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ABSTRACT
We design a high-performance parallel merge sort for highly paral-
lel systems. Our merge sort is designed to use more register com-
munication (not shared memory), and does not suffer from over-
segmentation as opposed to previous comparison based sorts. Us-
ing these techniques we are able to achieve a sorting rate of 250
MKeys/sec, which is about 2.5 times faster than Thrust merge sort
performance, and 70% faster than non-stable state-of-the-art GPU
merge sorts.

Building on this sorting algorithm, we develop a scheme for
sorting variable-length key/value pairs, with a special emphasis on
string keys. Sorting non-uniform, unaligned data such as strings is
a fundamental step in a variety of algorithms, yet it has received
comparatively little attention. To our knowledge, our system is the
first published description of an efficient string sort for GPUs. We
are able to sort strings at a rate of 70 MStrings/s on one dataset and
up to 1.25 GB/s on another dataset using a GTX 580.

1. INTRODUCTION
Sorting is a widely-studied fundamental computing primitive that

is found in a plethora of algorithms and methods. Sort is useful for
organizing data structures in applications such as sparse matrix-
vector multiplication [3], the Burrows-Wheeler transform [1, 15],
and Bounding Volume Hierarchies (LBVH) [11]. While CPU-based
algorithms for sort have been thoroughly studied, with the shift in
modern computing to highly parallel systems in recent years, there
has been a resurgence of interest in mapping sorting algorithms
onto these architectures.

For fixed key lengths where direct manipulation of keys is al-
lowed, radix sort on the GPU has proven to be very efficient, with
recent implementations achieving over 1 GKeys/sec [13]. How-
ever, for long or variable-length keys (such as strings), radix sort
is not as appealing an approach: the cost of radix sort scales with
key length. Rather, comparison-based sorts such as merge sort are
more appealing since one can modify the comparison operator to
handle variable-length keys. The current state of the art in compar-
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ison sorts on the GPU include a bitonic sort by Peters et al. [16],
a bitonic-based merge sort (named Warpsort) by Ye et al. [26] a
Quicksort by Cederman and Tsigas [5] and sample sorts by Leis-
chner et al. [12] and Dehne and Zaboli [8].

In this work we implement a merge-sort-based comparison sort
that is well-suited for massively parallel architectures like the GPU.
Since a GPU requires hundreds or thousands of threads to reach
bandwidth saturation, an efficient GPU comparison sort must se-
lect a sorting implementation that has ample independent work at
every stage. Merge sort is therefore well-suited for the GPU as
any two pre-sorted blocks can be merged independently. We fo-
cus on designing an efficient stable merge sort (order preserved on
ties) that reduces warp divergence, avoids over-segmenting blocks
of data, and increases register utilization when possible. We ex-
tend our techniques to also implement an efficient variable-key sort
(string-sort). Our two major contributions are a fast stable merge
sort that is the fastest current comparison sort on GPUs, and the
first GPU-based string-sort of which we are aware.

2. RELATED WORK
Sorting has been widely studied on a broad range of architec-

tures. Here we concentrate on GPU sorts, which can generally be
classified as radix or comparison sorts.

Radix sorts rely on a binary representation of the sort key. Each
iteration of a radix sort processes b bits of the key, partitioning its
output into 2b parts. The complexity of the sort is proportional to
b, the number of bits, and n, the size of the input (O(bn)), and fast
scan-based split routines that efficiently perform these partitions
have made the radix sort the sort of choice for key types that are
suitable for the radix approach, such as integers and floating-point
numbers. Merrill and Grimshaw’s radix sort [13] is integrated into
the Thrust library and is representative of the fastest GPU-based
radix sorts today. However, as keys become longer, radix sort be-
comes proportionally more expensive from a computational per-
spective, and radix sort is not suitable for all key types/comparisons
(consider sorting integers in Morton order [14], for instance).

Comparison sorts can sort any sequence using only a user-specified
comparison function between two elements and can thus sort se-
quences that are unsuitable for a radix sort. Sorting networks stipu-
late a set of comparisons between elements that result in a sorted se-
quence, traditionally with O(n log2 n) complexity. Because those
comparisons have ample parallelism and are oblivious to the in-
put, they have been used for sorting since the earliest days of GPU
computing [17]. Recent sorting-network successes include an im-
plementation of Batcher’s bitonic sort [16].

The classic Quicksort is also a comparison sort that lacks the
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Figure 1: A high level overview of our hierarchical merge sort.
In (a) each CUDA block performs an independent sort on a set of
elements. The second stage (b) CUDA blocks work independently
to merge two sequences of data. In the final step (c), CUDA blocks
cooperate to merge sequences.

obliviousness of a sorting network, instead relying on a divide-
and-conquer approach. It has superior complexity (O(n logn)) to
sorting networks, but is more complex from a parallel implementa-
tion perspective. Quicksort was first demonstrated on the GPU by
Sengupta et al. [19] and was further addressed by Cederman and
Tsigas [5]. Sample sorts generalize quicksorts; rather than splitting
the input in 2 or 3 parts as in quicksort, they choose representative
or random splitter elements to divide the input elements into many
buckets, typically computing histograms to derive element offsets,
then sort each bucket independently. Leischner et al. [12] use ran-
dom splitters and Dehne and Zaboli [8] deterministic splitters in
their GPU implementations.

Merge sorts are O(n logn) comparison sorts that recursively
merge multiple sorted subsequences into a single sorted sequence.
Typical mergesort approaches on GPUs use any sorting method to
sort small chunks of data within a single GPU core, then recursively
merge the resulting sorted subsequences [18].

Hybrid approaches to sorting, typically used to best exploit dif-
ferent levels of the GPU’s computational or memory hierarchies
during computation, are common, such as the highly successful
radix-bitonic sort of Govindaraju et al. [9] or the quicksort-mergesort
of Sintorn and Assarsson [21].

The GPU methods above do not focus on complex key types like
strings; in fact most of the above comparison-based work simply
uses fixed-length integers and do not address complex comparison
functions like string-compare. The above work also does not ad-
dress the complexities of storing variable-length keys like strings.
In the CPU world, string keys merit special attention; a represen-
tative example (among many) is the burstsort-based string-sorting
technique of Sinha et al. [20] that optimizes cache management of
string keys to achieve better locality and performance.

3. MERGE SORT
In this section we will describe our merge sort implementation,
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Figure 2: Our block sort consists of two steps. First each thread
performs an eight-way bitonic sort in registers (as seen in a). Then
each thread is responsible for merging those eight elements in the
log(numElements/8) stages.
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Figure 3: In order to merge partitions much larger than a GPU’s
shared memory and register capacity, we must manage two moving
memory windows. From two sorted sequences we load a portion of
one set into registers (A), and a portion of the second into shared
memory (B). Then we update each memory window according to
the largest elements, as illustrated above.

and compare our design to the previous state-of-the-art GPU merge
sort. We organize our sort into a hierarchical three-stage system.

We design a merge sort implementation that attempts to avoid
shared memory communication when possible(favoring registers),
uses a persistent-thread model for merging, and reduces the number
of binary searches. Due to these choices, we utilize more register
communication and handle larger partitions at a time to avoid load
imbalance. Our merge sort consists of three stages, designed to
handle different amounts of parallelism. We will next highlight our
design choices for each stage in our merge sort.

Block Sort.
Since local register communication has much higher throughput

than standard shared memory communication on GPUs (such as
NVIDIA CUDA capable cards), using registers for sorting when
possible is preferred. A common strategy to achieve higher register
utilization on GPUs is to turn fine-grained threads (that handle one
element) into fatter, coarse threads (that handle multiple elements).



Work in GPU linear algebra kernels by Volkov et al. [22–24]
has shown that quite frequently sacrificing occupancy(the ratio of
active warps to possible warps) for the sake of better register uti-
lization leads to higher throughput. Though in these linear alge-
bra kernels, the communication pattern is quite different from our
merge sorts downsweep pattern, more recent work by Davidson et
al. has also shown that similar divide-and-conquer methods can
benefit from fewer threads with higher register utilization (register
packing) [6, 7]. In order to achieve more register communication,
we split our blocksort step into two stages. We decompose our
block sort into two stages. First each thread loads eight concurrent
elements in registers, and sorts them locally using a bitonic sort as
illustrated in Figure 2. Though bitonic sorters are in general non-
stable, since we are only sorting eight elements we can carefully
construct our sorting network to maintain stability.

Now that we have a set of sorted sequences (eight elements each),
we can begin merging them. A common strategy to merge two
sorted sequences A and B is to search for the intersection index of
each element in A into B, and vice versa. The final index for an
element Ai after being merged is i + j where Bj < Aj ≤ Bj+1.
After each elements output index (the sum of your own index and
the intersecting index) has been calculated the resulting list C =
merge(A,B) will be a new sorted sequence. This merged sequence
C will have size sizeof(A)+sizeof(B). Since each thread operates
independently, in order to locate the correct intersection index, pre-
vious parallel merge sorts have used binary search for each element
in both partitions.

Since, in our case, each block is sorting m elements (m for
us is heuristically selected to be 1024), we now have m

8
threads

per block, each with eight sorted elements. Our second stage in-
volves log(m

8
) stages to merge all these sorted sequences into a

final sorted block. In each merge stage, every thread (still respon-
sible for eight elements) changes its search space in order to calcu-
late the correct indices for its elements. In the first merge stage, the
search space is the neighboring eight elements, in the second stage
it becomes sixteen, and so on. Once a thread has calculated the
correct index to insert its element, it dumps the sorted values into
shared memory. After each merge step a thread then synchronizes
(as intermediate values are dumped into shared memory), and then
loads eight new concurrent elements for the next merge stage.

Instead of each thread performing eight binary searches to find
each insertion index, we perform a binary search for the first ele-
ment and use a linear search for the other seven elements, using the
results of our initial binary search as a starting point. Since each
thread is handling a sorted subsequence, a search using the first
element will most likely be close in relation to a search using the
next element. This is illustrated in Figure 2. Though it is possible
that in the worst case these linear searches will require more trips
to memory (O(n) vs O(log(n))), we find in our experiments that
in the average case these secondary linear searches require only a
fraction of the accesses that a binary search would need.

Merge Sort—Simple.
After our block sort stage, we have t blocks of m size. In our

next stage we want each CUDA block to work independently in
merging two of these sorted sequences together. At every step we
halve the number of blocks and double the size of each sequence
we are merging. Our design goal is to create a merge which utilizes
shared memory at every stage for our binary and linear searches
even though our hardware shared memory size remains fixed. In
order for our algorithm to be able to handle sequences of arbitrary
size and still use shared memory effectively, we design two moving
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Figure 4: Example of the state of two memory windows of A and
B.
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Figure 5: Optimization to reduce load imbalance. We can reload
elements for the next binary search in order to get more overlap
(6000–9000 range in this example).

memory windows: one in registers, and one in shared memory.
Our moving memory windows work as follows: Each thread

loads a set of k values it will merge into registers (again using our
register packing strategy), starting at the beginning of one sequence
(sequence A). We now have k elements and q threads. The prod-
uct of k and q gives us the number of elements in registers that a
block can handle at a time. This then sets the size of the moving
window in partition A. Next we load into shared memory a set of
values from the other sequence (sequence B). The size of this mov-
ing window is set by hardware limitations on shared memory size
allowed per block. We will refer to the size of the register window
as as and the shared memory window as bs. By keeping track of
the largest and smallest values in each moving window (register and
shared memory), after each thread finishes updating its current val-
ues, a block will decide whether to load new values into registers,
new values into shared memory or both. This process is illustrated
in Figure 3. We find that performance is improved if we have our
shared memory windows be larger than our register windows.

Now we can step through and merge partitions of arbitrary size.
However, implementing our merge as just described has one major
disadvantage. Since we are updating blocks based on the status of
two moving windows, a block cannot update its register window
until all other threads are merged. Similarly, a block cannot up-
date shared memory values until all register values in A have an
opportunity to check if their insertion index is within the range of
the maximum and minimum values in this window. Therefore the



amount of work a block will do at any given time is the union of el-
ements that share the same range in the register and shared memory
windows as illustrated in Figure 4. This leads to some load imbal-
ance between blocks, since threads are responsible for concurrent
values. However, if all values a warp is responsible for lies out-
side this union, no useless work will be done. Therefore for every
sequence a block handles there can only be at most one divergent
warp (portion of the threads searching while others stand idle) at
any given time.

However we still have a possible load-balance issue. If the over-
lap in our valid window ranges is very small, some blocks will have
a lot of work while others may have little to no work. We can help
address this issue by modifying our window update step in the fol-
lowing way. Before we update our register window, first check the
insertion index associated with the last value within that window
(the last value in the last thread). We can broadcast that index to
all threads, and reload the entire shared memory window with this
additional offset.

Since all threads need to calculate their insertion index regard-
less, this step adds no extra computation. An example of this is
illustrated in Figure 5. A disadvantage from this modification is
that we will have to reload a portion of values from B into shared
memory (bs − ai values must be reloaded). Therefore we heuristi-
cally choose a switching threshold k such that if bs − ai ≥ k we
perform this shift load.

Unfortunately, applying this same optimization to the register
window (A) is not as easy. We would require all threads to vote in
shared memory whether they lie inside or outside of their current
shared memory window, then the sum of these votes would be the
offset for our shift load. However, this requires extra work, atomic
operations, and the cost of loading a whole new set of register val-
ues. Therefore, in general, this shift load optimization only makes
sense for our shared memory moving window.

As in our block sort, each thread will be responsible for multi-
ple values. Every thread checks to see if its value is in the search
window’s valid range, performs a binary search to find the correct
index for its first value, and then performs linear searches for the
consecutive elements in that thread.

Merge Sort—Multiple.
Though we can now merge very large sequences within a single

block, the final steps of our merge sort will only have a few inde-
pendent sequences to sort(and the last merge only two independent
blocks). Modern GPUs require dozens of blocks to maintain opti-
mal throughput. Therefore we require a method that allows CUDA
blocks to cooperate in merging two sequences. Therefore the final
stage in our hierarchical sort splits sequences in A into multiple
partitions, that are then mapped to appropriate partitions in B.

However, unlike previous GPU merge sorts, we do not bound
the number of elements in a partition. Given a set of sequences l
we define a number of needed blocks p to fill our GPU. We then
select the number of partitions per sequence s such that s · l = p.
Therefore, we still do not suffer from over-segmentation, yet keep
the machine as occupied as possible. Davidson et al. used a sim-
ilar strategy for solving large tridiagonal systems, where multiple
CUDA blocks cooperate on a single large system [6].

Otherwise, we utilize the same principles as our previous step.
Each thread is responsible for multiple elements, a subset from a
partition in sequence A and B are loaded into register and shared
memory windows respectively, and then we perform a binary search
for the first element, followed by linear searches.

Now we have a modular hierarchical merge sort that can handle

an arbitrary number of partitions and sequence sizes. An overview
of our merge sort hierarchy can be seen in Figure 1. We will now
compare our sort with the previous state-of-the-art merge sort on
the GPU.

3.1 Previous Merge Sorts
Satish et al. developed a comparison-based merge sort which is

implemented in a divide and conquer approach [18]. The sorts they
created outperformed carefully optimized multicore CPU sorts, which
helped dispel the myth that GPUs were ill-suited for sorting.

Their algorithm is designed in the following way. First they di-
vide and locally sort a set of t tiles using Batcher’s odd-even merge
sort [2]. Next, each block merges two adjacent sequences at a time
(log2 t stages) until the entire sequence is sorted. In order to main-
tain parallelism, and ensure they are able to use shared memory
at every stage, their method splits each sub-partition to make sure
each sequence being merged is of a relatively small size (256 el-
ements in their example). In a merge stage, each element in A is
assigned to a thread; this thread then performs a binary search into
the B partition. Since each of these partitions are sorted, the sum
of its index with the binary search index gives the output index in
C. This merge process is repeated until the entire dataset is sorted.

This is only a brief summary of the sort implemented by Satish
et al. Though the merge sort they created was quite impressive and
revolutionary, we must highlight some disadvantages to their ap-
proach which our method attempts to address.

Block Sort Disadvantages.
In Satish et al.’s implementation, each thread handles one ele-

ment, performing an odd-even merge sort to calculate the correct
index at any given stage. Though this results in a great deal of par-
allelism, unfortunately it also results in limited register work (all
values are stored in shared memory). In this case, parallelism is
being distributed at too fine-grained a level. Each thread is respon-
sible for only one element, and each element must perform a binary
search.

The block sort they implement is also unstable. A stable sort
requires all elements which have equal keys to preserve ordering
(i.e., if ai = aj and i < j, ai will appear before aj after the sort is
complete). Due to its predictability, stability is often a desired trait
for algorithms that use sorts.

Over-Segmentation.
Each sorted sequence is divided into small chunks (256 elements

in their case) and each thread handles only one element; this again
ensures a high level of parallelism. However, this also leads to over-
segmentation. The number of chunks being processed is a factor of
the size of the input, not of the machine. We prefer instead to have
p chunks, where p gives the machine enough parallelism to satu-
rate the machine. Given the limited shared memory in a machine,
achieving this requires extra bookkeeping and software challenges.

Limited Register Work.
Within the merge stage, each element locates its new index through

a binary search. This means there are n binary searches needed at
every merge stage. This requires n log2 t queries into shared mem-
ory at each stage. Since each thread is only handling one element,
the amount of storage needed in registers (ones value and key) is
minimal, and most of the needed information to progress resides in
shared or global memory. This leads to kernels that are bounded
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Figure 6: Basic setup of our string sort representation. We can
store the first four characters within an unsigned integer as the Key
(boxed values), and use the starting character address as the Value
(red values). Then we can perform our sort as described in the
previous section by modifying the compare operators to handle ties
in our Keys.

heavily by shared memory usage.

Load Imbalance.
In a similar vein as our over-segmentation argument, if we limit

the maximum size of a chunk to be some standard size t, if t is
small there can be cases where the associative chunk it must merge
with is either much larger than t (requiring a re-partitioning to meet
the minimum chunk size criterion), or so small the merge stage is
trivial. This causes both load-imbalance and extra repartitioning
work that we want to avoid. Satish et al. attempt to mitigate this
by using splitters to help normalize chunk sizes. However, since
we are able to handle larger sequences, we suffer much less from
general load-balancing problems.

4. VARIABLE LENGTH KEY SORTS
Now that we have an operational stable key-value merge sort,

we can start building a string sort. Our strings in this case are of
arbitrary size, with a null-terminating character. We build our sort
by building off of our key-value pair sort. We begin by storing the
start of each string (up to the first four characters) as the key in our
key-value sort, and the address of each strings origin as the value.
Now when performing our merge sort, if two of our shared memory
keys are different, we can perform a compare and swap just as we
would with our key-value sort. However, when a tie occurs in our
keys, we must use the addresses (stored in values) to go out into
global memory and resolve the tie. This allows us to break ties on
the fly, rather than performing a key-value sort and then search for
and process consecutive sequences of ties as a post-processing step.

We must also be able to process ties when deciding how to move
our shared memory and register windows. Though this now allows
us to sort variable-length strings, dealing with this type of data leads
to three performance issues. First, if a thread runs across a tie that
must be broken, all threads within this warp must wait for this tie
to resolve (divergence issues). Also, as we merge larger partitions,
the ratio of our memory windows to the size of a partition becomes
quite small. Therefore, the probability that an element will have
to resolve a tie becomes higher as we get into later merge steps.
Finally, since the variance in our memory windows decreases as
our partition sizes increase, long sets of equivalent keys (chains
of ties) become more probable, making a worst-case linear search
more likely.

We will discuss these drawbacks, and possible ways to mitigate

some of them in Section 6. First, though, we will present the results
of our fixed-length sorts and variable-length sorts.

5. RESULTS
We will now demonstrate our experimental performance on three

variations of our merge sort: 32-bit key-only sort, key-value sort,
and variable-length string sort. In our test cases for fixed-length
keys, our data consists of uniformly distributed integers. We test
our string sort on two types of datasets. First we have a dataset gath-
ered from Wikipedia including over a million words (12 MB) [25].
Our second dataset is a list of sentences, gathered from around 20
books and novels from Project Gutenberg [10]. Sentences from
novels have a number of different attributes which affect perfor-
mance. First, each sentence is much longer than the Wikipedia
word list. Second, authors often begin sentences in the same way
(e.g., Then, And, etc), which will lead to a larger number of at least
one tie-break. Finally, since authors often use repetition in their
literature (e.g., poetry) there will also be cases when two strings
will have a long series of the same characters. Using both of these
sets we can try to quantify how much of an effect these characteris-
tics have on performance. We also chose both datasets due to their
accessibility, range in data, and authenticity (not synthetic). A his-
togram showing the data distribution of both dataset can be seen in
Figure 9a.

We report the sorting rates for our merge sorts and string sorts
as a function of size. Since our strings are variable length, we also
report the throughput in MB/s of sorted string data. We do not
include transfer time as sorting is often a single step in a much
more involved algorithm. Therefore we expect users to re-use the
sorted data on the GPU. Since our string sort is a specialization
of our key-value sort, we report the ratio in performance between
the two for both datasets (lower is better). This gives us an idea of
the extra cost of load-imbalance and divergence caused by global
memory tie-breaking for each dataset.

We compare our key-only and key-value sorts with the Thrust
library comparison sort [4]. Thrust bases its comparison sort on
a variant of Satish et al.’s merge sort. In order to make the sort
stable, the library uses a different block level sort, and is coded
for generality. Though this reduces the performance of Thrust’s
merge sort, it is still widely used due to its accessibility and ease of
use. It is therefore the de-facto standard for comparing GPU based
sorts [5, 12, 16, 26].

We also compare our sort with a non-stable optimized key-value
version of Satish et al.’s sort sort. Though this sort uses the same
merge techniques, it utilizes a different (but faster) block sort that
isn’t stable [2].

In comparison to the Thrust sort, we are about 3x faster than
their key-only implementation and about 2x faster than their key-
value implementation. Figure 7a shows that Thrust’s merge sort
performance for key-only and key-value are nearly identical. We
believe this is due to their key-only sort implementation being a
variant of key-value (with the values being a duplicate of the keys).
We are also about 70% faster than the non-stable optimized key-
value sort.

The performance for our string sort can be seen in Figure 7b.
Since our string sort is a variation on our key-value sort, we com-
pare the performance ratio between the two in terms of key-value
pairs vs. strings sorted. This gives us an idea of the performance
impact when dealing with global-memory ties (on average a 2.5x
performance impact for words, and 14-15x worse for sentences).
We also report the rate of our string sort performance in terms of
MB/s for both datasets. In Section 6 we will analyze the causes of



0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Number of Elements (x1024)

0

50

100

150

200

250

300

M
K

e
y
s/

se
c

Performance of Merge Sort

Our Key-Only Sort
Our Key-Value Sort
Satish Key-Value Sort
Thrust Key-Only Sort
Thrust Key-Value Sort

(a) Fixed-Key Sort Performance

200 400 600 800 1000
Number of Elements (x1024)

0

5

10

15

20

M
S
tr

in
g
s/

se
c

0.98 GB/s 1.044 GB/s

1.25 GB/s 1.211 GB/s

0

5

10

15

20

P
e
rf

 R
a
ti

o
 (

K
e
y
-V

a
/S

tr
in

g
)

Sentences Perf

200 400 600 800 1000
Number of Elements (x1024)

40

50

60

70

80

90

100

M
S
tr

in
g
s/

se
c

443.2 MB/s
462.488 MB/s

488.8 MB/s

568.88 MB/s

0

5

10

15

20

P
e
rf

 R
a
ti

o
 (

K
e
y
-V

a
/S

tr
in

g
)

Words Perf

(b) String Sort Performance

Figure 7: Performance in MKeys/sec of our merge sort for string, key and key-value sorts on a GTX 580. We also compare the performance
ratio between our key-value sort and string sort. Though our string-sort has a slower stings/sec sorting rate for our sentences database,
since each string is much longer the overall MB/s sorting rate is higher.

this performance degradation, and discuss future optimizations.
Though merge sort is an n logn method, we require a certain

number of elements to reach peak performance. We expect our
sorting rate to degrade due to the asymptotic O( 1

logn
) factor, which

begins to take effect after about 4 million elements. The thrust sort
pays a much higher initial overhead, leading to a flatter degradation
over time.

We test our implementation on a GTX 580 which has up to
1.58 TFlop/s and a theoretical bandwidth of 192.4 GB/s. Since
sorts are traditionally not computationally intensive, the theoretical
bandwidth bounds our performance. Our next section will analyze
our performance, give a rough estimate and compare our perfor-
mance to the theoretical bounds of a merge sort algorithm, and dis-
cuss factors limiting our performance. We will also discuss the
performance and limiting factors of our string sort implementation,
as well as future work that may improve performance.

6. PERFORMANCE ANALYSIS
In this section we will analyze our performance and determine

(1) how well our implementation compares to a theoretical bound
of our key and key-value sorts; (2) where our time is going; and (3)
where efforts for future improvements lie.

Theoretical Upper Bound.
First we will derive a loose upper bound on the possible sorting

rate for a key-only and key-value merge sort (blocks of size p) using
our strategy. We do this to show that our method is reasonably
efficient when compared to this bound, and provide a comparison
for future merge sort implementations. We will use as a limiting
factor our global memory bandwidth B. If we assume that for our
blocksort stage and each merge stage we must read elements in at
least twice (once for register window, and once for shared memory
window) and write out elements at least once, we have 2 · (1 +
log(n

p
)) global memory accesses, for a key-only sort.

As an example, if we assume our blocksize p is 1024, and we

are sorting four million elements, we will have a blocksort stage
and twelve merge stages, each requiring at minimum of two global
reads (each element is placed once in registers to search, and once
in a shared memory search space) and one write (totaling 38n). Un-
der these conditions (four million elements) our theoretical sorting
rate cap is at 1.26 GKeys/s, which is about 5x faster than what we
are able to achieve. Similarly, we can show that our cap for key-
value pairs is 941 Mpairs/s, which is also about 5x faster than our
achieved rate.

We can attempt to show a tighter theoretical bound by includ-
ing the minimum shared memory communication required at every
stage. Under our conditions:

• Each thread is responsible for k elements;

• Each thread performs a binary search into a shared memory
window of size p;

• For k − 1 stages we perform a linear search; and

• The sum of all search spaces loaded into shared memory is
at least n.

Therefore we can get a lower bound on the minimum shared mem-
ory communication needed by calculating the lower bound per thread.
Each thread requires log(p) + (k − 1) shared memory reads to
search, and all threads combined will load the entire input set.
Since there are again log(n

p
) merge stages, the amount of shared

elements loads necessary are at least n log(n
p
)(1+ (log(p)+k−1)

k
)).

Since the theoretical maximum bandwidth of shared memory is
about 1.2 TB/s, we can plug in the same p, n, and choosing k as
four we add an extra 0.885 ms to sort four million elements on
an NVIDIA GTX 580. This reduces the theoretical sorting rate
to 997.4 MKeys/s for key-only sort and 785.45 MPairs/s for key-
value sort. Therefore our sort performance is about 4x and 4.2x
away from the theoretical bound for key-only and key-value pairs
respectively.

Though it is unlikely for an algorithm that requires both syn-
chronization and moving memory windows to be close to the global
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Figure 8: Figure 8a shows the total number of global memory accesses needed to resolve ties per merge stage for a million strings for both of
our datasets. Figure 8b measures the number of shared memory windows with duplicate keys, and the length of these windows after our sort
is complete. As the size of our partition grows (while our window size remains fixed), the variance between the largest and smallest key in our
window shrinks. This leads to ties becoming more probable, forcing global memory reads to resolve the ties, and degrading performance.
For our dataset involving book sentences, this variance is even smaller leading to more global memory lookups and a lower Strings/sec
sorting rate. We also test the number of key ties in a row once the sort is finished, and report the number of ties. Since our shared window
size is relatively small (we select as a heuristic 1024 elements), performing a binary or linear search within long blocks with the same key
will be relatively useless, and require a large number of global memory tie breaks.
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Figure 9: Statistics regarding our two string datasets. All strings are stored concurrently with null-termination signifying the end of a string
and the beginning of a new string. Our Words dataset has on average strings of length 8 characters long, while our Sentences dataset has
strings on average 98 characters long. As strings from our sentences are much longer on average, they will run into more lengthy tie-break
scenarios as we perform our merge-sort. Our sentences dataset, has many ties ranging from 10–20 characters long, and quite a number that
are even greater than 100 (we clipped the range).



memory theoretical cap, this bound gives us an idea how much time
is being spent on the actual sorting itself (instead of global memory
data movement). We now must analyze what else may be causing
this performance difference. From this analysis, we may be able
to learn where we should focus our efforts to optimize merge sort
in future work. Next we will discuss factors that effect our sorting
performance.

6.1 Fixed-Length Keys Performance
The two factors that have the largest effect on our merge sort per-

formance are divergence and shared memory bank conflicts. Though
we can streamline our windowed loads to be free of divergence or
bank conflicts, it is difficult to do so for both the binary search stage
and linear search stage.

Bank Conflicts.
Divergence occurs most frequently in our binary search stage.

To illustrate, consider a SIMD warp with each thread performing a
binary search in a shared memory window. Each thread will query
the middle value; this results in an efficient broadcast read. How-
ever, given two evenly distributed sequences, in the next query half
of the threads will search to the left and the other half will search
to the right. This will create a number of 2-way bank conflicts.
Similarly, subsequent searches will double the number of possible
shared memory bank conflicts. We attempted to resolve this prob-
lem by implementing an address translator that would avoid bank
conflicts. However, this modification did not improve performance.

Divergence.
Though our linear search stage does not suffer heavily from bank

conflicts, it does suffer from divergence problems. When each
thread performs its linear search, it begins independently in a shared
memory location. It will then incrementally check the subsequent
values until it finds the first value larger than its key. Since a SIMD
warp must operate in lockstep, a thread cannot progress past this
linear search stage until all threads are finished. Therefore a warp
will have to wait for the thread which has the largest gap to search
through.

6.2 Variable-Length Keys Performance
Since our string sort is built on top of our fixed-length key merge

sort, it suffers from the same divergence and bank conflicts men-
tioned previously. However, it is also affected by other causes of
divergence as well as load imbalance.

Divergence.
Since warps operate in lockstep, any threads that break ties will

stall all other threads within a warp. Since these divergent forks
must be resolved in high-latency global memory, they are inher-
ently expensive for SIMD machines. This isn’t an issue that can
easily be rectified either. However, since we keep our original
string locations static and in-order, if there are multiple ties when
comparing two strings, the majority of consecutive tie-breaks should
be cached reads. Although this doesn’t directly address the diver-
gence cost, it helps to mitigate the effect.

When comparing our two data sets it becomes apparent that the
average number of global memory ties that must be resolved begins
to dominate performance. Not only are our sentences much longer
on average than our words, but require much more work to resolve
ties. Figure 9b compares the number of shared concurrent charac-

ters between two concurrent strings after being sorted between our
two datasets. After every step of our merge sort, comparisons will
be between more similar strings(as illustrated in Figure 9b and Fig-
ure 8a), this gives us an idea of how many worst case comparisons
will be required.

For authors, it is very common to begin sentences in similar ways
(e.g., Then, And, But, etc.), which results in many string ties of
about 10–20 of the same characters in a row. In Figure 9b we even
see a set of very similar strings greater than 100 characters long (we
capped our histogram). Since all threads in a warp must wait for a
tie to resolve before continuing, such occurrences are very costly.

We could expect a database of names and addresses to have
somewhat similar behavior, where ties among sets of common names
must be broken. On the other hand, our Wikipedia word list dataset
has much fewer ties and none that exceed 20 characters in a row. As
we can see from Figure 7b, our sentences dataset is over 5x slower
(lower MStrings/sec) sorting rate than our words dataset. How-
ever since each sentence is much longer (about 10x), we achieve a
higher GB/s sorting rate with sentences.

Long Sets of Similar Strings.
As sequences become very large in comparison to the memory

windows we can handle, the distribution of the values (variance)
decreases. Since our shared memory and register sizes are limited,
we cannot directly scale our windows to keep pace. Therefore,
some threads in our linear search stage are more likely to run into
long sets of ties before calculating their correct indexes, while oth-
ers resolve their location immediately. Figure 8a illustrates this
effect. As we begin to merge larger and larger blocks, the number
of total ties within a merge step grows. Figure 8b shows the num-
ber of keys that share the same value after our string is sorted. This
effect is a data-dependent load imbalance. Though it was more ef-
ficient in our uniform-length key sort to perform linear searches
in every merge stage (after an initial binary search) as described in
Section 3 this change in distribution makes the worst-case for linear
searches more probable. Therefore, we limit the number of linear
searches, and have threads perform more binary searches (worse
average case, but better worst case) when locating their insertion
indexes. When comparing our two datasets, the effect is much
more pronounced in our sentences database (again since authors
have common ways of beginning sentences).

We could also attempt to mitigate the amount of variance within
a window using the following strategy: Since each thread knows
the largest and smallest value in a memory window, a simple and
operation can determine the set of most significant bits shared by
all values within that window. Then a block can decide whether it is
worth it to shift those shared bits out and load new bits to increase
the variance within that block. We think this can help reduce the
number of ties, and we plan to implement it in future work.

7. CONCLUSION
We have presented an efficient hierarchical approach to merge

sort. We harness more register communication, handle arbitrarily
large partitions, create just enough work to fill the machine and
limit unnecessary binary searches.

Our merge sort attains best-of-class performance through four
main techniques: (1) in our initial step, sorting 8 elements within
each thread, which leverages register bandwidth; (2) a novel binary-
then-linear searching approach in our merge within a thread block;
(3) avoiding over-segmentation with a moving shared memory and
register windows; and (4) a modular, three-step formulation of merge
sort that is well-suited to the GPU computational and memory hi-



erarchy (and possibly suitable for tuning to other parallel architec-
tures).

From this merge sort we are able to specialize a string sort, which
we believe is the first general string sort on GPUs. The performance
of the string sort highlights the large cost of thread divergence when
comparisons between strings must break ties with non-coalesced,
long-latency global memory reads. We see this as the most critical
issue for optimizing string sort on future GPU-like architectures.

There are a number of possible directions we would like to take
future work in both comparison sorts, and string sorts in general.
We have focused on implementing an efficient merge sort. How-
ever, we would like to explore comparison-based techniques for
handling very large sequences across multiple GPUs. For example,
hybrid techniques that combine merge sort with sample sort appear
promising for handling hundreds of gigabytes worth of key-value
pairs.

We would also like to develop methods for avoiding thread di-
vergence and global memory tie breaks in our current string sort,
and explore hybrid string sorting techniques that might combine
radix-sorts with comparison sorts (such as our merge sort).
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