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ABSTRACT
A least-squares method for chopsing optimum lumped parameters
for modeling the thermal performance of buildings is preéented; A
fea]istic passive solar heated room is modeled with a one-time constant
Tumped model to bettervthan 10% accuracy. This technique pfovides a
simple method that can be used in thé»design or eva]uatibn of the |
thermal performance of bui]dings_such as those uSing passive solar

. heating.
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I. _ INTRODUCTION

In order'to conserve energy, bﬁi]dings must be built so as to make
the besf use of their various sources of thermal energy. This objective
can only be achieved if designers or standards writers can relate the
' physica1vproperties,of.the building to its thermal performance in a
transparent fashion. In this paper, we presént a simple method for
carrying out this»relationship and show, by applications to a room
with passive solar heating and one with a heater, that the method is
sufficiently accurate. This method will be useful both as a design
tool and as a means for evaluating the impact of_budeing standards.

Many approximations must be made in order to formulate a tractable
set of equations describing the temperature of a complex structure such
as a building. The assumptions of one-dimensional heat flow, perfectly
‘ mixed interior air, and idealized thermal elements are common among
these approximations. While a detaijled assessmentvof the validity of
these approximations has not been made, they cannot be expected to be
more than ten percent accurate. Once the équations have been formula-
ted, one is faced with the taSk of solving them. Here, one can chbose
numerical or analytical, approximate or exact methods. In this paper,
we present an apbroximate analytical method for-solving the equations
whose accuracy is comparable to the'accuracy with which the»origina]
equations_mode] the réa] world structure. |

Before describing ouf method, we c1assify the types of heat sources
or stimuli fhat_drive the temperature of a building. We place them in
two categories. In the first category are thése sources that can be

well represented by a few Fourier components such as the diurnal
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variations of the ahbient temperature. These sources can be efficiently
dealt with by Fourier series methods and wi11 not concern us here. The
sources in the second category change abruptly with time and require

‘many Fourier components for their representation. Examples of such

sources would bé the sunshine falling on thé collector of a passive
solar house or a pulse of heat from an 1nterﬁa1 heater. We will only

_ cbnsider sources of the second category in what follows. Since the tem-

:'perature is linearly related to the heat sources,vit can be represented
as a sum of terms, each term arising from a particular source, when

~ there is more than one heat source present.

Our techn1que is a method for choos1ng the parameters in a lumped
parameter approximation to the original cont1nuum equat1ons Any such
approximation should have the fo110w1ng attributes: | |
1. It must be simple, fbr'this'is its only reason for béfng.

2. It must involve both the structure being simulated and the stimulus
that is apb]ied to it. One can easily vfsua1ize patha]ogiéa] situa-
tions in which & given structure is best simulated by véry different
parameters due to differences in the'stimuius. For example, compare

the results of Secs. II and III. .
3. The method must. be accurate and it should yield an error estimate.

4. It should be possible to systematically improve the approximation
if the erkor estimate is unacceptably large.
The method we present shares all of these attributes.
We choose the parameters in our 1umpéd barameter'approximation to
a set of "exact" continuuh equations so that the approximate temperature
is a least-squares fit td the exact temperature. This fit is done in

frequency--rather than time--space since both exact and approximate
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equatfons Can(be easily solved for a given frequency. The most important
dutput, however, is the approximate temperature as a function of time.
In performing this fit; we find that it is very important to separate
the static and dynamic.respohses of the temperature. In the examples we
treat, the average tempefature is fitted exactly and the fluctuations

about the avérage are fitted in the least-squares sense. This separation

‘yields values for the dynémic lumped parameters that are very different

from the static ones.

We treat an example in detail as an introduction and test of the
method. It is meant to model a room with passive solar heating. The
1e§st-squares fit to the temperdture yields a natural root-mean-square
error as an error estimate, and we find that it is abbut 10% of the
mean or less for thé examples treated. Since these examples were
chosen so as to be a severe test of the method (the root-mean-square
variation of the temperatufe about the mean is 63-98% of the mean) we
believe that this is a generous estimate of the errors. We also present
a very simple approximation to the root—meah-square fit which yields
results that are very close to the best fit.

| The method ahd passfve—so]ak examp]e are treated in parallel in
Sec..II. A second ekamp]e of a room with a heat source that delivers
a pulse of heat is treated in Sec. III. Comments and conclusions are
given in Sec. IV, |

Our method is.not intended to compete with the large computer pro-

gr'ams1 used in building simulations. Properly used, it would compliment

" the detailed results that they produce. Our method gives a simple

qualitative relationship between building design barameters and thermal
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performance rather than a detailed response of a particular design to
a specific pattern 6f use. Given the uncerfainties in the basic equa-'
tions, construction practices, and use and weather patterns, this may
l>be sufficient information for the designer. Background information on
heat transfer_and environmental engineering may be found in Ref. 2.

A rudimentary_]umped parameter model is considered in}Ref. 3.



.II.. DETERMINATION OF PARAMEfERS ,

In general, the sources of heat in a building can be placed in.
one of two categeries. They are either smoothly varying in ttme and
can he well represented by a few terms in a Fourier series or they are
rapie]y varying and require many terms for an accurate representation.
vThe»response of the building to the smoothly varying sources of the '
.firstikind cen be ca1cu1ated.using standard Fourier techniques. Here,
we are cencerned_with mode1ing the response to the rapidly varying
sources. This is done by constructing e lumped parameter model of the
buiiding and'chdosing optimum values for the parameters. The choice is
done so ée to minimize the mean square errors of the model temperature.
In this section, we develop this method of parameter choice while treat-
ing a specific model in detail as an example. We also consider.a simple
“approximate choice of parameters which yields results that are a]host
as goed as the optimum. We find that a simple model with a single time
constant can predtet the perfbrmance of a.complex structure with errors
_ of the order of 10%. However, the values of the optimum parameters are

very different form those obtained by "physical" arguments based upon
‘the static respohse of the structure.

We consider the temperature of a room TR that 1s surrounded by
therma] elements and subjected to a periodic heat source. In order to
be specific,rwe assume that the fundamental period is one day, P =24
hours, although this is not at all necessary and variationé in. the
weather can be eas11y taken into account. In general, the heat source
‘can be characterized by some source temperature TS’ e.g., as the heat

rate divided by some charcteristic heat conductance of the room.’
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Then, by the aSsumed periodicity of the source, we can write

(>

To(t) = gg;a> T e™t | 7 : (@)

where w = 2m/P and TSn the Fourief coefficients of the source TS.'

Since TS is real, we must haye TSﬁ = T;Qn" The room temperature respohse
to the source (2.1) TRIWi11 also be periodic with Fourier coefficients
TRn; No matter how complex the structure ié, this respbnse will be |

linear and we can write

TRn. = Xn Tsp » - - (2.2)

where X, depends upon the structure. Since TR is real, we have 3
Xp = xtn'and'since causes must precede effects, we have the imaginary

part of X, is negative for positive n. We therefore write X, as

Xp = Xp = 1Xy s L S (2.3)
wherg;the real part of Xy x;;ﬁis ah éven function of n and the
negative imaginary part X; is an odd function of n which is'positive
for positive n.

In'ordék to make the above consideratioﬁs more concrete, we consider
a specific example which we will carry éloﬁg throughout this section.
The example is.a simplified model of a room with passivé'so]ar heating.
It consists of an outer waT] and an inner wall. Sunshine is incident
upon the inner wall, and one dimensional heat flow‘takes place between
" the walls, room, and outer environment. This is pictured in Fig. 2.1.

This can be taken as a véry simplified model of a room which has no

heat conduction through the three interior walls and floor, which are
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mode led by.thé "inner" wall, but 1oosés heat through the outer wall and
roof which are modeled by the "outer* wall. The aséumption of one-
dimeﬁsional heatvflow neg]ects'temperature variations at the corners of
the walls and throughbdt the air in the room. One can easily sdphisti-
cate the mode]_by adding thermal elements and/or modifying the boundary
conditions. Howevér, it is very hard to get around the assumption of one-
dimensional heat flow without an undue émount’of additional computation.
Quantities bertaining to the outer wa]l are denoted by a subscript
"1". It has a U-value Ul’ a heat capacity per unit area Cl, and thick-
ness dy. The temperaturé distribution in this wall is Tl(El,t), where |

€1 = X1/dy and X; the pdsition in the wall measured from the outer

- surface. The one dimensional heat flow in this wall is governed by the

diffusion equation

v S
Moo 2N, o (2.4)
3 1 /27 _

2E-

where Al = Ul/C1 is the decay constant for the wall.
We measure all the temperatures with respect to the outside temperature
and assume that the outer wall is strongly coupled to the outside air

so that the outer boundary condition is
Tl(gl = 0, t) = .0° v ‘ | (2.5)

We assume that the inner surface of the outer wall is coupled to the
room temperature Tp through a film coefficient h so that the inner.

boundary condition is
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3T1(€1 = 1, 't)

- = | =1, ‘ 2.6
N 3;;1 = M [Tl(gl =1, t) - TR(t)] . ( )

\

where N o= h/Ul.
These equations determine the temperature of the outer wall Tl.
Quantitjes,pertaining to the .inner wa11 afe'denoted by a Subscript
“2". It has a U-value U2, a heat capacity per uhit area-C2 and a |
thickness d2° The temperature distribution in this wall is TZ(EZ, t),
where €y = X2/d2 and X2 is the’position in the wall, It satisfies

the diffusion equation

| ) | .
aT i -

T2 2 , : : : (2.7)
it - —= T

vwhere A, =V-UZ/CZ is fhe decay.constant for this wall. We assume that
the inner surface of this wall is coupled to the room ‘temperature

through a film coefficient h (taken to be the same for both walls for
simplicity) and that there is a solar flux S(t) incident upon it. The

~ inner boundary condition is

- % zagz — T M [TR(t) - To€p =0, t) + Ts(t)] (2.8)

where n2'= h/U, and Ts(t) = S(t)/h is the characteristic temperature
of the solar heat flux. The outer surféce of this wall is assumed to
be perfectly insulated so that the boundary condition is
To(&r =1, t) L ' | (2.9)
= 0 . . .
352 ,

These equations determine the temperature distribution in the second
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The room is assumed to have a heat capdtity per unit area CR and
temperature TR which, as stétedvabbve,vis coupTed to the two walls by
film coefficients h. We then have |

d TR(t) 1 | : '

@t RTR(E) = 34 [T1(51 =1, t) + Th(g, = 0, t)] ' (2.10)
‘where AR = 2h/Cr. _

This description_of'a(room 15,'of courSe, oversimplified and is
presented here as a éedagogica] aid in our-description of the method.
_Neverthe1ess, one céh interpret the outer "wall" as the average of
the true outer wall p]us roof and the inner "wall" as the average of
the true 3 inner walls p]us»f1oor. These elements could all be treated
separately without an undue increase in complexity if.greater accuracy
and flexibility are desired. |

Equations (2.4 -_2.10) plus the condition of periodicity completely
determine the temperatures of the modé] in terms of TS.” We first con-
s{der the time-independent.D.C. response. In;fhis case, the temperatures

are'given by

_ _ . ‘ (2.11)
Tl(gl) = Tl]_ TSO F’]. '. W El ", . , ‘ :
. (2 1)\, . (2.12)
e = e Ty = (R4 L)s, |
C 14 (1.1 f O (2.13)
TRo (1 f hl) Tso ( h U1> So’

where S0 is the n = 0 Fourier coefficient of‘the solar flux S(t).
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Xo = 1+ ni. | - - (2.14)

We next consider the dyhamic responseubf frequency nw. -In this

case, the equations yiejd, apart from a factor e1nwt,

T, = Bcoshk, (1 -&,), - R © (2.16)

with _
o ) -

kj = mw‘/AJ. , J=1,2, | : (?.17)
and

A = | nl TR/[kl cosh kl + nl S'lflh kl] 5" i (2.18)

B = n, (Tp + Ts)/[k, sinh k, + n, cosh k, ], ©(2.19)
with Tp = Xn_TS and

-1 Ko 2w+ 1
X, .= 1 +— tanh k,J{ 1+ -1
A N2 2 AR 1+ El-'tanh k
Ky 1 (2.20)

This comﬁ]etes the solution of the continuUm model. Equations (2.14)
and (2.20) are explicit examp]és of the general result (2.2).

Returning to the general development, we cohstruct a simple lumped
parameter model of - the room témperature. We choose a hode] that consists
of a heat»capacity C coupled to the outside air through a conductance U

and which is stimulated by a modified solar flux. The solar flux is
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modified by having'a renormalized D.C. component. This modification

decouples the statiC'and dynamic aspects of the model and C and U

affect -only the dynamic aspects. The temperature of the heat capacity
C, T, which is meant to model the room temperature TR satisfies the

equation -
dT . g R (2.21)
CaHUT = %S5 (5-5) |

where déSo is the modified D.C. component of the solar flux. We

rewrite this»equation as

Tt = A[oco Tg, + olTg - Tso)] : (2.22)
where the new parameters are

A_'=!, 0L='b-a', oc=b- .. '

A o U0 - U ‘ (2.23)

The form of the model as described by equatiohs (2.21) and (2.22)
has been dictated by considerations of accuracy and efficiency. We

have chosen a model with one relaxation time A'1

so that the resulting
expressions for the tehperature, as a function of time, will be simple
and easy to use. This determines fhe‘form of the 1eftehand-side of the
eqhation. The right-hand-side is the result of a compromise between

taking the unmodified source S and the completely modified one

e inwt . Co g |
ji:n a, S e s, Wwith a, = (inwC + U) Xg >

which would yield the exact temperature. The compromise recognizes

that there is a lot of heat capacity in passive solar structures, this
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heet capacity affects the dynamic but not the static response with the
result that x, >>[X;| = |X,[, etc. Thus, it makes sense to treat the
static response separately from the dynamic response. The separatien
also allows a more symmetrical determination of the parameters =0,
from fhe static response and A and o from the dynamic response.

These remarks can be amplified by‘consieering a specific example.

We consider case 2, see Table 2.1, which is discussed in more detail

later on in this section. with o

o @ and A chosen to minimize the

root-mean square error of the model, see below, the model is in (RMS)
error by 5.1% and the'parameters are AP = 3,27, C = 5.85 BTU/ft2 °F,
and U = 0.798 BTU/ft2 OF, However, if we do not medify's and'require
a, = 1, then the model is in (RMS) error by 28% and the parameters
are AP = 0.63, C = 6.9 BTU/ft% °F, and U = 0.18 BTU/ftZ hr OF.
This error is unaceeptably large. The parameters are close to the
continuum parametersvcl + C2 + CR = 12 BTU/ft2 Of and'Ulh/(U1+h) =
0.091 BTU/ft% hr °F. This shows the dominant role played by the static
resbonse in determining fhese parameters which is evident from‘the
magnitudes of X, Ix | =11, Ix| = 0.565, Ix1| = 0.360. Thus,
the introduction of aj leads to a significant ihprovement of fhe model
without any increase in complexity. We now turn to the determination
of the parameters. o
l The accurate simulation of the average temperatﬂre is an important
part of any model. We therefore choose %, SO as to reproduce the

average temperature exactly. From (2.2), we have Tro = % Tgo 2nd,

from (2.2), we have Ty = 6% Tgp. We therefore choose
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G “Xgr | o (2.24)

In the model just discussed we would have from (2;14) a, = 1+ ni-
With this choice of %ys the average temperature falls out of the problem
and Aland o can be chosen to model the dynamic part of the temperature.
We chooSe them so as to minimize the mean squére error defined by
p | |
e = [ e [0 - (1) ] 2 (2.25)

P %

which is expressed as a fraction of the average temperature To. The
- minimization is most e&si]y-cafkied out in frequency space. We first

solve (2.22) for the nonzero frequency components of T

(2.26)

|
—

= _L
X + 1n
where x = A/w and y = aA/w. We then use this result and (2.2) to writev

(2.25) as

2 _ 2 o 2 y - 2 (2.27)
7 172 :Z: [ Tsnl l X ¥in ° an
o n=1 _

which is to be minimized with respect tb x and y.

Setting the derivative of (2.27) with respect to y equal to zero

yields the equation

gy = B0 | N R )
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and from aezlax = 0, we get

Eplx)xy = Fylx), : _  (2.29)
where
- 2.30)
E (X) N ; — ) g = ]92, (
. n=1 (x2 + nz)z . :
-and
Fo(x) = Re %%.-—-JL_IL_. ,  &=1,2, | (2.31)
n (x - in) C -
with
s. = [T /T2 . | (2.32)
n | B L . | .

We get a single equation for x by dividing (2.29) by (2.28)

Lo Bl Falx) | (2.33)
OB Fx) v
E2 X F1 X
This equation is discussed in more detail in the Appendix.
Solving (2.33) fbr X, we then obtain y from
- Fl(X) . - : - . . (2.34)
YR |
‘The mean equare error at the minimum point is then given by
00 ) . 2
2 . 2. 2 1. | (2.35)
et = 210 splxl” - 757
The parameters x and y depend upon the shape of the time dependence

of the heat source T. through the presence of the magnitudes of the

S
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 Fourier coefficients in s_ in the sums Eq and Fo- For our example we

n
~ chose T¢ to be half of a sine wave which is 8 hours long, i.e.,

sin §¥ t, 0<t< %- .

To(t)

= 0 o, §_< t < P , (2.36)
plus periodic extension. Note that the overa]l'amp1itude of TS does -

" not enter into our equations so we have set it equaf to one. With

this choice of TS, we have

: 2mn _
_ 81 (1 + cos 530 ' (2.37)

S =
n 3? (nz _ 9/4)2

4 for large n, the sums in (2.30) and

Since s, is proportional to n-
_(2.31)'converge very fast. With this choice of S,» We can proceed
to solve (2.33) ahd 2.34) for x and y and calculate the root-mean-
square error e from (2.35). | |

Our example is defined by X, (2.20) and s, (2.37). In Table 2.1,
we list the values of the éontinuum parameters that were chosen for
study and the resu]t;ng values of x, y, and e. The average RMS error
of 7.8% for the four cases indicates that this method is sufficiently
accurate for‘qua1itativeApredictions.' The‘mosf notable features of
these results are the stroﬁg dependence df x and y on CR and their weak
dependence on Cé. In Table 2.2,_We presenf the same results in the
form of the lumped parameters U and C 6btéined from (2.23). Note that
the valuet of U are very large compared to that of the outer wall plus

film. This emphasizes the'importance of separating static and dynamic

responses. In Table 2.3, we compare the various decay constants of the -
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A \
continuum system with that of the Tumped system. Here, XA is the decay

‘constant of the slowest normal mode of continuum system. There are
several important points to be noted from these numbers. First, since
for all cases A >>), we are not exciting just one ndrma] mode which
would make the good\agreement indicated in Table 2.1 a fathér weak test
of the method. vSecond, we note that there is a very strong dependence
of A on Cp but a very weak dependence on C,.

The solution of Eq. (2.33) fo; x is straiéhtforward but rather
tedious unless it can bé done oh a computer. We therefore turn to a
simple approximate solution which yields fesults that are not éignifi-
cantly worse than those obtained from (2.33). The approximation is
based upon‘the observation that Xn is a slowly varying functidh of n.
We can therefore obtain approximate expréssions for x and y by choosing

2

fhem so that fhe n=1 term in e“, (2.27), is zero. This yields the

simple results

1 ‘ 2
Xl IXl |
X1 X1

R

X (2f38)

which would also be obtained from (2.33) and (2.34) if only the first
term in the sums (2.30) and (2.31) are kept. Values of x and y ca]cﬁ]a-
ted from (2.38) and the associated root-mean-square errors are presented
in Table 2.4, Comparing the values of e in this table with those in
Table 2.1, we see that this approximation does not incur a serious
pena1ty since it increases the error by an average of 0.7%.

For the sake of completeness, we conciude this section with express-

ions for T as a function of time. We take Tq as (2.36) so that T is
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~given up to an everall scale factor by

iy | P - Biuty2

_2 iy i _ P
T‘ﬁ(%'“)*x% Lo s 0<t<j3
+AP/3
2 3 1+e At p (2.39)
"Wt gs Towe s 3<t<P,

i}

plus periodic éxtension. This expression is the solution of (2.22)
that is continuous and periodic with TS given by (2.36). The real
bart of a11 comp lex expressions is 1mp1ied. The parameter ao'equals
11 for all the_casés we haVe treated and d = 0.93, 1.25, 0.72, 0.97
for cases 1 through.4 respectively. The other parameters can be read

from the tables.
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IIT. RESPONSE TO A HEATING PULSE

We now turn fo %he response of the room described in Sec. II to
a heatfng‘pulse such as would be experienced at the beginning of a day
during the heating season. Since the room temperature is a sum of terms
with each term representing the response to a separate heat input, we
can consider this problem separately from the one treated in the previ-
ous section. As a result, one may get very different lumped parameters
for the response to each of the sources; Since these parameters are
obtained by minimizing'the RMS error in the modeled response to each
of the sources sepa?ate]y“and,not fhe tota]-RMS,error.in,the presence
of several soufces; We are making the approximation that we can neglect
cross-terms in the RMS'error. Sincehthis approximation decouples the |
determinatibns of the sepérate Tumped pafameters and renders them inde-
pendent of the.relative amplitudes of the various sources, it is crucial
to the practical application of our method. This approximation will
be accurate if we can model the responsevto each separate sodrée to
within our 10% criterion of accuracy. |

Ihe equations describing the room with a heater are only a slight
modification of those given in Sec. II. Equations (2.4) - (2.7) and
(2.9) are unchanged while (2.8) has TS = 0 and there is an additional
"~ term 2TH(t) inside the square brackets on the right-hand-side of (2.10)

which represents the heater input. Here TH is.given by

TH(t) =%}§—ka=%ﬁ—) s ' | (3.1)
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where ( is the rate of heat input per unit area from the heater. We
will take Q to be a square pulse of height H and lasting from time
to to tl' Recall that the day starts when the sunshine comes>through

the window, see (2.36). The Fourier coefficients of TH are given by
L ) (3.2
We might now prdceed along the.1ines developed in Sec. II. That

is, we might write the qurier coefficients of the room temperature as

Tan = X Thn (this is Eq. (2;2) with a different_xn) and so]ve for X

We would then determine the optimum Tumped parameters from equations

.similar fo-(2.33) and (2;34). Thfs procedure yie]ds'resu1ts with un-

“acceptably high errors--50% of more. The reason for.this fai]urexcan

be seen in Eq. (2.10) with a square-pulse source term on the right-hand-

side. Depending upon the magnitude of AR, TR will try to fo]]ow this

pu]sé with a quick rise and fast re]axatfon in times of the order of

1/Ag. At the same time‘TR is driven by the terms T, and T, on the right-

hand-side of (2.10) which typically change over periods characteristic

of the walls whichvafe much 1ongervthan 1/Aé. Thus, the reason for the

breakdown of the method in this case is that we are trying to model a

system that has fwo drastica]]y differentttime scales with one time.con-

stant. We therefore have to modify our method so as to eliminate one

of the time scales before proceeding as.in Sec. II.

| In order to eliminate rapidly chénging part of TR; we split it

- into two parts, a direct part Tg and an indirect part T&, as

TR(t)’=Tg(t) + T;(t) S | (3.3)
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The direct part is defined to be the periodic solution of the equation

arg '
R U i U S (3.4)
and the indirect part is the solution of Eq. (2.10). The direct term
now plays the role of a source for the indirect term since it appears
in (2.6) and (2.8) when (3.3) is used for TR. We can then write the
relation between the Fourief coefficients of T; and Tg as T;n =

X, Tgn and proceed as in Sec. II. .This means that we must also split

the Tumped-parameter-model temperature into direct and indirect parts

as in (3.3), i.e.,
=t iy (3.5)

with

) =T | o (3.6)

and Ti determined by Eq. (2.22) with TS replaced by Tg. Since the RMS

error (2.25) depends upon the difference between T and TR the direct
parts cancel due to (3.6) and we are left with the problem of deférmining
‘the optimumllumped parameters for the indirebt part which can be well
~simulated with one time constant. We first determine Tg from (3.4) and
then Xn from the modified Eqs.v(2,4) - (2.10). These results can then

be used in (2.33) and (2.34) to determine the values of the optimum
Tumped barameters. |

We solve Eq. (3.4) using (3.1) for TH and requiring continuity

and periodicity. We then get
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. - t-t‘ . .
Tg(t) ',%ﬁ [l'e aille 0)] e'éR(P't1+?), 0 <t <tg,

1-e'{\RP ,
_H | 1- "AR(,P"'tO-t‘l) -Ap(t-t } |
= 7h {]}i[ e o TRP ROt < <t
-MR(t1-tg) | »
_H ]1- AR (t-t 3.7
W [ T ] RO,y <ecr. G

- The Fourier coefficients of Tg can be kead directly from (3.4) and

(3.2) or calculated from (3.7) with the result

d ARe"'inU)tO

TRn = 2rin(Ag+Tnw) '

[l_e-inw(tl'to)] ‘%ﬁ . | (3.8)

;
R
The solutions for T1 and T2 given in (2.15) and (2.16) are still

This is to be used as the source for T

valid and the constants A and B are given by (2.18) and (2.19) with
TS = 0 and TR given by (3.3) and (3.8). These results are then substi-
tuted into (2.10), with TR replaced by.T;; which is then solved for

i _ d . wy
TRn = XnTRn with the result,
R : 1 " 1 -1
an =2 <1 + 1nw> + _ 1
L AR ky -k, |

As a check on this expression, we mayvvérify'that they give the correct

zero-frequency results. From (3.8) we have TRg = (tl-tO)H/ZPh and from

(3.9) we have Xg = 1+2n1; We then have

- o d H(t1-tq)
- Ton - 1-t0 1.1
| TRO = (1+X0) RO = __._P__. B + _I

which is the expected result.
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The lumped parameters U and C can now be obtaﬁned from x and y

given by (2.33) and (2.34) with Xh given by -(3.8) a’nd-sn given by

n Tgn/TO :
1 B Rl N
T E B | o

The mean-square error'is'giyengby.(2,35) and a {s éiveﬁvby (2.24) plus
the above‘zero frequency fesﬁ]ts, aé ?.1+2n1.

In Tables 3.1 - 3.3, we present some numerical examples of the
above procedure,' We have chosen the-room parametérs to be the same as
the four'cases treafedfinvSec,fIT,so'thét the strong process dependence
of the optimum lumped parémeters is demonstrated. We have also chosen -
two pulse dukétibns--a short pulse 1/4 hour long and a long pulse 1 hour
_1ohg;-in order.to illustrate the dependence on this parameter.

.in Tabie 3.1, we present the ca]cu1§ted values of X, ¥y, and the
RMS error for the eight cases that we have treated. These numbers show ~
a very strong dependence on CR as one would expect. Furthermore, there
is a strong dependence on the pulse duration when CR = 0 but a very
weak dependence when CR = 1 BTU/°F ftzlr The‘RMS'errors are all in or
near our acceptable range. It should be pointed out that if we do not
separate the room temperature into a direct and indirect part, (3.3),

but try to simulate the room temperature with a single time constant

such as was used in Sec. II, then these errors are increased by roughly
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a factor of 10. This would place us well outside the acceptable range.
Thus, the utility of the separation (3.3) has been demonstrated.

In Table 3.2, we present the dimensional lumped parameters U and
C and fhe decay constant A, Here one sees striking differehces between
~ these values and thosé given in Tables 2.2 and 2.3 for the passive solar
room. One also sees that the heat capacify CR'has‘a very strong effect
on the value A.

In Table 3.3, we present results obtained using the approximation
(2.38) for x and y. Here, we see that the resultant values of x and y
can be very different from those given in Table 3.1. This is a reflec-
tion of the importance of higher harmonics of the fundamental frequency
in this modeling. The errors given in this table are satisfactory in
many cases. Thus, this approXimat{onvcan‘be used to obtain a rough

idea of the temporal development of the temperature.
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IV. CONCLUSION |

| We have presented a method for ;onstructing simp]é Tumped parameter‘
models of thermal structures that ére sﬁbjected to periodic sources of
heat. The method was applied to two examples to explore its domain of
applicability. The first example was intended to simulate a room with
passive solar heating and the second was a roém subjected to a square
~ wave pulse of heat. The method is quite genefg] and can be QSed to model
any thermal system that is subjected to a pefisdic stimulus. One must
first calculate the relative spectral weights sy of the stiﬁu]us and the
temperature susceptibility Xn of the system.v The Tumped paramefers then
follow from Eqs. (2.33) and (2.34). The resuTting temperature is the
"best" in the least squéres sense. We present below some comments on
the dependence of the parameters on the shape of the stimulus, parameter
dependence of the accuracy of the method, the utility of introducing
more comp]icated Tumped parameter models with more than ohe decay con- -
stant, and the possibility of mdde]ing systems whose parameters change
discontinuously. |

vThe approximation (2.38) for x and y is a shape independent approxi-

mation since it yie1ds'resu1ts that are independent of the shape of Ts
.as reflected in the values of sh. This approximation gave accurate
results for the example treated in Sec. II and one would therefore expect
that x and y are insensitivie to changes in the-éhape of TS within the
domain of "reasonable® shapes. This conjecture was tested by considering

a source whose shape was an 8 hour square wave,
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1 P

Ts(t) = - 0<t.<§ .
=0, 5<t<p , (4.1)

rather than the 8 hour semisine wave given by (2.36). Thié stimu]us
has relatively stronger high frequenty compdnents_(sn is proportional
to n"2 vather than n~4 fori]arge h).:_Numerical studies show that the
1umpedbparameters are insensitive to this change in-stimu1us. However,
the RMS error is somewhat 1essvfor the square wayé than it is for the
semisine wave. This reflects a corresponding reduction in the variation
of the femperature about its mean value. |
The situation is somewhat différent for the heafer pulse modeled
in Sec III. Théfe we seé that the validity of the shape-independent
approximation depends upon the presence’of a room heat capacity. The
values of x and y as well as the error.e_aré substantially different
for cases 1 and 3 under this.approximation; Table 3.3, than the exact
values given in Table 3.1. However, the approximation seems to work
.we11 for nonzero room heat capacity, caseS 2 and 4,
~ We have chosen é‘value‘for Uy of the 1hner wall that leads to a
~substantial variation in the room temperature._ The RMS variation of
thé room temperature about its mean is typicaf]y 63-98% for the examplés
treated. Larger values of Uy would lead to a smaller variation of the
temperature and a less demahding test of the method.
.It is possible to improve'the accuracy of the lumped model by coup-
ling additional heat Capacities to thévone whose temperatufe models that

~of the room. The new parameters characterizing these heat capacities
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could be determined by minimizing the RMS error in the model temperature.
However, these new parameters are liable to be very inefficient since
they ihtroduce substantial complications into the ca]culations and can-
.hbt be expected to make dramatic improvements in the accu;acy. The
cOmp]iCatiOnsvcome about.both in the determination of the pdrametérs
and in the representation of the.temperature7as a function of time.
The improved accuracy cannot be more than one or two percent per addi-
tional heat capacity since a single heat capacity gives results that are
within '10% of the exacf results. Thus, the introduction of additional
.parameters~WOu1q only be,justifiéd under speciél'circumstancés.

| Syétéms wbosé parameters,changé discontinuous]y, e.g., the closing
of shutters at night, cannotibe easily treated by Foufier techniques.
Therefore, our methods cannot be directly applied to them. However;
" our method can be used'to‘determihe optimum lumped parameters’for each
value of the system parameters and these could then be used to model
the system temperature. The accuracy of this approach requires further
investigation. | | | _ |

We conclude that the method we have- presented for deve]bping

Tumped parameter models of complex thermal stfuctures is bofh practical

and accurate.
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~

VAPPENDIX: ANALYSIS OF EQUATION (2.33)

. Some insight into the structure of Eq. (2.33) can be obtained
By géneré]iiing x to a complex variable z and Studying the analytic
properties of the functions involved. . waever, as a practicé] matter,
. fhe eqUatidn-is most easily solved by calculating the functions directly
from their definitions (2.30) and‘(2.31). |
| In order to study the analytic structure of (2.33), we jntroduce

two new functions

L U T
QA 1O
Fo(x) . - . - |
PO =Eny T dan Fy(x) . (A1)

and genera1ize‘; touavcomp1ex variable z. Since Eq(2) anszi(z);

Egs. (2.30) and (2.31), are merohorpﬁfc functions, E and F will also

be merbmorphic. Furfhermore, the poles of E(F) will be located at

the poles and zeros of El(Fl) and the resigues of the ploes of the
logarithmic derivatives will be plus or minus one. With this information,
we can write down alternate expressions for E and F |

E(z) = Zw: 1 - 2 1 , | | (A.2)

m=1 22+m2 =1 22+£%

S 1 S (L,
F(z) = 2z - - ( +— )
- =1 \ z- A.3
m—1 22+m2 | Z-CO 2—1 z Cl z-;Q ) ( )
where + ig, are roots of the equation
>n o  (A.8)

El(z) = = 0,

n=1 22+n2
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and ¢, £,, and ;; are roots of the equation

_ 1 SnXn (A.5) |
LCREED e

We can use the funct1ons E and F to rewrite (2 33) as xE(x) = F(x), -

or using (A.2) and (A.3) as

0

T cothmx - 1_ + 1 .1 (1 .1 . ". :
?.co ™ =1 x2+g% X-gy =1\ X-C * 0 (A.6) .

" where we have used
- _

D 1 g 1 |
: = coth - =
m=1 22+m2 . E "2 . 222 . : (A°7)

Thus, all the effects,of'the'stimulus Sh and the system Xp are contained
in the roots of Egs. (A.4) and (A.5). _

v It is easy to show that the roots of (A. 4) are real and Tlie in
the 1ntervals L <:§2<: 2-1. Furthermore, we can write an explicit

expression for El(z) in terms of the stimulus as follows: we write
, _— -
£(2) = 1 f at 62(t, 7), | - (A.8)
P 0 . ». .

where G is the continuous and periodic solution of the equation

© 4oy - 2[5t - 1] (A.9)
- - 'S0 -

This equatioh can be solved an an expression for EliSbtainEd for any

specific Ts(t). The roots of this expression | 'cah then be easily

calculated. It is difficult to say-anything genefé11y prqe about

the roots of (A.5) since they are complex roots of a complex equatiqn.
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TABLE 2.1. Continuum parameters and resultant solutions of Egs. (2.33)
' and (2.34) for passive solar room. The U's and h are given in
Btu/OF-hr-ftZ and the C's in Btu/OF-ft2. The RMS error e is given
_in percent of the mean. S

) .casg h U] | C] U2 C2 CR X y e
1 1 0. 1 0.5 10 0 1.085 1.006 14.2
2 1 01 1 05 10 1 - 052 0653 5.1
3 1 01 1 05 2 0  1.066 0.766 9.2
4 1

0.1 1 0.5 © 20 1 0.537 0.521 2.7

TABLE 2.2. The lumped parameters U and C for
passive solar room. See Table 2.1 for
cases and units. ‘

Case » | U C

1 1079 3.797
2 0.798  5.849
3 1.392 4.987
4 -1.031 7.332
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TABLE 2.3. Decay constants for passive solar room. See Table 2.1
for cases. '

 Case AP AP AP AP
I 2.4 1.2 0.186 6.817 .
2 2.4 12 0173 3.274
3 2.4 0.6  0.094 6.698
4

2.4 0.6 0.090  3.374

TABLE 2.4. Approximate values of x and y calculated from
Eq. (2.38) and associated root-mean-square errors e
expressed.as a percentage of the mean for passive solar
room. See Table 2.1 for cases.

Case X ' y e
1 o 0.943 0.919 15.7
2 0.505 ~0.633 5.5
3 10.956 0.719 10.0
4

0.528 0.511 2.9
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51-0 El= EZ‘O €2=1
& .
_ | | /
T=0 , . f
Cl, Ul o CR, h : C2,'U2 ;
, o . f
/
outer wall - room _ inner wall

Fig. 2.1. Configuration of simpTified room with passive solar heating.
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TABLE 3.1. Solutions to Eqs. (2.33) and (2.34) and RMS errors for a
heat pulse of duration T (hours). See Table 2.1 for cases. -

T 1/4 1

Case X 'y e X y e
1 15.82 16.53 12.6 5.626 8.440 7.8
2 -1.017 1 2.426 1.7 1.001 2.403 1.6
3 20.15 "17.52 10.7 7.082 '8.689 6.7
4 1.172 2.299 1.5  1.158  2.275 1.4

TABLE 3.2. The Tumped pafameters U and C and the decay constants for a
heat pulse of duration t (hours).

See Table 2.1 for cases and

units.
T 1/4 1
Case U C AP U C AP
1 0.957 0.231 . 99.4 0.667  0.453  35.3
2 0.419 1.574 6.39 . 0.417 1590 6.29
3 1.150 0.218  126.6  0.815  0.440  44.5
4 0.510 1.661 7.36 1.679  7.28

0.509
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TABLE 3.3. Approximate values of x and y calculated
from Eq. (2.38) and associated root-mean-square
errors e expressed as a percentage of the mean
for a heat pulse of durat1on T (hours) See
Tab]e 2.1 for the cases.

e
Case X y 1=1/4 =1
1 1.519 3.422 £ 20.6 12.0
0.843 . 2.078 2.5 2.3

1.704 . . 3.218 18.9. ~ 10.7

HwWw N

0.957 1.957 2.2 2.0

e
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