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WATER RESOURCES BULLETIN
VOL. 23, NO.4 AMERICAN WATER RESOURCES ASSOCIATION AUGUST 1987

SIMULTANEOUS EQUATION SYSTEMS: A CONSISTENT ESTIMATOR
FOR UNKNOWN PARAMETERS IN CONFINED AQUIFERS'

Hugo A. Loaiciga and Miguel A. Mariuio2

ABSTRACT: This paper presents criteria for establishing the identifi-
cation status of the inverse problem for confined aquifer flow. Three
linear estimation methods (ordinary least squares, two-stage least
squares, and three-stage least squares) and one nonlinear method
(maximum likelihood) are used to estimate the matrices of parameters
embedded in the partial differential equation characterizing confmed
flow. Computational experience indicates several advantages of maxi-
mum likelihood over the linear methods.
(KEY TERMS: parameter estimation; ordinary least squares; two- and
three-stage least squares; maximum likelihood; inverse problem; finite-
element method.)

INTRODUCTION

The estimation of transmissivities and storativities by
statistical and other numerical techniques has received sub-
stantial attention in recent years. The estimation of ground-
water parameters has been approached in a variety of ways,
ranging from generalized least squares to nonlinear program-
ming (see, e.g., Yeh, 1975; Cooley, 1977, 1979, 1982; Neu-
man and Yakowitz, 1979; Yakowitz and Duckstein, 1980;
Neuman, 1980; Yeh and Yoon, 1981; Yeh, et al., 1983;
Kitanidis and Vomvoris, 1983; Aboufirassi and Mari?io, 1984;
and Sadeghipour and Yeh, 1984). Previous studies on the in-
verse problem in ground-water flow point out the difficulties
stemming from the nonuniqueness and instability of param-
eter estimates (see, e.g., Yakowitz and Duckstein, 1980).

The objectives of this research are: (1) to develop criteria
to establish the identifiability status of the inverse problem
for confined ground-water flow; (2) to present three linear
methods to estimate the coefficient matrices that govern the
(discretized) ground-water flow equation; (3) to develop a
nonlinear (i.e., maximum likeithood, ML) method to estimate
directly transmissivities and storativities, as well as the coeffi-
cient matrices that govern the flow equation, and compare the
nonlinear method performance with those of the linear esti-
marion techniques; and (4) to establish the statistical proper-
ties of the linear and nonlinear estimation methods.

PROBLEM STATEMENT

Discretization of the Confined Aquifer Flow Equation
The equation of flow in a heterogeneous and isotropic

confined aquifer is

= S.- (1)
ax ax ax ay at

in which 0 denotes the piezometric head (units, L); T =T(x,y)
denotes transmissivity (units, L2T1); S = S(x,y) represents
storativity (dimensionless); and F denotes either a distributed
(units, LT1) or point (units, L3T) sink/source. Equa-
tion (1) can be discretized by the finite element method and
expressed as a linear first-order system of differential equa-
tions

A + B (2)

in which A is the conductance matrix; is the vector of un-
known heads in the flow domain (the dot indicates time
derivative); B is the capacity matrix; and F is a vector con-
taining boundary condition values as well as terms related to
the sink/source distribution. In Equation (2), only the sub-
set of unknown nodal heads is represented: known (i.e., pres-
cribed) nodal heads in the flow domain have been condensed
in typical fashion by the finite-element procedure. Equation
(2) can be rewritten as

= —BA—BF
=C+DF (3)

By letting the initial condition (0) = the system of dif-
ferential equations in Equation (3) has an analytical solution
for 0(t), which is given by

'Paper No. 86045 of the Water Resources Bulletin. Discussions are open until April 1, 1988.
2Respectively, Assistant Professor of Geological Sciences, Department of Geological Sciences, Wright State University, Dayton, Ohio 45435; and

Professor of Civil Engineering and Water Science, University of California, 119 Veihmeyer Hall (LAWR), Davis, California 95616.
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Loaiciga and Mari1o

(t) = etC +f e DF(r)drj (4)

(see, e.g., Polak and Wong, 1970, pp. 9.17). The matrix etC
in Equation (4) can be expressed as a function of t by the
method of interpolating polynomials (see, e.g., Gantmacher,
1959).

The continuous system of Equation (4) is discretized as
follows,

(fl— + tA) + [A(1—) —] ft_i + t = (5)

t = 1,2,.. .,n

in which 0 r 1; t is a time step; n is the number of
simulation periods; !-t includes the effect of boundary condi-
tions and sink/sources; and Ut is a white noise vector that
accounts for errors in measurements and modeling by Equa-
tion (1). It is assumed that

E(ut) =

T ( [açl
= ift=s

E(utu) = GXG

( 0 otherwise (7)

T T T= (t—i'-t) (11)

where the G x (K—G) matrix M and the K—G) x 1 vector
are determined by the nature of the boundary conditions
and the sink/source distribution over the flow domain.

The aquifer shown in Figure 1 is used as an illustrative

(6)
case for the applicability of Equation (8). By using linear
basis interpolation functions in the fmite element discretiza-
tion of Equation (1), one obtains

Element 1 Element

Figure 1. Confined Aquifer Subject to Time-Dependent Boundary Conditions and a Discharge (of units L3T1L1) at x = L/2.

542 WATER RESOURCES BULLETIN

System-Equation Notation

Equation (5) can be rewritten as

t + t = itt' Vt (8)

GXG GX1 GXK KX1 GX1

in which

(9)

r = Ml (10)

8(x-)F

(t)

L4 4 L4
2 Element 3 Element 4

L

 17521688, 1987, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/j.1752-1688.1987.tb00831.x by U

niversity O
f C

alifornia, W
iley O

nline L
ibrary on [30/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Simultaneous Equation Systems: A Consistent Estimator for Unknown Parameters in Confined Aquifers
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in which ' 1 — i; T(i) and sO) denote transmissivity and
storativity of the ith element, respectively; and 2 L/4,
where L is the total aquifer length.

= [i0—0 Ø2(t—1), Ø3(t—l); 0A' B' 0A' 0B' F]

(14)

in which F = F(t) + (1—)F(t—1) is the averaged sink

strength (see Figure 1); A = + (l—n)ØA(t—1); 0A
=

[ØA(t)
—

ØA(t_1)] /t; B and B are defined similarly.
From Equations (13) and (14) it can be seen that K = 8 and
G = 3. The dependence of the elements of ,(i and r (i.e.,

and 'yjj' respectively) on T(') and sO) (i = 1, 2, 3, 4) is
evident from Equations (12) and (13).

The purpose of this study is to obtain statistically con-
sistent (see, e.g., Rao, 1965, pp. 344-345) estimators of the
elements of the matrices ti and r which govern the equation
of flow and of the covariance matrix B (see Equation 7).
Such task is to be done via linear and nonlinear estimation.
The identifiability status of the inverse problem, as well as
the statistical properties of estimators are to be addressed
also, and Equation (8) constitutes the basic relationship for
the analysis.

IDENTIFICATION STATUS OF
THE INVERSE PROBLEM

Identification Criteria

The problem of identification is one of being able to
determine all the (nonzero) elements of the matrices i and
r, as well as the covariance matrix . Notice that we look
for estimators of 7ij' and Gj1 (i.e., the elements of the
matrices ,,i,, r, and , respectively).

By premultiplying Equation (8) by and solving for
one obtains

=

= 11t+_t,t=1,2,...,n (15)

in which E(ete) = r-l�(i/rl)T. As is shown subsequent-
ly, the G x K (full and unknown) matrix II can be estimated
consistently by ordinary least squares (OLS). The identifica-
tion problem can then be stated as follows: "given a con-
sistent estimator of II ( —,1—'r), is it possible to estimate
(consistently) ,I' and r, and if so, what are the properties of
estimators?" It is important to point out that if ,1i and 1'
can be estimated, then immediately one has all the informa-
tion required to simulate the discretized ground-water flow
Equation (8). The estimated covariance E is useful to deter-
mine the properties of the estimators for /i and r.

m
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Loaiciga and Marillb

From Equation (15)

II =_,— F

(GXK) (GXG) (GXK) (16)

Thus,

= —F (17)

The jth row (j=1, 2, . . . ,G) of Equation (17) can be written
as

(jl j2 'jG)11 = —(i 7j2 7JK)
(18)

The elements of the right- and left-hand side vectors of
Equation (18) can be rearranged so that their nonzero ele-
ments lead those that are equal to zero. The matrix H can
be conformally rearranged so that Equation (18) can be re-
written as

T T I11i*( 9-M I

[11&* HM**

in which and are the G x 1 and (G—G) X 1 sub-

vectors of nonzero and zero elements in the left-hand side
vector of Equation (19); and and are the K* x 1 and
(K—K ) x 1 subvectors of nonzero and zero elements of the
right-hand side vector of Equation (19). The submatrices

HM*, and HM** are of dimensions G x K*,

G x (K_K*), (G—G) x K, and (G—G) x (K_K*), respec-
tively, and correspond to a conformally rearranged matrix H
as required by the vector partition in Equation (19). Equa-
tion (19) leads to the following expressions,

T=

T T
*

(1XG') GX(K_K*) 1X(KK*)

In Equations (20) and (21), it is possible to divide both
sides by any of the (nonzero) elements of , so that one
of the elements of can be normalized to unity. Then,

there are (G—1) + K* unknown variables in the jth equa-
tion. If Equation (21) could be solved for 4, then *
would be immediately determined from Equation (20). From
basic matrix theory (Graybifi, 1983, pp. 149-178), it is
known that at least G' —1 equations are needed to solve for

in Equation (21). The vector has G — 1 unknown
elements since one of its elements can be normalized to
unity, as stated above. Therefore, it is required that

K_K*G_1 (22)

since there are K — K* columns in
Equation (22) is only a necessary condition for identi-

fiabifity, because even if it is satisfied, the columns of
may not be linearly independent. A necessary and sufficient
condition for the identification of and in the jth equa-
tion is that the number of linearly independent columns of
11 k 1 1ue equai LO .i — , i.e.,

rank(H**) = G — 1 (23)

To summarize, the identffication status of the jth equation

(see Equation 18), j = 1, 2, . . . , G, must belong to one of
the possible cases:

(1) IfK_K*>G_1andrank(H**)G_1,the
jth equation is overidentified. There are multiple ways of
estimating consistently 4 and.

(2) If K — K* =G —1 and rank(H**) = G— 1, there
exists exact identification. It is possible to solve uniquely
and consistently for and .

(3) If K — K* > G — 1 and rank(H*) <G —1, or
if K — K* <G —I, the equation is underidentified. In this
case, it is not possible to estimate consistently the param-
eters in 4p and . This is equivalent to saying that there
are more unknowns than there are (independent) equations
to estimate them.

It is known that for well-posed problems the finite ele-
ment method yields a matrix i,(' (see Equation 17) that is at
least tridiagonal (i.e., G 2). Notice also that in Equation
(21) the rank of must be equal to or less than G— 1.

Otherwise,. i.e., if rank = G, 4 would be a null
vector which contradicts the known fact that has at
least two nonzero elements.. Therefore, the condition given
by Equation (22) together with possibffities (1)—(3) cited
above cover all the feasible cases that can be encountered in
establishing the identification status for any of the G struc-
tural equations (18).

It is shown next that the problem of estimating i and F
in confined aquifer problems is most likely to be overidenti-
fled, so that there are different, but all consistent, methods
of estimating fr and F.

An Application of the Identifiability Criterion

The rank condition Equation (23) can be more easily

tested by using an equivalent expression, i.e.,

544 WATER RESOURCES BULLETIN

T. T= —(* Q) (19)

(1XG) (GxK*) (1XK*)

(20)

(21)
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Simultaneous Equation Systems: A Consistent Estimator for Unknown Parameters in Confined Aquifers

rank(fl) = rank( L'. ) — (G—G)

G—1 X G—G G—1 x K_K*

= G—l

nil

(ii12)
21

from which it is apparent that there are four equations and
two unknowns, t' 1 and 12• The elements 11n
are estimated consistently by ordinary least-squares (see
Equation 38 below); therefore, they are known quantities.
By dividing Equation (30) by so that the first element
is normalized to unity, and solving for 12 = 12' one
obtains

21 1111 fl22 12 + r'25 H + 1127 17
(fl2 fl2 +112 fl22i 22 25 27

(31)

Equation (31) is a consistent estimator for 1i (this is a
particular case of the general solution x = (A1A)1AT1
for overidentified equations Ax = y when ATA is full rank).
As will be shown subsequently, there are alternative methods
of estimating 'i2 consistently, that are computationally more
expedient than using Equation (31), and whose asymptotic
properties are easily established. In the sequel, the normalized
coefficients = and =

'yjj/lij will be respectively

represented by and 'Yij to simplify the notation, and from
the context it should be obvious whether the raw or nor-
malized coefficients are being used.

For the case of exact identification, i.e., K —K* = G' — 1

and rank(II) = G — 1, the parameter estimates are the
same (i.e., have the same numerical value) regardless of
whether single-equation or system-equation methods (des-
cribed below) are used in the estimation. This property is of
little practical relevance, because, as previously seen in the
identification sample, the inverse problem in ground water is
overidentified.

When there is a condition of underidentication, one can
set (G — 1) — r (r = rank(H**)) coefficients artibrarily and
solve for the remaining ones, which clearly leads to an in-
finite number of estimates, all of them inconsistent. Under-
identification is most likely nonexistent in the inverse prob-
lem for ground-water flow.

WATER RESOURCES BULLETIN

(24)

12 14 16
H H II
22 24 27I

= (0 0 0 0) (30)

i2 = —

in which and F are submatrices of 'Ji and F, respec-
tively, corresponding to the variables omitted from the jth
equation but included in all other rows of Equation (17).

The identifiability criteria implied by Equations (22) and
(24) is applied to the example aquifer of Figure 1, with i'
and F given by Equations (12) and (13). Choosing the first
row equation (j = 1), the following expressions are obtained,

( QL) = ('ii h,hh120) (25)

—(Q*) = —(7117127147160 0 0 0) (26)

1'ii '12 : 9
= '21 '22 l123 (27)

0 32:33
(the reordered r matrix)

7ii ''12 l4 16 0

= 21 22 0 0 • 23 0 0 1

0 32 0 0 733 735 737 0

(28)

and thus,

1'23 •23 0 0 i]
r,) = I (29)

: 733 735 737 0]

Equations (25)—(29) correspond to the first row (j = 1), and
similar expressions for the second (j = 2) and third (j = 3)
rows of Equation (17) (for the test aquifer of Figure 1) are
obtainable, leading to the identifiability status as summarized
in Table 1. The three equations are overidentified, meaning
that one can solve for the unknown elements and by
different, consistent, methods. For example, (or the first
row (j = 1), Equation (21) implies that

 17521688, 1987, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/j.1752-1688.1987.tb00831.x by U

niversity O
f C

alifornia, W
iley O

nline L
ibrary on [30/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Loaiciga and Maru

TABLE 1. Identifiability Status for Test Case.

•
Equation

j K K5 G G nk(iL' : f')
Condition

Order Rank Status

1 8 4 3 2 2 4 > 1 1=1 Overidentified

2 8 4 3 3 2 4 > 2 2=2 Overidentified

3 8 4 3 2 2 4 > 1 1=1 Overidentified

NOTES: (1) The order condition checks the inequality Equation (22).
(2) The rank condition checks the equality Equation (24).

THE TWO-STAGE LEAST-SQUARES METHOD (2SLS)

Development of the Method

In this section, the estimation of the elements of the
matrices t, and I' is done by operating on each of the row
(or structural) equations of the discretized flow Equation (8).
From the identification example of the previous section it is
understood that the row equations are overidentified (the
most likely scenario as argued above). It is shown above that
the 2SLS method is a single-equation technique, i.e., it
operates on a single structural equation (see, e.g., Equation
18), one-at-a-time. Equation (8) may be written for all time
periods at once, i.e.,

+r[x . ?n]
= [ui . . . Un] (32)

The system of Equation (32) contains G equations, each
equation corresponding to one of the rows of the matrix ,(i
(say the jth) times the matrix of the k's, plus the jth row of
r times the matrix of the x's being equal to the jth row
of the right-hand side of Equation (32). By choosing the
jth row equation, normalizing the iijj parameter to unity (by
dividing the entire jth equation by ',I'jj, an arbitrary choice),
and taking the transpose of the jth equation (so that the
parameters are ordered columnwise), one obtains

(33)

in which

=

=

T =

T
u = [u(l). .. ,u(n)] 1 n

In Equation (33), E(uu) = jj1rni' according to the as-
sumptions given in Equations (6)—(7). Also, notice that
matrices and Xj contain the variables associated with
nonzero coefficients, thus, their respective column dimen-
sions are G — 1 and K* (see Equation 21).

Equation (33) can be written in the usual linear-model
form,

=
ZJ+uJ (34)

where Z = [(Ij Xji and = [4 The regression
model of Equation (34) may be solved by the standard or-
dinary least-squares (OLS) estimator, i.e.,

T I=
(Z Z) Z1 (35)

One inconvenience, however, is that the columns of Z in
Equation (34) are correlated with the error term in the
same equation, and such correlation follows from the defini-
tion of the matrix above. Therefore, the OLS estimator
of Equation (35) is inconsistent due to such correlation. It

546 WATER RESOURCES BULLETIN

=

xi

0j—1(1) j+1(1) .

i()• ..j_1(n)øj+l(n)..

x(l) x2(1) . . . XK*(l)

xi(2) x2(2). . . XK*(2)

x(n) x2(n). . .XK*(fl)

n x K*

nx(G'—l)

 17521688, 1987, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/j.1752-1688.1987.tb00831.x by U

niversity O
f C

alifornia, W
iley O

nline L
ibrary on [30/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Simultaneous Equation Systems: A Consistent Estimator for Unknown Parameters in Confined Aquifers

is possible to transform Equation (34) to make the (trans- Finally, Equation (33) can be transformed to
formed) matrix Z1 asymptotically uncorrelated with the error A

term u. By taking the transpose of Equation (32), = — V] 4 + Xj; + ( + V3k)

Fl I Ti IT1lxi I ILiI A

L TJ (36)
=[X][J]+wJ

A

I T I I T I I T I = Z + w (44)

L I 1'] LJ A

or in compact form, after postmultiplying by (T)_1
Since —

Vj and u + Vj j ( w) are asymptotically un-

correlated (i.e., the probability limit of — Vj converges to
X Rj which is with w.), (.j can be estimated

4) = X[_fT(,TYh] + V = X R + V consistently by OLS in Equation (44). "The OLS method
(nXG) (nXK) (KXG) (nXG) applied to Equation (44) yields

(37)
= (Fzy Z (45)

The matrix R in Equation (37) is estimated by the follow-
ing multivariate regression, It is shown in the next subsection that is a consistent esti-

= (X'X)X'' 4) (38)
mator of j. Notice that the computation of 13,j involves
first the construction of Z through the regression estimator

A A

in which R denotes an estimator for R. Let Rj be the follow- X R (see Equation 44) and as a second step, the regression

ing submatrix of R, of Equation (45) is carried on, hence its name 2SLS.

Rj [.. . Lj_i 'L+i' . . - ,rGt] (39) Asymptotic Properties of the 2SLS Estimator

From classical multivariate theory, the asymptotic co-
A A variance of j3, is approximated by
Rj equals the matrix R with its jth column suppressed. It
follows from Equation (37) that

= (Z Zi1 (46)

4)—V=XR (40)
in which jj is the estimator of i.e.,

Since the matrix of disturbances V is unobservable, one can
approximate the left-hand side of Equation (40) by (Z..)T

@7)=

—G—1+K*)@1)
A

in which V is the matrix of residuals obtained from the multi- From the linear dependence of on j, see Equation (45),
variate regression in Equation (38), i.e., large sample theory of OLS (see, e.g., Rao, 1965), the

V = 4) — XR (42) asymptotic distribution of /i(j —
Pj) is

From Equation (41) it is clear that by deleting the jth
column, [ii ( _)—3N(Q a plim[n ZZ]_i) (48)

—
Vi

= X 43) i.e., it is multivariate normal with zero mean and a limiting
(asymptotic) covariance by the covariance in Equation (48).
The consistency of and of sj,j has been established by Theil
(1971).

547 WATER RESOURCES BULLETIN
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Loaiciga and Marii

The 2SLS method is applied to each ofthej (j=l,2,. . . ,G)
structural equations (see, e.g., Equation 33) one-at-a-time, to
estimate the entire set of parameters 'ki and 'yi, Vij. Notice
that in deriving the 2SLS estimator the coefficient frjj was
normalized to 1. Clearly, any of the itIjj's in the jth structural
equation could have been chosen for normalization. In
general, the 2SLS estimator ( changes as one changes the
normalized parameter and, in this sense, the method is not
invariant with respect to normalization. However, the statis-
tical properties of the estimators remain the same regardless
of the normalization choice.

THE THREE-STATE LEAST
SQUARES METHOD (3SLS)

Development of the Method

It is possible to write the G structural equations (see
Equation 44) in a single expression, i.e.,

in which and w are both of dimension nG x 1; is of di-
G * *

mension [ . (G — 1 + I()] x 1, in which G andK

are the number of nonzero parameters in the jth row f the
Li and f' matrices, respectively (see Equation 19); and Z is
dimensioned conformally

The vector of coefficients in Equation (50) is esti-
mated by the generalized least-squares regression,

= [Z" (_løInn)] —1 [ZT 1i)J . (51)

in which =
['nnJnGxnG is the Kronecker pro-

duct of the inverse of the covariance matrix and the iden-
tity matrix I E®Inn is the covariance matrix in
Equation (50). The elements of (denoted as s1J) are
obtained by inverting =

[sj]GXG' in which is obtained
from the 2SLS method, i.e.,

( — z-f( (52)

n_max[G_1+Kj',Gf'i]

The main idea behind the point extimation of the 3SLS is
a gain in asymptotic efficiency relative to single-equation
methods of estimation such as the 2SLS. The implementation
of the 3SLS method requires that the number of observa-
tions, n, be larger than the number of equations, G, to avoid
the singularity of the covariance matrix ®Inn. Since in
Equation (51) is computed based on the 2SLS estimators Sjj
(see Equation 52), it is required to first obtain 2SLS estima-
tors (a two-step process), and subsequently the generalized
least-squares (GLS) estimator of Equation (51). The 3SLS
method derives its name from this sequence of steps (2SLS
first, GLS second).

Asymptotic Properties of the 3SLS Estimator

From the expression for in Equation (51), it follows
that the asymptotic covariance of is approximated by

= [2T(_1®I)2]_1 (53)

From large sample theory for linear least-squares estimators,
the asymptotic distribution for

/jj (— ) - N(O, plim[n_1ZT (®Iun)] —1 (54)

from which the consistency of is readily established (Theil,
1971).

MAXIMUM LIKELIHOOD ESTIMATION (MLE)

The Negative Log-Likelihood Function

In this section, a nonlinear method for estimating directly
transmissivities and storavities is developed. The unknown
parameters T(1)'s and s(O' are stored in a q x 1 vector of
parameters 0, whose component, for the sake of simplicity,
are denoted as O, i1 ,2,. . ., q. The maximum likelihood
(ML) method is based on the likelihood function associated
with Equation (8). Assuming that Vt, is a normal white-
noise sequence, and that is a fixed vector of exogenous
variables in Equation (8), the likelihood function for the
left-hand side of Equation (8) is given by

n
Id '2 nL = 1—n, exp——
(27T)nGI2

( 2 t=1

(55)
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sij =

-.

0 Z2...O
= +

0 0 . -. ZG

or in compact notation,

= 2+w (50)

 17521688, 1987, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/j.1752-1688.1987.tb00831.x by U

niversity O
f C

alifornia, W
iley O

nline L
ibrary on [30/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Simultaneous Equation Systems: A Consistent Estimator for Unknown Parameters in Confined Aquifers

For estimation purposes, it is convenient to take the natural
logarithm of Equation (55), multiply the resulting expression
by —1, to obtain the following function

fk+11 lnIEI —nln h/il +1 tr[H(iA1T
2 2

+ i/iA2 rT + lAT + rA3rT)] (56)

in which

k= ll-ln(2ir)

T
A1 =

T
A2 =

n TA = x x
-) t=1 —'—

It is convenient to simplify Equation (56) by differentiating
it with respect to and solving for to obtain

=1 E(A1T+A2rT+rAT+rA3rT)] (57)

in which the following matrix derivatives were used,

and

diniPI = (pT)_1 (IPI>0)
dP

d tr (QPM) = QTMT (59)
dP

in which Q, P, and M are conformable and square matrices.
By substituting Equation (57) into Equation (56), one ob-
tains

f = c+ lnl±H—nlnhij'I (60)

2
in which c = k + . The negative log-likelihood f depends

on the parameter vector 0, since the elements of E and i
are functions of 0. The objective is to minimize f with re-
spect to 0 to find the ML estimator of transmissivities and
storativities.

Mini,nization of the Negative Log-Likelihood Function

Newton's method has been chosen for the rinimization
of Equation (60). The method requires an initial estimate of
O (i.e., Oo). At the kth iteration, while thesearch is at
point Qk' Newton's method finds the step vector, ak, such
that the function in Equation (60) evaluated at the next
search point 0k + Pk is minimized. By taking a second-
order Taylor expansion of f about -k one obtains

+ a-k) (-k) + Vfk + I p Gk ak (61)

in which VLk and Gk are the gradient and Hessian (matrix
of second derivatives of f evaluated at 0k• By applying the
necessary conditions in Equation (61) to find the minimizing
step vector 2-k' it is found that

= — Gj Vfk (62)

and the next search point is given by

= + akpk (63)

in which o is a scale factor (0 < a 1) introduced to
avoid "overshooting" in the search for a minimum. In well-
behaved functions, a = 1; otherwise, having found fl-k'

+ akflk) is minimized with respect to ak to obtain the
appropriate scale factor.

The implementation of Newton's method requires the
evaluation of the gradient and Hessian of f about The

elements of the gradient of fare given by f/O1, i1, 2,.. . ,q.
The elements of the Hessian matrix are obtained from

2c
Vij. The following matrix results are useful for ex-

aoao
pressing analytically both the Hessian and the gradient.

a hi IP I = tr[P4 -f—] (64)
ao ao

ap1 = —P .—P—1 (65)
ao ao

a2InIPI 2n
________ = tr[—P1 --- + P1 (66)

ao ao
1 1

in which P is a square nonsingular matrix with I P I> 0, and
whose elements are functions of the parameter vector 0.
Clearly, P will be either i or when computing Vfk and/or

Gk.
For well-behaved convex functions, the convergence of

Newton's method is quadratic, which makes it an exception.
ally attractive algorithm, and Newton's method is often

549 WATER RESOURCES BULLETIN
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Loaiciga and ManiTo

regarded as the standard against which other algorithms are
measured.

Properties of the ML Estimators

For reasonably large sample sizes, MLE's have all the de-
sirable properties of estimators, i.e., consistency, asymptotic
normality, and efficiency (see, e.g., Bickel and Doksum, 1977;
Lehmann, 1983). The variance-covariance matrix of MLE's
can be approximated by the inverse of the Hessian matrix
(see, e.g., Rao, 1965), and in particular, standard errors of
estimators are estimated by taking the square root of the
diagonal elements of the inverted Hessian. A remarkable pro-
perty of the negative log-likelihood function is its convexity
for the case of exponential distribution functions (among
them the normal distribution).

APPLICATION OF METHODOLOGIES

Estimation of ' and I
The estimation experiment was based on piezometric heads

generated by the continuous-time solution Equation (4) which
were corrupted with a white noise sequence. Relevant data
are given in Table 2. The heads -2o are shown
in Table 3. The elements of the matrices J# and r that govern
the flow equation (see Equation 15) were estimated by OLS,
2SLS, 3SLS, and maximum likelihood, and are shown in
Table 4. Clearly, MLE's show smaller biases for all of the
estimated elements than those exhibited by any of the other
methods. The standard errors of MLE's are noticeably smaller
also, except for the second element of , the fourth and
sixth elements of 2' and the third element of . The rela-
tive merits of the OLS, 2SLS, and 3SLS are not as conclusive
as those of MLE's. OLS appears to provide a better approxi-
mation of the parameters than do 2SLS and 3SLS. In con-
trast, 2SLS tends to present in general smaller standard errors
than OLS and 3SLS, with the latter yielding larger biases and
standard errors than the other three estimation methods. In-
terestingly, 3SLS should in theory provide a gain in efficiency
(i.e., reduction in the standard error of estimators) due to
its unique joint estimation feature. However, such efficiency
gain is effective under the condition of a known covariance
E, which is not the case in this study. As a consequence
of the due estimation of , as well as to the small-sample
size nature of the problem, the asymptotic gain of 3SLS does
not materialize, and in this study the method trails in per-
formance the more easily implementable OLS and 2SLS, not
to mention MLE's.

Figure 2 shows actual heads (see Table 3), simulated
heads =X ft (see Equations 37 and 38) and t =
in which (, and 1' are obtained from the MLE's estimates of
',t' and r. The MLE of II = —rlr is shown in Table 5.
Notice that X contains the actual lagged variables -l'

(follows from Equation 11), and this allows the
estimated heads to follow the overall pattern of the actual

heads with an underestimation of actual high values, and an
overestimation of low heads. In contrast, the MLE's =

flxt, Vt, are generated recursively, starting with -l
followed by 2 = flx1, and so forth. Therefore, the MLE's
of heads forecast or predict the expected values (E(t) =

11-t Vt) or average levels of the actual heads, as is evident
from Figure 2.

TABLE 2. Data for the Example Aquifer.

Element Transmissivity Storativity Length
i T S

1 500 m2/d 12 x 10 500 m

2 500 m2/d 12 x 10 500 m

3 500 m2/d 12 x 1O3 500 m

4 500 m2/d 12 x 1O3 500 m

Matrix A (Equation 2) Matrix B (Equation 2)

12 —1 01 1 1 01
A I_i 2 —1 ImI B 1 4 1 Im

10 —1 2J 10 1 4]
Vector F (Equation (2)

: : :
0—1 0 1 0

= 80 + t, m A = 1, mId

= 100 — t, m B —1, m/d
F = 10,m3/m/d

Direct Estimates ofAquifer Parameters

The method of maximum likelihood yields direct estimates
of transmissivity (1) and storavity (S), which without loss of
generality are assumed to be constant in this study. Upon
estimation of T and S, the matrices 'I' and 1' are readily
computed via Equations (12) and (13), respectively. Newton's
method was initialized at the values T= 250 m2/da1 and S =
0.007, with the actual (true) values being 500 m2/day and
0.012 for T and S, respectively (see Table 2). Figure 3
shows a contour plot of the negative log-likelihood function.
It is a convex function with a relatively flat surface around
the convergence values, T* = 452 m2/day and S* = 0.0105.
Table 6 contains a summary of the convergence path of
Newton's method. Points 0.1-2.3-4-5 in Figure 3 show the

550 WATER RESOURCES BULLETIN
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Simultaneous Equation Systems: A Consistent Estimator for Unknown Parameters in Confmed Aquifers

search path of Newton's method. The method was tested
with other initial estimates of T and S and converged (quad-
ratically) to the same unique global optimum in all cases.

Tune
t

Node

1 2 3

1 84.15 87.69 93.72
2 85.35 84.35 93.69
3 84.98 85.78 93.42
4 84.28 85.53 93.54
5 84.68 85.39 93.16
6 84.86 83.56 92.18
7 85.98 82.80 90.28
8 85.17 • 83.18 89.92
9 84.31 82.92 89.02

10 85.13 85.24 88.70
11 87.69 79.95 86.39
12 86.09 84.11 87.41
13 86.89 83.18 86.97
14 • 87.64 80.35 85.13
15 87.22 82.08 86.23
16 88.99 79.27 83.93
17 89.92 80.60 83.20
18 89.98 81.95 82.28
19 88.07 79.53 82.31
20 90.86 80.95 82.09

2479 0.121

MLE
0.121 1.2x105

SUMMARY AND CONCLUSIONS

A methodology for establishing the identification status of
the inverse problem in confmed aquifer flow has been pre-
sented. It was shown that the structural equation of con-
fined flow is overidentified with respect to the parameters
forming the elements of the matrices ' and 1', which govern
the flow equation. As a consequence of ovendentification
there exists several statistically consistent methods for esti-
mating the elements of i' and F. Three linear estimation

techniques (OLS, 2SLS, and 3SLS) and a nonlinear method
(MLE) were developed. The latter method yields directly
estimates for transmissivities and storavities, whereas the
former three methods estimate the elements of ' and 1',
without solving for T and S.

The theoretical developments and applications of this
paper indicate that: (1) there do not exist unique estimators
for the elements of the matrices ti and F, due to the over-
identification condition; (2) OLS, despite having rather dis-
mal asymptotic properties (i.e., it is inconsistent) can pro-
vide easily computable and accurate parameter estimates;
(3) 3SLS, even though a system-equation (i.e., joint) method
of estimation, may fail to perform better than 2SLS, and
even OLS, in terms of the biases and standard error of esti-
mates for small-sample estimation with unknown covariance
matrix; and (4) MLE's have proven to have smaller biases
and standard errors than OLS, 2SLS, and 3SLS, and Newton's
method showed excellent (i.e., quadratic) convergence rates.
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The covariance matrix of the MLE's for T and S was ap-
proximated by

which implies that the standard errors for T and S are

50 m2/day and '1 1.2x105 = 0.00346, respectively.
MLE is assumed to be well approximated by the inverse
of the Hessian matrix in Newton's method evaluated at the
convergence values of T and S (see Rao, 1965).
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Loaiciga and Mariiro

TABLE 4. Estimated Parameters and Their Standard Errors (within parentheses).

p.1

552 WATER RESOURCES BULLETIN

Method 1 2 3 4 5

OLS 0.00602
(0.15866)

0.38127
(0.26108)

0.28066
(0.12402)

0.33055
(0.12545)

0.05062
(1.18355)

2SLS 0.20951
(0.22599)

0.17321
(0.30082)

0.20167
(0.13421)

0.41625
(0.13806)

0.011953
(1.11600)

3SLS 0.30610
(0.20372)

0.10626
(0.27151)

0.14631
(0.38881)

0.44275
(0.12494)

0.01187
(0.99991)

MLE —0.09605
(0.10598)

0.58946
(1.28947)

0.30132
(0.10598)

0.20527
(0.00992)

—0.19868
(0.08333)

True Value —0.1 0.6 0.3 0.2 —0.2

Method

P.2

1 2 3 4 5 6

OLS 0.01161
(0.34187)

0.99511
(0.45344)

0.30722
(0.35782)

0.06045
(0.26436)

—0.44081
(0.51220)

0.17631
(1.61547)

2SLS 0.13040
(0.65685)

1.18940
(0.84460)

0.18570
(0.65150)

0.06526
(0.33942)

—0.63059
(0.83776)

0.12877
(2.05370)

3SLS 0.06629
(0.39583)

0.91494
(0.48521)

0.27159
(0.39631)

0.00944
(0.22490)

—0.32169
(0.52021)

0.08448
(0.99452)

• MLE —0.09605
(0.10598)

—0.09605
(0.10598)

0.30132
(0.10598)

0.58946
(1.28947)

0.30132
(0.10598)

—0.22707
(1.39703)

True Value —0.1 —0.1 0.3 0.6 0.3 —0.2

Method 1 2

p.3

3 4 5

OLS 0.33031
(0.04666)

—0.11585
(0.05995)

0.49058
(0.11202)

0.29817
(0.06658)

—0.03576
(0.42951)

2SLS 0.24204
(0.08676)

0.08264
(0.10739)

0.31 187
(0.1 1406)

0.37296
(0.07158)

0.011284
(0.47727)

3SLS 0.24120
(0.12280)

0.06736
(0.15447)

0.34495
(0.16535)

0.35533
(0.10424)

0.02644
(0.01749)

MLE —0.09605
(0.10598)

0.30132
(0.10598)

0.58946
(1.28947)

0.20527
(0.00992)

—0.19868
(0.08333)

True Value —0.1 0.3 0.6 0.2 —0.2
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Simultaneous Equation Systems: A Consistent Estimator for Unknown Parameters in Confined Aquifers

0'
0)
4,
E
V0
4,

0
4
E0
0,
0.

Figure 2. Actual and Simulated Heads ( actual

heads; — — — = XR;. • = t (MLE)).

TABLE 5. MLE of Matrix H.

G

IC 1 2 3

1 0.56552 0.24930 —0.02395
2 0.24930 0.54 157 —0.24930
3 —0.02395 0.24930 0.56552
4 0.20720 —0.02009 0.00193
5 0.00193 —0.02009 0.2072
6 —0.20055 0.01944 —0.00187
7 —0.00187 0.01944 —0.20055
8 0.02222 —0.23133 0.02222

Note: H =

TABLE 6. Synopsis of Newton's Search.

Iteration f T S

0 101 250 0.00700
1 94.5 432 0.00787
2 92.5 441 0.00931
3 92.1 449 0.01019
4 91.5 451 0.01045
5 91.0 452 0.01050

f: negative log-likelihood.
T: transmissivity (m2/day).
S: storativity.
True values: T = 500 m2/day; S = 0.012.

4-
>
4-a
04,-
U)

Transmissivity (m 2, day)

Figure 3. The Negative Log-Likelihood Function and Newton's Seaxch.
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Rao, C. R., 1965. Linear Statistical Inference and Its Applications. t time index, t = 1, 2. n.
Wiley, New York, New York. G x 1 error vector in the discretized flow equation at time t.

Sadeghipour, J. and W. W-G. Yeh, 1984. Parameter Identification of
Groundwater Aquifer Models: A Generalized Least Squares Ap- n x 1 error term in the jth structural equation.
proach. Water Resources Research 20(7) :971-979.

V n X G error matrix in the multivaiiate regression model forTheil, H., 1971. Principles of Econometrics. Wiley, New York, New
heads.York. A

Yakowitz, S. and L. Duckstein, 1980. Instability in Aquifer Identifi- V n X G estimator for V.
cation: Theory and Case Studies. Water Resources Research 16(6): w n x 1 error term in the transformed jth structural equation
1045-1064. —J of the 2SLS method.

Yeh, W. W-G., 1975. Aquifer Parameter Identification. J. Hydraulics
Div., Am. Soc. Civil Eng. 101(HY9):1197-1209. nG x 1 error term in the 3SLS method.

Yeh, W. W-G. and Y. S. Yoon, 1981. Aquifer Parameter Identifica- X n x K regression matrix in the multivariate regression model
tion with Optimum Dimension in Parametrization. Water Re- for heads.
sources Research 17(3):664-672. *

n X K regression submatrix in the jth structural equation.Yeh, W. W-G., Y. S. Yoon, and K. S. Lee, 1983. Aquifer Parameter
Identification with Kriging and Optimum Parametrization. Water K x 1 vector of predetermined variables in the discretized
Resources Research 19(1):225-233. flow equation at time t.

Z. n x (G — 1 + K') regression matrix in the jth structural
NOTATION equation.

G *A G X G matrix in the continuous-time groundwater flow equa- Z nG x ( E G — 1 + K) regression matrix in the 3SLS
tion. j=1

method.B G X G matrix in the continuous-time groundwater flow equa-
tion. Z. n x (G — 1 + K*) transformed regression matrix in the jth

C G X G matrix in the continuous-time groundwater equation; structural equation of the 2SLS method.
the value of its characteristic roots determine the stability of a step length factor in Newton's method.the continuous-time flow process.

GG X 1 error term vector in the discretized groundwater equa- ( (G — 1 + K)) x 1 parameter vector in the 3SLS meth-
tion. j1

od.F pumping rate.

G x 1 vector of inputs in the discretized groundwater flow ( (G — 1 + K') X 1 vector of parameters in the jth structural
equation at time t. equation.

f negative log-likelihood function. (G — 1 + K*) x 1 estimator of in the OLS method.
G number of structural equations.

(G — 1 + K*) x 1 estimator of in the 2SLS method.
Gk Hessian matrix

G
G' number of nonzero structural parameters in matrix (iof ( (G — 1 +

K*)) x 1 estimator of in the 3SLS method.
any

stiuctural equation.

index to denote anyone of the structural equations, j 1, 2, F G x K matrix of structural parameters.
*

K x 1 vector of parameters (the jth row of the matrix F).
K column dimension of the structural matrix F.* the ijth element of r.
K number of nonzero parameters in matrix Fof any structural

equation.
1? weighting factor in the discrete-time flow equation; 117 1.

L likelihood function. 2
k parameter vector.n number of time periods.
II G x K matrix of parameters in the discrete-time flow equa-

2-k step vector in Newton's method.
tion.

R K X G matrix of parameters in the multivariate regression of
heads (R = fiT) G x G covariance matrix of u.

R K X G estimator matrix of R. o. the ijth element of the covaiiance matrix E.

R K X (G&1) submatrix of R in the jth structural equation. CL, n x G matrix of piezometric heads in the multivariate regres-
sion modeL

S storativity. x (G—1) matrix of piezometric heads in the jth struc-
s storativity within the ith element. tural equation.

estimator of a. G x 1 vector of piezometric heads at time t.

T transmissivity. G X 1 time derivative of vector

T(1) transmissivity within the ith element.
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Simultaneous Equation Systems: A Consistent Estimator for Unknown Parameters in Confined Aquifers

n x 1 vector of piezometric heads in the jth structural equa-
tion.

G x G matrix of structural parameters.

the ijth element of I.

(G —1) x 1 vector of parameters (the jth row of the matrix

covariance matrix of 2SLS estimator.

covariance matrix of 3SLS estimator.

1MLE covariance of MLE's.

Acronyms:

ML maximum likelihood.

OSL ordinary least squares.

2SLS two-stage least squares.

3SLS three-stage least squares.
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