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Simple Summary: Convolutional neural networks (CNNs) have shown promising performance in
recognizing oral cancer. However, the lack of interpretability and reliability remain major challenges
in the development of trustworthy computer-aided diagnosis systems. To address this issue, we
proposed a neural network architecture that integrates visual explanation and attention mechanisms.
It improves the recognition performance via the attention mechanism while simultaneously providing
interpretability for decision-making. Furthermore, our system incorporates Human-in-the-loop
(HITL) deep learning to enhance the reliability and accuracy of the system through the integration of
human and machine intelligence. We embedded expert knowledge into the network by manually
editing the attention map for the attention mechanism.

Abstract: Convolutional neural networks have demonstrated excellent performance in oral cancer
detection and classification. However, the end-to-end learning strategy makes CNNs hard to interpret,
and it can be challenging to fully understand the decision-making procedure. Additionally, reliability
is also a significant challenge for CNN based approaches. In this study, we proposed a neural
network called the attention branch network (ABN), which combines the visual explanation and
attention mechanisms to improve the recognition performance and interpret the decision-making
simultaneously. We also embedded expert knowledge into the network by having human experts
manually edit the attention maps for the attention mechanism. Our experiments have shown that ABN
performs better than the original baseline network. By introducing the Squeeze-and-Excitation (SE)
blocks to the network, the cross-validation accuracy increased further. Furthermore, we observed that
some previously misclassified cases were correctly recognized after updating by manually editing the
attention maps. The cross-validation accuracy increased from 0.846 to 0.875 with the ABN (Resnet18
as baseline), 0.877 with SE-ABN, and 0.903 after embedding expert knowledge. The proposed method
provides an accurate, interpretable, and reliable oral cancer computer-aided diagnosis system through
visual explanation, attention mechanisms, and expert knowledge embedding.

Keywords: visual explanation; attention mechanism; human-in-the-loop deep learning; attention
map; expert knowledge embedding; attention branch network
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1. Introduction

Convolutional neural networks have achieved outstanding performance in many
visual tasks [1–3]. However, the end-to-end learning strategy used in CNNs makes them
hard to interpret. It is difficult to fully understand the CNNs’ decision-making procedure
that is hidden inside the network. Interpreting deep learning models has been a challenge
for a long time. Many researchers have realized the significance and developed several
methods for deep learning visual explanation [4]. Visual explanation generates an attention
map that highlights discriminative regions used for CNN decision-making, which is a
common approach for interpreting deep learning models. There are two types of visual
explanations: response-based and gradient-based. Response-based approaches, such
as Class Activation Mapping (CAM) [5], use the response of the convolutional layer to
generate the attention map. Gradient-based approaches, such as gradient weighted-CAM
(Grad-CAM) [6], use gradient and feed forward response to generate the attention map.
CAM and Grad-CAM are two widely used visual explanation methods. CAM uses the
K channel feature map from the convolution layer and the weight at a fully connected
layer to calculate the attention map. However, this method requires modification of the
CNN architectures, that is, replacing the fully connected layer of the original network with
a convolutional layer and global average pooling. Grad-CAM uses the response of the
convolution layer and a positive gradient in the backpropagation process to generate the
attention map. Grad-CAM can be applied to interpret various models without changing
network architecture or re-training.

Attention mechanism is a powerful tool that efficiently allocates the available pro-
cessing resources to the most informative part of the input signal [7]. It has been applied
to many fields such as computer vision and natural language processing. The attention
mechanism is usually implemented in combination with a gating function such as softmax
or sigmoid and sequential techniques. In image recognition tasks, previous researchers
have proposed several attention-based approaches. One such approach is Squeeze-and-
Excitation network (SENet) [8], which allows the network to perform feature recalibration.
It can use the global information to emphasize the most informative features and suppress
the less informative ones. The SE block is a lightweight gating mechanism that models
channel-wise relationships in a computationally efficient manner. Another approach is
Residual Attention Network [9], which employs multiple attention modules, each with
a mask branch and a trunk branch. It also utilizes an attention residual learning mech-
anism to optimize very deep Residual Attention architecture and bottom-up top-down
feedforward attention structure.

Attention branch network (ABN) [10], inspired by visual explanation and attention
mechanisms, uses the attention map for both visual explanation and attention mechanism.
The highlighted region in the attention map is considered an informative part and obtains
more attention in image recognition. ABN has a feature extractor to extract features; the
feature extractor could be various baseline models such as Resnet or VGGNet. It also
consists of an attention branch and a perception branch. The attention branch extends the
response-based visualization method CAM to generate an attention map. The perception
branch of the ABN model utilizes the informative regions and highlighted regions in the
attention map to emphasize the relevant features and suppress others to produce the final
results. By integrating visual explanation and attention mechanism, the ABN model can
interpret the decision-making of the deep learning network and improve the recognition
performance simultaneously. Ding et al. [11] proposed a deep attention branch network
by introducing two attention branches into a baseline model composed of four dense
blocks, three transition layers, and a classification layer. Additionally, an entropy-guided
loss weighting strategy was introduced to address the class imbalance problem. The
experimental results demonstrate that the proposed method can improve the focusing
ability of networks to accurately locate the discriminative lesion regions and improve the
classification performance; the entropy-guided loss weighting strategy can further boost
the performance.
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Human-in-the-loop (HITL) deep learning [12,13] is a set of strategies that integrates
human knowledge and machine intelligence to enhance the performance of deep learning
models. HITL has attracted significant research interest in the machine learning community,
and many studies have investigated this topic by leveraging the complementary strengths
of human and machine intelligence, resulting in improved accuracy compared to machine
intelligence alone. For instance, Zhu et al. [14] proposed a tool that integrates human
physicians’ knowledge and deep learning algorithms for efficient object detection of renal
pathology. Linsley et al. [15] developed a ClickMe map that collects human feedback
to train the deep learning model via the HITL framework. The method achieved better
performance by introducing human knowledge to the weight of the attention mechanism.
Mitsuhara et al. [16] used manually editable attention maps to embed human knowledge
into deep neural networks. Human experts can intuitively understand the attention map
and edit it interactively through a visual interface. The edited attention maps can improve
recognition performance by reflecting human knowledge.

Oral cancer is one of the most common cancers worldwide and is the second most
common cancer in India [17]. Most high-risk populations living in low- and middle-
income countries do not have adequate medical resources for early diagnosis and treatment.
Therefore, researchers have developed cost-effective methods for oral cancer diagnosis
such as fluorescence imaging [18] and fluorescence lifetime imaging [19] to meet these
pressing needs, and these methods have been successfully implemented in low-resource
settings. For instance, Duran-Sierra et al. [19] developed and validated a machine-learning
assisted computer aided detection system to automatically differentiate dysplastic and
cancerous tissue from healthy oral tissue based on in vivo widefield autofluorescence
lifetime imaging endoscopy data. This study evaluated four traditional machine learning
models and did not use convolutional neural network models. Convolutional neural
networks are powerful tools in medical image analysis, and multiple deep learning-based
oral cancer recognition approaches have been introduced [20–23]. However, improving the
accuracy, reliability, and interpretability of these models is still challenging. In this work,
we use the attention branch network and Squeeze-and-Excitation blocks to apply visual
explanation and attention mechanisms into the oral cancer recognition model. The attention
map generated from the attention branch can interpret the model’s predictions and improve
the performance through the perception branch via the attention mechanism. Additionally,
human experts manually edited the automatically generated attention map and fed it back
to the network’s perception branch. The manual editing helps to accurately highlight the
oral lesion or healthy regions according to the annotation of oral oncology specialists. Our
experimental results demonstrate that incorporating ABN and SE blocks improves the
classification accuracy of convolutional networks. Furthermore, expert knowledge, in the
form of manually edited attention maps, leads to improved reliability and performance.

2. Materials and Methods

In Section 2.1, we introduce the Attention branch network (ABN) and discuss its two
main components: the attention branch and the perception branch (Sections 2.1.1 and 2.1.2).
We then outline the training process for ABN in Section 2.2. In Section 2.3, we discuss
how human expert knowledge can be integrated into the ABN network to improve its
performance.

Additionally, in Section 2.4, we present another attention method, the Squeeze-and-
Excitation, which we used to further enhance the network’s performance. Finally, we
describe the dataset used for this study in Section 2.5.

2.1. Attention Branch Network

Attention branch network (ABN) [10] extends the response-based visual explanation
model, which is able to visualize the attention map for visual explanation while improving
the CNN performance with the attention mechanism simultaneously. It consists of three
components: the feature extractor that contains convolutional layers to extract feature maps
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from the input image; the attention branch that generates an attention map based on CAM
for the attention mechanism and visual explanation; and the perception branch that outputs
the probabilities of classes using the feature map from feature extractor and attention map
from the attention branch. The block diagram of the attention branch network for our oral
cancer classification task is shown in Figure 1.
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Figure 1. The block diagram of the attention branch network for our oral cancer task [10]. It has
a feature extractor, an attention branch, and a perception branch. The perception branch uses the
attention map generated from the attention branch to emphasize the most informative features.

2.1.1. Attention Branch

The ABN extends the CAM. CAM applies global average pooling (GAP) on the
convolutional feature maps to produce the desired output. It can identify the importance
of the image areas for CNN decision-making by projecting back the weights of the output
layer onto the convolutional feature maps. When CAM visualizes the attention map of each
class, the attention map is generated by multiplying the weighted sum of the feature map.
CAM removes the fully connected layers before the final output and replaces them with
convolution layers. Then, it adds a GAP and a fully connected softmax layer. This fully
connected layer replacement restriction is also introduced into the attention branch. Similar
to CAM, the attention branch uses convolution layer and GAP to generate an attention map.
However, the attention branch replaces the fully connected layer with a Kx1x1 convolution
layer (K is the number of categories) since CAM cannot generate an attention map in
the training process. The Kx1x1 convolution layer imitates the last fully connected layer
of CAM. The class probability output is generated using the response of GAP with the
softmax function after the Kx1x1 convolution layer. The attention branch also generates an
attention map for the attention mechanism. The K feature maps are convoluted by a 1x1x1
convolution layer and then normalized by the sigmoid function as the attention map.

2.1.2. Perception Branch

The perception branch outputs the classification results using the attention maps
from the attention branch and feature maps from the feature extractor with an attention
mechanism. In this study, the attention map M(Xi) is applied to the feature map gc(Xi) by
the following attention mechanism:

g′c(Xi) = gc(Xi)·M(Xi)

2.2. Training of ABN

The loss function of ABN jointly optimizes both attention and perception branches.
The combined loss function L(Xi) was constructed as:

L(Xi) = Latt(Xi) + Lper(Xi)

where Latt(Xi) is the attention branch training loss and Lper(Xi) is the perception branch
training loss. The training loss of each branch is calculated by the combination of the
softmax function and cross-entropy.
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2.3. Manual Editing of Attention Map

As mentioned before, in ABN, the attention map generated from the attention branch
is used for the attention mechanism. The classification result could be adjusted by editing
the attention map. To manually edit the attention map, one initial attention map was
obtained from the attention branch of a trained ABN. Then an attention editor [16] can
be used to manually edit the obtained attention maps interactively. The attention editor
is created using PyQt5 [24] and PyTorch, which can add and remove an attention region
easily via mouse. Since the size of the attention map generated from the attention branch is
14 × 14 pixels, the attention editor resizes it to 224 × 224 pixels and overlays it with the
input oral image. After editing, the edited attention map is resized to 14 × 14 pixels, and
the tool feeds it back for the attention mechanism of ABN to infer updated classification
results through the perception branch. By highlighting the attention location of lesion areas
and removing other regions on the attention map, the edited attention map can improve
the classification results through the attention mechanism of ABN. The block diagram of
the expert knowledge embedding is shown in Figure 2.
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Figure 2. The block diagram shows the embedding of expert knowledge into the network [16]. The
attention maps generated from the attention branch were manually edited and sent back to emphasize
the most informative features.

2.4. SENet

In this study, Resnet18 was used as the baseline network to implement ABN. To further
improve the performance of the Resnet18-ABN network for the oral cancer classification
task, Squeeze-and-Excitation (SE) blocks were also incorporated into the network. SE block
introduces a channel attention mechanism that is composed of three components: squeeze
module, excitation module, and scale module.

The squeeze module uses global average pooling to generate channel-wise statistics,
which reduces the feature map to a single value by taking the average of all the pixels
in that feature map. If the input feature maps size is CxHxW, the output tensor will be
Cx1x1 after passing through the GAP operation. Each feature map is decomposed into a
singular value. The excitation module is to learn the adaptive scaling weights for the Cx1x1
tensor generated from the squeeze module. A gating mechanism with a sigmoid activation
is employed. The gating mechanism is parameterized by forming a bottleneck with two
fully connected layers, a dimensionality-reduction layer, a ReLU, and a dimensionality-
increasing layer. The excitation module inputs the Cx1x1 tensor and outputs a weighted
tensor of the same Cx1x1 size. After obtaining the Cx1x1 weighted tensor from the excitation
module, it is scaled to a range of 0–1 through a sigmoid activation layer. Subsequently, the
normalized weighted tensor is applied directly to the input by an element multiplication
that scales each channel/feature map in the input with the corresponding learned weights.
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The SE block could be applied to multiple existing network architectures and improves
the network performance at a minimal additional computational cost. When adding the SE
block to the residual network, it is inserted after the final convolutional layer of the residual
block and before the residual is added to the skip connection.

2.5. Dataset

The dataset used in this study was captured using our customized oral cancer screen-
ing platform [25], which was obtained from patients attending the outpatient clinics of
the Department of Oral Medicine and Radiology at the KLE Society Institute of Dental
Sciences (KLE), the Head and Neck Oncology Department of Mazumdar Shaw Medical
Center (MSMC), and the Christian Institute of Health Sciences and Research (CIHSR), India.
Institutional ethics committee approval was obtained from all participating hospitals and
written informed consents were collected from all subjects enrolled.

The data collection and study followed the International Conference of Harmonization
recommendation on Good Clinical Practice, and all methods were carried out in accordance
with relevant guidelines and regulations. The study protocol was registered in the Clinical
Trial Registry of the Indian Council of Medical Research (CTRI/2019/11/022167, Registered
on: 27 November 2019). The subjects were recruited at the study sub-centers, which were
monitored by nodal centers in a hub-and-spoke model. Institutional Ethics Committee
approvals were obtained from all nodal centers. The participants who were above 18 years
of age, with a history of tobacco smoking and/or chewing, or with any oral lesion were
included, and written informed consent was obtained from all the participants. The
individuals currently undergoing treatment for malignancy, pregnancy, tuberculosis, or
suffering from any acute illness were excluded. All the subjects included in the study were
directly telediagnosed by remote specialists [26].

We used a total of 2040 oral images to validate this method for oral cancer classification.
The images were separated into two categories: ‘normal’ (978 images), which contains
normal and benign mucosal lesion images, and ‘suspicious’ (1062 images), which contains
oral potentially malignant lesion (OPML) and malignant lesion images. The oral lesion
regions for attention map editing were based on oral oncology specialists’ annotations from
MSMC, KLE, and CIHSR. In a previous study, we showed that oral oncology specialists’
interpretation of classifying normal/benign versus OPML/malignant has high accuracy
with biopsy-confirmed cases [27]. Examples of the dataset used in this study and the
oncology specialists’ annotations is shown in Figure 3.

Cancers 2023, 15, x FOR PEER REVIEW 7 of 13 
 

 

accuracy with biopsy-confirmed cases [27]. Examples of the dataset used in this study and 
the oncology specialists’ annotations is shown in Figure 3. 

 
Figure 3. Examples of the dataset and oncology specialists’ annotations. (A,C,E) are white light oral 
cavity images captured using our customized oral cancer screening platform. (B,D,F) are 
corresponding pixel-level annotations labeled by oral oncology specialists. The oral potentially 
malignant lesion and malignant lesion areas are shown in red, normal and benign areas are shown 
in green, and other background areas are shown in grey. 

3. Results 
In this study, all experiments were conducted using five-fold cross-validation. The 

networks were trained using the cross-entropy loss and the Adam optimization algorithm 
that were implemented on PyTorch. Data augmentation was applied to the training set by 
flipping horizontally and vertically, random rotating, and shearing while training all net-
works. For each training, the initial learning rate was 10−3, which decayed 10 times by 
every 50 epochs, and the epoch number was 180 with a batch size of 32. We saved the 
models with the best validation accuracy. 

In the first set of experiments, we trained the attention branch network and ABN with 
SE blocks (SE-ABN) using different baseline networks, including Resnet18, Resnet34, Res-
net50, and Resnet101, to verify whether the method could improve the oral cancer classi-
fication performance. We also trained the original Resnet18, Resnet34, Resnetfive0, and 
Resnet101 networks with the same data and parameters for comparison purposes. Table 
1 shows the five-fold cross-validation results of these experiments. Our findings show that 
ABN outperforms the original baseline network, and by introducing the SE blocks to 
ABN, the cross-validation accuracy is further increased. These results indicate that ABN 
can help the network pay more attention on lesion regions, leading to improved accuracy, 
and SE blocks can further improve the performance through its channel attention mecha-
nism. 

In addition, we observed that although deeper Resnet models have more layers and 
require more computational time and resources, the performance difference on this oral 
dataset is not significant. Therefore, for the next set of attention map experiments, we will 
use ABN and SE-ABN with the Resnet18 baseline network. 

  

Figure 3. Examples of the dataset and oncology specialists’ annotations. (A,C,E) are white light
oral cavity images captured using our customized oral cancer screening platform. (B,D,F) are
corresponding pixel-level annotations labeled by oral oncology specialists. The oral potentially
malignant lesion and malignant lesion areas are shown in red, normal and benign areas are shown in
green, and other background areas are shown in grey.
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3. Results

In this study, all experiments were conducted using five-fold cross-validation. The
networks were trained using the cross-entropy loss and the Adam optimization algorithm
that were implemented on PyTorch. Data augmentation was applied to the training set
by flipping horizontally and vertically, random rotating, and shearing while training all
networks. For each training, the initial learning rate was 10−3, which decayed 10 times
by every 50 epochs, and the epoch number was 180 with a batch size of 32. We saved the
models with the best validation accuracy.

In the first set of experiments, we trained the attention branch network and ABN
with SE blocks (SE-ABN) using different baseline networks, including Resnet18, Resnet34,
Resnet50, and Resnet101, to verify whether the method could improve the oral cancer
classification performance. We also trained the original Resnet18, Resnet34, Resnetfive0,
and Resnet101 networks with the same data and parameters for comparison purposes.
Table 1 shows the five-fold cross-validation results of these experiments. Our findings
show that ABN outperforms the original baseline network, and by introducing the SE
blocks to ABN, the cross-validation accuracy is further increased. These results indicate
that ABN can help the network pay more attention on lesion regions, leading to improved
accuracy, and SE blocks can further improve the performance through its channel attention
mechanism.

Table 1. The five-fold cross-validation accuracy of ABN, SE-ABN, and the original network with
different baseline networks.

Five-Fold Cross-Validation
Accuracy ResNet18 ResNet34 ResNet50 ResNet101

Original Network 0.846 0.851 0.850 0.844
ABN 0.875 0.879 0.880 0.872

SE-ABN 0.877 0.880 0.881 0.876

In addition, we observed that although deeper Resnet models have more layers and
require more computational time and resources, the performance difference on this oral
dataset is not significant. Therefore, for the next set of attention map experiments, we will
use ABN and SE-ABN with the Resnet18 baseline network.

3.1. Visualizing Attention Maps

To compare the attention maps generated by different models, we used three example
cases and visualized the attention maps of the original Resnet18, ABN, and SE-ABN. The
results are shown in Figure 4. While all three models highlight similar regions, the attention
maps of ABN and SE-ABN are more accurate than the original Resnet18 in identifying the
lesion areas. For the first and second images, the attention maps of the original Resnet18
focused more on teeth than the lesion area, while ABN and SE-ABN focused more accurately
on the lesion when making decisions. The results indicate that the attention mechanism of
ABN and SE block can help the network effectively focus on the lesion regions instead of
background areas such as teeth. The mismatch between the classification and the attention
region could degrade the reliability of the model performance, especially for medical image
recognition systems. Therefore, ABN and SE-ABN networks are more reliable since they
can focus more accurately on lesion areas for decision making.
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Figure 4. The attention maps of three example cases were repectively generated from the original
Resnet18, ABN, and SE-ABN. The first column shows the original oral images, the second column
shows the attention maps generated from the original Resnet18, the third column shows the attention
maps generated from ABN (Resnet18 baseline), and the fourth column shows the attention maps
generated from SE-ABN (Resnet18 baseline). Although all three models highlight similar regions, the
attention maps of SE-ABN are more accurate than those of ABN in identifying the lesion areas, and
both SE-ABN and ABN focused more accurately than the original Resnet18 network. For instance, in
the first and second images, the attention maps of the original Resnet18 focused more on teeth than
the lesion area, whereas SE-ABN clearly highlighted the lesion areas.

3.2. Incorporating Manually Edited Attention Maps

In this experiment, we employed the SE-ABN with Resnet18 backbone for attention
map editing, with the aim of improving the classification performance.

To perform attention map editing, we followed the procedure outlined in Section 2.2,
which involved inputting each validation image to the model and obtaining the attention
map from the attention branch. The generated attention map would be overlaid with the
input oral image for manual editing using the attention editor tool. Then the human experts
used the editor tool to add and remove attention regions to ensure that the edited attention
maps accurately and completely highlighted the corresponding regions. Finally, we sent
the edited attention maps back to the attention mechanism of SE-ABN to obtain updated
classification results through the perception branch.

Figure 5 presents several examples of attention map editing. In the first and third
examples, the original attention maps obtained from the attention branch were incomplete
and inaccurate in highlighting the lesion areas, resulting in a false classification of ‘normal’
for both cases. However, after manually editing the attention maps using the attention
editor tool, the lesion areas were accurately and completely highlighted. The updated
attention maps were then used for the attention mechanism of the model, resulting in a
correct classification of ‘suspicious.’ Similarly, in the second example, although the model
classifies the input image correctly as ‘suspicious’ with a probability score of 0.520, the
attention map obtained from the attention branch did not completely highlight the lesion
region. After manually editing the attention map, the probability score increased to 0.790.
These results demonstrate that the attention map editing process can recognize more lesion
features after highlighting more accurate and complete areas.
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Figure 5. Three examples of manually edited attention maps, and the corresponding results before and
after embedding human expert knowledge. The class label here means prediction, and the number
after means the probability score. The first and third examples show that previous misclassified cases
were correctly recognized after manually editing the attention maps by highlighting the lesion regions
accurately and completely. The network failed to give correct predictions or focus correctly on lesion
areas for the first and third cases, but after manually editing to let the network look at the accurate
areas, the correct predictions were presented. Although the network gave a correct prediction for the
second case, the probability score is low, while the probability score for the ‘suspicious’ class of the
second case increased after editing.

The five-fold cross-validation accuracy of SE-ABN before and after editing the attention
maps is shown in Table 2. The attention map editing process resulted in an increase in the
validation accuracy from 87.7% to 90.3%. These results indicate that by editing the attention
maps to highlight the accurate and complete lesion or normal areas, the network can focus
on these areas via the attention branch and recognize more accurate features, resulting in
improved classification accuracy.

Table 2. The performance comparison of the original network, ABN, SE-ABN, and manually edited
attention maps.

Original ResNet18 network

Sensitivity 0.833

Specificity 0.857

Positive predictive value 0.843

Negative predictive value 0.848

Accuracy 0.846
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Table 2. Cont.

ABN

Sensitivity 0.860

Specificity 0.887

Positive predictive value 0.876

Negative predictive value 0.873

Accuracy 0.875

SE-ABN

Sensitivity 0.868

Specificity 0.886

Positive predictive value 0.875

Negative predictive value 0.879

Accuracy 0.877

SE-ABN (incorporating
manually edited attention

maps)

Sensitivity 0.898

Specificity 0.908

Positive predictive value 0.899

Negative predictive value 0.906

Accuracy 0.903

4. Discussion

The experimental results of our proposed model have demonstrated a higher classifi-
cation accuracy compared to baseline models. Additionally, the visual explanation results
have shown that our proposed model can identify the lesion areas more accurately when
making decisions. These results provide evidence that our proposed method improves the
interpretability and reliability of the model via attention mechanism and visual explanation
and successfully embeds human knowledge for the oral cancer recognition task.

The use of visual explanation and more accurate attention maps in the proposed
AI model improves the model’s reliability. By visualizing the areas that the model is
focusing on during decision-making, we can observe whether the model is looking at
correct/accurate lesion areas in addition to the classification results. The increased sensitiv-
ity and specificity makes the model more effective in cancer screening, as false positives
can lead to unnecessary psychological stress, medical procedures, and increased clinical
workloads. Furthermore, the manually edited attention maps generated by human experts
have the potential to aid in the localization of biopsies. By highlighting the regions of
interest with high accuracy and completeness, these attention maps can be used by on-site
doctors to better locate biopsies.

Incorporating human expert knowledge into the decision-making process can enhance
the accuracy and reliability of computer aided diagnosis system. In conjunction with our
previously developed uncertainty assessment method [23], we could integrate the human
expert knowledge into cases that Bayesian deep learning model is uncertain. This approach
is not limited to oral cancer diagnosis, and we think any image-based cancer diagnosis
approach that requires identification of the lesion areas can potentially benefit from this
method.

5. Conclusions

Deep learning is a powerful tool in solving medical image analysis tasks. However,
interpretability and reliability remain as challenges. In this study, we used an attention
branch network for the oral cancer recognition task; it combines visual explanation and
attention mechanism. The network can simultaneously interpret the decision-making and
improve the recognition performance using the attention map with an attention mechanism.
The attention branch of the network extends the response-based visualization method and
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generates an attention map, and then the perception branch uses the attention map to
emphasize the most informative features extracted by the feature extractor of the network.

The attention mechanism has been widely used and has demonstrated exceptional per-
formance in various deep learning tasks [7]. In previous attention models, the weights for
the attention mechanism were obtained solely from the response value of the convolution
layers during feed forward propagation in an unsupervised learning manner. However,
ABN extracts the weight for an attention mechanism in image recognition by generating
the attention map for visual explanation on the basis of response-based visual explanation
in a supervised learning manner [10]. With ABN, the cross-validation accuracy of the oral
image dataset improved to 0.875 from 0.846. After applying another attention method, the
Squeeze-and-Excitation block, the accuracy further boosted to 0.877. It enables the network
to perform dynamic channel-wise feature recalibration. Additionally, we incorporated the
expert knowledge into the network by manually editing the attention map generated from
the attention branch. The edited attention maps were then fed back into the network’s
perception branch and which updated the result via the attention mechanism. As a result,
the cross-validation accuracy of the oral image dataset achieved 0.903.

The experiment’s results have shown that the attention branch network and Squeeze-
and-Excitation block can effectively improve the recognition performance as well as in-
terpret the decision-making. Further, embedding the expert knowledge led to a further
increase in accuracy. The proposed method provided an accurate, interpretable, and reliable
oral cancer classifier that leverages visual explanation, attention mechanisms, and human
expert knowledge embedding.
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