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ming velocity Ũ± for the (a) same-chirality, and (b) opposite-
chirality configuration for a small minor to major wave ampli-
tudes ratio of r = 0.01. . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 4.1: (a) Schematic representation of a Ni-Ag nanowire motor, and
notation for the model. (b) Scanning Electron Microscopy (SEM)
image showing the topography of Ni-Ag nanowire which was
partially dissolved in 5% H2O2 for 1 minute. . . . . . . . . . . . 70

xiv



Figure 4.2: Two identical nanomotors swimming under the same magnetic
field at a frequency f = 20Hz. The red lines display the super-
imposed location of the nanomotors over a 2-second interval. . . 71

Figure 4.3: Physical explanation of the necessity of chiral deformation in
achieving propulsion. If the deformation is not chiral, the kine-
matics of the mirror image of the nanowire is identical to the
time-reversed kinematics, leading to U = 0. . . . . . . . . . . . 73

Figure 4.4: (a) Variation of the dimensionless propulsion speed at second
order, U2, with the sperm number, Sp. (b) Superimposed snap-
shots of predicted three-dimensional shape of the Ag nanowire
at equal time intervals (t = [T/6, 2T/6, ..., 5T/6, T ] from dark
to bright color, where T is the period of the rotating magnetic
field), for four different sperm numbers. The Ni head is not
shown here for simplicity. . . . . . . . . . . . . . . . . . . . . . 79

Figure 4.5: Dependence of the nanomotor swimming speed on the actua-
tion frequency. (a) Superimposed trajectories of the same Ni-
Ag nanomotor at different frequencies f = 5, 10, 15, 30Hz (as
indicated) over a 3-second period (red lines), with H1 = 10G
and H0 = 9.5G. The scale bar is 10µm. (b) Speed-frequency
characteristics of flexible nanowire motors. Symbols represent
experimental data for different setup of magnetic fields: blue
squares (H1 = 10G, H0 = 9.5G); red circles (H1 = 10G, H0 =
11.8G); green diamonds (H1 = 10G, H0 = 14.3G). Error bars
show standard deviations of the measured speeds (20 samples).
The solids lines show the theoretical predictions (Eq. 4.15) with
A = 3.6× 10−24Nm2. The inset in (b) displays the dependence
of the swimming speed on the Sperm number, Sp. . . . . . . . . 81

Figure 4.6: Variation of the dimensionless swimming speed, U/LΩ, with
the relative magnetic field strength, h, for different sperm num-
bers based on the low-Sp calculations: Sp = 0.2 (dark blue
solid line), Sp = 0.3 (light green solid line). The red dotted
(Sp = 0.2) and black dash-dotted (Sp = 0.3) lines are the cor-
responding results from the small-h calculations. Inset: Same
plot for Sp = 0.5 (dark orange solid line) and Sp = 0.6 (light
blue solid line). The green dotted (Sp = 0.5) and brown dash-
dotted (Sp = 0.6) lines are the corresponding results from the
small-h calculations. . . . . . . . . . . . . . . . . . . . . . . . . 91

xv



Figure 4.7: Variation of the dimensionless swimming speed, U/LΩ, with the
sperm number, Sp, based on the low-Sp calculations: h = 0.2
(dark blue solid line), h = 0.4 (light green solid line). The red
dotted (h = 0.2) and black dash-dotted (h = 0.4) lines are the
corresponding results from the small-h calculations. Inset: Vari-
ation of the dimensional swimming speed U with the frequency
f based on the low-Sp calculations: h = 0.2 (dark blue solid
line), h = 0.4 (light green solid line). The red dotted (h = 0.2)
and black dash-dotted (h = 0.4) lines are the corresponding
results from the small-h calculations. A bending stiffness of
A = 3.6× 10−24Nm2 is used in the speed-frequency plot (inset). 92

Figure 4.8: Time lapse images (time as indicated) of the motion of nanowire
motor (velocity, U = 15µm/s) in human serum at f = 15Hz,
with H1 = 10G and H0 = 9.5G. Scale bar is 5µm. . . . . . . . . 94

Figure 5.1: (a) Notation for the extensible two-ring swimmer. (b) Schematic
illustration of its cyclic deformation over one period, T (see text
for details). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Figure 5.2: Time-variation of the dimensionless swimming velocity of the
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Life under the microscope is significantly different from our experiences in

the macroscopic world. Inertial effects, which govern motion at the macroscopic

world, become subdominant to viscous forces at small length scales. The Reynolds

number (Re) quantifies the relative importance of inertial to viscous forces. Mi-

croorganisms, such as bacteria and spermatozoa, inhabit environments with typical

Re between 10−5 and 10−2. The absence of inertia imposes stringent constraints

on the types of effective locomotion strategies. This also poses a fundamental chal-

lenge in designing synthetic swimmers and fluid transport systems at microscopic

scales. Interestingly, microorganisms have evolved diverse strategies to achieve

locomotion. This thesis is devoted to studying the fluid mechanics of biological
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and synthetic locomotion at low Reynolds number under three themes: swimming

microorganisms, synthetic locomotion, and locomotion in complex fluids. The

first theme focuses on using different idealized hydrodynamic models to study the

swimming of microorganisms. Under this theme, we extend the classical Taylor’s

swimming sheet model to analyze the unsteady inertial effects in flagellar swim-

ming. We also present a hydrodynamic investigation of an interesting double-wave

structure observed in insect sperm flagella. We turn our attention to synthetic

locomotion in the second theme. Different physical mechanisms are explored to

design synthetic micro-swimmers, which have many potential biomedical applica-

tions, such as microsurgery and targeted drug delivery systems. Specifically, we

exploit elasticity and extensibility of a body to design locomotion strategies. Fi-

nally, the third theme concerns locomotion in complex fluids. Most biological fluids

are indeed polymeric and hence display non-Newtonian rheological properties. We

investigate the idea of taking advantage of the nonlinear rheological properties of

a complex fluid to enable locomotion otherwise impossible in a Newtonian fluid.

Simple mechanisms are designed to exploit the non-Newtonian stresses for mi-

cropropulsion and micropumping. The results are also applied to developing a

microrheological technique based on information from locomotion.
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Chapter 1

Introduction

Locomotion in fluids is ubiquitous in nature, with examples spanning a

wide range in size from bacterial motility to the swimming of whales. It plays

fundamental roles throughout the lives of animals in such endeavors as predation

and finding a mate for reproduction [14]. Lying along the interface between biology

and fluid dynamics, biological locomotion at small scales has received substantial

attention from biologists and engineers in recent years [15,16].

The physics governing locomotion in fluids is very different for microscopic

organisms (e.g. bacteria, spermatozoa) and macroscopic organisms (e.g. fish, hu-

mans). The dramatic difference is due to the competition between inertial and

viscous effects in the fluid medium. The Reynolds number, Re = ρU L/µ, (with

U and L characteristic velocity and length scales, and ρ and µ are the density and

dynamic shear viscosity of the fluid) is a dimensionless parameter which measures

the relative importance of the inertial forces to viscous forces in a fluid. Locomo-

tion of larger animals in fluids takes place at moderate to large Reynolds numbers,

where inertial forces dominate. At this scale, swimming and flying are gener-

ally accomplished by imparting momentum into the fluid opposite the direction of

locomotion. Microorganisms meanwhile inhabit in a world of low Reynolds num-

bers, where inertia plays a negligible role and viscous damping is paramount. The

Reynolds number ranges from 10−5 for bacteria to 10−2 for spermatozoa [17]. The

absence of inertia imposes stringent constraints on a microorganism’s locomotive

capabilities.

1
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In general, the locomotion in this regime is governed by the Stokes equation

∇p = µ∇2u, (1.1)

∇ · u = 0, (1.2)

for a Newtonian and incompressible flow, where p and u are the pressure and ve-

locity fields of the fluid. Notice that time does not appear explicitly in the Stokes

equation, but only as a parameter through the boundary conditions. The absence

of inertia, mathematically manifested by the linearity and time independence of

the Stokes equations, leads to an important property associated with motion at

zero Reynolds number – kinematic reversibility [16]. The effects of kinematic re-

versibility on locomotion without inertia are summarized by an interesting theorem

called Purcell’s scallop theorem [18], which says that any periodically deforming

swimmers with the sequence of shapes identical under a time-reversal transfor-

mation (reciprocal motion) cannot swim at zero Reynolds number. This theorem

does not concern the rates at which the forward or backward sequence is performed

but only the sequence itself. While a macroscopic scallop can swim by closing its

rigid shell fast and opening the shell slowly (a reciprocal motion), a microscopic

scallop using the same strategy goes nowhere on average. Flapping motion of a

rigid flapper is another example of reciprocal motion. Such flapping motion is a

common propulsion mechanism in the inertial regime, but is rendered ineffective

without inertia. In short, locomotion at low Reynolds number encounters stringent

physicial constraints.

1.1 Swimming microorganisms

Natural microorganisms have to escape from the constraints of the scallop

theorem to swim and transport fluids. They evolved a variety of propulsion strate-

gies. Many of them use one or more appendages, called flagella, for propulsion.

For some eukaryotic spermatozoa (such as sea-urchin spermatozoa), they swim

by propagating a planar traveling wave along the flagellum (Fig. 1.1a). Such a

bending flagellar wave is caused by the sliding of microtubules due to the action

of molecular motors distributed along the flagellum. For bacteria Escherichia coli,

the flagellum is a relatively rigid helix and is rotated by a motor embedded in the
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cell wall, propagating a helical traveling wave (Fig. 1.1b). Some microorganisms

such as ciliates (Opalina and Paramecium) and colonies of flagellates (Volvox )

swim by beating arrays of cilia (short flagella) covering their surfaces (Fig. 1.1c).

The cilia can beat in a coordinated manner to produce a wave-like squirming of the

envelope covering the cilia tips. Despite the diversity of propulsion mechanisms

and flagellar waveform among different cells, a common feature is the presence of a

wave propagation, which breaks the time-reversal symmetry: the direction of wave

propagation (sequence of shapes) is reversed under a time-reversal transformation,

rendering flagellar wave propagation a non-reciprocal deformation. In this thesis,

we apply tools from fluid mechanics to take a closer look at different locomotion

strategies observed in nature.

analyzed 167 events in which a cell swam steadily into the field
of view, moving in the plane of focus, tumbled, and then swam
steadily out of the field of view, still moving in the plane of
focus. Such events were relatively rare: of the cells that hap-
pened to swim into the field of view in the plane of focus and
then tumbled, most left by moving out of focus. In other words,
we selected events that could be analyzed in their entirety. The
behavior of these cells is summarized in Table 1. The majority
entered and left the field of view with normal bundles, but
others displayed bundles that were semicoiled, curly 1, or of a
hybrid waveform, i.e., with some filaments normal and others
semicoiled or curly 1. A number of these events are shown in
Fig. 6 to 11.

Figures 6 to 8 show tumbles generated by a single filament in
cells with different numbers of filaments. The cell in Fig. 6 had
only 1 long filament (and 1 short stub, not visible in this
sequence). A transformation from normal to semicoiled is seen
in fields 4 to 10, from semicoiled to curly 1 in fields 12 to 18,
and from curly 1 back to normal in fields 24 to 30. This was a
common sequence. This cell swam into the field of view moving
toward 7 o’clock and left the field of view moving toward 5
o’clock. Most of this change in direction occurred while the
filament was partially in the semicoiled form (fields 4 to 12).
Figure 7 shows a cell with two filaments. One separates from
the other in field 6 and then undergoes a polymorphic trans-
formation from normal to semicoiled in fields 7 to 9 (although
not as clearly as in Fig. 6) and from semicoiled to curly 1 in

fields 10 to 15. Notice that the curly 1 form wraps around the
normal filament as it reverts back to the normal form and the
tumble ends (fields 17 to 20). This cell swam into the field of
view moving toward 5 o’clock and left the field of view moving
toward 6 o’clock. Figure 8 shows a cell with a loose flagellar
bundle (fields 2 to 6) from which a single filament emerges
(fields 8 to 18), probably as curly 1. This filament appears to
have rejoined the bundle by frames 20 to 24, where the bundle
is tight. The change in the direction of motion generated by
this maneuver was relatively small.

Figure 9 shows a tumble in which one filament (the one
pointing towards 1 o’clock in fields 12 to 24) maintains a
constant orientation and waveform, while all of the other fil-
aments undergo polymorphic transformations. Evidently, this
filament did not participate in the tumble. The shapes of the
other filaments are difficult to discern: a semicoiled filament is
prominent in field 18. This cell swam into the field of view
moving toward 8 o’clock and left the field of view moving
toward 5 o’clock.

Figure 10 shows a cell swimming with a curly 1 bundle with
at least one filament of normal waveform (fields 1 to 4). In field
5, a curly filament appears that is wrapped around the bundle.
It then unwraps (fields 6 to 8). More filaments leave the bundle
(fields 11 to 15), with at least two remaining (field 15). Then all
of the filaments rejoin the bundle (fields 16 to 20), which now
appears normal. This cell swam into the field moving toward 10
o’clock and left the field moving toward 11 o’clock.

Figure 11 shows a cell with a normal bundle (field 2) that
tumbles (fields 4 to 34) and then swims off in nearly the same
direction, with its bundle displaying a mixed waveform (fields
36 to 40). In this case, all of the filaments appear to contribute
to the tumble, although normal filaments are seen part of the
time (fields 12 to 26).

The onset of a tumble was evident when the bundle loosened
near the cell body. Soon thereafter, one or more filamentsFIG. 3. Immobilized cell with a rotating filament undergoing polymorphic

transformations. Successive fields are shown at 60 Hz (deinterlaced; total time
span, 0.57 s). Fields 16 to 25 looked like field 26 and have been omitted.

FIG. 4. Swimming cells with different kinds of flagellar bundles. Single fields
are shown (deinterlaced). The waveforms of the flagellar bundles are normal
(A), normal or curly 1 (both loose) (B), curly 1 (tight, but with one of the
filaments on the cell at the right with a normal distal segment) (C), and semi-
coiled (with one filament with a normal distal segment) (D).
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EXPERIMENTAL METHODS AND
APPARATUS

Preparations
Sea urchins of the species Arbacia were obtained from the Marine
Biological Laboratory (Woods Hole, MA). Sperm shedding was induced
by injection of 1-2 ml of 0.5 M KC1 into the body cavity of sea urchins.
The spermatozoa were suspended in filtered sea water at pH = 7.8.
A few drops of sperm suspension were placed on a microscope slide and

covered with a 1 80-,um thick coverslip. The thickness of the fluid layer of
the sperm suspension was -20 ,m. The slide was placed on the stage of a
Zeiss universal microscope (Carl Zeiss, Inc., Thornwood, NY). Viewing
and filming was done with dark-field illumination using a Zeiss ultracon-
densor (NA = 1.4) and a Zeiss oil immersion 40x objective (NA = 0.85)
(Carl Zeiss, Inc.). Films were made within 5-6 min after slide prepara-
tion.

Temperature Control
A polyethelene bag, secured both at the base and above the objective nose
piece, enclosed the lower part of the microscope. The focus and mechani-
cal stage knobs protruded through openings in the bag. Cold air, with a
temperature varying from 4 to -1 0° C, depending on the desired tempera-
ture of the sperm preparation, was blown through the bag thus cooling the
lower part of the microscope. The temperature was measured away from
the direct airstream with a mercury thermometer and with a thermistor
taped to the objective. These two temperatures agreed with each other to
within 20C. Temperatures of the experimental preparations mentioned
below in the Results section were those measured with the thermistor.

Cinemicrography
The light source for dark-field illumination was a 1,000 W xenon arc
lamp (type 982C-1; Conrad-Hanovia, Hanovia Lamp Division, Newark,
NJ). The lamp was operated in a flashing mode by a steering circuit
analogous to that described previously (Eykhout and Rikmenspoel,
1960). For each flash, a condensor of 100 jiF at 200 V was discharged,
giving an electrical input of 1.6 J/flash. Almost square light pulses of
slightly <1 00-,us duration were obtained.

In between light flashes and when preparing for filming, the xenon arc
lamp must be kept ionized by a direct current of 10-15 A. The resulting
constant light output was not sufficient to register the sperm flagella on
the film; it was used to advantage for viewing and focusing the prepara-
tions. Ultraviolet and infrared radiation from the lamp was eliminated
with 3-mm GG420 and 6-mm KG3 glass filters (Schott and Gen., Mainz,
Federal Republic of Germany).

Precise measurement of flagellar positions requires the presence of
good fiducial markings. For this purpose a grid of fine glass wires of 20jm
thickness was cemented in the field diaphragm of the projection eyepiece
of the microscope. The glass wires were illuminated from the side,
through a window machined in the projection eyepiece, by a 300 W
quartz halogen projection lamp (type ELH; General Electric Co., Cleve-
land, OH). To obtain sharp imaging of the glass wire grid onto the
photographic emulsion, it was necessary to screen off all but the center 2
mm of the top lens of the eyepiece.

Cinemicrographs at 400 or 200 frames/s were made on 16mm Kodak
#2514 emulsion (Eastman Kodak Co., Rochester, NY). This film is
extremely fine grained but consequently rather insensitive. Fig. I illus-
trates the quality of the photographic imaging obtained. The final
magnification (using a 5 x projection ocular) on the 16mm emulsion was
-60 x.

Digitizing Equipment
Of sperm selected for detailed analysis, sequences of up to 70 consecutive
16-mm frames were rephotographed and enlarged ten times on 35-mm

FIGURE 1 Positive enlargement of a part of a 16-mm film frame
showing an Arbacia sperm is pictured. The reference lines, which act as
fiducial markings for defining the absolute position of the sperm, were
photographed with the preparation as described in the text.

Kodak #2514 emulsion (Eastman Kodak Co.). On these rephotographed
images, the sperm and the reference lines appear bright on a dark
background. Apparatus was constructed to automate the analysis of the
rephotographed images.

In principle the apparatus consists of a television camera that scans the
projected image of a rephotographed sperm. The output of the television
camera is fed into the digitizer and a microcomputer that computes the
coordinates and the curvature of a number of points along the flagellum.
Details of the instrument and its operations are given below.
The sperm images were projected onto a tracing table at a final

magnification of 2,510 x by a 35-mm film strip projector (model
SM1000; Singer Education Systems Inc., Rochester, NY). Highly trans-
parent and fine grained Mylar drafting film (Keuffel and Esser Co.,
Morristown, NJ) served as the projection screen. A Fresnel lens with a
focal length of 50 cm and having 2 lines/mm (Edmund Scientific Co.,
Barrington, NJ) was mounted 2 cm below the projection screen. This lens
concentrated the light from the projector onto the objective of the
television camera (model SV650; Dage-MTI Inc., Michigan City, IN)
situated I m above the projected image.

Fig. 2 shows a diagram of the image seen at the Mylar projection
screen. The reference lines shown define the position of the sperm in the
preparation. These reference lines could not be used directly as a set of
coordinate axes because they were not perfectly straight and perpendicu-
lar to each other. Instead, the reference lines were traced out, and an
external X, Yaxes system was drawn on the Mylar screen, as shown in Fig.
2. When a new photograph was projected, the Mylar screen was shifted so
as to align the reference lines.
A slit arrangement, shown diagrammatically, in Fig. 3, was placed over

the projected image of the spermatozoon. The slit, driven by a synchro-
nous motor, scanned the sperm image from the head towards the tip as
shown in Fig. 3. The overhead television camera thus observed a section of
the sperm flagellum, which during a scan moved distally.
The whole slit assembly was mounted on a Paragon drafting machine

(Keuffel and Esser Co.). This made it possible to displace the slit
arrangement parallel to itself and to change the direction in which the
scanning took place, as indicated in Fig. 2. The angle X (see Fig. 2) of the
scanning direction relative to the X, Yaxes could be read directly from the
vernier on the drafting machine.
The television camera was mounted such that it could be rotated on its

optical axis. In actual use the lines of the television raster were always
parallel to the slit. The magnification of the objective of the television
camera was chosen so that the image of a sea urchin sperm covered about
3h4 of the height of the television monitor screen. The video system thus
operated in its own coordinate system, with a different orientation and
magnification from that at the optically projected image. To avoid
confusion the optical coordinate system, which was fixed to the sperm
preparation, will be written in capitals (X, Y), and the video coordinate
system in lower case (x, y).
The television camera probes the image along the raster lines from left

to right and from top to bottom. The video digitizer (model 622; Colorado
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Figure 1.1: (a) A sea-urchin spermatozoon displaying a planar flagellar wave [1].
(b) Bacteria Escherichia coli swimming by rotating their helical flagella, propagat-
ing a helical flagellar wave [2]. (c) Ciliary motion in Paramecium [3]. All images
reproduced with permission; (a) from R. Rikmenspoel and C. A. Isles, Biophys.
J., 47, 395-410, 1985, copyright 1985 Elsevier; (b) from L. Turner, W. S. Ryu, and
H. C. Berg, J. Bacteriol., 182, 2793-2801, 2000, copyright 2000 American Society
for Microbiology; (c) from S. L. Tamm, J. Cell Biol., 55, 250-255, 1972, copyright
1972 The Rockefeller University Press.

1.2 Synthetic microswimmers

Advances in micro-/nano-manufacturing technology have allowed scientists

and engineers to take inspiration from locomotion strategies found in nature and

design artificial swimmers and fluid transport systems at small scales. Micro-

/nano-sized machines have vast potential in future biomedical applications [19],

such as targeted drug delivery and microsurgery. For instance, targeted drug

delivery enhances the efficacy of the drug and reduces side effects of conventional
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chemo-/radio-therapies by targeting the drug only to specific locations – the cancer

cells. This new approach could revolutionize medical treatments of many diseases,

but there are still fundamental questions and technological challenges to overcome.

One major fundamental question for this technology is: how should these micro-

robots move? Because of their small sizes, synthetic micro-swimmers are subject

to same stringent constrains faced by swimming microorganisms [20]. This poses

fundamental challenges to designing these small-scale systems. Interdisciplinary

efforts have recently resulted in major advances in the design and fabrication of

artificial micro/nano-scale locomotive systems [21–24]. We investigate new strate-

gies to produce synthetic locomotion at small-scales in this thesis.

1.3 Locomotion in complex fluids

Most biological fluids are indeed polymeric and hence display non-Newton-

ian rheological properties. Examples include respiratory and cervical mucus, and

bacterial suspensions. However, most studies in biological locomotion in the past

have been limited to Newtonian fluids for the relatively simple constitutive relation.

Experiments show that complexity of the fluid medium can play important roles

in cell motility [15, 25–31]. Physically, properties such as time-reversibility and

linearity in Stokes flows no longer exist in non-Newtonian flows even in the absence

of inertia; instead, we have new properties such as fluid memory or relaxation

coming into play. Small-scale Newtonian fluid physics no longer applies, and a

list of fundamental questions of locomotion in complex fluids remains unanswered.

In particular, we are interested in a fundamental question: can we exploit the

fluid medium – the nonlinear rheological properties – to produce novel locomotion

that is not possible in Newtonian fluids? We provide insights on this question by

considering specific mechanisms and their potential applications in micropumping,

micropropulsion, and microrheology.

1.4 Thesis outline

This thesis is devoted to investigating ways to live with the scallop theo-

rem. The chapters are grouped under three themes: swimming microorganisms
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(Chapters 2 & 3), synthetic micro-swimmers (Chapters 4 & 5), and locomotion in

complex fluids (Chapters 6 & 7).

The first theme focuses on the hydrodynamics of swimming microorganisms.

We consider different idealized models for flagellar swimming to investigate how

microorganisms escape from the constraints of the scallop theorem for locomotion:

• Chapter 2 revisits arguably the first model in flagellar hydrodynamics – a

two-dimensional waving sheet. We extend this classical model to study the

unsteady inertial effects and reveal the transient dynamics of a waving sheet

in an unsteady Stokes flow.

• Chapter 3 presents a hydrodynamic investigation of an interesting double-

wave structure observed in insect sperm flagella. We explore the dependence

of motility on geometric and kinematic parameters and provide hydrody-

namic explanations to biologically relevant questions.

In the second theme, we explore different mechanisms offered by physics to

achieve synthetic locomotion at small scales. Specifically, we exploit elasticity and

extensibility of a body to design locomotion strategies:

• Chapter 4 presents a theoretical modeling of the propulsion of a flexible

nanowire motor and the comparison with experiments, showing how elasticity

of a body enables locomotion in the absence of inertia. These nanowire

motors may be useful for future biomedical applications, such as targeted

drug delivery systems.

• Chapter 5 demonstrates that extensibility provides a new degree of freedom

making inertialess locomotion possible even without drag anisotropy, which

is usually believed to be a critical requirement for low Reynolds number

locomotion of slender bodies (such as flagella and cilia).

Finally, the third theme concerns locomotion in complex fluids. We inves-

tigate the effects of non-Newtonian stresses on locomotion in the context of mi-

cropumping, micropropulsion and microrheology. While we discuss in the second

theme how elasticity in the body makes micropropulsion possible, we demonstrate

here how fluid elasticity can also enable micropropulsion:
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• Chapter 6 considers the fluid transport of a polymeric fluid by a reciprocal

flapping motion. We evaluate the extent to which the nonlinear rheological

behavior of viscoelastic fluids can be exploited to break the constraints of

the scallop theorem.

• Chapter 7 investigates how fluid elasticity can enable micropropulsion, and

symmetrically, how locomotion can be used to infer the non-Newtonian rhe-

ological properties of the fluid as an application in microrheology. We pro-

pose a simple dual-purpose mechanism that can function either as a non-

Newtonian micro-propeller or as a micro-rheometer.

Chapter 1, in small part, is a reprint of the material as it appears in Journal

of The Royal Society Interface 2012. Pak, On Shun; Spagnolie, Saverio E.; Lauga,

Eric, the Royal Society, 2012. The dissertation author was the primary investigator

and author of this paper.



Chapter 2

The transient swimming of a

waving sheet

Small-scale locomotion plays an important role in biology. Different model-

ing approaches have been proposed in the past. The simplest model is an infinite

inextensible two-dimensional waving sheet, originally introduced by Taylor, which

serves as an idealized geometrical model for both spermatozoa locomotion and

ciliary transport in Stokes flow. Here we complement classic steady-state calcu-

lations by deriving the transient low-Reynolds number swimming speed of such a

waving sheet when starting from rest (small-amplitude initial-value problem). We

also determine the transient fluid flow in the ‘pumping’ setup where the sheet is

not free to move but instead generates a net fluid flow around it. The time scales

for these two problems, which in general govern transient effects in transport and

locomotion at low Reynolds numbers, are also derived using physical arguments.

2.1 Introduction

The locomotion of microorganisms plays a vital role in biology. Examples

include the locomotion of mammalian spermatozoa during reproduction, or the

swimming of bacteria and algae to locate better nutrient sources [32, 33]. Many

of such small organisms propel themselves by propagating progressive waves along

their flagella. The geometrical characteristics of these microorganisms and the

waves they propagate have been reviewed by Brennen & Winet [17]. For example,

7
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for animal spermatozoa, typical wavelengths range from 11 to 65µm and wave am-

plitudes range from 4 to 15 µm, while the ratio between their swimming speeds and

the wave speeds range from 0.07 to 0.3. Taylor [34] initiated the studies on hydro-

dynamics of microorganisms by modeling flagella swimming. After his pioneering

work, much progress has been made towards addressing the basic mechanisms of

propulsion for swimming microorganisms, and we refer to Brennen & Winet [17]

and Childress [32] for detailed reviews. In this chapter, we focus on unsteady ef-

fects in low-Reynolds number locomotion. We start below with a brief overview of

relevant works before summarizing the approach and outline of our chapter.

In 1951, Taylor first showed that self-propulsion of a waving sheet is possible

in a viscous fluid in the absence of inertia [34]. The sheet moves in a direction

opposite to that of the wave propagation, and the steady state swimming speed

was computed explicitly to be a2k2c/2 at leading order in the wave amplitude,

where a, k and c are the wave amplitude, wave number and wave propagation

speed respectively. Drummond [35] extended Taylor’s results to larger amplitudes

of motion. Reynolds [36] and Tuck [37] included inertial effects in the analysis

and found that the swimming speed decreases with Reynolds number. In the

inertial realm, Wu [38,39] also considered the problem of a waving sheet, but with

finite chord and in the inviscid limit, as a model for fish propulsion. Recently,

Childress [40] discussed the nature of the high Reynolds number limit of Taylor’s

swimming problem and applied the results to the idea of recoil swimming, where

propulsion is achieved by movements of the center of mass and center of volume

of the body.

Despite its simplicity, the waving sheet serves as an idealized geometrical

model for both spermatozoa locomotion and ciliary transport. Cilia are short

flagella beating collaboratively to produce fluid motion. They are important in

many biological transport processes, for example, the transport of mucus in the

respiratory tract of humans. Blake [41] represented the envelope formed by the

cilia tips as an infinite impenetrable oscillating surface, assuming that the cilia are

sufficiently closely packed together. The use of an infinite sheet to model finite

length organisms is particularly well justified for elongated and flat organisms such

as Paramecium or Opalina [41]. If the waving sheet is not allowed to move, there

will be a net flow of the fluid in one direction. In this case, the sheet acts as a
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pump for transporting the fluid. We shall refer this as the ‘pumping problem’

in this chapter. In addition, when a second waving sheet is present above the

original waving surface, one recovers the problem of peristaltic pumping, a useful

fluid-transport mechanism in physiology and many industrial processes. Readers

are referred to reviews on this subject [15,42].

Another scenario of interest is the propulsion of microorganisms near solid

boundaries. Natural microorganisms often swim in narrow passages such as the

swimming of spermatozoa in the cervix [43]. In addition, during most labora-

tory examinations, the presence of coverslips imposes solid boundaries near the

microorganisms. Reynolds [36] adopted Taylor’s swimming sheet model to study

swimming near solid walls for small-amplitude waving motion; another approxi-

mation, the long wavelength limit, was considered by Shack & Lardner [44] and

Katz [45]. The oscillating wall models by Smelser et al. [46] and Shukla et al. [47]

and the layered fluid medium model by Shukla et al. [25] were also proposed to

study the interaction between the cervical wall and the cell.

The fact that many biological fluids are non-Newtonian has also received

considerable attention. Chaudhury [48] first extended Taylor’s swimming problem

to viscoelastic fluids. The same problem was then considered by Sturges [49] using

a more rigorous integral constitutive equation. Fulford et al. [50] modified the

resistive force theory to model the swimming of a spermatozoon in a general linear

viscoelastic fluid. Recently, Lauga [51] revisited Taylor’s original calculation using

more realistic, nonlinear non-Newtonian fluid models.

This brief literature review shows that most studies in small-scale biological

locomotion focus on solving for the swimming speed of a model organism. Since

previous work derived solutions for steady-state swimming only, we propose in this

chapter to go beyond the steady limit and study a prototypical time-varying situa-

tion, namely the initial-value problem of a model microorganism (Taylor’s waving

sheet) starting from rest. Physically, such a process is governed by the small time

scale necessary for vorticity created at the swimmer surface to propagate diffusively

into the fluid, and belongs to the general class of unsteady Stokes problems.

As expected, this transient swimming process is also dependent upon the

development of the propagating wave from rest; we present here a general analytical

treatment for a waving sheet which develops its frequency (or phase speed) from
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rest to the steady state in an arbitrary manner. An analytical formula describing

the general transient propulsion speed of the sheet is then derived, complementing

Taylor’s well-known steady state solution. We also solve the transient pumping

problem, where the sheet is not free to move, but instead entrains the surrounding

fluid in an unsteady manner. Unlike their steady counterparts, these two problems

are not equivalent in the unsteady case because of time-dependent inertial forces.

The chapter is structured as follows. In Sec. 2.2, the swimming sheet prob-

lem is mathematically formulated with the appropriate non-dimensionalization,

governing equations, and boundary conditions. In Sec. 2.3, the calculations at first

and second order are presented. The results of Sec. 2.3 are then applied to study

the transient pumping problem (Sec. 2.4) and the swimming problem (Sec. 2.5).

Finally, a physical discussion of our results and a derivation of the time scales

involved in transient low-Reynolds number swimming are offered in Sec. 2.6.

2.2 Formulation

We consider here an infinite sheet swimming in an incompressible fluid,

similar to the model proposed by Taylor [34]. We also allow the wave of displace-

ment along the sheet to include not only normal but also tangential motion [32,41].

Here, the waving motion is observed in the frame moving at the unknown swimming

speed. As the swimming speed is time-dependent during the transient motion, the

reference frame is non-inertial and hence a fictitious (inertial) force has to be intro-

duced (see below). In the moving frame, the position of material points, (xm, ym),

on the waving sheet is written as

xm(x, t) = x+ aÂ cos(kx− ω(t)t− φ),

ym(x, t) = bÂ sin(kx− ω(t)t), (2.1)

where a and b are dimensionless, Â is a typical wave amplitude and φ is the phase

difference between the longitudinal and transverse motion. The angular frequency

ω(t) is an arbitrary function of time which initially starts from zero and eventually

reaches a steady state value of ω∞. The functions describe a traveling wave with

tangential motion of wavelength λ = 2π/k moving in the positive x direction at

a time-varying speed c = ω(t)/k. We keep ω(t) arbitrary in the analysis below to
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Figure 2.1: Geometrical setup of a two-dimensional swimming sheet. The sheet
propagates a wave in the positive x direction at a speed c, and the unknown
swimming velocity U is assumed to occur in the direction opposite to that of the
wave propagation.

derive general formulas describing the transient net flow and transient swimming

velocity. Specific examples for ω(t) will then be considered for illustration. The

transverse traveling wave considered by Taylor [34] is obtained when a = 0, and

the b = 0 case represents a longitudinal traveling wave. The unknown swimming

speed of the sheet is denoted by U(t) and is assumed to occur in the direction

opposite to that of the wave propagation (see Fig. 2.1 for notation).

2.2.1 Non-dimensionalization

We non-dimensionalize lengths by 1/k and velocities by the wave speed c.

The time scale in this problem shall characterize changes in velocity in the fluid

during the transient motion. The appropriate, physically-motivated time scale, is

that required for the vorticity created by the start-up of the sheet to propagate

diffusively into the fluid over the characteristic length scale, and therefore time is

non-dimensionalized by 1/k2ν, where ν is the kinematic viscosity of the fluid. For

a wavelength on the order of 10 µm, and in water, the time scale considered is on

the order of milliseconds. The angular frequency, ω(t), is non-dimensionalized by

its steady state value, ω∞. The dimensionless quantities (starred) are summarized

as follows, with ρ being the density of the fluid:

x∗ =
x

1/k
, t∗ =

t

1/(k2ν)
, u∗ =

u

c
, p∗ =

p

ρνck
, ω∗ =

ω

ω∞
, (2.2)
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and the Reynolds number is given by Re = c/νk = ω∞/νk
2. The dimensionless

position of material points on the sheet is written as

xm
∗(x∗, t∗) = x∗ + εa cos(x∗ − Re ω∗(t∗)t∗ − φ),

ym
∗(x∗, t∗) = εb sin(x∗ − Re ω∗(t∗)t∗), (2.3)

where ε = Âk. We assume that the wave amplitude is much smaller than the

wavelength, and derive the results in the limit where ε� 1.

2.2.2 Governing equation

We consider an incompressible Newtonian fluid surrounding the sheet. Since

we have a two-dimensional setup, the continuity equation, ∇·u = 0, is satisfied by

introducing the stream function ψ(x, y, t) such that u = ∂ψ/∂y and v = −∂ψ/∂x,

where u = uex + vey. In the laboratory frame, the governing equation is the

Navier-Stokes equation

ρ
∂u

∂t
+ ρ (u · ∇) u = −∇p+ µ∇2u, (2.4)

where p is the pressure and µ the dynamic viscosity of the fluid. In the non-inertial

frame considered in this chapter, as we accelerate with the swimming sheet, a time

dependent uniform fictitious force F(t) = (Fx(t), 0, 0) has to be introduced into

the equation as

ρ
∂u

∂t
+ ρ (u · ∇) u = −∇p+ µ∇2u + F. (2.5)

Since the swimming sheet accelerates uniformly in the x-direction, the non-zero

component of the fictitious force, Fx, is uniform (independent of space) and is a

function of time only. The non-dimensionalized form of the equation (with non-

dimensionalization described above) is given by

∂u∗

∂t∗
+ Re (u∗ · ∇∗) u∗ = −∇∗p∗ +∇∗2u∗ + F∗. (2.6)

For small-scale biological locomotion, we consider the low Reynolds number limit

Re → 0, where the convective term vanishes, resulting in the unsteady Stokes’

equation

∂u∗

∂t∗
= −∇∗p∗ +∇∗2u∗ + F∗. (2.7)
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Upon taking the curl of the equation, both the pressure gradient and the fictitious

force terms vanish, resulting in an equation for the z-component of the vorticity,

ω∗. With the relation ω∗ = −∇∗2ψ∗, the equation for the stream function is given

by (
∂

∂t∗
−∇∗2

)
∇∗2ψ∗ = 0. (2.8)

Hereafter, we shall mostly deal with the dimensionless quantities, and therefore

the stars will be omitted for simplicity.

2.2.3 Boundary conditions

The unknown swimming velocity of the sheet is denoted by −U(t)ex. In

the frame moving with the swimming sheet, the velocity of the fluid in the far field

(y =∞) is therefore given by U(t)ex. Hence, the far-field boundary conditions are

∇ψ |(xm,∞)= U(t)ey. (2.9)

On the swimming sheet, the boundary conditions are given by the velocity com-

ponents of a particle of the sheet

∇ψ |(xm,ym)= εf(t) [b cos (x− Re · ω(t)t) ex + a sin (x− Re · ω(t)t− φ) ey] ,

(2.10)

where f(t) is a function of time, defined by f(t) = d (ω(t)t) /dt. The conditions

simplify to

∇ψ |(xm,ym)= εf(t) [b cos (x) ex + a sin (x− φ) ey] , (2.11)

in the low Reynolds number limit (Re → 0). Note that Re = ω∞/νk
2 can be

re-written as Re = [1/νk2]/[1/ω∞], and can therefore be interpreted as the ratio

between the relevant time scale for viscous diffusion into the fluid and the typical

time scale of the wave (its period). The Re → 0 limit physically means that

the diffusion of vorticity occurs much faster than the propagation of the wave,

and therefore the wave appears to be stationary on the time scale where viscous

diffusion is taking place.
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2.3 Analysis

In this section, we seek regular perturbation expansions for the stream

function, swimming speed and the pressure in powers of ε in the form

{ψ,U, p} = ε{ψ1, U1, p1}+ ε2{ψ2, U2, p2}+ . . . . (2.12)

The order ε and order ε2 solutions are presented in the following subsections.

2.3.1 First-order solution

At order ε, the governing equation is given by(
∂

∂t
−∇2

)
∇2ψ1 = 0. (2.13)

Expanding the boundary conditions on the sheet using Taylor expansion, they

become at order ε

ψ1,y |(x,0) = af(t) sin(x− φ), (2.14)

ψ1,x |(x,0) = bf(t) cosx, (2.15)

ψ1,y |(x,∞) = U1(t), (2.16)

ψ1,x |(x,∞) = 0. (2.17)

The initial condition is that the vorticity in the fluid (ω = −∇2ψ) is initially zero,

i.e. ω1 |t=0 = (−∇2ψ1) |t=0 = 0.

To allow an easy implementation of the initial condition, we solve the prob-

lem using the Laplace transform method. A similar technique has been applied to

study the transient solution of Stokes’ second problem [52]. The Laplace transform

of the stream function ψ1 is defined by the relation

ψ̃1(x, y, s) =

∫ ∞
0

ψ1(x, y, t)e−stdt, (2.18)

where s is the Laplace variable and tilde variables represent transformed quantities.

Taking the Laplace transform of the governing equation at this order, Eq. (2.13)

becomes (
s−∇2

)
∇2ψ̃1 = 0. (2.19)
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The boundary conditions in Laplace domain are given by

ψ̃1,y |(x,0) = af̃(s) sin(x− φ), (2.20)

ψ̃1,x |(x,0) = bf̃(s) cosx, (2.21)

ψ̃1,y |(x,∞) = Ũ1(s), (2.22)

ψ̃1,x |(x,∞) = 0. (2.23)

The solution satisfying all the boundary condition is found to be

ψ̃1 = Ũ1

(
y +

e−
√
sy

√
s

)
+

f̃(s)√
s+ 1− 1

a sinφ(e−
√
s+1y − e−y) cosx

+
f̃(s)√
s+ 1− 1

[
(b
√
s+ 1 + a cosφ)e−y − (b+ a cosφ)e−

√
s+1y

]
sinx. (2.24)

2.3.2 Second-order solution

We proceed to the analysis at order ε2 using a similar procedure. The

governing equation at this order is(
∂

∂t
−∇2

)
∇2ψ2 = 0, (2.25)

with boundary conditions

ψ2,y |(x,0) = −a cos(x− φ)
∂2ψ1

∂x∂y
|y=0 −b sinx

∂2ψ1

∂y2
|y=0, (2.26)

ψ2,x |(x,0) = −a cos(x− φ)
∂2ψ1

∂x2
|y=0 −b sinx

∂2ψ1

∂x∂y
|y=0, (2.27)

ψ2,y |(x,∞) = U2(t), (2.28)

ψ2,x |(x,∞) = 0, (2.29)

where we have used Taylor expansion to obtain the boundary conditions on the

moving sheet surface. Using Laplace transform, the governing equation for the

stream function becomes (
s−∇2

)
∇2ψ̃2 = 0. (2.30)
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The boundary conditions are now

ψ̃2,y |(x,0) = f̃(s)

[
b2
√
s+ 1 sin2 x+ ab

s sinx sin(x− φ)√
s+ 1− 1

− a2 cos2(x− φ)

]
,

(2.31)

ψ̃2,x |(x,0) = 0, (2.32)

ψ̃2,y |(x,∞) = Ũ2(s), (2.33)

ψ̃2,x |(x,∞) = 0. (2.34)

The solution satisfying all the boundary conditions at this order is obtained to be

ψ̃2 = Ũ2

(
y +

e−
√
sy

√
s

)
− f̃(s)

2
√
s

(
b2
√
s+ 1− a2 + ab

s√
s+ 1− 1

cosφ

)
e−
√
sy

+
f̃(s)

2(
√
s+ 4− 2)

[(
a2 sin 2φ+ ab

s√
s+ 1− 1

sinφ

)
(e−
√
s+4y − e−2y) sin 2x

+

(
a2 cos 2φ+ b2

√
s+ 1 + ab

s√
s+ 1− 1

)
(e−
√
s+4y − e−2y) cos 2x

]
. (2.35)

2.4 Pumping problem

The analysis of Sec. 2.3 can first be applied to the pumping problem, where

the sheet is not allowed to move and its oscillatory motion entrains a net fluid flow

along the x-direction. Since the sheet does not move, we are in the laboratory

frame of reference and the introduction of the fictitious force is unnecessary in this

case. The velocity in the far field is zero for any finite time, which is analogous to

that in Stokes’ problems; therefore, U1 = U2 = 0, and we then take the x-average

of the horizontal velocity (denoted by 〈...〉), leading to

〈ũ1〉(y, s) =
∂〈ψ̃1〉
∂y

= 0, (2.36)

〈ũ2〉(y, s) =
∂〈ψ̃2〉
∂y

=
f̃(s)

2

(
b2
√
s+ 1− a2 + ab

s√
s+ 1− 1

cosφ

)
e−
√
sy. (2.37)

As expected from the ε → −ε symmetry, no net flow occurs at order ε. At order

ε2, there is a net fluid flow and the result of Eq. (2.37) describes the (dimension-

less) transient velocity of the driven flow in the Laplace domain. For any finite
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distance y, as time goes to infinity, the average horizontal velocity, by the final

value theorem, asymptotes to

〈ũ2〉(y, t→∞) =
1

2
(b2 + 2ab cosφ− a2), (2.38)

which is the appropriate steady-state value [32, 41] The direction of the net fluid

flow is governed by the oscillation mode of the swimming sheet. For a transverse

wave (a = 0), there is a net fluid flow in the positive x direction, which is the

direction of the wave propagation. For a longitudinal wave (b = 0), the fluid

flows in a direction opposite to the wave propagation. If there is a combination

between transverse and longitudinal motion (a 6= 0, b 6= 0), the direction of fluid

flow is governed by the competition between the amplitudes of the transverse

and longitudinal motion and their phase difference, as described by Eq. (2.38).

Notably, there are values of a, b and φ that will yield a zero net fluid flow, where

the propulsion caused by the longitudinal motion exactly balances that produced

by the transverse motion.

The detail evolution of the transient flow depends on the development of

the propagating wave, described by the function ω(t) (or f(t) = d (ω(t)t) /dt).

Examples will now be given to illustrate the use of Eq. (2.37) to determine the

transient velocity of particular driven flows in the time domain.

2.4.1 Example 1: ω(t) = 2 arctan (t/T ) /π

Here, we consider the angular frequency of the wave which develops accord-

ing to the function ω(t) = 2 arctan(t/T )/π, where T characterizes the time taken

for the angular frequency to reach its steady state value, non-dimensionalized by

the viscous diffusion time scale. When T is equal to zero, it represents the case

where the wave starts impulsively. Computing the function f(t) = d(ω(t)t)/dt

and its Laplace transform f̃(s), the transient velocity of the driven flow in Laplace

domain follows from Eq. (2.37) as

〈ũ2〉(y, s) =
2Ci(sT ) [sin(sT )− sT cos(sT )] + [cos(sT ) + sT sin(sT )] [π − 2Si(sT )]

2πs

×
(
b2
√
s+ 1− a2 + ab

s√
s+ 1− 1

cosφ

)
e−
√
sy, (2.39)
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Figure 2.2: Average dimensionless horizontal velocity in the fluid for the pump-
ing problem, 〈u2〉/u∞, at the non-dimensional position y = 1, as a function of
the dimensionless time, where the wave frequency increases according to ω(t) =
2 arctan(t/T )/π. (Semi-log plot) (a): transverse wave (a = 0); (b): longitudinal
wave (b = 0); (c): combined transverse and longitudinal wave (a = b and φ = π/4).
In each graph, from left to right: T = 0.01, 0.1, 1, 10, 100.

where Ci and Si are the cosine and sine integrals, defined respectively by

Ci(x) = −
∫ ∞
x

cos t

t
dt, Si(x) =

∫ x

0

sin(t)

t
dt. (2.40)

The Laplace transform inversion can be easily implemented numerically

[53]. The evolution of the transient swimming speed in the time domain is com-

puted at the non-dimensional position y = 1 and shown in Fig. 2.2 for different

cases: transverse wave (Fig. 2.2a), longitudinal wave (Fig. 2.2b), and the combined

wave where a = b and φ = π/4 (Fig. 2.2c). The parameter T is varied from 0.01

to 100 in each case, and as expected an increase in T leads to an increase in the

time necessary for the flow speed to reach its steady state value.

2.4.2 Example 2: Impulsive motion

We consider now the extreme case where the angular frequency of the prop-

agating wave attains its steady state value instantaneously, i.e. if T is the dimen-

sionless start-up time, we have T = 0. The solution to that problem exists as

a regular perturbation only in the case where b = 0, i.e. when the wave has no

transverse amplitude. This is due to the fact that in the limit t → 0, and as
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in Stokes’ first problem for the impulsive motion of a plate in a viscous fluid, an

infinite shear is initially created along the surface of the body. Since a Taylor

expansion in the wave amplitude is used to obtain the second-order boundary con-

ditions, Eq. (2.26), the presence of an infinite shear leads to an infinite boundary

condition unless b = 0, in which case the Taylor expansion does no evaluation

into the fluid domain (see Sec. 2.6 for further discussion). However, similarly to

Stokes’ first problem, the solution is well-behaved when b = 0, which is the case

we now consider. In this case, the function f(t) is a unit step function and its

Laplace transform is f̃(s) = 1/s. Again, as expected from the ε → −ε symmetry,

no net fluid flow occurs at order ε. Net flow occurs at order ε2. By Eq. (2.37), the

x-average horizontal velocity in Laplace domain in this case is given by

〈ũ2〉(y, s) =
∂〈ψ̃2〉
∂y

= −a
2

2s
e−
√
sy, (2.41)

which we inverse Laplace transform, yielding

〈u2〉(y, t) = −a
2

2
erfc

(
y

2
√
t

)
, (2.42)

where erfc is the complementary error function.

The fluid flow occurs in the direction opposite to the wave propagation. The

result of Eq. (2.42) describes the (dimensionless) transient velocity of the driven

flow, and is illustrated in Fig. 2.3. The vorticity perturbation created by the

instantaneous motion of the sheet propagates diffusively into the fluid, y ∼
√
t,

with a final result very similar to that of Stokes’ first problem. For any finite

distance y, as time goes to infinity, the average horizontal velocity asymptotes to

−a2/2. In other words, the entire fluid will eventually be pumped to move with

an average horizontal velocity of −a2/2 for very large times. In dimensional form,

the average horizontal velocity is given by

〈u〉(y, t) = −a
2Â2k2c

2
erfc

(
y

2
√
νt

)
(2.43)

at leading order in sheet amplitude.

2.5 Swimming problem

Next, we consider the swimming problem, where the sheet is free to move.

We are now in a frame moving with the sheet, a non-inertial frame of reference
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Figure 2.3: (a): Average dimensionless horizontal velocity in the fluid for the
pumping problem, 〈u2〉/u∞, at the non-dimensional position y = 1, as a function
of the dimensionless time for an impulsive longitudinal wave b = 0. (Inset: same
plot on a semi-log scale); (b): Evolution of the average dimensionless horizontal
velocity in the fluid in the y direction at different values of dimensionless time for
an impulsive longitudinal wave, from left to right: t = 0.1, 1, 5, 10, 15.

(Sec. 2.2.2). In this problem, the swimming speed of the sheet is yet to be de-

termined. An additional condition is required to determine Ũ1(s) and Ũ2(s) in

Eqs. (2.24) and (2.35) respectively. For this purpose, Newton’s second law will be

applied on the sheet in the x-direction. By the periodicity of the problem, we con-

sider the forces (per unit width) acting on one wavelength of the sheet. The forces

are: (i) the horizontal force per unit width acted on the sheet by the fluid (denoted

Ffluid), and (ii) the fictitious force per unit width due to the accelerating reference

frame (denoted Ffictitious). In the frame moving with the sheet, its acceleration is

zero, and therefore Newton’s second law on the sheet under this non-inertial frame

has the form Ffluid + Ffictitious = 0. The magnitude of the fictitious force, Ffictitious,

is given by the mass per unit width of the sheet times the acceleration of the refer-

ence frame. The fictitious force is acting in a direction opposite to the acceleration

of the moving frame, so that Ffictitious = (mass of the sheet per unit width)dU/dt.

Below, we expand both Ffictitious and Ffluid in powers of the small parameter ε, and

enforce Newton’s second law at each order.
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2.5.1 First-order solution

At order ε, and in dimensional variables, Ffluid is given by

ρνc

∫ 2π

0

(u1y + v1x) |y=0 dx = ρνc

∫ 2π

0

L−1(Ũ1

√
s)dx = 2πρνcL−1(Ũ1

√
s), (2.44)

where L−1 is the inverse Laplace transform operator. The fictitious force, Ffictitious,

at this order reads (ρshλck
2ν)dU1/dt, where ρs and h are the density and thickness

of the swimming sheet respectively. Applying Newton’s second law, we have

2πρνcL−1(Ũ1

√
s) + ρshλck

2ν
dU1

dt
= 0. (2.45)

Taking the Laplace transform of the equation yields

2πρνcŨ1

√
s+ ρshλck

2νsŨ1 = 0. (2.46)

Solving for Ũ1(s), we have Ũ1(s) = 0, which implies U1(t) = 0. As expected, no

self-propulsion occurs at order ε. We therefore proceed to the analysis at order ε2.

2.5.2 Second-order solution

A similar analysis is undertaken at this order, with the difference that the

order ε pressure, p1, will be required for the calculation of the fluid force, Ffluid, at

order ε2. The pressure is found by integrating over x the Navier-Stokes equation

at order ε in the horizontal direction. The forces, Ffictitious and Ffluid, are expanded

on the sheet using Taylor expansion. At order ε2, Ffluid is given by

ρνc

∫ 2π

0

[−(2u1,x − p1)b cosx+ b sinx(u1,y + v1,x)y + u2,y + v2,x] |y=0 dx

= 2πρνcL−1

[
Ũ2

√
s− f̃(s)

2

√
s
(
b2
√
s+ 1− a2 + ab cosφ(

√
s+ 1−√s+ 1)

)]
.

(2.47)

The fictitious force, Ffictitious, at this order reads (ρshλck
2ν)dU2/dt. Again, apply-

ing Newton’s second law on the sheet leads to

2πρνcL−1

[
Ũ2

√
s− f̃(s)

2

√
s
(
b2
√
s+ 1− a2 + ab cosφ(

√
s+ 1−√s+ 1)

)]
+ρshλck

2ν
dU2

dt
= 0.

(2.48)
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Taking the Laplace transform, we have[
Ũ2

√
s− f̃(s)

2

√
s
(
b2
√
s+ 1− a2 + ab cosφ(

√
s+ 1−√s+ 1)

)]
+
ρs
ρ

h

(1/k)
sŨ2 = 0. (2.49)

We define the dimensionless parameter M = (ρs/ρ)(hk), which is the product of

the density ratio of the sheet to the fluid and the ratio of the thickness of the sheet

to the characteristic length scale (wavelength). The swimming velocity at order ε2

is then determined, in the Laplace domain, as

Ũ2(s) =
f̃(s)

2(M√s+ 1)

(
b2
√
s+ 1− a2 + ab cosφ(

√
s+ 1−√s+ 1)

)
· (2.50)

The steady state swimming velocity, by the final value theorem, is given by

U∞ =
1

2

(
b2 + 2ab cosφ− a2

)
, (2.51)

which agrees with previous steady-state results [32,41]. When a = 0, it corresponds

to Taylor’s result of a transverse traveling wave. The swimming sheet propels itself

in a direction opposite to the wave propagation. The b = 0 limit corresponds

to the case of a longitudinal traveling wave, and the swimming sheet propels in

the direction of wave propagation. If there is a combination of transverse and

longitudinal motion, similar to the pumping problem, the swimming direction is

governed by the competition of the amplitudes of the transverse and longitudinal

motion and their phase difference, as described by Eq. (2.51). Similarly to the

pumping problem, there are values of a, b and φ that will produce a zero propulsion

speed. The transient swimming velocity of the sheet is given by Eq. (2.50) in

the Laplace domain for arbitrary function f̃(s). Here again, we consider different

examples of f̃(s) and compute the transient swimming velocity in the time domain.

2.5.3 Example 1: ω(t) = 2 arctan (t/T ) /π

Here, we consider the angular frequency of the wave which develops accord-

ing to the function ω(t) = 2 arctan (t/T ) /π, the same function as for the pumping

problem above. Therefore, the functions f(t) and f̃(s) are the same as in Sec. 2.4.1.
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Figure 2.4: Dimensionless swimming speed of the sheet, U2/U∞, as a function
of the dimensionless time, in the case where the dimensionless wave frequency
evolves according to ω(t) = 2 arctan(t/T )/π, and for M = 1 and different values
of the wave start-up time T . (Semi-log plot). (a): transverse wave (a = 0); (b):
longitudinal wave (b = 0); (c): combined transverse and longitudinal wave (a = b
and φ = π/4). In each graph, from left to right: T = 0.01, 0.1, 1, 10, 100.

By Eq. (2.50), hence, the swimming velocity in Laplace domain is given by

Ũ2(s) =
2Ci(sT ) [sin(sT )− sT cos(sT )] + [cos(sT ) + sT sin(sT )] [π − 2Si(sT )]

2πs (M√s+ 1)

×
(
b2
√
s+ 1− a2 + ab cosφ(

√
s+ 1−√s+ 1)

)
. (2.52)

The transient swimming velocity in the time domain is obtained by performing

a Laplace transform inversion numerically. The results are displayed in Figs. 2.4

and 2.5 for different modes of oscillation: transverse wave (Figs. 2.4a and 2.5a),

longitudinal wave (Figs. 2.4b and 2.5b), and the combined transverse and longitu-

dinal wave where a = b and φ = π/4 (Figs. 2.4c and 2.5c). In Fig. 2.4, the mass

ratio is fixed to beM = 1 and the wave start-up time T is varied between 0.01 to

100. In Fig. 2.5, we fix T = 1, while the parameter M is varied between 0.01 to

100; the limit whereM = 0 is also computed and shown as dashed lines in Fig. 2.5.

This limit corresponds to the case where the swimming sheet is mass-less, which

is the relevant limit for biological organisms.
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Figure 2.5: Dimensionless swimming speed of the sheet, U2/U∞, as a function of
the dimensionless time, in the case where the dimensionless wave frequency evolves
according to ω(t) = 2 arctan(t/T )/π, and for T = 1 and different values of the mass
ratio M. (Semi-log plot). (a): transverse wave (a = 0); (b): longitudinal wave
(b = 0); (c): combined transverse and longitudinal wave (a = b and φ = π/4).
In each graph, from left to right: M = 0.01, 0.1, 1, 10, 100. The dashed lines (the
left-most in each plot) refer to the case of a mass-less sheet i.e. M = 0.

2.5.4 Example 2: ω(t) = 1− exp(−t/T )

To illustrate the difference between different types of wave start-up, we

now consider the case where the angular frequency increases exponentially as:

ω(t) = 1− exp(−t/T ). Again, computing the corresponding function f(t) and its

Laplace transform f̃(s), the swimming velocity in Laplace domain, by Eq. (2.50),

reads

Ũ2(s) =
(1 + 2sT )

2s(1 +M√s)(1 + sT )2

(
b2
√
s+ 1− a2 + ab cosφ(

√
s+ 1−√s+ 1)

)
.

(2.53)

Here again, we invert the Laplace transforms numerically. The influence of the di-

mensionless parameters T andM on the transient swimming velocity show trends

similar to the first example above. The detailed evolution of the swimming ve-

locity is however, and as expected, quantitatively different due to the different

time development of the angular frequency. The two different evolution profiles

are illustrated in Fig. 2.6, for the case where T = 1 and M = 1, and for the three

different waves.

In the limit where the swimmer has no mass,M = 0, the Laplace transform
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inversion is simplified and analytical formulas for swimming velocity are obtained

for all the three different modes of oscillation. The swimming velocity for a mass-

less sheet, for a transverse wave, reads

U2(t) = b2

 e−t
√
t

2T
√
π

+
erf
(√

t
)

2
−

e−
t
T (2t− 3T − 2tT + 2T 2) erf

(√
t(T−1)

T

)
4T 3/2

√
T − 1

 ;

(2.54)

whereas for a longitudinal wave, it is

U2(t) = −a
2

2

[
1 + e−

t
T

(
t

T
− 1

)]
; (2.55)

for combined motion where, for example, a = b and φ = π/4, the formula is

U2(t) =
2 +
√

2

2
a2× e−t

√
t

2T
√
π

+
erf
(√

t
)

2
−

e−
t
T (2t− 3T − 2tT + 2T 2) erf

(√
t(T−1)

T

)
4T 3/2

√
T − 1


−
√

2

4
a2

 √t
T
√
π
−

e−
t
T

(
2t3/2 − 4T

√
t+ T 3/2

√
t
T

)
erfi
(√

t
T

)
2T 3/2

√
t


+

√
2− 2

4
a2

[
1 + e−

t
T

(
t

T
− 1

)]
, (2.56)

where erf is the error function and erfi is the imaginary error function.

2.5.5 Example 3: Impulsive motion

Similarly to the pumping problem, the case of impulsive motion is singular

except in the case where b = 0 for which the impulsive swimming speed is well

behaved. In this case, and as in the pumping problem, the function f(t) is a unit

step function and its Laplace transformation is f̃(s) = 1/s. Hence, the swimming

velocity of the sheet, in Laplace domain, is given by

Ũ2(s) =
−a2

2s (M√s+ 1)
· (2.57)
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(a) ω(t) = 2 arctan(t/T )/π (b) ω(t) = 1 − e−t/T

Figure 2.6: Dimensionless swimming speed of the sheet, U2/U∞, as a function of
the dimensionless time, for T = 1, M = 1, and for two different different wave
start-up function ω(t).(Semi-log plot). Blue (solid line): transverse wave (a = 0);
Red (dashed line): longitudinal wave (b = 0); Green (dotted line): combined
transverse and longitudinal wave (a = b and φ = π/4).

The inverse Laplace transform of Eq. (2.57) yields the leading order swimming

velocity in the time domain

U2(t) = −a
2

2

[
1− exp

(
t

M2

)
erfc

(√
t

M

)]
· (2.58)

As in the corresponding pumping problem, the transient swimming velocity in-

volves the complementary error function, erfc(x), as illustrated in Fig. 2.7. For

large times, the velocity asymptotes to −a2/2. In dimensional form, the swim-

ming velocity of the sheet is given by

U(t) = −a
2

2

[
1− exp

(
νρ2

h2ρ2
s

t

)
erfc

(√
νρ

hρs

√
t

)]
Â2k2c, (2.59)

at the leading order in the wave amplitude.

2.6 Discussion

In this chapter, we have studied two different unsteady Stokes flow prob-

lems, and obtained explicit analytical formulas in the Laplace domain for their

transient motion. In the pumping problem, the fluid is driven by the waving mo-

tion of a fixed sheet, and the Laplace transform of the leading-order dimensionless
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Figure 2.7: Dimensionless swimming speed, U2/U∞, for the impulsive longitu-
dinal wave, as a function of the reduced non-dimensionalized time, t/M2 (Inset:
same plot on a semi-log scale).

average horizontal velocity is described by Eq. (2.37). In the swimming problem,

where the sheet is free to move, the leading-order swimming velocity of the sheet

is given by Eq. (2.50). Higher order terms may be obtained in a similar fashion.

We first note the difference between the form of Eq. (2.37) and Eq. (2.50).

In the steady limit, the pumping and swimming problems differ only by a change

of reference frame, so the fixed waving sheet pumps a uniform amount of fluid at

a velocity equal to minus the steady swimming speed of the free-swimming sheet.

In the unsteady case however, the sheet is accelerating, and therefore is subject to

additional forces. As a result, the final formula for the swimming speed involves

the sheet mass (through the dimensionless parameter M).

To obtain the solution in the time domain, Laplace transform inversion of

Eq. (2.37) and Eq. (2.50) is required. Analytical formulas have been obtained for

several cases where the Laplace transform inversion is simple. It can be further

noted that, if a mass-less waving sheet (M = 0) is considered in the swimming

problem, the Laplace transform inversion is particularly straightforward for the

case of longitudinal wave (b = 0). By Eq. (2.50), we inverse Laplace transform to

yield the simple formula U(t) = −ε2a2f(t)/2.

For more complex cases (M 6= 0, b 6= 0), the Laplace transform inversion is

easily implemented numerically for any admissible f(t) or f̃(s). Particular exam-
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ples have been given for illustration. We have introduced the dimensionless time T

characterizing the time scale over which the angular frequency reaches its steady

state. As illustrated in Fig. 2.2 for the pumping problem, the development of the

flow field can be divided into two stages. In the initial stage, the development of

the transient velocity depends on the transient motion of the waving sheet, and

the relevant time scale is T : the smaller the values of T , the shorter the time is

required to reach a given velocity. For large times, the waving motion of the sheet

has effectively reached its steady state, and the subsequent development of the

flow field is dominated by the viscous diffusion alone. The values of the parameter

T are no longer relevant, and the curves for different values of T collapse onto the

same envelop for large times (see Fig. 2.2). In addition, and as could be expected,

the detailed evolution of the net velocity depends on the different waving modes

of the sheet. Similar trends are observed in the swimming problem, as displayed

in Fig. 2.4. In that case, since the sheet is free to move, its mass — characterized

by the dimensionless parameter M — comes into play in its transient swimming

velocity, and leads to the presence of a third relevant time scale (see below). As

illustrated in Fig. 2.5, the mass of the sheet dictates its acceleration in the initial

stage, and the sheet with the smallest mass accelerates the fastest.

The case where T = 0, i.e. where the wave starts impulsively, has also

been discussed. We find that, within the framework of the perturbation expansion

proposed in this chapter, this singular start-up behavior for the sheet leads to a

singular pumping and swimming solution — except for the case where the wave

motion is purely longitudinal, i.e. b = 0. Physically, as the wave is impulsively

starting, it creates an initially infinite shear rate immediately above the sheet.

Since the boundary condition for the second order flow is found by the “sampling”

of the first order flow by the first-order shape of the sheet (Taylor expansion), any

case where the sheet protrudes into the fluid (b 6= 0) leads to singular boundary

conditions for the second-order flow. This singular behavior could be resolved

by incorporating the advective inertial terms in the Navier-Stokes equation. For

example, in the case where ω(t) = 1 − exp(−t/T ), it can be shown that, for a

wave with a non-zero transverse amplitude, the convective term scales as ∼ 1/T

at the sheet position (y = 0). Hence, for the convective term to be negligible, it

is required that Re/T � 1 or Re � T , which means that for the results of the
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present work to be uniformly valid for all time, a transverse wave needs a finite

start-up time. For a longitudinal wave however, the convective term remains order

unity for all time, even when the wave is propagated instantaneously, and therefore

the impulsive motion problem is well-posed.

A close examination of the results obtained in the impulsive case for the

longitudinal wave allows us to understand physically the origin of the time scales

involved in the unsteady pumping and swimming processes. In the pumping prob-

lem, the net velocity of the fluid averaged over one wavelength occurs in the direc-

tion opposite to the wave propagation, with magnitude given by Eq. (2.43). The

scaling for the time evolution of the fluid velocity in that case is straightforward

and similar to that of Stokes’ first problem. It is a diffusive scaling, and the fluid

below a diffusive front propagating as y ∼
√
νt into the fluid is pumped roughly at

the steady velocity. In the swimming problem, the sheet moves in the same direc-

tion as the longitudinal wave with a transient propulsion speed given by Eq. (2.59).

In that case, the scaling for the relevant time scale for start-up of the swimmer

arises from a consideration of the balance between the inertial force of the sheet

and the shear stresses exerted by the fluid. The inertial force is given by the mass

per unit width and per unit wavelength of the sheet times its acceleration. Over

one wavelength, the small-amplitude swimmer has a mass per unit width equal

to ρsh, and the acceleration scales as Us/t, where Us denotes the sheet velocity.

On the other hand, the shear stress on the sheet exerted by the fluid is on the

order of µUf/y, where Uf denotes the fluid velocity and y ∼
√
νt is the typical

size in the y direction of velocity gradients in the fluid. Balancing shear stresses in

the fluid with inertia in the sheet leads to ρshUs/t ∼ µUf/
√
νt. At steady state,

we have Us ∼ Uf , and the balance suggests a typical time scale, tM , given by

tM ∼ ρ2
sh

2/ρ2ν, which is the time scale involved in Eq. (2.59). Compared to the

typical diffusive time scale, tD ∼ 1/k2ν, we have tM/tD =M2. For typical swim-

ming microorganisms, the ratio of swimmer density to fluid density is about one,

and the ratio of thickness h to wavelength 1/k is on the order of 0.01 [17, 32], so

the steady state swimming problem is reached much earlier than the steady-state

pumping problem.

Finally, the results of this chapter can be compared with those given by

a quasi-steady approximation, where the steady-state formulas of Taylor are ex-
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Figure 2.8: Evolution of the dimensionless swimming speed, U2/U∞, for the case
of longitudinal wave and M = 1, given by the result of this chapter (solid lines)
and the quasi-steady approximation (dashed lines) for different values of T .

tended to the unsteady case by replacing the value of the steady-state frequency

ω∞ by the instantaneous value ω(t). For illustration, we consider the profile

ω(t) = 2 arctan (t/T ) /π in the case of longitudinal wave, with M = 1. The com-

parison is displayed in Fig. 2.8; the solid lines show the evolution of the propulsion

speed obtained by our analysis while the dashed lines are obtained using the quasi-

steady approximation. Two values of T are employed for illustration. For T = 100,

the development of the wave frequency is slow compared with viscous diffusion, and

the quasi-steady approximation leads to a reasonable agreement with our results;

the inertial effects are relatively unimportant in this limit. In the other limit for

T = 0.01, the wave frequency increases quickly compared to the viscous time scale,

and the quasi-steady analysis significantly over-estimates the swimming speed; the

inclusion of inertial effects as carried out in this chapter is thus critical in this case.

In conclusion, our results complement Taylor’s classical swimming sheet

calculation by deriving the transient pumping and swimming motion of the sheet.

Generally, the two time scales derived above, which control the startup of the

flow surrounding the sheet (tD ∼ 1/k2ν), and the startup of the swimmer (tM ∼
M2/k2ν), are expected to govern transient effects in transport and locomotion at

low Reynolds numbers. In addition, our study could be extended to the case of

viscoelastic fluids, for which the relaxation time scale of fluid becomes important,

and more complex transient processes such as the switching of rotation direction
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in bacterial flagella.

Chapter 2, in full, is a reprint of the material as it appears in Proceedings

of the Royal Society A 2009. Pak, On Shun; Lauga, Eric, the Royal Society, 2009.

The dissertation author was the primary investigator and author of this paper.



Chapter 3

Hydrodynamics of the

double-wave structure of insect

spermatozoa flagella

In addition to conventional planar and helical flagellar waves, insect sperm

flagella have also been observed to display a double-wave structure characterized

by the presence of two superimposed helical waves. In this chapter, we present

a hydrodynamic investigation of the locomotion of insect spermatozoa exhibiting

the double-wave structure, idealized here as superhelical waves. Resolving the

hydrodynamic interactions with a non-local slender body theory, we predict the

swimming kinematics of these superhelical swimmers based on experimentally col-

lected geometric and kinematic data. Our consideration provides insight into the

relative contributions of the major and minor helical waves to swimming; namely,

propulsion is due primarily to the minor wave, with negligible contribution from

the major wave. We also explore the dependence of the propulsion speed on geo-

metric and kinematic parameters, revealing counter-intuitive results, particularly

for the case when the minor and major helical structures are of opposite chirality.

3.1 Introduction

Many microorganisms propel themselves by propagating travelling waves

along one or many slender flagella [17]. The motility features of these flagella de-

32
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pend on the cell type, either prokaryotic (cells without a nucleus) or eukaryotic

(cells with nuclei). The flagella of prokaryotic bacteria, such as those utilized by

Esherichia coli, are helical in shape and are passively rotated at their base by a

motor embedded in the cell wall. The rotation propagates an apparent helical wave

from the sperm head to the distal end of the flagellum, propelling the cell in the

opposite direction. Eukaryotic flagella exhibit a different internal structure, called

an axoneme, which is composed of microtubules, proteins and protein complexes

such as dynein molecular motors. The dynein arms convert chemical energy con-

tained in ATP into mechanical energy, inducing active relative sliding between the

microtubules, which in turn leads to bending deformations which propagate along

the flagellum. A common structure of the axoneme has a ring of nine microtubule

doublets spaced around the circumference and two additional central microtubules

(the so-called 9+2 axoneme). Other variations of the axonemal structure have also

been observed [12].

Generally, three levels of complexity in undulatory beat patterns are ob-

served in eukaryotic flagella [4, 12], following a hierarchy in the structure of the

axoneme: (1) the lowest in the hierarchy is a simple planar beating pattern, as in

human and sea-urchin spermatozoa flagella (Fig. 3.1a), with the common 9+2 ax-

oneme structure; (2) a more complicated three-dimensional helical beating pattern

is exhibited by some insect spermatozoa with a 9+9+2 axoneme, as in Gryllotalpa

gryllotalpa (Fig. 3.1b); (3) the highest level of complexity is a double-wave pattern

observed in some insect spermatozoa with a 9+9+2 axoneme and accessory bodies

endowed with ATPase activity, as in Haematopinus suis (Fig. 3.1c). A vast diver-

sity in sperm structure is found in insects [54], and the hierarchy described is also

observed even just within the realm of insect spermatozoa flagella [4, 12]. Fig. 3.2

shows a schematic diagram of an pterygote insect flagellosperm and its ultrastruc-

ture (reproduced with permission from Ref. [12]). Similar to the 9+2 axoneme

observed in cilia and flagella of many plant and animal cells, the central core of

the insect sperm axoneme is composed of two central microtubules surrounded by a

ring of nine microtubule doublets. However, the ring of nine microtubule doublets

is surrounded by another nine accessory tubules, forming the characteristic 9+9+2

arrangement of the insect sperm axoneme. In addition to the more complicated

microtubule arrangement, two prominent features of inset spermatozoa flagella are
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376 B. BACCETTI 

Fig. 29. Sequences of frames from high-speed cinefilms showing flagellar beat of 
different insect sperms. (A) Ctenocephulus mnis: 9 + 2 model. Total time: 0.21 s. x380. (B) 
Gryllotulpu gryllotulpu: 9 + 9 + 2 model with a rigid caudal tip (t). Total time: 0.43 s. x560. 
(C) Huematopinus suis: 9 + 9 + 2, the axoneme twinned in each sperm. Total time: 0.21 s. 
x790. 
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(b)

(c)

EXPERIMENTAL METHODS AND
APPARATUS

Preparations
Sea urchins of the species Arbacia were obtained from the Marine
Biological Laboratory (Woods Hole, MA). Sperm shedding was induced
by injection of 1-2 ml of 0.5 M KC1 into the body cavity of sea urchins.
The spermatozoa were suspended in filtered sea water at pH = 7.8.
A few drops of sperm suspension were placed on a microscope slide and

covered with a 1 80-,um thick coverslip. The thickness of the fluid layer of
the sperm suspension was -20 ,m. The slide was placed on the stage of a
Zeiss universal microscope (Carl Zeiss, Inc., Thornwood, NY). Viewing
and filming was done with dark-field illumination using a Zeiss ultracon-
densor (NA = 1.4) and a Zeiss oil immersion 40x objective (NA = 0.85)
(Carl Zeiss, Inc.). Films were made within 5-6 min after slide prepara-
tion.

Temperature Control
A polyethelene bag, secured both at the base and above the objective nose
piece, enclosed the lower part of the microscope. The focus and mechani-
cal stage knobs protruded through openings in the bag. Cold air, with a
temperature varying from 4 to -1 0° C, depending on the desired tempera-
ture of the sperm preparation, was blown through the bag thus cooling the
lower part of the microscope. The temperature was measured away from
the direct airstream with a mercury thermometer and with a thermistor
taped to the objective. These two temperatures agreed with each other to
within 20C. Temperatures of the experimental preparations mentioned
below in the Results section were those measured with the thermistor.

Cinemicrography
The light source for dark-field illumination was a 1,000 W xenon arc
lamp (type 982C-1; Conrad-Hanovia, Hanovia Lamp Division, Newark,
NJ). The lamp was operated in a flashing mode by a steering circuit
analogous to that described previously (Eykhout and Rikmenspoel,
1960). For each flash, a condensor of 100 jiF at 200 V was discharged,
giving an electrical input of 1.6 J/flash. Almost square light pulses of
slightly <1 00-,us duration were obtained.

In between light flashes and when preparing for filming, the xenon arc
lamp must be kept ionized by a direct current of 10-15 A. The resulting
constant light output was not sufficient to register the sperm flagella on
the film; it was used to advantage for viewing and focusing the prepara-
tions. Ultraviolet and infrared radiation from the lamp was eliminated
with 3-mm GG420 and 6-mm KG3 glass filters (Schott and Gen., Mainz,
Federal Republic of Germany).

Precise measurement of flagellar positions requires the presence of
good fiducial markings. For this purpose a grid of fine glass wires of 20jm
thickness was cemented in the field diaphragm of the projection eyepiece
of the microscope. The glass wires were illuminated from the side,
through a window machined in the projection eyepiece, by a 300 W
quartz halogen projection lamp (type ELH; General Electric Co., Cleve-
land, OH). To obtain sharp imaging of the glass wire grid onto the
photographic emulsion, it was necessary to screen off all but the center 2
mm of the top lens of the eyepiece.

Cinemicrographs at 400 or 200 frames/s were made on 16mm Kodak
#2514 emulsion (Eastman Kodak Co., Rochester, NY). This film is
extremely fine grained but consequently rather insensitive. Fig. I illus-
trates the quality of the photographic imaging obtained. The final
magnification (using a 5 x projection ocular) on the 16mm emulsion was
-60 x.

Digitizing Equipment
Of sperm selected for detailed analysis, sequences of up to 70 consecutive
16-mm frames were rephotographed and enlarged ten times on 35-mm

FIGURE 1 Positive enlargement of a part of a 16-mm film frame
showing an Arbacia sperm is pictured. The reference lines, which act as
fiducial markings for defining the absolute position of the sperm, were
photographed with the preparation as described in the text.

Kodak #2514 emulsion (Eastman Kodak Co.). On these rephotographed
images, the sperm and the reference lines appear bright on a dark
background. Apparatus was constructed to automate the analysis of the
rephotographed images.

In principle the apparatus consists of a television camera that scans the
projected image of a rephotographed sperm. The output of the television
camera is fed into the digitizer and a microcomputer that computes the
coordinates and the curvature of a number of points along the flagellum.
Details of the instrument and its operations are given below.
The sperm images were projected onto a tracing table at a final

magnification of 2,510 x by a 35-mm film strip projector (model
SM1000; Singer Education Systems Inc., Rochester, NY). Highly trans-
parent and fine grained Mylar drafting film (Keuffel and Esser Co.,
Morristown, NJ) served as the projection screen. A Fresnel lens with a
focal length of 50 cm and having 2 lines/mm (Edmund Scientific Co.,
Barrington, NJ) was mounted 2 cm below the projection screen. This lens
concentrated the light from the projector onto the objective of the
television camera (model SV650; Dage-MTI Inc., Michigan City, IN)
situated I m above the projected image.

Fig. 2 shows a diagram of the image seen at the Mylar projection
screen. The reference lines shown define the position of the sperm in the
preparation. These reference lines could not be used directly as a set of
coordinate axes because they were not perfectly straight and perpendicu-
lar to each other. Instead, the reference lines were traced out, and an
external X, Yaxes system was drawn on the Mylar screen, as shown in Fig.
2. When a new photograph was projected, the Mylar screen was shifted so
as to align the reference lines.
A slit arrangement, shown diagrammatically, in Fig. 3, was placed over

the projected image of the spermatozoon. The slit, driven by a synchro-
nous motor, scanned the sperm image from the head towards the tip as
shown in Fig. 3. The overhead television camera thus observed a section of
the sperm flagellum, which during a scan moved distally.
The whole slit assembly was mounted on a Paragon drafting machine

(Keuffel and Esser Co.). This made it possible to displace the slit
arrangement parallel to itself and to change the direction in which the
scanning took place, as indicated in Fig. 2. The angle X (see Fig. 2) of the
scanning direction relative to the X, Yaxes could be read directly from the
vernier on the drafting machine.
The television camera was mounted such that it could be rotated on its

optical axis. In actual use the lines of the television raster were always
parallel to the slit. The magnification of the objective of the television
camera was chosen so that the image of a sea urchin sperm covered about
3h4 of the height of the television monitor screen. The video system thus
operated in its own coordinate system, with a different orientation and
magnification from that at the optically projected image. To avoid
confusion the optical coordinate system, which was fixed to the sperm
preparation, will be written in capitals (X, Y), and the video coordinate
system in lower case (x, y).
The television camera probes the image along the raster lines from left

to right and from top to bottom. The video digitizer (model 622; Colorado

BIOPHYSICAL JOURNAL VOLUME 47 1985396

(a)

Figure 3.1: A hierarchy of the complexity of flagellar beating pattern observed
in eukaryotic cells. (a) Planar-wave pattern in sea-urchin spermatozoa flagella [1];
(b) helical-wave pattern in Gryllotalpa gryllotalpa [4]; (c) double-wave pattern
in Haematopinus suis [4]. All images reproduced with permission; (a) from R.
Rikmenspoel and C. A. Isles, Biophys. J., 47, 395–410, 1985, copyright 1985
Elsevier; (b) & (c) from B. Baccetti, Adv. Insect Physiol., 9, 315–397, 1972,
copyright 1972 Elsevier.



35

the mitochondrial derivatives and accessory bodies running along the axoneme (see

Ref. [12] for a thorough review of insect sperm structure).

Although the structure of many different spermatozoa has been exam-

ined, the rapid and divergent evolution in sperm morphology is not well under-

stood [12, 55]. Hydrodynamic considerations of the relationship between flagellar

morphology and functional parameters such as the swimming speed may provide

useful information for explaining the evolutionary divergence. Due to its intricate

nature, the double-wave structure is less well explored than wave types sitting

lower in the hierarchy. Relevant studies on the planar and helical wave structures

are abundant and well developed (see the classical and recent reviews [15–17]), but

we are not aware of any hydrodynamic studies dedicated to the double-wave struc-

ture. Here we present a hydrodynamic study on the motility of insect spermatozoa

exhibiting a double-wave beat pattern.

The double-wave pattern is characterized by the simultaneous presence of

two kinds of waves, a minor wave with small amplitude and high frequency su-

perimposed on a major helical wave of large amplitude and low frequency. The

minor wave has also been observed to be approximately helical [56], and the com-

bined activity of the two is described as a double-helical beating pattern [12]. The

double-wave structure was first observed in Tenebrio molitor and Bacillus ros-

sius by Baccetti et al. [7, 11], and was also later found in Lygaeus [9], Culicoides

melleus [6], Aedes notoscriptus [10], Ceratitis capitata [13], Drosophila obscura [8],

Megaselia scalaris [5], and more recently in Aleochara curtula [56] and Drusilla

canaliculata [57]. Fig. 3.3 compiles a collection of images of spermatozoa exhibit-

ing the double-wave structure. Werner & Simmons [12] have presented a thorough

review of this complex structure in insect spermatozoa.

Most studies on insect spermatozoa focus on the sperm ultrastructure, and

there are very few studies on insect sperm motility [12]. Many important geometric

and kinematic data required for hydrodynamic modeling of the double-wave struc-

ture are unavailable. In particular, we are not aware of any information about the

chirality of the minor helical structure relative to the major helical structure. The

generation and propagation mechanism of the double-wave is also not yet fully

understood. Baccetti et al. [7, 11] have suggested that the accessory bodies and

the axoneme are responsible for the major and minor waves, respectively, whereas
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Apart from biomechanical and energy-producing tasks,
the mitochondrial derivatives have been proposed to
function in the activation and nutrition of the oocyte
(Perotti, 1973), or in embryonic development (Bressac,
Fleury & Lachaise, 1994; but see Karr, 1996; Karr &
Pitnick, 1996). Different roles of the mitochondrial
derivatives need not be mutually exclusive, and it might
be that the derivatives serve different purposes during
a spermatozoon’s life.

(3) Accessory bodies

The ground plan of insectan spermatozoa comprises two
accessory bodies which flank the axoneme and run along it
like the mitochondrial derivatives. They differ enormously
in shape and dimensions among the insect orders, raising
doubts about their homology (Jamieson, 1987). In some
insect taxa, like in the Heteroptera and some Diptera,
accessory bodies are secondarily lost.
In the meal beetle, Tenebrio molitor L., the accessory bodies

consist of a protein cortex exhibiting ATPase and UTPase

activity that surrounds an inner carbohydrate core (Baccetti
et al., 1973a). In the Phasmatodea, the accessory bodies are
made of juxtaposed laminae also exhibiting ATPase and
UTPase activity (Baccetti et al., 1973b). The enzyme activity
has been assumed to reflect the involvement of the accessory
bodies in a special kind of motility (see section III.1).

III. PATTERNS OF INSECT SPERM MOTILITY

The majority of studies on insect sperm motility have been
conducted in vitro using different microscopic techniques
and a variety of artificial media (salines, buffers) for the
sperm to swim in. Hence it is very difficult to compare and
categorize motility data for different species given in the
literature.

The first comparative data on insect sperm motility were
published by Baccetti (1972) and Phillips (1974). Detailed
studies with a strong focus on sperm motility were con-
ducted using the coleopteran Tenebrio molitor and the phasmid

Fig. 1. Schematic representation of the ground plan of an pterygote insect flagellosperm and its ultrastructure. (A) A typical
filiform insect spermatozoon. Although not easily visible from the outside it can be divided into five distinct parts: acrosome,
nucleus, centriole adjunct, flagellum, and tail end. (B) Cross section of the acrosome showing its trilayered arrangement of an inner
acrosomal rod (ar), an acrosomal vesicle (av) and an outer extra acrosomal layer (el). (C) Cross section of the nucleus (n) showing
condensed chromatin. (D) Cross section of the posterior centriole adjunct region. This part of the spermatozoon is characterized by
the electron dense centriole adjunct material (ca), often surrounding the anterior part of the axoneme (ax) and the tip of one of the
mitochondrial derivatives (md). (E) Cross section through a representative segment of the flagellum. In addition to the axoneme,
two accessory bodies (ab) and the two mitochondrial derivatives of often different size (md1, md2) can be seen. The mitochondrial
derivatives typically bear paracrytalline inclusions (pc). (F) Cross section through the tail end showing dissociated axonemal tubules.
(G) Cross sectional representation of a typical 9]9]2 insect sperm axoneme. nine microtubule doublets (d) with associated dynein
arms (da) and radial spokes (rs) are connected to two central microtubules (ct) via the central sheath (cs). The doublets are in turn
surrounded by nine accessory tubules (at). Accessory tubules and doublets are linked together by intertubular material (itm). (H)
Schematic cross sectional drawing of an axonemal doublet showing the protofilament arrangement of the A and B subtubules. The
radial spoke (rs), the inner dynein arm (ia) and the outer dynein arm (oa) are attached to the A subtubule.

Michael Werner and Leigh W. Simmons194

Biological Reviews 83 (2008) 191–208 ! 2008 The Authors Journal compilation ! 2008 Cambridge Philosophical Society

Figure 3.2: Schematic representation of the ground plan of an pterygote insect
flagellosperm and its ultrastructure. (A) A typical filiform insect spermatozoon.
(B) Cross section of the acrosome. (C) Cross section of the nucleus. (D) Cross
section of the posterior centriole adjunct region. (E) Cross section through a rep-
resentative segment of the flagellum. In addition to the axoneme, two accessory
bodies (ab) and the two mitochondrial derivatives of often different size (md1,
md2) can be seen. (F) Cross section through the tail end. (G) Cross sectional
representation of a typical 9+9+2 insect sperm axoneme. Nine microtubule dou-
blets (d) with associated dynein arms (da) and radial spokes (rs) are connected
to two central microtubules (ct) via the central sheath (cs). The doublets are in
turn surrounded by nine accessory tubules (at). Accessory tubules and doublets
are linked together by intertubular material (itm). (H) Schematic cross sectional
drawing of an axonemal doublet showing the protofilament arrangement of the A
and B subtubules. The radial spoke (rs), the inner dynein arm (ia) and the outer
dynein arm (oa) are attached to the A subtubule. This figure is reproduced with
permission from M. Werner and L. W. Simmons, Biol. Rev., 83, 191–208, 2008,
copyright 2008 John Wiley and Sons. The caption is adapted and modified from
the original article to only keep the portion relevant to this work.
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3

2. R = Alks: the amplitude of the large wave, non-dimensionalized by 1/ks.

3. r = As/Al: the ratio between the small amplitude and the large amplitude.

4. c = cl/cs: the ratio between the large wave speed to the small wave speed.

5. N : number of large wavelengths.

6. H: the length of the sperm head, nondimensionalized by 1/ks

7. rF : the radius of the cross-section of the flagellum, nondimensionalized by 1/ks.

8. the radius of the sperm head, which is assumed to be the same the radius of the cross-section of the flagellum.

The sperm head is modelled by a prolate spheroid.

FIG. 1: Insect sperms

Geometrical data extracted from literature and based on estimations (See Table I and II).
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Figs I--3.  - -  I. Actively swimming spermatozoa of C. melleus. Phase contrast. Scale = 20 lain. - -  2. 

Electron micrograph of oblique longitudinal section of spermatozoan showing insertion of tail into 

excavation in celt nucleus. - -  3. Electron micrograph of transverse sections of spermatozoa showing 

9 + 9 + 2 fibre array, rod: mitochondrial derivatives. Scale = 0.1 ~tm. 
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Fig. 4. Photographs of a linear cell moving past a 
fixed background spot (B), without a change in focus, at 
O(A), 0.4(B), 1.2(C), 1.6(D), 2.2(E), and 2.6(F) seconds. 
The cell is oriented along an imaginary horizontal line 
passing through the tips of its head and tail, as in Figure 
5Ca-f. In A, note series of tandemly arranged in-focus (i) 
and out-of-focus (0) regions beginning at tip of head 
(arrow). Arrowhead points to primary bends. Compare 
with primary bends of rounded cells (Figs. 2, 3). Cell 

passes through full cycle beginning in A and reaching 
same stage again in F. Stages in cycle are identifiable by 
noting position of anterior one-fourth of cell. In A, 
anterior region begins to come into focus. The in-focus 
region elongates in B and reaches a maximum in C 
(bracket). The tip of the head begins to go out of focus in 
D (arrow), continues in E, and finally begins to come back 
into focus in F. 

rounded cell stops moving when primary 
bending ceases or the cell loses control over 
primary bending. Immobile rounded cells of- 
ten display much too rapid, “out-of-control’’ 
primary bends that are somewhat larger and 
more uniform than those of moving cells. 
Similar bending replaces normal primary 

bending in many immobile linear cells near- 
ing death. 

Cells from a given female tend to be pre- 
dominantly of the same form, either rounded 
or linear. Linear cells usually move for only a 
few minutes, while rounded cells often rotate 
for more than an hour. Transformations of 

Mosquito Sperm-Tail Movement 24 7 

Fig. 7. Cinemicrographs (a and b) at  an interval of 20 frames (120 msec), showing the same group of 

mosquito sperm as in Figure 5. The sperm in Figure 5 were demembranated until all movement ceased 

and then reactivated. Nearly all the sperm, except four sperm on the far left of the field shown here, . 

began to move actively, with their tails extending out of the genital duct (g) (magnification, X 1,200). 

(a)

(b)

(c)

(d)

(h)

(f)
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the five species (r = 0.87). Consistent with this conclu- 
sion, the coiling diameter of long sperm exceeds notice- 

ably that of short sperm (P< irrespective of the sex 
in the three sperm dimorphic species studied. The degree 
of coiling is close to one whorl and an half in both short 
and long spermatozoa from males. Similarly to what was 
observed with minor waves, major waves are only mod- 

ified in long sperm in female reproductive tracts 
(PC0.02). Actually, in spermatozoa coming from fe- 
males, the coiling degree of short sperm remains un- 
changed (t test between coiling diameter, P>0.05), 
while it is less than one whorl in long sperm, except in D .  

obscura. Observations of spermatozoa in females prior 
to storage in the ventral receptacle clearly show that this 
modification of the major wave of long sperm is due to 
storage but not to transfer. The comparison between the 

coiling diameters of long sperm yielded from vaginas of 
newly inseminated females (U) and from females after 
storage (F,) show a significant difference (t test, 
P<lOP9, except in D .  obscura). In contrast, comparison 
of U with M,, that is with long sperm prior to transfer, 
show reduced differences (despite statistically effective, 

t test, P<0.02) in the three sperm dimorphic species (0. 
microlabis has not been studied in that respect). It is 
worth noting that a similar effect of storage, that is, 
alteration of the coiling diameter, was similarly observed 

in the sperm monomorphic control species, D .  latifasci- 

aeformis. 

Fig. 1 .  Microphotographs of Drosophilu obscura male sperm. a: Por- 

tion of a long sperm artificially uncoiled (fixed to the slide), showing 

both minor (m and arrows) and major waves (M). b: Free spontane- 
ously coiled short and long spermatozoa. Minor waves are recogniz- 

able (m and arrows) and major wave results in a coiling process, 
accounting for the use of the coiling diameter (D) as a measure of this 
latter wave. Heads are indicated (h). Scale bar: 20 pm. 

there is no general trend of that parameter to increase or 
decrease with sperm length. 

Beat frequency versus wave propagation veloc- 
ity. An interesting phenomenon appears if we plot beat 

frequency against wave propagation velocity (Fig. 2). 
With short sperm these two kinetic parameters are posi- 
tively and similarly correlated in both males (i.e., prior 
to transfer) and females (i.e., post-storage) and in the 
four species (P<O.OOl) .  In contrast, with long sperm 

such a strong correlation is observed only in males where 
it closely matches that of short sperm (correlation com- 
parison test, P = 0.36). In females, the concordance of 
the two kinetic parameters is disrupted, clearly due to a 
burst of wave propagation velocities toward markedly 
higher values. None of the two disrupted kinetic param- 
eters is significantly correlated to sperm length (r= 
-0.19) even though there is a tendency for the longest 
sperm (e.g., D .  pseudoobscura) to show the highest 
wave propagation values (Fig. 2b). 

Major Wave 

Coiling diameter. Mature spermatozoa removed 
from the seminal vesicles of male gonads show a typical 
coiling feature. In females, this disappears due to the 
space constraining tubular shape of the major unpaired 
storage organ (ventral receptacle). However, if sperm are 
removed from the ventral receptacle, the coiling feature 
is restored. Within sex (that is, involving either pre- 
transfer sperm in males or post-storage sperm in fe- 

males), the coiling diameter determining the major wave 
is a highly stable and hence reliable parameter. Table IIb 

shows that it is strongly correlated to flagellar length in 

DISCUSSION 

We observe no actual straightforward progression 
of Drosophila spermatozoa, in contrast to sperm in ver- 
tebrates and even in other Diptera like Ceratitis capitata 

[Baccetti et al., 19891. This is not due to experimental 
conditions because Ceratitis spermatozoa tested in our 
saline solution keep their progressive movement. 

However, we observe two characteristic waves. 
The co-occurrence of these two categories of waves ap- 
pears to be common in dipterous [Baccetti et al., 1989; 

Swan, 19811 as well as non-dipterous insects [Baccetti, 
1972; Baccetti et al., 19731. 

Beat frequency does not vary as a function of the 
mean species-specific sperm length. In that respect, it is 
worth noting that the values of beat frequency obtained 
in Drosophila, ranging from 10 to 25 beats.s-', are com- 
parable to those in other insect species [e.g., 15 
beatsas-' in Ceratitis capitata, Baccetti et al., 1989; 40 
beatsas-' in Bacillus, Baccetti et al, 19731, or mammals 
[e.g., 11 beats-s-' in bulls, Lindemann and Gibbons, 
19751, the sperm lengths of which differ greatly from 

one another. Differences of beat frequency between short 
and long spermatozoa exist in all the sperm dimorphic 

species investigated but are not due to structural differ- 

(g)

(e)

Figure 3.3: The double-wave beating pattern observed in insect spermatozoa
flagella of different species: (a) Megaselia scalaris [5]; (b) Haematopinus suis [4];
(c) Culicoides melleus [6]; (d) Tenebrio molitor [7]; (e) Drosophila obscura [8]; (f)
Tenebrio molitor [9]; (g) Aedes notoscriptus [10]; (h) Bacillus rossius [11]. All
images reproduced with permission; (a) from S. K. Curtis and D. B. Benner, J.
Morphol., 210, 85–99, 1991, copyright 1991 John Wiley and Sons; (b) from B.
Baccetti, Adv. Insect Physiol., 9, 315–397, 1972, copyright 1972 Elsevier; (c) from
J. R. Linley, Entomol. Exp. Appl., 26, 85–96, 1979, copyright 1979 John Wiley
and Sons; (d) from B. Baccetti, A. G. Burrini, R. Dallai, F. Giusti, M. Mazzini,
T. Renieri, F. Rosati, and G. Selmi, J. Mechanochem. Cell Motil., 2, 149–161,
1973, copyright 1973 Plenum Publishing Corporation, with kind permission from
Springer Science+Business Media B.V; (e) from C. Bressac, D. Joly, J. Devaux,
C. Serres, D. Feneus, and D. Lachaise, Cell Motil. Cytoskel., 19, 269–274, 1991,
copyright 1991 John Wiley and Sons; (f) from D. M. Philips, in M. A. Sleigh,
editor, Cilia and Flagella, 379–402, 1974, copyright 1974 John Wiley and Sons;
(g) from M. A. Swan, Gamete Res., 4, 241–250, 1981, copyright 1981 John Wiley
and Sons; (h) from B. Baccetti, A. G. Burrini, R. Dallai, V. Pallini, P. Periti, F.
Piantelli, F. Rosati, and G. Selmi, J. Ultrastruct. Res., 44, 1–73, 1973, copyright
1973 Elsevier.
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Swan [10] has stated that the major wave may be due to the sliding of the acces-

sory tubule against the axonemal doublets. More recently, Werner et al. [56] have

proposed a completely different line of thought, suggesting that the major wave is

not in fact a real wave but a static helical structure formed due to the coupling

of static forces of the axoneme, mitochondrial derivatives, and plasma membrane.

The apparent propagation of the major wave could be due to the passive rolling

of the entire cell and might in fact be mistaken for an active, propagating wave

under the microscope. It has therefore been suggested that the sperm motility is

caused solely by the minor wave. The relative extent of the contribution of the

major and minor waves to propulsion is thus still an open question [6]. With the

hydrodynamic study presented in this chapter, we hope to provide physical insights

on these unresolved problems.

The structure of this chapter is as follows. We idealize the double-wave

structure as the propagation of superhelical waves and model the hydrodynamics

using non-local slender body theory in Sec. 3.2. In Sec. 3.3, we present the com-

puted hydrodynamic performance of spermatozoa of different species and compare

the predictions with available experimental data (Sec. 3.3.1). The features of

superhelical swimming are illustrated by a specific model organism, namely the

spermatozoa of Culicoides melleus (Sec. 3.3.2). We then investigate the effects

of kinematic and geometric parameters on the propulsion performance of a su-

perhelical swimmer (Sec. 3.3.3). Finally, the limitations of the present study and

directions for future work are discussed in Sec. 3.4.

3.2 Materials and methods

3.2.1 Idealized double-wave structure: superhelical swim-

mers

The experimentally observed double-wave structure of insect spermatozoa

is mathematically idealized in this chapter as a superhelix (a small helix itself

coiled into a larger helix); we refer to the helical structure with the larger wave-

length as the major helix and the other as the minor helix. To mathematically

describe a superhelix, we first construct the position vector of a regular axial
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helix (the major helix) to be H(s′) = [AM cos(kMαs
′), AM sin(kMαs

′), αs′], with

α = 1/
√

1 + A2
Mk

2
M . Here kM is the wave-number, AM is the amplitude, and

s′ ∈ [0, L′] and L′ are the arc-length parameter and the length of the major helix,

respectively. From this basic helix the local unit tangent t̂A, unit normal n̂A, and

unit binormal b̂A = t̂A × n̂A vectors are determined, and we take them to define

a local coordinate system upon which the minor helix is constructed [58]. The

position vector of the combined superhelical shape is then given by

X(s′) = [x(s′), y(s′), z(s′)] (3.1)

= H(s′) + Am cos(kms
′)n̂A(s′)± Am sin(kms

′)b̂A(s′), (3.2)

where Am and km are the amplitude and wave-number of the minor helix, re-

spectively. Two different configurations will be considered: the ‘+’ sign leads to

a superhelical structure where the major and minor helices both have the same

chirality, whereas the ‘−’ sign represents the case of opposite chirality. Note that

s′ is no longer the natural arc-length parameter, but merely a regular parameter

for describing the swimmer’s geometry. The arc-length of the complete superhe-

lix, denoted by s, as a function of the parameter s′ is determined by numerical

integration, and the total length of the superhelix is denoted by L.

The major and minor helices are free to propagate waves at different wave

speeds. Denoting cM and cm as the major and minor wave speeds respectively, the

position vector at time t, X(s′, t), may be written in component form as

x(s′, t) = AM cos[kM(αs′ − cM t)]− Am cos[km(s′ − cmt)] cos[kM(αs′ − cM t)]
± αAm sin[km(s′ − cmt)] sin[kM(αs′ − cM t)], (3.3)

y(s′, t) = AM sin[kM(αs′ − cM t)]− Am cos[km(s′ − cmt)] sin[kM(αs′ − cM t)]
∓ αAm sin[km(s′ − cmt)] cos[kM(αs′ − cM t)], (3.4)

z(s′, t) = ± αAmAMkM sin[km(s′ − cmt)] + αs′. (3.5)

In addition to the long flagellum, insect spermatozoa have cell bodies which

are very slender and short when compared to the flagellum size. We expect that

the hydrodynamic influence of the sperm head is negligible and do not include such

a body in our consideration. A typical superhelical swimmer is shown in Fig. 3.4,

using the dimensionless parameters of Culicoides melleus spermatozoa.
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Figure 3.4: Idealization of the double-wave structure as superhelices for the (a)
same-chirality, and (b) opposite-chirality configurations, using the dimensionless
parameters of Culicoides melleus spermatozoa (Table 3.2).

3.2.2 Hydrodynamic modeling

Flagellar swimming is a result of the interaction between the actuating body

and the surrounding fluid. A tractable and accurate approach to studying such

hydrodynamic interactions exploits the slenderness of the flagellum, in which the

velocity along the flagellar centerline is related to the fluid forces along the same

curve. In previous studies, the fluid-body interaction has been modeled using a

resistive force theory [59–61], in which local forces acting on the flagellum at any

station along the filament are expressed in terms of the local velocity at the same

location. Resistive force theory takes only local effects into account and neglects

any hydrodynamic interactions between different parts of the deforming body.

The local theory works well for simple geometries. However, due to the complexity

of the superhelical structure in the problem under consideration here, the local

theory is inadequate (see Sec. 3.3.4 for details), and we employ instead the full

non-local slender body theory [62] to study the hydrodynamics of the superhelical

swimmers. The non-local theory captures the hydrodynamic interactions between

distant parts of a curved filament, while still taking advantage of the slenderness

of flagellum to simplify the analysis.
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The flagellum is modeled as a slender filament of length L and circular cross-

section of radius ε L r(s), where ε� 1 is the small aspect ratio of the flagellum (the

maximum radius along the flagellum ar divided by its total length L), and r(s)

is the dimensionless radius. The non-local slender body theory is algebraically

accurate in ratio of the slenderness ε; namely, by setting the radius profile to

r(s) =
√

4s(L− s)/L, the computed fluid velocity is accurate to O(ε2) (see [62]).

For a given velocity distribution v(s, t) along the filament at time t, the

corresponding fluid force per unit length f(s, t) is given implicitly by the non-local

relation

8πµv(s, t) = −Λ[f(s, t)]−K[f(s, t)], (3.6)

where

Λ[f ](s, t) =
[
c0(I + t̂t̂) + 2(I− t̂t̂)

]
f(s, t), (3.7)

K[f ](s, t) = (I + t̂t̂)

∫ L

0

f(s̃, t)− f(s, t)

|s̃− s| ds̃

+

∫ L

0

(
I + R̂R̂

|R(s̃, s; t)| −
I + t̂t̂

|s̃− s|

)
f(s̃, t) ds̃, (3.8)

are the local and non-local operators, respectively, µ is the shear viscosity of the

fluid, c0 = − ln(ε2e) > 0, R(s̃, s; t) = X(s̃, t) −X(s, t), R̂ = R/|R|, and t̂ is the

local unit tangent vector at the point s.

The swimmers of interest deform their shapes in a prescribed, time-varying

fashion (the superhelical wave pattern, Eqs. 3.3 to 3.5), and the velocity created

on its surface by this deformation is given by vdeform(s, t) = ∂X(s, t)/∂t. At every

time instant t, the swimmer can be seen as a solid body with unknown translational

velocity U(t) and rotation rate Ω(t). The velocity created on the swimmer’s surface

due to swimming is then vswim(s, t) = U + Ω × [X(s, t) − X0], where X0 is an

arbitrary reference point (taken as the origin here for simplicity). Therefore, the

local velocity relative to the fluid v(s, t) is given by the sum of the deformation

and swimming velocities: v(s, t) = vdeform + vswim = U + Ω × [X(s, t) − X0] +

∂X(s, t)/∂t. In this work, the wave propagation is towards the positive z direction.

Therefore, a negative swimming velocity (U) means the propulsion occurs in a

direction opposite to the wave propagation, while a positive swimming velocity

means both the propulsion and wave propagation occur in the same direction.



42

Using a Galerkin method [63], we express the local force f(s, t) as a finite

sum of Legendre polynomials and solve Eq. 3.6 for f(s) by requiring the equation

to hold under inner products against the same basis functions. The first integral

in the non-local operator K[f ] is diagonalized in this space [64,65]. The system is

closed by requiring the entire swimmer to be force free and torque free,∫ L

0

f(s)ds = 0, (3.9)∫ L

0

[X(s)−X0]× f(s)ds = 0, (3.10)

providing at each moment in time a system of 6 equations to solve for the 6

unknowns U(t) and Ω(t).

The swimming velocities determined in the manner described above repre-

sent velocities in a reference frame fixed on the swimmer. In order to study the

full three-dimensional swimming kinematics in the laboratory frame (in which the

body moves with velocity Ũ(t) and rotation rate Ω̃(t)), we must include a trans-

formation between the two. We denote the Cartesian coordinate system moving

with the swimmer, the body frame, as [ex, ey, ez] and the Cartesian coordinate

system in the laboratory frame as [e1, e2, e3]. The evolution of the body frame,

with respect to the laboratory frame, is then governed by

dE

dt
= Ω(t)× E, (3.11)

where E = [ex, ey, ez]
T , along with the initial condition [ex, ey, ez](t = 0) =

[e1, e2, e3].

3.2.3 Non-dimensionalization

The process of non-dimensionalization is very useful in science and engi-

neering to identify the relevant dimensionless parameters governing the physics of

the problem. In theoretical studies, it always allows a more concise description of

the system, while in experimental studies, it reduces the number of independent

experiments required to fully explore the problem. The present system is made

dimensionless by scaling lengths by 1/km, velocities by cm, and time by their ra-

tio, 1/cmkm. The dimensionless position vector describing the kinematics of the
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superhelix is thus given by

x = R
{

cos[K(αs′ − ct)]− r cos(s′ − t) cos[K(αs′ − ct)]
+ αr sin(s′ − t) sin[K(αs′ − c t)]

}
, (3.12)

y = R
{

sin[K(αs′ − c t)]− r cos(s′ − t) sin[K(αs′ − c t)]
− αr sin(s′ − t) cos[K(αs′ − c t)]

}
, (3.13)

z = αs′ + αrR2K sin(s′ − t), (3.14)

where all variables are now understood to be dimensionless. Four dimensionless

parameters characterizing the kinematics are identified above: the dimensionless

amplitude of the major helix, R = AMkm, the ratio of the wave-numbers charac-

terizing the major and minor helices, K = kM/km, the ratio of the minor helix

amplitude to the major helix amplitude, r = Am/AM , and the ratio of the major

wave speed to the minor wave speed c = cM/cm. In the double-wave pattern ob-

served in insect spermatozoa, the major wave amplitude is always larger than the

minor wave amplitude (r < 1; though this need not be true for a general superhe-

lix). In addition, it is also observed that the minor wave speed is always greater

than the major wave speed in the double-wave structure of insect spermatozoa

(c < 1).

3.2.4 Kinematic and geometric data

From the non-dimensionalization above, we have identified four dimension-

less parameters (r, R,K, c) required to fully characterize the centerline motion of

a superhelical flagellum. Werner and Simmons [12] have compiled a very use-

ful table containing kinematic and geometric data of the double-wave structure

observed in insect spermatozoa in previous studies. The table reveals that experi-

mental measurements of the necessary quantities for hydrodynamic modeling are

very limited, due to the difficulties involved in interpreting three-dimensional data

from two-dimensional images [6].

Here we follow the table compiled by Werner and Simmons and estimate

the missing information based on images of insect spermatozoa reported in the

literature. Table 3.1 contains reported and estimated data on the double-wave

structure, including the wavelengths, amplitudes, frequencies, major and minor
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wave speeds, flagellum thickness, and the swimming speed of different insect sper-

matozoa. Our estimated quantities are marked with stars to distinguish them from

reported quantities by the original chapters. In some studies (e.g. for Lygaeus [9]),

only relative lengths can be given due to the lack of scale bars in the reported im-

ages; these relative quantities are square-bracketed in Tables 3.1 & 3.2. Geometric

and kinematic data can display large variations even within a species (Tenebrio

molitor [7]). When the distribution of the quantities are not given, arithmetic

means of the available measurements are used whenever appropriate in the present

study.

The measurements are presented in the corresponding dimensionless quan-

tities in Table 3.2, using the scalings defined in Sec. 3.2.3. We have not found in the

referenced literature any information about the chirality of the major and minor he-

lical structures. We therefore present results below for both the same-chirality and

opposite-chirality configurations. In our measurements (collected in Table 3.1),

the wavelength of the minor wave is taken to be the two-dimensional distance

between adjacent minor wave peaks. A small correction factor is required to con-

vert these two-dimensional quantities to the appropriate wavelengths in describing

the three-dimensional superhelical structure. The correction factor depends on

whether the superhelical structure is in the same-chirality (1/(1 − αλm/λM)) or

the opposite-chirality (1/(1 + αλm/λM)) configuration.

3.3 Results

In this section, we first use the framework described above to predict the

swimming performance of spermatozoa of different species, and compare our hy-

drodynamic results with available experimental measurements. We then illustrate

the basic features of superhelical swimming by focusing on a model organism,

namely Culicoides melleus, and proceed to perform a parametric study investigat-

ing the effects of certain kinematic parameters (minor and major wave speeds) and

geometric parameters (minor and major wave amplitudes).
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( |Ũ −
−
V
|

V

)
A

ed
es

n
ot

os
cr

ip
tu

s
0.

24
∗

3.
4∗

0.
5∗

0.
41
∗

1
0.

25
∗

0.
21

(0
.1

6)
1.

2%
(0

.3
4%

)
B

ac
il

lu
s

ro
ss

iu
s

0.
45
∗

4.
2∗

0.
09

2
0.

67
∗

1.
5

0.
13
∗

0.
03

1
(0

.0
33

)
0.

30
%

(0
.1

4%
)

C
er

at
it

is
ca

pi
ta

ta
0.

25
16

.8
0.

07
5

0.
8∗

4
−

5e
0.

28
∗

0.
11
∗

0.
15

(0
.0

39
f
)

0.
40

%
(0

.0
21

%
)

36
%

(6
5%

)
C

u
li

co
id

es
m

el
le

u
s

0.
16

1.
5

0.
38

3
0.

28
∗

0.
10

0.
05

1
(0

.1
5)

0.
30

%
(1

.5
%

)
49

%
(5

0%
)

D
ro

so
ph

il
a

ob
sc

u
ra

0.
30
∗

7.
6∗

0.
03
∗

1
0.

18
∗

0.
01

2
(0

.0
09

6)
0.

10
%

(0
.0

36
%

)
L

yg
ae

u
s

0.
21
∗

3∗
0.

14
∗

1
−

2g
0.

34
∗

0.
03

3
(0

.0
81

)
0.

24
%

(0
.7

1%
)

M
eg

as
el

ia
sc

al
ar

is
0.

10
∗

8.
3∗

0.
05
∗

1
0.

35
∗

0.
03

5
(0

.0
65

)
0.

16
%

(0
.4

2%
)

T
en

eb
ri

o
m

ol
it

or
0.

36
8.

4
0.

29
0.

32
4

0.
28
∗

0.
34

0.
40

(0
.4

1h
)

1.
2%

(0
.8

6%
)

18
%

(2
1%

)



47

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

1 2 3 4 5 6 7 8
0

0.4

0.8

1.2

1.6

A
ed

es

B
a
ci

ll
u
s

C
er

a
ti
ti
s

C
u
li
co

id
es

D
ro

so
p
h
il
a

L
yg

a
eu

s

M
eg

a
se

li
a

T
en

eb
ri

o

A
ed

es

B
a
ci

ll
u
s

C
er

a
ti
ti
s

C
u
li
co

id
es

D
ro

so
p
h
il
a

L
yg

a
eu

s

M
eg

a
se

li
a

T
en

eb
ri

o

(b) η± [%](a) Ũ±

Figure 3.5: Predicted swimming performance: (a) average swimming speed, Ũ±,
of different species; (b) hydrodynamic efficiency, η±, of different species. Open
symbols (blue circles) represent the same-chirality configuration (+); filled sym-
bols (red squares and diamonds) represent the opposite-chirality configuration (−);
for blue open circles and red squares, swimming occurs in the opposite direction
as the wave propagation; on the contrary, red diamonds represent the cases of
opposite-chirality configuration where the velocity in the z-direction occurring in
the same direction as the wave propagation; black crosses represent experimental
measurements of V = Vsperm/cm (See Tables 3.1 & 3.2).

3.3.1 Hydrodynamic performance

Propulsion speed

The propulsion speed is an important functional parameter characteriz-

ing the motility of a sperm cell. There exist only very few measurements of the

swimming speed of insect spermatozoa exhibiting the double-wave structure: Cer-

atitis capitata was observed to swim with speed Vsperm = 16µm/s [13] and the

minor wave speed is estimated to be 150µm/s (hence, V = Vsperm/cm=0.11); Culi-

coides melleus [6] was observed to swim with speed 8.3µm/s and minor wave

speed 80µm/s (V = 0.10). For the case of Tenebrio molitor, a wide range of sperm

speeds were reported (from 16 to 100µm/s) as well as minor wave speeds (40 to

300µm/s) [7]. The distributions were not reported however, so using the arithmetic

means we obtain a swimming speed to minor wave speed ratio of V = 0.34.
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For a superhelical swimmer in our model, the swimming kinematics are

three-dimensional and unsteady in time 1, and the most relevant quantification of

the propulsion speed is an average swimming velocity in the laboratory frame,

denoted by Ũ±, where the + and − signs represent the same- and opposite-

chirality configurations respectively. The average swimming speed is defined as

Ũ± = |[〈Ũx〉, 〈Ũy〉, 〈Ũz〉]|, where |...| denotes the magnitude of a vector, and 〈...〉
denotes a time average 2. Since the chirality configuration remains unknown, we

present predictions for both cases in Fig. 3.5a. Only the three sets of experimental

measurements of the swimming performance (V = Vsperm/cm) mentioned above are

available for comparison and are super-imposed on the same figure (see Fig. 3.5

caption). Predictions as ratios of the swimming speed relative to the minor wave

speed (dimensionless speed) for species with no measurement of V are also provided

in Fig. 3.5a.

In most of the cases considered, the propulsion in the longitudinal direction

(z-direction) of these superhelical swimmers is opposite to the direction of wave

propagation (the major wave propagates in the positive z-direction, and the minor

wave propagates along the curved major helix and distally towards the positive z-

direction), regardless of the chirality configuration. This is not unlike the behavior

of swimmers propagating a planar sinusoidal or a regular helical wave, for which

the swimming direction is also opposite the direction of the wave propagation. In

superhelical swimming, however, we also find cases of the opposite-chirality con-

figuration where the body swims in the same direction as the wave propagation.

Specifically, we note a qualitative difference between the study of the same-chirality

and opposite-chirality configurations for Ceratitis capitata and Tenebrio molitor.

In these simulations, a superhelical wave is set to propagate in the positive z-

direction, and both the opposite-chirality configurations of Ceratitis capitata and

Tenebrio molitor generate a positive Uz (swimming is in the same direction as the

wave propagation), while their corresponding same-chirality configurations gener-

ate a negative Uz (swimming is in the opposite direction as the wave propagation).

1The deformations (Eqs. 3.3 to 3.5) are higher frequency oscillations modulated by lower
frequency oscillation (a beat). There does not exists a time period T such that the deformation
vector repeats itself: R(s, t + T ) 6= R(s, t),∀T .

2The time averaging is defined for a function f(t) as
∫ t0
0

f(t)dt/t0, where t0 is a sufficiently
large time such that the peak-to-peak fluctuation in time is less than 1% of the final average
value
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The speed and efficiency of these peculiar swimmers are distinguished from other

cases by red diamonds in Fig. 3.5. It remains a question whether this phenomenon

may be observed in nature, since the chirality configuration and the swimming

direction (relative to the wave propagation) of actual insect spermatozoa display-

ing the double-wave structure are still unclear. Nevertheless, this phenomenon by

itself is intriguing and will be further explored in Sec. 3.3.3.

The swimming speed predictions lie at least within the same order of mag-

nitude of the experimental measurements for both chirality configurations. The

same-chiralty results provide slightly better agreement than the opposite-chiralty

results (without taking the swimming direction into account). For the same-

chirality configuration, the discrepancies, |Ũ+ − V |/V , between the predictions

and the experimental measurements read 36% for Ceratitis capitata, 49% for Culi-

coides melleus, and 18% for Tenebrio molitor. For the opposite-chirality config-

uration, the discrepancy between our predictions and the experimental measure-

ments, |Ũ− − V |/V , are 65% for Ceratitis capitata, 50% for Culicoides melleus,

and 21% for Tenebrio molitor. Given the primitive nature of the data employed

(see Sec. 3.2.4), we consider the agreements here to be reasonable. However, we

cannot draw definite conclusions on the issue of chirality configuration; further

experimental observations are necessary.

It shall be remarked that the present study is largely constrained by the

unavailability of experimental measurement data. Critical kinematic information,

such as the major and minor wave speeds, are often not reported in the literature

and are impossible to estimate from the images available. The speed ratio c =

cM/cm is not available for simulations for most species. The computations here

are still possible because of the independence of the swimming kinematics on the

parameter c (verified numerically and will be explained in Sec. 3.3.3). Therefore,

the specific value of c is unimportant for all cases considered here; we adopt c = 0

in all simulations hereafter unless otherwise stated.

Hydrodynamic efficiency

Another important functional parameter is the hydrodynamic efficiency of

the swimmer. In the microscopic world, the hydrodynamic efficiency is typically

very low. For a rigid helix, Lighthill [66] calculated theoretically the maximum
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efficiency attainable to be about 8.5%, while the typical efficiency of biological cells

is around 1-2% [16, 32, 66–69]. For low Reynolds number swimming, a common

measure of the hydrodynamic efficiency, η, is the ratio of the rate of work required

to drag the straightened flagellum through the fluid to the rate of work done on

the fluid by the flagellum during swimming [66],

η± =
ξ‖LŨ

2
±〈∫ L

0
v · fds

〉 , (3.15)

where ξ‖ = 4π/c0 is the drag coefficient for a straight, slender rod, and the brack-

ets indicate a time average. We calculate the hydrodynamic efficiencies for both

the same- and opposite-chirality configurations (see Fig. 3.5b) for spermatozoa of

different species. For the same-chirality configuration, the efficiency ranges from

0.16% (Megaselia scalaris) to 1.2% (Aedes notoscriptus and Tenebrio molitor); for

the opposite-chirality configuration, the efficiency ranges from 0.036% (Drosophila

obscura) to 1.5% (Culicoides melleus). The efficiencies of these swimmers are

comparable with typical biological cells.

3.3.2 Model organism: Culicoides melleus

In this section, we illustrate the features of superhelical swimming by sin-

gling out a superhelical swimmer defined using the geometric data of the sperm

cell of Culicoides melleus (Table 3.2). See Fig. 3.4 for the swimmer geometry.

Swimming kinematics

The swimming velocities computed for motion in the body frame [Ux, Uy, Uz]

and in the laboratory frame [Ũx, Ũy, Ũz] of the superhelical swimmer with data from

the sperm cell of Culicoides melleus are plotted in Fig. 3.6 for the same-chirality

(Fig. 3.6a) and opposite-chirality (Fig. 3.6b) configurations. We include in these

figures the results for ratio of the major and minor wave speeds c = 0 (solid lines)

and c = 0.4 (dotted lines). When c = 0, the deformation (Eqs. 3.12 to 3.14) is

2π-periodic, therefore the swimming kinematics in the body frame are also 2π-

periodic. However, when observed in the laboratory frame, the coupling between

the translational and rotational kinematics renders the swimming velocities no
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Figure 3.6: Swimming velocities in the body frame U = (Ux, Uy, Uz) for (a) the
same-chirality and (b) the opposite-chirality configurations, and in the laboratory
frame Ũ = (Ũx, Ũy, Ũz) for (c) the same-chirality and (d) the opposite-chirality
configurations, for Culicoides melleus spermatozoa.
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longer 2π-periodic, and the motion is unsteady in time (Fig. 3.6c & d). We observe

a pattern consisting of higher frequency oscillations modulated by a lower frequency

envelope. For the case of c = 0.4, when observed in the body frame, we see

modulated waveforms. However, when transformed to the laboratory frame, the

cases of c = 0 and c = 0.4 have identical swimming kinematics (see the overlapped

solid and dotted lines in Fig. 3.6c & d), implying that the swimming kinematics

in the laboratory frame are independent of the major propagating wave speed.

The value of c affects only the kinematics in the body frame; why the relative

wavespeed is unimportant is described in greater detail in Sec. 3.3.3.

The three-dimensional swimming velocities give rise to a doubly-helicated

trajectory (the presence of a minor structure on top of a major helical structure).

However, this could be difficult to observe experimentally, since the major ampli-

tude of the doubly-helicated trajectory is usually much smaller than that of the

superhelical swimmer; the swimmer would apparently move with a straight tra-

jectory (with very small oscillations in the transverse direction). Recall that for

regular helical swimming (r = 0), the trajectory of the helical swimmer reduces to

a regular helix.

Head-less swimming

The shape and size of the sperm head vary among spermatozoa of different

species: human and bull spermatozoa have relatively large, paddle-shaped heads,

whereas insect spermatozoa have elongated heads which are almost indistinguish-

able from the mid-piece. The additional hydrodynamic resistance from the pres-

ence of a head would seemingly degrade the swimming performance of the sperm

cell. However, Chwang and Wu [70] showed that a sperm head is actually neces-

sary for helical swimming; without one, the motion is that of a rotating rigid body,

which cannot be realized absent an external force or torque [71]. To satisfy the

zero net-torque condition, a sperm head is required to balance the reaction torque

acting on the flagellum. This constraint does not apply for planar, sinusoidal wave

motion, which can swim without an anchor or load.

We pause to point out a subtle but important difference between a rotating

prokaryotic helical tail and a eukaryotic tail propagating a bending helical wave.

For a eukaryotic tail propagating a bending wave, the fluid forces act to rotate
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the flagellum opposite the direction of the apparent helical rotation. The rotation

due to the fluid reaction creates torques due to local spinning (rotation of the

flagellum about its centerline), which balance the opposing torque generated by

the helical wave propagation. Therefore, a eukaryotic cell could theoretically swim

without a sperm head, albeit very slowly because the flagellum is very slender

and the local torques are correspondingly small. Quantitatively, using a local

drag model ( [70]) it can be shown that the head-less swimming speed scales as

U/c ∼ 2µk2/ξ‖(1 + k2A2)b2 +O(b4), where b is the radius of a cross-section of the

flagellum, and k and A are the wavenumber and helical radius respectively. Using

the geometrical data of flagella of Euglena viridis summarized by Brennen and

Winet [17], and assuming a flagellar diameter of 2b ≈ 0.25µm [72,73], we find U/c ≈
10−3. For a prokaryotic tail, however, the helix rotates as a rigid body. In this case,

the local spinning torques generated by the active helical rotation and the passive

rotation due to the fluid reaction are identical in magnitude but opposite in sign.

The torque-free condition therefore requires that the fluid reaction counter-rotates

the helix at precisely the rotation rate of the helical wave propagation. Hence there

can be no effective helical rotation, and the body cannot swim. Although head-less

swimming is theoretically possible for eukaryotic tails, the swimming speed would

be exceptionally small as shown by the estimation above. The subtle difference

between the two types of helical waves just described is often therefore neglected,

and it is generally reasonable to state that head-less swimming is not possible using

helical wave propagation.

In superhelical swimming a sperm head is not required for self-propulsion

(indeed, all cases reported in this chapter were studied with the absence of a sperm

head) since a superhelical wave motion is in general not a rigid body motion. Fur-

thermore, since actual insect spermatozoa heads are very slender and short com-

pared with the entire length of the flagellum, the contribution of its hydrodynamic

resistance and the hydrodynamic interactions with the flagellum should be negli-

gible. Therefore, we do not expect the presence of a slender and short sperm head

to introduce qualitative differences in the results.
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3.3.3 Parametric study

Next, we explore the effects of certain kinematic (wave speeds) and geo-

metric parameters (wave amplitudes) on the swimming velocities of a superhelical

swimmer.

The effect of the major/minor wave speed ratio

In this problem, we have scaled the velocities upon the minor wave speed

cm, which implies that the dimensionless swimming velocities scale linearly with

the minor wave speed. Here we examine the effect of the major wave speed on

the swimming performance of a superhelical swimmer and answer the question: to

what relative extent do the two waves contribute to the propulsion of the super-

helical swimmer [6]? Specifically, we study the effect of the parameter c = cM/cm,

which is the ratio of the major wave speed to the minor wave speed. For every

species shown in Table 3.2, we fix all parameters but vary the value of c from

zero to unity (c < 1, as cM < cm). It is found that the swimming velocities in

the laboratory frame is independent of the value of c. We have already shown in

Fig. 3.6 the results for two values of c for illustration. While the resulting swim-

ming motions in these two cases differ significantly in the body frame, they are

identical when observed in a laboratory frame of reference. The numerical results

imply that the major wave speed does not contribution to propulsion.

These findings may be understood by noting an ambiguity in definition.

First consider a single helical filament (without a sperm head) placed in a fluid.

Such a body cannot swim on its own, for there is no load or cell to counter balance

the torque it would exert on the surrounding fluid during rotation, so it must

be motionless as seen in a fixed, laboratory frame. However, this body may be

represented as an active helical body propagating a wave with velocity c plus a

rigid body rotation that contributes a wave with speed −c. That the body frame

may be chosen arbitrarily allows for such an ambiguity in the definition of the

swimming speed, but in the laboratory frame this ambiguity disappears.

A similar argument can be used to show that c has no bearing on the swim-

ming speed of a superhelical flagellum in the laboratory frame. For a superhelical

flagellum, the propagation of the major wave can be defined as a rigid body rota-
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tion of the entire superhelical structure about the longitudinal axis (z-axis) in the

body frame. The apparent rotation rate is the sum of the rotation caused by the

active propagation of the major wave and the rotation caused by fluid reaction to

maintain the force-free and torque-free conditions. For swimming without a head,

only the apparent rotation rate is important because the fluid forces and torques

are functions of the apparent rotation rate alone (not the absolute value of the

rotation rate due to the active major wave propagation). Any alternation of the

major wave speed is accompanied by a corresponding change in the rotation rate

caused by the fluid reaction, resulting in the same apparent rotation rate and the

same force and torque balances. Therefore, the kinematics and dynamics do not

depend on the absolute value of the major wave speed c (or cm). In other words,

the major wave speed does not contribute to swimming.

For the case of swimming with a head, the fluid reaction will not only rotate

the flagellum but also the sperm head, which creates extra torques and perturbs

the original force and torque balances. Altering the absolute value of the major

wave speed in this case theoretically will affect the swimming velocities even in the

laboratory frame, because it changes the relative portion of the rotation rate caused

by the fluid reaction and hence the value of the extra torque from the sperm head.

However, since the sperm head is slender and short compared with the overall

length of the flagellum of actual insect spermatozoa, the extra resistant forces and

torques created should be insignificant. Therefore, we suggest that the propagation

of the major wave contributes very little to the propulsion (none in the case of head-

less swimming), and that it is the minor wavespeed which is primarily responsible

for the propulsion. Note also that the hydrodynamic efficiencies in Sec. 3.3.1 are

independent of the value of c. Therefore, from a hydrodynamic efficiency point of

view, there is no advantage or disadvantage to actively propagate a major wave.

However, there are other energy costs not taken into account here (for example,

work done to produce the sliding of microtubules within the flagellum) in actively

propagating a major wave. Therefore, we speculate that it might be energetically

more favorable for a doubly-helicated organism to propagate only a minor wave.
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Figure 3.7: Parametric study of the dependence of the average swimming speed
in the body fixed frame Ub (a(i)&(ii)) and in the laboratory frame Ũ± (b(i)&(ii))
as a function of the dimensionless parameters R and r (see the schematic for
geometrical illustration). Panels c(i) & c(ii) show the average swimming velocity
in the z-direction in the body frame, 〈Uz〉, as a function of R and r. The panels on
the left (right) refer to the same- (opposite-) chirality configuration. The dotted
line in panel c(ii) represent the contour of 〈Uz〉 = 0. Geometric data of Culicoides
melleus spermatozoa are used for other fixed parameters.
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The effect of the parameters R and r

We now examine the effect of geometrical dimensionless parameters R and

r, keeping all other parameters of Culicoides melleus spermatozoa fixed. R is the

dimensionless major wave amplitude and r is the ratio of minor to major wave

amplitude, hence the minor wave amplitude is given by rR (see the schematic in

Fig. 3.7). In general, one expects the propulsion speed to increase with the wave

amplitude for simple geometries. However, for a superhelical structure, the de-

pendence of the average swimming speed on the minor wave amplitude displays

interesting behavior. Physically, both the propulsive force and the bulkiness of

the structure are varied upon changing the major or minor wave amplitudes. The

competition between these factors and the coupling between kinematics in differ-

ent directions create interesting geometric dependencies of the average swimming

speed. We illustrate this by observing the average swimming speed under different

frames of reference.

First, we look at the time-averaged swimming velocity in the body frame

Ub = |[〈Ux(t)〉, 〈Uy(t)〉, 〈Uz(t)〉]|. As shown in Fig. 3.7a(i), for the same-chirality

configuration the average swimming velocity grows monotonically with R and r.

Note that, keeping other parameters fixed, increasing the value of R = AMkm

for a fixed r = Am/AM geometrically means that both the major AM and minor

Am amplitudes are increased simultaneously by the same proportion. There is a

competition between the increase in the overall hydrodynamic resistance due to

the increased bulkiness (correlated with increases in AM and Am) and an enhanced

propulsive force (correlated with an increase in Am). In the case of the same-

chirality configuration, the latter effect dominates. However, for the opposite-

chirality configuration, as shown in Fig. 3.7a(ii), non-monotonic variations in the

swimming speed with the major amplitude R are observed for certain values of r,

the ratio of the minor to major wave amplitudes.

Since the swimming kinematics are three-dimensional, variations of the geo-

metric parameters affect swimming velocities and rotational rates in all directions.

In particular, a large propulsion speed in the body frame does not necessarily

imply a large net propulsion speed in the laboratory frame. The mean swim-

ming speeds in the laboratory frame for both chirality configurations are shown

in Fig. 3.7b(i-ii). The coupling between the swimming kinematics in all directions
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Figure 3.8: Three-dimensional swimming velocities in the laboratory frame ((a)i
& (b)i) of two opposite-chirality superhelical swimmers, and their corresponding
geometries ((a)ii & (b)ii). (a) R = 7, r = 0.4, and Uz is negative, while the
wave propagation is towards the positive z-direction; (b) R = 9, r = 0.4, and Uz is
positive, while the wave propagation is towards the positive z-direction. Geometric
data of Culicoides melleus spermatozoa are used for other parameters.

produces more complicated variations in the propulsion speed as a function of R

and r. Non-monotonic behaviors are observed in both cases.

We have already noted that some superhelical swimmers propel themselves

surprisingly in the same direction as the wave propagation, unlike for planar or sin-

gle helical wave propulsion. For the range of parameters explored in this chapter,

this direction reversal is found to occur only in the opposite-chirality configuration

for sufficiently large R and r (Fig. 3.7c(ii)), while the average propagation velocity

〈Uz〉 is always negative for the same-chirality configuration (i.e. the swimming di-

rection is always opposite to the direction of the propagating wave) (Fig. 3.7c(i)).

In Fig. 3.8, we show the detailed swimming velocities of two opposite-chirality

superhelical swimmers, where one of them has its longitudinal propulsion in the

opposite direction relative to the wave propagation (R = 7, r = 0.4, Fig. 3.8a),

and the other in the same direction as the wave propagation (R = 9, r = 0.4,

Fig. 3.8b). It is intriguing that a small change in the geometry (see the corre-

sponding superhelices in Fig. 3.8a(ii) & b(ii)) can lead to a swimming direction

reversal. We argue in the next section (Sec. 3.3.4) that this transition is related to

the hydrodynamic interaction between distinct parts of the superhelical flagellum.
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Figure 3.9: Comparison between the resistive force theory (RFT) (dashed lines)
and the non-local slender body theory (SBT) (solid lines), using geometric data
of Culicoides melleus spermatozoa (a) & (b), and Tenebrio molitor spermatozoa
(c) & (d). The panels on the left (right) refer to the same- (opposite-) chirality
configuration.

3.3.4 Comparison between slender body theory and resis-

tive force theory

In order to consider the relative importance of nonlocal hydrodynamic in-

teractions in the swimming of superhelices, we now compare our results to those

obtained using the more commonly used local drag model (Eq. (3.6), but neglect-

ing the non-local term K). The local drag model (so-called resistive force theory)

ignores hydrodynamic interactions between distinct parts of the curved flagellum,

and is expected to work well [59–61] for simple geometries where different parts

of the body are sufficiently well separated. However, for more complicated geome-
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tries, the local drag model may not capture even the correct qualitative features.

Recently, Jung et al. [58] studied the rotational dynamics of opposite-chirality

superhelices and found a qualitative discrepancy (the rotational direction of the

superhelix when being towed in a viscous flow) between the experimental results

and the predictions from the resistive force theory. Other recent works have also

shown the inadequacy of the local drag model [69, 74].

Fig. 3.9 shows the swimming speeds computed with both non-local slender

body theory and resistive force theory, using two sets of geometrical data: Culi-

coides melleus (Fig. 3.9a (same-chirality) & b (opposite-chirality)), and Tenebrio

molitor (Fig. 3.9c (same-chirality) & d (opposite-chirality)). In these two cases,

all other parameters are fixed but the amplitude ratio r is varied from 0 to 0.5. In-

creasing r complicates the swimmer geometry, and the hydrodynamic interactions

are expected to be more significant for large r. For the case of Culicoides melleus

(Fig. 3.9 a & b), we see good (even quantitative) agreement between the results

form the slender body theory (solid lines) and the resistive force theory (dashed

lines). However, for the case of Tenebrio molitor (Fig. 3.9 c & d), which has larger

values of R and K, the deviation between the two models becomes significant for

the same-chirality configuration (Fig. 3.9c) as r increases. There are even qual-

itative discrepancies: in the opposite-chirality configuration (Fig. 3.9c) for large

values of r, the resistive force theory fails to capture the transition in the sign of

〈Uz〉 predicted by the slender body theory. Since no such transition is found when

the hydrodynamic interactions are ignored, this transition may be attributed to

nonlocal hydrodynamic interactions of the body with itself. In general, and per-

haps unsurprisingly, we have shown that the local drag model breaks down when

the geometry of the structure is sufficiently intricate.

3.3.5 Asymptotic analysis

In the locomotion of some species of spermatozoa, the minor wave amplitude

is much smaller than the major wave amplitude (see Tables 3.1 & 3.2), which

motivates us to perform an asymptotic analysis for r � 1. Such an asymptotic

analysis linearizes the problem geometrically and allows the nonlinear effects to

be taken into account order by order, making the problem more amenable to
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mathematical analysis. However, even in the asymptotic consideration, three-

dimensional force and torque balances do not yield tractable analytical results.

Hence, in the spirit of Chwang and Wu [70], we perform the force and torque

balances only in the longitudinal (z-) direction using the resistive force theory,

which is expected to be at least qualitatively correct in the asymptotic limit r � 1.

The local force fz and torque mz may be expressed as

fz = cUzFz(t, s)Uz + cΩzFz(t, s)Ωz + cFz(t, s), (3.16)

mz = cUzMz(t, s)Uz + cΩzMz(t, s)Ωz + cMz(t, s), (3.17)

where the coefficients are determined analytically from Eq. 3.6 (without the non-

local operator) and the geometry of the swimmer (Eqs. 3.12 to 3.14). We consider

regular perturbation expansions in r for every term in Eqs. 3.16 and 3.17, and

enforce the force-free and torque-free conditions order by order. A non-zero time-

averaged swimming velocity enters at O(r2). The leading order mean swimming

velocities for the cases of same- and opposite-chirality configurations read

Ũ± ∼
R2r2

2L2 (1 +R2K2)3/2
×
{(

2− 2L2
)

(ξ − 1)

+R2K2
[
2(ξ − 1±K)− L2(2ξ − 2±K)

]
− 2

[
ξ − 1 +R2K2(ξ − 1±K)

]
cosL

}
, (3.18)

where ξ = ξ⊥/ξ‖ is the ratio of the drag coefficients in the normal direction to the

longitudinal direction (ξ‖ = 4π/c0, ξ⊥ = 8π/(2 + c0)). For very slender filaments,

ξ ≈ 2. We note that the substitution K → −K in Eq. 3.18 converts the same-

chirality speed Ũ+ to the opposite-chirality speed Ũ−. The propulsion speed has

a quadratic dependence on the minor wave amplitude for small r, which is also

found in planar [34] and helical [75] geometries.

These asymptotic results (Eq. 3.18) are compared to the finite amplitude

simulations (both the resistive force theory and the slender body theory predic-

tions) in Fig. 3.10, for a very small amplitude ratio of r = 0.01 and a slenderness

ratio of ε = 1/1000. There is excellent agreement between the asymptotic results

and the finite amplitude resistive force theory simulations. The discrepancy be-

tween the non-local slender body theory and the local drag model highlights the

importance of non-local hydrodynamic interactions for such organisms.
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Figure 3.10: Comparison of the asymptotic results (dotted lines) with the results
from finite-amplitude simulations using the resistive force theory (dashed lines) and
the non-local slender body theory (solid lines). Shown are the contour lines of the
average swimming velocity Ũ± for the (a) same-chirality, and (b) opposite-chirality
configuration for a small minor to major wave amplitudes ratio of r = 0.01.

We conclude by pointing out an intriguing theoretical curiosity, that drag

anisotropy (ξ 6= 1) is not required for superhelical swimming: setting ξ = 1 in

Eq. 3.18, non-zero mean propulsion velocities (of equal magnitude but opposite

signs) are obtained for both chirality configurations,

Ũ±(ξ = 1) = ∓R
4K3(L2 − 2 + 2 cosL)

2L(1 +R2K2)3/2
r2. (3.19)

Note that Becker et al.’s [76] argument of the requirement of drag anisotropy

for locomotion is only true for inextensible swimmers and does not apply here.

The superhelical kinematics described (Eqs. 3.12 to 3.14) are only possible when

extensibility is allowed; the minor helix is built upon another curved structure (the

major helix) and local extension and contraction is implied in the wave kinematics.

When extensibility is permitted, the relaxation of the drag anisotropy requirement

has been recently shown [77]. That the swimming speed is non-zero is due to

intrinsic variations in length (and hence drag) embedded in the curved geometry

of the superhelices. A minor helix built upon a major helix has relatively shorter

lengths in the regions closer to the longitudinal axis, creating an overall imbalance

of hydrodynamic drag even in the isotropic drag case (ξ = 1). A similar example

is a toroidal helix (a helix built upon a circle), which is an idealized model studied



63

recently for dinoflagellates [78]. We expect that the propagation of a wave along a

toroidal helix should also require extensibility, and that propulsion is still possible

even without drag anisotropy [77].

3.4 Discussion

In this chapter we have studied a morphologically interesting double-wave

structure exhibited by various insect spermatozoa. The construction of such sper-

matozoa is considerably more complex than those for flagella which exhibit sim-

pler planar or helical waves: the flagellum does not only have a more complicated

9+9+2 arrangement of microtubules but also mitochondrial derivatives and acces-

sory bodies running along the axoneme [12]. We have mathematically idealized the

double-wave structure as a superhelical structure and presented a hydrodynamic

study on superhelical swimming. The available data is primitive and sparse; nev-

ertheless, we consider the agreement between experimental measurements and the

theory explored herein to be quite reasonable. Through numerical experiments, we

have found that the major wave speed has little contribution to propulsion when

the sperm head is small, as is the case for insect spermatozoa. When there is no

sperm head, the propulsion speed is independent of the major wave speed and de-

pends entirely upon the minor wave speed. We have also explored the dependence

of the propulsion speed on the dimensionless major wave amplitude R and the

ratio of the minor to major wave amplitudes r (Fig. 3.7), and counter-intuitive be-

haviors have been found for the opposite-chirality configuration. In particular, we

have found that propulsion and wave propagation can occur in the same direction

for superhelices in the opposite-chirality configuration.

The present study suggests that the major wave has negligible influence on

the motility of a superhelical swimmer. This finding favors the recent hypothesis

by Werner et al. [56] that the major helical wave is a static (non-propagating)

structure; the minor wave structure is solely responsible for the motility, and the

apparent major wave propagation is simply due to the passive rotation of the entire

geometry (see Sec. 3.1). However, in the study by Baccetti et al. [13] on the motil-

ity of Ceratitis capitata, they have adopted the same experimental techniques as

in Gibbons et al. [79], which distinguished the rolling frequency from the apparent
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beat frequency. In their work, the rolling frequency was measured by stroboscopic

observation of the eccentrically attached sperm head, and the flagellar beat fre-

quency was measured by the same means with the sperm head adhered to the

bottom of the observation dish. Using this method, the major wave speed mea-

sured should be taken as an active propagation speed. We are not in a position to

provide a definite answer on whether or not the major wave propagates actively

in actual insect spermatozoa. However, according to the present study, we suspect

that there might be some biological reasons, other than motility, for the major

wave to propagate actively. We also do not know if the propagation of the major

wave is a biological prerequisite for the propagation of the minor wave. Further

biological studies are required to answer these questions.

It is illuminating to compare the superhelical swimming studied here to

regular helical swimming. The swimming trajectories are qualitatively different

in the two cases: in regular helical swimming, the trajectory is a regular helix,

whereas in superhelical swimming the trajectory is doubly-helicated. In addition,

a regular helical flagellum cannot swim on its own; a sperm head is required to

swim (since the absence of a sperm head renders the deformation of the regular

helix a rigid body motion). In contrast, the propagation of superhelical waves

along a flagellum is in general not equivalent to rigid body motion, and hence

“head-less” swimming is possible. This might help explain the presence of only

a small slender sperm head in insect spermatozoa. In other words, superhelical

swimming can be viewed as an alternative mechanism to regular helical swimming

when only a small sperm head is available.

Finally, a non-local slender body theory was used in this work and compared

with a simpler and widely used local drag model. We showed that the resistive

force theory failed to capture even the qualitative features of the swimmer when

the geometry becomes complicated. The results suggest that further hydrody-

namic studies on superhelical structures require more advanced models than the

local resistive force theory, such as the slender body theory employed here. Opti-

mization with respect to the efficiency of the swimmer taking into account of the

viscous dissipation, and other energy costs due to bending and internal sliding of

filaments [68], which have been neglected in this work, will be interesting for future

work.
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Chapter 4

Propulsion of Flexible Nanowire

Motors

Micro/nano-scale propulsion has attracted considerable recent attention

due to its promise for biomedical applications such as targeted drug delivery. In

this chapter, we report on a new experimental design and theoretical modelling of

high-speed fuel-free magnetically-driven propellers which exploit the flexibility of

nanowires for propulsion. These readily prepared nanomotors display both high

dimensional propulsion velocities (up to ≈ 21µm/s) and dimensionless speeds (in

body lengths per revolution) when compared with natural microorganisms and

other artificial propellers. Their propulsion characteristics are studied theoreti-

cally using an elastohydrodynamic model which takes into account the elasticity

of the nanowire and its hydrodynamic interaction with the fluid medium. The

critical role of flexibility in this mode of propulsion is illustrated by simple phys-

ical arguments, and is quantitatively investigated with the help of an asymptotic

analysis for small-amplitude swimming. The theoretical predictions are then com-

pared with experimental measurements and we obtain good agreement. Finally,

we demonstrate the operation of these nanomotors in a real biological environment

(human serum), emphasizing the robustness of their propulsion performance and

their promise for biomedical applications.

66
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4.1 Introduction

Micro/nano-scale propulsion in fluids is challenging due to the absence of

the inertial forces exploited by biological organisms on macroscopic scales. The

difficulties are summarized by Purcell’s famous “scallop theorem” [18], which states

that a reciprocal motion (a deformation with time-reversal symmetry) cannot lead

to any net propulsion at low Reynolds numbers. Because of the potential of nano-

sized machines in future biomedical applications [19], such as targeted drug delivery

and microsurgery, interdisciplinary efforts by scientists and engineers have recently

resulted in major advances in the design and fabrication of artificial micro/nano-

scale locomotive systems [21–24].

Broadly speaking, these micro/nano-propellers can be classified into two

categories, namely chemically-powered nanomotors [21–23] and externally-powered

propellers [24]. Chemically-powered nanomotors generally deliver higher propul-

sion speeds, but due to the requirements for chemical fuels and reactions, their ap-

plications in real biological environments face a number of challenges. Externally-

powered propellers are often actuated by external magnetic fields. Note that

these externally-powered locomotive systems are often referred to micro- or nano-

swimmers in the literatures, but strictly speaking, they do not represent true self-

propulsion because of the presence of non-zero external torques. In this chapter, we

reserve the terminology, “swimmers”, to force-free and torque-free self-propelling

bodies and refer to externally-powered locomotive systems as propellers, or motors.

According to their propulsion mechanisms, externally powered propellers

can be further categorized into three groups. The first group includes helical

propellers [80, 81], as inspired by helical bacterial flagella [2], which propel upon

rotation imposed by external magnetic fields. The second group of propellers relies

on a surface to break the spatial symmetry and provide one additional degree of

freedom to escape the constraints from the scallop theorem, and hence are termed

surface walkers [82–85]. Finally, the third type of propellers, referred to as flexible

propellers, exploits the deformation of flexible filaments for propulsion. The new

nanomotor presented in this chapter falls into this category. Dreyfus et al. [86] were

the first to realize the idea experimentally by fabricating a 24µm long propeller

based on a flexible filament, made of paramagnetic beads linked by DNA, and
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attached to a red blood cell. Actuation was distributed along the filament by

the paramagnetic beads; the presence of the red blood cell broke the front-back

symmetry, and allowed the propagation of a traveling wave along the filament,

leading to propulsion. Recently, Gao et al. [87] proposed a flexible nanowire motor

made of only metallic nanowires (with three segments of Au, Ag and Ni) readily

prepared using a template electrodeposition approach, and able to swim at speeds

of up to U ≈ 6µm/s for a size of L ≈ 6.5µm. In contrast to the propeller proposed

by Dreyfus et al. [86], the actuation in the device of Gao et al. [87] acted only on

the magnetic Ni portion of the filament (the head), while the rest of nanomotor

was passive.

In the current chapter, we present both a new design and a theoretical

modelling approach for a flexible nanowire motor which offers an improved propul-

sion performance (up to U ≈ 21µm/s at an actuation frequency (f) of 35Hz),

approaching thus the speed of natural microscopic swimmers, such as Escherichia

coli (U ≈ 30µm/s at f = 100Hz) [2] while using a lower frequency. The effect of

size and frequency can be scaled off by nondimensionalizing the propulsion speed

by the intrinsic velocity scale (the product of body length and frequency, Lf) to

obtain a dimensionless propulsion speed, U/Lf , which can be interpreted as the

number of body lengths travelled per revolution of actuation (or also referred to

as the stride length in terms of body length in the biomechanics literature). The

nanomotor put forward in this chapter displays remarkable dimensionless propul-

sion speeds compared with natural microorganisms and other artificial locomotive

systems.

After presenting the experimental method and its performance, we study

the propulsion characteristics of this new high-speed flexible nanomotor theoreti-

cally via an analytical model. The critical role of flexibility in this mode of propul-

sion is established first using simple physical arguments, followed by an asymptotic

analysis which predicts the filament shape and propulsion speed in different phys-

ical regimes. The theoretical predictions are compared with experimental mea-

surements and we obtain good agreements. The improved propulsion performance

of the new fuel-free nanowire motor makes it attractive for future biomedical ap-

plications, which we further illustrate by demonstrating the performance of the

propulsion mechanism in an untreated human serum sample.
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4.2 High-speed propulsion

4.2.1 Nanomotor design and fabrication

The nanowire motors described in this chapter were prepared using a com-

mon template-directed electrodeposition protocol. In contrast to the previous

three-segment (Ni-Ag-Au) design by Gao et al. [87], the new design relies pri-

marily on a 1.5µm-long Ni head and a 4µm-long flexible Ag tail (see a Scanning

Electron Microscopy (SEM) image in Fig. 4.1b). A 0.3µm-long Au segment was

also included (adjacent to the Ni segment) to protect the Ni segment from acid

etching during the dissolution of the Cu sacrificial layer, and to allow functionaliz-

ing the motor with different types of biomolecules and cargos. Both the Ni and Au

segments have a diameter of 200nm. While the Ni segment has a length of 1.5µm

useful to generate sufficient magnetic torques, only a very short segment of Au

(0.3µm) was used to minimize the overall fluid drag of the nanomotor. Flexibility

of the silver segment (Fig. 4.1b) was achieved by its partial dissolution in hydro-

gen peroxide solution [87]. The dissolution step leads also to hydroxyl products

that chemisorb on the Ag surface and result in AgOH and Ag2O surface products.

The dissolved Ag filament had a reduced diameter of approximately 100nm. For

the hydrodynamic model considered in this chapter, the rigid short Au segment is

hydrodynamically indistinguishable from the rigid Ni segment, and hence the Ni

and Au segments are considered in the model as a single rigid 1.8µm-long segment

(1.5µm Ni+ 0.3µm Au), i.e. the nanomotor has a total length of 5.8µm.

The speed of a nanomotor was measured using MetaMorph 7.6 software

(Molecular Devices, Sunnyvale, CA), capturing movies at a frame rate of 30 frames

per sec. The trajectory was tracked using a Metamorph tracking module and the

results were statistically analyzed using Origin software. The speed measured in

this manner is a time-averaged distance travelled per unit time. The measurements

were performed when the nanomotors had reached an equilibrium position (in

which case the image of the nanowire would stay focused under the microscope),

which leads therefore to the time-averaged measurement of U in the laboratory

frame. The equilibrium distance between the nanomotor and the bottom surface

was estimated, by varying the focal plane of the microscope, to be at the scale of

a few microns.
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Figure 4.1: (a) Schematic representation of a Ni-Ag nanowire motor, and no-
tation for the model. (b) Scanning Electron Microscopy (SEM) image showing
the topography of Ni-Ag nanowire which was partially dissolved in 5% H2O2 for 1
minute.

4.2.2 Propulsion performance

The flexible nanomotors were driven by a magnetic field with an unsteady

component of amplitude H1, rotating sinusoidally in a plane perpendicular to a

constant component, H0. The magnetic field precessed about the direction of the

constant magnetic field at an angular frequency Ω = 2πf . The nanomotor was

observed to propel unidirectionally (straight trajectories) in the direction of the

constant magnetic field. In Fig. 4.2 we show two nearby identical nanomotors under

the actuation of the external magnetic field at f = 20Hz. These two nanowires

propel at essentially the same swimming speed along the same direction (the red

lines are their trajectories in a period of 2 seconds), illustrating the stability of this

mode of propulsion. For helical propellers [80,81], swimming is due to the rotation

of rigid chiral objects and hence the swimming kinematics scales linearly with the

applied field: a reversal of the direction of rotation of the magnetic field leads to

propulsion in the opposite direction for these rigid chiral objects. In contrast, the

flexible nanowire motors here exhibit uni-directional swimming, independent of

the rotational direction of the external magnetic field. This is due to the nonlinear

swimming kinematics arising from the flexibility of the nanowire. This simple test

illustrates the fundamental difference between the propulsion of rigid chiral objects

and flexible propellers. In our case, the direction of swimming can be controlled

by altering the orientation of the axial constant component of the magnetic field,

H0.
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10µm

Figure 4.2: Two identical nanomotors swimming under the same magnetic field
at a frequency f = 20Hz. The red lines display the superimposed location of the
nanomotors over a 2-second interval.

We further show in Fig. 4.5(a) the trajectories of the same nanomotor at

different frequencies (see captions for details) over a 3-second period. Upon the

settings H1 = 10G, H0 = 9.5G, and f = 15Hz, we are able to achieve a propul-

sion speed of U = 14.3 ± 2.46µm/s. The speed of 20 different nanomotors were

measured, with all other experimental conditions kept fixed; the values of the

swimming speeds, U , reported in this chapter are averaged quantities over these

different nanomotors. One meaningful method of comparing the propulsion speed

between various propeller designs consists in scaling the speed with the only in-

trinsic characteristic velocity scale of the propeller Lf , where L is a character-

istic body length, and f is a characteristic frequency. This allows to quantify

the distance travelled by the propeller in terms of body lengths per revolution of

rotation. Escherichia coli bacteria [2] typically propel with U/Lf ≈ 0.03 body

lengths per revolution, while the flexible nanomotor reported here was able to

travel 0.164 body lengths per revolution at f = 15Hz. The maximum dimensional

speed achieved was U = 20.8 ± 3.07µm/s with f = 35Hz, corresponding in that

case to ≈ 0.1 body lengths per revolution. We then experimentally measured the

speed-frequency characteristics of these flexible nanowire motors (results shown

as symbols in Fig. 4.5b). In the next section we present a simple physical model

for the locomotion of flexible nanomotors, and compare our theoretical predictions

with these experimental measurements.
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4.3 A minimal model for flexible nanomotors

4.3.1 Chiral propulsion

In this section, we illustrate the working principles of the flexible nanowire

motors. First, we establish that it is essential for the nanowire to deform in a

chiral fashion in order to achieve propulsion.

For low Reynolds number incompressible flows, the governing equations are

the Stokes equation ∇p = µ∇2u, and the continuity equation ∇ · u = 0, where

µ is the shear viscosity, and p and u are the fluid pressure and the velocity field

respectively. Two properties of the Stokes equation can be used to deduce the

necessity of the nanowire being chiral in order to achieve net swimming, as shown

by Childress [32]. First, it can be shown that the mirror image of a Stokes flow is

also a Stokes flow. Therefore, suppose a nanowire swims with a velocity U along

its rotation axis, then its mirror image will also swim at the same velocity U (see

Fig. 4.3). Second, since time does not appear in Stokes equation, it only enters the

problem as a parameter through the boundary conditions. This leads to the time

reversibility of the Stokes equation, meaning that the velocity field u reverses its

sign upon a t→ −t time reversal. In the context of our nanowire motors, suppose

the nanowire propels at a velocity U, then when time is reversed, the nanowire will

propel at a velocity −U (Fig. 4.3). If the deformation of the nanowire is not chiral,

the mirror image of the nanowire can be superimposed with the original nanowire,

and the only thing reversed in the mirror image is the rotational kinematics (i.e. if

the original nanowire rotates clock-wisely, its mirror image will have exactly the

same shape but rotates counter-wisely; note that the translational velocity is un-

changed in the mirror image). In this case, one can also notice that the kinematics

in the mirror image is the same as a time reversal of the original kinematics, ex-

cept that the translational velocity is also reversed for the case of time-reversal

(−U, due to the time-reversibility of Stokes flows). In other words, we have now

two nanowires (a mirror-imaged nanowire and a time-reversed nanowire) having

exactly the same deformation kinematics but with opposite translational velocity

(−U = U), and therefore we conclude that this can happen only if the trans-

lational velocity is identically zero (U = 0). Therefore non-chiral deformation

cannot lead to net propulsion. This simple physical argument shows that a com-
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Figure 4.3: Physical explanation of the necessity of chiral deformation in achiev-
ing propulsion. If the deformation is not chiral, the kinematics of the mirror image
of the nanowire is identical to the time-reversed kinematics, leading to U = 0.

bination of rotational actuation and nanowire flexibility is critical for this mode

of propulsion. Recently, the dynamics of tethered elastic filaments actuated by

precessing magnetic fields has been studied [88–95] and chiral deformation along

the filament has been found to produce propulsive force and fluid pumping. The

swimming behaviours of an untethered flexible magnetic filament displaying chiral

deformation was also addressed computationally [96].

4.3.2 Model setup

Next we show that a simple model taking into account the elasticity of the

nanowire and its hydrodynamic interaction with the fluid medium captures the

essential physics and provides quantitative agreements with experimental measure-

ments. We first solve for the detailed shape of the silver filament, we then predict

the propulsion speed, and finally we compare our results with the experimental

measurements. Theoretical modelling of this type belongs to the general class of

elastohydrodynamical problems, which has recently received a lot of attention in

the literature [59, 60,91,97–101].

Under our theoretical framework, we model the magnetic Ni segment as a

rigid slender rod (radius am = 100nm, length Lm=1.8µm) (the short Au segment

is considered to be part of the rigid rod in this model, as discussed above, see
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Fig. 4.1), and the flexible Ag nanowire (radius a = 50nm, length L = 4µm) as

a classical Euler-Bernoulli beam [102]. We then employ a local fluid drag model,

known as resistive force theory [16], to describe the fluid-body interaction. The

use of a local and linear theory significantly simplifies the analysis and is expected

to provide quantitative agreements because geometric nonlinearities and nonlocal

hydrodynamic effects were proven to be subdominant for gentle distortions of a

slender body in previous work [60,98,100].

Notation for the model is shown in Fig. 4.1(a). The external magnetic field

precesses about the z-axis in the clock-wise direction, and can be described as

H = [H1 cos Ωt,−H1 sin Ωt,H0] = H0[h cos Ωt,−h sin Ωt, 1], where h = H1/H0 is

the dimensionless relative strength of the rotating (H1) and constant (H0) com-

ponents of the magnetic field. We study the regime where the nanowire follows

synchronously the precessing magnetic field, rotating at the same angular fre-

quency (Ω) as the magnetic field about the z-axis. In addition, we can move in

a rotating frame in which the magnetic field is fixed and the shape of the flexi-

ble nanowire does not change with time. In this frame, the precessing magnetic

field is given by H = H0[h, 0, 1], and the nanowire has a non-changing shape

r(s) = [r⊥(s), z(s)] = [x(s), y(s), z(s)] in a background flow, vb, rotating counter-

clockwise about the z-axis: vb = Ωez × r⊥ = Ω(−y, x, 0), where ez is the unit

vector in the z-direction and s is the arclength parameter along the filament.

4.3.3 Elastohydrodynamics at low Reynolds number

We describe the fluid-body interaction by resistive force theory, which states

that the local fluid drag depends only on the local velocity of the filament relative

to the background fluid (although in a non-isotropic fashion). This is thus a local

drag model which ignores hydrodynamic interactions between distinct parts of

the filament, but was shown to be quantitatively correct for gentle distortions of

the filament shape [60, 98, 100]. The viscous force acting on the filament is thus

expressed as

fvis = −[ξ‖tt + ξ⊥(1− tt)] · u, (4.1)

where t(s) is the local tangent vector, u(s) = U − vb is the local velocity of the

filament relative to the background flow vb, and U is the swimming velocity of the
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nanomotor. Here, ξ‖ and ξ⊥ are the tangential and normal drag coefficients of a

slender filament (L� a) and are given approximately by

ξ‖ =
2πµ

log(L/a)− 1/2
, ξ⊥ =

4πµ

log(L/a) + 1/2
, (4.2)

where µ is the viscosity of the fluid (water, µ = 10−3Ns/m2). Since the Ni and Ag

segments have different aspect ratios (Lm/am for the Ni segment), a different set

of drag coefficients ( ξm‖, ξm⊥) is used for the rigid segment.

When the flexible Ag filament of the nanomotor is deformed, elastic bending

forces arise trying to minimize the bending energy. This elastic bending force

can be obtained by taking a variational derivative of the energy functional E =
1
2

∫ L
0
A (∂2r/∂s2)

2
ds, where A is the bending stiffness of the material. The elastic

bending force is then given by

felastic = −A∂
4r

∂s4
· (4.3)

Since we are in the low Reynolds number regime, inertial forces are negli-

gible, and the local viscous fluid forces balance the elastic bending forces, fvis +

felastic = 0, which yields the equation governing the filament elastohydrodynamics

[ξ‖tt + ξ⊥(1− tt)] · u = −A∂
4r

∂s4
· (4.4)

The flexible Ag filament is clamped to the magnetic Ni segment, which is

assumed to be rigid and straight. Hence, its position vector is given by rm(s) =

r |s=L +t |s=L (s− L), where s ∈ [L,L+ Lm].

4.3.4 Nondimensionalization

We now nondimensionalize the variables and equations and identify the

relevant dimensionless parameters governing the physics of this problem. Specifi-

cally, we scale lengths by L, rotation rates by Ω = 2πf , times by Ω−1, velocities

by LΩ, fluid forces by ξ⊥L
2Ω, fluid torques by ξ⊥L

3Ω, elastic forces by A/L2, and

elastic torques by A/L. Using the same symbols for simplicity, the dimensionless

elastohydrodynamic equation now reads

[γ−1tt + (1− tt)] · u = −Sp−4∂
4r

∂s4
, (4.5)

where we have defined γ = ξ⊥/ξ‖, and Sp = L (ξ⊥Ω/A)1/4 is termed the sperm

number, which characterizes the relative influence of the fluid and bending forces.



76

4.3.5 Asymptotic analysis

The geometrical nonlinearity of Eq. (4.5) renders the elastohydrodynamic

equation only solvable via numerical simulation in most situations. Here we are

able to illustrate the essential physics of flexible nanomotor propulsion analyti-

cally via an asymptotic analysis for the case where h = H1/H0 is small. Such an

approximation drops the geometrical nonlinearities and, as will be shown below,

separates the task of determining the filament shape and swimming velocities of

the nanomotor, as the axial velocities are one order of magnitude smaller than the

transverse velocities, the axial swimming kinematics being thus slaved to the trans-

verse kinematics [101]. Even with this simple model, we find that the theoretical

predictions agree well with the experimental measurements. In the experiments,

we do not observe very significant distortion of the flexible Ag filament, which

might explain the success of this simple model.

As the nanomotor was observed to propel unidirectionally in the z-direction

in the experiments (i.e. the direction about which the actuating magnetic field

precesses), we write the swimming speed as U = (0, 0, U) and aim at predicting

the leading order swimming speed in h. We do not expect any O(h0) deformation

nor swimming velocities, and hence the appropriate expansions for the deformation

of the nanowire and the swimming speed are given by

r⊥(z) = h r⊥1(z) + h2r⊥2(z) +O(h3), (4.6)

U = h U1 + h2 U2 +O(h3), (4.7)

where we have s ≈ z +O(h2).

The elastoydrodynamic equation is a fourth-order partial differential equa-

tion in space, and needs thus to be supplied with four boundary conditions. We

prescribe dynamic boundary conditions at the free end z = 0, requiring it to be

force-free and torque-free, which is ∂3r/∂z3(z = 0) = 0 and ∂2r/∂z2(z = 0) = 0

respectively. Since the deformed shape rotates about the z-direction, without loss

of generality, we assume the Ni head lies on the x − z plane. We then prescribe

kinematic boundary conditions at the other end z = 1: r⊥(z = 1) = (b, 0) and

∂r⊥/∂z(z = 1) = (h, 0). From experimental observations, the value of b is seen

to be negligibly small (b ≈ 0) and is difficult to measure accurately. Here, for

simplicity, we thus take b = 0 in our calculations below. In this geometric model,
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we assume that the slope of the magnetic Ni head, ∂x(z)/∂z(z = 1), follows the

slope of the external field (h = H1/H0), which is a good approximation when the

magnetic field strength is strong or when the frequency of actuation is low, such

that the Ni head can align closely with the external magnetic field. The magnitude

of the magnetic torque can be compared with the viscous torque acting on the Ni

head, and their ratio is given by the so-called Mason number, Ma. The ratio varies

from 0.018 – 0.12, for frequency varying form 5Hz to 35Hz. One can also compare

the magnetic torque to the characteristic viscous torque acting on the Ag filament,

and it varies from 0.13 – 0.93, for the same range of frequency. In both cases, Ma is

thus typically small and is at most O(1) at high frequencies. Therefore, within the

range of frequency explored in the experiment, our geometrical model is considered

to be a valid approximation. At higher frequencies, we would get Ma� 1, which

would play a role in the boundary condition at z = 1. In that regime, the viscous

torque would dominate the typical actuation torque by the magnetic field, and the

Ni segment would therefore not be able to align with the magnetic field closely.

We expect that the slope of the Ni rod might then be smaller than that of the

magnetic field, and the phase lag between the motion of the Ni segment and the

magnetic field could be substantial. As a result, a degradation in the propulsion

performance would be expected to occur in this regime.

Determining the flexible filament shape: O(h) calculations

At order O(h), the local viscous force is given by

fvis = h [−y1(z), x1(z),−γ−1U1] +O(h2). (4.8)

From here, we can integrate the O(h) local viscous force in the z-direction over the

entire nanomotor and since this total force needs to vanish because of the absence

of external forces, we find U1 = 0: swimming occurs therefore at order O(h2).

The elastic force is given by felastic = −h Sp−4[∂4x1/∂z
4, ∂4y1/∂z

4, 0] + O(h2).

Balancing the local viscous and elastic forces in the transverse directions yield the

hyper-diffusion equations [100]

−y1 = Sp−4∂
4x1

∂z4
, (4.9)

x1 = Sp−4∂
4y1

∂z4
, (4.10)
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which govern the first order filament shape. The general solution to this system of

partial differential equations is given by

x1(z) =
8∑

n=1

An exp (Sp rnz) , (4.11)

y1(z) =
8∑

n=1

−Anr4
n exp (Sp rnz) , (4.12)

where rn is the n-th eight roots of −1, and An are complex constants to be de-

termined by the boundary conditions. The boundary conditions to this order at

z = 0 are given by ∂3x1/∂z
3(z = 0) = ∂3y1/∂z

3(z = 0) = ∂2x1/∂z
2(z = 0) =

∂2y1/∂z
2(z = 0) = 0. The appropriate boundary conditions at z = 1 are given by

x1(z = 1) = y1(z = 1) = 0, ∂x1/∂z(z = 1) = 1, and ∂y1/∂z(z = 1) = 0. The O(h)

filament shape is now completely determined.

Determining the swimming speed: O(h2) calculations

At order O(h2), the local viscous fluid force acting on the flexible filament

in the z-direction is given by

ez · fvis2 =

{
−(γ−1 − 1)Λ(z)− γ−1U2 , 0 ≤ z < 1,

ξm⊥
ξ⊥

[−(γ−1
m − 1)Λ(z)− γ−1

m U2] , 1 < z ≤ 1 + lm,

where lm = Lm/L, and we have introduced the function Λ(z) = y1(z)∂x1/∂z(z)−
x1(z)∂y1/∂z(z). Since the nanomotor is overall force-free, the second order swim-

ming speed U2 can be determined by integrating the local viscous fluid in the

z-direction over the entire nanomotor and requiring this total force to vanish, i.e.∫ 1+lm

0

ez · fvis2dz = 0, (4.13)

and we see that the swimming speed is slaved to the first order filament shape

[x1(z), y1(z)] via the function Λ(z). Upon simplification with Eqs. (4.9) and (4.10)

and the boundary conditions at z = 0, we obtain

U2 =
1− γ

Sp4(1 + αlm)
× (4.14)[

∂x1

∂z

∂3x1

∂z3
− 1

2

(
∂2x1

∂z2

)2

+
∂y1

∂z

∂3y1

∂z3
− 1

2

(
∂2y1

∂z2

)2]
z=1

,



79

0
0.5

1

1

0

1
1

0.5

0

0.5

1

(iii) Sp = 3 (iv) Sp = 4

0
0.5

1

1

0

1
1

0.5

0

0.5

1

0 2 4 6 8
0

0.01

0.02

0.03

0.04

0
0.5

1

1

0

1
1

0.5

0

0.5

1

0
0.5

1

1

0

1
1

0.5

0

0.5

1

Sp

U2

(ii) Sp = 2

(iii) Sp = 3

(iv) Sp = 4

(ii) Sp = 2

(a) (b)

(i) Sp = 0.5

(i) Sp = 0.5

Figure 4.4: (a) Variation of the dimensionless propulsion speed at second or-
der, U2, with the sperm number, Sp. (b) Superimposed snapshots of pre-
dicted three-dimensional shape of the Ag nanowire at equal time intervals (t =
[T/6, 2T/6, ..., 5T/6, T ] from dark to bright color, where T is the period of the ro-
tating magnetic field), for four different sperm numbers. The Ni head is not shown
here for simplicity.

where α = ξm‖/ξ‖. In dimensional form, the leading order swimming speed, is

given by

U = h2 A(ξ‖ − ξ⊥)

ξ⊥(Lξ‖ + Lmξm‖)
× (4.15)[

∂x1

∂z

∂3x1

∂z3
− 1

2

(
∂2x1

∂z2

)2

+
∂y1

∂z

∂3y1

∂z3
− 1

2

(
∂2y1

∂z2

)2]
z=1

+O(h3).

As in previous work [60, 76, 91, 92, 101, 103], we observe that this mode

of propulsion relies on the drag anisotropy of slender filaments, γ = ξ⊥/ξ‖ 6= 1.

Indeed, when γ = 1, the swimming speed vanishes. Note that for very slender

filaments, we have γ ≈ 2 (see Eq. 4.2).

We also see that the swimming speed scales quadratically with the relative

strength of the rotating and constant components of the magnetic field, U ∼ h2,

for h � 1. This scaling is confirmed by a complementary asymptotic calculation

valid for low sperm numbers (see Sec. 4.5 for details).

Next, we plot our predicted dimensionless second order swimming speed as

a function of the sperm number Sp (Fig. 4.4a) together with the predicted filament

shapes (Fig. 4.4b), and observe three different characteristic regimes. The sperm

number Sp is the most important dimensionless group governing the propulsion
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performance. For Sp � 1, bending forces dominate and the filament is effec-

tively straight (Fig. 4.4b-i). Hence, the filament motion is almost kinematically

reversible, and it produces small propulsion. Quantitatively, a small Sp asymptotic

analysis presented in Sec. 4.5 reveals that the dimensionless swimming speed grows

with the fourth power of the sperm number, U2 ∼ Sp4, for Sp� 1. On the other

hand, from Eqs. (4.11) and (4.12), we see that most deflection is concentrated

around a small region 0 ≤ z < 1/Sp, when Sp � 1, due to the exponential decay

of the solution amplitude. In this regime (Sp � 1), the viscous forces dominate,

and propulsion is inefficient because a large portion of the filament has small de-

flection and thus experiences drag but contributes to no thrust (Figs. 4.4b-iii &

iv). As a result, we expect optimal swimming to occur when Sp is of order one,

where the total drag of the nanomotor is kept low while the drag-induced bending

is fully exploited to produce propulsion. This is confirmed in our calculation, and

we observe the optimal sperm number to occur at Sp ≈ 2, which gives a maximum

propulsion speed of U2 ≈ 0.042 (Fig. 4.4a). The filament shape close to optimal

swimming (Sp = 2) is shown in Fig. 4.4b-ii.

4.4 Comparison with experiments

Under fixed magnitude of the rotating and constant components of the mag-

netic field, the swimming speed of a nanomotor was measured with the frequency

of the magnetic field varying between 0 to 35Hz. The experiment was repeated

on the same nanomotor for three different settings of magnetic field strengths

(shown using three different symbols with error bars in Fig. 4.5b; a total of 20

different nanowires were sampled). The rotating magnetic field strength H1 was

kept constant at H1 = 10G, and the constant magnetic field strength was set to

be H0 = 14.3G (blue squares), H0 = 11.8G (red circles), and H0 = 9.5G (green

diamonds).

We then compare in Fig. 4.5b our theoretical predictions (solid lines) with

experimental measurements, plotted as swimming velocity vs. frequency (main fig-

ure) or Sperm number (inset). In our theoretical model, the value of the bending

stiffness A of the flexible filament is unknown. Standard bending stiffness of pure

silver is inapplicable here since the dissolution of silver in hydrogen peroxide ren-
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dered the filament a porous structure with significantly reduced strength and a

different chemical composition (Ag2O, AgOH). A value of A = 3.6 × 10−24Nm−2

fits, with the least total squared errors, the experimental data withH1 = 10G, H0 =

14.3G (blue squares), which is the case where our model is expected to work best

as the ratio h = H1/H0 is the smallest. This bending stiffness is then used to

predict the propulsion speed under different magnetic field settings (green and red

solid lines in Fig. 4.5b, see captions for details).

0 10 20 30 40
0

10

20

30

f = 5Hz f = 10Hz

f = 15Hz f = 30Hz

(a) (b) f [Hz]

U [µm/s]

0 1 2 3 4
0

0.01

0.02

0.03

0.04

0.05

Sp

U/LΩ

Figure 4.5: Dependence of the nanomotor swimming speed on the actuation
frequency. (a) Superimposed trajectories of the same Ni-Ag nanomotor at different
frequencies f = 5, 10, 15, 30Hz (as indicated) over a 3-second period (red lines),
with H1 = 10G and H0 = 9.5G. The scale bar is 10µm. (b) Speed-frequency
characteristics of flexible nanowire motors. Symbols represent experimental data
for different setup of magnetic fields: blue squares (H1 = 10G, H0 = 9.5G); red
circles (H1 = 10G, H0 = 11.8G); green diamonds (H1 = 10G, H0 = 14.3G). Error
bars show standard deviations of the measured speeds (20 samples). The solids
lines show the theoretical predictions (Eq. 4.15) with A = 3.6 × 10−24Nm2. The
inset in (b) displays the dependence of the swimming speed on the Sperm number,
Sp.

The theoretical model is seen to capture both qualitatively and quanti-

tatively the speed-frequency characteristics of these flexible nanomotors. Quali-

tatively, the rate of change of the swimming speed with respect to the frequency

increases at low frequencies (U ∼ f 2 for small f , as shown in the Sec. 4.5), but then

gradually decreases as the frequency continues to increase, and eventually levels

off at high frequencies. Physically, increasing the actuation frequency is equivalent
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to increasing the sperm number. When the frequency is varied from 0 to 35Hz,

it corresponds to a variation of the sperm number Sp from 0 to 2.6, experienc-

ing a degradation in swimming performance beyond the optimal sperm number

Sp ≈ 2, which corresponds to a frequency of around 15Hz in our experiment. This

degradation manifests as a less-than linear speed-frequency variation (since the

dimensional swimming speed scales as LΩ, linearly in Ω) beyond the frequency

15Hz, resulting in the level-off at higher frequencies. As noted above, at very high

frequencies, the magnetic Ni head will be unable to follow synchronously the rapid

rotating magnetic field. The dynamics of propulsion will be more complicated in

that regime, and the simple model presented here will likely be inapplicable.

The agreement between our theoretical model and our experimental results

is very satisfactory. The discrepancies are larger for the setup H1 = 10G, H0 =

9.5G (green lines and squares), which is expected because h ≈ 1.1 in this case and

the asymptotic assumption of small h is less valid. Note that our measurements did

not sample the low Sp regime as in our experiments, swimming at low frequencies

appear to be significantly influenced by Brownian motion.

Our model has only one fitting parameter, the bending stiffness A, which

– as explained above – we fit to the bottom data set in Fig. 4.5b, and use to

predict the other two data sets. The estimated value we obtain from the fitting is

equivalent to a pure silver nanowire of diameter ≈ 6nm (with elastic modulus, E

= 80GPa), which is much smaller than the diameter of flexible segment observed.

This is expected because the chemical composition of silver is altered after the

dissolution, and a large portion of the flexible nanowire is indeed a thick layer

of surface byproducts formed after the chemical reaction, which contributes little,

if any, to the bending strength. The diameter of the actual structural filament

that bears the bending loads is difficult to measure experimentally (see details

of the structure in Fig. 4.1b). In addition, non-uniform chemical reactions lead

to strong local defects or points of weakness along the nanowire, which might

significantly reduce the bending strength. We can compare our estimated bending

stiffness, A = 3.6 × 10−24Nm2, with the bending stiffness of typical flagella of

natural microscopic swimmers, such as eukaryotic spermatozoa, which also rely

on the flexibility of flagella for propulsion. These biological filaments have their

bending stiffnesses ranging from 10−24Nm2 [104] to 10−22Nm2 [105], which is the
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range in which our estimated value lies.

4.5 Swimming at low sperm numbers

In this section, we consider another physically interesting asymptotic limit,

the low sperm number limit, Γ = Sp4 � 1. The results in this asymptotic limit

are not expected to provide quantitative agreements with the experimental mea-

surements, since the value of Γ in the experiment is typically large. Nevertheless,

this analysis still allows us to reveal different scaling behaviours of the propulsion

speed at low sperm numbers. Keaveny and Maxey [96] investigated the propulsion

of a flexible filament with distributed magnetic actuation. With a resistive force

model, they considered the low sperm number limit and found that the propulsion

speed scales with the fourth power of the sperm number, U ∼ Sp4, at low sperm

numbers. We will follow closely their method of solution and perform similar cal-

culations here to show that the same scaling holds for our flexible nanowire motor

subject to boundary actuation. An explicit formula for the leading order propul-

sion speed in Γ will be derived. Expanding this formula for small h will confirm our

scaling of U with h from the small-h asymptotic analysis in the previous section

(Sec. 4.3.5).

First, the problem is formulated below, taking into account the effects of

twisting, self-spinning, and inextensibility of the nanowire. Denoting N(s, t) and

M(s, t) as the resultant internal force and moment on a cross section, the local

force and moment balances are

∂N

∂s
= (ξ‖ − ξ⊥)(t · u)t + ξ⊥u, (4.16)

∂M

∂s
+ t×N = ξra

2(ω · t)t, (4.17)

where ω(s, t) is the angular velocity, and ξr = 4πµ is the resistive coefficient for

the viscous torque produced by self-spinning (rotation about its own local axis, t)

of the filament. The internal moment M(s, t) has a constitutive relation

M = At× ∂t

∂s
+Kt

∂Ψ

∂s
t, (4.18)

where Kt is the twist modulus of the filament and Ψ(s, t) is the twist angle. In

contrast to the propeller studied by Keaveny and Maxey [96], the magnetic torque
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does not come into the local moment balance in our case, but only through the

boundary condition. The boundary conditions are given by the balance of external

forces and torques at the ends of the flexible filament. We have a free end at s = 0.

The external forces and torques at s = 1 are given by the total viscous force and

viscous torque together with the magnetic torque acting on the Ni segment, which

is modelled as a slender rigid rod:

N(s = 0) = 0, (4.19)

M(s = 0) = 0, (4.20)

N(s = 1) = −Lm
[
(ξm‖ − ξm⊥)(t · u)t + ξm⊥u)

]
s=1

+ ξm⊥
L2
m

2
ω × t |s=1, (4.21)

M(s = 1) = Mt |s=1 ×H− ξm⊥
{
L2
m

2
t× u +

L3
m

3
[ω − (t · ω)t]

}
s=1

, (4.22)

where M = Msa
2
mπLm is the strength of the magnetic moment of the Ni segment

and Ms = 485× 103A/m is the spontaneous magnetization of Ni.

To study the low sperm number limit, we adopt the following nondimen-

sionalizations: we scale times with Ω−1, lengths with L, H with H0, elastic forces

with A/L2, and elastic torques with A/L. With these nondimensionalizations, the

dimensionless equations (using the same variables for simplicity) now read

∂N

∂s
= Γ

[
(γ−1 − 1)(t · u)t + u

]
, (4.23)

RΓ(ω · t)t = t× ∂2t

∂s2
+ t×N +K

∂

∂s

(
∂Ψ

∂s
t

)
, (4.24)

where R = ξra
2/ξ⊥L

2, K = Kt/A, and Γ = Sp4. The dimensionless boundary

conditions are

N(s = 0) = 0, (4.25)

M(s = 0) = 0, (4.26)

N(s = 1) = −Γβ ×
{[

(γ−1
m − 1)(t · u)t + u)

]
lm +

l2m
2
ω × t

}
s=1

, (4.27)

M(s = 1) = Cmt |s=1 ×H− Γβ

{
l2m
2

t× u +
l3m
3

[ω − (t · ω)t]

}
s=1

, (4.28)

where lm = Lm/L, β = ξm⊥/ξ⊥, γm = ξm⊥/ξm‖, and Cm = Msa
2
mπLmH0L/A is a

dimensionless parameter characterizing the relative strength of the magnetic and
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elastic torques. Finally, we have the inextensibility condition

t(s, t) · t(s, t) = 1. (4.29)

Eqs. (4.23) through (4.29) completely describe the full swimming problem

(within the realm of resistive force theory and classical elastic beam theory) with-

out making any assumption. There is no restriction on the validity of the solution

to this system, but the solution has to be obtained numerically, with special at-

tention on the nonlinearities arising in the differential equation and the boundary

conditions. To make analytical progresses, we consider the asymptotic limit Γ� 1,

and calculate the leading order swimming speed in Γ. Following the method and

notations by Keaveny and Maxey [96], we assume the filament attains a constant

shape at steady-state and rotates about the z-axis synchronously with the external

magnetic field, hence we write the dimensionless steady-state conformation of the

filament as

x(s, t) = −b(s) cos[t+ φ(s)], (4.30)

y(s, t) = −b(s) sin[t+ φ(s)], (4.31)

z(s, t) = α(s) + Ũ t, (4.32)

where Ũ = U/LΩ is the dimensionless swimming speed in the z-direction, whereas

α(s), b(s), and φ(s) are geometrical unknowns to be determined. Like the small-h

asymptotic analysis in Sec. 4.3.5 and in Ref. [96], here we have considered unidi-

rectional swimming in the z-direction. In addition, since the functions α(s), b(s)

and φ(s) are independent of time, we only find the solution at one specific time,

t = 0 [96]. The magnetic field at t = 0 is given by H = [h, 0, 1]. We seek expansions
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in Γ in the form of

N = N0 + N1Γ +O(Γ2), (4.33)

M = M0 + M1Γ +O(Γ2), (4.34)

dα

ds
=
dα0

ds
+
dα1

ds
Γ +O(Γ2), (4.35)

db

ds
=
db0

ds
+
db1

ds
Γ +O(Γ2), (4.36)

dφ

ds
=
dφ1

ds
Γ +O(Γ2), (4.37)

dψ

ds
=
dψ1

ds
Γ +O(Γ2), (4.38)

Ũ = Ũ0 + Ũ1Γ +O(Γ2), (4.39)

and similar expansions hold for other variables. With these expansions, we can

express the local tangent t(s) and velocity u(s, t) as

t(s) = t0 + t1Γ +O(Γ2), (4.40)

=

[
−db0

ds
, 0,

dα0

ds

]
+

[
−db1

ds
,−d (b0φ1)

ds
,
dα1

ds

]
Γ +O(Γ2), (4.41)

u(s) =
[
0,−b0, Ũ0

]
+
[
b0φ1,−b1, Ũ1

]
Γ +O(Γ2). (4.42)

In the following section, we will perform the calculations order by order.

4.5.1 O(Γ0) calculations

The O(Γ0) local balance of forces and torques are given by

dN0

ds
= 0, (4.43)

0 = t0 ×N0 + t0 ×
d2t0

ds2
+K

d

ds

(
dΨ0

ds
t0

)
, (4.44)

with boundary conditions

N0(s = 0) = 0, (4.45)

M0(s = 0) = 0, (4.46)

N0(s = 1) = 0, (4.47)

M0(s = 1) = Cmt0 |s=1 ×H, (4.48)
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and inextensibility condition(
dα0

ds

)2

+

(
db0

ds

)2

= 1. (4.49)

The solution at this order is given by

N0(s) = 0, (4.50)

dα0

ds
=

1√
1 + h2

, (4.51)

db0

ds
=

−h√
1 + h2

, (4.52)

Ψ0(s) = Ũ0 = 0. (4.53)

4.5.2 O(Γ) calculations

The O(Γ) local balance of forces and torques are given by

dN1

ds
= (γ−1 − 1)(t0 · u0)t0 + u0, (4.54)

0 = t0 ×N1 + t0 ×
d2t1

ds2
+ t1 ×

d2t0

ds2
+K

d2Ψ1

ds2
t0, (4.55)

with boundary conditions

N1(s = 0) = 0, (4.56)

M1(s = 0) = 0, (4.57)

N1(s = 1) = −βlm
[
(γ−1
m − 1)(t0 · u0)t0 + u0 +

lm
2
ω0 × t0

]
s=1

, (4.58)

M1(s = 1) = Cmt1 |s=1 ×H− βl2m
{

t0 × u0

2
+
lm
3

[ω0 − (t0 · ω0)t0]

}
s=1

, (4.59)

and the inextensibility condition

dα1

ds
= h

db1

ds
· (4.60)

From the solution at O(Γ0), Eq. (4.52), we can integrate to get b0(s) =

−hs/
√

1 + h2 + C1, where C1 is a constant to be determined. By satisfying the

equations and boundary conditions at this order, we find that

C1 =
h [1 + βlm(2 + lm)]

2
√

1 + h2(1 + βlm)
· (4.61)
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The solution at this order is then given by

d(b0φ1)

ds
=

hs4

24
√

1 + h2
− C1s

3

6
+B1, (4.62)

db1

ds
=
dα1

ds
=
dΨ1

ds
= 0, (4.63)

where

B1 =
h

24Cm
(
1 + h2

)
(1 + βlm)

{
2 + Cm

√
1 + h2 [1 + βlm(3 + 2lm)]

+ 2βlm [4 + lm(6 + lm(4 + βlm))]

}
. (4.64)

4.5.3 O(Γ2) calculations

The O(Γ2) local balance of forces and torques are given by

dN2

ds
= (γ−1 − 1)(t1 · u0 + t0 · u1)t0 + u1, (4.65)

R(ω1 · t0 + ω0 · t1)t0 = t0 ×N2 + t1 ×N1 (4.66)

+ t0 ×
d2t2

ds2
+ t1 ×

d2t1

ds2
+K

d2Ψ2

ds2
t0,

with boundary conditions

N2(s = 0) = 0, (4.67)

M2(s = 0) = 0, (4.68)

N2(s = 1) = −βlm
[
(γ−1
m − 1)(t0 · u1 + t1 · u0)t0

+ u1 +
lm
2

(ω0 × t1 + ω1 × t0)

]
s=1

, (4.69)

M2(s = 1) = Cmt2 |s=1 ×H− βl2m
{

1

2
(t0 · u1 + t1 · u0)

+
lm
3

[ω1 − (t1 · ω0 + t0 · ω1)t0 − (t0 · ω0)t1]

}
s=1

· (4.70)

From the local balance of force (Eq. 4.65) with the boundary conditions at
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s = 0 (Eq. 4.67), we find that N2 = [N2x, N2y, N2z] is given by

N2x(s) =
h√

1 + h2

(
γ−1 − 1

)
×[

J(s) +
Ũ1s√
1 + h2

+
h√

1 + h2
H(s) +

h√
1 + h2

C3s

]
+H(s) + C3s, (4.71)

N2y(s) = −b1s, (4.72)

N2z(s) =
γ−1 − 1√

1 + h2
×[

J(s) +
Ũ1s√
1 + h2

+
h√

1 + h2
H(s) +

h√
1 + h2

C3s

]
(4.73)

+ U1s,

where C3 is an unknown integration constant and we define the functions

F (s) =
d(b0φ1)

ds
=

hs4

24
√

1 + h2
− C1s

3

6
+B1, (4.74)

G(s) =

∫ s

0

F (s′)ds′ =
hs5

120
√

1 + h2
− C1s

4

24
+B1s, (4.75)

H(s) =

∫ s

0

G(s′)ds′ =
hs6

720
√

1 + h2
− C1s

5

120
+B1

s2

2
, (4.76)

J(s) =

∫ s

0

b0(s′)F (s′)ds′. (4.77)

Examining the force components N2x and N2z, we have two unknowns, namely U1

and C3. These two unknowns are determined by applying the boundary conditions

at s = 1 (Eq. 4.69), yielding a 2× 2 system of equations(
A11 A12

A21 A22

)(
Ũ1

C3

)
=

(
hΦ1 + βlmG(1) + βl2m

2
F (1) +H(1)

Φ1

)
, (4.78)
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where

A11 = A22 = −
[
h(γ−1 − 1)

1 + h2 +
hβlm(γ−1

m − 1)

1 + h2

]
, (4.79)

A12 = −
[
βlm +

h2βlm(γ−1
m − 1)

1 + h2 + 1 +
h2(γ−1 − 1)

1 + h2

]
, (4.80)

A21 = −
[
βlm +

βlm(γ−1
m − 1)

1 + h2 + 1 +
γ−1 − 1

1 + h2

]
, (4.81)

Φ1 =
γ−1 − 1√

1 + h2

[
J(1) +

h√
1 + h2

H(1)

]

+
βlm(γ−1

m − 1)√
1 + h2

[
h√

1 + h2
G(1) + b0(1)F (1)

]
. (4.82)

Upon solving this system of linear equation, we arrive at an explicit formula

for the leading order swimming speed

Ũ = Ũ1Γ +O(Γ2) (4.83)

=
h2

1440
(
1 + h2

)3/2
(1 + βlm)2(γβlm + γm)

×{
5γγm[1 + βlm(4 + 3lm)]2 − 4γβlm [4 + βlm(13 + 9lm)]

− 5γm − γmβlm
[
24 + 30lm + βlm

(
28 + 84lm + 45l2m

)]}
Γ +O(Γ2). (4.84)

Again, we can verify that when we have isotropic drag γ = γm = 1, then

no swimming is possible, Ũ1 = 0.

4.5.4 Variation with the relative magnetic field strength,

h

First, one can see that Cm, which is the ratio of the characteristic mag-

netic torque to the characteristic elastic torque, does not enter the formula for Ũ1

(Eq. 4.83), meaning that the absolute value of the magnetic field strength or the

dipole moment strength has not yet played a role in the swimming speed at low

sperm numbers. However, the relative strength of the rotating and constant mag-

netic field, h = H1/H0, has an interesting effect here. From the small-h asymptotic

analysis in Sec. 4.3.5, we knew swimming occurs at O(h2) (Eq. 4.15), and hence
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Figure 4.6: Variation of the dimensionless swimming speed, U/LΩ, with the
relative magnetic field strength, h, for different sperm numbers based on the low-Sp
calculations: Sp = 0.2 (dark blue solid line), Sp = 0.3 (light green solid line). The
red dotted (Sp = 0.2) and black dash-dotted (Sp = 0.3) lines are the corresponding
results from the small-h calculations. Inset: Same plot for Sp = 0.5 (dark orange
solid line) and Sp = 0.6 (light blue solid line). The green dotted (Sp = 0.5) and
brown dash-dotted (Sp = 0.6) lines are the corresponding results from the small-h
calculations.

the swimming speed (both dimensional or dimensionless) scales quadratically with

h, U ∼ h2, for h � 1. This is confirmed by examining Eq. (4.83), where we have

Ũ ∼ h2/(1 + h2)3/2 = h2 + O(h3) when expanded for small h. When the dimen-

sionless swimming speeds from the two asymptotic analyses are plotted against

h for small sperm numbers (Fig. 4.6, different lines represent results at various

sperm numbers, see the caption for details), we see an excellent agreement when

h is small, illustrating that the swimming speed does increase quadratically with

h for small h (the dotted lines are the small-h asymptotic results). From the low

sperm number results (solid lines), the swimming speed then experiences a maxi-

mum when h continues to increase (the small-h results are no longer valid in this

regime), and eventually decreases with further increase in h. From the analyti-

cal expression (Eq. 4.83), we see that the maximum swimming speed occurs at

h =
√

2 ≈ 1.41.
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Figure 4.7: Variation of the dimensionless swimming speed, U/LΩ, with the
sperm number, Sp, based on the low-Sp calculations: h = 0.2 (dark blue solid
line), h = 0.4 (light green solid line). The red dotted (h = 0.2) and black dash-
dotted (h = 0.4) lines are the corresponding results from the small-h calculations.
Inset: Variation of the dimensional swimming speed U with the frequency f based
on the low-Sp calculations: h = 0.2 (dark blue solid line), h = 0.4 (light green
solid line). The red dotted (h = 0.2) and black dash-dotted (h = 0.4) lines are
the corresponding results from the small-h calculations. A bending stiffness of
A = 3.6× 10−24Nm2 is used in the speed-frequency plot (inset).

4.5.5 Variation with the sperm number, Sp

From the small-h asymptotic analysis in the previous section(Sec. 4.3.5),

we have illustrated the dependence of the dimensionless swimming speed on the

sperm number, Sp (Fig. 4.4). Here, via the low sperm number asymptotic results

(Eq. 4.83), we see quantitatively that the dimensionless swimming speed scales as

the fourth power of the sperm number, Ũ = U/LΩ ∼ Γ ∼ Sp4, for low Sp. Since

Sp4 ∝ f , this also means that the dimensional swimming speed scales quadratically

with the frequency U ∼ f 2, for small f . We confirm this result by plotting the

variation of the dimensionless swimming speed with the sperm number (Fig. 4.7),

and the variation of the dimensional swimming speed with the frequency (Fig. 4.7

inset). We compare the low-Sp asymptotic results (h = 0.2, dark blue solid line;

h = 0.4, light green solid line) with the corresponding small-h asymptotic results

h = 0.2 (red dotted line) and h = 0.4 (black dash-dotted line), so that the small-h

asymptotic assumption (h� 1) is expected to be valid. We see the results from the
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two asymptotic analyses agree with each other for sufficiently low sperm numbers

(Fig. 4.7), or frequencies (Fig. 4.7 inset), confirming the scaling U/LΩ ∼ Sp4

(U ∼ f 2), at low sperm numbers (low frequencies).

To summarize, in this section, with the help of a low-Sp asymptotic analysis,

we have confirmed the scaling U ∼ h2 for small h in Sec. 4.3.5, and established

the complementary scalings U/LΩ ∼ Sp4 for small Sp, or equivalently U ∼ f 2 for

small f . Note that the results in this section are valid for very small Sp numbers,

and hence are not expected to be useful for experimental comparison. In addition,

Cm is assumed to be O(1) throughout the calculations. Since Cm ∝ lm, the results

here are invalid for lm � 1 and lm � 1.

4.6 Discussion

In this work, we designed and fabricated a high-speed fuel-free nanomo-

tor utilizing the flexibility of nanowires for propulsion. These flexible nanomo-

tors demonstrate a number of advantages: first, the fabrication process is rela-

tively simple and involves a common template-directed electrodeposition protocol

of nanowires; second, these nanowire motors are able to propel at high speeds, both

dimensional (up to ≈ 21µm/s) and dimensionless (up to 0.164 body lengths per

revolution), and their performance compares very well with natural microorgan-

isms and other synthetic locomotive systems; third, they are actuated by external

magnetic field and do not require specific chemical environments (fuels) for propul-

sion, which is preferable for biomedical applications. Indeed, the performance of

the nanomotors reported here is not affected by the presence of ions or other chem-

ical species, and they are able to propel equally well in real biological settings. As

an illustration, we have placed these flexible nanomotors in human serum, and

observed similar propulsion behaviours (Fig. 4.8). This demonstrates an exciting

potential of these flexible nanomotors for future biomedical applications such as

targeted drug delivery systems, or cell manipulation.

The fundamental physics of the flexible nanomotors has been illustrated

by a simple analytical elastohydrodynamic model. The propulsion characteristics

were experimentally studied and compared with the theoretical model, with good

agreement. Strictly speaking, the results of the asymptotic model presented in this
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Figure 4.8: Time lapse images (time as indicated) of the motion of nanowire
motor (velocity, U = 15µm/s) in human serum at f = 15Hz, with H1 = 10G and
H0 = 9.5G. Scale bar is 5µm.

chapter are valid only for h� 1. However, as shown in other previous studies which

compared asymptotic results with numerical and experimental studies [60,98,100],

these asymptotic models often remain valid even up to h ∼ 1, meaning that geo-

metrical nonlinearities do not play very significant roles. Our results also ignore

the hydrodynamic effect of the bottom surface close to which the nanomotors are

propelling. As we estimated experimentally the distance of the filaments to the

surface to be on the order of microns, and therefore on the order of the swimmer

size, we do not expect strong hydrodynamic effects from the surface, which might

explain the success of our simple modelling approach. Further progress in theo-

retical modelling most likely have to be obtained numerically. More accurate yet

complicated descriptions of the hydrodynamic interactions can be achieved using

methods such as slender body theory [65], or regularized Stokeslets [106]. Tension,

self-spinning, and twist strains of the filament may also be considered for improve-

ments.

Chapter 4, in full, is a reprint of the material as it appears in Soft Matter

2011. Pak, On Shun; Gao, Wei; Wang, Joseph; Lauga, Eric, the Royal Society

of Chemistry, 2011. The dissertation author was the primary investigator and

author of this paper. The dissertation author thanks Professor Eric Fullerton,

Erik Shipton, and Daniel Kagan for their help on the magnetic setup, and Allen

Pei, Adam Ponedal for assisting in the nanowire preparation. Useful discussions

with Saverio Spagnolie are acknowledged.



Chapter 5

Extensibility enables locomotion

under isotropic drag

Anisotropic viscous drag is usually believed to be a requirement for the low

Reynolds number locomotion of slender bodies such as flagella and cilia. Here we

show that locomotion under isotropic drag is possible for extensible slender bod-

ies. After general considerations, a two-ring swimmer and a model dinoflagellate

flagellum are studied analytically to illustrate how extensibility can be exploited

for self-propulsion without drag anisotropy. This new degree of freedom could

be useful for some complex swimmer geometries and locomotion in complex fluid

environments where drag anisotropy is weak or even absent.

5.1 Introduction

Due to the absence of inertial forces, low-Reynolds number locomotion is

subject to interesting mathematical and physical constraints [15–17]. In partic-

ular, locomotion by time-reversible strokes is ruled out by Purcell’s scallop theo-

rem [18,20]. To escape these constraints, microorganisms swim by either propagat-

ing deformation waves along slender appendages, termed flagella, or rotating them.

Anisotropic viscous drag is believed to be the fundamental property enabling drag-

based propulsion of slender filaments [16,76,107]. It is a classical result that for a

slender filament moving in an unbounded Newtonian fluid, the Stokes drag is al-

most twice when moving perpendicular than parallel to its axis [16,108]. This drag
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anisotropy allows propulsive forces to be created perpendicularly to the deforma-

tion of the filament. Under isotropic drag, it is generally accepted that locomotion

of this kind would be impossible [60,76,103,107,109].

Unlike in Newtonian flows, drag laws in more complex media, and their

consequences on locomotion, remain largely unexplored. Theoretical studies, via

Brinkman models, suggest that porosity enhances drag anisotropy [110, 111], ex-

plaining, e.g., the increase in propulsion speed of C. elegans in a granular medium.

Recent experiments also measured and characterized granular drag in beds of glass

beads and granular media [112–115], which have been applied to study locomo-

tion in sand [116]. Besides the fluid medium, the geometry of a swimming body

also plays a role in the drag law. Some flagella, such as those of Ochromonas,

possess rigid projections termed mastigonemes, protruding into the fluid [17]. In

these geometries the viscous drag in the longitudinal direction of the flagellum is

increased, possibly resulting in a more isotropic drag. In situations where drag

anisotropy is weak or even absent, what are the alternative mechanisms, if any, of-

fered by physics to achieve locomotion? In this chapter, we point out a new degree

of freedom enabling inertialess swimming, namely extensibility. Using a general

derivation and two simple geometrical models, we demonstrate that the periodic

stretching and contraction of a filament allow self-propulsion even under isotropic

drag.

5.2 General analysis

We start by considering the general calculation of Becker et al. [76] showing

that drag anisotropy is required for the propulsion of inextensible swimmers. Here

we revisit their derivation by relaxing the inextensibility condition. Consider a

filamentous swimmer of total length L(t), and denote by r(s, t) the instantaneous

position of material points along the filament, where s is the arclength. The time

rate of change of the average swimmer position, r̄(t), is given by

dr̄

dt
=

d

dt

[
1

L(t)

∫ L(t)

0

r(s, t)ds

]
(5.1)

=
L̇

L

[
r(L, t)− 1

L

∫ L

0

rds

]
+

1

L

∫ L

0

∂r

∂t
ds, (5.2)
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Figure 5.1: (a) Notation for the extensible two-ring swimmer. (b) Schematic
illustration of its cyclic deformation over one period, T (see text for details).

where we have denoted L̇ ≡ dL/dt. Under isotropic drag, we have ∂r/∂t = u ∝ f ,

where f is the local drag force per unit length, and thus
∫ L

0
∂r/∂tds ∝

∫ L
0

fds = 0

for force-free swimming. We therefore find that the second term in Eq. (5.2)

disappears, and thus

dr̄

dt
=
L̇

L
[r(L, t)− r̄] . (5.3)

For an inextensible swimmer, L̇(t) = 0, leading to dr̄/dt = 0: no net propulsion

is possible under isotropic drag [76]. As a difference, for an extensible swimmer

(L̇ 6= 0) no general conclusion can be drawn, suggesting the relaxation of the

drag anisotropy requirement when extensibility is permitted. We demonstrate

below how this additional degree of freedom can be exploited for self-propulsion

by considering two simple examples.

5.3 Example 1: Motion of two extensible slender

rings

As the first example, consider the motion of two extensible slender rings

(red solid and blue dashed circles in Fig. 5.1) connected by two rotating rigid rods

(each of length 2r). As a result of the rod rotation, each ring expands and contracts

periodically, tracing in time the surface of a torus of inner radius R and a circular
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cross-section of radius r (see Fig. 5.1a). In Cartesian coordinates, the motion of

each ring r(t) = [x(t), y(t), z(t)] can be described as

x(t) = {R + r [1− cos(ωt+ φ0)]} cos θ, (5.4)

y(t) = {R + r [1− cos(ωt+ φ0)]} sin θ, (5.5)

z(t) = r sin(ωt+ φ0), (5.6)

where, θ ∈ [0, 2π], ω = 2π/T is the angular frequency, T is the period of the

motion, and φ0 is the phase of the motion. We non-dimensionalize lengths by

the inner radius of the torus R, time by 1/ω, and the dimensionless deformation

kinematics of the two rings, r̃1,2(t̃) = [x̃1,2(t̃), ỹ1,2(t̃), z̃1,2(t̃)], are given by

x̃1,2(t̃) =
{

1 + r̃
[
1− cos(t̃+ φ1,2)

]}
cos θ, (5.7)

ỹ1,2(t) =
{

1 + r̃
[
1− cos(t̃+ φ1,2)

]}
sin θ, (5.8)

z̃1,2(t̃) = r̃ sin(t̃+ φ1,2), (5.9)

where we assign φ1 = 0 (red solid ring) and φ2 = π (blue dashed ring). All tilde

variables in this chapter are dimensionless.

We illustrate the cyclic deformation of this swimmer over one period in

Fig. 5.1b. Hydrodynamically, material is being created/destroyed when a ring

extends/contracts, introducing an additional mechanism for varying the hydro-

dynamic drag. The non-zero translational velocity expected to arise is a direct

result of the imbalance of vertical viscous force due to the difference in the total

arc-length of the two rings. Since the vertical motion and variation of the circum-

ference of the two rings are out-of-phase, the vertical velocity of the ring with a

larger circumference always points in the same direction (in the case considered

here, in the −z direction). Therefore, we expect a net unidirectional vertical force,

and hence swimming, in this direction. Note that when the two rings have, instan-

taneously, exactly the same diameters (at t̃ = (2n + 1)π/2, where n = 0, 1, 2, ... ;

see the upper right and lower left panels in Fig. 5.1b), the viscous forces acting

on the rings balance, and no swimming is produced. Note also that if there was

only one ring, say r̃1, the vertical motion of the ring, would be exactly canceled

by translational swimming velocity at the same speed, resulting in no apparent

motion.
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Figure 5.2: Time-variation of the dimensionless swimming velocity of the exten-
sible two-ring swimmer, Ũz, for different values of r̃.

Quantitatively, we apply a general local drag theory to this two-ring swim-

mer. We neglect the hydrodynamic impact of the rods connecting the rings. The

local viscous force density acting on the filament is then given by f = −[ξ‖tt +

ξ⊥(1− tt)] ·u, where t is the local tangent vector and u is the local velocity of the

filament. The drag coefficients ξ‖ and ξ⊥ characterize the motion of a slender rod

parallel and perpendicular to its axis respectively. Their specific values depend on

the geometry of the rod and properties of the fluid medium. For a slightly distorted

slender filament in an unbounded Newtonian fluid, Gray and Hancock [103, 107]

derived explicit analytical expressions for the drag coefficients, which were later

improved by Lighthill [117]. For more complex environments, these drag laws re-

main mostly unknown. Under isotropic drag, we have ξ⊥ = ξ‖ [118–121]. Here,

we keep their values general in the calculations, and show that the final swimming

speed of the two-ring swimmer is independent of these coefficients. The swimmer

hence works equally well under any local drag law, including isotropic drag.

The local velocity along a ring, u = ∂r/∂t + U + Ω × r, is composed of

two parts: the prescribed deformation velocity, ∂r/∂t, and the unknown swimming

velocities U + Ω× r to be determined. At low Reynolds numbers, the total force

and total torque on a swimmer have to vanish. Hence, we have
∑2

i=1

∫ Li(t)
0

fidsi =∑2
i=1

∫ Li(t)
0

τ idsi = 0, where τ = r× f is the local viscous torque density, leading

to six equations to determine the unknown swimming kinematics (U,Ω). By

symmetry, we have Ω = 0, and Uz is the only non-zero translational velocity
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component. After some algebra we obtain the dimensionless swimming velocity

Ũz =

(
r̃2

1 + r̃

)
cos2 t̃. (5.10)

We display the variation of the swimming velocity as a function of time for different

values of r̃ in Fig. 5.2. We obtain unidirectional swimming (Ũz ≥ 0) at a time-

averaged speed independent of the value of the drag coefficients, 〈Ũz〉 = r̃2/2(1+r̃):

this extensible two-ring swimmer can therefore self-propel under isotropic drag.

5.4 Example 2: A toroidal helix

This idea can be extended to more complicated geometries consisting of a

curved structure built upon another curved structure, for instance, toroidal helices

(a helix built upon a circle) and superhelices (a helix built upon another helix). A

toroidal helix has been studied as an idealized geometrical model for dinoflagellates

[78,122]. A dinoflagellate can be propelled by propagating a toroidal helical wave,

where the kinematics of such a wave implicitly assumes extensibility due to the

intrinsic length differences in the geometry. Consider a toroidal helical wave with

amplitude r, wave-number k = 2π/λ and angular frequency ω, propagating along a

circle of radius R (see Fig. 5.3 inset). When lengths are non-dimensionlized by 1/k

and times by 1/ω, the dimensionless kinematics R̃ = [x̃′, ỹ′, z̃′] can be expressed as

x̃′(s̃′, t̃) = R̃ cos(s̃′/R̃) + r̃ cos(s̃′ − t̃) cos(s̃′/R̃), (5.11)

ỹ′(s̃′, t̃) = R̃ sin(s̃′/R̃) + r̃ cos(s̃′ − t̃) sin(s̃′/R̃), (5.12)

z̃′(s̃′, t̃) = ±r̃ sin(s̃′ − t̃), (5.13)

where s̃′ ∈ [0, 2πR̃] parametrizes the toroidal helix, and where all tilde parameters

are dimensionless. Note that the dimensionless radius R̃ takes only integer values

for a closed toroidal helix. The ± sign represents different chirality of the helix. We

apply the same local drag model as above. In order to make analytical progress,

we consider the small-amplitude limit r̃ � 1 and perform asymptotic expansions

in powers of r̃. Swimming occurs at O(r̃2) and takes the dimensionless form

Ũ =

[
0, 0,± r̃2

2R̃

]
, Ω̃ =

[
0, 0,

1− ξ⊥/ξ‖
R̃

r̃2

]
. (5.14)
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Ũz

Figure 5.3: Dimensionless translational velocity Ũz as a function of the dimen-
sionless toroidal wave amplitude, r̃ = rk, under isotropic (ξ⊥ = ξ‖, blue solid line)

and anisotropic (ξ⊥ = 2ξ‖, red dashed line) drag, for the case of R̃ = 8. Inset:
notation for a toroidal helix swimmer (see text for details).

While the rotational velocity Ω̃ vanishes under isotropic drag (ξ⊥/ξ‖ = 1),

the translational velocity Ũ along the torus axis is independent of the drag coeffi-

cients. This is due to the intrinsic difference in length (and hence drag) embedded

in the curved geometry of toroidal helices. The toroidal helix has shorter lengths

on the sides closer to the center of the circle, creating an overall imbalance of hy-

drodynamic drag. It is interesting to compare two physical limits, namely when

there is no drag anisotropy (ξ⊥ = ξ‖) and when there is maximum drag anisotropy

for an asymptotically slender filament in a Newtonian flow (ξ⊥ = 2ξ‖). Using these

values in the general local drag theory, we find that the axial propulsion velocity

in these two limits are indistinguishable for small r̃ (Fig. 5.3), as predicted by

the asymptotic analysis. As r̃ increases, the drag anisotropy increasingly enhances

propulsion (up to ∼ 30% when r̃ = 5) but extensibility alone, under isotropic drag,

still enables swimming with significant magnitudes. A similar example that could

exploit extensibility to produce swimming under isotropic drag are superhelical

waves, which serve as a geometrical model for insect spermatozoa [12].



102

5.5 Conclusions

In conclusion, in this chapter we have revisited the requirement of drag

anisotropy to achieve self-propulsion at zero Reynolds number. We demonstrated

explicitly, via two simple swimmers, that extensibility provides a mechanism for

swimming under isotropic drag, which might be relevant for some complex swim-

mer geometries and motion in porous or other complex media where drag aniso-

tropy is weak or absent. As a practical side-note, the two-ring swimmer described

above could be actuated experimentally by external rotating magnetic fields if

ferromagnetic materials, such as metal nanowires [123, 124], were used for the

phantom rods.

Chapter 5, in full, is a reprint of the material as it appears in Physics of

Fluids 2011. Pak, On Shun; Lauga, Eric, the American Institute of Physics, 2011.

The dissertation author was the primary investigator and author of this paper.

The dissertation author thanks Saverio Spagnolie and Gwynn Elfring for useful

discussions.



Chapter 6

Pumping by flapping in a

viscoelastic fluid

In a world without inertia, Purcell’s scallop theorem states that in a Newto-

nian fluid a time-reversible motion cannot produce any net force or net flow. Here

we consider the extent to which the nonlinear rheological behavior of viscoelas-

tic fluids can be exploited to break the constraints of the scallop theorem in the

context of fluid pumping. By building on previous work focusing on force gener-

ation, we consider a simple, biologically-inspired geometrical example of a flapper

in a polymeric (Oldroyd-B) fluid, and calculate asymptotically the time-average

net fluid flow produced by the reciprocal flapping motion. The net flow occurs at

fourth order in the flapping amplitude, and suggests the possibility of transporting

polymeric fluids using reciprocal motion in simple geometries even in the absence

of inertia. The induced flow field and pumping performance are characterized and

optimized analytically. Our results may be useful in the design of micro-pumps

handling complex fluids.

6.1 Introduction

Imagining oneself attempting to swim in a pool of viscous honey, it is not

hard to anticipate that, because of the high fluid viscosity, our usual swimming

strategy consisting of imparting momentum to the surrounding fluid will not be

effective. The world microorganisms inhabit is physically analogous to this situ-

103
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ation [18]. As a result, microorganisms have evolved strategies which exploit the

only physical force available to them – namely fluid drag – to propel themselves or

generate net fluid transport. The success of these propulsion strategies is vital in

many biological processes, including bacterial infection, spermatozoa locomotion

and reproduction, and ciliary transport [33].

The fundamental physics of small-scale locomotion in simple (Newtonian)

fluids is well understood [16, 17, 32]. In contrast, and although most biological

fluids are non-Newtonian, many basic questions remain unanswered regarding the

mechanics of motility in complex fluids. Since they usually include biopolymers,

most biological fluids of interest display rheological properties common to both

fluids (they flow and dissipate energy) and solids (they can store energy). Exam-

ples include the airway mucus, which acts as a renewable and transportable barrier

along the airways of the lungs to guard against inhaled particulates and toxic sub-

stances [125], as well as cervical mucus, which is important for the survival and

transport of sperm cells [126]. The influence of viscoelasticity of the fluid on cell

locomotion has been experimentally quantified by a number of studies [25–31], in-

cluding the change in the waveform, structure, and swimming path of spermatozoa

in both synthetic polymer solutions and biological mucus [15]. Gastropod mucus

is another common non-Newtonian biofluid, which is useful for adhesive locomo-

tion, and its physical and rheological properties have been measured [127–129].

Modeling-wise, different constitutive models have been employed to study locomo-

tion in complex fluids (see the short review in Ref. [51]). Among these models,

the Oldroyd-B constitutive equation is the most popular, both because of its sim-

plicity and the fact that it can be derived exactly from kinetic theory by modeling

the fluid as a dilute solutions of elastic (polymeric) dumbbells [130–133]. Recent

quantitative studies have suggested that microorganisms swimming by propagat-

ing waves along their flagella have a smaller propulsion speed in a polymeric fluid

than in a Newtonian fluid [51, 134]. Likewise, a smaller net flow is generated by

the ciliary transport of a polymeric fluid than a Newtonian fluid. Specifically,

Lauga [51] considered the problem with a prescribed beating pattern along the

flagellum, while Fu et al. [134] prescribed the internal force distribution instead;

both studies suggest that viscoelasticity tends to decrease the propulsion speed.

In a Newtonian fluid, Purcell’s scallop theorem states that swimming and
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pumping in the absence of inertia can only be achieved by motions or body defor-

mations which are not identical under a time-reversal symmetry (so-called “non-

reciprocal” motion) [18]. This poses of course an interesting challenge in designing

artificial swimmers and pumps in simple fluids, which has recently been addressed

theoretically and experimentally (see the review in Ref. [16]). The question we

are addressing in this chapter is the extent to which the scallop theorem holds in

complex fluids. Because polymeric fluids display nonlinear rheological properties

such as shear-dependance or normal-stress differences [131, 132], in general recip-

rocal motions are effective in polymeric fluids [135]. New propulsion and transport

methods can therefore be designed on small scales to specifically take advantage of

the intrinsic nonlinearities of the fluid. The goal of this chapter is to study such a

system in the context of fluid pumping with a simplified geometrical setup where

the pumping performance can be characterized analytically.

For simple flow geometries, it is not obvious a priori whether a simple oscil-

latory forcing of a nonlinear fluid leads to a net (rectified) flow. For example, for all

Oldroyd-like fluids, a sinusoidally-forced Couette flow leads to zero time-averaged

flow [131]. In previous work [136], we considered a biologically-inspired geometric

example of a semi-infinite flapper performing reciprocal (sinusoidal) motion in a

viscoelastic (Oldroyd-B) fluid in the absence of inertia. We showed explicitly that

the reciprocal motion generates a net force on the flapper occurring at second order

in the flapping amplitude, and disappearing in the Newtonian limit as dictated by

the scallop theorem. However, there was no time-average flow accompanying the

net force generation at second order [136]. Here, we report on the discovery of a

net fluid flow produced by the reciprocal flapping motion in an Oldroyd-B fluid.

The net flow transport is seen to occur at fourth order in the flapping amplitude,

and is due to normal-stress differences. The dependence of the pumping perfor-

mance on the actuation and material parameters is characterized analytically, and

the optimal pumping rate is determined numerically. Through this example, we

therefore demonstrate explicitly the breakdown of the scallop theorem in complex

fluids in the context of fluid pumping, and suggest the possibility of exploiting

intrinsic viscoelastic properties of the medium for fluid transport on small scales.

The geometric setup in this chapter is motivated by the motion of cilia-like

biological appendages. Cilia are short flagella beating collaboratively to produce
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locomotion or fluid transport [17, 137]. For example, cilia cover the outer surface

of microorganisms such as Paramecium for self-propulsion. They are also present

along our respiratory tracts to sweep up dirt and mucus and along the oviduct

to transport the ova. Our setup is also relevant to the rigid projections attached

to the flagellum of Ochromonas, known as mastigonemes, which protrude from

the flagellum into the fluid [17]. As waves propagate along the flagellum, the

mastigonemes are flapped back-and-forth passively through the fluid, a process

which can lead to a change in the direction of propulsion of the organism [138–140].

Our study is related to the phenomenon known as steady (or “acoustic”)

streaming in the inertial realm [141–154], which has a history of almost two cen-

turies after being first discovered by Faraday [141]. Under oscillatory boundary

conditions, as in the presence of an acoustic wave or the periodic actuation of a

solid body in a fluid, migration of fluid particles occur in an apparently purely

oscillating flow, manifesting the presence of nonlinear inertial terms in the equa-

tion of motion. This phenomenon occurs in both Newtonian and non-Newtonian

fluids [145–154]. In particular, it was found that the elasticity of a polymeric fluid

can lead to a reversal of the net flow direction [145–148]. As expected from the

scallop theorem, no steady streaming phenomenon can occur in a Newtonian fluid

in the absence of inertia. However, as will be shown in this chapter, the nonlinear

rheological properties of viscoelastic fluids alone can lead to steady streaming. In

other words, we consider here a steady streaming motion arising purely from the

viscoelastic effects of the fluid, ignoring any influence of inertia.

Recently, polymeric solutions have been shown to be useful in construct-

ing microfluidic devices such as flux stabilizers, flip-flops and rectifiers [155, 156].

By exploiting the nonlinear rheological properties of the fluid and geometrical

asymmetries in the micro-channel, microfluidic memory and control have been

demonstrated without the use of external electronics and interfaces, opening the

possibility of more complex integrated microfluidic circuit and other medical ap-

plications [155]. In the setup we study here, we do not introduce any geometrical

asymmetries and exploit solely the non-Newtonian rheological properties of the

polymeric fluid for microscopic fluid transport.

The structure of the chapter is the following. In Sec. 6.2, the flapping

problem is formulated with the geometrical setup, governing equations, nondimen-



107

sionalization and the boundary conditions. In Sec. 6.3, we present the asymptotic

calculations up to the fourth order (in flapping amplitude), where the time-average

flow is obtained. We then characterize analytically the net flow in terms of the

streamline pattern, directionality and vorticity distribution (Sec. 6.4). Next, we

study the optimization of the flow with respect to the Deborah number (Sec. 6.5).

Our results are finally discussed in Sec. 6.6.

6.2 Formulation

6.2.1 Geometrical setup

In this chapter, we consider a semi-infinite two-dimensional plane flapping

sinusoidally with small amplitude in a viscoelastic fluid. The average position of

the flapper is situated perpendicularly to a flat wall with its hinge point fixed in

space (see Fig. 6.1). The flapper is therefore able to perform reciprocal motion with

only one degree of freedom by flapping back-and-forth. Such a setup is directly

relevant to the unsteady motion of cilia-like biological appendages (see Sec. 6.1).

It is convenient to adopt planar polar coordinates system for this geometri-

cal setup. The instantaneous position of the flapper is described by the azimuthal

angle θ(t) = π/2 + εΘ(t), where Θ(t) is an order one oscillatory function of time

and ε is a parameter characterizing the amplitude of the flapping motion. The

polar vectors er(θ) and eθ(θ) are functions of the azimuthal angle, and the velocity

field u is expressed as u = urer +uθeθ. In this work, we derive the velocity field in

the the domain (0 ≤ θ ≤ π/2) in the asymptotic limit of small flapping amplitude,

i.e. ε � 1; the time-averaged flow in the domain (π/2 ≤ θ ≤ π) can then be

deduced by symmetry.

6.2.2 Governing equations

We assume the flow to be incompressible and the Reynolds number of the

fluid motion to be small, i.e. we neglect any inertial effects. Denoting the pressure

field as p and the deviatoric stress tensor as τ , the continuity equation and Cauchy’s
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Figure 6.1: Geometrical setup and notations for the flapping calculation. A semi-
infinite plane flaps sinusoidally with small amplitude ε around an average position
at right angle with an infinite wall.

equation of motion are respectively

∇ · u = 0, (6.1)

∇p = ∇ · τ . (6.2)

We also require constitutive equations, which relate stresses and kinematics

of the flow, to close the system of equations. For polymeric fluids, the deviatoric

stress may be decomposed into two components, τ = τ s + τ p, where τ s is the

Newtonian contribution from the solvent and τ p is the polymeric stress contribu-

tion. For the Newtonian contribution, the constitutive equation is simply given by

τ s = ηsγ̇, where ηs is the solvent contribution to the viscosity and γ̇ = ∇u+ t∇u.

For the polymeric contribution, many models have been proposed to relate the

polymeric stress to kinematics of the flow [130–133]. We consider here the classical

Oldroyd-B model, where the polymeric stress, τ p, satisfies the upper-convected

Maxwell equation

τ p + λ
O
τ p= ηpγ̇, (6.3)

where ηp is the polymer contribution to the viscosity and λ is the polymeric relax-

ation time. The upper-convected derivative for a tensor A is defined as

O
A=

∂A

∂t
+ u ·∇A−

(
t∇u ·A + A ·∇u

)
, (6.4)
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and represents the rate of change of A in the frame of translating and deforming

with the fluid. From Eq. (6.3), we can obtain the Oldroyd-B constitutive equation

for the total stress, τ , as given by

τ + λ1
O
τ= η

(
γ̇ + λ2

O
γ̇

)
, (6.5)

where η = ηs + ηp, λ1 = λ, and λ2 = ηsλ/η. Here, λ1 and λ2 are the relaxation

and retardation times of the fluid respectively. The relaxation time is the typical

decay rate of stress when the fluid is at rest, and the retardation time measures

the decay rate of residual rate of strain when the fluid is stress-free [131, 132]. It

can be noted that λ2 < λ1, and both are zero for a Newtonian fluid.

6.2.3 Nondimensionalization

Periodic flapping motion with angular frequency ω is considered in this

chapter. Therefore, we nondimensionalize shear rates by ω and stresses by ηω.

Lengths are nondimensionalized by some arbitrary length scale along the flapper.

Under these nondimensionalizations, the dimensionless equations are given by

∇ · u = 0, (6.6a)

∇p = ∇ · τ , (6.6b)

τ + De1
O
τ = γ̇ + De2

O
γ̇, (6.6c)

where De1 = λ1ω and De2 = λ2ω are defined as the two Deborah numbers and we

have adopted the same symbols for convenience.

6.2.4 Boundary conditions

The boundary condition in this problem can be simply stated; on the flat

wall (θ = 0), we have the no-slip and the no-penetration boundary conditions. In

vector notation, we have therefore

u(r, θ = 0) = 0 (6.7)

along the flat wall.
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Along the flapper, we also have the no-slip condition, ur(r, θ = π/2 +

εΘ(t)) = 0. The other boundary condition imposed on the fluid along the flapper

is given by the rotation of the flapper, uθ(r, θ = π/2 + εΘ(t)) = rΩ(t), where

Ω(t) = εΘ̇. In vector notation, we have then

u(r, θ = π/2 + εΘ(t)) = rΩ(t)eθ. (6.8)

6.3 Analysis

Noting that a two-dimensional setup is considered, the continuity equa-

tion, ∇ · u = 0, is satisfied by introducing the streamfunction Ψ(r, θ) such that

ur = (∂Ψ/∂θ) /r and uθ = −∂Ψ/∂r. The instantaneous position of the flapper is

described by the function θ = π/2+εΘ(t), and we consider here a simple reciprocal

flapping motion with Θ(t) = cos t. Since small amplitude flapping motion (ε� 1)

is considered, we will perform the calculations perturbatively in the flapping am-

plitude and seek perturbation expansions of the form

{u,Ψ, τ , p,σ} = ε{u1,Ψ1, τ 1, p1,σ1}+ ε2{u2,Ψ2, τ 2, p2,σ2}+ . . . , (6.9)

where σ = −p1 + τ is the total stress tensor and all the variables in Eq. (6.9) are

defined in the time-averaged domain 0 ≤ θ ≤ π/2. Since a domain-perturbation

expansion is performed, careful attention has to be paid on the distinction be-

tween instantaneous and average geometry. Recall that the polar vectors er(θ(t))

and eθ(θ(t)) are functions of the azimuthal angle which oscillates in time. To dis-

tinguish the average geometry, we denote 〈t〉 = er(π/2) and 〈n〉 = eθ(π/2) as the

average directions along and perpendicular to the flapper axis (See Fig. 6.1). In

this chapter, 〈. . . 〉 denotes time-averaging.

In addition, we employ Fourier notation to facilitate the calculations. In

Fourier notation, the actuation becomes Θ = Re{eit} and Θ̇ = Re{ieit}. Because of

the quadratic nonlinearities arising from boundary conditions and the constitutive
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modeling, the velocity field can be Fourier decomposed into the anticipated form

u1 = Re{ũ1e
it}, (6.10a)

u2 = Re{ũ(0)
2 + ũ

(2)
2 e2it}, (6.10b)

u3 = Re{ũ(1)
3 eit + ũ

(3)
3 e3it}, (6.10c)

u4 = Re{ũ(0)
4 + ũ

(2)
4 e2it + ũ

(4)
4 e4it}, (6.10d)

with similar decomposition and notation for all other vector and scalar fields.

We now proceed to analyze Eq. (6.6) order by order, up to the fourth order,

where the time-average fluid flow occurs. The boundary conditions, Eqs. (6.7) and

(6.8), are also expanded order by order about the average flapper position using

Taylor expansions.

6.3.1 First-order solution

Governing equation

The first-order Oldroyd-B relation is given by

τ 1 + De1
∂τ 1

∂t
= γ̇1 + De2

∂γ̇1

∂t
, (6.11)

which in Fourier space becomes

τ̃ 1 =
1 + iDe2

1 + iDe1

˜̇γ1. (6.12)

We then note that we have ∇ × ∇ · τ = 0 by taking the curl of Eq. (6.6b).

Therefore, we take the divergence and then curl of Eq. (6.12) to eliminate the

stress and obtain the equation for the first-order streamfunction

∇4Ψ̃1 = 0. (6.13)

Boundary conditions

At θ = π/2, the boundary condition at this order is given by

u1 = rΘ̇〈n〉, (6.14)

which becomes

ũ1 = ir〈n〉, (6.15)
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upon Fourier transformation. We also have the no-slip and no-penetration bound-

ary condition at θ = 0.

Solution

The solution satisfying the above equation and boundary conditions is given

by

Ψ̃1 =
ir2

4
(cos 2θ − 1) , (6.16a)

ũ1r = −ir
2

sin 2θ, (6.16b)

ũ1θ =
ir

2
(1− cos 2θ) . (6.16c)

6.3.2 Second-order solution

Governing equation

The second-order Oldroyd-B relation is given by(
1 + De1

∂

∂t

)
τ 2 −

(
1 + De2

∂

∂t

)
γ̇2

= De2

[
u1 ·∇γ̇1 −

(
t∇u1 · γ̇1 + γ̇1 ·∇u1

)]
−De1

[
u1 ·∇τ 1 −

(
t∇u1 · τ 1 + τ 1 ·∇u1

)]
. (6.17)

Fourier transforming Eq. (6.17) and using Eq. (6.12), we obtain the two harmonics

as

(1 + 2iDe1) τ̃
(2)
2 − (1 + 2iDe2) ˜̇γ

(2)
2

=
1

2

De2 −De1

1 + iDe1

[
ũ1 ·∇˜̇γ1 −

(
t∇ũ1 · ˜̇γ1 + ˜̇γ1 ·∇ũ1

)]
, (6.18)

and

τ̃
(0)
2 − ˜̇γ

(0)
2

=
1

2

De2 −De1

1 + iDe1

[
ũ∗1 ·∇˜̇γ1 −

(
t∇ũ∗1 · ˜̇γ1 + ˜̇γ1 ·∇ũ∗1

)]
, (6.19)

where the starred variables denote complex conjugates in this chapter. Finally,

taking the divergence and then curl of both Eq. (6.18) and Eq. (6.19), and using
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the knowledge of the first-order solution, we obtain the equation for the second-

order streamfunctions as simply

∇4Ψ̃
(2)
2 = 0, (6.20a)

∇4Ψ̃
(0)
2 = 0. (6.20b)

Boundary conditions

The boundary condition at this order is given by

u2 = −Θ
∂u1

∂θ
− rΘΘ̇〈t〉, (6.21)

when evaluated at θ = π/2. In Fourier notation and with the first-order solution,

the boundary conditions for the second-order average flow and the second harmonic

read

ũ
(0)
2 = 0, (6.22a)

ũ
(2)
2 = −ir

2
〈t〉. (6.22b)

In addition, the no-slip and no-penetration boundary condition are imposed at

θ = 0.

Solution

The solution satisfying the second-order equation and the boundary condi-

tions is given by

Ψ̃
(0)
2 = 0, (6.23a)

Ψ̃
(2)
2 =

ir

4

(
1

2
sin 2θ − π

4
cos 2θ − θ +

π

4

)
, (6.23b)

ũ
(2)
2r =

ir

4

(
cos 2θ +

π

2
sin 2θ − 1

)
, (6.23c)

ũ
(2)
2θ = −ir

4

(
sin 2θ − π

2
cos 2θ − 2θ +

π

2

)
. (6.23d)

As anticipated, there is no time-averaged flow at second order, and we proceed

with calculations at higher order.



114

6.3.3 Third-order solution

Governing equation

The third-order Oldroyd-B relation is given by(
1 + De1

∂

∂t

)
τ 3 −

(
1 + De2

∂

∂t

)
γ̇3

= De2

[
u1 ·∇γ̇2 −

(
t∇u1 · γ̇2 + γ̇2 ·∇u1

)]
−De1

[
u2 ·∇τ 1 −

(
t∇u2 · τ 1 + τ 1 ·∇u2

)]
+ De2

[
u2 ·∇γ̇1 −

(
t∇u2 · γ̇1 + γ̇1 ·∇u2

)]
−De1

[
u1 ·∇τ 2 −

(
t∇u1 · τ 2 + τ 2 ·∇u1

)]
. (6.24)

Aiming at obtaining the average flow at O(ε4), we only need to calculate the first

harmonic at O(ε3) since the third harmonic will only enter the oscillatory part

at O(ε4) (see the fourth-order calculations for details). Therefore, upon Fourier

transform, we obtain the first harmonic component of Eq. (6.24) as

(1 + iDe1) τ̃
(1)
3 − (1 + iDe2) ˜̇γ

(1)
3

=
1

2

De2 −De1

1 + 2iDe1

[
ũ∗1 ·∇˜̇γ

(2)
2 −

(
t∇ũ∗1 · ˜̇γ(2)

2 + ˜̇γ
(2)
2 ·∇ũ∗1

)]
+

1

2

De2 −De1

1− iDe1

[
ũ

(2)
2 ·∇˜̇γ∗1 −

(
t∇ũ

(2)
2 · ˜̇γ∗1 + ˜̇γ∗1 ·∇ũ

(2)
2

)]
, (6.25)

where we have used the constitutive relations given by Eqs. (6.12) and (6.18).

Taking the divergence and then curl of Eq. (6.25), we obtain the equation for the

first harmonic of the third-order streamfunction

∇4Ψ̃
(1)
3 =

3iDe1(De1 −De2) cos 2θ

r2(1− iDe1)(1 + 2iDe1)(1 + iDe2)
· (6.26)

Boundary condition

At θ = π/2, the boundary condition at this order is given by

u3 = −Θ
∂u2

∂θ
− 1

2
Θ2∂

2u1

∂θ2
− 1

2
rΘ̇Θ2〈n〉, (6.27)

evaluating at θ = π/2. The boundary condition for the first harmonic component,

in Fourier space, is then given by

ũ
(1)
3 =

irπ

8
〈t〉 − ir

4
〈n〉. (6.28)

At θ = 0, we also have the no-slip and no-penetration boundary condition.
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Solution

The solution at this order has the form

Ψ̃
(1)
3 =

r2

2

[(
π2

8
α +

π2 − 4

32
i

)
cos 2θ − π

4

(
α +

i

4

)
sin 2θ +

π

2

(
α +

i

4

)
θ

+

(
4− π2

32
i− π2

8
α

)
+ αθ sin 2θ

]
, (6.29a)

ũ
(1)
3,r =

r

2

[(
4− π2

16
i− π2

4
α

)
sin 2θ − π

2

(
α +

i

4

)
cos 2θ +

π

2

(
α +

i

4

)

+ α(2θ cos 2θ + sin 2θ)

]
, (6.29b)

ũ
(1)
3,θ = − r

[(
π2

8
α +

π2 − 4

32
i

)
cos 2θ − π

4

(
α +

i

4

)
sin 2θ +

π

2

(
α +

i

4

)
θ

+

(
4− π2

32
i− π2

8
α

)
+ αθ sin 2θ

]
, (6.29c)

where we have defined the constant

α =
3iDe1(De2 −De1)

8(1− iDe1)(1 + 2iDe1)(1 + iDe2)
· (6.30)

6.3.4 Fourth-order solution

Governing equation

Finally, the fourth-order Oldroyd-B relation is given by(
1 + De1

∂

∂t

)
τ 4 −

(
1 + De2

∂

∂t

)
γ̇4

= De2

[
u1 ·∇γ̇3 −

(
t∇u1 · γ̇3 + γ̇3 ·∇u1

)]
−De1

[
u1 ·∇τ 3 −

(
t∇u1 · τ 3 + τ 3 ·∇u1

)]
+ De2

[
u2 ·∇γ̇2 −

(
t∇u2 · γ̇2 + γ̇2 ·∇u2

)]
−De1

[
u2 ·∇τ 2 −

(
t∇u2 · τ 2 + τ 2 ·∇u2

)]
+ De2

[
u3 ·∇γ̇1 −

(
t∇u3 · γ̇1 + γ̇1 ·∇u3

)]
−De1

[
u3 ·∇τ 1 −

(
t∇u3 · τ 1 + τ 1 ·∇u3

)]
. (6.31)
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Since we wish to characterize the time-average flow, ũ
(0)
4 , we calculate the time-

average of Eq. (6.31) and obtain

τ̃
(0)
4 − ˜̇γ

(0)
4

=
1

2
De2

[
ũ∗1 ·∇˜̇γ

(1)
3 −

(
t∇ũ∗1 · ˜̇γ(1)

3 + ˜̇γ
(1)
3 ·∇ũ∗1

)]
− 1

2
De1

[
ũ∗1 ·∇τ̃

(1)
3 −

(
t∇ũ∗1 · τ̃ (1)

3 + τ̃
(1)
3 ·∇ũ∗1

)]
+

1

2
De2

[
ũ

(2)∗
2 ·∇˜̇γ

(2)
2 −

(
t∇ũ

(2)∗
2 · ˜̇γ(2)

2 + ˜̇γ
(2)
2 ·∇ũ

(2)∗
2

)]
− 1

2
De1

[
ũ

(2)∗
2 ·∇τ̃

(2)
2 −

(
t∇ũ

(2)∗
2 · τ̃ (2)

2 + τ̃
(2)
2 ·∇ũ

(2)∗
2

)]
+

1

2
De2

[
ũ

(1)∗
3 ·∇˜̇γ1 −

(
t∇ũ

(1)∗
3 · ˜̇γ1 + ˜̇γ1 ·∇ũ

(1)∗
3

)]
− 1

2
De1

[
ũ

(1)∗
3 ·∇τ̃ 1 −

(
t∇ũ

(1)∗
3 · τ̃ 1 + τ̃ 1 ·∇ũ

(1)∗
3

)]
. (6.32)

As done previously, we take the divergence and then curl of Eq. (6.32), and invoke

the lower-order constitutive relations Eqs. (6.12), (6.18) and (6.25), to obtain the

equation for streamfunction of the average flow

∇4Ψ̃
(0)
4 = β

A4 sin 2θ +B4 cos 2θ + C4 sin 4θ

r2
, (6.33)

where

β =
De2 −De1

2(1 +De2
1)(2De1 − i)

, (6.34)

A4 = 8α−De1 + 8iαDe1 + 4iDe2
1 + 16αDe2

1, (6.35)

B4 = 2π
(
1 + iDe1 + 2De2

1)(α + α∗
)
, (6.36)

C4 = −2
(
8α + 8iαDe1 + 3iDe2

1 + 16αDe2
1

+ 4α∗ + 4iDe1α
∗ + 8De2

1α
∗). (6.37)

Boundary conditions

At θ = π/2, the boundary condition at this order is written as

u4 = −Θ
∂u3

∂θ
− 1

2
Θ2∂

2u2

∂θ2
− 1

6
Θ3∂

3u1

∂θ3
+

1

6
rΘ̇Θ3〈t〉, (6.38)

which we then Fourier-transform to obtain the boundary condition for ũ
(0)
4 . In

addition, since we are only interested in the time-averaged flow, i.e., real part of
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the solution Re{ũ(0)
4 }, the boundary condition at θ = π/2 can be simplified as

Re{ũ(0)
4 } =

r (8− π2)

8
Re{α}〈t〉, (6.39)

where

Re{α} =
−3De1(De1 −De2)(De1 + De2 + 2De2

1De2)

8(1 + De2
1)(1 + 4De2

1)(1 + De2
2)

· (6.40)

Finally, as usual, we have the no-slip and no-penetration boundary conditions at

θ = 0.

Solution

Solving the inhomogeneous biharmonic equation with the boundary con-

ditions above, we obtain our main result, namely the analytical formula for the

time-averaged flow as

Re
{

Ψ̃
(0)
4

}
=
r2De1 (De1 −De2)

(
2De2De2

1 + De1 + De2

)
512

(
De2

1 + 1
)

2
(
4De2

1 + 1
) (

De2
2 + 1

)[
32π − 3π3 + 8πDe1De2 − 3π3De1De2 + 24πDe2

1 + 4θ
(
−20 + 3π2

− 12De2
1 − 8De1De2 + 3π2De1De2

)
+ sin 4θ

(
−4− 12De2

1 + 8De1De2

)
+ cos 2θ(−32π + 3π3 + 48θ − 24πDe2

1 + 48θDe2
1 − 8πDe1De2

+ 3π3De1De2) + sin 2θ(24− 6π2 + 24De2
1 − 24πθDe2

1 − 6π2De1De2

+ 24πθDe1De2)
]
· (6.41a)

Re
{
ũ

(0)
4r

}
=
rDe1 (De2 −De1)

(
2De2De2

1 + De1 + De2

)
256

(
De2

1 + 1
)

2
(
4De2

1 + 1
) (

De2
2 + 1

)[
40− 6π2 + 24De2

1 + 16De1De2 − 6π2De1De2 + cos 4θ(8 + 24De2
1

− 16De1De2) + sin 2θ(−32π + 3π3 + 48θ − 12πDe2
1 + 48θDe2

1

− 20πDe1De2 + 3π3De1De2) + cos 2θ(−48 + 6π2 − 48De2
1 + 24πθDe2

1

+ 6π2De1De2 − 24πθDe1De2)
]
· (6.41b)
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Re
{
ũ

(0)
4θ

}
=
rDe1 (De2 −De1)

(
2De2De2

1 + De1 + De2

)
256

(
De2

1 + 1
)

2
(
4De2

1 + 1
) (

De2
2 + 1

)[
32π − 3π3 + 8πDe1De2 − 3π3De1De2 + 24πDe2

1 + 4θ
(
−20 + 3π2

− 12De2
1 − 8De1De2 + 3π2De1De2

)
+ sin 4θ

(
−4− 12De2

1 + 8De1De2

)
+ cos 2θ(−32π + 3π3 + 48θ − 24πDe2

1 + 48θDe2
1 − 8πDe1De2

+ 3π3De1De2) + sin 2θ(24− 6π2 + 24De2
1 − 24πθDe2

1 − 6π2De1De2

+ 24πθDe1De2)
]
· (6.41c)
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Figure 6.2: Time-averaged vorticity, 〈ω4〉, as a function of polar angle θ. (a):
Fixed Deborah number (De = 100) and ηs/η = 0.1 (blue solid line), 0.01 (red
dashed lines) and 0.001 (black dotted line); (b): Fixed relative viscosity (ηs/η =
0.1) and De = 1 (blue solid line), 10 (red dashed line), and 100 (black dotted line).

6.4 Characterization of the time-averaged flow

In the analysis above, we have computed the flow field perturbatively up to

order O(ε4) and found that a nonzero time-averaged flow occurs at that order, as

described by Eq. (6.41). Hereafter, for convenience, we rewrite the two Deborah

numbers as De1 = De and De2 = Deζ, where ζ = ηs/η is the relative viscosity

of the solvent vs. total fluid. The creation of a net flow by the tethered flapping

motion demonstrates explicitly that Purcell’s scallop theorem breaks down in a vis-

coelastic fluid. This suggests that reciprocal flapping-like motion can be exploited

for pumping polymeric fluids in simple geometries even in the absence of inertia –

a situation which is impossible in Newtonian fluids. In the following sections, we

explore the properties of this time-average flow and its dependance on both the
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actuation frequency and material properties of the fluid.

6.4.1 Streamline and vorticity pattern

With the streamfunction explicitly calculated, we can easily compute the

flow streamlines, as well as the flow vorticity, given by 〈ω4〉 = −∇2〈Ψ4〉, or

〈ω4〉 =
De3(1− ζ)

(
1 + ζ + 2De2ζ

)
128

(
1 + De2

)2 (
1 + 4De2

) (
1 + De2ζ2

)[
−32π − 24De2π + 3π3 − 8De2πζ + 3De2π3ζ

− 4
(
−20− 12De2 + 3π2 − 8De2ζ + 3De2π2ζ

)
θ

+
(
24De2π − 24De2πζ

)
cos 2θ +

(
48 + 48De2

)
sin 2θ

+
(
−12− 36De2 + 24De2ζ

)
sin 4θ

]
. (6.42)

We see that the vorticity is only a function of the polar angle θ between the wall

and the flapper. The vorticity is plotted as a function of the angle θ in Fig. 6.2 for

different relative viscosities (Fig. 6.2a) and different Deborah numbers (Fig. 6.2b).

The locations where the vorticity changes its sign are apparently invariant and

occur around θ ≈ 3π/16 (from negative to positive) and θ ≈ 3π/8 (from positive to

negative). The streamline pattern and vorticity distribution are also qualitatively

similar for different Deborah numbers and relative viscosities, as illustrated in

Fig. 6.3 for different Deborah numbers (De = 1 and De = 100) at a fixed relative

viscosity of 0.1. It can be noted that, keeping the relative viscosity fixed, increasing

the Deborah number leads to more inclined streamlines (greater vertical velocity

components) near the flat wall (θ = 0).

6.4.2 Directionality of the flow

As shown from the arrows in the streamline pattern in Fig. 6.3, the flapping

motion draws the polymeric fluid towards the hinge point at an acute angle, and

pumps the fluid away from the hinge point along both the flat wall and the average

flapper position. To illustrate this directionality further, we plot in Fig. 6.4 the

radial velocity per unit radius against the polar angle for different relative viscosi-

ties (Fig. 6.4a) and Deborah numbers (Fig. 6.4b). Again, the locations where the
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Figure 6.3: Streamline and vorticity pattern for ηs/η = 0.1; (a): De = 1; (b):
De = 100. The grayscale map displays the value of the vorticity, with legend shown
on the right of each plot.

radial velocity changes its sign are apparently invariant under the change of rela-

tive viscosity or Deborah number, and occur around θ ≈ π/4 (positive to negative)

and θ ≈ 7π/16 (negative to positive).

6.5 Optimization

Having identified the basic flow patterns generated by the flapping motion,

we now turn to a possible optimization of the pumping performance. Specifically,

we address the question: what is the optimal Deborah number at which the largest

flow can be generated? Since different optimality criteria can be defined, we con-

sider here three different “optimality measures” for the net flow, and show they all

generate essentially the same conclusion.

Flow along the boundary

Since the flapping motion pumps the fluid away from the hinge point along

the average flapper position, one natural measure of the pumping performance

is the magnitude of flow along the average flapper position (θ = π/2). Note

that the velocity field is directly proportional to the radius, and recall that the

velocity is only radial along the average flapper position as required by symmetry.

Consequently, the dependence of the intrinsic flow strength upon the Deborah
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Figure 6.4: Net flow velocity along the average flapper position, 〈u4r〉/r, as a
function of the polar angle θ. (a): fixed Deborah number (De = 100) and ηs/η =
0.1 (blue solid line), 0.01 (red dashed line) and 0.001 (black dotted line); (b) fixed
relative viscosity (ηs/η = 0.1) and De = 1 (blue solid line), 10 (red dashed line),
and 100 (black dotted line).

number can be characterized by the ratio between the radial velocity along the

average flapper position and the radial distance,

Ub (De, ζ) =
〈u4r〉(r, θ = π/2)

r

=
3De3 (π2 − 8) (1− ζ)

(
1 + ζ + 2De2ζ

)
64
(
1 + 5De2 + 4De4

) (
1 + De2ζ2

) , (6.43)

which is plotted for different relative viscosities in Fig. 6.5a. From Eq. (6.43),

we see that for small values of De, Ub ∼ De3, whereas for large values of De,

Ub ∼ 1/De, and therefore an optimal Deborah number is expected to exist. This

is confirmed in Fig. 6.5a, where we see that for each value of the relative viscosity,

there is an optimal value of the Deborah number where the flow along the bound-

ary is maximal. For small relative viscosities, we note the presence of two local

peaks (in contrast, only one exists for ηs/η = 10−1). Physically, by decreasing the

relative viscosity, we are varying the retardation time of the fluid, while keeping

the relaxation time fixed. The position of the second peak changes correspondingly

and commensurately when the relative viscosity is varied by orders of magnitude,

while the position the first peak is unchanged. When the relative viscosity is set to

zero (zero retardation time, which is a singular limit), we see in Fig. 6.5a a single

peak at essentially the same Deborah number as before. From these observations,

we deduce that the two local optimal Deborah numbers arise from two different

properties of the fluid, respectively relaxation and retardation. For small relative
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Figure 6.5: Dependence of pumping performance with the Deborah number, for
two different pumping measures. (a): Reduced flow velocity along the average
flapper position, Ub; (b): Reduced kinetic energy, E. For both cases: ηs/η = 0.1
(left solid line, blue); ηs/η = 0.01 (red dot-dashed line); ηs/η = 0.001 (orange
dotted line); ηs/η = 0.0001 (right solid line, green); ηs/η = 0 (black dashed line).

viscosities, the small local optimal Deborah number can be attributed to relaxation

while the larger local optimal Deborah number can be attributed to retardation,

and it disappears in the singular (and unphysical) limit of zero retardation.

Kinetic energy

Another possible optimization measure is related to the total kinetic energy

of the average flow. Since the velocity field is directly proportional to the radius, it

takes the general form 〈u4r〉 = rf(θ) and 〈u4θ〉 = rg(θ), where the functions f(θ)

and g(θ) can be found from Eq. (6.41). Therefore, the dependence of the total

kinetic energy of the average flow upon the Deborah number can be characterized

by a reduced energy given by the integral over the polar angle

E(De, ζ) =

∫ π/2

0

[f(θ)]2 + [g(θ)]2 dθ, (6.44)
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and is given analytically by

E(De, ζ) =
De6π(−1 + ζ)2

(
1 + ζ + 2De2ζ

)2

98304
(
1 + De2

)4 (
1 + 4De2

)2 (
1 + De2ζ2

)2[
−2074− 4028De2 − 2058De4 + 1054π2 + 858De2π2 − 144De4π2

− 174π4 − 45De2π4 + 36De4π4 + 9π6 − 120De2ζ + 88De4ζ

+ 1250De2π2ζ + 1146De4π2ζ − 303De2π4ζ − 117De4π4ζ

+ 18De2π6ζ − 104De4ζ2 + 52De4π2ζ2 − 93De4π4ζ2 + 9De4π6ζ2
]
.

(6.45)

With a fixed relative viscosity, for small values of De, we have E ∼ De6 , whereas

E ∼ 1/De2 for large values of De, so an optimal De should exist. The function

E(De, ζ) is plotted for different values of the relative viscosity in Fig. 6.5b, and

similarly to the previous section we see indeed the existence of an optimal value of

De for each ζ.

Enstrophy

Finally, we also consider the dependence of the enstrophy of the flow upon

the Deborah number. The total enstrophy of the flow is proportional to the integral

E(De, ζ) =

∫ π/2

0

ω2
4dθ, (6.46)

which can be analytically calculated to be

E =
De6π(−1 + ζ)2

(
1 + ζ + 2De2ζ

)2

98304
(
1 + De2

)4 (
1 + 4De2

)2 (
1 + De2ζ2

)2[
−1800− 14256De2 − 12744De4 + 616π2 + 2424De2π2 + 1440De4π2

− 120π4 − 72De2π4 + 9π6 + 10656De2ζ + 11232De4ζ − 1192De2π2ζ

− 456De4π2ζ − 168De2π4ζ − 72De4π4ζ + 18De2π6ζ − 288De4ζ2

− 368De4π2ζ2 − 48De4π4ζ2 + 9De4π6ζ2
]
. (6.47)

The variation of E with De turns out to be very similar to the one for E (Eq. 6.45,

shown in Fig. 6.5b), and is not reproduced here.
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Optimal Deborah number

We next compute numerically the optimal Deborah number, maximizing

the pumping measures in both Eqs. (6.43) and (6.45), as a function of the relative

viscosity. The results are displayed in Fig. 6.6. The optimality conditions turn

out to quantitatively agree for both pumping measures, and correspond to an

inverse linear relationship between Deopt and ζ. This scaling is confirmed by an

asymptotic analysis of the exact analytical formula for Deopt found by setting the

partial derivative of Eq. (6.43) to zero, and showing that indeed Deopt ∼ 1/ζ for

small values of ζ.

6.6 Discussion

In this chapter, we have considered what is arguably the simplest geometri-

cal setup to demonstrate that net fluid pumping can be obtained from the purely

sinusoidal forcing of a viscoelastic fluid. The fluid was modeled as an Oldroyd-B

fluid both for simplicity and because of the physical relevance of the model. The

main result we obtained is the time-averaged flow, described by Eq. (6.41), gener-

ated by the reciprocally flapping motion. In accordance with the scallop theorem,

setting the Deborah number to zero in Eq. (6.41) leads to no flow, but a net flow

occurs for all nonzero values of De. Our calculations allow us to demonstrate
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explicitly the breaking of the scallop theorem in the context of fluid pumping,

and suggest the possibility of taking advantage of the intrinsic nonlinearities of

complex fluids for their transport. Physically, such flow is being driven by normal-

stress differences arising in the fluid and due to the stretching of the polymeric

microstructures by the background flow. The calculation was done asymptotically

for small-amplitude flapping, and the net flow occurs at fourth order. As in the

classic work by Moffatt [157], our results should be understood as similarity solu-

tions which are valid close enough to the fixed hinge point such that the inertial

effects are negligible. The advantage of such theoretical treatment is that it allows

us to obtain the entire flow field analytically, in particular the spatial structure

of the flow, and the dependance of the net pumping on the actuation parameters

(the flapping frequency) and the material properties of the fluid (relaxation time

and viscosities). Taking advantage of these analytical results, we have been able to

analytically optimize the pumping performance, and derive the optimal Deborah

number as a function of the fluid ratio of solvent to total viscosity. Although we

have considered here the simplest geometrical and dynamical setup possible, the

results motivate future work which will focus on the flapping of three-dimensional

finite-size appendages in polymeric fluids.

We now turn to the relevance of our results to biological transport. In

Newtonian fluids, only the non-reciprocal component of the motion of cilia – i.e.

the difference between their effective and recovery strokes – affects fluid trans-

port [17, 158]. In contrast, we show in this chapter that the back-and-forth com-

ponents of cilia motion, which is reciprocal, does influence transport in the case

of viscoelastic biological fluids. The effect is expected to be crucial since the

typical Deborah number in ciliary transport is large, and elastic effects of the

fluid are therefore likely to be significant. For example, from rheological measure-

ments [159–161], we know the relaxation time of respiratory mucus ranges between

λ ≈ 30−100 s, and that of the cervical mucus present in female reproductive tract

ranges from λ ≈ 1 − 100 s [159, 162]. In addition, cilia typically oscillate at fre-

quencies of f = ω/2π ≈ 5 − 50 Hz [17], and therefore, ciliary transport of mucus

occurs at large (or very large) Deborah numbers, De = λω ∼ 10 to 104.

In addition, the results of our chapter should be contrasted with previous

work. It was shown in Ref. [51] that the presence of polymeric stresses leads to a
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decrease of the speed at which a fluid is pumped by a waving sheet – in that case a

complex fluid led therefore to a degradation of the transport performance. In con-

trast, we demonstrate in the current chapter a mode of actuation which is rendered

effective by the presence of polymeric stresses – the complex fluid leads therefore in

this case to an improvement of the transport performance. For a general actuation

gait, it is therefore not known a priori whether the presence of a complex fluid

will lead to a degradation or an improvement of the pumping performance, and

whether or not a general classification depending on the type of actuation gait can

be derived remains a question to be addressed in the future.

Chapter 6, in full, is a reprint of the material as it appears in Physical

Review E 2010. Pak, On Shun; Normand, Thibaud; Lauga, Eric, the American

Physical Society, 2010. The dissertation author was the primary investigator and

author of this paper.



Chapter 7

Micropropulsion and

microrheology in complex fluids

via symmetry breaking

Many biological fluids have polymeric microstructures and display non-

Newtonian rheology. We take advantage of such nonlinear fluid behavior and

combine it with geometrical symmetry-breaking to design a novel small-scale pro-

peller able to move only in complex fluids. Its propulsion characteristics are ex-

plored numerically in an Oldroyd-B fluid for finite Deborah numbers while the

small Deborah number limit is investigated analytically using a second-order fluid

model. We then derive expressions relating the propulsion speed to the rheological

properties of the complex fluid, allowing thus to infer the normal stress coefficients

in the fluid from the locomotion of the propeller. Our simple mechanism can there-

fore be used either as a non-Newtonian micro-propeller or as a micro-rheometer.

7.1 Introduction

The physics of low Reynolds number locomotion is relatively well explored

in the Newtonian limit (see reviews in Refs. [15–18] and references therein). Beyond

improving our understanding of biological processes, applications of these physical

principles led to progress in the design of synthetic micro-swimmers for potential

future biomedical applications [16, 20, 21, 24, 86]. In contrast, fundamental prop-

127
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erties of life in complex, non-Newtonian, flows remain surprisingly unaddressed.

Non-Newtonian flow behaviors can be appreciated through well-known manifesta-

tions from daily life, for example the climbing of dough up kitchen mixing blades

(termed rod-climbing, or Weissenberg, effect) or the remarkable behavior of Silly

Putty, a popular toy which bounces like a solid rubber ball when thrown to the

floor but melts like a fluid when left on a surface for some time [131,163,164].

Many situations exist wherein microorganisms encounter biological fluids

which have polymeric microstructures and non-Newtonian rheological properties.

For example, spermatozoa swim through the viscoelastic cervical mucus and along

the mucus-covered fallopian tubes [15, 26–28, 31, 43]; cilia lie in a layer of mucus

along the human respiratory tract [165]; Helicobacter pylori, a bacterium causing

ulcer, locomotes through mucus lining of the stomach [166]; spirochetes moves

through host tissue during infection [167]; in biofilms, bacteria are embedded in

cross-linked polymer gels [168–172].

Physically and mathematically, the presence of polymeric stresses in a com-

plex fluid means that the usual properties associated with the absence of inertia

in the Newtonian limit cease to be valid, in particular kinematic reversibility and

the linearity of the flow equations. In return, non-Newtonian effects such as stress

relaxation, normal stress differences, and shear-rate dependent viscosity manifest

themselves [131,132,163,164] .

Past theoretical and experimental studies have investigated the waveforms

and swimming paths of microorganisms in complex fluids [15,16,26–28,30,31,173,

174]. An active discussion in the biomechanics community has recently focused

on the simple question: does fluid elasticity enhance or deteriorate propulsion at

the microscopic scale? Theoretical studies on infinite models [51,134,175] showed

that, for fixed body-frame kinematics, the propulsion speed decreases in a vis-

coelastic fluid. Numerical studies on a finite swimmer [176] demonstrated that

the propulsion speed could be enhanced by the presence of polymeric stress for

some prescribed kinematics. Experimental investigations suggested evidences for

both [177, 178]. It was also shown that reciprocal actuation on a fluid, unable to

provide net locomotion or flow transport in the Newtonian case, can be rendered

effective by viscoelasticity [135,136,179]. The presence of polymeric stress has also

interesting consequences on the rate of flagellar synchronization [180].
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Normal stress differences in a complex fluid are responsible for a num-

ber of important non-Newtonian effects [131, 163, 164] including the rob-climbing

effect mentioned above impacting many applications such as mixing, and the

swelling of polymer melts when extruded from dies in manufacturing processes

posing constraints on the rate of extrusion. In a pure shear flow with an arbitrary

Reynolds number and a shear rate γ̇, assuming that the flow is in the x−direction

and the velocity varies in the y−direction, the z−direction being called the neu-

tral direction [131], the first and second normal stress coefficients are defined as

Ψ1 = (τxx − τyy)/γ̇2 and Ψ2 = (τyy − τzz)/γ̇2 respectively, where τij are the com-

ponents of the deviatoric stress tensor. In a Newtonian flow, there are no normal

stress differences (Ψ1 = Ψ2 = 0), whereas for polymeric fluids typically Ψ1 > 0

and Ψ2 < 0. The magnitude of the second normal stress coefficient is usually much

smaller than that of the first normal stress coefficient (|Ψ2| � Ψ1). In the rob-

climbing phenomenon, both first and second normal stress coefficients contribute to

the effect [131]. However, due to its small magnitude, the effect of the second nor-

mal stress coefficient is shadowed by that of the first normal stress difference [131].

The existence of the second normal stress difference can be demonstrated in a

free-surface flow driven by gravity through a tilted trough: a Newtonian fluid has

a flat free surface (with negligible meniscus effect), while the free surface of a

non-Newtonian fluid becomes convex due to second normal stresses [181–183].

In this work, we propose a simple mechanism able to take advantage of the

presence of normal stress differences to propel in a complex fluid. Our geometry,

shown in Fig. 7.1, consists of two linked small spheres propelling under the action

of an external torque, a setup we will refer to as a “snowman”. Locomotion is

enabled solely by the presence of normal stress differences, and no motion exists

in a Newtonian environment, a fact that can in turn be used to infer the normal

stress coefficients of a complex fluid. In essence, as complex fluids lead to new

modes of small-scale propulsion, symmetrically the presence of propulsion in an

environment can be used to locally probe the rheological properties of the fluid.

The first normal stress coefficient of a fluid can be measured directly from

a conventional cone-and-plate rheometer [131, 163, 164]; the measurement of the

second normal stress coefficient however has been a longstanding challenge [184–

187]. A number of methods were proposed (see a review in Ref. [187]), including
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a modified cone-and-plate rheometry with pressure transducers [131,185], a subtle

evaluation of a combination of cone-and-plate and parallel-plate experiments [184],

rheo-optical measurements [184, 186], and the use of a cone-and-partitioned plate

tool [187]. Recently, a microrheological technique was proposed to measure the first

and second normal stress coefficients [188]. In microrheology, colloidal probes are

either actively driven, or passively diffusing, and their dynamics allows to infer local

rheological information. Microrheology enjoys many advantages over conventional

macroscopic rheological measurements [189,190], including the reduction in sample

size, the ability to probe spatially-inhomogeneous environments, and the possibility

of performing measurements in living cells [189–192]. The mechanism we propose

in this chapter would be classified as “active” microrheology, a situation where

colloidal probes are actively manipulated to drive the material out of equilibrium

and probe its nonlinear mechanical properties [189, 193]. We offer in this chapter

an alternative microrheological technique capable of probing both first and second

stress coefficients by using only kinematic measurements.

This chapter is organized as follows. In Sec. 7.2, we introduce the geometric

and kinematic setup of our proposed mechanism and the polymeric fluid models

adopted in our study. We first investigate in Sec. 7.3 the propulsion characteristics

of the snowman in a complex fluid, followed in Sec. 7.4 by the method of inferring

the normal stress coefficients from its locomotion. We then provide a qualitative,

and intuitive, explanation of the locomotion enabled by normal stresses in Sec. 7.5

before concluding the chapter in Sec. 7.6.

7.2 Setup

7.2.1 Kinematics

By symmetry, the rotation of a single sphere in any homogeneous fluid

produces no net locomotion. Inserting a second sphere, of different size, breaks the

geometrical symmetry and can potentially allow locomotion. We first consider the

rotation of two unequal spheres touching each other as a single rigid body (see the

geometry and notations in Fig. 7.1), the “snowman” geometry. We label the line

of centers of the spheres as the z-axis. Without loss of generality, we assume the
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Figure 7.1: Geometrical setup of two spheres (“snowman”) rotating with angular
velocity Ω along their separation axis. The radii of the upper and lower spheres
are denoted by RU and RL respectively. The centers of the spheres are separated
by a distance, h (for touching spheres, h = RU +RL).

radius of the upper sphere (RU) is smaller than that of the lower sphere (RL ≥ RU).

The distance between the centers of the spheres is denoted by h. For the case of

touching spheres, we thus have h = RU +RL.

From a kinematic standpoint we assume that the rigid body rotates with

a steady angular velocity about the z-axis, Ω = (0, 0,Ω > 0), but is otherwise

free to move. Given that the snowman is axisymmetric, the only direction it

could potentially move is the z-direction. We assume the net hydrodynamic force

acting on the snowman is zero for all times (free-swimming condition), and aim

at computing the rigid body (swimming) velocity necessary to maintain force-free

motion.

In a Newtonian fluid without inertia, it is straightforward to show using

kinematic reversibility and reflection symmetry that a rotating snowman cannot

swim – a result true for any degree of geometrical asymmetry. The central question

at the heart of this chapter is: Can elasticity of the fluid enable propulsion of

the snowman? We answer this question in the following sections by studying

the locomotion of a rotating snowman in polymeric fluids described by the two

constitutive relations.
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7.2.2 Polymeric fluid dynamics

We consider an incompressible low-Reynolds-number flow in a complex

fluid. Denoting the velocity field as u and the fluid stress as σ = −pI + τ ,

where p is the pressure, and τ is the deviatoric stress tensor, the conservation of

mass and momentum are given by the continuity equation and Cauchy’s equation

of motion respectively

∇ · u = 0, (7.1)

∇ · σ = 0. (7.2)

For closure, we require a constitutive equation relating the deviatoric stresses τ to

the kinematics of the flow. Obviously a large number of models have been proposed

in the past to describe polymeric fluids. In this work two constitutive equations

are used to study the viscoelastic locomotion of a snowman.

Oldroyd-B fluid

The classical Oldroyd-B constitutive equation is arguably the most famous

constitutive model for polymeric fluids [131,132,163,164]. It has a sound physical

origin and can be derived from a kinetic theory of polymers in the dilute limit by

modeling polymeric molecules as linearly elastic dumbbells. The predictions also

agree well with experimental measurements up to order one Weissenberg numbers,

although it is known to suffer deficiencies for larger values [131,132,163,164]. In an

Oldroyd-B fluid, the deviatoric stress is the sum of two components, τ = τ s + τ p,

where τ s and τ p denote, respectively, the Newtonian solvent contribution and

polymeric contribution to the stress. The constitutive relation for the Newtonian

contribution is given by τ s = ηsγ̇, where γ̇ = ∇u + ∇uT is the rate of strain

tensor and ηs is the solvent contribution to the viscosity. The momentum equation

can thus be written as

−∇p+ ηs∇ · γ̇ + ∇ · τ p = 0, (7.3)

The polymeric stress τ p is then assumed to be governed by the upper-convected

Maxwell equation

τ p + λ
O
τ p= ηpγ̇, (7.4)
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where λ is the polymeric relaxation time and ηp is the polymer contribution to the

viscosity [131, 163, 164]. The upper-convected derivative for a tensor A is defined

as
O
A=

∂A

∂t
+ u ·∇A− (∇uT ·A + A ·∇u), (7.5)

which calculates the rate of change of A while translating and deforming with the

fluid.

Combining the Newtonian and polymeric constitutive relations, we obtain

the Oldroyd-B constitutive equation for the total stress, τ , as

τ + λ
O
τ= η(γ̇ + λ2

O
γ̇), (7.6)

where the total viscosity is given by η = ηs + ηp, and λ2 = λζ denote the retar-

dation times (we define the relative viscosity ζ = ηs/η < 1). For steady shear of

an Oldroyd-B fluid, both the viscosity and the first normal stress coefficient are

constant, and the second normal stress coefficient is zero [131]. The Oldroyd-B

fluid is the model we will use for our numerical approach.

Second-order fluid

For slow and slowly varying flows, the second-order fluid model applies.

It is the first non-Newtonian term in a systematic asymptotic expansion of the

relationship between the stress and the rate of strain tensors called the retarded-

motion expansion. It describes small departures from Newtonian fluid behavior,

and the instantaneous constitutive equation is given in this model by

τ = ηγ̇ − 1

2
Ψ1

O
γ̇ + Ψ2(γ̇ · γ̇), (7.7)

where Ψ1 and Ψ2 are the first and second normal stress coefficients respectively.

Note that if λ = 0 while λ2 6= 0 in the Oldroyd-B model, Eq. (7.6), it reduces to a

second-order fluid with a vanishing second normal stress coefficient (Ψ2 = 0) [131].

The second-order fluid model will enable us to derive theoretically the behavior of

the snowman for small deformations.

7.2.3 Non-dimensionalization

We non-dimensionalize lengths by the radius of the lower sphere RL, times

by 1/Ω, and use the total fluid viscosity, η, to provide the third fundamental
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unit. Hence, velocities, shear rates, and stresses are scaled by RLΩ, Ω, and ηΩ

respectively. The dimensionless radius of the upper sphere becomes then r∗ =

RU/RL while the lower sphere has now radius 1. We have h∗ = h/RL denoting

the dimensionless distance between the centers of the sphere (h∗ = 1 + r∗ for

two touching spheres). Both spheres rotate at the same dimensionless unit speed,

Ω∗ = 1. The starred variables represent dimensionless variables in this chapter.

The Deborah number [131, 163, 164], De = λΩ, is a dimensionless number defined

as the ratio of a characteristic time scale of the fluid (the polymeric relaxation

time, λ) to a characteristic time scale of the flow system (1/Ω), and appears in the

dimensionless momentum equation and upper-convected Maxwell equation

−∇p∗ + ζ∇ · γ̇∗ + ∇ · τ p∗ = 0, (7.8)

τ p∗ + De
O

τ p∗= (1− ζ) γ̇∗. (7.9)

The limit De = 0 corresponds to a Newtonian fluid.

The upper-convected Maxwell equation of the polymeric stress, Eq. (7.9),

can be combined with the constitutive relation of the Newtonian contribution to

obtain the dimensionless Oldroyd-B constitutive equation for the total stress τ ∗ as

τ ∗ + De
O

τ ∗= γ̇∗ + De2

O

γ̇∗, (7.10)

where we have defined another Deborah number, De2, in terms of the retardation

time, De2 = λ2Ω = Deζ.

The dimensionless constitutive relation for a second-order fluid is now given

by

τ ∗ = γ̇∗ −Deso

(
O

γ̇∗ +Bγ̇∗ · γ̇∗
)
, (7.11)

where we have defined another Deborah number for the second-order fluid, namely

Deso = Ψ1Ω/2η, and B = −2Ψ2/Ψ1 ≥ 0.

Importantly, we note that the definition of the Deborah number of an

Oldroyd-B fluid is different from that of a second-order fluid, because the relaxation

time of an Oldroyd-B fluid is defined only by the polymer, whereas the relaxation

time of a second-order is defined by both the polymer and the solvent [194]. The

two Deborah numbers are related by the relation Deso = De(1−ζ). We shall mostly
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use the Deborah number defined for an Oldroyd-B fluid (De) for the presentation

of our final results, since we feel it is the one with the most intuitive definition.

The Oldroyd-B equation is valid up to moderate De, and the second order fluid is

valid for small De (or Deso), and we thus expect the results from both models to

match when De (or Deso) is sufficiently small.

7.3 Propulsion of snowman in a complex fluid

As argued in Sec. 7.2.1, asymmetry alone does not lead to net locomotion

upon rotating a snowman in a Newtonian fluid. We now explore the effects of fluid

elasticity on the propulsion of a snowman: Does it even move? Which direction

does it go? And how fast? Using the Oldroyd-B fluid model, we first explore

numerically the propulsion characteristics of the snowman from small to moderate

Deborah numbers. Next, the small De limit is studied analytically via the second-

order fluid model.

7.3.1 Moderate Deborah number

We employed a finite element model to compute the polymeric flow as de-

scribed by Eqs. (7.8) and (7.9). A formulation called the Discrete Elastic-Viscous

Split Stress (DEVSS-G) [195, 196] is implemented here to improve numerical sta-

bility. The momentum equation, Eq. (7.8), is rewritten as

∇ · µa(∇u∗ + ∇u∗T )−∇p∗ + ∇ · τ p∗ −∇ · (µa − ζ)(G + GT ) = 0, (7.12)

where the tensor G ≡∇u∗ is introduced as a finite element approximation of the

velocity gradient tensor ∇u∗. An additional elliptic term, ∇ · µa(∇u∗+∇u∗T )−
∇ · µa(G + GT ), is added into the momentum equation for stabilization [197]. In

the limit that the mesh size in the finite element approximation tends to zero, G

approaches ∇u∗ and the elliptic term vanishes, reducing Eq. (7.12) to Eq. (7.8).

G is also used to approximate the velocity gradient term ∇u∗ in the constitutive

equation, Eq. (7.9). For simulations in this work, we choose µa = 1 as in Liu et

al. [196].

A Galerkin method is used to discretize the momentum equations, conti-

nuity equation, and the equation for the additional unknown G. Quadratic ele-
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ments are used for u∗ and linear elements for both p∗ and G. The streamline-

upwind/Petrov-Galerkin(SUPG) [198] method is adopted to discretize the consti-

tutive equation, Eq. (7.9), to improve numerical stability. The resulting weak form

of the model is formulated as

{S +
hc
Uc

u∗ · ∇S,

τ p∗ + De(u∗ · ∇τ p∗ −GT · τ p∗ − τ p∗ ·G)− (1− ζ )(G + GT )} = 0, (7.13)

where S denotes the test function for τ p∗, hc is a characteristic mesh size, and Uc is

the magnitude of a local characteristic velocity (we choose the norm of u∗ as Uc).

The framework for the implementation is provided by the commercial software

COMSOL, which was successfully used for simulating the locomotion of squirmers

in a viscoelastic fluid at low Reynolds numbers [199].

We perform three-dimensional axisymmetric simulations on a two-dimensio-

nal mesh constructed with triangle elements. Sufficiently refined mesh is generated

near rotating objects to resolve the thin stress boundary layers, necessary to over-

come numerical instabilities [200,201] and improve accuracy. We validate our im-

plementation by comparing numerical and analytical values of the hydrodynamic

torque on a rotating sphere in the Newtonian fluid. For the viscoelastic model,

we validate our approach against the simulations in Lunsmann et al. [202] of a

sedimenting sphere in a tube filled with Oldroyd-B fluid and the analytical results

in Bird et al. [131] of a rotating sphere in a second-order fluid.

Equipped with our computational model, we are able to show that fluid

elasticity does indeed enable the propulsion of the snowman provided the two

spheres have unequal sizes (r∗ < 1). The snowman always swim in the positive

z-direction (see Fig. 7.1), i.e. from the larger to the smaller sphere. For illustra-

tion, we compute the dimensionless propulsion speed, U∗ = U/RLΩ, of a typical

snowman (r∗ = RU/RL = 0.5) as a function of the Deborah number, De (red dot-

dashed line, Fig. 7.2), for a fixed relative viscosity ζ = 0.5. When De = 0, the fluid

reduces to the Newtonian limit and we recover that no propulsion is possible in this

case. For small values of De, the propulsion speed appears to grow linearly with

De, a result confirmed analytically in the next section. A maximum swimming

speed is reached at De ≈ 1.75, before decaying as De continues to increase.

In addition to the primary flow (the Newtonian component, De = 0), elastic
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Figure 7.2: Demonstration of snowman locomotion. For a radii ratio (r∗ =
RU/RL) of 0.5 and ζ = 0.5, we plot: (a) Dimensionless propulsion speed, U/RLΩ,
as a function of the Deborah number, De. Red dot-dashed line: numerical results
in an Oldroyd-B fluid; blue solid line: theoretical calculation using the reciprocal
theorem in a second-order fluid, Eq. 7.36; (b) The streamline pattern and speed
(shaded/color map) of the secondary flow for De = 0.1 (streamline patterns at
higher De are qualitatively similar).

stresses around the snowman generate a secondary flow, understood simply as

the difference between the total flow and the Newtonian component. A typical

secondary flow pattern is shown in the frame of the snowman in Fig. 7.2b (De = 0.1

and ζ = 0.5). We depict the velocity vectors and streamlines with the shaded/color

map representing the flow speed. Fluid is drawn towards the snowman parallel to

the equatorial plane and then expelled along the axis, while a ring vortex is detected

in the front. The maximum speed of the secondary flow is observed at the rear

of the snowman, only about 0.7% of the characteristic speed of the primary flow

RLΩ.

7.3.2 Small Deborah number

To provide a theoretical approach to the snowman locomotion and to quan-

tify the connection between locomotion and rheology in the following sections we

now consider the second-order fluid, which we remind is valid in the small-De limit
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only (Eq. 7.11). All variables are expanded in powers of the Deborah number,

Deso, as

σ = σ0 + Desoσ1 +O(Deso
2), (7.14)

u = u0 + Desou1 +O(Deso
2), (7.15)

γ̇ = γ̇0 + Desoγ̇1 +O(Deso
2), (7.16)

U = U0 + DesoU1 +O(Deso
2), (7.17)

where U denotes the propulsion velocity, U = (0, 0, U). Other variables are ex-

panded similarly. We drop the stars hereafter for simplicity, and all variables in

this section are dimensionless unless otherwise stated. The locomotion problem is

then solved order by order.

Zeroth-order solution

The zeroth order solution, {σ0 = −p0I + γ̇0,u0}, satisfies the Stokes equa-

tions,

∇ · σ0 = 0, (7.18)

∇ · u0 = 0, (7.19)

where σ0 = −p0I+γ̇0. This is the Newtonian flow for two touching spheres rotating

(at a rate of Ω) about the line of their centers (z-axis). The exact solution in terms

of analytical functions was given by Takagi [203] in tangent-sphere coordinates. No

propulsion occurs in the Newtonian limit, U0 = 0, as expected.

First-order solution

The first order solution (σ1,u1) of the main problem satisfies

∇ · σ1 = 0, (7.20)

∇ · u1 = 0, (7.21)

where

σ1 = −p1I + γ̇1 −
O
γ̇0 −Bγ̇0 · γ̇0. (7.22)
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To compute the value of the first order propulsion velocity, U1, we will use a version

of the reciprocal theorem for Stokes flows adapted to self-propulsion in viscoelastic

fluids [135,188,204–210].

Consider an auxiliary problem with identical geometry, {σaux,uaux}, satis-

fying

∇ · σaux = 0, (7.23)

∇ · uaux = 0. (7.24)

Taking the inner product of Eq. (7.20) with uaux, minus the inner product of

Eq. (7.23) with u1, and integrating over the entire fluid volume, we have trivially∫
Vf

uaux · (∇ · σ1)− u1 · (∇ · σaux)dV = 0. (7.25)

Using vector calculus we can rewrite the integral in the following form [211]∫
Vf

∇ · (uaux · σ1 − u1 · σaux)dV =

∫
Vf

(∇uaux : σ1 −∇u1 : σaux)dV. (7.26)

The left-hand side of Eq. (7.26) can be converted to a sum of surface integrals

by the divergence theorem while the right-hand side can be simplified using the

first-order constitutive equation, Eq. (7.22), leading to∑
α

∫
Sα

n · (uaux · σ1 − u1 · σaux)dS =

∫
Vf

[(
O
γ̇0 +Bγ̇0 · γ̇0

)
: ∇uaux

]
dV,

(7.27)

where Sα denotes the surface of different spheres (α = 1, 2) and n represents the

outward normal vector on the surface. The important simplification which took

place in the right hand-side of Eq. (7.26) is that all Newtonian terms included in

σaux and σ1 have canceled each other out by symmetry, and thus the only piece

remaining in the right-hand side of Eq. (7.27) is the non-Newtonian contribution

[205,210].

Now, let U1 and Ω1 be the (unknown) first order translational and rota-

tional velocities of the spheres in our main problem, while the translational and

rotational velocities of the spheres in the auxiliary problem (known) are given by
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Uaux and Ωaux. On the surface Sα of one sphere, the no-slip and no-penetration

boundary conditions lead to

uaux = Uaux + Ωaux × r, (7.28)

u1 = U1 + Ω1 × r, (7.29)

where r is the position vector describing the surface. With these boundary condi-

tions, the integral relation, Eq. (7.27), becomes∑
α

Uα
aux ·

∫
Sα

n · σ1dS + Ωα
aux ·

∫
Sα

r× (n · σ1)dS

−Uα
1 ·
∫
Sα

n · σauxdS −Ωα
1 ·
∫
Sα

r× (n · σaux)dS

=

∫
Vf

[(
O
γ̇0 +Bγ̇0 · γ̇0

)
: ∇uaux

]
dV. (7.30)

In Eq. (7.30), the integrals
∫
Sα

n · σ1dS and
∫
Sα

r × (n · σ1)dS represent

the net hydrodynamic force and torque acting on the sphere α by the first order

flow field. Let us denote Fα
1 = −

∫
Sα

n · σ1dS and Tα
1 = −

∫
Sα

r × (n · σ1)dS

the net external force (Fα
1 ) and external torque (Tα

1 ) acting on each sphere; the

appearance of a minus sign comes from the fact that the total force and torque

(external + fluid) acting on a body have to sum to zero in the absence of inertia.

In the free-swimming case there is an additional stronger constraint, namely the

total external force (or equivalently, the total fluid force) has to remain zero at

all instant (we will enforce this constraint shortly). Defining also Fα
aux and Tα

aux

as the external force and torque required to balance the fluid drag and torque on

each sphere in the auxiliary problem we see that Eq. (7.30) is transformed into∑
α

−Uα
aux · Fα

1−Ωα
aux ·Tα

1 + Uα
1 · Fα

aux + Ωα
1 ·Tα

aux

=

∫
Vf

[(
O
γ̇0 +Bγ̇0 · γ̇0

)
: ∇uaux

]
dV. (7.31)

The above relation remains actually true for any number of spheres and

kinematics. In the case of a snowman, we have two spheres connected as a rigid

body in both the main and auxiliary problems, hence U1
1 = U2

1 = U1, Ω1 =

Ω2 = Ω1, U1
aux = U2

aux = Uaux, and Ω1
aux = Ω2

aux = Ωaux. In the main problem

we impose a rotational rate Ω on the snowman, which has been accounted for in
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the zeroth order (Newtonian) solution, hence Ωα
n = 0 for all n ≥ 1. In addition,

we define in the main problem the total external force and torque acting on the

rigid body as F1 = F1 + F2, T1 = T1 + T2, and in the auxiliary problem Faux =

F1
aux + F2

aux, and Taux = T1
aux + T2

aux. Using these simplifications the general

relation, Eq. (7.31), simplifies to

− (Uaux · F1 + Ωaux ·T1) + U1 · Faux =

∫
Vf

[(
O
γ̇0 +Bγ̇0 · γ̇0

)
: ∇uaux

]
dV ·

(7.32)

We now need to find an auxiliary problem that facilitates the determination

of the first order propulsion velocity, U1, in the main problem. An appropriate

candidate is the translation of two touching spheres along the line of their centers

without rotation, Ωaux = 0. The exact analytical solution was given by Cooley and

O’Neill [212]. By choosing this auxiliary problem, the relation further simplifies to

−Uaux · F1 + U1 · Faux =

∫
Vf

[(
O
γ̇0 +Bγ̇0 · γ̇0

)
: ∇uaux

]
dV · (7.33)

If we do not allow the spheres to translate along the z-axis, U1 = 0, an external

force, F1, is required to hold the snowman in place given by

−Uaux · F1 =

∫
Vf

[(
O
γ̇0 +Bγ̇0 · γ̇0

)
: ∇uaux

]
dV · (7.34)

On the other hand, if we allow the snowman to translate freely without

imposing any external forces, F1 = 0, then the first order propulsion velocity, U1,

can be determined from

U1 · Faux =

∫
Vf

[(
O
γ̇0 +Bγ̇0 · γ̇0

)
: ∇uaux

]
dV, (7.35)

where both Faux and the integral are expressed in terms of known Newtonian

solutions of the main and auxiliary problems. Since the propulsion velocity U1

(with magnitude U1) and the force in the auxiliary problem Faux (with magnitude

Faux) act both vertically, the first order propulsion speed is finally given by

U1 =
1

Faux

∫
Vf

[(
O
γ̇0 +Bγ̇0 · γ̇0

)
: ∇uaux

]
dV, (7.36)

where a positive value represents upward propulsion.
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Using Eq. (7.36) with the zeroth-order solution [203] and the auxiliary

Newtonain solution [212] we are able to determine theoretically the leading order

propulsion speed of the snowman, U = DesoU1 +O(Deso
2) = De(1−ζ)U1 +O(De2).

The quadrature is performed in the tangent-sphere coordinates, with somewhat

lengthy differential operations in evaluating the integrand. Our asymptotic results

are shown in Fig. 7.2 as a blue solid line. We see that our results predict very well

the propulsion speed of the snowman for small De when compared with numerical

computations of the Oldroyd-B fluid (red dot-dashed line, in Fig. 7.2), and the

agreement is excellent up to De ∼ 1.

Note that in order to compare the results between the second-order fluid cal-

culation and the Oldroyd-B numerics, the dimensionless parameter B = −2Ψ2/Ψ1

in the second-order fluid has to be taken to be zero because the second normals

stress coefficient is zero in the Oldroyd-B model. Experimentally, indeed we have

B � 1. Mathematically, the propulsion velocity varies linearly with B, and a

transition of propulsion direction occurs at B = 1. Such a transition also occurs

in the direction of radial flow for a single rotating sphere in a second-order fluid

(see Sec. 7.5 for a related discussion).

7.3.3 Propulsion characteristics

Anticipating the section where we make the link between rheology and loco-

motion, we now investigate the impact of the snowman geometry on its propulsion

performance in the low-De regime where our asymptotic results via reciprocal the-

orem are quantitatively accurate.

Touching spheres

In the case of two touching sphere (h∗ = 1+r∗), the only free dimensionless

geometric parameter is the ratio of the radius of the upper to that of the lower

spheres r∗ = RU/RL ∈ [0, 1]. In the limit r∗ = 0, the snowman reduces to a single

sphere, while the limit r∗ = 1 corresponds to two equal touching spheres; in both

cases, there is no propulsion by symmetry. We therefore expect an optimal ratio

r∗ for a maximum propulsion speed. Using the reciprocal theorem, Eq. (7.36), we

calculate the propulsion speed as a function of r∗ (Fig 7.3, blue solid line) and
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Figure 7.3: Propulsion speed of snowman with two touching spheres as a function
of the ratio of radii at De = 0.1 and ζ = 0.5. Red dots: numerical results in an
Odroyd-B fluid. Blue solid line: theoretical calculation for second-order fluid.
Black dotted line: simplified analytical model (Eq. 7.51).

compare with the numerical results in an Oldroyd-B fluid (Fig. 7.3, red dots) at

De = 0.1 and a typical relative viscosity ζ = 0.5. The asymptotic results agree

very well with the Oldroyd-B computations. The optimal sphere size ratio occurs

at r∗opt ≈ 0.58. In addition to our computations and theoretical calculations, and

based on physical understanding of the behavior of a single rotating sphere in a

second-order fluid, a simplified analytical model can be constructed to predict the

snowman dynamics with results shown as a black dotted line in Fig. 7.3; the details

of this simple model are given in Sec. 7.5.

Separated spheres

Next, we let the two spheres be separated at a distance h∗ > 1+r∗ (no longer

touching). The two spheres still rotate at the same speed as a rigid body and the

separation distance is kept fixed by connecting the spheres with a drag-less slender

rigid rod (a mathematically phantom rod) with negligible hydrodynamic contri-

bution. Experimentally, this may be realized using, for example, using nanowires
1. To compute the propulsion speed by the method described in Sec. 7.3.2 and

1If the drag on the slender rod is taken into account in modeling, the overall force balance
should include the small contribution from the drag on the rod, which will slightly decrease the
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Figure 7.4: Propulsion speed of a separated snowman as a function of (a) the
separation distance, and (b) ratio of the radii, at De = 0.1 and ζ = 0.5. Red
dots: numerical results in an Odroyd-B fluid. Blue solid line: second-order fluid
analytical calculation. Black dotted line: simplified model (Eq. 7.50).

therefore Eq. (7.36), we need two new Newtonian solutions, namely the zeroth-

order solution and the auxiliary problem. The zeroth order solution considers

two separated unequal spheres rotating at the same rate in a Newtonian fluid,

the exact solution of which was given by Jeffery [213] in bi-spherical coordinates.

The appropriate auxiliary problem is the translation in a Newtonian fluid of the

same two-sphere geometry along their axis of symmetry. Stimson and Jeffery [214]

calculated that exact solution also in bi-spherical coordinates.

For very separated spheres h∗ � 1, the propulsion is expected to decay

with the separation distance. Hydrodynamic interactions between the two spheres

is weak in this limit and each sphere behaves approximately as a single rotating

sphere which does not propel. In Fig. 7.4a, the variation of the propulsion speed as

a function of the separated distance is calculated for different fixed values of r∗. The

propulsion speed decays as expected for large h∗. Interestingly, a non-monotonic

variation occurs when the spheres are close to each other (small h∗). The swimming

speed first increases with h∗, reaching a maximum around h∗ ≈ 2.5, before decaying

to zero with further increase in h∗. In Sec. 7.5, a simple physical explanation to

this non-monotonicity is discussed; the black dotted line in Fig. 7.4a corresponds

propulsion speed of the snowman.
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Figure 7.5: Optimization snowman propulsion. Iso-values of the dimension-
less propulsion speed with dimensionless separation distance, h∗, and ratio of
sphere radii, r∗. The optimal geometry for maximum propulsion speed is given
by (r∗, h∗)opt = (0.46, 2.5). A schematic diagram showing the optimal geometry is
drawn to scale above.

to the predictions by a simplified analytical model based on this explanation.

For separated spheres, we can again vary the radii ratio, r∗, at different

fixed separated distance h∗ (Fig. 7.4b) and results similar to the case of touching

spheres is observed: for any value of h∗ there exists an optimal value of r∗ at which

the dimensionless propulsion speed reaches a maximum. The simplified model

(Sec. 7.5) again captures this trend qualitatively (black dotted line, Fig. 7.4b).

Finally, by plotting the isovalues of the propulsion speed as a function of

both r∗ and h∗ (Fig. 7.5), we are able to optimize the snowman geometry for the

overall maximum propulsion speed. The optimal geometry occurs at (r∗, h∗) =

(0.46, 2.5), and a schematic diagram of the optimal snowman is drawn to-scale in

Fig. 7.5.
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7.4 Microrheology via snowman

7.4.1 Scaling

In the sections above we have derived an analytical expression, valid in

the small De regime, relating the propulsion speed to the intrinsic properties of

the complex fluid, namely the normal stress coefficients (Eq. 7.36). Turning all

dimensionless variables back in dimensional form, this relationship reads formally

U =
(
CS

1 Ψ1 + CS
2 Ψ2

) RLΩ2

η
, (7.37)

where CS
1 and CS

2 are dimensionless coefficients depending solely on the snowman

geometry (h∗ and r∗) and defined as

CS
1 =

∫
V ∗f

O

γ̇∗0 : ∇∗u∗auxdV
∗

2F ∗aux

, (7.38)

CS
2 = −

∫
V ∗f

(γ̇∗0 · γ̇∗0) : ∇∗u∗auxdV
∗

F ∗aux

· (7.39)

Since the second normal stress coefficient Ψ2 is usually much smaller than

the first normal stress coefficients Ψ1, we might ignore Ψ2 and obtain an estimation

of Ψ1 by measuring the propulsion speed of a snowman U , i.e.

Ψ1 ≈
U

CS
1

η

RLΩ2
, (7.40)

where CS
1 depends only on geometry and can be computed using Eq. (7.38).

This expression demonstrates the use of locomotion (U) to probe the local non-

Newtonian properties of the fluid (Ψ1).

7.4.2 Second Experiment: Repulsion of two equal spheres

In scenarios where both values of Ψ1 and Ψ2 are desired, a second experi-

ment is necessary to obtain a second, independent, measurement of a combination

of the normal stress coefficients. We propose to measure in the second experiment

the relative speed (repulsion) of two rotating equal spheres of radius RE, with their

centers separated by a distance h (see Fig. 7.6 inset for notations and geometry).

Should the two equal spheres be connected as a rigid body, no propulsion would
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occur by symmetry. However, if the equal spheres are not connected but allowed

to freely translate along their separation axis, upon imposing rotation they will

translate with velocities of equal magnitude but opposite directions provided the

fluid is non-Newtonian.

We adopt the same non-dimensionalizations as previous sections (all lengths

are now scaled by RE) and drop the stars for simplicity; all variables in this section

are dimensionless unless otherwise stated. Denoting the dimensionless velocity of

the lower sphere as V, we again expand the repulsion velocity in powers of Deso,

V = DesoV1 + O(Deso
2), and determine the first order velocity V1 using our

use of the reciprocal theorem as described in Sec. 7.3.2. By symmetry, the upper

sphere translates with velocity −V (equal speed but opposite direction as the lower

sphere).

In this scenario we have to again define two setups, one for the main problem

and one for the auxiliary problem. For the main problem, we consider the rotational

motion of two free equal spheres about their line of centers [213]. Since the motion

is force-free (Fα
1 = 0 at each instant), Eq. (7.36) simplifies to

−Ω1
aux ·T1 −Ω2

aux ·T2+U1
1 · F1

aux + U1
2 · F2

aux

=

∫
Vf

[(
O
γ̇0 +Bγ̇0 · γ̇0

)
: ∇uaux

]
dV, (7.41)

where Ωα
1 = 0 for the same reason as explained in Sec. 7.3.2.

For the auxiliary problem, we consider the Newtonian translational motion

(Ωα
aux = 0) of two equal spheres moving towards each other at the same speed and

hence force, F1
aux = −F2

aux = FE
aux. The exact solution to this problem was found

by Brenner [215] in bi-spherical coordinates. We therefore have(
U1

1 −U2
1

)
· FE

aux =

∫
Vf

[(
O
γ̇0 +Bγ̇0 · γ̇0

)
: ∇uaux

]
dV. (7.42)

Note that the main problem here is a special case of that considered in Sec. 7.3.2,

but the auxiliary problem is completely different. We however still use the same

symbols as in Sec. 7.3.2 for simplicity.

By symmetry, the two equal spheres propel with equal speed in opposite

directions U2
1 = −U1

1 = V1 , hence

−2V1 · FE
aux =

∫
Vf

[(
O
γ̇0 +Bγ̇0 · γ̇0

)
: ∇uaux

]
dV. (7.43)
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Figure 7.6: Dimensionless repulsion speed, V/REΩ, of two equal co-rotating
spheres as a function of their dimensionless separation distance, h∗, at De = 0.1
and ζ = 0.5. Red dots: numerical results in an Odroyd-B fluid. Blue solid line:
theoretical calculation for a second-order fluid.

Since the repulsion velocity V1 (with magnitude V1) and the force in the auxiliary

problem FE
aux (with magnitude FE

aux) both act vertically, the equation above can

be rewritten as

V1 = − 1

2FE
aux

∫
Vf

[(
O
γ̇0 +Bγ̇0 · γ̇0

)
: ∇uaux

]
dV, (7.44)

where a positive value of V1 represents repulsion.

The only dimensionless parameter in this second experiment is the ratio of

the separation distance to the radius of the spheres, which we write as h∗ = h/RL.

Using Eq. (7.44) we calculate the repulsion speed (V1 > 0) as a function of the

dimensionless separation h∗ (blue solid line, Fig. 7.6, for De = 0.1 and ζ = 0.5), and

the results are found to be in excellent agreement with the Oldroyd-B calculations

(red dots, Fig. 7.6).

Back to dimensional variables, the leading order repulsion speed is formally

given by

V =
(
CE

1 Ψ1 + CE
2 Ψ2

) REΩ2

η
, (7.45)

where CE
1 and CE

2 are dimensionless coefficients evaluated with the solution to the
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main and auxiliary problems described above

CE
1 = −

∫
V ∗f

O

γ̇∗0 : ∇∗u∗auxdV
∗

4F ∗aux

, (7.46)

CE
2 =

∫
V ∗f

(γ̇∗0 · γ̇∗0) : ∇∗u∗auxdV
∗

2F ∗aux

· (7.47)

7.4.3 Determination of normal stress coefficients

From measuring both the propulsion speed U of a snowman (given by

Eq. 7.37) and repulsion speed V of the equal spheres (given by Eq. 7.45), we

now have enough information to deduce both the first and second normal stress

coefficeints (Ψ1,Ψ2). If we choose the same radius for the lower sphere in both

experiments RE = RL (we use RL hereafter), we can write Eqs. (7.37) and (7.45)

in a matrix form as (
U

V

)
=

(
CS

1 CS
2

CE
1 CE

2

)(
Ψ1

Ψ2

)
RLΩ2

η
, (7.48)

where we denote by C the matrix containing the dimensionless coefficients (CS
1 ,CS

2 ,

CE
1 ,CE

2 ) in Eq. (7.48). The matrix C depends only on three geometric parameters,

namely the ratio of the radii of the spheres in the snowman (r∗ = RU/RL), the

dimensionless separation distance in the snowman (h∗S = h/RL) and that for the

equal spheres in the second experiment (h∗E = h/RE). The coefficients of the

matrix can be readily computed via Eqs. (7.38)–(7.39) and Eqs. (7.46)–(7.47), and

thus the matrix in Eq. (7.48) can be inverted to obtain the values of Ψ1 and Ψ2.

For practical implementation of this microrheological technique, measure-

ment errors in the velocity of the snowman are inevitable and depend on the

specific equipment employed for tracking the motion of the probe. However, the

geometry of the snowman can be designed so that Ψ1 and Ψ2 are insensitive to

measurement errors in the velocities U and V . The condition number (CN) of

the matrix C to be inverted represents the maximum amplification factor of the

relative measurement errors. The maximum relative errors in the normal stress

coefficients would be equal to the condition number multiplied by the maximum

relative measurement error. A small condition number is therefore desired. Sim-

ilarly to the study by Khair and Squires [188], we now investigate the value of
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Figure 7.7: (a) Condition number (CN) for the matrix C as a function of sphere
size ratio (r∗) and dimensionless separation distance (h∗ = h∗S = h∗E). (b) CN as a
function of RL/RE, for r∗ = 0.46, h∗S = 2.6, and h∗E = 2.1.

condition number as a function of the geometry. To simplify the parametric stud-

ies, we first adopt the same separation distance in the first and second experiments

(h∗S = h∗E = h∗ = h/RL), and explore the dependence of the condition number on

r∗ and h∗, with results shown in Fig. 7.7a. The condition number does not vary

monotonically with the parameters, which implies that optimization is possible.

Under this requirement and within the ranges of values considered (r∗ ∈ [0.2, 0.98]

and h∗ ∈ [2.1, 4]), the geometry yielding the lowest condition number is r∗ = 0.46

and h∗ = 2.1 (the corresponding condition number for C is ≈ 27.6). When the

requirement of h∗S = h∗E is removed, by examining all combinations of the para-

metric values within the ranges (r∗ ∈ [0.2, 0.98], h∗S ∈ [2.1, 4], and h∗E ∈ [2.1, 4]),

the minimum CN obtainable appears to be ≈ 25.7 with r∗ = 0.46, h∗S = 2.6, and

h∗E = 2.1.

The condition number can be further fine-tuned if we allow RL 6= RE, in

which case we have the new matrix relation(
U

V

)
=

(
CS

1 CS
2

CE
1 RE/RL CE

2 RE/RL

)(
Ψ1

Ψ2

)
RLΩ2

η
· (7.49)

The modified dimensionless matrix C̃ in Eq. (7.49) now depends on one more

parameter RL/RE, which is the ratio of the lower sphere radius in the snowman,

RL, to that of the equal sphere, RE. In Fig. 7.7b, we investigate the dependence
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of the condition number of C̃ with this new parameter, and adopt for all other

parameters the optimal geometric parameters we determined before (r∗ = 0.46,

h∗S = 2.6, and h∗E = 2.1). The variation turns out to be also non-monotonic, and a

minimum is achieved when RL/RE = 3.5 with CN ≈ 13.4. A schematic diagram

showing the corresponding geometrical setup of the two sets of experiment is given

to scale in the inset of Fig. 7.7. The condition number could be brought further

down with a full four-dimensional parametric study and expanding the domains of

the parametric studies. However, geometries yielding a lower CN may correspond

to a negligible speeds undesirable for measurement. The current geometry (r∗ =

0.46, h∗S = 2.6, h∗E = 2.1, and RL/RE = 3.5) has both a relatively low CN and

a high propulsion speed, making it ideal for experimental implementation. It is

interesting to note that the optimal geometry for a small condition number we find

here is close to the optimal geometry producing the maximum propulsion speed

for the snowman (r∗ = 0.46, h∗S = 2.5) determined in Sec. 7.3.3.

7.5 Qualitative physical explanation

In this section, we turn to an explanation of the physical origin of the non-

Newtonian propulsion of a snowman. Based on physical intuition we present a

simple model which successfully captures all the qualitative features of this mode

of propulsion.

We first look into the simplest related problem, that of a single sphere ro-

tating in a complex fluid (a textbook problem discussed, for example in Ref. [131]).

Non-Newtonian stresses lead to the creation of a secondary flow in which the fluid

moves towards the sphere in the equatorial plane and away from the sphere near

the axis of rotation (see the inset of Fig. 7.8 for an illustration of the secondary

flow field) [131].

This secondary flow can be understood physically as a consequence of the

hoop stresses along the curved streamlines. Polymer molecules in the fluid get

stretched by the flow, leading to an extra tension along streamlines. The presence

of that extra tension along the closed circular streamlines leads to an inward radial

contraction (like a stretched rubber band) pushing the fluid to thus go up vertically

in both directions (by continuity) to produce the secondary flow. Notably, this
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secondary flow is independent of the direction of rotation of the sphere.

The argument for locomotion of the snowman is then the following. Based

on the one-sphere result, we see that when the two spheres in a snowman are

aligned vertically and subject to a rotation they generate secondary flows and

push against each other. For a single sphere, the strength of the secondary flow

increases with the size of the sphere [131]. Consequently the smaller sphere is being

pushed harder by the larger sphere than it is able to push against, and hence the

two-sphere system is subject to a force imbalance, leading to propulsion. This

physical understanding agrees with our results: propulsion always occurs in the

direction of the smaller sphere, independently of the direction of rotation. Should

the two spheres not be connected as a rigid body but free to translate vertically,

they would repel each other, explaining physically our results in Sec. 7.4.2.

Based on this intuitive argument, we can now construct a simple mathemati-

cal model. Using the same notations as above, for a sphere of radiusR rotating with

an angular velocity Ω in a second-order fluid, the leading order solution v(φ, r, θ) in

spherical coordinates [131] is v∗ ≡ v/RΩ = (1/r∗)2 sin θ eφ+Deso(1−B)[(1/2r∗2−
3/2r∗4 + 1/r∗5)(3 cos2 θ − 1) er − 3(1/r∗4 − 1/r∗5) sin θ cos θ eθ] + O

(
Deso

2
)
. The

Newtonian component of the flow field (Deso = 0) is the primary flow field, and

it has only a azimuthal (φ) component. The secondary flow field, proportional to

Deso, is due to fluid elasticity and has only radial (r) and polar (θ) components.

As expected, the dimensional secondary flow v is quadratic in Ω, confirming our

physical intuition that it should be independent of the direction of rotation of the

sphere. In the case where B < 1 (recall that B = −2Ψ2/Ψ1), the relevant limit

for polymeric fluids, the secondary flow occurs in the direction intuited above and

shown in the inset of Fig. 7.8. Note that the secondary flow field of a rotating

single sphere would switch its direction when B went above one, explaining the

switch in the propulsion direction of a snowman reported in Sec. 7.3.2 in that limit.

The dimensionless fluid velocity along the vertical axis (θ = 0) is given by

v∗(r, θ = 0) = Deso (1/r∗2 − 3/r∗4 + 2/r∗5) er(θ = 0), where we have set B = 0

to allow comparison with the numerical results. The velocity along the vertical

axis, shown in Fig. 7.8, is expected to display non-monotonic variation with the

distance from the sphere since the velocity decreases to zero both in the far field

and on the solid surface. This is at the origin of the non-monotonic dependence of
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Figure 7.8: Rotation of a single sphere in a second order fluid. Radial velocity
along the rotation axis (θ = 0) as a function of r/R at De = 0.1 and ζ = 0.5.
Inset: streamline pattern and velocity (shaded/color map) of the corresponding
secondary flow.

the snowman propulsion speed with the separation distance between the spheres

shown in Fig. 7.4a.

The forces experienced by the upper and lower spheres can be approxi-

mately estimated by considering the individual flow fields generated by their own

rotation without the presence of the other sphere. We place an upper sphere at

a distance h∗ = h/RL from the center of the lower sphere. Using the same nota-

tions as in the previous sections, the dimensionless velocity generated by the lower

sphere, and evaluated at the location of the upper sphere, is given by v∗L(h∗) =

Deso (1/h∗2 − 3/h∗4 + 2h∗5) eLr (θL = 0), where eLr (θL = 0) is the unit radial vector

in the polar direction θL = 0, with respect to the coordinates system at the center

of the lower sphere. Similarly, the dimensionless velocity generated by the upper

sphere at the same distance, h∗, but measured from the center of the upper sphere is

given by v∗U(h∗) = r∗Deso

[
(r∗/h∗)2 − 3 (r∗/h∗)4 + 2 (r∗/h∗)5] eUr (θU = π), where

eUr (θU = π) is the unit radial vector in the polar direction θU = π, with re-

spect to the coordinates system at the center of the upper sphere. Note that

eUr (θU = π) = −eLr (θL = 0). As a simple approximation, we estimate the viscous

drag force experienced by the upper and lower spheres to be F∗U ∼ 6πr∗v∗L(h∗) and
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F∗L ∼ 6πv∗U(h∗) respectively. The difference between these two forces results in

a net propulsive thrust. When dividing by an approximation of the translational

resistance of the snowman at zero Deborah number with no hydrodynamic inter-

actions, 6π(1 + r∗), we obtain a simple estimate of the dimensionless propulsion

speed as U∗ ≈ |F∗U + F∗L|/6π(1 + r∗). This leads to

U∗ ≈ |r
∗v∗L(h∗) + v∗U(h∗)|

(1 + r∗)
= Deso

r∗ [3h∗(r∗4 − 1)− h∗3(r∗2 − 1)− 2r∗5 + 2]

h∗5(1 + r∗)
·

(7.50)

In Eq. (7.50), we verify that U∗ vanishes when r∗ = 0 (single sphere) and r∗ = 1

(equal spheres). For the case of touching spheres (h∗ = 1+r∗), Eq. (7.50) simplifies

to

U∗touch ≈ Deso
2r∗3(1− r∗)

(1 + r∗)6
· (7.51)

Does this simple model capture the essential propulsion characteristics?

In Fig. 7.3, we plot the dimensionless propulsion speed of a touching snowman

estimated by this simple model (Eq. 7.51) as a function of r∗ (black dotted line)

and compare with the theoretical results from the reciprocal theorem approach

(blue solid line) and the numerical computations (red symbols). The simple model

correctly predicts the order of magnitude and captures qualitatively the variation

with r∗. For non-touching snowman, the qualitative model (Eq. 7.50) also captures

qualitatively the variation of the dimensionless propulsion speed with h∗ (black

dotted line for r∗ = 0.6, Fig. 7.4a), also predicting an optimal separation distance

and therefore supporting our understanding of a non-monotonic dependence with

h∗ as arising from the non-monotonicity of the single-sphere velocity (Fig. 7.8). As

expected, Eq. (7.50) also captures the non-monotonic variation with respect to r∗

for separated snowman (black dotted line for h∗ = 8, Fig. 7.4b).

7.6 Discussion and Conclusions

In this work, we present the design and mathematical modeling for a new

non-Newtonian swimmer – the snowman – which propels only in complex fluids

by exploiting asymmetry and the presence of normal stress differences under ro-

tational actuation. The simple shape of our swimmer makes it ideally suited for
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experimental measurements. Note that if kept in place, the snowman would then

act as a micro-pump for complex fluids.

The propulsion characteristics of the snowman are investigated by a com-

bination of numerical computations (moderate values of De in an Odroyd-B fluid)

and analytical treatment (small De in a second-order fluid). The underlying physics

of propulsion, relying on elastic hoop stresses and geometrical asymmetry, is ex-

plained and based on this physical understanding a simple analytical model cap-

turing all qualitative features is successfully constructed. Note that since, as a

rule of thumb, inertial and elastic effects tend to produce secondary flows in oppo-

site directions [131], we expect that an inertial (instead of viscoelastic) snowman

should swim in the opposite direction (from small to large sphere).

The two-sphere setup proposed in this work is arguably the simplest geom-

etry able to swim in a complex fluid under uniform rotation. It of course simplifies

the analysis since the required Newtonian solutions to be used in our integral ap-

proach are all available. Any axisymmetric but top-down asymmetric geometry

should also work, for example a cone, and clearly there remains room for shape

optimization in that regard. Additionally, studying the snowman dynamics under

a time-varying rotation could lead to a rich dynamics with potentially non-trivial

stress relaxation effects.

One of the main ideas put forward in this work is the use of locomotion as

a proxy to probe the local non-Newtonian properties of the fluid. The snowman

can be used as a micro-rheometer to estimate the first normal stress coefficient on

its own, or to measure both the first and second normal stress coefficients with the

help of another complementary experiment. Khair and Squires [188] recently pro-

posed to measure normal stress coefficients by pulling microrheological probes and

measuring the relative forces on the probes. In our work, we propose alternatively

to perform only kinematic measurements of the sphere speeds instead of forces,

which could present an interesting alternative from an experimental standpoint.

We finally comment on a potential experimental implementation of the

snowman technique. We are aware of a number of rotational micro-manipulation

techniques (see a short review in Ref. [216]). For example, spinning micro-particles

may be achieved by the use of optical tweezers and birefringent objects [217].

Birefringence allows the transfer of angular momentum from the circularly po-
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larized laser to the particle, producing controlled rotation. By rotating spherical

birefringent crystals (vaterite), this technology has been implemented as a micro-

viscometer to probe fluid viscosity [216, 218, 219]. A similar mechanism may be

useful for the two-sphere setup in this work although simultaneous rotation of two

spheres may introduce experimental challenges. Our dual-purpose snowman, both

a micro-propeller and a micro-rheometer, invites experimental implementation and

verification.

Chapter 7, in full, is a reprint of the material as it appears in Physics of

Fluids 2012. Pak, On Shun; Zhu, Lailai; Brandt, Luca; Lauga, Eric, the American

Institute of Physics, 2012. The dissertation author was the primary investigator

and author of this paper.
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