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Time series analysis is widely discussed in fields such as finance, economy, brain imaging etc.

Among all types of data, categorical and multivariate time series maintain both of challenges

and promising applications. In this dissertation, we propose some statistical approaches to

model binary and multivariate time series and thus provide alternative solutions of statistical

inference and prediction.

We first focus on binary time series. Classical methods do not differentiate between exoge-

nous and endogenous exploratory variable, which leads to invalid statistical inference. We

develop a close form of the Fisher information matrix of logistic autoregressive model and

demonstrate that it yields narrower confidence intervals while maintaining nominal type I

error rate. We also propose a framework of predicting binary time series using Gaussian

process. The approach comprises of a linear part that captures the effects from covariates

and a stochastic process that characterizes the information not covered by the linear part.

Both the simulation and the real data examples demonstrate the high predictive power and

appropriate interpretability.

Next, we discuss on the problems of multivariate time series. In an illustrative example of
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analyzing Local Field Potentials (LFPs) signals, existing methods such as Independent Com-

ponent Analysis (ICA), Principal Component Analysis (PCA) have limitations in modeling

spatial-temporal dependencies across trials (epochs). To address these issues, we introduce

Evolutionary State Space Model (E-SSM) allowing the latent signals evolve during the ex-

periment. By fixing the phase of the AR polynomial roots, the framework is able to model

the evolution for pre-specified frequency bands. As the last part of this dissertation, we

characterize multivariate time series as 2 - dimensional tensors. By introducing a penalized

mixture matrix normal model, we are able to uncover the “latent” mean spatial-temporal

structures across trials (epochs) and capture the sparsity simultaneously. Some theoreti-

cal results are established to show the consistency of the constrained maximum likelihood

estimator.
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Chapter 1

Introduction

Time series analysis serves as an important component of modern statistical analysis and

has been widely developed during the past couple of decades (Brillinger, 1975; Brockwell

and Davis, 1991; Fuller, 2009; Shumway and Stoffer, 2013). Among all the types of time

series, categorical and multivariate valued data provide a large amounts of applications in

the fields of finance, astronomy, electroencephalography etc. Throughout this dissertation,

we shed light on some of the interesting topics on the inference and prediction of categorical

and multivariate time series. By proposing some novel statistical frameworks, we provide

competitive solutions against the drawbacks from the existing literature and could possibly

benefit the communities of statistics and neuroscience. In this chapter, we present a brief

overview of the problems covered in this dissertation.
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1.1 Categorical Time Series

Categorical time series data is widely collected in many fields. Various models for categorical

time series that take into account temporal correlation are discussed in Kedem and Yakowitz

(1994), Kedem and Slud (1980), Diggle (2002) and Fahrmeir and Tutz (2013), among others.

Keenan (1982a) developed a model with an underlying unobserved process that is Gaussian

first-order autoregressive. For binary time series with a Markovian structure, Billingsley

(1961), Meyn and Tweedie (2012a), Bonney (1987a), Fahrmeir and Kaufmann (1987), Kauf-

mann (1987), Keenan (1982a) and Muenz and Rubinstein (1985) developed an inferential

procedure based on the conditional likelihood. A comprehensive modeling framework based

on partial likelihood inference and generalized linear models was developed in Fokianos and

Kedem (2003a) and Kedem and Fokianos (2005). In this dissertation, we mainly focus on

the inference and prediction of binary time series.

1.1.1 Inference on Binary Time Series

In practice, standard software for fitting generalized linear models (GLMs) to binary time

series use the past series values as “explanatory variables” in the conditional mean of the

response for the regression (de Vries et al., 1998). This approach does not differentiate be-

tween explanatory variables that are exogenous to the time series data versus those that

are endogenous, i.e., explanatory values that are past values of the time series. Thus, it

does not properly take into account the auto-correlation structure in the data, leading to

potentially undesirable consequences. In particular, the standard errors of regression pa-

rameter estimates that are derived using the Em-FI matrix also ignore the auto-correlation

structure. In Fokianos and Kedem (1998a), the asymptotic conditional Fisher information

(AFI) matrix was derived for the general case where the conditional distribution of a time
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series depends on its own historical data as well as other covariates. While impressive in its

generality, the primary limitation of this result is that it does not provide a closed form of

the Fisher information matrix for specific models. In this dissertation, we derive the exact

Fisher information matrix for a particular binary time series model and provide efficient

inference on the parameters. This chapter is summarized in Gao et al. (2017).

1.1.2 Prediction of Binary Time Series

Various approaches have been proposed to model and predict binary time series. Caiado

et al. (2006) introduced new measurements in classifying time series based on periodograms.

Maharaj (2002) put forward a framework of comparing time series in frequency domain.

Wavelet based clustering method was also introduced by Maharaj et al. (2010). Jacobs and

Lewis (1978) proposed a discrete autoregressive-moving average (DARMA) model by utiliz-

ing probabilistic mixtures. A comprehensive modeling framework based on generalized linear

models and partial likelihood inference have been developed in Fokianos and Kedem (2002)

and Fokianos and Kedem (2003b). Fokianos and Kedem (1998b) extended the partial likeli-

hood analysis to non-stationary categorical time series including stochastic time dependent

covariates. With the Markovian structure, Meyn and Tweedie (2012b), Bonney (1987b) and

Keenan (1982b) developed inferential procedures based on the conditional likelihood. These

previous studies provide inference on binary time series. Their main drawback is that they

involve massive computation for high dimensional integrals, which results in poor prediction

accuracy. Lindquist and McKeague (2009) introduced a logistic regression model with func-

tional predictors and extended it to generalized linear model. Their substantial work was

superior in detecting sensitive and interpretable time points that were most predictive to

the response. However, there are some drawbacks are: (1) the Brownian motion assumption

is unlikely to be satisfied in practice because the covariates in this study hardly have the
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property of increment independence; (2) the influence of covariates on responses is assumed

to spread across the entire trajectory and hence implies the non-existence of “sensitive time

points”; (3) prediction of the time series is not developed, which could be a serious limitation

for this project since we are also interested in such predictions.

From the view of the machine learning community, typical classification methodologies such

as decision tree, random forest and strategies such as boosting can also be used for predicting

binary time series. Although such approaches are able to achieve predictions with high

accuracy, the major drawback is that they give very little guidance of interpretation. In

this dissertation, we develop a statistical model that can provide us simultaneously with

convincing inference and interpretation at the same time produce prediction accuracy that

is higher than that achieved by typical machine learning classification approaches. This

chapter is summarized in Gao et al. (2017).

1.2 Multivariate Time Series

Multivariate time series has been of increased interest with its widespread applications in var-

ious fields such as brain imaging, finance, economy etc. Specifically, in the field of brain imag-

ing, signals are collected from temporal and spatial domains with multiple trials (epochs).

Classical univariate time series models fail in investigating the spatial-temporal dependence.

This innegligible drawback motivates the development of multivariate time series models.

Similar to univariate time series, most of methodologies derive from time and frequency do-

mains. To name a few, time domain methods comprise of Vector Autoregressive (VAR), Vec-

tor Autoregressive Moving Average (VARMA), State Space Model, Vector Error Correction

Model, Systems of Dynamic Simultaneous Equations etc (Reinsel, 1982; Lütkepohl, 2005).

Frequency domain approaches include Dynamic Fourier Analysis and Wavelet, Spectral Ma-

4



trices Estimation, Factor Analysis, Coherence, Partial Directed Coherence etc (Shumway

and Stoffer, 2013; Baccalá and Sameshima, 2001).

In practice, brain imaging signals such as Local Field Potentials (LFPs) are commonly char-

acterized as multivariate time series with mixtures of different underlying brain oscillatory

processes and there have been a number of approaches used to estimate these latent indepen-

dent sources (Whitmore and Lin, 2016; Einevoll et al., 2007; Prado and Lopes, 2013). For

example, data-adaptive methods such as independent components analysis (ICA) and prin-

cipal components analysis (PCA) can provide estimates for the unobserved cortical sources.

However, they usually do not take into account the spectral structure within underlying

sources that could evolve over the course of the experiment given multiple epochs. More-

over, without any constraint on the structure of the sources, it is extremely difficult to

pool information across the epochs in the experiment. Recently, Fiecas and Ombao (2016)

studied the dynamics of LFPs during the course of experiment via Cramér representations.

Their approach does not consider low-dimensional representations, which are indispensable

to modeling these high dimensional multi-electrode LFPs. To overcome the drawbacks, we

develop an evolutionary state space model framework in this dissertation. This chapter is

summarized in Gao et al. (2016).

From an alternative perspective, spatial-temporal data (LFPs and other brain imaging sig-

nals) can be directly characterized as tensor data source. Signals obtained from multiple

trials (epochs) can be observed as 3 dimensional tensors. Inspired by the framework of ma-

trix normal (Dawid, 1981) and mixture models (Dutilleul, 1999), we propose a framework

of penalized mixture matrix normal to investigate on the spatial-temporal dependency and

evolution across various trials (epochs).
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1.3 Outline and Contributions

The outline and contributions of this dissertation are listed as follows.

In Chapter 2, we derive the exact conditional Fisher information matrix of a general logistic

autoregressive model with endogenous covariates for any series length T . Moreover, we also

develop an iterative computational formula that allows for relatively easy implementation

of the proposed estimator. Our simulation studies show that confidence intervals derived

using the exact Fisher information matrix tend to be narrower than those utilizing the

empirical Fisher information matrix while maintaining type I error rates at or below nominal

levels. Further, we establish that the exact Fisher information matrix approaches, as T

tends to infinity, the asymptotic Fisher information matrix previously derived for binary

time series data. The developed exact conditional Fisher information matrix is applied to

time-series data on respiratory rate among a cohort of expectant mothers where it is found to

provide narrower confidence intervals for functionals of scientific interest and lead to greater

statistical power when compared to the empirical Fisher information matrix.

In Chapter 3, we develop a mixed effects model for binary time series with a stochastic

component represented by a Gaussian process. The fixed component captures the effects

of covariates on the binary-valued response. The Gaussian process captures the residual

variations in the binary response that are not explained by covariates and past realizations.

We develop a frequentist modeling framework that provides efficient inference and more

accurate predictions. Results demonstrate the advantages of improved prediction rates over

existing approaches such as logistic regression, generalized additive mixed model, models for

ordinal data, gradient boosting, decision tree and random forest.

In Chapter 4, we propose an evolutionary state space model (E-SSM) for analyzing high
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dimensional brain signals whose statistical properties evolve over the course of a non-spatial

memory experiment. Under E-SSM, brain signals are modeled as mixtures of components

(e.g., AR(2) process) with oscillatory activity at pre-defined frequency bands. To account

for the potential non-stationarity of these components (since the brain responses could vary

throughout the entire experiment), the parameters are allowed to vary over epochs. Com-

pared with classical approaches such as independent component analysis and filtering, the

proposed method accounts for the entire temporal correlation of the components and ac-

commodates non-stationarity. For inference purpose, we propose a novel computational al-

gorithm based upon using Kalman smoother, maximum likelihood and blocked resampling.

The E-SSM model is applied to simulation studies and an application to a multi-epoch LFP

signal data collected from a non-spatial (olfactory) sequence memory task study. The results

confirm that our method captures the evolution of the power for different components across

different phases in the experiment and identifies clusters of electrodes that behave similarly

with respect to the decomposition of different sources.

In Chapter 5, we introduce a framework of mixture matrix normal to characterize the

brain signals of multiple trials (epochs). By adding various regularization terms, the pro-

posed model is able to identify “latent” spatial-temporal structures across hundreds of trials

(epochs). We establish some theoretic results showing the consistency of the constraint

optimizer. We also apply the proposed approach to two LFPs dataset from different exper-

iments. The results outperform the existing method by producing more interpretable and

stable clusters as well as mean “latent” spatial-temporal patterns across trials (epochs).

In Chapter 6, we conclude the findings in this dissertation and list some of the potential

future works.
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Chapter 2

Fisher Information Matrix of Binary

Time Series

2.1 Introduction

de Vries et al. (1998) utilized a logistic autoregressive model (LAR/LARX) to predict the

outcome of supervised exercise for intermittent claudication. The inference did not dis-

tinguish between covariates that were exogenous to the time series, versus covariates that

were endogenous, yielding potentially invalid and/or inefficient statistical inference. In this

chapter, we derive the exact conditional Fisher information (Ex-FI) matrix of a logistic au-

toregressive model for binary time series with arbitrary length T . We demonstrate that a

correctly specified Ex-FI leads to more efficient inference for regression parameters as mea-

sured by typically narrower confidence intervals relative to those obtained using the empirical

Fisher information (Em-FI) matrix (Dodge, 2006), while maintaining type I error rates at,

or below, nominal levels. This model takes into account the correlation in binary time series.
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Fokianos and Kedem (1998b) derived the the asymptotic conditional Fisher information

(AFI) matrix where the conditional distribution of a time series depends on its own historical

data as well as other covariates. The limitation is that the Ex-FI matrix has not been derived

for finite T . Instead, only an asymptotic approximation based on the partial likelihood, which

turned out to be equivalent to the Em-FI matrix for the LAR model, was provided. There are

major consequences of these limitations. First, the result lacks the precise form of the Fisher

information matrix to conduct inference on specific LAR coefficients and functionals of these

coefficients (e.g., probability of Yt “ 1 given the past values of the binary series). Second,

when T is not sufficiently large, the discrepancy between the Ex-FI and Em-FI matrices could

lead to poor power, incorrect significance level of tests, inefficient inference, and potentially

misleading results from data analysis. Third, the large sample theory derived in Kedem and

Fokianos (2005) is based on the crucial assumption that 1
T

T
ř

t“1

IpXt P Aq Ñ νpAq, where νp.q

is a probability measure, A is a Borel set and Ip.q is the indicator function. Even when T is

large, such assumption may not be easily met. In this way, using Em-FI rather than Ex-FI

may be misleading since no large sample theory is guaranteed.

Motivated by these limitations, this chapter provides a derivation of the Ex-FI matrix of a

LAR/LARX model for arbitrary finite T . While the derivation is non-trivial we provide a

computationally tractable expression that can be easily implemented in an iterative manner.

We report findings from simulation studies suggesting that the derived Ex-FI matrix yields

superior results relative to the Em-FI for small to moderate sample sizes. In particular,

when compared to using the Em-FI, inference based on the Ex-FI matrix produces narrower

confidence intervals for a fixed significance level; close to expected false positive rate and

higher power when conducting tests of hypotheses. The simulation studies also demonstrate

that the Ex-FI matrix converges to the general AFI developed in Fokianos and Kedem

(1998a) in the sense that the norm of the difference between the entries of the two matrices
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converges to 0 when the length T of the binary time series increases. Finally, we apply the

developed Ex-FI matrix to time-series data on respiratory rate among a cohort of expectant

mothers. Results show the similar pattern observed from simulations. Namely, the Ex-FI

matrix is found to provide narrower confidence intervals for functionals of scientific interest

(such as the probability or log odds) and produce more statistical power when compared to

the Em-FI matrix.

The remainder of this chapter is organized as follows. In Section 2.2, we first derive the Ex-FI

matrix of LAR/LARX model in general. We also propose a computation framework through

functional iteration to obtain the Ex-FI matrix explicitly. At the end, we consider a special

case when the order of LAR mode is 1 and calculate the analytic form of the Ex-FI matrix.

In Section 2.3, we present some simulation results to compare the Ex-FI with Em-FI. Results

show the benefit of using Ex-FI in terms of shorter confidence interval length and reasonable

Type I error rate. Moreover, asymptotic behavior is also studied. In Section 2.4, we applied

the Ex-FI matrix to time-series data on respiratory rate among expectant mothers. By

comparing with the Em-FI, we conclude that using Ex-FI can produce greater power and

shorter confidence intervals when conducting statistical inference.
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2.2 Derivation of the Exact Conditional Fisher Infor-

mation Matrix

2.2.1 Logistic Autoregressive Model of Order p (LAR(p))

Consider a binary-valued correlated time series data Yt, t “ 1, . . . , T where the conditional

distribution of Yt depends on the previous values via the conditional probability

Pt “ PpYt “ 1 | yt´1, yt´2, ¨ ¨ ¨ , y1q “
exppy111´tβq

1` exppy111´tβq
, (2.1)

where y´t “ p1, yt´1, ¨ ¨ ¨ , yt´pq
1 is endogenous to the series and β “ pβ0, ¨ ¨ ¨ , βpq

1. The

conditional log-likelihood function of β and the vector of conditional score functions are,

respectively,

`pβ | Y q “

T
ÿ

t“p`1

rYtpY
111
´tβq ´ logt1` exppY 111

´tβqus

Upppβ,Y qqq “

T
ÿ

t“p`1

rY´ttYt ´
exppY 111

´tβq

1` exppY 111
´tβq

us.

Then, it follows that

B2

BβBβT
`pβ | Y q “ ´

T
ÿ

t“p`1

„

exppY 111
´tβq

t1` exppY 111
´tβqu

2
Y´tY

1
´t



. (2.2)
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The Ex-FI matrix takes the form

Ipβ | yp, ¨ ¨ ¨ , y1q “

T
ÿ

t“p`1

ÿ

pppy´tqqq

” exppy111´tβq

t1` exppy111´tβqu
2
y´ty

1
´t

ı

Qtpyt´1, ¨ ¨ ¨ , yt´pq, (2.3)

where the conditional joint probability of Yt´1, . . . , Yt´p is derived to be

Qtpyt´1, ¨ ¨ ¨ , yt´pq

“ PpYt´1 “ yt´1, Yt´2 “ yt´2, ¨ ¨ ¨ , Yt´p “ yt´p | yp, yp´1, ¨ ¨ ¨ , y1q

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1, if t “ p` 1
t´p´1
ś

k“1

P
yt´k
t´k p1´ Pt´kq

1´yt´k , if p` 2 ď t ď 2p` 1

ř

pyp`1,¨¨¨ ,yt´p´1q

t´p´1
ś

k“1

P
yt´k
t´k p1´ Pt´kq

1´yt´k , if t ě 2p` 2.

(2.4)

2.2.2 Logistic Autoregressive Model of Order p with Endogenous

Covariates (LARX(p))

Here we consider the case of additional endogenous covariate adjustment in the LAR(p) time

series model. Specifically, consider a binary-valued correlated time series Yt, t “ 1, . . . , T ,

where the conditional distribution of Yt depends on its previous values and endogenous

covariates Xt that relates to current time t through the conditional probability

Pt “ PpYt “ 1 | yt´1, yt´2, ¨ ¨ ¨ , y1q “
exppy111´tβ ` x

111
tαq

1` exppy111´tβ ` x
111
tαq

.
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where xt “ pxt1, ¨ ¨ ¨ , xtlq
1, α “ pα1, ¨ ¨ ¨ , αlq

1 and all the other parameters follow the notation

of the previous section. The conditional log-likelihood function of α,β and the vector of

conditional score functions are respectively

`pα,β | Y q “

T
ÿ

t“p`1

rYtpX
111
tα `̀̀ Y

111
´tβq ´ logt1` exppX 111

tα `̀̀ Y
111
´tβqus, (2.5)

Upppα,β,Y qqq “

T
ÿ

t“p`1

¨

˚

˝

XttYt ´
exppX 111tα`̀̀Y

111
´tβq

1`exppX 111tα`̀̀Y
111
´tβq

u

Y´ttYt ´
exppX 111tα`̀̀Y

111
´tβq

1`exppX 111tα`̀̀Y
111
´tβq

u

˛

‹

‚

.

Then, it follows that the Hessian matrix is

Hpppα,β ||| Y qqq “ ´
T
ÿ

t“p`1

»

—

–

exppX 111
tα `̀̀ Y

111
´tβq

t1` exppX 111
tα `̀̀ Y

111
´tβqu

2

¨

˚

˝

XtX
111
t XtY

111
´t

Y´tX
111
t Y´tY

111
´t

˛

‹

‚

fi

ffi

fl

. (2.6)

In this case the Ex-FI matrix takes the form

Ipα,β | yp, ¨ ¨ ¨ , y1q “

T
ÿ

t“p`1

ÿ

pppy´tqqq

” exppX 111
tα `̀̀ Y

111
´tβq

t1` exppX 111
tα `̀̀ Y

111
´tβqu

2

¨

˚

˝

XtX
111
t XtY

111
´t

Y´tX
111
t Y´tY

111
´t

˛

‹

‚

ı

Qtpyt´1, ¨ ¨ ¨ , yt´pq,

where Qtpyt´1, ¨ ¨ ¨ , yt´pq is defined in Equation (2.4). In practice, examples of endogenous

Xt have been discussed in Davis et al. (2000). A particular example is Xt “ t{n if one

believes that there is a linear temporal trend in the link function (e.g., log mean for the

Poisson response in Davis et al. (2000) and the log odds for LARX(p)).
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2.2.3 Computation through Functional Iteration

Since pyt´1, ¨ ¨ ¨ , yt´pq take values from t0, 1up, computation of the Ex-FI matrix through

direct calculation can be expensive. In this chapter, we propose an alternative approach to

achieve the marginal probability mass function Qtpyt´1, ¨ ¨ ¨ , yt´pq through functional itera-

tion. We define

Qtpyt´1, ¨ ¨ ¨ , yt´pq

“

$

’

’

’

’

’

&

’

’

’

’

’

%

ř

wPt0,1u

tPpYt´1 “ 1 | yt´2, ¨ ¨ ¨ , y2, wq
yt´1PpYt´1 “ 0 | yt´2, ¨ ¨ ¨ , y2, wq

p1´yt´1q

ˆQt´1pyt´2, ¨ ¨ ¨ , yt´p, wqu, if p` 2 ď t ď T

1pyp, ¨ ¨ ¨ , y1q, if t “ p` 1.

where 1pyp, ¨ ¨ ¨ , y1q is the indicator function that takes value 1 when the realization is

pyp, ¨ ¨ ¨ , y1q and 0 otherwise. Then for any T and order p, the marginal probability mass

function Qtpyt´1, ¨ ¨ ¨ , yt´pq can be obtained iteratively at low computational cost. The Ex-FI

matrix can be achieved accordingly.

On the other hand, the Ex-FI matrix can also be obtained via iterated expectations. Specif-

ically, for any t ě p` 2, we define

fkpỹ´pt´k`1qq

“

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

fk´1pỹ
0
´pt´k`1qq ` pfk´1pỹ

1
´pt´k`1qq ´ fk´1pỹ

0
´pt´k`1qqq

exppy111
´pt´k`1q

βq

1`exppy111
´pt´k`1q

βq
,

if 2 ď k ď t´ p,

exppy111´tβq

t1`exppy111´tβqu
2y´ty

1
´t,

if k “ 1.

where ỹ´t “ pyt´1, ¨ ¨ ¨ , yt´pq
1, ỹ0

´t “ p0, yt´2, ¨ ¨ ¨ , yt´pq
1 and ỹ1

´t “ p1, yt´2, ¨ ¨ ¨ , yt´pq
1. Then
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for any particular t0, by function iteration,

E
„

exppY 111
´t0βq

t1` exppY 111
´t0βqu

2
Y´t0Y

1
´t0



“ ft0´ppỹ´pp`1qq, t0 ě p` 1.

The Ex-FI matrix then takes the form Ipβ | yp, ¨ ¨ ¨ , y1q “
T
ř

t0“p`1

ft0´ppỹ´pp`1qq.

2.2.4 Special Case: Logistic Autoregressive Model of Order p “ 1

(LAR(1))

Consider a binary-valued time series data Yt, t “ 1, . . . , T , where the conditional distribution

of Yt depends on its own immediate past value via the conditional probability

Pt “ PpYt “ 1 | yt´1, yt´2, ¨ ¨ ¨ , y1q “
exppβ0 ` β1yt´1q

1` exppβ0 ` β1yt´1q
.

Denote ppyq “ exppβ0`β1yq
1`exppβ0`β1yq

and vpyq “ ppyqr1 ´ ppyqs. Then the corresponding Hessian

matrix is derived to be

B2

BβBβT
`pβ | Y q “ ´

¨

˚

˚

˝

T
ř

t“2

vpYt´1q
T
ř

t“2

vpYt´1qYt´1

T
ř

t“2

vpYt´1qYt´1

T
ř

t“2

vpYt´1qY
2
t´1

˛

‹

‹

‚

. (2.7)

Next, we will derive the conditional expectation with respect to each entry of the Hessian

matrix in Equation (2.7). Due to the Markovian assumption, the conditional expectation
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can be obtained through iterated expectations. For any particular t ą 2, we have

E rvpYt´1q | Y1s “ A1 ` A2 (2.8)

E rvpYt´1qYt´1 | Y1s “ A3 ` A4 where (2.9)

A1 “ tvp1q ´ vp0qutpp1q ´ pp0qu
t´3
tppY1q ´ pp0q{t1´ pp1q ` pp0quu

A2 “ vp0q ` pp0qtvp1q ´ vp0qu{t1´ pp1q ` pp0qu

A3 “ vp1qtpp1q ´ pp0qut´3
rppY1q ´ pp0q{t1´ pp1q ` pp0qus

A4 “ vp1qpp0q{t1´ pp1q ` pp0qu.

Denote the Ex-FI matrix to be Ipβ | Y1q. Its elements Ijk, j “ 1, 2; k “ 1, 2 are derived,

respectively, as

I11 “ Er
T
ÿ

t“3

vpYt´1q | Y1s ` vpY1q

“

T
ÿ

t“3

rtvp1q ´ vp0qutpp1q ´ pp0qut´3
tppY1q ´

pp0q

1´ pp1q ` pp0q
u `

vp0q ` pp0q
vp1q ´ vp0q

1´ pp1q ` pp0q
s ` vpY1q

“ tvp1q ´ vp0qutppY1q ´
pp0q

1´ pp1q ` pp0q
u
1´ tpp1q ´ pp0quT´2

1´ pp1q ` pp0q
`

pT ´ 2qtpp0qvp1q ` vp0q ´ vp0qpp1qu

1´ pp1q ` pp0q
` vpY1q
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I12 “ Er
T
ÿ

t“3

vpYt´1qYt´1 | Y1s ` vpY1qY1

“

T
ÿ

t“3

rvp1qtpp1q ´ pp0qut´3
tppY1q ´

pp0q

1´ pp1q ` pp0q
u `

vp1qpp0q

1´ pp1q ` pp0q
s ` vpY1qY1

“ vp1qtppY1q ´
pp0q

1´ pp1q ` pp0q
u
1´ tpp1q ´ pp0quT´2

1´ pp1q ` pp0q
`
pT ´ 2qpp0qvp1q

1´ pp1q ` pp0q
` vpY1qY1

I22 “ Er
T
ÿ

t“3

vpYt´1qY
2
t´1 | Y1s ` vpY1qY

2
1

“ I12.

Remark 1. Note that ppyq does not hold the constraint that pp0q ` pp1q “ 1, since

pp0q “ PpYt “ 1 | Yt´1 “ 0q and pp1q “ PpYt “ 1 | Yt´1 “ 1q.

Remark 2. Evaluation and selection among different models could be a critical issue. In

particular, selection of the order p needs to be taken into serious consideration. Motivated

by the work of Kedem and Fokianos (2005), we may select the optimal lag order p using

either the Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC)

which are defined to be AICppq “ ´2`pα̂, β̂ | Y q`2p and BICppq “ ´2`pα̂, β̂ | Y q`p log T

respectively, where pα̂, β̂q is the maximum likelihood estimator of pα,βq.
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2.3 Simulations

2.3.1 Evaluating Small Sample Performance

In this section, we compare the behavior of the newly derived Ex-FI and Em-FI in the

context of inference for regression parameters under the LAR(1) model. Time series lengths

are chosen as T “ 20, 50 and 200 respectively, and 10, 000 simulations were generated under

each of two parameters settings: pβ0, β1q “ p0.1, 0.5q (“low ratio”), and pβ0, β1q “ p0.1, 1q

(“high ratio”). In this case, β1 denotes the log odds ratio and β0 denotes the log odds

when the previous realization is 0. β1{β0 is a monotonic function of the log odds ratio of

Yt “ 1. Particularly, large value (greater than 1) of β1{β0 implies the log odds of Yt “ 1

when Yt´1 “ 1 is much higher compared to the log odds when Yt´1 “ 0. For each scenario,

we calculate the empirical type I error-rate for testing H0 : β1 “ 0 at level .05, the average

standard error of the point estimate of β1, the observed standard deviation of the estimate

of β1 across simulations, and the empirical coverage probability of 95% confidence intervals

(CIs).

Table 2.1 provides a summary of the conducted simulation study for various time series

lengths. With respect to type I error, it can be seen that use of Ex-FI and Em-FI both

result in conservative inference (lower than nominal type I error) for smaller values of T and

for high ratios. For the low ratio scenario, nominal type I error rates are achieved as time

series lengths of T “ 50. For time series lengths of T “ 200 both variance estimators yield

the desired type I error rates. As expected, similar patterns are observed with respect to

the coverage probability of corresponding 95% confidence intervals. However, the benefit

of using Ex-FI over Em-FI is observed when comparing the average standard error to the

observed standard deviation of estimates of β1 across simulations. Specifically, Em-FI tends

to behave erratically for small sample sizes, yielding extremely large estimated standard
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Table 2.1: Summary of simulation results for the LAR(1) model. Time series lengths are
chosen as T “ 20, 50 and 200. 10, 000 simulations were generated under each of two param-
eters settings: pβ0, β1q “ p0.1, 0.5q (“low ratio”) and pβ0, β1q “ p0.1, 1q (“high ratio”). For
each scenario, we present the empirical type I error-rate for testing H0 : β1 “ 0, the average
standard error of the point estimator for β1, the observed standard deviation of the regres-
sion parameter estimate of β1 across simulations, and the empirical coverage probability of
95% confidence intervals.

Low Ratio (pβ0, β1q “ p0.1, 0.5q) High Ratio (pβ0, β1q “ p0.1, 1q)
Length/Method Type I Standard Coverage Type I Standard Coverage

Error Error* Probability Error Error* Probability
T “ 20

Ex-FI 0.031 3.737ppp2.290qqq 0.969 0.008 7.868ppp3.015qqq 0.992
Em-FI 0.030 32.87ppp2.290qqq 0.970 0.011 362.3ppp3.015qqq 0.989

T “ 50
Ex-FI 0.048 0.617ppp0.632qqq 0.952 0.039 1.065ppp1.074qqq 0.961
Em-FI 0.044 0.956ppp0.632qqq 0.956 0.039 1.222ppp1.074qqq 0.961

T “ 200
Ex-FI 0.052 0.299ppp0.299qqq 0.948 0.051 0.332ppp0.325qqq 0.949
Em-FI 0.052 0.297ppp0.299qqq 0.948 0.053 0.324ppp0.325qqq 0.947

*Standard error represents the average standard error of the point estimator for β1 and, in parentheses,
the actual observed standard deviation of the regression parameter estimate of β1 across simulations.

error for some simulated datasets. This can be seen most notably in the high ratio scenario

by observing that the average standard error computed using Em-FI is 362.3 compared to

the actual observed standard deviation of the estimator across 10,000 simulations being only

3.015. In contrast, the average standard error computed using Ex-FI is only 7.868.

2.3.2 Evaluation of Confidence Interval Length

Here we consider the average length of derived 95% confidence intervals for β1. Following the

result that asymptotically, pβ
.
„ Npβ, I´1pβqq for large values of T (Fokianos and Kedem,

1998a), an approximate 95% confidence interval can be obtained using both Ex-FI and Em-

FI. For each scenario of β described above, 1000 binary time series of lengths T “ 5, 6, . . . , 250

were generated. For each time series data, an approximate 95% confidence interval for β1

was computed using both Ex-FI and Em-FI. We compared the two approaches by calculating
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the relative difference of the lengths of the two confidence intervals. As expected from the

average standard error values in Table 1, Fig.2.1 indicates that the confidence interval derived

from Ex-FI behaves more efficiently on average than the confidence interval computed using

Em-FI. It is noted that such substantial difference exists when T ă 200 and tends to be

roughly the same as T goes beyond 200. Once again, it implies that one should be careful

with the Em-FI when T ă 200.
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Figure 2.1: The average difference in lengths of confidence intervals derived from Ex-FI
and Em-FI (length of CIempirical´length of CIexact)/length of CIexact computed from 1000
simulated time series with β1{β0 “ 10. The lengths of time series, T ranges from (a) 5 to
100 (left) and (b) 50 to 200 (right). The Em-FI matrix used here was identical to the one
proposed in Fokianos and Kedem (1998a).

In Fig.2.2, T was fixed to 60 and 100 and β1 was allowed to vary while keeping β0 “ 0.1.

Results clearly establish the advantage of Ex-FI over Em-FI especially as the true value of

β1 increases, i.e., the ratio increases.
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Figure 2.2: The average relative difference in length of confidence intervals, computed from
1000 simulated datasets, derived from Ex-FI and Em-FI (length of CIempirical´length of
CIexact)/length of CIexact, where the number of observations is taken to be (a) T “ 60 (left)
and (b) T “ 100 (right). β0 is fixed to be 0.1. The Em-FI matrix used was developed in
Fokianos and Kedem (1998a).

2.3.3 Evaluating the Discrepancy between the Exact and Empir-

ical Fisher Information

In this section, we discuss the results of simulations conducted to investigate the discrepancy

between Ex-FI and Em-FI under the following scenarios: (i.) time series lengths T ranging

from 10´250; (ii.) the ratio β0{β1 P t5, 10u. Based on 1, 000 simulated time series under each

scenario, the average Frobenius norm of the difference between the asymptotic covariance

matrices (i.e. the inverse of Ex-FI and Em-FI), displayed in Fig.2.3, shows that when T ą 200

any discrepancy between the two covariance matrices effectively vanishes. However, for

T ă 200, discrepancies do exist, primarily due to the instability of Em-FI for particular

datasets. The result reiterates that caution needs to be taken when utilizing the Em-FI

variance estimator for shorter time series, since this erratic behaviour could lead to significant

errors in the estimated variances of regression parameters.

21



50 100 150 200 250

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5
0
.3

0

T

T
h
e
 F

ro
b
e
n
iu

s
 n

o
rm

 o
f 
th

e
 d

if
fe

re
n
c
e

50 100 150 200 2500
.0

0
0
.1

0
0
.2

0
0
.3

0

T

T
h
e
 F

ro
b
e
n
iu

s
 n

o
rm

 o
f 
th

e
 d

if
fe

re
n
c
e

Figure 2.3: The average Frobenius norm of the difference between the inverse of the ex-
act Fisher information (Ex-FI) and empirical Fisher information (Em-FI) (as developed in
Fokianos and Kedem (1998a)) under the two parameter set up: (a) β1{β0 “ 5 (left) and (b)
β1{β0 “ 10 (right). The average Frobenius norm was calculated from 1,000 simulated time
series for varying time series lengths under each of the parameter set-up.

2.3.4 Evaluating the Convergence

We considered the asymptotic behavior of Ex-FI and compared it to the AFI proposed by

Fokianos and Kedem (1998a) by computing the average Frobenius norm between the two

matrices over 1, 000 simulated time series data. In Fig.2.4, it is clear that the discrepancy

between these two matrices decays dramatically, which empirically indicates that the limiting

behavior between the two estimators coincides. It should be emphasized that when T ă 200,

the difference is significant while as T grows larger than 200, the discrepancy shrinks to small

values around 0. Hence, utilizing the Em-FI when T ă 200 may be problematic.
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Figure 2.4: The average Frobenius norm of the difference in Ex-FI and AFI matrices (which
is proposed in Fokianos and Kedem (1998a)) computed over 1000 simulated time series under
the set-up β1{β0 “ 5. The lengths of time series, (a) T ranges from 5 to 250 (left) and (b)
250 to 550 (right).

2.4 Analysis of Binary Respiratory Time Series

2.4.1 Explanatory Analysis

In this section we consider time-series data on respiratory rate among a cohort of 113 ex-

pectant mothers. Briefly, the participants consist of a sub-sample of women from a larger

cohort of women attending prenatal care at a university-based clinic in Pittsburgh, PA and

participating in a prospective, longitudinal study from early gestation through birth (En-

tringer et al., 2015). Participants were asked to wear a heart and respiratory rate monitor

for up to four consecutive days. In addition, each night prior to sleeping the participants

were asked to fill out an electronic diary recording how stressful their day was on a scale

from 1 to 10 (Xi), with 10 corresponding to the highest self-reported stress level. The study

was approved by the local Institutional Review Board (IRB).
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Of scientific interest is the potential association between self-reported stress and respiratory,

or breath, rate measured as the number of breaths per 60 second period. For the purposes of

illustration, we consider a participants breath rate averaged over one-hour intervals starting

from midnight and running to midnight over the maximum of a 24 hour period. Empirical

data suggests that a respiratory rate of over 20 breaths per minute is considered high for a

healthy adult (Barrett et al., 2010). As such, the time series in this study are discretized

into a binary response using a threshold of greater than 20 breaths/min. Accordingly, if

we denote Yit as the average breath rate for subject i at hour t, we define Yit “ 1 if the

observed average respiratory rate is greater than 20 breaths/min, and 0 otherwise. To

illustrate, Fig.2.5 presents the observed time series for a randomly sampled participant.

Table 2.2 depicts the empirical transition table of respiratory rate across all subjects. It

illustrates a strong association between the current realization of Yit and lagged values of

Yi,t´1 and Yi,t´2. In this study, one scientific question of interest is whether or not a potential

interaction exists between the lagged realizations Yi,t´1, Yi,t´2 and a participant’s observed

stress level Xi. Specifically, it is hypothesized that the association between lagged responses

and current breath rate is lower among individuals reporting high stress due to the erratic

breathing patterns that high stress situations can evoke. As such, we consider a LARX model

including the lagged realization, an indicator for high stress (1rXią7s), and their interaction.

In this study, similar to the discussion in Holmes and Rahe (1967), a subject is considered

to be in high stress if the scale exceeds 7.
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Figure 2.5: Binary respiratory time series.

Table 2.2: Empirical transition table of respiratory rate across all subjects

Lagged respiratory rate Current respiratory rate
Yi,t “ 0 Yi,t “ 1

Yi,t´1 “ 0 0.865 0.046
Yi,t´1 “ 1 0.038 0.051
Yi,t´2 “ 0 0.855 0.047
Yi,t´2 “ 1 0.038 0.060

2.4.2 Fitting the LARX Model to the Respiratory Binary Time

Series Data

We consider LARX(1) and LARX(2) models fitted across the 113 subjects with the same

parameter. Stress level 1rXią7s and the interactions between stress level and past values of

the binarized respiratory rate 1rXią7s ˆ Yit, 1rXią7s ˆ Yi,t´1 were considered to be covariates.

With the independence assumption across subjects, we fit a log likelihood function that is the

sum of the log likelihood function (2.5) for each subject. Table 2.3 provides 95% confidence

intervals for the functionals PpYit “ 1 | Yi,t´1q and
PpYit“1|Yi,t´1q

PpYit“0|Yi,t´1q
after fitting the LARX(1)

model. It can be seen that the confidence intervals derived from Ex-FI are consistently
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shorter than Em-FI. Specifically, when Yi,t´1 “ 1 the confidence interval for PpYit “ 1 | Yi,t´1q

derived from Ex-FI excludes 0.5 (odds excludes 1), while the confidence interval resulting

from the use of Em-FI includes 0.5 (odds includes 1). Under the LARX(2) model, the pattern

is more obvious. From Table 2.4, it can be seen that comparing the confidence interval from

Ex-FI to Em-FI, the average length of all the functionals are relatively smaller. In the most

extreme case the Ex-FI derived confidence interval for the odds of high respiratory rate among

high stress individuals is approximately 30% shorter (and excluding 1), when compared to the

confidence interval derived using Em-FI. Using the Ex-FI approach, the lagged realizations

are determined to be significantly associated with respiratory rate: expectant mothers with

low stress level tend to have low rate if their previous realizations are low. In contrast, the

wider Em-FI intervals do not rule out a odds of 1 associated with high prior respiratory state

among high stress mothers.

Table 2.3: The 95% confidence intervals of functionals PpYit “ 1 | Yi,t´1q (Prob) and
PpYit“1|Yi,t´1q

PpYit“0|Yi,t´1q
(Odds) obtained by fitting the LARX(1) model with stress level and interaction

between stress level and past values of the binarized respiratory rate.

Low Stress (1rXią7s “ 0) High Stress (1rXią7s “ 1)

Previous State/Method Prob Odds Prob Odds

Yi,t´1 “ 0

Ex-FI (0.042, 0.061) (0.044, 0.065) (0.027, 0.085) (0.028, 0.093)

Em-FI (0.042, 0.061) (0.044, 0.065) (0.027, 0.085) (0.028, 0.093)

Yi,t´1 “ 1

Ex-FI ppp0.505,0.630qqq ppp1.021,1.701qqq (0.373, 0.731) (0.594, 2.724)

Em-FI ppp0.498,0.635qqq ppp0.998,1.738qqq (0.366, 0.737) (0.577, 2.802)
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Table 2.4: The 95% confidence intervals of functionals PpYit “ 1 | Yi,t´1, Yi,t´2q (Prob)

and
PpYit“1|Yi,t´1,Yi,t´2q

PpYit“0|Yi,t´1,Yi,t´2q
(Odds) obtained by fitting the LARX(2) model with stress level and

interaction between stress level and past values of the binarized respiratory rate.

Low Stress (1rXią7s “ 0) High Stress (1rXią7s “ 1)

Previous State/Method Prob Odds Prob Odds

Yi,t´2 “ 0, Yi,t´1 “ 0

Ex-FI (0.044, 0.064) (0.046, 0.068) (0.023, 0.081) (0.023, 0.088)

Em-FI (0.044, 0.064) (0.046, 0.068) (0.023, 0.080) (0.023, 0.087)

Yi,t´2 “ 1, Yi,t´1 “ 0

Ex-FI (0.394, 0.553) (0.651, 1.241) (0.349, 0.851) (0.537, 5.701)

Em-FI (0.385, 0.563) (0.626, 1.290) (0.349, 0.851) (0.537, 5.707)

Yi,t´2 “ 0, Yi,t´1 “ 1

Ex-FI (0.100, 0.201) (0.117, 0.251) (0.017, 0.230) (0.017, 0.299)

Em-FI (0.100, 0.210) (0.111, 0.265) (0.015, 0.250) (0.016, 0.332)

Yi,t´2 “ 1, Yi,t´1 “ 1

Ex-FI (0.670, 0.787) (2.033, 3.696) ppp0.535,0.869qqq ppp1.151,6.630qqq

Em-FI (0.653, 0.800) (1.878, 4.001) ppp0.469,0.896qqq ppp0.885,8.621qqq
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Chapter 3

Modeling Binary Time Series Using

Gaussian Processes

3.1 Introduction

The goal of this chapter is motivated by developing statistical inference for studying changes

in the sleep state (in particular, asleep versus awake) and the potential roles of covariates

such as heart rate, respiration rate and body temperature on sleep states. A plot of the sleep

states and the exogenous time series of heart rate and temperature, given in Figure (3.1),

suggest a lead-lag depenence between sleep states and the exogenous time series. In this

chapter, we develop a model that formally tests for these lead-lag dependence and predict

future sleep states.

This work is inspired by Keenan (1982b) who developed a binary time series using a latent

strictly stationary process. The focus here is to provide an accurate, interpretable, efficient

yet computationally less demanding approach for estimation and prediction. When prior
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Figure 3.1: Left: sleep state. Right: sleep state plot (dotted line) overlaid by scaled heart
rate (solid line) and body temperature (dashed line) time plots.

information indicates that a binary time series is determined by a process comprised with

fixed and random components, we decompose the unobserved latent process into linear and

stochastic effects with different covariates. On stage one, inference on the fixed effects is

conducted using maximum likelihood estimation. On stage two, conditioned on the estimated

fixed effect, a Gaussian process will be used to represent the random components. Predictions

are obtained by combining inference on these two components. In addition, based on the

results from these two stages, we use parametric bootstrap samplers from the estimated

Gaussian process to obtain the final point and interval estimates of parameters.

Using the proposed procedure, we can identify the dependence of the endogenous time series

(sleep state) on potential covariates (e.g., heart rate and body temperature) by providing the

point and interval estimates of the coefficients from linear effects based on the results from the

two-stage algorithm. Inference can be easily and directly performed by maximum likelihood

using existing software. Moreover, results are easily interpretable under the framework of

generalized linear model. On stage two, which is derived from Gaussian process classification

strategy, we can predict the sleep state with high accuracy. Laplace approximation was
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implemented to reduce the computation cost. This work is also inspired by Brillinger (1983)

which, to the best of our knowledge, is the first to introduce this notion of a Gaussian

random effect as random intercept in a logit model. Here, we generalize this by representing

the random component as a stochastic process rather than just a scalar random variable.

The main advantages of our proposed approach, which we call the hybrid inference method

for binary time series (HIBITS), are the following: (1) it accounts for the linear and non-

linear stochastic effects of covariates and endogenous variables on sleep states; (2) it provides

efficient point and interval estimates of the coefficients from the linear effects while maintain-

ing type I error rates; (3) it produces more accurate predictions compared to other existing

approaches; (4) it is easily implemented with low computational cost; and (5) unlike other

classification approaches, it gives more straightforward interpretation of the results.

The remainder of this chapter is organized as follows. Section 3.2 is devoted to brief in-

troduction of Gaussian process and its existing applications in regression and classification.

In Section 3.3, we develop our proposed methodology and discuss the motivation and the

technical derivation of the proposed HIBITS method. A complete algorithm that yields

prediction and inference on the coefficients of covariates and endogenous variables is also

provided. Model selection strategy is also developed to address application problems. Sec-

tion 3.4 presents the simulation results that show the benefits of the proposed method over

the existing methods in terms of the significant higher prediction accuracy and narrower

confidence intervals. In Section 3.5, we apply our proposed model and inference procedure

to identify predictors of sleep states and to predict future sleep states. The results are

promising in terms of prediction accuracy at low computational cost and interpretability.

Moreover, the proposed method can also be modified when there are missing values.
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3.2 Background on Gaussian Processes in Binary Time

Series

3.2.1 Gaussian Process and Regression Models

Gaussian process have been widely developed in spatial-temporal modeling (Williams and

Rasmussen, 2006; Banerjee et al., 2008, 2014; Gelfand et al., 2005; Quick et al., 2013; Stein,

2012; Zhou et al., 2015; Vandenberg-Rodes and Shahbaba, 2015; Wang and Gelfand, 2014).

It provides a framework that can capture the non-linear and stochastic components of ex-

ogenous and endogenous variables based on generalized linear models, which makes it useful

for modeling binary time series and classification.

The definition of a Gaussian process is as follows.

Definition 1. A stochastic process is a Gaussian process if and only if for every finite set of

indices t1, ¨ ¨ ¨ , tk in the index set T , x “ pxt1 , ¨ ¨ ¨ , xtkq
T is a multivariate Gaussian random

variable.

We will write the Gaussian process fpxq as fpxq „ GPpmpxq, Kpx,x1qq, where mpxq “

Erfpxqs and Kpx,x1q “ Erpfpxq ´ mpxqqpfpx1q ´ mpx1qqs. Let us now denote the ob-

served data to be tpxi, yiq, i “ 1, ¨ ¨ ¨ , n ` n˚u, where xi P Rp and yi is the response data.

We split the dataset into n training points and n˚ testing points. Let (X˚,y˚) repre-

sent the testing datasets and (X,y) represent the training datasets respectively. Define

µ “ KpX˚,XqKpX,Xq
´1y,Σ “ KpX˚,X˚q ´ KpX˚,XqKpX,Xq

´1KpX,X˚q. It follows

that

y˚|X,X˚,y „ Npµ,Σq. (3.1)
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The distribution of the response y˚ can be determined by Equation (3.1). Point estimates,

interval estimates and sampling distribution of y˚ can be derived accordingly.

Remark 3. On stage two of the proposed method (discussed in Section 3.3.2), results in

Equation (3.1) will be utilized to achieve the distribution of the stochastic component which

captures the variation in the binary time series beyond which are explained by the covariates.

3.2.2 Gaussian Process in Modeling Binary Time Series

Model Formulation

Denote the observed training data as tpxi, yiq, i “ 1, ¨ ¨ ¨ , nu, where yi P t1, 0u and xi P Rp.

For our data in this chapter, yi denotes the sleep state at time point i and xi can be heart

rate or body temperature at time point i. We define a latent Gaussian process indexed by

x as fpxq. The relationship between xi and yi is characterized by Ppyi “ 1|xiq “ tpfpxiqq,

where t is a link function that determines the relation between x and the probability of the

sleep state. To name a few, t can be a logit, probit or complementary log-log link functions

(McCullagh, 1984).

Classification Method

For a given link, the inferential procedure will be divided into two steps. First, we compute

the distribution of the latent process on the test data

ppf˚|X,y,X˚q “

ż

ppf˚|X, f ,X˚qppf |X,yqdf , (3.2)
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where ppf |X,yq “ ppy|fqppf |Xq{ppy|Xq. Then, we estimate the conditional probability of

y˚ “ 1 by

ppy˚ “ 1 | X,y,X˚q “

ż

tpf˚qppf˚|X,y,X˚qdf˚, (3.3)

which is approximately a weighted average of the probability of y˚ “ 1 over all possible

realizations of predicted stochastic components that is a Gaussian process.

It should be pointed out that both of the two integrands in Equations (3.2) and (3.3) do not

have closed forms. For Equation (3.3), following the argument in Williams and Rasmussen

(2006), numerical tools such as Monte Carlo method can be used to obtain the approxi-

mate value of the integral given ppf˚|X,y,X˚q. To obtain Equation (3.2), Williams and

Barber (1998) introduced Laplace approximation for this problem. Minka (2001) proposed

an alternative expectation propagation(EP). Besides these methods, a number of MCMC

algorithms have also been considered. In the following section, we will follow the direct

Laplace approximation.

From Equation (3.2), we can write the approximate distribution of ppf |X,yq as Npf̂ , Î´1q,

where f̂ is the MLE of the distribution and Î is the observed Fisher information matrix. To

find the value of f̂ , Newton’s method can be implemented, where in each iteration fnew “

fold ´∇2 log ppfold|X,yq´1∇ log ppfold|X,yq “ pK´1pX,Xq `W q´1pW fold `∇ log ppy|foldqq,

where W “ ´∇2 log ppy|foldq and KpX,Xq is the covariance matrix of fpXq. Thus, the

distribution ppf |X,yq can be approximated by Npf̂ , pK´1pX,Xq `W q´1q.

Opper and Winther (1999) suggested the conditional expectation of f˚ could be obtained

by Epf˚|X,y,X˚q “ KpX˚,Xq
TK´1pX,Xqf̂ “ KpX˚,Xq

T∇ log ppy|f̂q. Following similar

arguments, the conditional variance of f˚ can be obtained by Vpf˚|X,y,x˚q “ KpX˚,X˚q´

KpX˚,Xq
T pK´1pX,Xq`W q´1KpX˚,Xq. Given the mean and variance, at the last step, the
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probability of y˚ “ 1 can be approximated by
ş

tpf˚qp̂pf˚|X,y,X˚qdf˚. It should be pointed

out that the Gaussian process essentially captures information beyond those provided by

past value of both endogenous and exogenous time series.

Remark 4. B2

Bfi
2 log ppyi|fiq takes the following forms for the logit and probit links, respectively,

B2

Bfi
2 log ppyi|fiq “ ´ppyi “ 1|fiqppyi “ 0|fiq

B2

Bfi
2 log ppyi|fiq “ ´

ϕpfiq
2

Φpp2yi ´ 1qfiq2
´
p2yi ´ 1qfiϕpfiq

Φpp2yi ´ 1qfiq

Here ϕp.q and Φp.q are the normal probability density function and the cumulative distribu-

tion function, respectively.

3.3 HIBITS: The Hybrid Estimation Method for Mod-

eling and Predicting Binary Time Series

Building on the established theoretical foundations of Gaussian processes, we now develop a

novel two-stage inference and classification method. This section is organized as follows: in

Section 3.3.1, we discuss the motivation of using the hybrid strategy in modeling sleep stage;

followed by details of the two-stage hybrid method in Section 3.3.2; in Section 3.3.3, we

discuss our model selection strategy; and in Section 3.3.4, we provide a method in providing

point and interval estimates of the coefficients of the covariates and endogenous variables.
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3.3.1 Motivation

The common approach is to use a Gaussian distribution with zero mean value as a random

effect if the latent process yields, equally likely, positive and negative fluctuations around

0 (Kuss, 2006). Yet, when it comes to real data, this set up overlooks the linear structure

between covariates and the actual response of interest. For instance, to model the binary

sleep state, scientists believe that body temperature and heart rate should be involved as

potential predictors. In Fokianos and Kedem (2002), a regression-based approach for model-

ing covariates is proposed. However, if we naively utilize the existing Gaussian distribution

with zero mean function to model the data, the latent process equally produces positive and

negative value fluctuating around 0 which can produce misleading results because it will

render the effects of covariates (body temperature and heart rate) to be insignificant. In

addition, incorporating those covariates in the covariance function is a reasonable approach

to modeling the association. However, the interpretation is complicated. Much work has

been done to overcome the aforementioned limitations. To name a few, Snelson et al. (2004)

proposed an approach to transform data in agreement with the Gaussian process model.

Their work generalized the Gaussian process by warping the observational space. Although

the transformed data can be fitted by Gaussian process, it leads to difficulty in the interpre-

tation of the transform. Another drawback is that the effects of particular covariates could

be lost (or difficult to interpret). Cornford (1998) suggested a Gaussian process regression

model with mean function mpxq “ βTx. Their work incorporates the effect of particular

covariates. The main drawback is the computational burden that results from the choice of

hyperparameter and MCMC sampler when it applies to classification problem. Building on

the prior work, we develop a two-stage method that takes advantage of the strengths of the

existing methods. It is able to model the linear association with particular covariates while

maintaining computational efficiency.
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3.3.2 The Proposed HIBITS Method

Consider the data tpx1,i, x2,i, yiqu where yi P t1, 0u,x1,i P Rp,x2,i P Rq. Here, x1,i are the

covariates in the fixed effects part and x2,i are covariates in the stochastic part. Then, Ppyi “

1|x1,i,x2,iq “ tpηpx1,i,x2,iqq. We now propose the systematic component of the generalized

linear model to take the form

ηpx1,i,x2,iq “ βTx1,i ` fpx2,iq

where βT P Rp and fpx2,iq „ GPp0, Kpx2,iqq. The systematic component with fixed and

random effects follow a linear mixed effect model with the first part capturing the fixed

effect and the second part describing the randomness that is not covered by the first part.

Note that ηpx1,i,x2,iq does not include an intercept term on this stage. Following the same

notation as previous sections, we denote Xd “ pxd,1, ¨ ¨ ¨ ,xd,nq, d “ 1, 2 as the training

dataset and Xd˚ “ pxd,n`1, ¨ ¨ ¨ ,xd,n`n˚q, d “ 1, 2 as the testing subsets. The proposed

inference method proceeds as follows.

Stage 1. Inference on the fixed effect.

The joint likelihood function Lpβ|X1,X2,y, fpX2qq can be written as

Lpβ|X1,X2,y, fpX2qq “

n
ź

i“1

tpηpx1,i,x2,iqq
yip1´ tpηpx1,i,x2,iqqq

1´yi . (3.4)

On the first stage, we consider the latent Gaussian process fpX2q fixed across time i. Nu-

merical algorithms such as Newton-Raphson method can be used to obtain β̂, the MLE of

the joint likelihood function. In fact, in this stage, we regard the latent Gaussian process

fpX2q as the time-invariant intercept of the logistic regression, which is considered fixed but
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unknown.

Stage 2. Inference on the stochastic components.

On the second stage, we make use of the result of inference on the fixed effect from Stage 1

and adjust the estimates by introducing the latent Gaussian process fpX2q. Conditional on

β̂, we define η̃px1,i,x2,i|β̂q “ β̂Tx1,i, then it follows that

Ppyi “ 1|x1,i,x2,i, β̂q “ tpη̃px1,i,x2,i|β̂q ` fpx2iqq.

Here, we model the stochastic component fpX2q as a Gaussian process with covariance

function

Covpfpx2,iq, fpx2,jqq “ λ expp´ρ||x2,i ´ x2,j||
2
q ` σ2δij (3.5)

and δij takes value 1 when i “ j and 0 otherwise. The parameters ρ, σ and λ are estimated by

the strategy proposed by Section 3.3.3 and we will not specify any prior on those parameters.

Since η̃px1,i,x2,i|β̂q is known, we can implement the strategy in Section 3.2.2 in dealing

with the predictive probability from Equation (3.3). The complete hybrid method can be

summarized in the following Algorithm 1.

Remark 5. The Hessian matrix W is a diagonal matrix with the following elements for the

logit and probit link respectively,

Wii “ ´ppyi “ 1|β̂, fiqppyi “ 0|β̂, fiq,

Wii “ ´
ϕ2pp2yi ´ 1qpβ̂Tx1,i ` fiqqpβ̂

Tx1,i ` fiq

Φ2pp2yi ´ 1qpβ̂Tx1,i ` fiqq
´
p2yi ´ 1qpβ̂Tx1,i ` fiqϕpyipβ̂

Tx1,i ` fiqq

Φpp2yi ´ 1qpβ̂Tx1,i ` fiqq
.
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Algorithm 1 The proposed binary hybrid method
Stage 1.
Input: y, KpX2,X2q(covariance matrix), ppy|X1, fq (the likelihood function)
Compute the MLE β̂ of Lpβ|X1,X2,y, fpX2qq using Newton-Raphson method (see
Equation (3.4)).
f :“ 0 initialization
While (iter ă Max-iter)
Repeat
W :“ ´∇2 log ppy|β̂, fq
C :“ W ˚ f `∇ log ppy|β̂, fq
f “ pK´1pX2,X2q `W q

´1 ˚ C
If the difference of successive value of f is small enough, break
else continue this procedure.
Return: f̂ :“ f

Stage 2.
Input: y, β̂ (the estimates of coefficients of the fixed effect), f̂ (the mean of the Laplace ap-
proximation), KpX2,X2q, KpX2˚,X2q, KpX2˚,X2˚q(covariance matrix), ppy|X1, fq(the like-
lihood function), X1˚,X2˚ (test input)
W :“ ´∇2 log ppy|β̂, f̂q
f̄˚ “ KpX2˚,X2q

T∇ log ppy|β̂, f̂q

v˚ “ KpX2˚,X2˚q ´KpX2˚,X2q
TW

1
2 pI `W

1
2KpX2,X2qW

1
2 q´1W

1
2KpX2˚,X2q

π̄˚ “
ş

tpβ̂TX1˚ ` zqNpz|f̄˚,v˚qdz
Return: π̄˚ (the predictive probability of test input X1˚,X2˚)
In the implementation of this method, we conducted a model selection strategy on the co-
variance matrix K based on maximum likelihood in Equation (3.6).
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3.3.3 Model Selection

Strategies on model selection are also presented in two steps.

Step 1. In this study, we will use exploratory analysis to choose variables. Alternatively,

we could use AIC or BIC focusing on the fixed effects. Using automatic variable selection

strategies based on AIC or BIC, we can choose a model with a subset of predictors. AIC

value is defined as AIC “ 2k´ 2 logL and BIC is defined as BIC “ k log n´ 2 logL, where k

is the number of parameters, n is the number of observations and L is the maximum value

of likelihood.

Step 2. We select the parameters for the covariance matrix by maximum likelihood estima-

tion. The strategy is inspired by the work of Williams and Rasmussen (2006). Our work is

similar in terms of maximizing the marginal likelihood but differs in the way that the both

fixed and random effects are involved.

We denote θ as the parameters in the covariance structure Covpyq. The approximate log

marginal likelihood is

log qpy|X1,X2, θq “ ´
1

2
f̂TK´1

pX1,X1qf̂ ` log ppy|X1, f̂q ´
1

2
log |B|, (3.6)

where B “ I ` W
1
2KpX1,X1qW

1
2 and f̂ is defined in Section 3.2.2. The strategy is to

choose the value of θ that maximizes Equation (3.6). Note that the covariance matrix K

(KpX1,X1q)and f̂ involve parameters θ, the partial derivative of B log qpy|X1,X2,θq
Bθj

is therefore

B log qpy|X1,X2, θq

Bθj
“ A`B,
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where A and B are defined as follows

A “
1

2
f̂TK´1BK

Bθj
K´1f̂ ´

1

2
trppW´1

`Kq´1BK

Bθj
q,

B “
n
ÿ

i“1

´
1

2
rpK´1

`W q´1
sii
B3

Bf 3
i

log ppy|X1, f̂qrpI `KW q
´1BK

Bθj
∇ log ppy|X1, f̂qsi.

Newton-Raphson method or coordinate descent will be applied to optimize the log marginal

likelihood in Equation (3.6).

In this study, the parameters θ from Equations (3.5) are ρ, σ and λ. Through our simulation

studies, we specify the parameters σ and ρ and apply the aforementioned strategy on esti-

mating λ for the following reasons: (1) it might lead to identifiability problem if we do not

fix some of the parameters in this frequentist setting; (2) results do not show much difference

if parameters σ and ρ are not fixed; (3) computation will be demanding if no parameter is

fixed.

3.3.4 Inference on the Effects of Covariates

We propose to use bootstrap sampler to provide point and confidence intervals of the lin-

ear coefficients of the covariates X1. Our approach is based on resampling the stochastic

component and maximum likelihood. The algorithm is summarized in Algorithm 2.

3.3.5 Summary

In summary, the proposed method on inference, prediction and model selection maintain

the following strengths: (1.) it uses linear and non-linear stochastic components to model

the effect of the covariates on the response; (2.) it provides point and interval estimates
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Algorithm 2 Inference on the linear effects

Input: y, K̂(the estimated covariance matrix derived from Section 3.3.3), β̂ (the estimates
of coefficients of the fixed effect derived from Stage 1 in Section 3.3.2)
Procedure:
η̃pX1q :“ β̂TX1

While (Iter ă Max-iter)
Repeat
Generate f (iter)pX2q from GP with covariance function K̂
η(iter)pX1,X2q :“ η̃pX1q ` f (iter)pX2q

Compute the MLE β̂piterq of Lpβ|X1,X2,y, fpX2qq using Newton-Raphson method, where
Lpβ|X1,X2,y, fpX2qq “

śn
i“1 tpη

piterqpx1,i,x2,iqq
yip1´ tpηpiterqpx1,i,x2,iqqq

1´yi

End of while
Compute β̂˚ “

1
Max-iter

řMax-iter
i“1 β̂piq

β̂0.025 “ 2.5-th percentile of tβ̂piquMax-iter
i“1

β̂0.975 “ 97.5-th percentile of tβ̂piquMax-iter
i“1

Return: β̂˚ (The point estimates of the parameters from linear effects); pβ̂0.025, β̂0.975q (The
95% bootstrap confidence interval of the parameters from linear effects).

of the linear effects that are more efficient than the existing methods as demonstrated in

Section 3.4; (3.) it is able to make accurate predictions as shown in Section 3.4; (4.) the

computational cost is not demanding; (5.) similarly to generalized linear models, it provides

results that are straightforward to interpret.

3.4 Simulations

In this section, simulations are implemented to test the performance of the proposed method.

In Section 3.4.1, binary time series yi are generated by the logit model. We compared

the classification error rates derived from the proposed method with 6 other competing

statistical and machine learning approaches, namely, the ordinal model, logistic regression,

generalized additive mixed model, random forest, decision tree and gradient boosting. We

also compute the point and confidence intervals of the coefficients of the covariates and

endogenous variables in comparison with other existing methods. To test the robustness
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of our method, in Section 3.4.2, we generate time series yi from the probit model but use

the logit model to fit the data. In Section 3.4.3, we utilize mixture kernels to generate the

Gaussian process and then apply the proposed HIBITS method. Classification error rates,

point estimates and confidence intervals are also utilized as measures for comparison.

3.4.1 Prediction and Inference Performance on Logit Model

To evaluate the prediction power and robustness of the proposed method, binary time series

yi are generated under two scenarios:

• Scenario 1 (with a stochastic process).

Ppyi “ 1q “ logit´1pβ0x1i ` β1yi´1 ` fpx2iqq;

• Scenario 2 (without a stochastic process).

Ppyi “ 1q “ logit´1pβ0x1i ` β1yi´1q.

Here, fpx2q follows Gaussian process with

Covpfpx2iq, fpx2jqq “ λ expp´ρpx2i ´ x2jq
2
q ` σ2δij

and δij takes value 1 when i “ j and 0 otherwise. The parameter β1 controls the strength of

dependence on previous realizations yi´1 and it denotes the log odds ratios of yi´1 “ 1 versus

yi´1 “ 0. β0 is the linear coefficients with respect to covariates at current time point. λ is the

parameter that determines the strength of dependence across adjacent time points. In this

simulation, parameters β “ pβ0, β1q and λ vary in different scenarios. 1000 simulations are

conducted in each scenario. Figure 3.2 shows plots of the simulated data. In this scenario,
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β “ p0.5, 4q, λ “ 1, ρ “ 1, σ “ 0.1. 500 sleep stages were generated.
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Figure 3.2: Plots of the generated sleep stage (left) and the simulated Gaussian pro-
cess(right).

Alternative Methods. To evaluate the prediction power of the proposed method, we

compare the classification error rates with other six competing approaches. In general,

those approaches include regression and tree based classification strategies. Generalized

linear model with logit link is fitted as the first competing method. Further, to respect

the correlated structure of the binary time series, we consider the generalized additive mixed

models (GAMMs) as the second regression based competing approach. In the work of Lin and

Zhang (1999), linear structures of covariates are extended to be smooth functions. Following

the notation in Section 3.3, the GAMM model is defined as

ηpx1,iq “ β0 ` f1px
1
1,iq ` ¨ ¨ ¨ ` fppx

p
1,iq ` zT

i bi,

where xj1,i denotes the jth component of vector x1,i, fjp.q is a centered twice-differentiable

smooth function, the random effects b are assumed to be distributed as Np0, Dpθqq and θ

is the variance components. Lin and Zhang (1999) estimated nonparametric functions and
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parameters by using smoothing splines and marginal quasi-likelihood. In this simulation, R

package ‘gamm4’ was implemented to test the performance of GAMMs. We also considered

the regression models for nominal and ordinal time series introduced by Fokianos and Kedem

(2002). As is discussed in their concrete work, we implemented ordinal time series model in

the simulation. It should be pointed out that due to the binary response, ordinal time series

model is degenerated into logistic regression. Simulation results also suggest the equivalence

of these two approaches. In addition, we compared our method to tree-based classification

approaches. In general, we split the feature space (heart rate and previous sleep states in this

study) into “subspaces” and fit simple models within each region. Following the derivation

in Friedman et al. (2001), for a node m denoting a region Rm with Nm observations, we let

p̂mk “
1

Nm

ÿ

x1,iPRm

1pyi “ kq,

where class k is either 0 or 1 and 1 is the indicator function. We assign the observations in

node m to class kpmq “ arg maxk p̂mk. Measures of node impurity, denoted as QmpT q, can

be chosen as the misclassification error, Gini index and cross-entropy or deviance.

To further extend the decision tree approach, we also consider random forest and gradient

boosting algorithms in the simulation. The essence of random forest is to average many

noisy but asymptotically unbiased classifiers and hence reduce the variation. It requires

bootstrapping samples and selection features from the training dataset. Since there exist

only a few features in this model, the benefit from using random forest approach is mainly

derived from the bootstrapping strategy. For each bootstrap training sample set, we grow

a random forest tree Tb, b “ 1, ¨ ¨ ¨ , B. The final output is the ensemble of trees and then

predictions are made by majority vote. In addition to random forest, gradient boosting is

another extension of decision tree based method. Similar to the general boosting methods,

gradient boosting searches for a strategy to combine multiple weak classifiers in an iterative
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manner. As discussed in Friedman (2001) and Friedman et al. (2001), the method generically

starts from a model with constant value. At iteration mp1 ď m ďMq, suppose the classifier

is denoted as Fm´1px1,x2q, we calculate pseudo-residuals by

rim “ ´
”

BLpyi, F px1,i,x2,iqq

BF px1,i,x2,iqq

ı

F px1,i,x2,iq“Fm´1px1,i,x2,iq
,

where Lpy, F pxqq is a loss function. Then, we fit a classifier hmpxq to the pseudo-residuals

and implement a line search algorithm in solving the optimization problem

γm “ arg min
γ

n
ÿ

i“1

Lpyi, Fm´1px1,i,x2,iq ` γhmpx1,i,x2,iqq.

At the end of this iteration, we update the model by

Fmpx1,i,x2,iq “ Fm´1px1,i,x2,iq ` γmhmpx1,i,x2,iq.

We keep repeating the full sweep until convergence. The final classifier is denoted as

FMpx1,i,x2,iq.

Model Evaluation. To formally evaluate the performance of all the aforementioned ap-

proaches, we calculate the classification error rates under both scenarios. In particular, we

fit the results in linear mixed effect model to account for the correlation among classification

errors across different methods that result from the same simulated dataset. We consider

the model

Eij “ µi ` zj ` εij,

where Eij denotes the classification error rate of approach i on dataset j; µi is the mean error

rate of method i, which is well-defined by the law of large numbers. zj
iid
„ Np0, σ2q, εij

iid
„
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Np0, τ 2q, i “ 1, ¨ ¨ ¨ , 6 and j “ 1, ¨ ¨ ¨ , 1000. We calculate the simultaneuous 95% Bonferroni

confidence intervals of pµ1´ µiq, i “ 2, ¨ ¨ ¨ , 6 to detect the difference in the mean error rates

between the proposed method with all the other approaches. In particular, µ1, ¨ ¨ ¨ , µ6 denote

the mean error rates of HIBITS, Ordinal model (logistic regression), GAMMs, Random

forest, Gradient boosting and Decision tree respectively.

Table 3.1 provides a summary of the simulation studies for various parameters. It can be

seen that for datasets with Gaussian process, there is statistically significant difference in

comparison with the competing methods. In particular, the proposed HIBITS method pro-

duces significantly lower prediction error rates compared to existing methods. The advantage

of the proposed approach is even more obvious when compared with gradient boosting and

decision tree approaches. The results show that the proposed HIBITS method captures ef-

fective information from covariates x1i, yi´1 and also the stochastic process. The covariate

yi´1 serves as a significant predictor as we increase the ratio of β1 over β0.

For the datasets generated without the Gaussian process (Scenario 2) shown in Table 3.2,

the accuracy prediction from the two-stage approach is significantly higher than some of

the existing approaches such as decision tree and gradient boosting. Among all the other

competitors, the proposed method behaves equally competitive. This shows the robustness

of the proposed approach when data have no Gaussian process components. This is partly

due to the strategy on choosing hyperparemeters. By controlling their values, the effects of

Gaussian process will be adjusted to the data.
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Table 3.1: Summary of simulation results. µ1, ¨ ¨ ¨ , µ6 denote the mean error rates of HIBITS,
Ordinal model (logistic regression), GAMMs, Random forest, Gradient boosting and Decision
tree respectively. 1000 simulated datasets were generated under the scenario: Ppyi “ 1q “
logit´1pβ0x1i ` β1yi´1 ` fpx2iqq (“Scenario 1”). We calculated the 95% Bonferroni-corrected
confidence intervals of the prediction error difference from the testing dataset, µ1 ´ µi, i “
2, ¨ ¨ ¨ , 6 that the classification error rate for the proposed method is lower than that for each
of competing methods.

Scenario 1

Parameters(β, λ) Competing Method 95% confidence interval of

µ1 ´ µi, i “ 2, ¨ ¨ ¨ , 7

β “ p0.5, 3q, λ “ 10 Ordinal model* p´0.052 , ´0.032q

GAMMs p´0.052 , ´0.032q

Random forest p´0.029 , ´0.009q

Gradient boosting p´0.075 , ´0.055q

Decision tree p´0.070 , ´0.050q

β “ p0.5, 3q, λ “ 5 Ordinal model p´0.015 , ´0.001q

GAMMs p´0.017 , ´0.001q

Random forest p´0.017 , ´0.002q

Gradient boosting p´0.038 , ´0.022q

Decision tree p´0.048 , ´0.032q

β “ p0.5, 3.5q, λ “ 10 Ordinal model p´0.036 , ´0.013q

GAMMs p´0.030 , ´0.011q

Random forest p´0.021 , ´0.001q

Gradient boosting p´0.046 , ´0.028q

Decision tree p´0.055 , ´0.037q

β “ p0.5, 3.5q, λ “ 5 Ordinal model p´0.010 , ´0.001q

GAMMs p´0.011 , ´0.001q

Random forest p´0.015 , ´0.001q

Gradient boosting p´0.020 , ´0.006q

Decision tree p´0.035 , ´0.021q

* For binary time series, ordinal model is equivalent to logistic regression.47



Table 3.2: Summary of simulation results. µ1, ¨ ¨ ¨ , µ6 denote the mean error rates of HI-
BITS, Ordinal model (logistic regression), GAMMs, Random forest, Gradient boosting and
Decision tree respectively. 1000 simulated datasets were generated under the scenario:
Ppyi “ 1q “ logit´1pβ0x1i ` β1yi´1q (“Scenario 2”). We calculated the 95% Bonferroni-
corrected confidence intervals of the prediction error difference from the testing dataset,
µ1 ´ µi, i “ 2, ¨ ¨ ¨ , 6 that the classification error rate for the proposed method is lower than
that for each of competing methods.

Scenario 2

Parameters(β) Competing Method 95% confidence interval of

µ1 ´ µi, i “ 2, ¨ ¨ ¨ , 7

β “ p0.5, 3q Ordinal model p´0.006 , `0.010q

GAMMs p´0.005 , `0.009q

Random forest p´0.004 , `0.012q

Gradient boosting p´0.022 , ´0.001q

Decision tree p´0.023 , ´0.002q

β “ p0.5, 3.5q Ordinal model p´0.003 , `0.010q

GAMMs p´0.002 , `0.010q

Random forest p´0.015 , ´0.001q

Gradient boosting p´0.020 , ´0.006q

Decision tree p´0.018 , ´0.001q

We also evaluate the performance of modeling the linear effects of covariates x1i, yi´1 by

comparing the 95% confidence intervals of β0 and β1 with the corresponding interval estimates

from the other existing methods. Table 3.3 summarizes the results under the same scenarios

in Table 3.1. It shows that compared with ordinal model, the proposed HIBITS method

produces narrower confidence intervals of parameters β0 while maintaining high capture

rates of the true values. The length difference is obvious and it can gain almost 60% shorter

confidence intervals in some scenario. It should be noted that using ordinal model, the

capture rate of β1 is extremely low while HIBITS method provides promising performance.
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The same pattern can also be found in Table 3.4. Under Scenario 2, the benefits of using

HIBITS is even more obvious in terms of shorter confidence interval length and high capture

rate.

Table 3.3: Summary of simulation results. 1000 simulations were generated under the sce-
nario: Ppyi “ 1q “ logit´1pβ0x1i ` β1yi´1 ` fpx2iqq (“Scenario 1” ). We present the 95%
confidence intervals β0 and β1 from the training dataset.

Scenario 1

Parameters(β, λ) Method 95% confidence interval of

β0 β1

β “ p0.5, 3q, λ “ 10 HIBITS method p0.113, 0.547q p1.385, 3.424q

Ordinal model p´0.292, 0.586q p0.695, 2.473q

β “ p0.5, 3q, λ “ 5 HIBITS method p0.163, 0.572q p1.570, 3.700q

Ordinal model p´0.267, 0.637q p0.850, 2.676q

β “ p0.5, 3.5q, λ “ 10 HIBITS method p0.092, 0.535q p1.628, 4.082q

Ordinal model p´0.358, 0.625q p0.806, 2.593q

β “ p0.5, 3.5q, λ “ 5 HIBITS method p0.182, 0.582q p1.820, 3.985q

Ordinal model p´0.286, 0.694q p0.991, 2.841q

Table 3.4: Summary of simulation results. 1000 simulations were generated under the sce-
nario: Ppyi “ 1q “ logit´1pβ0x1i ` β1yi´1q (“Scenario 2” ). We present the 95% confidence
intervals β0 and β1 from the training dataset.

Scenario 2

Parameters(β) Method 95% confidence interval of

β0 β1

β “ p0.5, 3q HIBITS method p0.467, 0.600q p2.838, 3.173q

Ordinal model p´0.177, 1.420q p1.677, 4.515q

β “ p0.5, 3.5q HIBITS method p0.422, 0.556q p3.468, 3.771q

Ordinal model p´0.081, 1.202q p2.275, 5.096q
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Overall, the proposed method outperforms competing approaches when comparing the re-

sults from data both with and without Gaussian process. Through the model selection

strategy discussed in Section 3.3.3, the proposed approach can adjust the covariance matrix

to the data, which in return produces lower prediction error rate and more efficients inference

on covariates than existing methods.

3.4.2 Investigating Robustness of the Estimation Method

Our goal is to investigate robustness of the proposed model by applying the logistic-based

model on data that are generated using a probit model. We generate binary time series yi

following the scenarios:

• Scenario 3 (with a stochastic process).

Ppyi “ 1q “ Φpβ0x1i ` β1yi´1 ` fpx2iqq;

• Scenario 4 (without a stochastic process).

Ppyi “ 1q “ Φpβ0x1i`β1yi´1q. Φp.q is the cumulative distribution function of standard

normal distributions and fpx2q is defined in the same manner as in Section 3.4.1.

Parameters β “ pβ0, β1q and λ vary in different scenarios. 1000 simulations are conducted in

each scenario. We fit the same linear mixed effect model discussed in Section 3.4.1. Tables 3.5

and 3.6 show the summary of confidence intervals µ1´µi, i “ 2, ¨ ¨ ¨ , 6. Similar to the results

in Section 3.4.1, for dataset with Gaussian process, most of the confidence intervals do not

cover 0. The negative values of the classification error rates imply remarkable benefits of

using the proposed method over the other competing methods. Note that when comparing

with the gradient boosting and decision tree approaches, the proposed method behaves

significantly better in terms of extraordinary higher prediction accuracy. In Scenario 4, we
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tested the proposed method on the dataset without Gaussian process. It is shown that

although there is no significant difference in comparison with other competing methods, the

proposed approach produces the same prediction power as other competing methods, which

implies the robustness with regard to various link functions. In addition, Table 3.7 shows

the 95% confidence intervals of the coefficients β0, β1 derived from the proposed method and

the ordinal model. Similar to the results in Section 3.4.1, the proposed method yields much

narrower confidence intervals while maintaining good properties of capturing true values.
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Table 3.5: Summary of simulation results. µ1, ¨ ¨ ¨ , µ6 denote the mean error rates of HI-
BITS, Ordinal model (logistic regression), GAMMs, Random forest, Gradient boosting and
Decision tree respectively. 1000 simulated datasets were generated under the scenario:
Ppyi “ 1q “ Φpβ0x1i ` β1yi´1 ` fpx2iqq (“Scenario 3”). We calculated the 95% Bonferroni-
corrected confidence intervals of the prediction error difference from the testing dataset,
µ1 ´ µi, i “ 2, ¨ ¨ ¨ , 6 that the classification error rate for the proposed method is lower than
that for each of competing methods.

Scenario 3

Parameters(β, λ) Competing Method 95% confidence interval of

µ1 ´ µi, i “ 2, ¨ ¨ ¨ , 7

β “ p0.5, 3q, λ “ 10 Ordinal model p´0.042 , ´0.023q

GAMMs p´0.041 , ´0.022q

Random forest p´0.025 , ´0.006q

Gradient boosting p´0.064 , ´0.045q

Decision tree p´0.060 , ´0.041q

β “ p0.5, 3q, λ “ 5 Ordinal model p´0.015 , ´0.002q

GAMMs p´0.016 , ´0.002q

Random forest p´0.021 , ´0.007q

Gradient boosting p´0.024 , ´0.009q

Decision tree p´0.040 , ´0.026q

β “ p0.5, 3.5q, λ “ 10 Ordinal model p´0.030 , ´0.001q

GAMMs p´0.029 , ´0.007q

Random forest p´0.006 , `0.026q

Gradient boosting p´0.057 , ´0.035q

Decision tree p´0.024 , `0.002q

β “ p0.5, 3.5q, λ “ 5 Ordinal model p´0.014 , `0.001q

GAMMs p´0.013 , `0.001q

Random forest p´0.019 , ´0.002q

Gradient boosting p´0.120 , ´0.008q

Decision tree p´0.031 , ´0.014q
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Table 3.6: Summary of simulation results. µ1, ¨ ¨ ¨ , µ6 denote the mean error rates of HIBITS,
Ordinal model (logistic regression), GAMMs, Random forest, Gradient boosting and Decision
tree respectively. 1000 simulated datasets were generated under the scenario: Ppyi “ 1q “
Φpβ0x1i ` β1yi´1q (“Scenario 4” ). We calculated the 95% Bonferroni-corrected confidence
intervals of the prediction error difference from the testing dataset, µ1´µi, i “ 2, ¨ ¨ ¨ , 6 that
the classification error rate for the proposed method is lower than that for each of competing
methods.

Scenario 4

Parameters(β) Competing Method 95% confidence interval of

µ1 ´ µi, i “ 2, ¨ ¨ ¨ , 7

β “ p0.5, 3q Ordinal model p´0.003 , `0.015q

GAMMs p´0.006 , `0.005q

Random forest p´0.002 , `0.015q

Gradient boosting p´0.012 , `0.009q

Decision tree p´0.016 , `0.008q

β “ p0.5, 3.5q Ordinal model p´0.003 , `0.007q

GAMMs p´0.002 , `0.008q

Random forest p´0.005 , `0.011q

Gradient boosting p´0.010 , `0.016q

Decision tree p´0.011 , `0.002q
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Table 3.7: Summary of simulation results. 1000 simulations were generated under the sce-
nario: Ppyi “ 1q “ Φpβ0x1i`β1yi´1` fpx2iqq (“Scenario 3”). We present the 95% confidence
intervals β0 and β1 from the training dataset.

Scenario 3

Parameters(β, λ) Method 95% confidence interval of

β0 β1

β “ p0.5, 3q, λ “ 10 HIBITS method p0.129, 0.564q p1.529, 3.574q

Ordinal model p´0.247, 0.564q p0.756, 2.549q

β “ p0.5, 3q, λ “ 5 HIBITS method p0.191, 0.502q p1.784, 3.956q

Ordinal model p´0.273, 0.668q p0.966, 2.831q

β “ p0.5, 3.5q, λ “ 10 HIBITS method p0.129, 0.579q p1.766, 3.871q

Ordinal model p´0.406, 0.734q p0.875, 2.678q

β “ p0.5, 3.5q, λ “ 5 HIBITS method p0.200, 0.509q p2.111, 4.310q

Ordinal model p´0.239, 0.666q p1.156, 3.046q

3.4.3 Investigating the Misspecification of the Covariance Func-

tion

The objective of this section is to study the effects of misspecification on the covariance

function. We will assume the true covariance function follows mixtures of different kernels

and apply the proposed HIBITS method to the generated dataset. In particular, we generate

binary time series yi under the following scenario:

• Scenario 5 (with a mixture covariance function).

Ppyi “ 1q “ logit´1pβ0x1i ` β1yi´1 ` fpx2iqq.
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Here, fpx2iqq follows Gaussian process with

Covpfpx2iq, fpx2jqq “ η
“

λ expp´ρpx2i ´ x2jq
2
q ` σ2δij

‰

` p1´ ηq
” 1

1` τpx2i ´ x2jq
2

ı

.

Note that we assume the covariance function is a mixture of exponential and Cauchy kernels.

This setting serves as an approach of modeling the long-term and short-term correlation on

x2. By increasing the value of trade-off parameter η, the mixture kernel will weight more on

the exponential kernel, which captures the short-term dependence. Table 3.8 summarizes the

results of mean error rates under Scenario 5. It is shown that the proposed HIBITS is able

to maintain significant lower error rates compared to the other competing methods when the

trade-off parameter η is 0.2. As we increase the value to be 0.8, HIBITS performs almost as

good as all the other methods and significantly better than decision tree. Table 3.9 presents

the confidence intervals in Scenario 5. Similar to the previous results, HIBITS is capable of

yielding narrower intervals and high capture rates even when the trade-off parameter η is

large. In summary, through this section, simulation results show that the proposed HIBITS

method is robust to the misspecification of covariance function. This is partly due to the

fact that we are able to dynamically “learn” the hyperparameter through model selection.

The fine-tuned covariance function could capture the long-term and short-term correlation

from the generated dataset.
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Table 3.8: Summary of simulation results. µ1, ¨ ¨ ¨ , µ6 denote the mean error rates of HIBITS,
Ordinal model (logistic regression), GAMMs, Random forest, Gradient boosting and Decision
tree respectively. 1000 simulated datasets were generated under the scenario: Ppyi “ 1q “
logit´1pβ0x1i ` β1yi´1 ` fpx2iqq (“Scenario 5”). We calculated the 95% Bonferroni-corrected
confidence intervals of the prediction error difference from the testing dataset, µ1 ´ µi, i “
2, ¨ ¨ ¨ , 6 that the classification error rate for the proposed method is lower than that for each
of competing methods.

Scenario 5

Parameters(β, η) Competing Method 95% confidence interval of

µ1 ´ µi, i “ 2, ¨ ¨ ¨ , 7

β “ p0.5, 3q, η “ 0.2 Ordinal model p´0.024 , ´0.011q

GAMMs p´0.023 , ´0.010q

Random forest p´0.022 , ´0.002q

Gradient boosting p´0.038 , ´0.023q

Decision tree p´0.061 , ´0.037q

β “ p0.5, 3q, η “ 0.8 Ordinal model p´0.008 , `0.005q

GAMMs p´0.008 , `0.007q

Random forest p´0.005 , `0.001q

Gradient boosting p´0.004 , `0.001q

Decision tree p´0.016 , ´0.002q
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Table 3.9: Summary of simulation results. 1000 simulations were generated under the sce-
nario: Ppyi “ 1q “ logit´1pβ0x1i ` β1yi´1 ` fpx2iqq (“Scenario 5”).We present the 95%
confidence intervals β0 and β1 from the training dataset.

Scenario 5

Parameters(β, η) Method 95% confidence interval of

β0 β1

β “ p0.5, 3q, η “ 0.2 HIBITS method p0.056, 0.505q p1.796, 3.306q

Ordinal model p´0.232, 0.671q p0.829, 2.769q

β “ p0.5, 3q, η “ 0.8 HIBITS method p0.160, 0.702q p2.803, 3.309q

Ordinal model p´0.333, 1.142q p1.186, 6.428q

3.5 Analysis of the Sleep State Data

In this section, we apply our method to sleep state data. People spend one third of their

lifetime on sleep. Studying and predicting sleep patterns is significant because our body

requires sleep in much the same way as the need of eating and breathing. Moreover, dis-

ruptions in sleep are known to be associated with both psychiatric and chronic diseases. In

what follows, we will analyze the sleep data obtained from an observational study with the

goal predicting sleep states and identifying associations between sleep states and potential

regulators such as temperature and heart rate.

3.5.1 Exploratory Analysis

The data were recorded from a four month old infant who was placed to bed at night.

Heart rate (Hi, beats per minute at time i), temperature (Ti, in Celsius, at time i) and

sleep stage (Si at time i) of length (N “ 1024) were sampled every 30 seconds. Heart
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rate was recorded automatically using a standard ECG (electrocardiogram) monitor. The

infant’s EEG (electroencephalogram) and EOG (electrooculogram) were also measured with

a period of 30 seconds. The EEG captured brain waves including alpha (8 – 15 Hz), beta

(16 – 31 Hz) and mu (8 – 12 Hz) rhythms; EOG recorded the eye movement. Sleep stage

for each time point i was determined by the sleep lab expert visually interpreting the EEG

and EOG record (Nevsimalova and Sonka, 1997). It was classified as 4 categories: (1) quiet

sleep, (2) indeterminate sleep, (3) active sleep and (4) awake (Benbadis, 2006). The sleep

stage Si was measured as integers ranging from 1 to 4. In this section, following the work of

Fokianos and Kedem (2002), sleep state is defined as a binary time series Yi:

Yi “

$

’

&

’

%

1 : awake at time i,

0 : not awake at time i.

where “not awake” stands for quiet sleep, indeterminate sleep or active sleep.

Time series plots of heart rate, temperature and sleep state are shown in Figure 3.1 and

Figure 3.3. By comparing the heart rate, temperature with sleep state, we note that higher

heart rate are likely to correspond to sleep state 1 (awake). While this pattern is clear

for heart rate, no such pattern between temperature and sleep state can be detected by

visual inspection. In addition, it can be seen that the current sleep state is highly related to

previous states.

To further study the dependence of sleep state on the covariates temperature and heart rate,

we conducted additional preliminary analysis. Particularly, we categorize heart rate and

temperature (after taking the logarithm) into several levels and calculate the empirical log

odds of awake over not-awake for each level. Figure 3.4 show the relationship between the

empirical log odds and different levels of the underlined heart rate and temperature. We are

able to identify a positive association between heart rate with current sleep states. The effect
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of the lower heart rates are associated with higher probability of being asleep. Regarding

temperature, one can hardly identify any definitive relationship using the log odds. Moreover,

in Table 3.10, we report the empirical transition probability of sleep state. It shows that the

current sleep state is highly dependent on the previous state. More specifically, there is a

strong tendency for sleep to remain in its current state.
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Figure 3.3: Left: heart rate (in beats per minute). Right: temperature (in Celsius).

Table 3.10: Empirical transition table of sleep state: when the current state is not awake, the
sample probability of staying not wake in the next time point is 729{735 while the sample
probability of being in the awake state at the next time point is 6{735. When the current
state is awake, the sample probability of staying awake at the next time point is 282{288
while the sample probability of changing to a non-awake state at the next time point is
6{288.

Yi´1 “ 0 Yi´1 “ 1
Yi “ 0 729/1023 6/1023
Yi “ 1 6/1023 282/1023

3.5.2 Modeling and Results

Following the exploratory analysis, logHi, Yi´1 and time (in minutes) are suggested in the

proposed model. Since there is strong effect of logHi, Yi´1 on current sleep state, we in-
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Figure 3.4: Scatterplots of empirical log odds versus heart rate and temperature. The left
panel shows the empirical log odds over eight levels of heart rate. The right panel displays
the same value versus temperature.

clude those two covariates as fixed effect components. Gaussian process on time domain is

introduced to capture the nonlinear term.

We also applied our proposed binary hybrid approach to make the inference and prediction.

Summaries of point and interval estimates are shown in Table 3.11. It is seen that compared

with the ordinal model (logistic regression), the point estimates are similar. However, there

is significantly large difference among the interval estimates. Using the proposed HIBITS

method, we gain substantially narrower confidence intervals than ordinal model. The benefits

are up to almost 90% shorter in length. From the proposed results, we find that one unit

increment in heart rate at current time point will lead to 211.4% accretion of odds. Current

odd of sleep state when previous sleep state is awake is estimated to be dramatically higher

than that when previous state is not awake. To test the prediction power of this model, the

proposed method was implemented with various training and testing data size. Numerical

results are summarized in Table 3.12. It can be seen that the model produces around 99%

prediction accuracy while ordinal model yields about 96%. As we decrease the ratio of
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training over testing data size, the prediction accuracy remains stable. Time series plots

of the real and predicted sleep state are presented in Figure 3.5. It can be shown that

the proposed method produces high prediction accuracy and recover the same sleep state

pattern as the real dataset. To check for the sensitivity of the proposed method to the

estimated value of parameter λ, we compared the results from the data-adaptive estimate

(0.730) against the following values (1.730, 2.730). The data-adaptive estimate gave roughly

the same prediction error but the confidence intervals were narrower.

Table 3.11: Summary of the sleep state analysis. The point and interval estimates from HI-
BITS method are obtained by Section 3.3.4. It can be seen that the widths of the confidence
intervals from the HIBITS method are narrower than those of the classical ordinal model.

Parameters(β0, β1) Method Point estimate 95% confidence intervals

β0 HIBITS method 1.136 p1.000, 1.271q
Ordinal model 1.105 p0.101, 2.109q

β1 HIBITS method 8.275 p8.124, 8.427q
Ordinal model 8.241 p6.669, 9.813q

Table 3.12: Prediction accuracy with different training and testing data size.

Training/Testing data size Method Prediction Accuracy
600/400 HIBITS method 99.0%

Ordinal model 96.0%
500/500 HIBITS method 99.2%

Ordinal model 96.1%
400/600 HIBITS method 99.1%

Ordinal model 96.4%

3.5.3 Discussion on Missing data

One advantage of the proposed prediction model is that it captures the information from its

own past. Derived from the results, the odds when previous sleep state is awake is 4000-fold

higher than that when the preceding state is not awake. However, if there are missing data or

the observations are not collected successively, such information will be lost. This motivates
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Figure 3.5: Predicted sleep state (solid line) overlaid with real data (dotted line) (train-
ing/testing data size 600/400).

us to adjust the model to fit such cases. In the adjusted model, we choose logHi as fixed

effects and still use Gaussian process on time domain. To test the prediction power, instead

of fixing the training and testing dataset, we randomly pick those two pieces of data with

fixed size. The proposed HIBITS method was implemented. Summaries of the test results

can be found in Table 3.13. The tests were conducted 10 times with training and testing data

of different sizes. From the results, it is clear that as the training data size becomes larger,

the prediction accuracy increases at a reasonable rate. As the training data size reaches 600,

the accuracy is promising.

Table 3.13: Prediction accuracy with different training and testing data size, *stands for the
test number.

Training/Testing 1* 2 3 4 5 6 7 8 9 10 Average
data size
400/100 0.76 0.92 0.95 0.93 0.80 0.64 0.84 0.89 0.90 0.93 0.86
500/100 0.99 0.89 0.90 0.98 0.91 0.88 0.89 0.93 0.95 0.91 0.92
600/100 0.95 0.97 0.99 0.91 0.93 0.96 0.97 0.90 0.92 0.93 0.94
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To further study the performance of the proposed HIBITS method, we make the ratio of

training over testing data size smaller. Particularly, we change the training and testing

data size to be 700 and 300 respectively. The prediction accuracy is around 0.873. If we

move further to change the training data size to be 800 and testing data size to be 200,

the prediction accuracy is about 90%. All the results demonstrate that the proposed binary

hybrid method produces promising prediction power when the dataset are not collected

successively or partly missing. Moreover, it should be pointed out that the computation is

not very demanding. The tests are conducted in R programming and the operation time is

approximately 90 seconds for each test.
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Chapter 4

Evolutionary State-Space Model

4.1 Introduction

The goal of this chapter is to develop a novel statistical model for investigating the evolution

of a brain process duration of a learning experiment. To infer brain neuronal activity, elec-

trophysiological recordings such as local field potentials (LFPs) and electroencephalograms

(EEGs) are commonly used to indirectly measure electrical activity of neurons. In this chap-

ter, we consider LFPs from multiple electrodes that capture the integration of membrane

currents in a local region of cortex (Mitzdorf et al., 1985).

In practice, LFPs are the observed spatio-temporal signals at different tetrodes. In a motivat-

ing example, an olfactory (non-spatial) sequence memory experiment has been performed in

a memory laboratory to study how neurons learn the sequential ordering of presented odors

(Allen et al., 2016). In this study, LFP recordings in a rat are obtained from an implanted

plate with 12 electrodes. One epoch corresponds to about 1 second in physical time. As

shown in Figure 4.1, rats are trained to identify a sequence of odors while their LFP signals
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from one electrode are recorded and plotted for the first 15 epochs. We further study the

behavior of these LFPs by examining their spectra. In Figure 4.2, we plot the boxplots of

the log periodograms across all the epochs from one electrode. These plots reveal that LFPs

contain power at distinct bands: delta (0-4 Hertz), alpha (8-12 Hertz) and the high-beta

low-gamma (30-35 Hertz) bands. As an exploratory step, we divide the entire experiment

into three phases, early, middle, and late phases. In each phase, we compute the average

periodogram (averaged across epochs) and present them on the left side of Figure 4.3. On

the right side, we plot the relative periodogram (obtained by rescaling the periodogram so

that the relative periodogram for each frequency sums up to 1) and find that the spectral

power evolves during the course of experiment. During the early phase, power has a broad

(rather than concentrated) spread across bands. However, at the late phase, power seems to

be more concentrated at the lower beta band.

In summary, the preliminary results suggest that the spectra of the LFPs appear to change

across the epochs in the experiment. Therefore, statistical models that are capable of describ-

ing LFP signals’ evolution over the course of epochs are largely needed to help understand

how the rat learns the sequence of the odor presentation.

As discussed in Chapter 1.2, existing approaches such as PCA, ICA have their critical limita-

tions. Alternatively, we develop an evolutionary state space model (E-SSM) that explicitly

captures the evolutionary behavior in high dimensional time series. The E-SSM shares a

similar form with the classical state-space model (as in Shumway and Stoffer (2013)) but

differs in that the parameters are varying across epochs and the mixing matrix is unknown

and therefore has to be estimated. Moreover, E-SSM manages to capture the temporal corre-

lation of each of the latent sources by characterizing them using second order autoregressive

[ARp2q] processes. The reason for choosing ARp2q is due to its ability to capture the precise

oscillatory behavior of these latent sources. In particular, by parameterizing these sources as
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ARp2q, we can easily constrain the power of each source to center at pre-specified frequency

bands such as delta (0 - 4 Hertz), alpha (8 - 12 Hertz) and high-beta gamma (ą 30 Hertz)

bands, where the choice of these particular frequency bands is due to the standard conven-

tion in neuroscience based upon previous Electrophysiological data analysis (Deuschl et al.,

1999). The use of ARp2q mixture here can be viewed as an analogy of Gaussian mixture

models for classical density estimation problems. Compared to the classical methods such

as ICA and PCA, the sources produced by E-SSM are more directly interpretable in terms

of oscillatory properties.

The main contributions of this chapter are as follows: (1.) The proposed E-SSM model

provides a rigorous framework in modeling brain activity, connectivity and their dynamic

behavior during the course of experiments. In particular, our model accounts for the temporal

evolution/dependence of the spectrum power for particular frequency bands across the entire

experiment as well as the temporal structure among the latent sources. (2.) E-SSM gives

interpretable results by modeling particular predominant frequency bands that are associated

with various brain functional states through ARp2q processes. (3.) In theory, we show that

the spectrum of arbitrary weakly stationary time series can be approximated by the spectrum

of AR(2) mixtures, which gives a theoretical justification of the use of AR(2) mixtures. (4.)

By applying the E-SSM model, one can easily conduct analysis on both of time and frequency

domains and thus provide a complete characterization of the underlying brain process. (5.)

Finally, the E-SSM model and the proposed estimation method, in general, are intuitive and

can be implemented easily thanks to the existing theory and algorithm for state space model.

However, the key difference is the generalization of the multiple epochs setting which allows

pooling information across epochs and a flexible mixing matrix estimation step.

The rest of this chapter is organized as follows. In Section 4.2, we introduce the E-SSM

method that models the variability across epochs while taking into account particular fre-
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quency bands. In Section 4.3, we propose a hybrid iterative method that comprises of

Kalman filter and blocked resampling for parameter estimation. We discuss the main differ-

ences between the proposed E-SSM and other existing approaches such as ICA and PCA in

Section 4.4. In Section 4.5, we show that the proposed method is promising in reconstructing

the latent source signals and their spectrum in simulation studies under both single-epoch

and multiple-epoch scenarios. We then analyze LFPs dataset obtained from a non-spatial

olfactory sequence memory study in Section 4.6.
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Figure 4.1: Top left: Apparatus and behavioral design for the olfaction (non-spatial) memory
sequence experiment (Allen et al., 2016). Series of five odors were presented to rats from the
same odor port. Top right: The spatial locations of electrodes implanted in the hippocampus
region. Bottom: The overlaid time series LFPs plots of the first 15 epochs at electrode T22.
Each epoch consists of 1 second recording (1000 milliseconds). The experiment and the data
are reported in Allen et al. (2016).
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Figure 4.2: The log periodogram boxplots for each frequency obtained by all 247 epochs at
electrode T22.
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Figure 4.3: Left: The heatmap of the averaged periodogram among Phase 1 (epochs 1 - 80),
Phase 2 (81 - 160) and Phase 3 (161 - 247) respectively at electrode T22. The original signals
were rescaled to unit variance. Right: The heatmap of the relative periodogram (summing
up to 1 for each frequency). Spectral power (decomposition of waveform) evolved across
phases of the experiment.
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4.2 Evolutionary State Space Model (E-SSM)

In this section, we will discuss models for inferring latent structures in LFPs and their

evolution across epochs over the entire experiment. We shall first describe the model for a

single epoch and then discuss the extension to treat multiple epochs.

4.2.1 State Space Model for a Single Epoch

Denote t “ 1, ¨ ¨ ¨ , T as the time points in a single-epoch and

Yt “ pYtp1q, ¨ ¨ ¨ , Ytppqq
1 as the observed LFPs where p is the number of electrodes. For any

fixed time point t, we assume that Yt is a mixture of q latent independent source signals

St “ pStp1q, ¨ ¨ ¨ , Stpqqq
1, where q is the number of spatial source signals. Then the model

can be presented as Yt “ MSt ` εt, where M is the mixing matrix, εt “ pεtp1q, ¨ ¨ ¨ , εtppqq
1

is noise that follows Np0, τ 2Ipq and Ip is an identity matrix of dimension p. Each of the

independent latent signals Stplq, l “ 1, ¨ ¨ ¨ , q models the source that represents oscillatory

activity at a set of pre-specified frequency bands (e.g., delta, alpha and gamma).

Modeling the source signals St

One important parameterization in our model is to constrain the sources to have an AR(2)

structure such that each represents a particular oscillator: delta pδ: 0 - 4 Hertz), theta pθ:

4 - 8 Hertz), alpha pα: 8 - 12 Hertz), lower beta pβ: 12 - 18 Hertz) and gamma pγ: ą 30

Hertz). Recall that an autoregressive operator of order 2 is defined by

ϕpBq “ 1´ ϕ1B ´ ϕ2B
2, (4.1)

where B is a backshift operator defined by B`St “ St´`, and ϕ1, ϕ2 are the corresponding
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coefficients. It can be shown that the spectrum of an AR(2) process with noise level σω is

fSpωq “
σ2
w

|1´ϕ1 expp´2πiωq´ϕ2 expp´4πiωq|2
. To illustrate its use in practice, we plot the spectrum

of an AR(2) process with ϕ1 “ 1.976, ϕ2 “ ´0.980, σw “ 0.1 in Figure 4.4. It can be seen

that there is a peak at frequency ω “ 10 Hertz, which means that the frequency band around

ω “ 10 Hertz dominates the process and thus produces the most power. This property of

ARp2q model makes it potentially useful for characterizing brain signals (such as LFPs) with

oscillations at either broad or narrow frequency band.

We now explain the connection between the ARp2q coefficients and the spectrum (i.e., the

location and spread of the peak). First, the process is causal when the roots of the polynomial

in Equation (4.1) have magnitudes greater than 1. Furthermore, under causality, Jiru (2008)

and Shumway and Stoffer (2013) demonstrate that when the roots of the polynomial in

Equation (4.1) are complex-valued with magnitude greater than 1, then the spectrum attains

a peak that is centered around the phase of the roots. Moreover, when the magnitude of the

roots become larger than 1, the peak becomes less concentrated around the phase.
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Figure 4.4: The theoretical spectra of an AR(2) process with power concentrated at the
alpha band: ϕ1 “ 1.976, ϕ2 “ ´0.980, σw “ 0.1
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Motivated by this result, we will fix the phase (or argument) of each of the AR(2) polynomial

roots to model each of the particular bands obtained from previous study results. As noted,

fixing the phase is consistent with neuroscience standard and thus will not be a constraint

in practice. To model the evolution across epochs, we allow the modulus of the AR(2)

polynomial roots to change among epochs. As a result, as the phase of the roots for each of

the latent independent source signals is fixed, the AR(2) process is uniquely determined by

the modulus and the variance. In practice, the value of modulus controls the spread of the

spectrum curves. For an AR(2) process St “ ϕ1St´1`ϕ2St´2`wt, the modulus ρ and phase

ψ of the roots of the polynomial have the relationship that ϕ1 “ 2ρ´1cospψq, ϕ2 “ ´ρ´2.

This result can be seen as an analogy of the use of Gaussian mixture model (or any location-

scale mixture in general) for density estimation. In Section 4.2.3, we will further discuss the

approximation property of the AR(2) mixture.

Generalized state-space model

Following the previous discussion, the latent independent spatial source signals are modeled

as multivariate AR(2)s, St “ Φ1St´1 ` Φ2St´2 ` ηt, where Φ1 “ diagpϕ11, ¨ ¨ ¨ , ϕq1q,Φ2 “

diagpϕ12, ¨ ¨ ¨ , ϕq2q P Rqˆq are diagonal matrices, and the noise ηt “ pη1ptq, ¨ ¨ ¨ , ηqptqq
1 „

Np0, σ2Iqq. The final model can hence be viewed as a generalized state-space model:

Yt “ ĂMXt ` εt,

Xt “ rΦXt´1 ` rηt,

(4.2)

where Xt “ pS
1
t,S

1
t´1q

1, ĂM “ pM,0q P Rp˚2q, rΦ “

»

—

–

Φ1 Φ2

Iq 0

fi

ffi

fl

, and rηt “ pη
1
t,0q

1. Note that

the model in (4.2) is not a regular state-space model since the mixing matrix ĂM is unknown.

Moreover, following the aforementioned discussion, the coefficients of the autoregressive pro-
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cesses are determined by the modulus ρ “ pρ1, ¨ ¨ ¨ , ρqq and phase ψ “ pψ1, ¨ ¨ ¨ , ψqq of the

autoregressive polynomial roots. Since we are interested in particular frequency bands, we

fix the phase ψ and the state equation in (4.2) is parameterized by ρ and σ2.

4.2.2 Evolutionary State Space Model for Multiple Epochs

Next, we generalize the model in Section 4.2.1 to accommodate multiple epochs. We assume

that across epochs, the mixing matrix M is fixed and the latent independent autoregressive

processes evolve through the modulus ρ. This assumption implies that the cortical structure

remains unchanged across epochs for each individual. We denote r “ 1, ¨ ¨ ¨ , R as the epochs

in the experiment, then the model is given by

Y
prq
t “ ĂMX

prq
t ` ε

prq
t ,

X
prq
t “ rΦprqX

prq
t´1 ` rη

prq
t ,

(4.3)

where the definition of Y
prq
t ,ĂM,X

prq
t , rΦprq, ε

prq
t , rη

prq
t are similar as in Equation (4.2) except

the additional superscript r for each epoch r.

In the proposed model, we assume an autoregressive structure that evolves across epochs.

This assumption is inspired by the preliminary analysis in Section 4.1 showing that the

power spectrum evolves during the course of the experiment. Accordingly, the evolutionary

spectrum of each latent source will be easily captured in an explicit form

f prqpωq “ σ
2prq
w

|1´ϕ
prq
1 expp´2πiωq´ϕ

prq
2 expp´4πiωq|2

. We also assumed that the mixing matrix is invari-

ant to epochs. This is due to the fact that the network structure of subjects is not changing

across phases of experiments. To reiterate, non-stationarity will be captured by the AR(2)

coefficients.
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In the literature, there have been numerous discussions on the identifiability issues of state-

space models (Hamilton, 1994). Indeed, for a general state-space model, the same represen-

tation can be obtained by applying an orthogonal transformation on matrices. Zhang and

Hyvärinen (2011) proposed a non-Gaussian constraint to avoid the identifiability issue. In

this chapter, to ensure the uniqueness of the solution, we require that each component of

the latent independent source signals Sptq to have unit variance and the entries of ĂM are

positive.

4.2.3 Theoretical Results on AR(2) Decompositions

As we have discussed in the previous sections, we choose to represent individual sources by

AR(2) models due to their ability to present each source signals at pre-specified frequency

bands. In this section, we further justify this representation by showing that the spectrum

of arbitrary weakly stationary process can be approximated by a linear mixture of AR(2)

processes. In particular, the approximation error by the use of AR(2) mixture is asymptot-

ically negligible as the number of mixtures goes towards infinity. Its proof is given in the

Appendix.

Theorem 4.1. (AR(2) spectral decomposition theorem) Let Yt be a weakly stationary

time series with zero mean and spectrum fY pωq. Let rω0, ω1qY rω1, ω2qY ¨ ¨ ¨ Y rωM´1, ωM s be

a partition of the frequency domain r0, 1
2
s such that

supt|ω1 ´ ω0|, ¨ ¨ ¨ , |ωM ´ ωM´1|u Ñ 0 as M Ñ 8. (4.4)

Denote S
pjq
t , j “ 1, ¨ ¨ ¨ ,M as independent AR(2) processes with unit variance and spectrum

of fSpjqpωq such that the phase of its AR polynomial roots, denoted by ψpjq, satisfies ψpjq P

rωj´1, ωjq. Consider a family of processes tQt,Mu
8
M“1 defined by Qt,M “

řM
j“1 ajS

pjq
t with
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non-negative coefficients taju
M
j“1 for every M “ 1, . . . ,8. Then we have

sup
a1,...,aMě0

||fY pωq ´ fQt,M pωq||2 Ñ 0, as M Ñ 8, (4.5)

where fQt,M pωq is the spectrum of Qt,M .

4.3 Estimation Method for E-SSM

4.3.1 Estimating E-SSM for a Single Epoch

We first consider E-SSM for a single epoch. We propose an iterative algorithm that comprises

of Kalman filter and least squares for parameter estimation purpose. We start with initial

values ĂM “ ĂM0, X0
0 and P 0

0 . The estimation procedure takes iterations between Algorithms

3 and 4 (shown below) until convergence.

Algorithm 3 Kalman Filter and Maximum Likelihood

1: procedure Given ĂM,X0
0 , P

0
0 , estimate ρ, σ

2, τ2 by Kalman filter and maximum likelihood of innovations εt
2: A.1 Kalman filter and Kalman gain step

3: Φ1 Ð diagp2ρ´1
1 cospψ1q, ¨ ¨ ¨ , 2ρ

´1
q cospψqqq

4: Φ2 Ð diagp´ρ´2
1 , ¨ ¨ ¨ ,´ρ´2

q q

5: rΦ Ð

„

Φ1 Φ2
Iq 0



6: for t “ 0, . . . , T do

7: Xt´1
t Ð rΦXt´1

t´1

8: P t´1
t Ð rΦP t´1

t´1
rΦ1 ` σ2

„

Iq 0
0 0



9: Kt Ð P t´1
t

ĂM 1rĂMP t´1
t

ĂM 1 ` τ2Ips´1 Ź The Kalman gain

10: Xt
t ÐXt´1

t `KtpYt ´ ĂMXt´1
t q

11: P tt Ð pI2q ´KtĂMqP
t´1
t

12: A.2 Maximum likelihood estimation
13: for t “ 0, . . . , T do

14: εt Ð Yt ´ ĂMXt´1
t

15: Σt Ð ĂMP t´1
t

ĂM 1 ` τ2Ip
16: lY pρ, σ

2, τ2q Ð 1
2

řT
t“1 log |Σt| `

1
2

řT
t“1 ε

1
tΣ
´1
t εt Ź The negative loglikelihood

17: pρ̂, σ̂2, τ̂2q Ð argmin
pρ,σ2,τ2q

lY pρ, σ
2, τ2q Ź Maximizing the likelihood of innovations

return ρ̂, σ̂2, τ̂2
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In this study, since we are interested in the power of particular frequency bands, we will

introduce box constraints to the modulus ρ1, ¨ ¨ ¨ , ρq to control the spread of the spectra

curves. Hence in A.2 of Algorithm 3, we implement an optimization approach with box

constraints on modulus ρ1, ¨ ¨ ¨ , ρq and no constraints on σ2, τ 2.

Algorithm 4 Kalman Filter and Least Squares Estimation

1: procedure Given the current estimates of ρ, σ2, τ2, we can obtain the estimates of ĂM by Kalman filter and
least squares estimation.

2: B.1 Kalman filter and Kalman gain step

3: Φ1 Ð diagp2ρ´1
1 cospψ1q, ¨ ¨ ¨ , 2ρ

´1
q cospψqqq

4: Φ2 Ð diagp´ρ´2
1 , ¨ ¨ ¨ ,´ρ´2

q q

5: rΦ Ð

„

Φ1 Φ2
Iq 0



6: for t “ 0, . . . , T do

7: Xt´1
t Ð rΦXt´1

t´1

8: P t´1
t Ð rΦP t´1

t´1
rΦ1 ` σ2

„

Iq 0
0 0



9: Kt Ð P t´1
t

ĂM 1rĂMP t´1
t

ĂM 1 ` τ2Ips´1 Ź The Kalman gain

10: Xt
t ÐXt´1

t `KtpYt ´ ĂMXt´1
t q

11: Xt
t ÐXt

t {sdpX
t
t q Ź sdpXt

t q denotes the standard deviation of Xt
t

12: //Remark: We scale Xt
t to unit variance for identifiability issues discussed before.

13: P tt Ð pI2q ´KtĂMqP
t´1
t

14: B.2 Least square estimation from Equation (4.2)
15: Y Ð pY1, ¨ ¨ ¨ ,YT q Ź Y P Rp˚T
16: X Ð pX1

1 , ¨ ¨ ¨ ,X
T
T q Ź X P Rq˚T

17: for w “ 1, . . . , p do

18: ĄMw Ð pX ˚X 1q´1 ˚X ˚ Y 111
pwq

Ź Ypwq denotes the wth row of Y

19: ĂM Ð pĄM1, ¨ ¨ ¨ , ĄMwq
1

return ĂM

4.3.2 Estimating E-SSM for Multiple Epochs

Now we extend the previous method to the multiple epoch setting in Equation (4.3). The

major challenge lies in pooling information from different epochs in estimating the epoch-

invariant mixing matrix. To solve this problem, we propose a blocked resampling based

approach. The key idea can be summarized as follows: we first divide the epochs into

blocks; then for each block we estimate the corresponding mixing matrix and the epoch-

specific AR(2) parameters. These blocks retain the temporal sequence of the epochs and

the final estimate at a previous epoch serves as the initial estimate of mixing matrix at

75



the current epoch. The final estimates of the mixing matrix obtained from each block are

averaged to produce the estimate for the common mixing matrix. Moving on to the next

step, given the estimated mixing matrix, we follow Algorithm 3 to obtain estimates of the

epoch-specific AR(2) parameters. The iterative approach is summarized below.

II.A We fix the length of the blocked resampling sampler as l. We draw the starting epoch

index s from the set t1, 2, ¨ ¨ ¨ , R ´ l ` 1u. Then at current iteration, the blocked

resampling sampler is ptY
psq
t uTt“1, ¨ ¨ ¨ , tY

ps`l´1q
t uTt“1q.

A.1. Starting with epoch s, we implement the approach for single epoch in Sec-

tion 4.2.1 on tY
psq
t uTt“1to obtain estimates ĂM psq.

A.2. Staring with epoch s` 1 and the initial value ĂM psq, we repeat A.1 to obtain

estimates ĂM ps`1q.

A.3. We repeat A.2 until the last epoch s ` l ´ 1. We denote the final estimates

ĂM ps`l´1q as the ultimate estimates of resampling sampler ptY
psq
t uTt“1, ¨ ¨ ¨ , tY

ps`l´1q
t uTt“1q.

The pipeline of the procedure is summarized below.

»

—

—

—

—

—

—

—

–

Y
psq

1

Y
psq

2

¨ ¨ ¨

Y
psq
T

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Ñ ĂM psq
Ñ

»

—

—

—

—

—

—

—

–

Y
ps`1q

1

Y
ps`1q

2

¨ ¨ ¨

Y
ps`1q
T

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Ñ ĂM ps`1q
¨ ¨ ¨ Ñ

»

—

—

—

—

—

—

—

–

Y
ps`l´1q

1

Y
ps`l´1q

2

¨ ¨ ¨

Y
ps`l´1q
T

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Ñ ĂM ps`l´1q

II.B. Repeat II.A until a sufficient number of resampling estimates is obtained. Compute

the average of those estimates, defined by ĂMg, as the global estimate of ĂM .

II.C. Plug the global estimate ĂMg into every single epoch. Following Algorithm 3 for sin-

gle epoch discussed in Section 4.2.1, we obtain the estimates of ρprq, σ2prq, τ 2prq, r “

1, ¨ ¨ ¨ , R.
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The over-all work flow is given in Figure A.10. Note that since the mixing matrix ĂM are

the same across epochs, we use the blocked resampling strategy to get the global estimates

sequentially. Given that estimate, we proceed to make inference on every single epoch.

4.4 A Comparison to Existing Methods

We discuss a few major differences between our method and the existing state-of-art ap-

proaches including ICA and classical state-space models.

ICA has been widely used in single/between-subject electrophysiological exploratory anal-

ysis. For example, Makarova et al. (2011) proposed an ICA method to segregate pathways

with partially overlapped synaptic territories from hippocampal LFPs. To investigate the

variability across different subjects or subgroups, Guo (2011) proposed a general group prob-

abilistic ICA (pICA) framework to accommodate cross-subject structure in multi-subject

spatial-temporal brain signals. Although these methods work well under certain settings,

there is still plenty of room for improvement in modeling electrophysiological signals. First,

they do not have a mechanism for capturing how the parameters (and spectral properties)

of the latent source signals evolve across epochs over the entire experiment. Most of the ex-

isting methods are based on concatenating the signals from different epochs and estimating

parameters as though these signals are realizations of the same underlying process. However,

since the “reconstructed” latent sources vary across epochs, there is no rigorous framework

for modeling how these parameters could change across epochs. As demonstrated in our

exploratory analysis, Figures 4.2 and 4.3 show that the power of LFP signals changes quite

drastically from the middle phase to the late phase of the experiment. Simply lumping

together signals that are generated from different underlying source processes could yield

misleading results. Second, the existing methods do not take into account the temporal
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structure of the latent sources. In fact, these sources are estimated for each time point inde-

pendently of the other time points. Third, the current ICA methods for source modeling may

not produce interpretable results from spectral analysis of electrophysiological signals. In

fact, brain researchers have observed association between power at different frequency bands

and brain functional states (Michel et al., 1992). Thus, it is necessary to develop a framework

that accounts for the evolution of the power at these frequency bands over many epochs.

Lastly, there are limitations in the connection between time and frequency domain analysis.

Methods from time and frequency domain are developed almost exclusively from each other,

which is counter-intuitive since these two approaches ought to be used concurrently in order

to give a complete characterization of brain processes.

4.5 Simulation Studies

4.5.1 Results on Single Epoch Analysis

In this section, we evaluate the proposed E-SSM on single epoch data. For the latent

independent source signals, we assume that there are three AR(2) stationary processes.

Each of them corresponds to delta pδ: 0 - 4 Hertz), alpha pα: 8 - 12 Hertz), lower beta

pβ: 12 - 18 Hertz) frequency bands respectively. We randomly generate a positive “mixing”

matrix M and fix the number of electrodes of the observational brain signals to be 20. In

summary, following the notation in Section 4.2.1, we have: p “ 20, T “ 1000, q “ 3, τ 2 “

1, σ2 “ .1, pρ1, ψ1q “ p1.0012, 2q, pρ2, ψ2q “ p1.0012, 8q, pρ3, ψ3q “ p1.0012, 15q.

We implement the proposed method in Section 4.2.1 and evaluated its performance. Fig-

ure A.1 shows the periodograms of the true and reconstructed signals. As we can see, the

estimated source signals share exactly the same shape as the true signals.
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4.5.2 Results on Multiple Epoch Analysis

We then evaluate the performance of the proposed method for multiple epochs. We choose 20

electrodes and 3 latent independent AR(2) processes. To model the evolution across epochs,

we allow the modulus pρ
prq
1 , ρ

prq
2 , ρ

prq
3 q increase from p1.001, 1.001, 1.001q with an increment

of 0.00005 as the epoch r propagates. All the remaining parameters are the same as in

Section 4.5.1. Figure A.2 shows the heatmap of periodogram from electrode 1 as epochs

evolve.

We implement the method in this scenario and find the results satisfactory. Figure A.3

shows the periodograms of the true and estimated signals from the three underlying AR(2)

processes. For the delta, alpha, and lower beta bands, we can see the peaks at the corre-

sponding dominating frequency from the true and estimated signals. As the epochs evolve,

we find that both of the true and estimated periodograms spread out around the dominating

frequency. Our results show that the pattern of the periodograms from the reconstructed

AR(2) process is consistent with that of the true AR(2) process.

4.5.3 Results for Settings Derived from the Data

Here we simulate the data using parameter setting from the motivating sequence memory

study example. We use the estimated modulus pρ̂
prq
1 , ρ̂

prq
2 , ρ̂

prq
3 q, variances pσ̂2prq, τ̂ 2prqq and

mixing matrix ĂM to generate signals across 12 electrodes among 247 epochs. To evaluate

the performance of E-SSM, we also apply the classical state space model (SSM) estimation

methods as a benchmark in comparison with E-SSM. Specifically, we fit SSM for each single

epoch and take average to obtain parameters estimates. Note that this is the approach that

most of the existing methods will follow when analyzing signals with multiple epochs.
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We compare mean of sum of square errors (MSE) of the parameters obtained from E-SSM and

the benchmark. From Table 4.1, it is clear that E-SSM successfully captures the evolution

of parameters compared to classical state space models. Among all the frequency bands,

the benefits are dramatic. These results highlight the advantages of using E-SSM when

signals are comprised of multiple epochs. Meanwhile, it also indicates the potential loss of

information if we naively average over all the epochs when conducting analysis.

Table 4.1: Mean of sum of square errors obtained from E-SSM and SSM (benchmark)

Parameters E-SSM SSM

rΦ (delta band) 3.33 ˆ̂̂ 10´5 7.27ˆ 10´5

rΦ (alpha band) 1.41 ˆ̂̂ 10´5 3.23ˆ 10´5

rΦ (gamma band) 1.69 ˆ̂̂ 10´5 8.07ˆ 10´5

τ 2 9.31 ˆ̂̂ 10´6 2.03ˆ 10´4

σ2 1.93 ˆ̂̂ 10´1 1.93ˆ 10´1

4.5.4 Sensitivity Analysis

We also conduct sensitivity analysis for the proposed E-SSM in Section 4.2.2 via simulation

studies. We generate 5 latent independent source signals ( AR(2) processes) corresponding

to delta pδ: 0 - 4 Hertz), theta pθ: 4 - 8 Hertz), alpha pα: 8 - 12 Hertz), lower beta pβ: 12 - 18

Hertz) and gamma pγ: ą 32 Hertz). To generate the observed signals, we only choose 3 latent

independent AR(2) processes (delta, theta and lower beta bands) and 20 electrodes. Similar

to Section 4.5.2, we allow the modulus pρ
prq
1 , ρ

prq
2 , ρ

prq
3 q to increase from p1.001, 1.001, 1.001q

with an increment of 0.00005 as the epoch r propagates. All the remaining parameters are

the same as in Section 4.5.1. To evaluate the robustness of the proposed method, we also fit

FIVE frequency bands into the observed signals.
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Figure A.4 shows the periodogram of the generated signals from electrode 1. We fit the

proposed model with FIVE frequency bands. Figure A.5 shows the true mixing matrix (left)

and its estimation (right). From the true matrix, we can observe zero columns corresponding

to “alpha” and “gamma” bands that indicate the observed signals are generated only by the

three remaining bands (delta, theta and lower beta bands). From the estimation result, it

is clear that the columns of “alpha” and “gamma” bands are roughly zero, which shows the

proposed E-SSM successfully capture the three latent sources (delta, theta and lower beta

bands) while neglecting the impacts from alpha and gamma bands. Figure A.6 shows the

periodograms of the true and estimated signals from the three underlying AR(2) processes.

Similar to the results in Section 4.5.2, we can see the pattern of the periodograms from the

reconstructed AR(2) process is consistent with that of the true AR(2) process.

4.6 Analysis of LFPs Data from Olfaction Sequence

Memory Study

4.6.1 Data Description

The LFP dataset was obtained from an experiment searching for direct evidence of coding for

the memory of sequential relationships among non-spatial events (Allen et al., 2016). During

the course of the experiment, rats were provided with series of five odors. All the odors were

delivered in the same odor port. In each session, each rat was presented the same sequence

multiple times. Each odor presentation was initiated by a nose poke and rats were required

to correctly identify whether the odor was presented in the correct or incorrect sequence

position (by holding their nose in the port until the signal or withdrawing before the signal,

respectively). During the experiment, as rats performed the tasks, LFPs were recorded in
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the CA1 pyramidal layer of the dorsal hippocampus. In total, 22 tetrodes were implanted

but LFPs were only analyzed from electrodes that exhibited task-critical single-cell activity

(12 in this case). The LFPs dataset in this study comprise of 12 electrodes and 247 epochs.

Each epoch is recorded over 1 second, aligned to port entry, sampled at 1000 Hertz and thus

has T “ 1000 time points.

4.6.2 Exploratory Analysis

In our exploratory analysis, we are interested in two key goals: (1.) to determine how

the original high-dimensional signals can be sufficiently represented by lower dimensional

summary signals; and (2.) to assess if and how the spectral properties of the LFP signals

evolve across epochs during the experiment.

To address the first question, we note the assertion in other studies (e.g., Makarova et al.

(2014)) that the natural geometry of these neuronal assemblies gives rise to possible spatial

segregation. This suggests that it is plausible to represent LFP data by lower dimensional

summaries. In this nonspatial sequence memory study, we observe similar pattern across

all the 12 electrodes. In Figure 4.5, although the power varies within each electrode, the

synchrony of pattern across electrodes is still critical. For example, electrodes T13 and T14

behave almost identically. Electrodes T7, T8 and T9 also follow the same pattern during

the course of experiment. Moreover, as part of this exploratory analysis, we implemented

spectral principal component analysis (Brillinger, 1964). This approach is widely used in

the exploratory analysis of brain imaging data (Wang et al., 2016). Figure A.7 presents

the boxplots of the percentage of variability accounted by the first one and the first three

components respectively. It can be shown that 3 components (mixture of delta, alpha and

gamma bands) account for roughly 92% of the variability with the first component accounting

82



for 70%. All these findings validate the assumption that the original LFPs can be projected

into low dimensional source signals without substantial loss of information. In this chapter,

we will build on this preliminary analyses by giving a more specific characterization of these

signal summaries or components using the ARp2q process.
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Figure 4.5: The evolution of the relative periodogram (summing up to 1 for each frequency)
across the duration of experiment. Each plot displays the estimated power spectrum during
the 3 phases: Phase 1 (epoch 1 - 80), Phase 2 (epoch 81 - 160) and Phase 3 (epoch 161 -
247). Frequency bands around particular hertz are present, which can be modeled as AR(2).
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To gain insights into addressing the second question, we examined the LFP traceplots of the

first 15 epochs at electrode T22 (Figure 4.1). It is clear that signals across various electrodes

are more highly synchronized as time evolves. Similarly, from the log periodogram boxplots

in Figure 4.2 across all the frequencies, we notice that the powers are quite spread out,

especially at lower frequencies and the two peaks around delta and slow gamma bands. The

heatmap in Figure 4.3 demonstrates the dynamics from early, middle, and late stages of the

whole session. Figure 4.5 shows the evolving of the power across all the electrodes particularly

on delta, alpha, and gamma bands. It shows that higher frequency bands dominate in early

stage, while lower frequency bands capture more power during the evolution of experiment.

In Figure 4.6, an interesting pattern emerges: the burst of gamma activity on Phase 1 of the

epochs is not replicated at other phases. One possible interpretation is that odor sequence

(on which the animals have had extensive training) is re-encoded early in each session,

which requires high frequency (gamma) activity, but later in the session, gamma activity is

regulated and other lower frequencies (delta and alpha) become more prominent. Promoted

by all these results, a further study is necessary to uncover the latent lower dimensional

source signals that drive the observed LFPs.
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Figure 4.6: The evolution of power spectrum among delta (0-4 Hertz), alpha (8-12 Hertz)
and gamma (30-35 Hertz) bands. Each band was averaged over all the electrodes.

4.6.3 Results and Discussion

We applied our proposed E-SSM method to this study. Figure A.8 shows time series plots

of modulus (root magnitudes) corresponding to each of the three frequency bands as epochs

evolve. In this plot, we could clearly identify the evolution of each individual module and

a strong temporal dependence. Figure 4.7 displays the power of three latent source signals

evolving during the period of experiment. We observe that the delta band captures the most

power among all bands and is persistent across all phases. Gamma band power narrows

down slightly towards the late phase. The alpha band attains its maximum power during

the early phase and diminishes quickly in the middle stage and obtains more power in the

end. There appear to be discontinuities in the delta, alpha and gamma power across the

entire experiment. One interpretation to these results from the E-SSM analysis is that these

on-off patterns could be just random variation. Another is that these are actual resetting of

neuronal responses. This phenomenon of phase resetting in neurons is also observed in many
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biological oscillators. In fact, it is believed that phase resetting plays a role in promoting

neural synchrony in various brain pathways. In either case, it is imperative to be cautious

about blindly assuming that the neuronal process behaves identically across epochs. Doing

so could produce misleading results.
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Figure 4.7: The periodograms of estimated latent AR(2) processes corresponding to delta
(top), alpha (middle) and gamma (bottom) frequency band.

We also study the mixing matrix to investigate how electrodes are associated across the

three frequency bands. From Figure 4.8, at delta band, electrodes T13, T14, T16, T19, T22,

T23 are likely to be linked in terms of large power. Electrodes T15, T2, T7, T8 and T9

share the lowest power. At the alpha band, electrodes T16, T22 and T23 maintain the most

power in contrast with electrodes T15, T2, T7-9 that obtain the lowest power. This pattern

of association may result from the anatomical connections. Similarly, at gamma band,

electrodes are connected in the same way as alpha band. We also used a cluster analysis

on the entries of “mixing” matrix to understand the connection among electrodes. Similar
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to the results shown in Figure 4.8, we are able to identify the same pattern in Figure 4.9,

through the visualization of cluster analysis. At delta band, electrodes T13, T14, T16, T19,

T20, T22, T23 share the same pattern while T3, T7-9 are in the same cluster. Clusters at the

alpha and gamma bands are roughly identical, which coincide with the results in Figure 4.8.

To the best of our knowledge, this approach (i.e., clustering of electrodes or nodes) has not

be used previously for this kind of analysis. This has the potential for future explorations on

synchrony among neuronal populations. Finally, we note here that the specific parametric

AR(2) structure in our E-SSM has facilitated ease of interpretation of the oscillatory activity

of these sources.

Model validation and diagnostics were done using sample auto-correlations (ACF) and par-

tial auto-correlations (PACF) calculated from the residuals. Figure A.9 shows an example

of those values obtained from a representative electrode. We could easily observe the uncor-

related structure among the residuals. A p-value of 0.75 based on the Ljung-Box test also

provides some evidence to suggest white noise residuals and thus conclude that the proposed

E-SSM fits this LFP data well.

87



Source Signals

El
ec

tro
de

s

Delta Alpha Gamma

T1
3

T1
4

T1
5

T1
6

T1
9

T2
0

T2
2

T2
3

T2
T7

T8
T9

0.15

0.20

0.25

0.30

0.35

Figure 4.8: The estimated mixing matrix. Darker color represents heavier weights given by
the latent processes (delta, alpha, gamma) on the LFPs.

delta frequency band alpha frequency band gamma frequency band

Figure 4.9: Cluster analysis results among all the three frequency bands. Same color indicates
the same cluster.

88



Chapter 5

Penalized Probabilistic Matrix Data

Clustering

5.1 Introduction

In this chapter, the goal is to provide a novel framework of analyzing matrix-valued data and

apply it to electrophysiological signals – Local Field Potentials (LFPs). The LFPs essentially

capture the integration of membrane currents across local regions of cortex (Mitzdorf et al.,

1985).

In a motivating example of this chapter, researchers conducted an olfactory (non-spatial)

sequence memory experiment to uncover the neuron learning process on the sequential or-

dering of odors (Allen et al., 2016). 12 electrodes were implanted into a rat’s brain and LFPs

were recorded. The entire experiment consists of 5 odors ABCDE with each corresponding to

one epoch. As shown in Figure 4.1, rats were trained to identify odors denoted by ABCDE.

12 electrodes were implanted according to the schematic plot on the right. Preliminary anal-
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ysis have been conducted to understand the association between the LFPs signals and the

particular odor. Figure 5.1 presents the smoothed LFPs across 12 electrodes by different

sequence odors and the mean signal. It can be found indisputably that the mean patterns

vary dramatically across different odor, which motivates the study of analyzing “latent”

structures. To take one step further, if we compare the signals among different electrodes

within each odor, strong spatial dependence can be easily detected. It shows that roughly

two “paradigm” can be found across electrodes especially in Sequence A, B and D. Typi-

cal cluster analysis can be done by directly lumping the signals over electrodes as vectors.

However, the spatial dependence pattern would be accidently ignored in this case. This

innegligible drawback inspires us to develop a statistical strategy directly on the “matrices”

that respect the “row-wise” and “column-wise” dependence simultaneuously. From the liter-

ature of statistics and machine learning communities, a large amount of approaches are only

applicable to vectors. As shown from the motivating example, such approaches have a few

limitations: 1) Spatial and temporal correlation are not easily captured simultaneously; 2)

It would be computation demanding when analyzing high-dimensional signals; 3) We would

lose the interpretability from the results obtained by the manipulated “vectors”. To address

those issues, we propose a probabilistic model directly on the matrix-valued signals. Inspired

by the work of Dawid (1981) and Dutilleul (1999), the framework is built upon a mixture

matrix normal model. For the purpose of clustering signals, the advantages of using such

distribution are its interpretability, conceptual and computational easiness. To account for

the structures such as sparsity or low-rank, we also introduce flexible regularization terms

(e.g. `1, `2 and nuclear norm). We have successfully demonstrate that by adding those penal-

ties, the proposed approach outperform over the existing cluster method and also prevent

overfitting the training data. On the foundation of the results from Fan and Li (2001), we

also prove the strongly consistency of the proposed estimator.
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The rest of the chapter is organized as follows. In Section 5.2, we mainly state some back-

ground knowledge of matrix normal distribution and the estimation method. In Section 5.3,

we introduce the proposed penalized mixture matrix normal model and its estimation ap-

proach based on modified Expectation Maximization (EM) and one-step-late algorithms. In

Section 5.4, we provide some theoretic results on the consistency of the (penalized) estima-

tors in a restricted parameter space. In Sections 5.5, 5.6 and 5.7, we present some simulation

results and apply the proposed method to two LFPs dataset obtained from odor sequence

and stroke experiments.
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Figure 5.1: The mean LFPs across different odors.
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5.2 Background on Matrix Normal Distribution

In this section, we mainly focus on a brief review of matrix normal distribution. In the field

of modeling image or spatial-temporal data, it is natural to obtain a sequence of matrix

valued observations Y1, Y2, ¨ ¨ ¨ , Yn with dimension r ˆ p. For example, in the case spatial-

temporal data, p, r denotes the spatial and temporal attributes respectively. As an extension

of vector-valued data, covariance structures regarding “spatial” and “temporal” need to be

considered simultaneously. Following the convention of multivariate normal distribution for

vectors, r ˆ p matrix normal distribution MNr,ppM,U, V q is defined as

fpY |M,U, V q “
expp´1

2
trpV ´1pY ´MqTU´1pY ´Mqq

p2πqrp{2|V |r{2|U |p{2
, (5.1)

where M P Rrˆp, U P Rrˆr, V P Rpˆp and matrices U and V are treated as between

and within covariance matrices. With some algebraic manipulations, it can be shown that

Y „ MNr,ppM,U, V q if and only if

vecpY q „ NpvecpMq, V b Uq, (5.2)

where vec is vectorization operation and b is the Kronecker product. It should be pointed

that not all the multivariate normal random variable of dimension r ˆ p is able to convert

into matrix normal distribution. Only particular covariance matrices of dimension rp that

follow the form in (5.2) has its corresponding matrix normal representation (Dutilleul, 1999).

Such pattern is defined as “separable” (Cressie, 2015). In the application of electrophysio-

logical data analysis, traditional statistical methods such as state space model (Gao et al.,

2016), vector autoregressive model (Derado et al., 2010) all meet the “separable” assump-

tion. Moreover, Reinsel (1982) showed it lead to efficient inference when incorporating such

structure into analysis.
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On Estimating the Parameters

Suppose that Y1, Y2, ¨ ¨ ¨ , Yn are i.i.d random samples from matrix normal distribution

MNr,ppM,U, V q, the log-likelihood is given by

`pM,U, V q “ ´
npr

2
log 2π´

nr

2
log |V |´

np

2
log |U |´

1

2

n
ÿ

i“1

trpV ´1
pYi´Mq

TU´1
pYi´Mqq. (5.3)

After some matrix derivatives manipulation, the maximum likelihood estimator (MLE) yields

M̂ “

n
ÿ

i“1

Yi “ Ȳ

Û “
1

np

n
ÿ

i“1

pYi ´ Ȳ qV̂
´1
pYi ´ Ȳ q

1

V̂ “
1

nr

n
ÿ

i“1

pYi ´ Ȳ q
1Û´1

pYi ´ Ȳ q

(5.4)

It is obvious that there are some identifiability issues since one can simply replace Û , V̂ by

cÛ , 1
c
V̂ to satisfy Equations (5.4) (Dutilleul, 1999). However, the Kronecker product Û b V̂

will remain invariant and we will mainly focus on the mean parameter M throughout this

study.

There is no close form for Û , V̂ . Alternatively, one can utilize iterative algorithms to achieve

those values numerically. The algorithm is summarized as follows. Note that this approach

is also used as an update step in Section 5.3.

Remark 6. Note that ||.|| denotes the frobenius norm. diagp1, ¨ ¨ ¨ , 1q represents the identity

matrix of dimension r.
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Algorithm 5 The MLE of covariance matrices

Input: Y “ tY1, Y2, ¨ ¨ ¨ , Ynu, τ (tolerance level), Max-iter
Initializing: iter “ 0, U0 “ diagp1, ¨ ¨ ¨ , 1q, V0 “

1
nr

řn
i“1pYi ´ Ȳ q

1U0
´1
pYi ´ Ȳ q

U1 “
1
np

řn
i“1pYi ´ Ȳ qV0

´1
pYi ´ Ȳ q

1, V1 “
1
nr

řn
i“1pYi ´ Ȳ q

1U1
´1
pYi ´ Ȳ q

While (iter ă Max-iter or ||U1 ´ U0|| ą τ or ||V1 ´ V0|| ą τ)
Repeat
U0 :“ U1

V0 :“ V1

U1 “
1
np

řn
i“1pYi ´ Ȳ qV0

´1
pYi ´ Ȳ q

1

V1 “
1
nr

řn
i“1pYi ´ Ȳ q

1U1
´1
pYi ´ Ȳ q

iter :“ iter` 1
Return: Û :“ U1, V̂ :“ V1

5.3 Penalized Mixture Matrix Normal Clustering

5.3.1 Mixture Matrix Normal Models

Suppose the observed matrix-valued data Y1, ¨ ¨ ¨ , Yn are obtained from a population with

k “regimes”. The probability density function is essentially a mixture of matrix normal

densities. For simplicity, if we write Θj “ pMj, Uj, Vjq, and the prior association densities as

πj, j “ 1, ¨ ¨ ¨ , k, then the marginal density function of Yi can be written as

fpYi|Θ1, ¨ ¨ ¨ ,Θk, π1, ¨ ¨ ¨ , πkq “
k
ÿ

j“1

πjfpYi|Θjq, (5.5)

where fpYi|Θjq is shown in Equation (5.1) and
k
ř

j“1

πj “ 1. The observed log-likelihood yields

`obspΘ1, ¨ ¨ ¨ ,Θk, π1, ¨ ¨ ¨ , πkq “
n
ÿ

i“1

logt
k
ÿ

j“1

πjfpYi|Θjqu. (5.6)

On Estimating the Parameters
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Expectation Maximization (EM) algorithm (Dempster et al., 1977) can be efficiently used

to provide estimations of parameter. In general, it is an iterative approach consisting of

expectation and maximization steps.

In E-step, a posterior probability of observation Yi derives from j ´ th cluster is calculated

by Bayes Theorem that

αij “
πjfpYi|Θjq

k
ř

l“1

πlfpYi|Θlq

. (5.7)

In M-step, optimal values are obtained by solving the non-constraint optimization problem

that

Θ̂ “ arg max
Θ

n
ÿ

i“1

k
ÿ

j“1

αij logtπjfpYi|Θjqu

After some matrix derivatives and algebra manipulations, we can obtain the explicit solutions

that

π̂j “

řn
i“1 αij
n

M̂j “

řn
i“1 αijYi
n
ř

i“1

αij

Ûj “

řn
i“1 αijpYi ´ M̂jqV̂j

´1
pYi ´ M̂jq

1

p
n
ř

i“1

αij

V̂j “

řn
i“1 αijpYi ´ M̂jq

1Ûj
´1
pYi ´ M̂jq

r
n
ř

i“1

αij

(5.8)

Note that Ûj, V̂j can be obtained numerically using the similar method to Algorithm 5.
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5.3.2 Penalized Mixture Matrix Normal Models

It is quite common that we have some prior information on parameters Θ. This could

originate from the sparsity, rank, smoothness or a prior probability density on parameters

(Green, 1990). To this end, it is natural to add a regularization term to the likelihood and

alternatively, maximum penalize likelihood estimate should be obtained. Specifically, we

penalized log-likelihood follows

Qpλ,Θ1, ¨ ¨ ¨ ,Θk, π1, ¨ ¨ ¨ , πkq “
n
ÿ

i“1

logt
k
ÿ

j“1

πjfpYi|Θjqu ´ λP pΘq, (5.9)

where P p.q is some penalized function. Examples can be logarithm of probability density

functions, `1, `2 norms, nuclear norm etc.

On Estimating the Parameters

Similar to the approach in Section 5.3.1, we propose a modified EM algorithm to estimate

the parameters. The E-step can be easily achieved by Equation (5.7). The M-step boils

down to the optimization problem that

Θ̂ “ arg max
Θ

n
ÿ

i“1

k
ÿ

j“1

αij logtπjfpYi|Θjqu ´ λP pΘq. (5.10)

In contrast to the case without penalty, the solution Θ̂ may not have an explicit form.

Lange (1995) proposed a gradient method related to EM algorithm. It replaces the M-step

by conducting one iteration of Newton’s method. Theoretic results on the convergence were

also discussed. As an alternative approach, other methods including surrogate functions

(Lange et al., 2000), overrelaxed EM algorithm (Yu, 2012) were introduced to this issue.

Throughout this article, we mainly focus on three types of penalties: `1, `2 and nuclear
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norm. Pan and Shen (2007) introduced `1 penalty to the mean parameters in the setting

of mixture univariate normal models. An explicit form of the M-step is derived using sub-

gradient. Green (1990) developed “one-step-late” (OSL) algorithm that can be applied to

more general case. Inspire by the aforementioned results, we developed a sub-gradient update

for `1 norm and OSL step for `2 and nuclear norms.

In the case of `1 norm penalty, the update of Mj is the optimal value that maximizes

n
ÿ

i“1

k
ÿ

j“1

αij logtπjfpYi|Θjqu ´ λ
k
ÿ

j“1

||Mj||1.

Following a similar derivation by Pan and Shen (2007), the update step of Mj has the form

that

M̂j “ signpM̃jqp|M̃j| ´
λ

řn
i“1 αi,j

Ui1rˆpViq`, (5.11)

where M̃j “
řn
i“1 αi,jYi
řn
i“1 αi,j

is the update for Mi without penalty, B` “ maxpB, 0q, 1rˆp is a

matrix of all 1’s. sign() and p.q` are all component-wise operators.

In the case of `2 norm penalty, the objective function is derived to be

Q`2pπ,Θq “
n
ÿ

i“1

k
ÿ

j“1

αij logtπjfpYi|Θjqu ´ λ
k
ÿ

j“1

||Mj||2.

After matrix derivative manipulations, we have

BQ`2pπ,Θq

BMj

“ U´1
j

n
ÿ

i“1

αi,jpYi ´MjqV
´1
j ´ 2λMj,
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The update step of Mi follows the form

M̂j “ M̃j ´
2λ

řn
i“1 αij

UjMjVj, (5.12)

where Uj,Mj, Vj are the update from the previous step.

For the case of nuclear norm penalty, similar derivation yields

M̂j “ M̃j ´
λ

řn
i“1 αij

UjΦjΩ
1
jVj, (5.13)

where Mj has the singular value decomposition Mj “ ΦjΛjΩ
1
j.

As a summary, the proposed estimation approach involves algorithms of initialization and

alternating from E-step and M-step. Details are presented as follows

I. (Initialization) We start with vectorizing the original matrix-valued observations Y1, ¨ ¨ ¨ , Yn

and applied k means to achieve the initial cluster membership values, written as S1, ¨ ¨ ¨ , Sk,

where Sj “ ti | Yi in j-th clusteru. Note that we can relax this step by randomly assign

clusters to those observations. Then for each cluster, the initial value of Θi can be obtained

following the same manner in Section 5.2. πj can be directly estimated by π̂j “
|Sj |

n

II. (E-step) We update the posterior membership by

αij “
πjfpYi|Θjq

k
ř

l“1

πlfpYi|Θlq

.

III. (M-step) The mean parameter Mj with respect to various penalties is updated by the

Equations (5.11), (5.12) and (5.13) respectively. Updates for πj, Uj, Vj follows Equations (5.8)

and Algorithm 5 is also utilized.
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IV. (Stopping criteria) The iterative approach will alternate by I. and II. until certain

iterations have been reached or the frobenius norm change of the mean parameter Mj is

small enough.

On Choosing the Number of Clusters

A key question in the proposed method is to determine the number of clusters. Inspired by

the approach proposed by Smyth (2000), we introduce cross validated penalized likelihood

(CVPL) as the key measure. Without loss of generality, let us denote fp.q, fkp.q as the “true”

and k mixture probability density functions, Ψ,Ψk as the corresponding parameters. We split

the dataset Y “ tY1, ¨ ¨ ¨ , Ynu into training and testing groups denoted by Ytrain,Ytest. If we

write the averaged penalized negative log-likelihood as

`k “ ´
1

Ntest

p`obspΨkpYtrainq|Ytestq ´ λP pΨkqq (5.14)

It can be shown directly that

Ep`kq “

ż

log
fpY q

f̃kpY q
fpY qdY ` C, (5.15)

where f̃kpY q “ exptlog fkpY q´λP pΨkqu. It shows that the expectation of `k is the Kullbak-

Leibler (KL) distance between fp.q and the exponential penalized k mixture likelihood up

to some constant. Derived from this result, we propose CVPL to determine the optimal

number of clusters.
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5.4 Theory

In this section, we first show some theoretic results on the consistency of the maximum

likelihood estimator without regularizations. In order to guarantee a constrained (global)

maximum likelihood formulation, we define the constrained parameter space Ψd1,d2 as

Ψd1,d2 “ tπ1, ¨ ¨ ¨ , πk P R, M1, ¨ ¨ ¨ ,Mk P Rr˚p, V1 b U1, ¨ ¨ ¨ , Vk b Uk P Rrp˚rp :

min
1ďh‰jďk

ρpUhU
´1
j q ě d1 ą 0, min

1ďh1‰j1ďk
ρpVh1V

´1
j1 q ě d2 ą 0,

k
ÿ

i“1

πi “ 1, πl ą 0,

ρpUlq ą 0, ρpVlq ą 0 for l “ 1, ¨ ¨ ¨ , ku,

(5.16)

where d1, d2 P p0, 1s, ρp.q denotes the minimum eigenvalue.

Theorem 1. Let Y1, ¨ ¨ ¨ , Yn be random samples from a mixture matrix normal distribu-

tion (5.5), then for d1, d2 P p0, 1s, there exists a constrained global maximizer ψ̂n of the

log-likelihood (5.6) over Ψd1,d2. Moreover, ψ̂n is also strongly consistent in Ψd1,d2.

Proof. First, we state the fact that

min
1ďh‰jďk

ρpΣhΣ
´1
j q ě min

1ďh‰jďk
ρpVhV

´1
j q ˚ min

1ďh1‰j1ďk
ρpUh1U

´1
j1 q, (5.17)

where Σh “ Vh b Uh.

Actually, it follows directly from the property that

ρpΣhΣ
´1
j q “ ρ

“

pVh b UhqpVj b Vhq
´1
‰

“ ρ
“

pVhV
´1
j q b pUhU

´1
j q

‰

“ ρpVhV
´1
j q ˚ ρpUhU

´1
j q,
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where the equalities follow the results in Schacke (2004). We denote the parameter space rΨd

as

rΨd
“ tπ1, ¨ ¨ ¨ , πk, M1, ¨ ¨ ¨ ,Mk, V1 b U1, ¨ ¨ ¨ , Vk b Uk : min

1ďh‰jďk
ρpΣhΣ

´1
j q ě d ą 0,

k
ÿ

i“1

πi “ 1, d1d2 “ d, πl ą 0, ρpΣlq ą 0 for l “ 1, ¨ ¨ ¨ , ku,

(5.18)

then due to the definition (5.2) and results in (Hathaway, 1985), there exists a global con-

straint maximizer of (5.6) ψ̂n over rΨd so that `obspψ̂
nq “ sup

rΨd
`obspψq and there exists a

compact set S P rΨd such that ψ̂n P S and sup
S
`obspψq “ sup

rΨd
`obspψq. Moreover, the fact (5.17)

implies that sup
rΨd
`obspψq ě sup

Ψd1,d2

`obspψq for any d1, d2. Due to the boundedness of S, it can

be shown by contradiction that there exist d1, d2 so that S P Ψd1,d2 . Thus, we have that

sup
S
`obspψq “ sup

rΨd
`obspψq ě sup

Ψd1,d2

`obspψq ě sup
S
`obspψq, which completes the proof of the first

part. To show the strongly consistency, the same argument can be utilized as in Hathaway

(1985) with the fact of definition (5.2).

Remark 7. Note that the preceding results hold for unidentifiable case resulting from Hath-

away (1985).

Remark 8. The condition in (5.16) is not easy to check in practice. One might bound all the

eigenvalues within an interval pa, bq for numerical stability.

Next, we will show that under wild conditions, there also exists a root-n consistent penalized

likelihood estimator of (5.9). We first define the parameter space denoted as sΨd1,d2 where

sΨd1,d2 “ tπ1, ¨ ¨ ¨ , πk,M1, ¨ ¨ ¨ ,Mk, V1 b U1, ¨ ¨ ¨ , Vk b Uk P Ψd1,d2 :
σipUhq

σipVhq
“ ch

for i “ 1, ¨ ¨ ¨ ,mintr, pu, h “ 1, ¨ ¨ ¨ , ku,

(5.19)
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where σipUhq denotes the ith eigenvalue of matrix Uh and ch is a positive constant.

We state the condition (A) as

(A) Let β “
`

vecpψ1q1, ¨ ¨ ¨ , vecpψkq1
˘1
, where ψi denotes the parameters pπi,Mi, Vi, Uiq in

ith component. The Fisher information matrix Ipβq is finite in the parameter space sΨd1,d2

and positive definite at β “ vecpψ0q.

Theorem 2. Let Y1, ¨ ¨ ¨ , Yn be random samples from a mixture matrix normal distribu-

tion (5.5), in the case of `1 and `2 norm penalties, under condition (A), if λ “ Oppn
ηq, 0 ă

η ď 1
2
, then there exists a local maximizer ζ̂ of the penalized likelihood (5.9) such that

||ζ̂ ´ ψ0|| “ Oppn
´1{2q in the parameter space sΨd1,d2 , where ψ0 is the true parameter in

sΨd1,d2 .

Proof. The proof can be directly adapted from the argument of Theorem 1 proposed by Fan

and Li (2001). It suffices to check the conditions in their proof. For the first condition,

all the assumptions are trial except the identifiability issue. Actually, since σipVh b Uhq “

σi1pVhqσi2pUhq, by fixing the ratio of eigenvalues as shown in (5.19), there exists a unique

eigenvalue pair of σi1pVhq, σi2pUhq for a given value of σipVh b Uhq. Thus Vh b Uh “ V 1h b U 1h

implies Vh “ V 1h and Uh “ U 1h. The identifiability property then directly follow given the

results from Yakowitz and Spragins (1968). For the second condition, our assumption (A)

directly implies that. For the last condition, it holds from the compactness of the parameter

space sΨd1,d2 .
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5.5 Simulations

5.5.1 Results on Choosing the Number of Clusters

In this section, we evaluate the effectiveness of the proposed cross validated penalized like-

lihood (CVPL) in different scenarios. We generate two clusters of signal that follow ma-

trix normal distribution with mean structures shown in Figure 5.2. The row-wise and

column-wise covariance matrices follow an autoregressive setting where covtYk1,l1 , Yk2,l2u “

0.9|k1´k2|`|l1´l2|, 1 ď ki ď r, 1 ď li ď p. The proportion for both of the clusters is equal. In

Scenario I, we set the number of signals n “ 100 with r “ p “ 60. In Scenario II, we let

n “ 50, r “ p “ 30. 200 simulations were conducted for each of the two cases.

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.2: The mean structure of the two clusters.

We applied the proposed method to the simulated dataset. L1, L2 and Nuclear penalties

were all implemented. As is shown in Table 5.1, among all the penalties, λ and sample

sizes, the proposed CVPL values suggest the true number of cluster. Comparing L1 with L2

penalty in Scenario I, the outperformance of k “ 2 among all the other clusters are higher

with L1 penalty, which results from the sparsity of the two mean structures. When the

sample size decreases as in Scenario II, such pattern becomes less obvious. It shows that the
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smaller dimension of images attenuates the discrepancy between L1 and L2 regularizations.

In the setting of Nuclear regularization, the proposed CVPL value leads to the true number

of clusters, which is due to the low rank of mean structures.

Table 5.1: The cross validated penalized likelihood (CVPL) values obtained from different
number of clusters and penalties under two scenarios.

Penalty λ
CVPL (Scenario I) CVPL (Scenario II)

k “ 2 k “ 3 k “ 4 k “ 2 k “ 3 k “ 4

L1
0.5 2.345˚ 2.337 2.333 0.458˚ 0.453 0.451

1 2.344˚ 2.336 2.330 0.457˚ 0.455 0.452

1.5 2.341˚ 2.337 2.332 0.458˚ 0.457 0.455

L2
0.5 2.351˚ 2.349 2.344 0.462˚ 0.449 0.431

1 2.352˚ 2.350 2.345 0.450˚ 0.434 0.419

1.5 2.352˚ 2.349 2.344 0.446˚ 0.429 0.413

Nuclear
0.5 2.351˚ 2.348 2.343 0.461˚ 0.456 0.452

1 2.351˚ 2.348 2.344 0.461˚ 0.457 0.452

1.5 2.353˚ 2.349 2.345 0.460˚ 0.456 0.454

* The highest values across different scenarios (ˆ105)

5.5.2 Results on Comparing with K-Means

This section is contributed to compare the proposed approach with K means. Similar to

Section 5.5.1, we generated signals using the same mean and covariance structures. In

Scenario III, the sample size is set to be 50 and the dimension of images 20 ˚ 20. In Scenario

IV, we increase the sample size to 100 and the dimension to 60 ˚ 60. To compare the

results obtained from the two underlying approaches, we calculate the adjusted random

index (Milligan and Cooper, 1986) and accuracy. We repeat the procedure 200 times for this

simulation study.
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Results are summarized in Table 5.2. In Scenario III where the size is relatively low, the

benefit of the proposed method is critical compared to K means. The ARI and accuracy

values are almost double of the results obtained from K means. When it comes to larger

sample size, which is presented as Scenario IV, the gain is also apparent. Among all the

regularizations, the L1 penalty performs superiously due to the sparsity of the generated

signals.

Table 5.2: The adjusted random index (ARI) and accuracy obtained from the proposed
method and K means under Scenario III and IV.

Penalty λ
ARI (Scenario III) Accuracy ARI (Scenario IV) Accuracy

our method kmeans our method kmeans our method kmeans our method kmeans

L1

0 0.867

0.513

0.882

0.626

0.644

0.517

0.696

0.607
0.5 0.924 0.938 0.691 0.744

1 0.962 0.980 0.781 0.822

1.5 0.966 0.985 0.788 0.824

L2

0.5 0.879 0.892 0.632 0.687

1 0.907 0.514 0.918 0.623 0.665 0.518 0.715 0.607

1.5 0.868 0.881 0.788 0.824

Nuclear

0.5 0.898 0.909 0.645 0.697

1 0.860 0.515 0.876 0.623 0.660 0.516 0.710 0.607

1.5 0.884 0.897 0.636 0.687

5.6 Analysis of Odor Memory Data

In this section, we focus on analyzing a LFP dataset from a memory coding experiment

on non-spatial events (Allen et al., 2016). Rats were trained to identify a series of five

odors during the experiment. Each of the odors was presented through an odor port. In

most of the cases, those five odors were in the same sequence (“in-sequence” odors) while
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there were some violations (“out-sequence” odors). For example, odor sequence ABCDE is

an “in-sequence” odor yet ABBDE is an “out-sequence” odor. Rats were required to poke

and hold their nose in the port to correctly identify whether the odors were “in” or “out”

sequence. Throughout the experiment, spike and LFP data were collected. 22 electrodes

were implanted in the CA1 pyramidal layer of the dorsal hippocampus, among which we only

focus on 12 electrodes exhibiting task-critical single-cell activity. The whole LFP dataset

contains 247 trials with a sampling rate 1000 Hertz and T “ 2000 time points. Figure 5.3

exposes a snapshot of the LFP signals across 12 electrodes.
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Figure 5.3: Time series plot of LFP signals across 12 electrodes in trial 1. The plot only
presents the first 500 time points.

5.6.1 Time Domain Analysis on Imaging Clustering

We applied the proposed clustering method to the LFP dataset with 247 trials to identify

underlying patterns. As an initial step, we focus on time domain to uncover the associa-

tion between raw multi-channel signals with “in-sequence” or “out-sequence” patterns. We
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implemented the proposed method to the raw LFP signals across all the 247 trials.

Table 5.3: The cross validated penalized likelihood values and the adjusted random index
obtained across different number of clusters among all the three penalties.

Penalty λ
CVPL ARI

k “ 2 k “ 3 k “ 4 our method K means

L1

0 1.290* 1.285 1.281 0.768

0.5 1.253 1.253* 1.246 0.786

0.4991 1.243* 1.206 1.204 0.768

1.5 1.249* 1.234 1.218 0.780

L2

0.5 1.302* 1.107 1.240 0.768

0.510
1 1.301* 1.027 1.202 0.774

1.5 1.298* 1.189 1.235 0.756

Nuclear

0.5 1.309* 1.299 1.274 0.756

0.498
1 1.299* 1.287 1.277 0.733

1.5 1.290* 1.286 1.214 0.711

* The highest CVPL value (ˆ105).

Table 5.3 summarizes the cross validated penalized likelihood values among different number

of clusters and penalties. It is obvious that 2 clusters are mostly suggested especially in the

case of L2 or nuclear norm regularization. These findings motivate us to further investigate

the cluster results with respect to the “in/out sequence” patterns. Table 5.3 shows such

association. The adjusted random index was related to the true label of “in/out sequence”

patterns. Comparing to K means, the proposed method outperforms in detecting the latent

structure representing “in” or “out” sequences. Filter the LFPs by all the “in-sequence”

signals.
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As a further step, researchers are also interested in understanding how LFP signals are

related to rat’s correctness in this experiment. Due to the small size of “out” sequence

trials, we only focus on those “in” sequence trials. In this way, we are able to investigate on

the “sensitivity” (true positive rate) of the experiment.

Table 5.4: The cross validated penalized likelihood values obtained across different number
of clusters on all the “in-sequence” trials.

Penalty λ
CVPL ARI

k “ 2 k “ 3 k “ 4 k “ 5 our method K means

L1

0 1.135* 1.135* 1.126 1.131 0.762

0.506
0.5 1.103* 1.076 1.084 1.094* 0.783

1 1.099* 1.070 1.077 1.136* 0.783

1.5 1.107* 1.1078 1.118* 1.068 0.609

L2

0.5 1.142* 1.139 0.885 1.144* 0.769

0.4991 1.139* 1.016 1.101* 0.986 0.743

1.5 1.150* 0.865 1.016 1.061* 0.762

Nuclear

0.5 1.159* 1.125 1.119 1.126* 0.769

0.4981 1.153* 1.116 1.136* 1.105 0.756

1.5 1.141* 1.142* 1.036 1.123 0.783

* The top two CVPL values (ˆ105).

Table 5.4 shows the cross validated penalized likelihood obtained from the proposed ap-

proach. Among all the regularizations and λ values, k “ 2 stands out among all the possible

clusters. These results inspire us to further study the consistency between cluster results and

the “correctness” of this experiment. Table 5.4 also presents the adjusted random index in

relation to the “correctness” labels. Compared to K means, our proposed approach is able

to successfully identify the rat’s “correctness” on identifying “in/out” sequences. It is worth
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mentioning that in addition to 2 clusters, Table 5.4 also suggests 5 clusters. These results

indicate our approach can possibly identify the five different odors. We will shed light on

this direction in the next section.

5.6.2 Time Frequency Clustering Analysis

We will continue to uncover the latent structure carried from the LFP dataset. Allen et al.

(2016) suggests two oscillatory bands (Theta: 4 - 12 Hertz and Slow Gamma: 20 - 40

Hertz) yield strong power and playing significant roles in detecting the “in/out” sequences.

Figure 5.4 shows the time frequency plot on Theta and Slow Gamma bands. Although these

two bands enjoy the most power, low frequency theta band apparently obtains much more

than slow gamma bands. It has been shown that slow gamma bands were strongly modulated

by the “in” and “out” pattern Allen et al. (2016). In this study, to take one step further, we

applied the proposed method to the spectrum of Theta and Slow Gamma bands separately.

110



Slow gamma

Theta

0.00 0.25 0.50 0.75 1.00

Rescaled time

F
re

q
u
e
n
c
y
 b

a
n
d

Figure 5.4: The time frequency plot of Theta and Slow Gamma bands over the “in-sequence”
trials.

Table 5.5 presents the results after implementing the proposed method to the spectrum on

Theta band. It can be easily found that for each regularization setting, 4 or 5 clusters are

highly suggested. We further compare the 5 cluster results with the true odor sequence. As

is shown in Table 5.5, the consistency is strong especially when comparing wit K means.

Our approach provides some evidence indicating the association between the low frequency

band (Theta) and the odor sequence.
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Table 5.5: The cross validated penalized likelihood obtained from the “in-sequence” trials.
The spectrum are from Theta band.

Penalty λ
CVPL ARI

k “ 2 k “ 3 k “ 4 k “ 5 our method K means

L1

0 11.001 11.300* 11.198* 11.172 0.712

0.679
0.5 8.516 8.975* 8.849 8.997* 0.692

1 8.650 8.632 8.725* 8.745* 0.703

1.5 8.571 8.705* 8.556 8.701* 0.709

L2

0.5 8.965* 8.881* 8.671 7.277 0.693

0.6721 8.719* 8.388 8.544* 7.616 0.686

1.5 8.650 8.632 8.825* 8.745* 0.682

Nuclear

0.5 9.034 9.196* 9.183 9.259* 0.707

0.6711 9.013 9.166 9.255* 9.263* 0.714

1.5 8.571 9.040* 8.995* 8.969 0.712

* The top two highest values (ˆ103).

Further, we concentrate on the Slow Gamma band. Allen et al. (2016) has established the

conclusion that slow gamma band strongly aligned with the “in/out” pattern. In this part,

we applied the proposed method to all the “in-sequence” trials to uncover latent patterns.

Table 5.6 summarizes the cross validated penalized likelihood values among different clusters.

2 clusters are being recommended in most of the cases. We later compare the cluster result

with the “correctness” labels. In the case of nuclear norm regularization, the adjusted

random index (0.5733) is almost 20% higher than K means (0.497).
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Table 5.6: The cross validated penalized likelihood obtained from the “in-sequence” trials.
The spectrum are from Slow Gamma band.

Penalty λ
CVPL

k “ 2 k “ 3 k “ 4 k “ 5

L1

0.5 8.470* 8.395 8.064 7.993

1 8.129* 8.023 7.507 7.312

1.5 7.689* 7.641 7.215 6.765

L2

0.5 8.360* 7.933 7.980 7.660

1 7.977* 7.755 5.744 6.977

1.5 7.696 7.754* 6.584 6.502

Nuclear

0.5 8.687 8.785* 8.531 8.373

1 8.686* 8.416 8.532 8.183

1.5 8.534* 8.438 8.324 7.981

* The highest values (ˆ103).

5.7 Analysis of Rat Stroke Data

In this section, we apply the proposed approach to another LFPs dataset from a rat stroke

experiment. In this study, LFPs were recorded before and after the stroke. 32 electrodes

were implanted with 4 layers shown in Figure 5.5. Throughout this section, we work on the

signals of 5 minutes before and after the stroke. The sampling rate is 1000 Hertz and each

epoch is 1 second long. One of the scientific interests from this experiment is to identify the

“latent” patterns that lead to before and after stroke.
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Figure 5.5: The schematic diagram of electrodes implanted in rat brain.

As preliminary analysis, we implemented time frequency analysis on this dataset. Figure 5.6

shows the log power spectra of two typical channels. These results were obtained by averaging

all the trials before and after stroke separately. Most of the channels behaves “smoothly”

within each epoch and there exists small discrepancy before and after stroke. However,

just like the case of Channel 10, some channels presents innegligible dynamics and obvious

difference between and after stroke. These findings shows that it is not optimal to average

over or vectorize all the channels when we do cluster analysis to identify the “latent” pattern

before and after stroke.
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Figure 5.6: The time frequency plot of Channel 10 and 20 among all the 600 trials before
and after the stroke.

To deepen the preliminary findings and motivate our proposed approach, we also study the

dynamics across all the 32 channels before and after stroke. Figure 5.7 is the time frequency

plot of Beta and Slow Gamma frequency bands across the channels. The log power spectra

were obtained by averaging over the trials. Among the plots before and after stroke, we

observe strong dependence across channels both for the two bands. This demonstrates the

importance of introducing regularization terms into the mixture normal model. Comparing

the plots before and after stroke, local discrepancy is easily identified. Such difference will

be easily ignored if we just naively vectorize the original signals when doing cluster analysis.
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Figure 5.7: The time frequency plot of particular frequency bands among all the channels
before and after stroke.

We applied the proposed approach to the time frequency images across all the trials before

and after stroke. Table 5.7 shows the cross validated penalized likelihood values across

different number of clusters and regularizations. With only one exception, all the scenarios

suggest 2 clusters. As the next step, we compare the 2 cluster results with the index related

to “stroke” or “normal”. Table 5.8 summarizes the adjusted random index values (ARI). In

comparing with K means results, the proposed approach outperforms in identifying “stroke”

or “normal” sequences. Note that as by introducing regularizations, the proposed method

is able to improve the results by 80%. In particular, Slow Gamma bands performs perfectly

(ARI 1.000) when adding nuclear norm term with λ “ 2. This result is almost double the

case without penalty (ARI 0.507). Similar pattern can also be found in Beta band case.

These findings are consistent with the conjecture in preliminary analysis.
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Table 5.7: The cross validated penalized likelihood obtained from all the trials. The log
power spectra are from Beta and Slow Gamma bands.

Penalty λ
CVPL (Slow Gamma) CVPL (Beta)

k “ 2 k “ 3 k “ 4 k “ 5 k “ 2 k “ 3 k “ 4 k “ 5

L1

0 2.941 2.964* 2.764 2.822 4.645* 4.627 4.526 4.598

1 2.472* 2.031 1.513 0.4213 3.98* 3.268 3.594 1.676

2 2.106* 1.370 1.288 0.621 4.167* 3.373 3.227 3.277

L2

0.5 2.688* 2.474 2.306 2.184 4.245* 4.179 4.036 3.424

1 2.484* 2.188 1.787 1.895 4.063* 3.557 3.429 3.329

2 2.338* 2.163 1.539 1.733 4.024* 3.699 2.972 3.206

Nuclear

0.5 2.806* 2.627 2.502 2.303 4.464* 4.299 4.130 3.963

1 2.556* 2.362 1.946 1.720 4.191* 3.977 3.618 3.371

2 2.748* 1.689 1.257 0.684 3.687* 3.274 2.795 2.262

* The highest values over different frequency bands (ˆ104)
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Table 5.8: The adjusted random index in relation to “Stroke”. The spectrum are from Slow
Gamma and Beta bands.

Penalty λ
ARI (Slow Gamma) ARI (Beta)

our method kmeans our method kmeans

L1

0 0.507

0.751

0.887

0.716
0.5 0.981 0.942

1 0.961 0.914

2 0.951 0.861

L2

0.5 0.951 0.941

1 0.951 0.751 0.878 0.716

2 0.961 0.787

Nuclear

0.5 0.951 0.941

1 0.960 0.751 0.942 0.715

2 1.000 0.951
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Chapter 6

Conclusions and Future Directions

In this dissertation, we discuss on some interesting problems in categorical and multivariate

time series with applications to electrophysiological signals.

• In Chapter 2, we demonstrate that applying the Em-FI matrix to highly correlated

data may lead to undesirable consequences in inference. Such consequences include

longer average confidence interval widths and potentially misleading inferential results.

To overcome these limitation, we derive the exact form and an iterative computation

formula of the conditional Fisher information matrix for the general logistic autore-

gressive model with (without) endogenous covariates (LAR(p)/LARX(p)). Simulation

studies based on the LAR(p)/LARX(p) model demonstrate the advantages of Ex-FI

over Em-FI in terms of small sample stability, leading to narrower confidence intervals

on average while maintaining false positive rates at or below nominal levels. Numer-

ically, we establish the convergence of the exact conditional Fisher information and

studied the asymptotic behavior as T grows large. Consequently, analysis of the respi-

ratory binary time series data suggests that using Ex-FI may result in greater statistical
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power when making inference. In summary, the Ex-FI matrix is recommended over

the Em-FI as it provides greater stability for small time series and equivalent large

sample inference. While the derivation of the Ex-FI is non-trivial it is computationally

tractable because it can be obtained iteratively. The result is a stable estimator that is

easily implementable and more stable, particularly for sample sizes less than 200. As

future work, it is of great interest to achieve theoretic results on quantifying the loss

of using the Em-FI.

• In Chapter 3, the proposed hybrid inference method for binary time series (HIBITS)

produces efficient inference and promising predictions with a relatively low computa-

tional cost. Compared to existing methods, our proposed approach has the following

advantages: on one hand, by involving known covariates as fixed effect components,

we make use of the information indicating the association between the response and

covariates. On the second stage, a Gaussian process captures the information beyond

what provided by those covariates of both endogenous and exogenous time series. On

the other hand, as indicated in the simulation, the proposed method is robust com-

pared to existing methods. The proposed model selection strategy allows the model to

fit the data even though not enough information is captured by the fixed effect com-

ponents. The strategies in providing point and interval estimates, in addition, allows

researchers to gain more informative conclusions in the association between response

and covariates. These advantages make our model easy to interpret. In summary, the

proposed HIBITS method, serving as an approach with high prediction power, efficient

inference capability and direct interpretability, provides a promising methodology in

modeling and predicting sleep states and other binary time series.

As a future direction, we could extend the proposed HIBITS to model general categor-

ical responses (e.g. the 4 sleep stages). In the case of nominal categorical outcomes, we
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could follow the similar framework of multinomial logit model discussed by Fokianos

and Kedem (2002). Specifically, the link function could be extended to softmax func-

tion where fixed and random effects can be imposed on the systematic component,

which is a natural generalization of our proposed HIBITS. On the other hand, if the

outcomes are ordinal categorical time series, one can impose a threshold mechanism

on the systematic component of the model. Following the scenario of proportional

odds models in Fokianos and Kedem (2003b), the HIBITS method can be extended by

incorporating fixed and random effects.

• In Chapter 4, we propose an evolutionary state space model (E-SSM) that allows

the latent source signals to evolve across epochs. Although the results reported in

this chapter are quite promising, nevertheless, modeling the evolution/dynamics across

epochs still remains a challenge in general. For example, we ignored the subject specific

random effects in the current chapter, which should be taken into account in a future

work. Other future directions include incorporating different experimental conditions

to improve the efficiency of statistical inference.

• In Chapter 5, we develop a mixture matrix normal model with various regularizations

on the mean spatial-temporal structure. In theory, we show the consistency of the

constraint penalized maximum likelihood estimator. Simulation studies prove that the

proposed approach outperforms over the existing methods in uncovering the “latent”

clusters. In the LFPs dataset study, the model produce stable and interpretable results

in understanding the sparse spatial-temporal structure among different trials (epochs).

This also demonstrates the LFPs are evolving smoothly during the experiment. As a

further step, it would be promising to generalize the proposed model to characterize

tensors with more than 3 dimensions. Another direction could be to incorporate the

subject-specific effects into the framework.
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Appendix A

Some Theoretic Results and

Supplementary Figures of Chapter 4

We will briefly prove the main theorem (AR(2) spectral decomposition theorem) and provide

some figures regarding simulation results and LFP analysis.

A.1 Proof of AR(2) Spectral Decomposition Theorem

We first present a lemma that gives us an explicit form of the autocovariance function of an

AR(2) process. Such results will be helpful for proving the main theorem.

Lemma 1. Given a (weakly) stationary zero mean AR(2) process St, the autocovariance

function γSphq takes the form

γSphq “ A1pρe
ψi
q
´h
` A2pρe

´ψi
q
´h, (A.1)
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where A1, A2 can be determined by solving the linear equation A1`A2 “
p1´ϕ2qσ2

w

p1`ϕ2qp1´ϕ1´ϕ2qp1`ϕ1´ϕ2q

and A1pρe
ψiq´1 ` A2pρe

´ψiq´1 “
ϕ1σ2

w

p1`ϕ2qp1´ϕ1´ϕ2qp1`ϕ1´ϕ2q
.

The proof is due to the fact that γSphq “ ϕ1γSph´ 1q ` ϕ2γSph´ 2q.

To prove Theorem 1, we first show that for any fixed M , tfSpjqpωqu
M
j“1 are linearly indepen-

dent.

In fact, suppose there exists some constants b1, ¨ ¨ ¨ , bM such that
řM
j“1 bjfSpjqpωq “ 0, then

we must have
řM
j“1 bj

ř8

h“´8 γSpjqphqe
2πiωh “

ř8

h“´8

řM
j“1 bjγSpjqphqe

2πiωh “ 0. As a direct

result from Fourier theorem, we have
řM
j“1 bjγSpjqphq “ 0 for any h. Thus for any positive

integer H, b1, ¨ ¨ ¨ , bM are solutions of the linear equation

Γb “ 0, (A.2)

where Γ “

»

—

—

—

—

—

—

—

–

γSp1qp0q γSp2qp0q . . . γSpMqp0q

γSp1qp1q γSp2qp1q . . . γSpMqp1q

...
...

...
...

γSp1qpHq γSp2qpHq . . . γSpMqpHq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

pH`1q˚M

and b “ pb1, ¨ ¨ ¨ , bMq
1. From

Lemma 1, it is easy to show that γSpjqphq “ pρ
pjqq´hpA

pjq
1 ` A

pjq
2 qcosphψ

pjqq. Note that due

to the condition that maxMt|ω1 ´ ω0|, ¨ ¨ ¨ , |ωM ´ ωM´1|u Ñ 0 and A
pjq
1 , A

pjq
2 are nonlinear

functions of j, we have rankpΓq “ mintH ` 1,Mu. It implies b “ 0 and tfSpjqpωqu
M
j“1 are

linearly independent. Then we can implement the Gram-Schmidt process on the family of

functions tfSpjqpωqu
8
j“1 to obtain a family of orthonormal functions tf̃Spjqpωqu

8
j“1 in L2p0, 1

2
q.

It follows that for any nonnegative coefficients a1, ¨ ¨ ¨ , aM , there exist ã1, ¨ ¨ ¨ , ãM such that

||fY pωq´
řM
j“1 a

2
jfSpjqpωq||2 “ ||fY pωq´

řM
i“1 ã

2
j f̃Spjqpωq||2. If we can show tf̃Spjqpωqu

8
j“1 is also

complete in L2p0, 1
2
q, by Parseval equality, we can obtain that ||fY pωq´

řM
j“1 ã

2
j f̃Spjqpωq||2 Ñ 0

as M Ñ 8 and equivalently, ||fY pωq ´ fQ̂t,M pωq||2 Ñ 0 as M Ñ 8.
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To show that tf̃Spjqpωqu
8
j“1 is complete in L2p0, 1

2
q, it suffices to show tfSpjqpωqu

8
j“1 is complete.

Let us define B “ tfSpjqpωqu
8
j“1. For any function gpωq in L2p0, 1

2
q, if gpωq K B, then we

have
ş 1

2

0
gpωqfSpjqpωqdω “ 0 for any j. It is equivalent to

ř8

h“8

ş 1
2

0
gpωqγSpjqphqe

2πiωhdω “
ř8

h“´8 γgphqγSpjqphq “ 0 for any j. It boils down to the problem of solving for the linear

equation Γ1γ “ 0, where Γ is defined in Equation (A.2) and γ “ pγgp0q, ¨ ¨ ¨ , γgpHqq for any

M and H. We have proved that Γ is of full row rank and thus γgphq “ 0 for any h. Thus

tfSpjqpωqu
8
j“1 is complete in L2p0, 1

2
q. ˝

A.2 Figures of Chapter 4
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Figure A.1: The periodograms of the true (black) and estimated (red) latent processes.
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Figure A.2: The periodogram of generated signals from electrode 1 computed over all 100
epochs. From the heat map, we are observing the powers are evolving across epochs. At
early stage, three dominating frequency bands can be identified clearly. As epoch evolves,
such pattern is getting less clear.
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Figure A.3: The periodograms of the true (left) and estimated (right) latent ARp2q processes
corresponding to delta (top), alpha (middle) and beta (bottom) frequency band.
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Figure A.4: The periodogram of generated signals from electrode 1 computed over all 30
epochs.
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Figure A.5: The true mixing matrix (left) and estimated mixing matrix (right). Darker color
indicates heavier weight given by the corresponding latent processes. Columns corresponding
to “alpha” and “gamma” bands are zero in the true mixing matrix (left). In the estimated
mixing matrix (right), those two columns are also close to zero.
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Figure A.6: The periodograms of the true (left) and estimated (right) latent ARp2q processes
corresponding to delta (top), theta (middle) and beta (bottom) frequency band.
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Figure A.7: The boxplots of variance accounted by different components across different
stages during the experiment. The results were obtained by conducting principal component
analysis on frequency domain. Epochs in the entire experiment have been classified as 6
stages with each consisting of 40 epochs (Stage I: 1-40, II: 41-80, III: 81-120, IV: 121-160, V:
161-200, VI: 201-247). The first component is shown on top and the first three cumulative
components is at the bottom. We could observe that about 90% of variance can be explained
by three components.
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Figure A.8: The time series plots of modulus corresponding to delta (above), alpha (middle)
and gamma (bottom) frequency bands.
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Figure A.9: Top: Auto-correlation function (ACF) of the residual plots from electrode 1.
Bottom: Partial auto-correlation function (PACF) of the residual plots from electrode 1.
The dashed lines indicate the threshold for non-zero correlation. These plots, along with the
Ljung-Box test for white noise (p´ value « 0.75) suggest that the residuals are white noise
and hence the E-SSM model fits the data well. These same plots were observed in all the
other electrodes but we do not report them here due to space constraints.
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Figure A.10: Schematic illustration of the estimation methods that summarize II.A, II.B
and II.C in Chapter 4.3.
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