consistent, methods?
of estimating ¢ and T,

N J0so

An Application of the Identifiability Criterion

The rank condition Equation (23) can be more easily
tested by using an equivalent expression, i.e.,

WATER RESOURCES BULLETIN
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Simultaneous Equation Systems: A Consistent Estimator for Unknown Parameters in Confined Aquifers

rank(l'lA**) rank( | Y

Yaa

G—1xG-GA G—1 xK—K"

GA_1

in which wAA and I'ys are submatrices of { and T, respec-
tively, corresponding to the variables omitted from the jth
equation but included in all other rows of Equation (17).
The identifiability criteria implied by Equations (22) and
(24) is applied to the example aquifer of Figure 1, with ¢
and T given by Equations (12) and (13). Choosing the first
row equation (j = 1), the following expressions are obtained,

T T
(EEA QAA) = (wu \1112 0) (25)
T T
—(7% Q) = —(711 7127147160 0 0 0) (26)
Vi1 ¥z 1 9.
V= Va1 V22 . Y3 @7
0 V3 V33
(the reordered I' matrix)
T "M2"M4Me ..2.9.0.0
0 733 0 0 [ 73735737 0
(28)
and thus,
Y3 1723 0 0 1
(Vap Tew) = . (29)

Y33 * 733 135 137 O

Equations (25)—(29) correspond to the first row (j = 1), and
similar expressions for the second (j = 2) and third (j = 3)
rows of Equation (17) (for the test aquifer of Figure 1) are
obtainable, leading to the identifiability status as summarized
in Table 1. The three equations are overidentified, meaning
that one can solve for the unknown elements Y;; and 7jj by
different, consistent, methods. For example, for the first
row (j = 1), Equation (21) implies that

545

) — (G-GB)

@9

My My My Mg

C2% ‘1’12) = (0 00 0)(30)

n_n
21 22 24 27

from which it is apparent that there are four equations and
two unknowns, ¢/11 and ¥12. The elements IIyq, . .. ,IIy7
are estimated consistently by ordinary least-squares (see
Equation 38 below); therefore, they are known quantities.
By dividing Equation (30) by ¥q1, so that the first element
is normalized to unity, and solving for 1[/1‘2 = 11/12/ ¥y, one
obtains

ot _ Mgy Iy + Ty Iy + Ty Iy s + Tlpg Iy
2 (II2- +M2 +M2_+12,)
21 M2 T s Ty

€3]

Equation (31) is a consistent estimator for w* (this is a
particular case of the general solution x = (AlA "lATx_
for overidentified equations Ax =y when ATA is full rank).
As will be shown subsequently, there are alternative methods
of estimating w,{z consistently, that are computationally more
expedient than using Equation (31), and whose asymptotic
properties are easily established. In the sequel, the normalized
coefficients \l/;; = \l/ij/ ¥;; and 7;; = '7ij/ ¥;; will be respectively
represented by \l’ij and 7ij to simplify the notation, and from
the context it should be obvious whether the raw or nor-
malized coefficients are being used.

For the case of exact identification, i.e., K — K'=68-1
and rank(Ips+) = GA - 1, the parameter estimates are the
same (i.e., have the same numerical value) regardless of
whether single-equation or system-equation methods (des-
cribed below) are used in the estimation. This property is of
little practical relevance, because, as previously seen in the
identification sample, the inverse problem in ground water is
overidentified.

When there is a condition of underidentication, one can
set (GA — 1) — 1 (r = rank(TI; ««)) coefficients artibrarily and
solve for the remaining ones, which clearly leads to an in-
finite number of estimates, all of them inconsistent. Under-
identification is most likely nonexistent in the inverse prob-
lem for ground-water flow.

WATER RESOURCES BULLETIN
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TABLE 1. Identifiability Status for Test Case.

(say the jth) times the matrix of the ¢’s, plus the jth row of
I’ times the matrix of the x’s being equal to the jth row
of the right-hand side of Equation (32). By choosing the

In Equation (33), E(u iU -;I‘ ) = %;lnn according to the as-

g

. Condition §

Equation A . El

j K K* G G rank(Yap ¢ Tes) Order Rank Status i

2 4>1 1=1 Overidentified %

2 8 4 3 3 4>2 =2 Overidentified :

2 4>1 1=1 Overidentified g

NOTES: (1) The order condition checks the inequality Equation (22). E
(2) The rank condition checks the equality Equation (24). 5

THE TWO-STAGE LEAST-SQUARES METHOD (2SLS) K $1(1) ... ¢_1(1) 541D - ,¢G A7 %

g

Development of the Method ¢1(2) . ¢j—l(2) ¢j +41(2) . ¢G A(z) ?;:
In this section, the estimation of the elements of the ¢, = ) ] ] . &
matrices ¥ and I' is done by operating on each of the row ] . . . . §
(or structural) equations of the discretized flow Equation (8). : : * : F)
From the identification example of the previous section it is $1(m) ... ¢_1 () d4 () - .. ¢GA(H) i £
understood that the row equations are overidentified (the - ' A Qg
most likely scenario as argued above). It is shown above that nx (Go-1}
the 2SLS method is a single-equation technique, i.e., it 3
operates on a single structural equation (see, e.g., Equation [ 7] 2
18), one-at-a-time. Equation (8) may be written for all time xl(l) x2(1) - xga(1) §
periods at once, i.e., XJ ) "1(2) x2(2) . 'XK*(z) ?
Vo). 0o +T[x; ...x 1= uy...up] (32) .. :

. . . %

The system of Equation (32) contains G equations, each xl(n) Xy(@) . . . xg +(n) g
equation corresponding to one of the rows of the matrix Y - “nxK* §
g

g

g

2

jth row equation, normalizing the llljj parameter to unity (by
dividing the entire jth equation by d’jjs an arbitrary choice),
and taking the transpose of the jth equation (so that the
parameters are ordered columnwise), one obtains

=Pt Xty (33)
in which

Qj = [¢j(1), . ’¢](n)] 1Xn
= [—tl/jl, e

Y = [_7j1’_7j2’ - ’7jK*] 1 xK*

[=
|

uj = [uj(l), . ,Uj(n)ll X n

9~'ij_1 ’_tp],]'f’l’ e :—'lijA] 1x (GA_I)

546

" tion of the matrix ®; above.

sumptions given in Equations (6)—(7). Also, notice that
matrices <I>j and Xj contain the variables associated with
nonzero coefficients, thus, their respective column dimen-
sions are G2 — 1 and K* (see Equation 21).

Equation (33) can be written in the usual linear-model
form,

¢ = Zj@j* uy (34)

T T T )
where Zj = [<I>j Xj] and Qj = [gj 2 ]. The regression
model of Equation (34) may be solved by the standard or-
dinary least-squares (OLS) estimator, i.e.,

8= @ 771z g (35)

U} Aq peusenof afe s e YO ‘s Jo Sa|NJ oy Afeiq1aUlUQ /8|1 UO (SUO 1} IPUOI-PUR-SLUB)LIOD

One inconvenience, however, is that the columns of Zj in
Equation (34) are correlated with the error term u; in the J
same equation, and such correlation follows from the defini-
Therefore, the OLS estimator
of Equation (35) is inconsistent due to such correlation. It

WATER RESOURCES BULLETIN
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Simultaneous Equation Systems: A Consistent Estimator for Unknown Parameters in Confined Aquifers

is possible to transform Equation (34) to make the (trans-
formed) matrix Zj asymptotically uncorrelated with the error

term u § By taking the transpose of Equation (32),
p— T - - F -
T T T
8] X uy
o eT=-} rf+ | - (36)
T T T
¢n Xn u,
- -l b J L -
or in compact form, after postmultiplying by (lIIT)—l,
& =X[-rT@hH1lj+v= X R + V
(nXG) (@XK) (KXG)  (nXG)
(37)

The matrix R in Equation (37) is estimated by the follow-
ing multivariate regression,

R=xTx1xTe " (38)
in which R denotes an estimator for R. Let RJ be the follow-
ing submatrix of R

A

R 5 [ (39)

RS RS IR B el

A

Rj equals the matrix R with its jth column suppressed. It
follows from Equation (37) that

-V = XR (40)

Since the matrix of disturbances V is unobservable, one can

approximate the left-hand side of Equation (40) by

~ A

d -V = XR 41)

in which V is the matrix of residuals obtained from the multi-
variate regression in Equation (38), ie.,
V=®&—_XR (42)

From Equation (41) it is clear that by deleting the jth
column,

=X Rj (43)

547

Finally, Equation (33) can be transformed to

(9 = Vil 5+ X1y + uj+ Vi

" - ¥;
[XR;: X 1j]+v_v

= 4ty

?;

(44)

Since <I>J - V and Uy + V yg = w) are asymptotlcally un-
correlated (i. e the probablhty limit of <I>] \'A converges to
X R., which is uncorrelated with w;), Q can be estimated
consistently by OLS in Equation (4]4 The OLS method

applied to Equation (44) yields

8= G 42 )
It is shown in the next subsection that ﬁj is a consistent esti-
mator of @_ Notice that the computation of 6 involves
ﬁrst the constructlon of ZJ through the regression estlmator
X Rj (see Equation 44) and as a second step, the regression
of Equation (45) is carried on, hence its name 2SLS.

Asymptotic Properties of the 2SLS Estimator
From classical multivariate theory, the asymptotic co-
variance of j is approximated by

=2 3T 51
in which S]_] is the estimator of OJJ’ L.,
0;-28)" @2
S = CH))

Y n1—(GA-1+k")
From the linear dependence of Ej on Qj, see Equation (45),
large sample theory of OLS (see, e.g., Rao, 1965), the

asymptotic distribution of v/ n (Ej —8yis

VE @-8)->NQ, opptimb 2 217 @)
n->»oo

, it is multivariate normal with zero mean and a limiting
(asymptotlc) covariance by the covariance in Equation (48).
The consistency of @ and of Sij has been established by Theil
(1971).

WATER RESOURCES BULLETIN
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The 2SLS method is applied to each of the j (5=1,2,...,G)
structural equations (see, e.g., Equation 33) one-at-a-time, to
estimate the entire set of parameters yy; and 7y, ¥ij. Notice
that in deriving the 2SLS estimator the coefficient wjj was
normalized to 1. Clearly, any of the l[lij’s in the jth structural
equation could have been cﬁl}osen for normalization. In
general, the 2SLS estimator §. changes as one changes the
normalized parameter and, in this sense, the method is not
invariant with respect to normalization. However, the statis-
tical properties of the estimators remain the same regardliess
of the normalization choice.

THE THREE-STATE LEAST
SQUARES METHOD (3SLS)
Development of the Method

It is possible to write the G structural equations (see
Equation 44) in a single expression, i.e.,

FQI Z, 0 rf’—l Fﬂl
5 0z .0 |8 L)
N I -l
¢ o 0 z 8 W

[*6] L SjL%] L™

or in compact notation,

=28 +w (50)

in which ¢ and w are both of dimension nG x 1; 8 is of di-

: G A * . A *
mension [jE (G- -1+ K- )] x 1, in which G- and K-
are the number of nonzero parameters in the jth row of the
¥ and I' matrices, respectively (see Equation 19); and Zis
dimensioned conformally

The vector of coefficients § in Equation (50) is esti-
mated by the generalized least-squares regression,

B = ZTE e 21 2T o )le 1)
in which 2~l@1 =
duct of the inverse of the covariance matrix ¥ and the iden-
tity matrix I,. Z®I,, is the covariance matrix of w in
Equation (50). The elements of =1 (denoted as s) are
obtained by inverting X = [Sij]GxG’ in which 5 is obtained
from the 2SLS method, i..,

[sijlnn] nGxnG is the Kronecker pro-
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@;- iiEi)T (Qj - ijEj)
n— max[GiA—l + Ki*, GjA_1+ Kj ]

(52)

S:: =

The main idea behind the point extimation of the 3SLS is=
a gain in asymptotic efficiency relative to single-equation§
methods of estimation such as the 2SLS. The implementation: :
of the 3SLS method requires that the number of observa-2
tions, n, be larger than the number of equations, G, to av01d°
the singularity of the covariance matrix Z®I,,. Since p m~
Equation (51) is computed based on the 2SLS estimators 8ij 5
(see Equation 52), it is required to first obtain 2SLS estima-5
tors (a two-step process), and subsequently the generahzedw
least-squares (GLS) estimator of Equation (51). The 3SLSg
method derives its name from this sequence of steps (2SLS*
first, GLS second).

iUl \UO//SdllLl wolj pepeojumod ‘v ‘286T ‘889TCSLT

Asymptotic Properties of the 3SLS Estimator

From the expression for 8 in Equation (51), it follows
that the asymptotic covariance of § is approximated by
8= 12T = o1, )71} (53)

From large sample theory for linear least-squares estimators
the asymptotic distribution for

>

V1 @ -8)~>N@, plim[n 12T E-1e1 )7]~1 (54)

from which the consistency of § is readily e‘stablished (Theil
1971).

3

MAXIMUM LIKELIHOOD ESTIMATION (MLE)

The Negative Log-Likelihood Function

In this section, a nonlinear method for estimating directly
transmissivities and storavities is developed. The unknown
parameters T()s and S@s are stored in a q x 1 vector of
parameters @, whose component, for the sake of simplicity,
are denoted as 6}, i=1,2,. . ., q. The maximum likelihood
(ML) method is based on the likelihood function associated
with Equation (8). Assuming that u ¢ Vt, is a normal white-
noise sequence, and that x, is a fixed vector of exogenous
variables in Equation (8), the likelihood function for the
left-hand side of Equation (8) is given by

In]/l

1z /2 exp{ 13
(2”)1’10/2 2

t=1

Wo,+Tx) T2 (Wg,+T &t)} 55)
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For estimation purposes, it is convenient to take the natural
logarithm of Equation (55), multiply the resulting expression
by —1, to obtain the following function

f=k+% In ISt =nln Iyl +% [z~ (yawT

+ A, TT+TAJyT +TA,rT) (56)
in which
k= 16 jh20)
2
n T
A= 2
172 248
n T
Ay = X X
27 F Okt
_ 2 T
Ag = Z XXy

It is convenient to simplify Equation (56) by differentiating
it with respect to 2 and solving for Z to obtain

$ = i (AT +yA,rT+ FA;‘[JT +TAgTD]  (57)

in which the following matrix derivatives were used,

dinlPl _ pTy-1  (jpI>0) (58)
P
and
dtr (QPM) _ T\ T
Lu - oTm (59)

in which Q, P, and M are conformable and square matrices.
By substituting Equation (57) into Equation (56), one ob-
tains

(60)

f=c+ % miEl—nhlyl

2
in which ¢ = k +% . The negative log-likelihood f depends

on the parameter vector 8, since the elements of f: and ¢
are functions of 6. The objective is to minimize f with re-
spect to @ to find the ML estimator of transmissivities and
storativities.
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Minimization of the Negative Log-Likelihood Function

Newton’s method has been chosen for the ntinimization
of Equation (60). The method requires an initial estimate of
0 (ie., (). At the kth iteration, while the “search is at
point 8,, Newton’s method finds the step vector, p;, such
that the function f in Equation (60) evaluated at the next
search point 8 + p; is minimized. By taking a second-
order Taylor expansion of f about § one obtains

T T
f(8, + py) ™ f83) + Dy VE + % Px Grpx  (61)

in which Vf | and Gy are the gradient and Hessian (matrix
of second derivatives of f evaluated at § . By applying the
necessary conditions in Equation (61) to find the minimizing
step vector py, it is found that

-1
Px = — Gy Vi (62)
and the next search point is given by
Oer = Gt akRy (63)

in which oy is a scale factor (0 < ax < 1) introduced to
avoid “overshooting” in the search for a minimum. In well-
behaved functions, ax = 1; otherwise, having found p,,
f(8 . + opy) is minimized with respect to ay to obtain the
appropriate scale factor.

The implementation of Newton’s method requires the
evaluation of the gradient and Hessian of f about 8. The
elements of the gradient of f are given by 9f/96;,i=1,2, ... .q.
The elements of the Hessian matrix are obtained from

32
aoiaoj
pressing analytically both the Hessian and the gradient.

, Vij. The following matrix results are useful for ex-

dln P!

- -1 2P
= up~! & 64
o o 3] (64)
-1
P - _p1 3P pl (65)
26, 26,
2 2
7Pl _ i p-t 3P 4 p-1 2P (66)

202 90; 262
i i
in which P is a square nonsingular matrix with | P |> 0, and
whose elements are functions of the parameter vector 8.
Clearly, P will be either Y or = when computing Vf ; and/or
G
k.
For well-behaved convex functions, the convergence of
Newton’s method is quadratic, which makes it an exception-
ally attractive algorithm, and Newton’s method is often
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regarded as the standard against which other algorithms are
measured.

Properties of the ML Estimators

For reasonably large sample sizes, MLE’s have all the de-
sirable properties of estimators, i.e., consistency, asymptotic
normality, and efficiency (see, e.g., Bickel and Doksum, 1977;
Lehmann, 1983). The variance-covariance matrix of MLE’s
can be approximated by the inverse of the Hessian matrix
(see, e.g., Rao, 1965), and in particular, standard errors of
estimators are estimated by taking the square root of the
diagonal elements of the inverted Hessian. A remarkable pro-
perty of the negative log-likelihood function is its convexity
for the case of exponential distribution functions (among
them the normal distribution).

AFPPLICATION OF METHODOLOGIES

Estimation of Y and T’

The estimation experiment was based on piezometric heads
generated by the continuous-time solution Equation (4) which
were corrupted with a white noise sequence. Relevant data
are given in Table 2. The heads ¢ |, ¢, ..., § are shown
in Table 3. The elements of the matrices Y and I that govern
the flow equation (see Equation 15) were estimated by OLS,
2SLS, 3SLS, and maximum likelihood, and are shown in
Table 4. Clearly, MLE’s show smaller biases for all of the
estimated elements than those exhibited by any of the other
methods. The standard errors of MLE’s are noticeably smaller
also, except for the second element of 81, the fourth and
sixth elements of 85, and the third element of § 3. The rela-
tive merits of the OLS, 2SLS, and 3SLS are not as conclusive
as those of MLE’s. OLS appears to provide a better approxi-
mation of the parameters than do 2SLS and 3SLS. In con-
trast, 2SLS tends to present in general smaller standard errors
than OLS and 3SLS, with the latter yielding larger biases and
standard errors than the other three estimation methods. In-
terestingly, 3SLS should in theory provide a gain in efficiency
(i.e., reduction in the standard error of estimators) due to
its unique joint estimation feature. However, such efficiency
gain is effective under the condition of a known covariance
Z, which is not the case in this study. As a consequence
of the due estimation of Z, as well as to the small-sample
size nature of the problem, the asymptotic gain of 3SLS does
not materialize, and in this study the method trails in per-
formance the more easily implementable OLS and 2SLS, not
to mention MLE’s.

Figure 2 shows actual heads (see Table 3), simulated
heads & = X R (see Equations 37 and 38) and ¢, = —y~Ix,,
in which y and I' are obtained from the MLE’s estimates of

Y and T. The MLE of Il = —y—II is shown in Table 5.
Notice that X contains the actual lagged variables %0 21>
-, %19 (follows from Equation 11), and this allows the

estimated heads ® to follow the overall pattern of the actual
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heads with an underestimation of actual high values, and @
overestimation of low heads. In contrast, the MLE’s gb_t f

x;, Vt, are generated recursively, starting with Ql lee,
followed by Qz = IIx , and so forth. Therefore, the ML@S
of heads forecast or predict the expected values (E(Qt)

Ix4, Vt) or average levels of the actual heads, as is ewdegt

from Figure 2, g*
3

TABLE 2. Data for the Example Aquifer. E

Element Transmisgivity Storativity Lengﬁl
i T s 23

2 -3 g

1 500 m/d 12 x 10 500 fn

2 500 m%/d 12x 1073 500 m

3 500 m2/d 12x1073 500 &

4 500 m2/d 12x1073 500 @

[e)

Matrix A (Equation 2) Matrix B (Equation 2) &

B3

2 -1 0 4 1 0 a

A= -1 2 -1 |ma B=] 1 4 1 |m
0 -1 2 o 1 4| £

Vector F (Equation (2) %

1 0 1 0 0 F 4l g

95 g

0 0 0 0 1 . . i

¢ g

0 -1 0 1 0 . g

¢s 2

F L

L g

P = 80+t,m $5 = 1,m/d H
2

8

$p(t) = 100 —t,m ¢ = -1, m/d :
3 3

F = 10, m”/m/d §
Direct Estimates of Aquifer Parameters §

The method of maximum likelihood yields direct estimates
of transmissivity (T) and storavity (S), which without loss of
generality are assumed to be constant in this study. Upoé
estimation of T and S, the matrices ¥ and I’ are readily
computed via Equations (12) and (13), respectxvely Newton’s
method was initialized at the values T= 250 m2/da { and S 2
0.007, with the actual (true) values being 500 m</day and
0012 for T and S, respectively (see Table 2). Figure §
shows a contour plot of the negative log-likelihood funct:org
It is a convex function with a relatlvely flat surface aroun@
the convergence values, T* = 452 m2/day and S* = 0. 01055
Table 6 contains a summary of the convergence path of
Newton’s method. Points 0-1.2-34-5 in Figure 3 show thé
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search path of Newton’s method. The method was tested
with other initial estimates of T and S and converged (quad-
ratically) to the same unique global optimum in all cases.

TABLE 3. Piezometric Heads (in meters).

Time Node
t 1 2 3
1 84.15 87.69 93.72
2 85.35 84.35 93.69
3 84.98 85.78 93.42
4 84.28 85.53 93.54
5 84.68 85.39 93.16
6 84.86 - 83.56 92.18
7 85.98 82.80 90.28
8 85.17 83.18 89.92
9 84.31 82.92 89.02
10 85.13 85.24 88.70
11 87.69 79.95 86.39
12 86.09 84.11 8741
13 86.89 83.18 86.97
14 : 87.64 80.35 85.13
15 87.22 82.08 86.23
16 88.99 79.27 83.93
17 89.92 80.60 83.20
18 89.98 81.95 82.28
19 88.07 79.53 82.31
20 . 90.86 80.95 82.09

The covariance matrix of the MLE’s for T and S was ap-
proximated by

2479 0.121

OMLE =

0.121 12x107°

which implies that the standard errors for T and S are /2479

> 50 m2/day and v/ 12x10™> = 0.00346, respectively.
OMLE I8 assumed to be well approximated by the inverse
of the Hessian matrix in Newton’s method evaluated at the
convergence values of T and S (see Rao, 1965).

SUMMARY AND CONCLUSIONS

A methodology for establishing the identification status of
the inverse problem in confined aquifer flow has been pre-
sented. It was shown that the structural equation of con-
fined flow is overidentified with respect to the parameters
forming the elements of the matrices ¥ and I', which govern
the flow equation. As a consequence of overidentification
there exists several statistically consistent methods for esti-
mating the elements of y and I'. Three linear estimation
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techniques (OLS, 2SLS, and 3SLS) and a nonlinear method
(MLE) were developed. The latter method yields directly
estimates for transmissivities and storavities, whereas the
former three methods estimate the elements of ¢ and T,
without solving for T and S.

The theoretical developments and applications of this
paper indicate that: (1) there do not exist unique estimators
for the elements of the matrices Y and I, due to the over-
identification condition; (2) OLS, despite having rather dis-
mal asymptotic properties (i.e., it is inconsistent) can pro-
vide easily computable and accurate parameter estimates;
(3) 3SLS, even though a system-equation (i.e., joint) method
of estimation, may fail to perform better than 2SLS, and
even OLS, in terms of the biases and standard error of esti-
mates for small-sample estimation with unknown covariance
matrix; and (4) MLE’s have proven to have smaller biases
and standard errors than OLS, 2SLS, and 3SLS, and Newton’s
method showed excellent (i.e., quadratic) convergence rates.
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TABLE 4. Estimated Parameters and Their Standard Errors (within parentheses).
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2

g

8, ]

3

Method 1 : 2 3 2 5 z
OLS 0.00602 0.38127 0.28066 0.33055 0.05062 :
(©.15866)  (0.26108)  (0.12402)  (0.12545)  (1.18355) g

2

25LS 0.20951 0.17321 0.20167 0.41625 0.011953 g
0.22599)  (0.30082)  (0.13421)  (0.13806)  (1.11600) :

ISLS 0.30610 0.10626 0.14631 0.44275 0.01187 £
©20372)  (0.27151)  (0.38881)  (0.12494)  (0.99991) ;

MLE ~0.09605 0.58946 0.30132 020527  —0.19868 g
(0.10598)  (1.28947)  (0.10598)  (0.00992) (0.08333) g

True Value 0.1 0.6 03 0.2 -0.2 g
8, ¢

Method 1 2 3 4 5 6 g
k3

OLS 0.01161 0.99511 0.30722 0.06045 —0.44081 0.17631 9
(0.34187)  (0.45344)  (0.35782)  (0.26436)  (0.51220)  (1.61547) :

s

25LS 0.13040 1.18940 0.18570 006526  —0.63059 0.12877 3
0.65685)  (0.84460)  (0.65150)  (0.33942)  (0.83776)  (2.05370) g

3SLS 0.06629 0.91494 0.27159 0.00944 ~0.32169 0.08448 z
0.39583)  (0.48521)  (0.39631)  (0.22490)  (0.52021)  (0.99452) g

g

MLE ~0.09605  —0.09605 0.30132 0.58946 030132  -0.22707 :
(0.10598)  (0.10598)  (0.10598)  (1.28947) (0.10598)  (1.39703) :

True Value -0.1 -0.1 0.3 0.6 03 -02 g
8, i

Method 1 2 3 4 5 5
2

oLS 033031  —0.11585 0.49058 029817  —0.03576 g
0.04666)  (0.05995)  (0.11202)  (0.06658)  (0.42951) :

25LS 0.24204 0.08264 0.31187 0.37296 0.011284 H
0.08676)  (0.10739)  (0.11406)  (0.07158)  (0.47727) s

3SLS 0.24120 0.06736 0.34495 0.35533 0.02644 E
0.12280)  (0.15447)  (0.16535)  (0.10424)  (0.01749) :

g

MLE ~0.09605 0.30132 0.58946 020527  -0.19868 B
(0.10598) (0.10598)  (1.28947)  (0.00992)  (0.08333) g

True Value -0.1 03 0.6 0.2 -02 R
>

s

§

2}

s

g

2

g

2

:

N

g

8



Piezometric Head (meters)
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88 TABLE 5. MLE of Matrix IL

[: R4 G

86 K 1 2 3

85 1 0.56552 0.24930 —0.02395
2 0.24930 0.54157 ~0.24930

84 3 ~0.02395 0.24930 0.56552
4 020720  —0.02009 0.00193

o3 5 0.00193 —0.02009 0.2072
6 ~0.20055 0.01944 —0.00187

o 7 ~0.00187 0.01944 ~0.20055
8 002222  -0.23133 0.02222

80

Note: II = —dl_ll".

TABLE 6. Synopsis of Newton’s Search,

79
18 Iteration f T S
S :9 |lo(d|l| 13 1e 5 18 17 18 15 20 ‘1’ 18;_5 Zgg g:gg;gg
ime (days) 2 92.5 441 0.00931
3 92.1 449 0.01019
. . 4 91.5 451 0.01045
Figure 2. Actual and Simulated Heads ( actual M 91.0 452 0.01050
heads; — — — @ = XR;...¢, = lx, (MLE).
f: negative log-likelihood,
T: transmissivity (m2/day).
S: storativity.
True values: T = 500 m2/day; S = 0.012.
0.018 |
0016 |
2 0014 }
2
©
1 9
(o]
o 0.012F
¥ 100 97 100
O.0I0 |
0.0081
- =4 F-" 1 | 1
300 350 400 450 500 550 600 650 700
Transmissivity (m?/day)
Figure 3. The Negative Log-Likelihood Function and Newton’s Search.
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NOTATION
A G x G matrix in the continuous-time groundwater flow equa-
tion,
B G x G matrix in the continuous-time groundwater flow equa-
tion.
C G x G matrix in the continuous-time groundwater equation;

the value of its characteristic roots determine the stability of
the continuous-time flow process.

ey G x 1 error term vector in the discretized groundwater equa-
tion.

F pumping rate.

F, G x 1 vector of inputs in the discretized groundwater flow
equation at time t.

f negative log-likelihood function,

G number of structural equations.

Gk Hessian matrix

GA number of nonzero structural parameters in matrix Y of any
sstructural equation,

j index to denote anyone of the structural equations, j = 1, 2,

.., G
K column dimension of the structural matrix I,
*

K number of nonzero parameters in matrix I" of any structural
equation,

L " likelihood function,

n number of time periods.

Py step vector in Newton’s method.

R KxG matnx of parameters in the multivariate regression of
heads (R = ITT ).

K x G estimator matrix of R,

A
R
R A , o o
Rj K x (G™-1) submatrix of R in the jth structural equation,
S storativity.

(

S D storativity within the ith element,

sij estimator of aij'

T transmissivity.

T transmissivity within the ith element.
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L=

time index, t=1,2,...,n.
G x 1 error vector in the discretized flow equation at time

n X 1 error term in the jth structural equation.

@o//sduu woJy greojumod ' ‘2861 ‘889TZGLT

1

n x G error matrix in the multivariate regression model

heads. %
n X G estimator for V. %
n X 1 error term in the transformed jth structural equat; 19n

of the 2SLS method.
nG x 1 error term in the 3SLS method.

n x K regression matrix in the multivariate regression mo
for heads

nx K regression submatrix in the jth structural equatxon

ooqx LSGI 889T- zg-t f/IIH'OI/!OP
LA

K x 1 vector of predetermined variables in the dmcretxzed

flow equation at time t. g
n X (G - 1+K ) regression matrix in the jth sMctuial
equation, Q
o
G A Z
nG x ( 2 Gj -1+ K ) regression matrix in the 3SES
=1 S
method, °
nXx (GA -1+K ) transformed regression matrix in the Jgh

structural equation of the 2SLS method.
step length factor in Newton’s method.

G

(2 (G -1+ K )) X 1 parameter vector in the 3SLS me
=1

od.

(GA -1+ K*) x 1 vector of parameters in the jth structu

equation,

G2~ 1 +K") x 1 estimator of § ; in the OLS method,

G2~ 1+K" x 1 estimator of 8; in the 2SLS method.

( (2; (GA -1+ K )) x 1 estimator of § in the 3SLS metho

=1

G x K matrix of structural parameters,
K x 1 vector of parameters (the jth row of the matrix I).Z

the ijth element of I,

ﬁqw\ uo (suo wpuoa puesw;aumoo-&ewﬂmq\puw |uo//:sdny) suonipuod E swe L eqlaesgfzoz/eo/os] uo Al

A

weighting factor in the discrete-time flow equation; = <n
2

parameter vector,

gﬂmqnauuuo

G x K matrix of parameters in the discrete-time flow eq
tion,

G x G covariance matrix of u ..

the ijth element of the covariance matrix X,

a&ap!m VO ‘8sn Josa|n. i

n x G matrix of piezometric heads in the multivariate regr
sion model,

n X (GA 1) matrix of piezometric heads in the jth stru
tural equation,

G x 1 vector of piezometric heads at time t,

G x 1 time derivative of vector @ ..
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H'-e.

n x 1 vector of piezometric heads in the jth structural equa-
tion.

G x G matrix of structural parameters.
the ijth element of .

€< €«

=

A
(Gj —1) x 1 vector of parameters (the jth row of the matrix

V).

covariance matrix of 2SLS estimator.

t—rne-

covariance matrix of 3SLS estimator,

LE covariance of MLE’s,

Acronyms:

z‘obl AN

ML maximum likelihood,
OSL  ordinary least squares.
2SLS  two-stage least squares.
3SLS three-stage least squares.
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