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Abstract

In some tasks (e.g., assigning meanings to ambiguous words)
humans produce multiple distinct alternatives in response to a
particular stimulus, apparently murroring the environmental
probabilities associated with each alternative. For this purpose,
a network architecture is needed that can produce a distribu-
tion of outcomes, and a learning algorithm is needed that can
lead to the discovery of ensembles of connection weights that
reproduce the environmentally specified probabilities. Sto-
chastic symmetric networks such as Boltzmann machines and
networks that use graded activations perturbed with Gaussian
noise can exhibit such distributions at equilibrium, and they
can be trained to match environmentally specified probabilities
using Contrastive Hebbian Leaning, the generalized form of
the Boltzmann Learning algorithm. Leaming distributions
exacts a considerable computational cost as processing time is
used both in settling to equilibrium and in sampling equilib-
rium statistics. The work presented here examines the extent
of this cost and how it may be minimized, and produces speed-
ups of roughly a factor of 5 compared to previously published
results.

In recent years, we have gained an understanding both of the
power and of the limitations of the backpropagation learning
algorithm (MacKay, 1992; Rumelhart, Durbin, Golden, and
Chauvin, in press.) Backpropagation finds a set of weights
W such that when given some input X;, the network will pro-
duce an output y; that minimizes some measure of the differ-
ence between the network’s output and the desired output d;
(often construed as the “environment”). The relationship
between x; and d; may be stochastic, and d; may have a wide
range of distributions, but the network’s task is deterministic.
If, given the shape of d;, the appropriate activation functions
and error measures are used, the minimum value of the error
measure is obtained when y; is equal to the expected value
of d;. This expected value is essentially a deterministic func-
tion of the input. In some cases, such expected values may be
sufficient, but for the purpose of modeling human perfor-
mance, or for the purpose of adequately characterizing a
wide range of input-output functions, the expected values of
the individual output values have serious limitations (see
Movellan and McClelland, 1993 for discussion). As one
example, if we ask human subjects to generate definitions of
polysemous words such as bank on a number of different
occasions, subjects will come up with different meanings,
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and each meaning will have a frequency approximately
equal to its frequency of use. Adopting as we do a parallel-
distributed processing perspective on the nature of the repre-
sentations used, we assume that each meaning corresponds
to a distributed pattern of activation over a population of
units. The fact that people produce a number of different
meanings suggests that the population settles to a number of
different pattems, rather than simply to the pattern that repre-
sents the expected value of each unit involved in the repre-
sentation. While this behavior can be accounted for either by
truly stochastic processing or by effectively random contex-
tual influences, capturing the distribution of patterns rather
than their expected values is key.

Recently, some progress has been made into this problem.
Movellan and McClelland (1993) studied a class of networks
known as symmetric diffusion nets (SDNs) and were able to
demonstrate the ability to learn to produce distinct output
patterns with probabilities corresponding to their relative fre-
quency in the training environment. SDNs are similar to
Boltzmann machines in that they make use of symmetrical
connections, but differ in that the units use continuous-val-
ued activations perturbed by Gaussian noise:

A a; = M(net,—nét;) + 0JAZ; (EQ1)

Here A is a time constant, net; is the net input (aTw). Z;isa
standard independent random Gaussian variable, o controls
the amount of noise, and nér; is a scaled version of the
inverse (generalized) logistic function given by:

1 a, — min
nét; = — log( J
gain; max—a,

where max and min bound the activation values. In the
absence of noise the activations settle to values equal to the
generalized logistic of the net input; in the presence of noise
activations are subject to perturbations both during settling
and at equilibrium; at equilibrium the probability of finding
the network in a particular state is proportional to the expo-
nential of the Goodness of the state (see Movellan and
McClelland, 1993, for details).

Both Boltzmann machines and SDN's can be trained to
reproduce desired distributions of output states using what
Galland and Hinton (1989) call the ‘Contrastive Hebbian
Learning Algorithm’ (CHL). CHL is the general version of

(EQ2)
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Figure 1: Figure 1: Architecture and I/O patterns used in Movellan and McClelland’s (1993) translation problem

the Boltzmann algonthm; the network 1s run in two phases, a
minus phase in which only input units are clamped, and a
plus phase in which input and output units are clamped.
Weights are adjusted according to:

i = = (E,q(a,a) - Eaa)) (EQ3)

Aw
iy o

where ¢ is the learning rate parameter, © is the standard devi-
ation of the noise, a; and g; are the activations of units / and j,
x is the vector of inputs, y is the vector of outputs, Ezz4() is
the expected value calculated during the plus phase, and Ex()
is the expected value calculated in the minus phase. In prac-
tice the expected values are estimated by settling repeatedly
to equilibrium in each phase and averaging a sample the rel-
evant co-products collected at equilibrium.

The Contrastive Hebbian algorithm, when used with either
type of stochastic, symmetric network, minimizes a quantity
known as the information gain (1G). In the present paper, we
are concerned with the problem of learning to settle to one of
a small number of discrete alternatives. For this case, either
the Bolzmann machine or the SDN can in principle be used.
Here we focus on the SDN, in part because its use of graded
activations appears to capture a key aspect of human infor-
mation processing (McClelland, 1993), which is our ultimate
concern. For the case of discrete alternatives, the information
gain becomes:

IG = Y Pyln
alts
Where the state of the output units is considered to be equiv-
alent to the desired state if the activation of each output unit
it within some tolerance of the value specified in the desired
output pattern. The quantity shown in Equation 4 is mea-
sured separately for each input pattern; the sum over all
inputs is called the Toral Information Gain (TIG).

A key property of CHL is the fact that the network’s posi-
tion on the error surface (and therefore the current TIG and
Aw) must be determined by a process of sampling. Sampling
can be thought of as producing estimates of the true TIG and

Pra®)

.00 (EQ4)
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Aw. This has two implications. First, if we use an estimate of
TIG as a measure of performance, we must keep in mind that
it is an estimate of performance and thereby limited in its
accuracy to the expected variance in the estimate. Second, in
order to generate a estimated Aw vector that accurately dem-
onstrates the error gradient, we need an adequate sample of
the gradient. Not only must the network go through a settling
process, but the process must be extended and repeated sev-
eral times to generate accurate statistics. For example, M&M
use a small ‘translation’ problem, described below. In this
simulation, they used twenty settles of a hundred cycles (50
of settling to equilibrium and 50 for calculating statistics) per
input pattern per phase per epoch, for a total of 48,000
updates of the entire network’s activation in a single epoch.

If these values represent what is actually needed to learn
probability distributions, this seriously limits the appeal of
CHL, both from the point of view of tractability and from the
point of view of psychological plausibility. From a psycho-
logical point of view one assumes that information process-
ing involves some settling, but the suggestion that a fairly
large number of separate repeats of the settling process is
needed to estimate the direction of the gradient is somewhat
troubling: it effectively amounts to a dramatic increase in the
number of passes through of the training environment that
are required for leaming. For many problems, back propaga-
tion is surely already slow enough!

The work presented here was motivated by the desire to
apply CHL to psychological problems in which humans do
select one of a number of distinct alternatives. For CHL to be
a viable learning algorithm for such problems, an under-
standing of which parameters have the largest effect on
learning speed is vital. This paper reflects several steps we
have taken toward developing such an understanding. We
use the M&M’s translation problem to examine the role of
the number of repeat settles, the amount of noise in process-
ing as well as in the units’ initial activations, and the number
of cycles per settle with the aim of optimizing the algorithm
for use in connectionist modeling. We find that considerable
optimization is possible when this is done, and that simula-
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Figure 2: Effect of the number of settles on training time. Figure 2A shows the total information gain as a function of epochs
of training for a typical network in the baseline condition. Figure 2B shows the same network trained with 6 as opposed to
20 settles per pattern per epoch. Note that while noisier, the shape of the curve is identical. Figure 2C demonstrates that during
initial training, the source of this noise is primarily in the estimate of the current TIG not in the learning itself.

tions of the complexity required by psychological models
become possible.

The Translation Problem

The main simulations presented here used M&M's transla-
tion problem, designed to test an algorithm’s ability to learn
to deal with a probabilistic environment in which an input
has possibly more than one output. The translation problem
has a network translate “words” (8-bit random patterns) from
one “language™ (layer of units) to another. In their example,
the network was to translate Spanish words to and from their
English counterparts (see Figure 1.) What makes this prob-
lem interesting is the lack of a one-to-one correspondence
between the English and Spanish words. For example, the
English word “olive” has two Spanish counterparts, “oliva”
(derived from Latin) and “aceituna” (derived from Arabic.)
If given either “oliva” or “aceituna” the network should
respond with “olive.” However, if given “olive” the network
1s supposed to respond with “aceituna” 70% of the time and
“oliva” 30% of the time. The average of the two or a random
selection of bits from each is not a valid response. The archi-
tecture, I/O mapping, and desired probabilities are presented
in Figure 1.

Baseline condition

M&M broke learning into two stages, an initial stage
designed to achieve approximate matching of the desired
distribution and a final phase designed to achieve virtually
exact matching. We have concentrated on the first stage,
using M&M’s parameters for this stage as a baseline condi-
tion: a timestep (A) of 0.1, a learning rate (g) of 0.01,! a noise
constant (o) of (.1, 20 settling repeats per pattern, zeroing

1. In the text of the article, 0.0025 was the specified g, but the actual
value employed was 0.01.
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the network’s activation between settles, 50 activation cycles
of initial settling, 50 cycles for gathering statistics, and a
stopping criterion on the TIG of 0.1. The tolerance for unit
activations was set to 0.8. Since the desired activations used
in each pattern were +0.9, this meant that the output had to
fall within the right comer of the 8-dimensional hypercube
defined by the activations of the output units by at least (.1
on each unit, in order to be taken as a match to a particular
desired output. No momentum was used.

A typical learning curve showing TIG as a function of
epochs is shown in Figure 2A% Clearly. the leaming in this
condition is relatively smooth and fairly rapid using epochs
as a measure of training time. One interesting aspect of the
learning is that for the last 75 epochs or so, the network’s
average performance remains close to the minimum, though
there is some variability. This variability can come from two
sources. Either the actual TIG that the network produces
across epochs varies (since the weights vary from epoch to
epoch), or our estimate of the actual TIG varies across
epochs. Given a reasonable learning rate, the latter is the pri-
mary source of variability in the TIG measure, which opens
the door for significant optimization.

Coarse Estimates of the Error Gradient

If the network never moves very far along the error surface
on any given weight update, it stands to reason that we might
be able to use a very coarse estimate of the weight-change
vector to drive learning. Since a coarse estimate is computa-
tionally cheap, we should be able to speed training consider-
ably. This idea is similar to the basis of Manhattan updating,
which can be quite effective in the early stages of training.

2. For this and almost all subsequent simulations, a trio of networks
starting with three different sets of starting weights were run.
There were no notable differences between the three sets in any
of the conditions.



Figure 2B shows the result of training the same network
from Figure 2A but using only six settles per pattern instead
of twenty. While the tail of the graph certainly shows more
noise, their basic shapes are the same. Keep in mind that
given a sample size of only six. we expect to see more vari-
ance in the TIG than with a sample size of twenty even if the
nerworks are in the same position in weight space. That is to
say that the two networks shown in Figures 2A and 2B could
be following nearly identical trajectories through weight-
space and the network in 2B would naturally look noisier.

This point is demonstrated by the training curve shown in
Figure 2C. Here, the same network was trained using the Aw
generated from six settles, but the TIG plotted was generated
by testing the network without learning for twenty settles at
every epoch. Clearly, the tail of the graph shows more noise
than the baseline condition, and, by chance it doesn’t happen
upon a TIG sample below the (.1 stopping criterion by 300
epochs. Equally clear, however, is that during the initial
stage of training, six settles per pattern is almost indistin-
guishable from 20 settles per pattern when the variance in
the estimate of the current TIG is controlled for.

For our purposes of demonstrating optimization of the
training time, there are two problems. First, the amount of
time to run an epoch is based on the number of cycles per
settle and the number of settles per pattern. Since both vari-
ables are to be manipulated, we report training time in thou-
sands of cycles per pattern (kCs). Second, the TIG stopping
criterion of 0.1 in a single epoch introduces a high degree of
variability in the apparent stopping time, and actually corre-
sponds to a somewhat higher true TIG. For more stable com-
parisons across runs, we adopted a criterion of a 2.64
average over five epochs. This corresponds to producing
each correct output pattern with a probability that is within
20% of its probability as specified in the training corpus.

Table 1 shows the training time for both the original and
the six settle conditions, and we can now see the merit of this
approach. Training time has been cut by over 50%. Like the
M&M network, this net is ready to be fine-tuned to cleanly
match the desired output distributions. All subsequent net-
works were trained using six settles per pattern.

Table 1: Training Times

Condition Epoch | kCs | Condition | Epoch | kCs
[Original (20) 100 | 200 [S0/10cycles | 157 |57

6 settles 144 86 | 30/50 cycles | 135 65
train 6 / test 20 105 ~63 | 50/30 cycles | 153 69
10 init/10 stat cyc. | 263 52 |100/100 cyc. {99 118
30/30 cycles 158 57 | Final 103 37
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Figure 3: Effect of noise in processing and noise in
the starting position on Lraining time.

Role of Noise

Without some source of variability to make the settling pro-
cess stochastic, a network cannot settle into differing outputs
when presented a single input. It’s a trivial statement, for by
definition, it’s an impossible problem. However, determining
the optimal source of variability and the optimal amount of
variability is far from trivial. Here we examine the effect of
noise in two relatively standard locations: noise in the activa-
tion function and noise in the starting position of the network
in activation space. While not an exhaustive list of places we
might add noise to break the symmetry of the settling pro-
cess, the results are basic enough that generalization to other
sources of noise should be possible.

Noise in the Activation Function

When considering the amount of noise to be added 1o the
activation function, there are at least two conflicting goals.
If, as in M&M'’s network, the only source of noise is in the
activation function (the oZ term in Equation 1) it must be of
sufficient magnitude to let the network visit different attrac-
tors so that it may generate the desired probability distribu-
tion. However, working against this desire for stochastic
processing is the need to remain stable enough to generate
reliable statistics. Simulations using no noise in the starting
position but ¢ values of 0.0, 0.1, 0.2, 0.5, 0.8, and 1.0 sup-
port this notion of a trade-off in the ideal amount of noise.
No noise gives the expected result of failing to leamn the 1-2
mappings and the extremal values of 0.8 and 1.0 both show
slowed and incomplete learning.

Noise in the Starting Position

When the TIG and corresponding weight change vector are
calculated, the network’s estimated output distributions are
computed across cycles and settles, giving the network the
opportunity to exhibit the desired distribution of output
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Figure 4: Settling behavior of the network when given a 1-1 mapping as input (e.g. “house™) and a
1-2 mapping (e.g. “olive™). Figure 3A shows the variance in position in activation space in a ten
cycle window during settling and Figure 3B shows the percentage of settles that are inside either
attractor as a function of the number of cycles of settling.

states in two possible ways. Like the Boltzmann machine,
the network could jump between the n desired states with the
appropriate probabilities p, within a single settle. Or, the net-
work could settle to a single attractor with probability p, and
thereby generate the distribution across settles. A prediction
of the former is that noise in the starting position should have
little effect on learning, whereas the latter might predict a
significant effect, especially when o is small.

What we find when we train networks using starting acti-
vations ranges of £0.1 and +0.9 and o values of 0.0, 0.1, 0.2,
0.5, 0.8, and 1.0 is that there is evidence to support the con-
clusion that the network is generating the distributions across
settles. For large values of o, noise in the starting position
has no effect as it is quickly subsumed by the noise in the
activation function. However, when o is small (and espe-
cially when zero), random starting positions help the net-
work considerably by allowing it to form trajectories from
starting regions in activation space to the desired attractors.

We can see the effect of this trade-off in Figure 3 where
the training times to criterion are plotted as a function of ¢
and noise in the starting position., When we examine the set-
tling behavior of the network closely, we do find, in fact, that
it is extremely unlikely for the network to jump from one
desired state to another. Even with large amounts of noise in
the activation function, the network settles towards one
attractor and generates the distributions across settles, Figure
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4A and 4B show the settling behavior of a network trained
for 100 epochs using a ¢ of 0.2 and starting activation ranges
of £0.9.% In both figures, the trained network was presented
“house” (a 1-1 mapping) and “olive™ (a 1-2 mapping) and
allowed to settle 100 times while the network’s activation
was monitored.* In Figure 4A, we plot the variance in a slid-
ing ten cycle window, averaged across the 100 settles. What
this shows is that for both 1-1 and 1-2 mappings, the amount
of change in position in activation space drops off rapidly
during settling. That is to say that within a given settle, the
network settles to a fixed point within 50 cycles and remains
in that attractor, even if the desired output distribution is not
unimodal. However, as Figure 4B demonstrates, when we
look at the distribution of output states relative to the desired
attractor(s) as a function of settling time, we see that across
settles, the network generates the desired distribution of
states quite well.

In fact, this settling behavior suggests that if we keep the
number of initial settling cycles where it is, we can cut the
number of subsequent statistical generation cycles sharply
and gain a significant speed increase. While we do reach a

3. Other noise parameters including 6=1.0 and starting activations
of 0.0 show the same basic effect, though the data are nosier.

4. In this network the olive — oliva and aceiluna was trained on a
50/50 not 30/70 mapping.



point of diminishing returns, Table 1 shows that an addi-
tional 15% speed increase is quite feasible.

From this data, we can make two basic conclusions about
the effect of noise during training. First, a little goes a long
way: it takes very little noise to allow the network 1o behave
stochastically, and too much noise is harmful. Second, where
the noise comes from. while not vital, can certainly affect
training time. As we saw from Figure 3, high values of noise
in the starting position and low values in the activation func-
tion produce the fastest learning,

Putting it all Together

Now that we have an understanding of the individual opti-
mizing effects of coarse statistics, limited settling time, and
noise, it is useful to see how they work together. A final
series of networks was trained using six settles, o of 0.1, ini-
tial activations ranging between 0.9, 50 cycles of initial set-
ting and 10 of statistic collection. Compared with the
200kCs required in M&M’s original simulation, this network
reached criterion in only 37kCs -- a speedup of 82% or
roughly a factor of 5. The next step is to train networks to
learn substanually larger problems. So far the results are
quite promising: We have been able to train a number of
larger networks of varying architectures to generate proba-
bility distributions as outputs when the initial training was
done using coarse estimates of the error gradient. One such
network consisted of 23 input units, 40 hidden units, and 50
output units and was trained on a spelling-to-meaning prob-
lem like that studied by Hinton and Shallice (1991). The
training corpus consisted of 21 words with one meaning and
15 words with two distinct meanings. The network reached a
stopping criterion comparable to that used for the translation
problem in 1014 epochs, or a total of 608 kCs. If given an
opportunity to fine tune it’s weights during several epochs of
subsequent training with more accurate estimates of the gra-
dient, this network, and all the others we’ve examined, show
no adverse side effects of the initial coarse training.

Conclusions

A number of general conclusions can be drawn from this
research. First and foremost, despite the daunting theoretical
computational needs of CHL, it can be optimized so that
probability distributions can be learned in a reasonable
amount of time. Although accurate statistics may call for a
larger number of settles per pattern per epoch, learning can
progress up to all but the fine tuning stage use the coarse esti-
mate of the error gradient generated with a small number of
settles. The rapid settling behavior and lack of a within-settle
distribution of outputs allow us to use a limited number of
cycles within each settle, further speeding learning. Further-
more, while noise in the network needs to be present, it can
come from various sources and its magnitude can be small,
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assisting learning using gradients based on a small sample.
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