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ABSTRACT 

A least-squares method for choosing optimum lumped parameters 

for modeling the thermal performance of buildings is presented. A 

realistic passive solar heated room is modeled with a one-time constant 

lumped model to better than 10% accuracy, This technique provides a 

simple method that can be used in the: design or evaluation of the 

thermal performance of buildings such as those using passive solar 

heating. 
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I. 	INTRODUCTION 

In order to conserve energy, buildings must be built so as to make 

the best use of their various sources of thermal energy. This objective 

can only be achieved if designers or standards writers can relate the 

physical properties of, the building to its thermal performance in a 

transparent fashion. In this paper, we present a simple method for 

carrying out this relationship and show, by applications to a room 

with passive solar heating and one with a heater, that the method is 

sufficiently accurate. This method will be useful both as a design 

tool and as a means for evaluating the impact of building standards. 

Many approximations must be made in order to formulate a tractable 

set of equations describing the temperature of a complex structure such 

as a building. The assumptions of one-dimensional heat flow, perfectly 

mixed interior air, and idealized thermal elements are common among 

these approximations. While a detailed assessment of the validity of 

these approximations has not been made, they cannot be expected to be 

more than ten percent accurate. Once the equations have been formula-

ted, one is faced with the task of solving them. Here, one can choose 

numerical or analytical, approximate or exact methods. In this paper, 

we present an approximate analytical method for solving the equations 

whose accuracy is comparable to the accuracy with which the original 

equations model the real world structure. 

Before describing our method, we classify the types of heat sources 

or stimuli that drive the temperature of a building. We place them in 

two categories. In the first category are those sources that can be 

well represented by a few Fourier components such as the diurnal 



variations of the ambient temperature. These sources can be efficiently 

dealt with by Fourier series methods and will not concern us here. The 

sources in the second category change abruptly with time and require 

many Fourier components for their representation. Examples of such 

sources would be the sunshine falling on the collector of a passive 

solar house or a pulse of heat from an internal heater. We will only 

consider sources of the second category in what follows. Since the tem-

perature is linearly related to the heat sources, it can be represented 

as a sum of terms, each term arising from a particular source, when 

there is more than one heat source present. 

Our technique is a method for choosing the parameters in a lumped 

parameter approximation to the original continuum equations. Any such 

approximation should have the following attributes: 

It must be simple, for this is its only reason for being. 

It must involve both the structure being simulated and the stimulus 

that is applied to it. One can easily visualize pathalogical situa-

tions in which a given structure is best simulated by very different 

parameters due to differences in the stimulus. For example, compare 

the results of Secs. II and III. 

The method must be accurate and it should yield an error estimate. 

It should be possible to systematically improve the approximation 

if the error estimate is unacceptably large. 

The method we present shares all of these attributes. 

We choose the parameters in our lumped parameter approximation to 

a set of "exact" continuum equations so that the approximate temperature 

is a least-squares fit to the exact temperature. This fit is done in 

frequency--rather than time--space since both exact and approximate 
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equations can 1 be easily solved for a given frequency. The most important 

output, however, is the approximate temperature as a function of time. 

In performing this fit, we find that it is very important to separate 

the static and dynamic responses of the temperature. In the examples we 

treat, the average temperatuve is fitted exactly and the fluctuations 

about the average are fitted in the least-squares sense. This separation 

yields values for the dynamic lumped parameters that are very different 

from the static ones. 

We treat an example in detail as an introduction and test of the 

method. It is meant to model a room with passive solar heating. The 

least-squares fit to the temperature yields a natural root-mean-square 

error as an error estimate, and we find that it is about 10% of the 

mean or less for the examples treated. Since these examples were 

chosen so as to be a severe test of the method (the root-mean-square 

variation of the temperature about the mean is 63-98% of the mean) we 

believe that this is a generous estimate of the errors. We also present 

a very simple approximation to the root-mean-square fit which yields 

results that are very close to the best fit. 

The method and passive-solar example are treated in parallel in 

Sec. II. A second example of a room with a heat source that delivers 

a pulse of heat is treated in Sec. III. Comments and conclusions are 

given in Sec. IV. 

Our method is not intended to compete with the large computer pro-

grams 1  used in building simulations. Properly used, it would compliment 

the detailed results that they produce. Our method gives a simple 

qualitative relationship between building design parameters and thermal 

4 
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performance rather than a detailed response of a particular design to 

a specific pattern of use. Given the uncertainties in the basic equa-

tions, construction practices, and use and weather patterns, this may 

be sufficient information for the designer. Background information on 

heat transfer and environmental engineering may be found. in Ref. 2. 

A rudimentary. lumped parameter model is considered in Ref. 3. 
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II. DETERMINATION OF PARAMETERS 

In general, the sources of heat in a building can be placed in 

one of two categories. They are either smoothly varying in time and 

can be well represented by a few terms in a Fourier series or they are 

rapidly varying and require many terms for an accurate representation. 

The response of the building to the smoothly varying sources of the 

first kind can be calculated using standard Fourier techniques. Here, 

we are concerned with modeling the response to the rapidly varying 

sources. This is done by constructing a lumped parameter model of the 

building and choosing optimum values for the parameters. The choice is 

done so as to minimize the mean square errors of the model temperature. 

In this section, we develop this method of parameter choice while treat-

ing a specific model in detail as an example. We also consider a simple 

approximate choice of parameters which yields results that are almost 

as good as the optimum. We find that a simple model with a single time 

constant can predict the performance of a complex structure with errors 

of the order of 10%. However, the values of the optimum parameters are 

very different form those obtained by "physical" arguments based upon 

the static response of the structure. 

We consider the temperature of a room TR  that is surrounded by 

thermal elements and subjected to a periodic heat source. In order to 

be specific, we assume that the fundamental period is one day, P = 24 

hours, although this is not at all necessary and variations in the 

weather can be easily taken into account. In general, the heat source 

can be characterized by some source temperatureT 5 , e.g., as the heat 

rate divided by some charcteristic heat conductance of the room. 
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Then, by, the assumed periodicity of the source, we can write 

CO 

T5 (t) = 	
TSn et , 	 ( 2.1) 

where w = 27r/P and T5  the Fourier coefficients of the source T5 . 

Since T5  is real, we must have 	= T. The room temperature response 

to the source (2.1) TR  will also be periodic with Fourier coefficients 

TRn • No matter how complex the structure is, this response will be 

linear and we can write 

TRn = XnTSn 
	 (2.2) 

where Xn  depends upon the structure. Since TR  is real, we have 

X = X..n and • since causes must precede effects, we have the imaginary 

part of X is negative for positive n. We therefore write x n as 

x 	= Xn- I x 	, 	
t 	(2.3) 	- 

where. the real part of 	x, is an even function of ii and the 

negative imaginary part x  is an odd function of n which is positive 

for positive n. 

In order to make the above considerations more concrete, we consider 

a specific example which we will carry along throughout this section. 

The example isa simplified model of a room with passive solar heating. 

It consists of an outer wall and an inner wall. Sunshine is incident 

upon the inner wall, and one dimensional heat flow takes place between 

the walls, room, and outer environment. This is pictured in Fig. 2.1. 

This can be taken as a very simplified model of a room which has no 

heat conduction through the three interior walls and floor, which are 
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modeled by the "inner" wall, but looses heat through the outer wall and 

roof which are modeled by the "outer" wall. The assumption of one-

dimensional heat flow neglects temperature variations at the corners of 
01 

the walls and throughout the air in the room. One can easily sophisti-

cate the model by adding thermal elements and/or modifying the boundary 

conditions. However, it is very hard to get around the assumption of one-

dimensional heat flow without an Undue amount of additional computation. 

Quantities pertaining to the outer wall are denoted by a subscript 

It has a U-value U 1 , a heat capacity per unit area C 1 , and thick-

ness d1 . The temperature distribution in this wall is T 1 ( 1 ,t), where 

= X1/d1 and X 1  the position in the wall measured from the outer 

surface. The one dimensional heat flow in this wall is governed by the 

diffusion equation 

a 
i 	

2T
_A 	1, 	 - 	 (2.4) 

	

— t -  1 	2 

where A1 = U1 /C 1  is the decay constant for the wall. 

We measure all the temperatures with respect to the outside temperature 

and assume that the outer wall is strongly coupled to the outside air 

so that the outer boundary condition is 

= 0, 	t) = 0. 
	 (2.5) 

We assume that the inner surface of the outer wall is coupled to the 

room temperature TR  through a film coefficient h so that the inner 

boundary condition is 



In 

- 3T1 ( 1 =1, t) 
= 1 [T11  = 1,' t) - TR(t)] , 	 (2.6) 

where 11 1 = h/U 1 . 

These equations determine the temperature of the outer wall T. 	 ' 

Quantities pertaining to the inner wall are ' denoted by a subscript 

11 2". It has a U-value U2 , a heat capacity per unit area C 2  and a 

thickness d2 . The temperature distribution in this wall is T 2 ( 2 , t), 

where 2 = X 2/d2  and X2  is the position in the wall. It satisfies 

the diffusion equation 

T2- 
	_____ 

at 
—-A2 (2.7) 

where A2  = U2/C 2  is the decay constant for this wall. We assume that 

the inner surface of this wall is coupled to the room temperature 

through a film coefficient h (taken to be the same for both walls for 

simplicity) and that there is a solar flux S(t) incident upon it. The 

inner boundary condition is 

T2(2 = 0, t) = n2 ITR(t)- T2 ( 2  = 0, t) + Ts(t)] 	(2.8) 

where fl 2 = h/U2  and Ts(t) = S(t)/h is, the characteristic temperature 

of the solar heat flux. The outer surface of this wall is assumed to 

be perfectly insulated so that the boundary condition is 

T2(2 = 1, t) 	- 	
(2.9) 

These equations determine the temperature distribution in the second 

wall. 
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The room is assumed to have a heat capacity per unit area CR  and 

temperature TR  which, as stated above, is coupled to the two walls by 

film coefficients h. We then have 

d T (t) 

dt 	+ ARTR(t) = 	AR [Tj (~ j  = 1, t) +T2(2 = 0, t)] 	(2.10) 

where AR = 2 h/Cr • 

This description of a room is, of course, oversimplified and is 

presented here as a pedagogical aid in our description of the method. 

Nevertheless, one can interpret the outer "wall" as the average of 

the true outer wall plus roof and the inner "wall" as the average of 

the true 3 inner walls plus floor. These elements could all be treated 

separately without an undue increase in complexity if greater accuracy 

and flexibility are desired. 

Equations (2.4 - 2.10) plus the condition of periodicity completely 

determine the temperatures of the model in terms of T. We first con-

sider the time independent D.C. response. In this case, the temperatures 

are given by 

SO  T1(1) = 	l TSo 1 = 	
(2.11) 

T2 ( 2 ) = (2 + ni) T 	
= ( 

+L)s0, 	 (2.12) 

TR 	= (1 + nj) TS 	
= ( 	 + 	

s, 	 (2.13) 

where S0  is the n = 0 Fourier coefficient of the solar flux S(t). 
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From (2.13), we have 

x0  = 1 + n 1 . 	 (2.14) 

We next consider the dynamic response of frequency nw. In this 

case, the equations yield, apart from a factor e1t, 

T 	= A sinh k 1 F 1 , 	 (2.15) 

12 = B cosh k 2 
 (1 - 2' 	

(2.16) 

with 

k 	= inw/A 	, 	j = 1,2, 	 (2.17) 

and 

A = n1 TR/[kl  cosh k 1  + Ti, sinh k1] , 	 (2.18) 

B = n 2  (TR + Ts)/[k2 sinh k 2  + Tj  cosh k 2 ], 	 (2.19) 

with T = Xn  Tsand 

X n 	
(1 + 	tanh k2)(1 + 2mw 

+ 1 + 	tanh k1 ) - 
	

(2.20) 

This completes the solution of the continuum model. Equations (2.14) 

and (2.20) are explicit examples of the general result (2.2). 

Returninq to the general development, we construct a simple lumped 

parameter model of the room temperature. We choose a model that consists 

of a heatcapacity C coupled to the outside air through a conductance U 

and which is stimulated by a modified solar flux. The solar flux is 
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modified by having a renormalized D.C. component. This modification 

decouples the static and dynamic aspects of the model and C and U 

affect only the dynamic aspects. The temperature of the heat capacity 

C, 1, which is meant to model the room temperature TR  satisfies the 

equation 

C 	+ UT= a S0  + ( S- S0) 	 (2.21) 

S0  is the modified D.C. component of the solar flux. We where ao  

rewrite this equation as 

dT + AT =A[a0 TSo +a(T5 - iso)] ' 
	 ( 2.22) 

where the new parameters are 

U 	 h h A - 	
' 	o 	11% 	a = 	. 	 ( 2.23) 

The form of the model as described by equations (2.21) and (2.22) 

has been dictated by considerations of accuracy and efficiency. We 

have chosen a model with one relaxation time IC 1  so that the resulting 

expressions for the temperature, as a function of time, will be simple 

and easy to use. This determines the form of the left-hand-side of the 

equation. The right-hand-side is the result of a compromise between 

taking the unmodified source S and the completely modified one 

	

E n cx Sn e1t , 	with 	a = ( inwC + U) x 

which would yield the exact temperature. The compromise recognizes 

that there is a lot of heat capacity in passive solar structures, this 
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heat capacity affects the dynamic but not the static response with the 

result that X0  >>1x11 	etc. Thus, it makes sense to treat the 

static response separately from the dynamic response. The separation 

also allows a more symmetrical determination of the parameters -a 

from the static response and A and a from the dynamic response. 

These remarks can be amplified by considering a specific example. 

We consider case 2, see Table 2.1, which is discussed in more detail 

later on in this section. With ct, a, and A chosen to minimize the 

root-mean square error of the model, see below, the model is in (RMS) 

error by 5.1% and the parameters are AP = 3.27, C = 5.85 BTU/ft 2 0F, 

and U = 0.798 BTU/ft 2 0F. However, if we do not modify S and require 

ato  = 1, then the model is in (RMS) error by 28% and the parameters 

are AP = 0.63, C = 6.9 BTU/ft 2 0F, and U =0.18 BTU/ft 2  hr 0F. 

This error is unacceptably large. The parameters are close to the 

continuum parameters C1  + C2 + CR = 12 BTU/ft 2 0F and U 1 h/(U 1+h)  

0.091 BTU/ft 2  hr 0 F. This shows the dominant role played by the static 

response in determining these parameters which is evident from the 

magnitudes of )ç,, 1x0 1 = ii, 1x1 1 = 0.565, 1x2 1 = 0.360. 	Thus, 

the introduction of a0  leads to a significant improvement of the model 

without any increase in complexity. We now turn to the determination 

of the parameters. 

The accurate simulation of the average temperature is an important 

part of any model. We therefore choose 	so as to reproduce the 

average temperature exactly. From (2.2), we have TR O  = X0 T 	and, 

from (2.2), we have T0  = a T50 . We therefore choose 
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a0 = 
	

(2.24) 

In the model just discussed we would have from (2.14) a 0  = 1 + n. 

With this choice of a o , the average temperature falls out of the problem 

and A. and a can be chosen to model the dynamic part of the temperature. 

We choose them so as to minimize the mean square error defined by 

e2 	f dt [17(t) - TR(t)] 2 	 (2.25) 

which is expressed as a fraction of the average temperature T 0 . The 

minimization is most easily carried out in frequency space. We first 

solve (2.22) for the nonzero frequency components of T 

___ I 
= A+inw Sn, 	nO 

= 	y 
x + i n 	Sn 

(2.26) 

where x = A/w and y = ctA/w. We then use this result and (2.2) to write 

(2.25) as 

00 

= 2 	1 2 ______ 	2 	 (2.27) 

	

T2 	 Sn 	x+inXn 

	

'0 	n=1 

which is to be minimized with respect to x and y. 

Setting the derivative of (2.27) with respect to y equal to zero 

yields the equation 

E 1 (x)y = F 1 (x) 	 (2.28) 
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and from ae 2/ax = 0, we get 

E 2 (x)xy = F 2 (x), 	 (2.29) 

where 

Sn  

CO 

E(x)= n 	
(x + n 2 ) 	' 	

= 1 	
(2.30) 

,2, =1 	
2  

and 

F(x) = Re 	
Sn 	

, 	
= 1,2, 	 (2.31) 

(x - in) 

with 

S = 	JTSn / T0 2 	. (2.32) 

We get a single equation for x by dividing (2.29) by (2.28) 

- 	E1 (x) 	F2(x) (2.33) 
X - 	E 2 (x) 	F1 (x) 

This equation is discussed in more detail 	in the Appendix. 

Solving (2.33) for x, we then obtain y from 

F1 (x) 	• - (2.34) y - 	E1 (x) 

The mean equare error at the minimum point is then given by 

e2 = 	2[ nPnI2 
L]. (2. 35) 

- 

The parameters x and y depend upon the shape of the time dependence 

of the heat source T 5  through the presence of the magnitudes of the 



-15- 

Fourier coefficients in S n  in the sums E and FL.  For our example we 

chose T to be half of a sine wave which is 8 hours long, i.e., 

Ts(t) = sin 	t , 0 < t < 

	

0 	 , 	< t < , 	 (2.36) 

plus periodic extension. Note that the overall amplitude of T S  does 

not enter into our equations so we have Set it equal to one. With 

this choice of T, we have 

	

/ 	2irn 
81 	+ cos 	 (2.37) 

S 	-  
n 	

(n-9/4)2  

Since Sn  is proportional to n 4  for large n, the sums in (2.30) and 

(2.31) converge very fast. With this choice of s, we can proceed 

to solve (2.33) and 2.34) for x and y and calculate the root-mean-

square error e from (2.35). 

Our example is defined by X (2.20) and 5n  (2.37). In Table 2.1 9  

we list the values of the continuum parameters that were chosen for 

study and the resulting values of x, y, and e. The average RMS error 

of 7.8% for the four cases indicates that this method is sufficiently 

accurate for qualitative predictions. Themost notable features of 

these results are the strong dependence of x and y on CR  and their weak 

dependence on C 2 . In Table 2.2, we present the same results in the 

form of the lumped parameters U and C obtained from (2.23). Note that 

the values of U are very large compared to that ofthe outer wall plus 

film. This emphasizes the importance of separating static and dynamic 

responses. In Table 2.3, we compare the various decay constants of the 
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continuum system with that of the lumped system. Here, X is the decay 

constant of the slowest normal mode of continuum system. There are 

several important points to be noted from these numbers. First, since 

for all cases A >>, we are not exciting just one normal mode which 

would make the good' agreement indicated in Table 2.1 a rather weak test 

of the method. Second, we note that there is a very strong dependence 

of A on CR  but a very weak dependence on C 2 . 

The solution of Eq. (2.33) for x is straightforward but rather 

tedious unless it can be done on a computer. We therefore turn to a 

simple approximate solution which yields results that are not signifi-

cantly worse than those obtained from (2.33). The approximation is 

based upon the observation that Xn  is a slowlyvarying function of n. 

We can therefore obtain approximate expressions for x and y by choosing 

them so that the n = 1 term in e 2 , (2.27), is zero. This yields the 

simple results 

x 	 , 	y 	
Ix 	 (2.38) 

which would also be obtained from (2.33) and (2.34) if only the first 

term in the sums (2.30) and (2.31) are kept. Values of x and y calcula-

ted from (2.38) and the associated root-mean-square errors are presented 

in Table 2.4. Comparing the values of e in this table with those in 

Table 2.1, we see that this approximation does not incur a serious 

penalty since it increases the error by an average of 0.7%. 

For the sake of completeness, we conclude this section with express-

ions for T as a function of time. We take T 5  as (2.36) so that I is 
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given up to an everall scale factor by 

T =  J_Tr - 	
+ 4 

[i+e213 
e t - e3t/2] , 0< t < 

- 	

(a - a) + x2
4 	
b -At 	

< <p, 	(2.39) 

plus periodic extension. This expression is the solution of (2.22) 

that is continuous and periodic with T given by (2.36). The real 

part of all complex expressions is implied. The parameter a 0  equals 

II for all the cases we have treated and a = 0.93, 1.25, 0.72, 0.97 

for cases 1 through 4 respectively. The other parameters can be read 

from the tables. 
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III. RESPONSE TO A HEATING PULSE 

We now turn to the response of the room described in Sec. II to 

a heating pulse such as would be experienced at the beginning of a day 

during the heating season. Since the room temperature is a sum of terms 

with each term representing the response to a separate heat input, we 

can consider this problem separately from the one treated in the previ-

ous section. As a result, one may get very different lumped parameters 

for the response to each of the sources. Since these parameters are 

obtained by minimizing the RMS error in the modeled response to each 

of the sources separately and not the total RMS error in the presence 

of several sources, we are making the approximation that we can neglect 

cross-terms in the RMS error. Since this approximation decouples the 

determinations of the separate lumped parameters and renders them inde-

pendent of the relative amplitudes of the various sources, it is crucial 

to the practical application of our method. This approximation will 

be accurate if we can model the response to each separate source to 

within our 10% criterion of accuracy. 

The equations describing the room with a heater are only a slight 

modification of those given in Sec. II. Equations (.2.4) - (2.7) and 

(2.9) are unchanged while (2.8) has T = 0 and there is an additional 

term 21H(t) inside the square brackets on the right-hand-side of (2.10) 

which represents the heater input. Here 
TH  is given by 

TH(t) = ____ = Q(t) 2h (3.1) 
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where t is the rate of heat input per unit area from the heater. We 

will take t to be a square pulse of height H and lasting from time 

to t 1 . Recall that the day starts when the sunshine comes through 

the window, see (2.36). The Fourier coefficients of TH  are given by 

e
_t0 I _e_Tht1_t0)] H 	 (3.2) THn = 27rin 

We might now proceed along the lines developed in Sec. II. That 

is, we might write the Fourier coefficients of the room temperature as 

TRn = XnTHn (this is Eq. (2.2) with a different Xn)  and solve for Xn 

We would then determine the optimum lumped parameters from equations 

similar to •(2.33) and (2.34). This procedure yields results with un-

acceptably high errors--50% or more. The reason for this failure can 

be seen in Eq. (2.10) with a square-pulse source term on the right-hand-

side. Depending upon the magnitude of AR, TR will try to follow this 

pulse with a quick rise and fast relaxation in times of the order of 

i/AR. At the same time TR  is driven by the terms T and T 2  on the right-

hand-side of (2.10) which typically change over periods characteristic 

of the walls which are much longer than i/AR.  Thus, the reason for the 

breakdown of the method in this case is that we are trying to model a 

system that has two drastically differnt time scales with one time.con-

stant. We therefore have to modify our method so as to eliminate one 

* 	 of the time scales before proceeding as in Sec. II. 

In order to eliminate rapidly changing part of TR,  we split it 

into two parts, a direct part T and an indirect part T, as 

TR(t) = T(t) + T(t) . 	 (3.3) 
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The direct part is defined to be the periodic solution of the equation 

dT 	d 

+ ARTRARTH (3.4) 

and the indirect part is the solution of Eq. (2.10). The direct term 

now plays the role of a source for the indirect term since it appears 

in (2.6) and (2.8) when (3.3) is used for TR• We can then write the 

relation between the Fourier coefficients of T and T as T,, = 

X T., and proceed as in Sec. II. This means that we must also split 

the lumped-parameter-model temperature into direct and indirect parts 

as in (3.3), i.e., 

1(t) = Td(t) + T'(t) 	 (3.5) 

with 

Td(t) = T(t) 	 (3.6) 

and 1 determined by Eq. (2.22) with Ts replaced by T. Since the RMS 

error (2.25) depends upon the difference between I and T the direct 	r 

parts cancel due to (3.6) and we are left with the problem of determining 

the optimum lumped parameters for the indirect part which can be well 

simulated with one time constant. We first determine T from (3.4) and 

then X from the modified Eqs. (2.4) - (2.10). These results can then 

be used in (2.33) and (2.34) to determine the values of the optimum 

lumped parameters. 

We solve Eq. (3.4) using (3.1) for 
TH  and requiring continuity 

and periodicity. We then get 
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T(t)= .. [1_e 	
(t1_t0)] e'_t1+t), o <t 

= 	

{ 	

[1 -e_AR(P+tO-t .j)] e(ttO)} , t0  <t <t 1 , 

=[l:;to)] ettl), t1  <t <P. 	 (3.7) 
THT  

The Fourier coefficients of T can be read directly from (3.4) and 

(3.2) or calculated from (3.7) with the result 

d 	A e 0 t0 

TRn = 2rrin(J\+inw) 11-e-inw(tlto')
_] H 	 (3.8) 

This is to be used as the source for T. 

The solutions for T 1  and 12  given in (2.15) and (2.16) are still 

valid and the constants A and B are given by (2.18) and (2.19) with 

= 0 and TR  given by (3.3) and (3.8). These results are then substi-

tuted into (2.10), with TR  replaced by T, which is then solved for 

d. 
T n  = X n  T Rn  with the result, 

X 	2 1 + inw 	 + 
k 

+ 	coth k 1  T11 

1.  

k 
1 +-1 tanh k 2  

-1 

(3.9) 

As a check on this expression, we may verify that they give the correct 

zero-frequency results. From (3.8) we have TRO = (t 1 -t0 )H/2Ph and from 

(3.9) we have X = 1+2r. We then have 

TRO = (1+x0)TR0 = H(t1-t0) ( + 1) 

which is the expected result. 
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The lumped parameters U and C can now be obtained from x and y 

given by (2.33) and (2.34) with Xn  given by (3.8) and Sn  given by 

s_Td 	2 
n 	Rn/Ta  

2 

= 	 1 	 Ismn 	(t1-t0) 1 

	

4(1+fl1)2 [,+ nw 2] L B.(t1t0) ] 
	

(3.10) 

The mean-Square error is given by (2.35) and a is given by (2.24) plus 

the above zero frequency results, % = 1+2n 1 . 

In Tables 3.1 - 3.3, we present some numerical examples of the 

above procedure. We have, chosen the room parameters to be the same as 

the four cases treated in Sec. II..so that the strong process dependence 

of the optimum lumped parameters is demonstrated. We have also chosen 

two pulse durations--a short pulse 1/4 hour long and a long pulse 1 hour 

long--in order to illustrate the dependence on this parameter. 

In Table 3.1, we present the calculated values of x, y, and the 

RMS error for the eight cases that we have treated. These numbers show 

a very strong dependence on CR  as one would expect. Furthermore, there 

is a strong dependence on the pulse duration when CR = 0 but a very 

weak dependence when CR = 1 BTU/ ° F ft2 . The RMS errors are all in or 

near our acceptable range. It should be pointed out that if we do not 

separate the room temperature into a direct and indirect part, (3.3), 

but try to simulate the room temperature with a single time constant 

such as was used in Sec. II, then these errors are increased by roughly 



-23- 

a factor of 10. This would place us well outside the acceptable range. 

Thus, the utility of the separation (3.3) has been demonstrated. 

In Table 3.2, we present the dimensional lumped parameters U and 

C and the decay constant A. Here one sees striking differences between 

these values and those given in Tables 2.2 and 2.3 for the passive solar 

room. One also sees that the heat capacity CR  has a very strong effect 

on the value A. 

In Table 3.3, we present results obtained using the approximation 

(2.38) for x and y. Here, we see that the resultant values of x and y 

can be very different from those given in Table 3.1. This is a reflec-

tion of the importance of higher harmonics of the fundamental frequency 

in this modeling. The errors given in this table are satisfactory in 

many cases. Thus, this approximation can be used to obtain a rough 

idea of the temporal development of the temperature. 
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Iv. CONCLUSION 

We have presented a method for constructing simple lumped parameter 

models of thermal structures that are subjected to periodic sources of 

heat. The method was applied to two examples to explore its domain of 

applicability. The first example was intended to simulate a room with 

passive solar heating and the second was a room subjected to a square 

wave pulse of heat. The method is quite general and can be used to model 

any thermal system that is subjected to a periodic stimulus. One must 

first calculate the relative spectral weights S n  of the stimulus and the 

temperature susceptibility X,, of the system. The lumped parameters then 

follow from Eqs. (2.33) and (2.34). The resulting temperature is the 

"best" in the least squares sense. We present below some comments on 

the dependence of the parameters on the shape of the stimulus, parameter 

dependence of the accuracy of the method, the utility of introducing 

more complicated lumped parameter models with more than one decay con-

stant, and the possibility of modeling systems whose parameters change 

discontinuously. 

The approximation (2.38) for x and y is a shape independent approxi-

mation since it yields results that are independent of the shape of 

as reflected in the values of Sn•  This approximation gave accurate 

results for the example treated in Sec. II and one would therefore expect 

that x and y are insensitivie to changes in the shape of T within the 

domain of "reasonable" shapes. This conjecture was tested by considering 

a source whose shape was an 8 hour square wave, 
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Ts(t) = 1 , 0 <t 

=o,<t<p , 	 (4.1). 

rather than the 8 hour semisine wave given by (2.36). This stimulus 

has relatively stronger high frequency components 	is proportional 

to n 2  rather than n 4  for large n). Numerical studies show that the 

lumped parameters are insensitive to this change in stimulus. However, 

the RMS error is somewhat less for the square wave than it is for the 

semisine wave. This reflects a corresponding reduction in the variation 

of the temperature about its mean value. 

The situation is somewhat different for the heater pulse modeled 

in Sec III. There we see that the validity of the shape-independent 

approximation depends upon the presence of a room heat capacity. The 

values of x and y as well as the error e are substantially different 

for cases 1 and 3 under this.approximation, Table 3.3, than the exact 

values given in Table 3.1. However, the approximation seems to work 

well for nonzero room heat capacity, cases 2 and 4. 

We have chosen a value for U 2  of the inner wall that leads to a 

substantial variation in the room temperature. The RMS variation of 

the room temperature about its mean is typically 63-98% for the examples 

treated. Larger values of U 2  would lead to a smaller variation of the 

temperature and a less demanding test of the method. 

It is possible to improve the accuracy of the lumped model by coup-. 

ling additional heat capacities to the one whose temperature models that 

of the room. The new parameters characterizing these heat capacities 
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could be determined by minimizing the RMS error in the model temperature. 

However, these new parameters are liable to be very inefficient since 

they introduce substantial cOmplications into the calculations and can-

not be expected to make dramatic improvements in the accuracy. The 

càmplications come about both in the determination of the parameters 

and in the representation of the temperatureas a function of time. 

The improved accuracy cannot be more than one or two percent per addi- 

tional heat capacity since a single heat capacity gives results that are 

within 10% of the exact results. Thus, the introduction of additional 

parameterswould only be justified under specialcircumstances. 

Systems whose parameters change discontinuously, e.g., the closing 

of shutters at night, cannot be easily treated by Fourier techniques. 

Therefore, our methods cannot be directly applied to them. However, 

our method can be used to determine optimum lumped parameters for each 

value of the system parameters and these could then be used to model 

the system temperature. The - accuracy of this approach requires further 

investigation. 

We conclude that the method we have presented for developing 

lumped parameter models of complex thermal structures is both practical 

and accurate. 
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APPENDIX: ANALYSIS OF EQUATION (2.33) 

Some insight into the structure of Eq. (2.33) can be obtained 

by generalizing x to a complex variable z and studying the analytic 

properties of the functions involved. However, as a practical matter, 

the equation is most easily solved by calculating the functions directly 

from their definitions (2.30) and (2.31). 

In order to study the analytic structure of (2.33), we introduce 

two new functions 

E2(x) 	1 	d 
E(x) 	= - 
	 E1(x) 

F(x) 
F(x) = F 1 (x) 	= - 	Zn 

F1(x) 	
(A.1) 

Fx 

and generalize x to a complex variable z. Since E 1 (z) and 

Eqs. (2.30) and (2.31), are meromorphic functions, E and F will also 

be meromorphic. Furthermore, the poles of E(F) will be located at 

the poles and zeros of E 1 (F 1 ) and the residues of the ploes of the 

logarithmic derivatives will be plus or minus one. With this information, 

we can write down alternate expressions for E and F 

Co 

E(z) = 	1 	- 	1 	, 	
N 	

(A.2) 

m=1 z2-i-m2 	2=1 z2+ 

F(z) = 2z 	
z2+m2  - zC0 - 	1 	+ z1-ç ). 	

(A.3) 	 - 

where 4-  i ,  are roots of the equation 

00 

E (z) 	
Sn 	

= 	, 	
(A.4) 

- 	z+n 
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and C o , 	and 	are roots of the equation 

F (z) = 1 	
SnXn =0. 
	 (A.5) 

z-in 

We can use the functions E and F to rewrite (2.33) as xE(x) = F(x), 

or using (A.2) and (A.3) as 

00 

7T 	 1 	 1 	. 1 	
( 1  

cothx- 	+ XE 
x2+ 

- X0 
- 	___ + i 

	
= 0 	(A.6) 

where we have used 

CO 

m=1 z 2+m2  = 	
cothz - _L 	

(A.7) 

Thus, all the effects of the stimulus s and the system Xn  are contained 

in the roots of Eqs. (A.4) and. (A.5). 

It is easy to show that the roots of (A.4) are real and lie in 

the intervals £ < < 9-.1. Furthermore, we can write an explicit 

expression for E 1 (z) in terms of the stimulus as follows: we write 

E1(z) = 	f dtG2 (t, z), 	
(A.8) 

where G is the continuous and periodic solution Of the equation 

dG  

- 	

+ wzG = j 
	

[Ts(t) - Tso] . 
so 

(A.9) 

This equation can be solved an an expression for E 1  obtained for any 

specific Ts(t).  The roots of this expression 	can then be easily 

calculated. It is difficult to say-anything generally true about 

the roots of (A.5) since they are complex roots of a complex equation. 
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TABLE 2.1. Continuum parameters and resultant solutions of Eqs. (2.33) 
and (2.34) for passive solar room. The U's and h are given in 	 * 
Btu/F-hr-ft 2  and the C's in Btu/°F-ft 2 . The RMS error e is given 
in percent of the mean. 

case h U 1  C 1  U2  C2 CR x y e 

1 1 0.1 1 0.5 10 0 1.085 1.006 14.2 

2 1 0.1 1 0.5 10 1 0.521 0.653 5.1 

3 1 0.1 1 0.5 20 0 1.066 0.766 9.2 

4 1 0.1 1 0.5 20 1 0.537 0.521 2.7 

TABLE 2.2. The lumped parameters U and C for 
passive solar room. See Table 2.1 for 
cases and units. 

Case 	 U 	 C 

1 1.079 3.797 

2 0.798 5.849 

3 1.392 4.987 

4 1.031 7.332 
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TABLE 2.3. 	Decayconstants for passive solar room. 	See Table 2.1 
for cases. 

Case A 1 P A2 P XP AP 

1 2.4 1.2 0.186 6.817 

2 2.4 1.2 0.173 3.274 

3 2.4 0.6 0.094 6.698 

4 2.4 0.6 0.090 3.374 

TABLE 2.4. Approximate values of x and y calculated from 
Eq. (2.38) and associated root-mean-square errors e 
expressed as a percentage of the mean for passive solar 
room. See Table 2.1 for cases. 

Case x y e 

1 0.943 0.919 15.7 

2 0.505 0.633 5.5 

3 0.956 0.719 10.0 

4 0.528 0.511 2.9 
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1=0 	 E1=1 = 1 

T =0 

Ti(i, t) 	 TR(t) 

C 1 , U1 	 CR, h 

outer wall 	 room 

TR2' t) 

C2 , U 2  

inner wall 

 

Fig. 2.1. Configuration of simplified room with passive solar heating. 
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TABLE 3.1. Solutions to Eqs. (2.33) and (2.34) and RMS errors for a 
heat pulse of duration T (hours). See Table 2.1 for cases. 

T 	 1/4 	 1 

Case 	x 	 y 	e 	x 	y 	e 

1 15.82 16.53 12.6 5.626 8.440 7.8 

2 1.017 2.426 1.7 1.001 2.403 1.6 

3 20.15 17.52 10.7 7.082 8.689 6.7 

4 1.172 2.299 1.5 1.158 2.275 1.4 

TABLE 3.2. The lumped parameters U and C and the decay constants for a 
heat pulse of duration t (hours). See Table 2.1 for cases and 
units. 

T 	 1/4 	 1 

Case 	U 	 C 	AP 	U 	C 	AP 

1 	0.957 	0.231 	99.4 	0.667 	0.453 	35.3 

2 	0.419 	1.574 	6.39 	0.417 	1.590 	6.29 

3 	1.150 	0.218 	126.6 	0.815 	0.440 	44.5 

4 	0.510 	1.661 	7.36 	0.509 	1.679 	7.28 
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TABLE 3.3. Approximate values of x and y calculated 
from Eq. (2.38) and associated root-mean-square 
errors e expressed as a percentage of the mean 
for a heat pulse of duration t (hours). See 
Table 2.1 for the cases. 

e 

Case 	x 	 y 	t=1/4 	Tl 

1 	1.519 	3.422 	20.6 	12.0 

2 	0.843 	2.078 	2.5 	2.3 

3 	1.704 	3.218 	18.9 	10.7 

4 	0.957 	1.957 	2.2 	2.0 



This report was done with support from the 
Department of Energy. Any conclusions or opinions 
expressed in this report represent solely those of the 
author(s) and not necessarily those of The Regents of 
the University of California, the Lawrence Berkeley 
Laboratory or the Department of Energy. 

Reference to a company or product name does 
not imply approval or recommendation of the 
product by the University of California or the U.S. 
Department of Energy to the exclusion of others that 
may be suitable. 



C) 

o<o ' 

o 

H 

tTl 




