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ABSTRACT OF THE DISSERTATION

The structure, dynamics and evolution of transcriptional regulation in
Staphylococcus aureus

by

Saugat Poudel
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Professor Victor Nizet, Co-Chair

Staphylococcus aureus is a versatile pathogen and a leading urgent threat to human health.

The clinical burden of this organism is predicted to steadily grow worldwide as it becomes resis-

tant to an increasing number of currently available antibiotics. At the same time, development

of new effective antibiotics have dropped precipitously in the past decades. The confluence of

these two factors is setting the stage for a “post-antibiotic” era where a great portion of S. aureus

infections may not be treatable by the existing regimen. In order to stay ahead of this emerg-

ing resistance wave, a deeper understanding of the fundamental biology underlying S. aureus

xiv



resistance and pathogenesis is necessary.

Emerging works have demonstrated that resistance and virulence are deeply linked to

other aspects of physiology such as metabolism and stress response by the criss-crossing tran-

scriptional regulatory network (TRN). However, untangling these complex regulatory systems

from bottom up approaches can be challenging. This dissertation focuses on resolving these

complexities in transcriptional regulation by applying Independent Component Analysis (ICA)

to RNA sequencing data. ICA recovers the underlying signals from regulators that come together

to shape the expression profile of the cell. The result is a scalable, interpretable and functional

model of the TRN. We utilized ICA to describe the structure and composition of the TRN in S.

aureus USA300 strains. Next, we used the TRN model in conjunction with metabolic models to

understand how metabolic and regulatory cross-talks coordinate carbon and nitrogen metabolism

and direct protein synthesis. Finally, we modeled TRNs from multiple strains and revealed how

gene-regulator interactions have evolved during the emergence of the endemic USA300 lineage.

Together, this demonstrates the utility of ICA in studying the TRN of S. aureus to rapidly

discover its structure, dyanmics and evolution over time.
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Chapter 1

Introduction

The transcriptional regulatory networks (TRN) control gene expression in response to

cues and signals from the environment. In bacteria, this network can consist of transcription

factors, sigma factors, riboswitches, regulatory RNAs and various other regulatory elements that

work together to shape the final expression profile of the cell[1]. Though simple in comparison

to eukaryotes, bacterial TRN with fewer elements can still be difficult to unravel. Even in

Escherichia coli, perhaps the most well studied bacteria, a significant subset of regulators are still

yet to be characterized and our understanding of the TRN in other non-model organisms is sparser

still[2, 3]. As the TRN acts as an interface between environmental changes and the subsequent

physiological response, understanding the TRN can reveal the mechanisms by which bacteria

are able to adapt to challenges and constraints presented by the changing environments. This

work focuses on modeling the TRN of Staphylococcus aureus USA300 strain using Independent

Component Analysis (ICA). The ensuing model was used to understand the structure, dynamics

and evolution of the TRN in this important human pathogen.
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1.1 Community Associated Methicillin Resistant S. aureus

S. aureus causes a variety of human diseases ranging from skin and soft tissue infections

(SSTI) to infective endocarditis and pneumonia[4]. This pathogen can also thrive as part of the

commensal microbiome in the anterior nares of healthy patients[5]. Rapidly growing resistance

to large swaths of antibiotics in S. aureus is especially troublesome, earning it a ‘high priority’

pathogen designation by the World Health Organization[6]. In 2019 alone, more than 700,000

deaths worldwide were attributable to antimicrobial resistance (AMR) associated with S. au-

reus[7], while the deaths attributable to AMR in all pathogens is projected to be the largest

cause of mortality by 2050[8].

Different strains of S. aureus are endemic to different regions of the world, and in the

United States, Community-Associated Methicillin Resistant S.aureus (CA-MRSA) USA300 lin-

eage from Clonal Complex 8 (CC8) have become the dominant resistant strain over the past

two decades[9]. As their description suggests, these strains harboring AMR genes, are no longer

confined to nosocomial environments and can spread rapidly within the community. At the

genetic level, this clinical success of USA300 strain has been largely attributed to several hor-

izontally acquired genetic elements including Staphylococcal Chromosomal Cassette mec (SC-

CMec) harboring beta-lactam resistance gene mecA, Panton Valentine Leukocidin (PVL) car-

rying prophage, Arginine Catabolite Mobile Element (ACME) etc[10]. Beyond the phenotypes

that can be directly attributed to mobile genetic elements, differences in toxin expression[11,

12], metabolism[13], virulence regulation[14], biofilm formation[15], and colonization sites [16,

17] have also been observed in USA300. However, the underlying mechanisms that lead to these

clinically relevant phenotypes and their interactions with other aspects of S.aureus biology re-

mains difficult to untangle. In this dissertation, we focus on gene regulation and its role in the
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manifestation of these and other clinically important phenotypes.

1.1.1 The transcriptional regulatory network of S. aureus

At just over 2.8 million base-pairs, the S. aureus USA300 genome contains roughly 2900

total genes and is estimated to contain 135 transcription factors and sigma factors[18]. This

consists of 16 two-component systems (TCS), 4 sigma factors and 115 transcription factors.

In addition to these proteins, S. aureus also encodes various riboswitches, regulatory RNAs,

attenuators, t-boxes and other regulatory elements that control transcription. Working in concert

with transcription and sigma factors, these regulatory elements are known to control metabolic

genes [19, 20], virulence factors [21, 22], biofilm formation [23], and stress response [24]. Together,

these regulators take in signals and cues from the environment and alter the physiological state

of the cell by changing gene expression levels.

For almost half of the predicted transcription factors, neither the function nor the signals

or cues they respond to are currently known[18]. Even for many of the well studied transcrip-

tion factors, there are still key pieces of information missing. For example, signal activating the

closely studied ArlRS two component system which controls virulence expression and biofilm

formation, is still unknown [25]. And new roles for transcription factors and signaling pathways

that control flux through deeply conserved central metabolism are still coming into view[26, 27].

Additionally, the large number of possible interactions among these regulators in the forms of

cross-reactivity[28], signaling cascades[25, 29] or co-regulation[20, 30] are yet to be explored and

are the focus of current research in S.aureus. Despite these current limitations in our under-

standing of the gene regulation in S.aureus, rapid developments are bringing their importance in

clinical settings to light.
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Observed changes in gene expression patterns and gene regulation in clinical strains sug-

gests altering these response mechanisms plays an important role in S.aureus evolution. The

evolution of gene regulation is currently best understood in the context of virulence regulation

by Agr, a quorum sensing two component system[31]. In addition to horizontally acquiring PVL

toxins, USA300 and other clinical strains also show higher expression levels genes hla, hld, and

psm which encode various toxins[12, 32]. As these genes are regulated by the Agr system, high

expression of these toxins is attributed to an ‘overactive’ Agr activity in these strains and have

been proposed to be one of the keys to the strains’ clinical success[10, 33]. Paradoxically, muta-

tionally inactive Agr systems are frequently isolated from clinical samples[34–36], and have been

associated with higher mortality rates in patients [37]. Recently, Gor et al. demonstrated that

some of the Agr inactivating mutations can revert and restore Agr activity, suggesting that inac-

tivation is a phase variation that enables S.aureus to quickly adapt to different environments[38].

While the mechanisms involved and its significance is yet to be sorted, species-wide comparative

genome analysis has found that frameshift mutations are common in Agr genes and may point

to a convergent evolution in the clinic[39].

Beyond Agr, mutations in other regulators are often observed in response to stress. Mu-

tations altering the activity of pyrimidine biosynthesis regulator, PyrR, and a gene encoding

repressor of surface protein, RSP, have been enriched in strains isolated from patients[13, 21]. In

laboratory settings, mutations in purine biosynthesis regulator, PurR, can emerge as response to

prolonged stress and mutations in VraRST, a cell wall associated regulatory system, are found in

strains with increased vancomycin resistance[40–42]. These observations underlie the importance

that regulatory adaptations play in S.aureus pathogenesis and antibiotic resistance. Chapter

4 explores how these regulatory adaptations can be modeled and studied in emerging clinical
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strains.

1.1.2 Transcriptional regulation of central metabolic pathways by CcpA and

CodY

While the regulation of metabolism in S.aureus depends on a large array of regulators

working on multiple levels, here we focus on two global regulators, CcpA and CodY, that play

critical roles in regulating genes in central carbon and nitrogen metabolism respectively.

CcpA is one of the major carbon catabolite repressors in low-GC gram-positive bacte-

ria[43]. In the presence of favorable carbon sources in the environment such as glucose, CcpA

represses the expression of genes involved in alternate carbon uptake and catabolism. Repression

by CcpA is initiated when high fructose-1,6-bisphosphate concentration in the cell leads HPr

kinase to phosphorylate HPr at Ser-46. When phosphorylated at Ser-46 position, HPr forms a

complex with CcpA and together they bind to catabolite responsive element (cre) sites to block

gene expression[44]. While CcpA acts as a repressor for most genes in its regulon, some genes

can be activated by it in a process known as catabolite activation[45].

CcpA is primarily thought to regulate central metabolic pathways and carbon catabolism,

though it also plays a role in controlling other aspects of S.aureus physiology. In strain COL,

knocking out CcpA led to decrease in alpha toxin production and reduced the minimum in-

hibitory concentration (MIC) of oxacillin[46]. In vivo, CcpA was also shown to be important

in establishing infection in hyperglycemic non-obese diabetic mice model[47]. Coordinating its

activity with MgrA, ArlRS, and CidR, CcpA also plays a role in biofilm formation [27, 48]. In

line with this expanded role of CcpA in different aspects of S.aureus physiology, CcpA activity

can be altered when phosphorylated by serine/threonine protein kinase Stk1[27]. Stk1 is a regu-
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lator of cell wall biosynthesis and its ability to phosphorylate CcpA provides an entry point for

incorporating cell wall stress associated signals into the regulation of central carbon metabolism

and virulence[49, 50]. Similarly, CcpA also interacts closely with CodY, a global regulator of

amino acid metabolism in firmicutes, to coordinate central carbon metabolism with nitrogen

metabolism[51].

Like CcpA, Cody is also a global metabolic regulator, but primarily regulates the biosyn-

thesis of amino acids instead[52]. CodY responds to cellular concentrations of branched chain

amino acids (isoleucine, leucine and valine) and GTP[53]. Though concentrations of any of these

effectors can additively change CodY activity, isoleucine concentration seems to be the dominant

cue in S.aureus[20]. In the presence of high concentrations of its effectors, CodY represses the

expression of various genes involved in amino acid biosynthesis, capsule proteins, lipoproteins,

and peptide and ion transporters[54].

CodY, similar to CcpA, also has an expanded role in connecting regulation of metabolism

to other aspects of S.aureus physiology. The role of CodY as a “regulatory link between

metabolism and virulence” has now been well characterized[55, 56]. It plays an important role

in modulating toxin expression via Agr, can regulate polysaccharide intercellular adhesin (PIA),

and represses the expression of nuc which encodes neutrophil extracellular traps degrading nu-

clease[52]. In addition to regulating virulence factors, CodY is also an integral part of stringent

response in gram-positive bacteria[57]. Stringent response activates in the presence of environ-

mental stress such as nutrient deprivation, when RelA/SpoT homolog (RSH) rapidly converts

GTP to signaling molecule (p)ppgpp [58]. Though (p)pgpp can independently lead to changes in

gene expression and physiology [59], synthesis of (p)pgpp also leads to drop in cellular GTP level

and therefore causes CodY derepression[57, 60]. The synthesis of (p)pgpp by RelA is coupled
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to ribosome stalling[61], but the alarmone can also be synthesized by two other homologs, RelP

and RelQ[62]. Genes encoding RelP and RelQ are part of VraR regulon and deletion of these

enzymes leads to lower tolerance for cell wall stress[63]. Similar to RelA, RelQ can also lead to

CodY activation[64], suggesting that RelP and RelQ can affect CodY activity in response to cell

wall stress.

CcpA and Cody activity regulate carbon and nitrogen metabolism respectively in

S.aureus. Their roles however expand beyond just metabolic regulation as they can both af-

fect virulence expression, antibiotic resistance levels and infectivity. With this expanded role,

both regulators also seem to integrate signals from stress response pathways into its activities

thereby modulating the central carbon and nitrogen metabolism in response to environmental

stresses. In chapter 3, we expand on the activities of these two regulators and how they are

coordinated to regulate various stages of protein synthesis.

1.2 Modeling gene regulation with Independent Component

Analysis

Independent Component Analysis (ICA) is blind source separation algorithm designed to

extract source signals from a mixture of unknown signals[65]. The source signals can be sounds,

signals from radio, readings of brain activity from electroencephalograph, or in our case signals

from gene regulators. The key insight in finding these signals from a mixture is provided by

the Central Limit Theorem (CLT), which states that the sum of independent and identically

distributed non-gaussian variables tends to be closer to gaussian than the input[66]. In other

words, when non-gaussian signals are mixed together, the resulting mixed signal tends to be
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more gaussian than the input signals. Therefore, to find the source signals ICA searches for

components along which non-gaussianity is maximized. These components can be discovered

using an efficient fixed-point algorithm named FastICA[67].

We can apply FastICA to a compendium of RNA sequencing data to extract the source

regulatory signals[68]. The compendium, referred to as the expression (Xgenes,samples) ma-

trix, contains all publicly available RNA sequencing data for USA300 strains that have been

pulled from Sequence Read Archive (SRA). ICA then factorizes the X matrix into a modulon

(M genes,components) matrix and an activity (Acomponents,samples) matrix. Each column of the M-

matrix contains weighting for all the genes in the input RNA sequencing data and represents

one of the linearly independent source signals from which independently modulated sets of genes

(iModulons) can be retrieved. In other words, within each column of the M -matrix, there can

be found a set of genes whose expression level is resultant from a particular independent singal.

The A-matrix then contains the activity of each of these signals in all the input RNA sequencing

samples. Together, the two matrices contain information about the set of genes that are regulated

together (iModulons) and how the regulators act in each of the samples, thus providing both the

sample-invariant and the sample dependent aspects of the TRN.

This framework for determining the TRN is ideal for non-model organisms as it generates

a scalable, interpretable and functional model. As the TRN is calculated from the exponentially

growing collections of public RNA sequencing data, the model grows with each new profile

generated by the community. Due to its scalability, ICA has been used to quickly generate

models for seven bacterial species and even an archea and will continue to grow in size over

time[69]. The model also provides interpretable view of the TRN, giving insights into both its

static and dynamic aspects. Finally, each model is functional, enabling a wide array of various
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analyses including interpretation complex expression profiles, integration with various other types

of models and comparative analysis of the evolution of gene networks across the phylogenetic tree.

1.3 Dissertation Outline

In this work, we apply ICA to RNA sequencing data from S. aureus USA300 strain to

generate a model of its TRN. Next chapter describes the first model for this strain and its uses

in describing new gene-regulator relationships, interpreting complex in vivo expression profiles

and defining new global interactions among regulators. In the third chapter, we integrate ICA

and metabolic models to understand the dynamics of two regulators, CcpA and CodY, and how

they coordinate their activities to control protein production. Finally, the fourth chapter uses

the model to extend genome wide association studies (GWAS) and predict the evolution of the

regulatory network during the emergence of the endemic USA300 strains. Together, ICA is used

to define the structure, dynamics and evolution of TRN in the USA300 strains.
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A.-C., Paprotka, K., Reinhardt, R., Förstner, K. U., Allen, E., Flaxman, A., Yamaguchi,
Y., Rollier, C. S., van Diemen, P., Blättner, S., Remmele, C. W., Selle, M., Dittrich, M.,
Müller, T., Vogel, J., Ohlsen, K., Crook, D. W., Massey, R., Wilson, D. J., Rudel, T., Wyllie,
D. H. & Fraunholz, M. J. Natural mutations in a Staphylococcus aureus virulence regulator
attenuate cytotoxicity but permit bacteremia and abscess formation. en. Proc. Natl. Acad.
Sci. U. S. A. 113, E3101–10 (May 2016).

22. Boisset, S., Geissmann, T., Huntzinger, E., Fechter, P., Bendridi, N., Possedko, M., Cheva-
lier, C., Helfer, A. C., Benito, Y., Jacquier, A., Gaspin, C., Vandenesch, F. & Romby, P.
Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and
the transcription regulator Rot by an antisense mechanism. en. Genes Dev. 21, 1353–1366
(June 2007).

23. Romilly, C., Lays, C., Tomasini, A., Caldelari, I., Benito, Y., Hammann, P., Geissmann,
T., Boisset, S., Romby, P. & Vandenesch, F. A non-coding RNA promotes bacterial persis-
tence and decreases virulence by regulating a regulator in Staphylococcus aureus. en. PLoS
Pathog. 10, e1003979 (Mar. 2014).

24. Augagneur, Y., King, A. N., Germain-Amiot, N., Sassi, M., Fitzgerald, J. W., Sahukhal,
G. S., Elasri, M. O., Felden, B. & Brinsmade, S. R. Analysis of the CodY RNome reveals

11



RsaD as a stress-responsive riboregulator of overflow metabolism in Staphylococcus aureus.
en. Mol. Microbiol. 113, 309–325 (Feb. 2020).

25. Crosby, H. A., Tiwari, N., Kwiecinski, J. M., Xu, Z., Dykstra, A., Jenul, C., Fuentes, E. J. &
Horswill, A. R. The Staphylococcus aureus ArlRS two-component system regulates virulence
factor expression through MgrA. en. Mol. Microbiol. 113, 103–122 (Jan. 2020).

26. Ding, Y., Liu, X., Chen, F., Di, H., Xu, B., Zhou, L., Deng, X., Wu, M., Yang, C.-G. &
Lan, L. Metabolic sensor governing bacterial virulence in Staphylococcus aureus. en. Proc.
Natl. Acad. Sci. U. S. A. 111, E4981–90 (Nov. 2014).

27. Leiba, J., Hartmann, T., Cluzel, M.-E., Cohen-Gonsaud, M., Delolme, F., Bischoff, M. &
Molle, V. A Novel Mode of Regulation of the Staphylococcus aureus Catabolite Control
Protein A (CcpA) Mediated by Stk1 Protein Phosphorylation. J. Biol. Chem. 287, 43607–
43619 (Dec. 2012).

28. Villanueva, M., Garcıa, B., Valle, J., Rapún, B., Ruiz de Los Mozos, I., Solano, C., Martı,
M., Penadés, J. R., Toledo-Arana, A. & Lasa, I. Sensory deprivation in Staphylococcus
aureus. en. Nat. Commun. 9, 523 (Feb. 2018).

29. Kwiecinski, J. M., Kratofil, R. M., Parlet, C. P., Surewaard, B. G. J., Kubes, P. & Horswill,
A. R. Staphylococcus aureus uses the ArlRS and MgrA cascade to regulate immune evasion
during skin infection. en. Cell Rep. 36, 109462 (July 2021).

30. Reed, J. M., Olson, S., Brees, D. F., Griffin, C. E., Grove, R. A., Davis, P. J., Kachman,
S. D., Adamec, J. & Somerville, G. A. Coordinated regulation of transcription by CcpA
and the Staphylococcus aureus two-component system HptRS. en. PLoS One 13, e0207161
(Dec. 2018).

31. Yarwood, J. M. & Schlievert, P. M. Quorum sensing in Staphylococcus infections. en. J.
Clin. Invest. 112, 1620–1625 (Dec. 2003).

32. Wang, R., Braughton, K. R., Kretschmer, D., Bach, T.-H. L., Queck, S. Y., Li, M., Kennedy,
A. D., Dorward, D. W., Klebanoff, S. J., Peschel, A., DeLeo, F. R. & Otto, M. Identification
of novel cytolytic peptides as key virulence determinants for community-associated MRSA.
en. Nat. Med. 13, 1510–1514 (Dec. 2007).

33. Li, M., Cheung, G. Y. C., Hu, J., Wang, D., Joo, H.-S., Deleo, F. R. & Otto, M. Compara-
tive analysis of virulence and toxin expression of global community-associated methicillin-
resistant Staphylococcus aureus strains. en. J. Infect. Dis. 202, 1866–1876 (Dec. 2010).

34. Suligoy, C. M., Lattar, S. M., Noto Llana, M., González, C. D., Alvarez, L. P., Robinson,
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Chapter 2

Revealing 29 sets of independently

modulated genes in Staphylococcus

aureus, their regulators, and role in

key physiological response

2.1 Abstract

The ability of Staphylococcus aureus to infect many different tissue sites is enabled, in

part, by its Transcriptional Regulatory Network (TRN) that coordinates its gene expression to

respond to different environments. We elucidated the organization and activity of this TRN by

applying Independent Component Analysis (ICA) to a compendium of 108 RNAseq expression

profiles from two S. aureus clinical strains (TCH1516 and LAC). ICA decomposed the S. aureus
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transcriptome into 29 independently modulated sets of genes (iModulons) that revealed (1) high

confidence associations between 21 iModulons and known regulators; (2) an association between

an iModulon and σS, whose regulatory role was previously undefined; (3) the regulatory orga-

nization of 65 virulence factors in the form of three iModulons associated with AgrR, SaeR and

Vim-3, (4) the roles of three key transcription factors (CodY, Fur and CcpA) in coordinating

the metabolic and regulatory networks; and (5) a low dimensional representation, involving the

function of few transcription factors, of changes in gene expression between two laboratory me-

dia (RPMI, CAMHB) and two physiological media (blood and serum). This representation of

the TRN covers 842 genes representing 76% of the variance in gene expression that provides a

quantitative reconstruction of transcriptional modules in S. aureus, and a platform enabling its

full elucidation.

2.2 Introduction

Staphylococcus aureus causes a variety of human diseases ranging from skin and soft tissue

infections (SSTI) to infective endocarditis and pneumonia[1]. The pathogen can also thrive as

part of the commensal microbiome in the anterior nares of healthy patients[2]. S. aureus adap-

tation to many different host environments is enabled, in part, by the underlying transcriptional

regulatory network (TRN) that can alter the physiological state of the cell to match the unique

challenges presented by each environment[3–5]. Such adaptations require coordinated expression

of genes in many cellular subsystems such as metabolism, cell wall biosynthesis, stress response,

virulence factors, etc. Therefore, a complete understanding of the S. aureus response to differ-

ent environments necessitates a thorough understanding of its TRN. However, since S. aureus

is predicted to have as many as 135 transcriptional regulators[6], with many more potential
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interactions among them, a bottom-up study of its global TRN becomes intractable.

To address this challenge, we previously introduced an Independent Component Analysis

(ICA)-based framework in Escherichia coli that decomposes a compendium of RNA-sequencing

(RNA-seq) expression profiles to determine the underlying regulatory structure[7]. An extensive

analysis of module detection methods demonstrated that ICA out-performed most other methods

in consistently recovering known biological modules[8]. The framework defines independently

modulated sets of genes (called iModulons) and calculates the activity level of each iModulon

in the input expression profile. ICA analysis of expression profiles in E. coli have been used

to describe undefined regulons, link strain-specific mutations with changes in gene expression,

and understand rewiring of TRN during Adaptive Laboratory Evolution (ALE)[7, 9]. Given

the deeper insights it provided into the TRN of E. coli, we sought to expand this approach to

the human pathogen S. aureus. To elucidate the TRN features in S. aureus, we compiled 108

high quality RNA-seq expression profiles for community-associated methicillin-resistant S. aureus

(CA-MRSA) strains LAC and TCH1516. Decomposition of these expression profiles revealed 29

independently modulated sets of genes and their activity levels across all 108 expression profiles.

Further, we show that using the new framework to reevaluate the RNA-seq data accelerates

discovery by (1) quantitatively formulating TRN organization, (2) simplifying complex changes

across hundreds of genes into a few changes in regulator activities, (3) allowing for analysis of

interactions among different regulators, (4) connecting transcriptional regulation to metabolism,

and (5) defining previously unknown regulons.
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2.3 Results

2.3.1 ICA extracts biologically meaningful components from transcriptomic

data

We generated 108 high-quality RNA-seq expression profiles from CA-MRSA USA300

isolates LAC and TCH1516 and two additional Adaptive Laboratory Evolution (ALE)-derivatives

of TCH1516. To capture a wide range of expression states, we collected RNA-seq data from S.

aureus exposed to various media conditions, antibiotics, nutrient sources, and other stressors.

The samples were then filtered for high reproducibility between replicates to minimize noise in

the data (Figure A.1a). The final dataset contained 108 samples representing 43 unique growth

conditions, which have an average R2 = 0.98 between replicates.

Using an extended ICA algorithm[7], we decomposed the expression compendium into

29 ‘iModulons’. An iModulon contains a set of genes whose expression levels vary concurrently

with each other, but independently of all other genes not in the given iModulon. Akin to a regu-

lon[10], an iModulon represents a regulatory organizational unit containing a functionally related

and co-expressed set of genes under all conditions considered (Figure 2.1a). While regulons are

determined based on direct molecular methods (e.g., ChIP-seq, RIP-ChIP, gene-knockouts, etc.),

iModulons are defined through an untargeted ICA-based statistical approach applied to RNA-

seq data that is a reflection of the activity of the transcriptional regulators (see Materials and

Methods). However, beyond regulons, iModulons can also describe other genomic features, such

as strain differences and genetic alterations (e.g. gene knock-out) that can lead to change in

gene co-expression[7, 9]. The outcome of this approach is a biologically relevant, low dimensional

mathematical representation of functional modules in the TRN that reconstruct most of the
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Figure 2.1: ICA decomposition of S. aureus USA300 RNA-seq database. (a) An iModulon
is a set of genes that are co-expressed and encode products with shared functions. The PyrR
iModulon, for example (middle column), is predicted to be under control of pyrR repressor and
contains genes that encode enzymes in pyrimidine biosynthesis (purple) and purine salvage (blue)
pathway (right column). The genes in two different pathways are contra-regulated (arrows). (b)
Activity levels of iModulons are calculated for all conditions (top bar chart), allowing for sample
specific (e.g., in three different media) comparison of each iModulon (boxplot). The activity of
all iModulons are centered around CAMHB base condition and therefore, all iModulons have
mean activity of 0 in this condition. Centerline of the boxplot represents median value, the
box limits represent Q1 and Q3, and the whiskers represent the min and max values. (c) A
treemap indicating the names and the size of the iModulons. The iModulons are named after the
transcription factor(s) whose predicted regulons have highest overlap with the given iModulon,
or based on the shared functionality of genes (e.g., autolysins, translation, B-lactam resistance)
in iModulon if no known regulator was identified. iModulon with low or no correspondence with
any of the known features is labeled as Unc-1. ‘BLR’ stands for ‘Beta-Lactam resistance’ and
SNFR iModulon consists of genes with altered expression in SNFR strain.

information content of the input RNAseq compendium (SI Appendix, Figure A.1b). Such for-

mulation also quantitatively captures complex behaviors of regulators such as contra-regulation

of multiple genes by the same regulator, co-regulation of the same gene by multiple regulators,
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and coordinated expression of multiple organizational units (iModulons) in various conditions

(SI Appendix, Figure A.1c,d). Therefore, this model enables simultaneous analysis of TRN at

both gene and genome-scale.

ICA also reconstructs the activity of the iModulons in the samples, which represents the

collective expression level of the genes in the iModulon. Each sample in the dataset can be recon-

structed as the summation of the activity of the 29 iModulons, which makes the transcriptional

state in each condition more explainable. Conversely, each iModulon has a computed activity in

every sample, allowing for easy comparisons of iModulon activities across samples, that in turn

reflect the activity of the corresponding transcriptional regulator (Figure 2.1b). The reported

activity levels are log2 fold change from the base condition - growth in Cation Adjust Mueller

Hinton Broth (CAMHB).

We compared the gene sets in the 29 enriched iModulons against previously predicted S.

aureus regulons in the RegPrecise database and other regulons described in various publications.

iModulons with statistically significant overlap (FDR < 1e − 05) with a previously predicted

regulon were named after the transcription factor associated with the regulon (see Materials and

Methods). We also manually identified iModulons that consisted of genes with shared functions

(e.g., Autolysins, Translation) or those that corresponded to other genomic features such as

plasmids, prophages, or strain-specific differences. Together, we identified fifteen metabolic, six

functional, three virulence, four stress response-associated and one strain-associated (SNFR)

iModulons (Figure 2.1c). Of the 29 enriched iModulons, only one remains uncharacterized. In

total, the 29 iModulons consist of 752 unique genes, 90 of which are enriched in more than 1

iModulons.
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2.3.2 ICA disentangles complex change in the transcriptome

Differential expression analysis of S. aureus in different environmental conditions can

yield hundreds of genes that have significantly altered expression levels, hindering meaningful

interpretation. Decomposition of the expression profile into biologically meaningful iModulons

instead allows us to gain a comprehensive understanding of the change in the transcriptome

through the activities of few regulators. To demonstrate this capability, we explored the differ-

ence in expression profiles of S. aureus grown in two different media, cation-adjusted Mueller

Hinton Broth (CAMHB), the standard bacteriologic medium for routine antimicrobial suscep-

tibility testing worldwide, and the common physiologically relevant mammalian tissue culture

medium RPMI-1640, supplemented with 10% Luria broth (RPMI+10%LB) to support growth

kinetics similar to CAMHB. Over 800 genes spanning more than a dozen Clusters of Orthologous

Groups (COG)[11] categories were differentially expressed between the two media (SI Appendix,

Figure A.2a). Conversely, there were fifteen iModulons with statistically significant differential

activation (Figure 2.2a). Most differentially activated iModulons were involved in metabolism

(CodY, PurR, Guanine-Responsive iModulon (GR), Gal/Man, Rex, MntR, PyrR, LacR, CcpA-1,

CcpA-2, Urease). The last four iModulons were those with functions in virulence (Vim-3, SaeR),

Translation, and the Phi-Sa3 phage-specific iModulon. Concurrent activation of the CodY, PurR,

and GR iModulons in RPMI+10%LB indicates that this media presents a guanine-limited en-

vironment, as activity of all three transcription factors decrease in response to falling cellular

concentrations of various forms of guanine derivatives[12–15]. Consistent with this hypothesis,

we also saw decreased activity of the Translation iModulon in RPMI+10%LB. Downregulation of

translation machinery often occurs during the stringent response, where cellular GTP is depleted

as it is rapidly converted to ppGpp[12, 16–18]. Similarly, activation of the MntR iModulon points
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to manganese starvation in RPMI+10%LB, and the decreased activity of two iModulons associ-

ated with carbon catabolite repressor CcpA (CcpA-1 and CcpA-2) likely reflects a glucose replete

environment[19]. Analysis of spent media using HPLC confirmed that S. aureus was actively up-

taking glucose in RPMI+10%LB while no glucose was detected in CAMHB (SI Appendix, Figure

A.2b). Taken together, the shift in activity of iModulons between the two media suggests that

compared to the bacteriologic medium CAMHB, RPMI+10%LB presents an environment poor

in purines (specifically guanine) and manganese but rich in the carbon source glucose.

Next, we designed two validation experiments to ensure that the activity level of iMod-

ulons reflect expected outcomes. To this end, we chose three iModulons to validate, CcpA-1,

CcpA-2, and GR, for ease of modifying their activities with supplementation of glucose and

purines, respectively. CcpA is the carbon catabolite repressor in S. aureus that controls cen-

tral carbon metabolism and carbon source utilization[20, 21]. Its activity level is indirectly

modulated by cellular glucose concentration, though it can also be altered by other glucose-

independent signals[22, 23]. CcpA transcriptional effects are captured in two iModulons, CcpA-1

and CcpA-2, which contain 73 and 19 genes, respectively. Both iModulons had far lower ac-

tivity in RPMI+10%LB compared to CAMHB. However, the addition of 2g/L glucose only

led to reduced activity of the CcpA-1 iModulon in CAMHB, closely matching its activity in

RPMI+10%LB (Figure 2.2b). Similarly, replacement of glucose with maltose in RPMI+10%LB

led to increased activity of the CcpA-1 iModulon. The change in glucose concentration, how-

ever, had little effect on the activity level of the CcpA-2 iModulon, suggesting that the CcpA-1

iModulon represents direct glucose-responsive CcpA activity, whereas the CcpA-2 iModulon may

reflect its glucose-independent activity.

In addition to CcpA activity, we also confirmed the activity of the GR iModulon. The GR
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Figure 2.2: Differential activation of iModulons in different media conditions. (a) iModulons
from LAC strain with statistically significant (p−value < 0.05) differential activation in CAMHB
versus RPMI+10%LB. (b) Addition of glucose reduced the activity of CcpA-1 in CAMHB (blue
bars). Conversely, replacing glucose with maltose led to higher CcpA-1 activity in RPMI+10%LB.
CcpA-2 activity did not change in response to glucose concentration (red bars). (c) The bar plot
shows the activity level of GR iModulon, which contains the genes under the control of guanine
riboswitch (xpt and pbuG). Though many different conditions can affect the GR iModulon ac-
tivity (blue bar), it sharply decreases when guanine is added to the media. Addition of adenine
has no effect. Black dots in panel b and c represent values from individual samples and error
bars represent standard deviation.(d) External validation of Agr and PurR iModulon activity in
the respective agr and purR mutants.
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iModulon contains genes involved in the purine salvage pathway (xpT, pbuX ), peptide transport

(oppB), and LAC specific virulence factor ssl11. The two genes in the salvage pathway have

been previously demonstrated to be under the control of the guanine riboswitch in S. aureus

strain NRS384[15]. The presence of this riboswitch was confirmed using the online RiboSwitch

Finder (SI Appendix, Figure A.2c,d)[24]; no riboswitches were detected for the other two genes.

The activity of the iModulon was attenuated by guanine supplementation (25ug/mL) while the

addition of adenine had no effect, demonstrating a guanine-specific activity of the iModulon

(Figure 2.2c).

We additionally validated activities of Agr and PurR iModulons using publically avail-

able expression profiling datasets (GSE18793 and GSE132179)[25, 26]. These datasets include

expression profiles comparing wild type USA300 strains to their isogenic agr and purR mutants.

As a form of external validation, we did not incorporate these data into the model. Instead we

projected the expression data onto the model to convert the gene expression levels to iModu-

lon activity levels (see Materials and Methods). Compared to their respective wild types, PurR

iModulon had the largest increase in activity in purR::bursa strain and Agr iModulon showed the

largest drop in activity in the strain with disrupted agr system, demonstrating that the model

can capture activities of these iModulons in the conditions not included in the model (Figure

2.2d).

2.3.3 Integration of iModulons with genome-scale metabolic models reveal

systems-level properties of metabolic regulation

Genome-scale metabolic models (GEMs) are knowledge-bases reconstructed from all

known metabolic genes of an organism, systematically linking metabolites, reactions, and
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genes[27]. Integration of iModulons with these metabolic models allows us to probe the in-

teraction between the regulatory and metabolic networks. To visualize this crosstalk at the

systems level, we overlaid the iModulons onto central metabolism and amino acid metabolism

pathways of the S. aureus metabolic reconstruction iYS854 (Figure 2.3a)[28]. The CcpA-1 and

CodY iModulons dominate regulation of the genes in these metabolic subsystems of S. aureus.

The two CcpA iModulons controlled many of the genes in carbon metabolism. The genes re-

quired for the tricarboxylic acid (TCA) cycle were found primarily in the CcpA-1 iModulon,

with the exception of genes encoding fumarase and malate dehydrogenase. Additionally, the

CcpA-1 iModulon contained genes required for degradation of gluconeogenic amino acids (serine,

histidine, and alanine) and secondary metabolites (chorismate and N-acetyl-neuraminic acid).

Also included were genes encoding two key gluconeogenic enzymes - phosphoenolpyruvate (PEP)

carboxykinase and fructose-1,6-bisphosphatase. Genes involved in transport of alternate carbon

sources were also present.

In contrast to catabolic CcpA-regulated genes, the iModulon associated with CodY reg-

ulation was dominated by genes participating in biosynthesis of amino acids lysine, threonine,

methionine, cysteine, histidine, and branched chain amino acids (BCAA) isoleucine, leucine,

and valine[13]. Regulation of interconversion between glutamine and glutamate (gltA), a key

component of nitrogen balance and assimilation, was also a part of the CodY iModulon.

While the two iModulons (CcpA-1, CodY) did not share any genes, they intersected

at some key metabolite nodes in central metabolism, including pyruvate, glutamate, histidine,

and arginine. Genes in the CcpA-1 iModulon encode enzymes that generate pyruvate from

amino acids and use the pyruvate to generate energy through fermentation, synthesize glucose

via gluconeogenesis, or synthesize fatty acids via malonyl-coA. Enzymes encoded by genes in the
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CodY iModulon, on the other hand, redirect pyruvate to instead synthesize BCAA (isoleucine,

leucine and valine). Similarly, glutamate is directed towards the urea cycle by CcpA-1 and

towards biosynthesis of the aspartate family amino acids by CodY. While genes required for

catabolism of histidine are in the CcpA-1 iModulon, genes encoding histidine biosynthesis is

instead part of the CodY iModulon.

2.3.4 Genome-scale metabolic models compute flux-balanced state that re-

flect regulatory actions of CcpA

Metabolic network reconstructions can be converted into genome-scale models that allow

for the computation of phenotypic states[29]. We can compute the optimal flux through the

metabolic network using flux-balance analysis (FBA)[28]. In particular, we can compute the

metabolic state that is consistent with nutrient sources in a given environment to support opti-

mal bacterial growth. In the previous CcpA iModulon validation experiment, we observed that

changing the carbon source from glucose to maltose in RPMI+10%LB also led to an unexpected

spike in activity of the iron-responsive Fur iModulon (SI Appendix, Figure A.3a). To investigate

whether there was a possible metabolic role explaining the increase in Fur activity, we gener-

ated two condition-specific genome scale metabolic models (csGEMs) starting with iYS854[28].

For both csGEMs, we computed the state of the metabolic network that supports growth in

RPMI+10%LB, with either glucose or maltose as the main carbon source (Methods and Materi-

als). We assumed that CcpA-1 repression was active only when glucose was the main glycolytic

nutrient source (and the corresponding set of reactions was shut off). Reaction fluxes across the

network were then sampled using flux-balance analysis, assuming that the bacterial objective

was biomass production[30]. Sampling accounts for different network flux distributions that can
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achieve the same optimal solutions (i.e., identical biomass production rates).
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Figure 2.3: Regulation of central metabolism and its interaction with other metabolic subsys-
tems. (a) Overlay of iModulons onto the map of central metabolism and amino acid metabolism
of S. aureus. The two main regulators of these metabolic subsystems, CcpA (blue/green) and
CodY(orange), control central carbon and nitrogen metabolism respectively. These two iMod-
ulons intersect at key metabolic nodes-pyruvate, histidine, and glutamate (highlighted in red).
Entry points of sugars used in the next section, glucose and maltose, are highlighted with red and
blue boxes respectively. (b) Activity of reactions associated with the Fur iModulon in presence
of different carbon sources: maltose and glucose. The bars represent sum of median sampled
fluxes through reactions catalyzed by enzymes in the Fur iModulon. Unexpected increase in Fur
iModulon activity when carbon source was switched from glucose to maltose is recapitulated
through metabolic modeling. (c) Reactions associated with the Fur iModulon with the largest
increase in simulated flux in glucose media. (d) Calculated proxy for intracellular metabolite
concentrations.

Under these conditions, the sum of sampled fluxes through reactions associated with the

Fur iModulon was significantly higher in maltose media (Kolmogorov-Smirnov test, p < 0.01,

statistics > 0.9), confirming that the spike in Fur activity could be a result of metabolic flux

rewiring (Figure 2.3b). In particular, fluxes through serine kinase (sbnI, a precursor metabolic

step of staphyloferrin B biosynthesis) and ornithine cyclodeaminase (sbnB) were significantly

increased (Figure 2.3c). These changes came as a result of flux rewiring away from deactivated
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metabolic steps. For example, due to arginase (rocF ) deactivation, the flux through half of the

urea cycle and ornithine cyclodeaminase was lower. Similarly, serine deaminase (sdaB) - located

two metabolic steps downstream of serine kinase - was deactivated due to simulated down-

regulation of genes in the CcpA-1 iModulon, and flux through phosphoglycerate dehydrogenase,

serine kinase, and phosphoserine phosphatase was decreased. We computed the sum of fluxes

producing each metabolite as a proxy for intracellular concentrations and found that the calcu-

lated values were significantly larger in maltose media for 68 metabolites including ammonium,

glutamate, and isocitrate. The majority of the TCA cycle was shut off in the glucose-specific

GEM (due to simulated repression of citB, icd, odhA, sdhABCD, and sucCD), and therefore the

concentration proxy for isocitrate was essentially null, while that of citrate was not (Figure 2.3d).

Previous studies have shown that citB deletion results in increased intracellular concentration of

citrate [31]. Apart from being an intermediate in the TCA cycle, citrate can be utilized in the

model as a precursor to staphyloferrin A and staphyloferrin B biosynthesis (which are included

in the Fur iModulon), or it can be converted back to oxaloacetate and acetate via citrate lyase.

All three routes were part of the solution space, with citrate lyase carrying the largest median

flux. Taken together, these modeling simulations suggest that utilizing maltose instead of glucose

induces metabolic flux rewiring towards reactions associated with the Fur iModulon.

2.3.5 An iModulon details possible scope and functions of sigma factor σS

Global stress response in S. aureus is modulated by the alternate sigma factor σB [32,

33]. Though two other sigma factors, σS and σH, have been recognized in this organism, their

exact functions and full regulon are not as well understood[34, 35]. We identified two iModulons

that correspond to sigma factors σ B and σS. The SigB iModulon contained genes encoding σB
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(sigB), anti-σ B (rsbW ), and anti-σ B antagonist (rsbV ). The activity of SigB iModulon was

correlated with sigB expression (PearsonR = 0.55, p − value = 8.2e − 11) (Figure 2.4a), with

the highest activation in stationary phase (OD600 = 1). Furthermore, a conserved 29 bp motif

was enriched from 28 unique regulatory regions of SigB iModulon genes (SI Appendix, Figure

A.4a) (see Methods and Materials). As the regulatory role of σ B has been previously explored

in detail[33, 36–39], we focused here on the less understood regulatory role of σS. Though σS

is important for both intracellular and extracellular stress response, its full regulon has yet to

be defined[35, 40]. ICA identified a large iModulon with 137 genes including sigS itself (which

encodes σS). As with the SigB iModulon, expression of the sigS gene correlated to activity of the

ICA-derived SigS iModulon (Pearson R = 0.77, p− value = 4.26e− 22) (Figure 2.4b). Previous

studies have shown that CymR represses sigS expression and therefore may lead to its decreased

activity[41]. We confirmed this relationship as the SigS iModulon activity was anti-correlated

with the CymR iModulon activity (PearsonR = −0.68, p − value = 8.23e − 10) (SI Appendix,

Figure A.4b).

To further characterize σS, we looked for conserved motifs in the regulatory regions of the

genes in the iModulon and found a purine-rich 21 base-pair purine rich motif (E−value = 7.7e−8)

in the regulatory region of at least 56 genes in the SigS iModulon (Figure 2.4c). Comparisons

against a known prokaryotic motif database revealed that the S. aureus σS motif was most similar

to that of the σ B (MX000071) motif in B. subtilis (E − value = 1.62e− 02) (see Materials and

Methods). Next, we analyzed the distance between the center of the motif and the transcription

initiation site. For most genes, the motif was present at or around 35 base-pairs upstream of the

translation start site, though motifs were also found further upstream (Figure 2.4d).

Of the 137 genes in the iModulon, only 56 ( 41%) had an assigned function in the reference
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Figure 2.4: Profiling alternate sigma factor S. The expression levels of sigB (a) and sigS (b)
genes and the activity levels of their respective iModulons show strong positive correlation. (c)
The regulatory region (150 bp upstream of the first gene in operon) of genes in the SigS iModulon
contained a conserved purine rich motif. (d) The positions (relative to transcription start-site)
of the enriched motif within the regulatory sites of genes in the SigS iModulon. For many genes
in the SigS iModulon, the motif was present 35 bp upstream of the translation start site. (e)
‘Greed vs. Fear’ trade-off is reflected in the activity of the Translation (greed) and SigS (fear)
iModulons. LAC showed increased propensity for fearful bet-hedging strategy while TCH1516
relied on a more greedy strategy.

genome, further highlighting our limited understanding of σS functionality. However, many of

the annotated gene products were key factors in controlling cellular state. These included factors

regulating virulence (sarA, sarR, sarX ), antimicrobial resistance (cadC, blaI ), metabolism (arcR,

argR), cell wall biogenesis (vraRST ), biofilm formation (icaR), and DNA damage repair (recX ).

Genes encoding proteins critical for stress response such as universal stress protein (Usp), toxin

MazF, competence proteins ComGFK, and cell division protein were also present.
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The SigS iModulon also plays a critical role in the so-called ‘fear vs. greed’ trade-off in

S. aureus. Previously described in E. coli, this trade-off describes the allocation of resources

towards optimal growth (greed) versus allocation towards bet-hedging strategies to mitigate the

effect of stressors in the environment (fear)[7, 42]. This balance is reflected in the transcriptome

composition as an inverse correlation between the activities of the stress-responsive SigS iModulon

and the Translation iModulon (Figure 2.4e). Unlike E. coli, however, this relationship was

independent of growth rate, as growth rate had weak correlation with Translation iModulon

expression activity (PearsonR = 0.094, p− value = 0.514). Interestingly, mapping this trade-off

highlighted a possible difference in survival strategy between the two USA300 strains. TCH1516

tended towards a greedy strategy with high Translation iModulon activity while LAC was more

likely to rely on bet-hedging, or fear.

2.3.6 ICA reveals organization of virulence factor expression

ICA captured systematic expression changes of several genes encoding virulence factors.

Previous studies described over half a dozen transcription factors with direct or indirect roles in

regulation of virulence factor expression in S. aureus[43]. The number of regulators, and their

complex network of interactions, make it extremely difficult to understand how these genes are

regulated at a genome scale. In contrast, ICA identified only three iModulons - named Agr,

SaeR, and Vim-3 - that were mostly composed of virulence genes (Figure 2.5a). The activity

level of Agr had extremely low correlation with that of SaeR and Vim-3, suggesting that Agr may

have only limited cross-talk with the other two iModulons in our conditions (SI Appendix, Figure

A.5a). However, the activity levels of SaeR and Vim-3 were negatively correlated (Pearson R =

-0.57, p-value = 8.6e-11). As the two iModulons contain different sets of virulence factors, the

32



negative correlation points to a shift in the virulence state where S. aureus may adopt different

strategies to thwart the immune system. Collectively, the three virulence iModulons revealed

coordinated regulation of 65 genes across the genome. These results suggest that the complexity

behind virulence regulation can be decomposed into discrete signals and the virulence state of S.

aureus can be defined as a linear combination of these signals.
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Figure 2.5: Global regulation of virulence factors. (a) The three virulence iModulons (SaeR,
Agr, Vim-3) and the genomic positions of the genes in their respective iModulons are mapped.
The signals encode over 25 virulence factor associated genes. (b) PurR iModulon activity is highly
correlated with virulence iModulon SaeR. (c) Challenge with low pH, linezolid, and mupirocin
leads to strong activation of agr in exponential growth phase. Interestingly, this activation is
stronger than that induced by stationary phase (O.D.600 = 1.0). Activation of agr was much
weaker under all other experimental conditions considered (top bar chart). (d) Co-activation of
Phi-Sa3 iModulon with virulence iModulon Vim-3.
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The SaeR iModulon contained 27 genes, including the genes for the SaeRS two-component

system (TCS). The activity level of this iModulon strongly correlated with the expression level

of saeRS, further supporting the idea that the genes in this iModulon are regulated (directly or

indirectly) by SaeRS (PearsonR = 0.80, p−value = 1.38e−25). Furthermore, the virulence genes

chp, coa, ssl11, sbi, map, lukA, and scn, previously reported to be under the control of SaeRS[44],

were also found in this iModulon. The activity of SaeR iModulon was strongly associated with

purine metabolism. PurR, the transcription factor that regulates the genes of purine biosynthesis,

has been recently implicated in regulation of virulence factors[25, 45]. Consistent with this

observation, the activity level of the SaeR iModulon correlated well (PearsonR = 0.77, p −

value = 8.9e − 23) with the activity of the PurR iModulon (Figure 2.5b). Thus, SaeR may act

as a bridge between virulence and metabolism.

Similarly, the Agr iModulon contained the agrABCD genes involved in regulation of the

quorum sensing agr regulon[46, 47]. As most of our samples were collected during early- to mid-

exponential growth phase, the Agr iModulon remained inactive in these conditions (SI Appendix,

Figure A.5b). Only acidic conditions (pH 5.5) and treatment with translation inhibitors linezolid

and mupirocin activated Agr during exponential growth (Figure 2.5c). Both pH- and translation

inhibition-dependence of agr expression have been previously reported [48–51]. Unexpectedly,

the Agr iModulon was activated to a much greater extent by these factors than high cell density

(O.D. 1.0), for which its role in quorum sensing is extensively characterized.

The Vim-3 virulence iModulon consisted of genes required for siderophore and heme

utilization (sbnABC, hrtAB), capsule biosynthesis (cap8a, capBC, cap5F ) , and osmotic tolerance

(kdpA, betAT, gbsA). The Vim-3 iModulon had maximal activity under hyperosmotic condition

introduced by 4% NaCl and when grown to stationary phase (OD 1.0) in CAMHB (SI Appendix,
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Figure A.5c). The increased expression of capsule biosynthesis genes have shown to be responsive

to change in osmotic pressure as well as iron starvation, which is consistent with the inclusion

of iron scavenging and osmotic tolerance genes in the iModulon with the capsular biosynthesis

genes[52, 53].

We further identified a prophage Phi-Sa3 associated iModulon as a new putative iModulon

required for virulence. The Phi-Sa3 iModulon consists of genes in the Phi-Sa3 prophage and

several genes encoding DNA replication and repair enzymes. Excluded from the iModulon were

the virulence factors that were horizontally acquired along with the phage (scn and chp)[54],

which now fell under the control of SaeR. Of the four phages in S. aureus strain Newman, Phi-

Sa3 is the only prophage that is unable to generate complete viral particles when challenged

with DNA damaging agent mitomycin[55]. However, evidence suggests that this prophage is still

active in USA300 strains and its genes are expressed during lung infection, where it may play a

role in establishing virulence[56]. Corroborating this hypothesis, we found that the activity of the

Phi-Sa3 iModulon correlated highly with the Vim-3 iModulon (PearsonR = 0.62, p − value =

9.9e − 13)(Fig. 5e). As the Phi-Sa3 iModulon does not contain any virulence genes, the phage

itself may play an accessory role in establishing virulence.

2.3.7 ICA model provides a platform for in-vivo data interpretation

Transcriptomic models based on ICA can also be used to interpret new in-vivo and ex-

vivo expression profiles, leading to greater clarity when compared to analysis with graph based

TRN model (Appendix A.2). Expression profiling data can be projected onto the iModulon

structure of the TRN, derived from our dataset, to convert the values from gene expression levels

to iModulon activity levels (see Materials and Methods). This projection can supplement gene
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differential expression analysis by identifying regulators that are driving the large changes in gene

expression often seen in-vivo.

We projected a microarray data (GSE61669) taken at 24 hour post-infection from a rabbit

skin infection model model[57]. After 24 hours, 1232 differentially expressed genes were reported.

Projection of the data on to the model showed that these changes in differential expression are

being driven by simultaneous activation of CodY and Fur iModulons and inactivation of SigB,

PurR Agr and Translation iModulons (Figure 2.6a).

In time-course data, projecting expression data onto the model can also help us under-

stand the dynamics of different regulators during infection. We projected previously published

time course microarray data collected from S. aureus USA300 LAC grown in Tryptic Soy Broth

(TSB), human blood, and serum[58]. Bacteria grown to an exponential phase in TSB was used

as inoculum for all samples; we used this as our new base condition for the projected data.

Therefore, all iModulon activity levels in this set represent log2 fold change in activity from this

base condition. Once transferred to serum, the activities of Fur and CodY iModulons in serum

increased dramatically with Fur being activated immediately after exposure to serum while CodY

activating slowly over time to reach a similar level as Fur by 2 hours (Figure 2.6b). The large

change in activity coupled with the sizeable number of genes in each iModulon (80 and 45 genes

in CodY and Fur, respectively) indicates that S. aureus reallocates a considerable portion of its

transcriptome to reprogram amino acid and iron metabolism in serum. PurR and SaeR activity

also increased, though their magnitude of change was dwarfed by the changes in activity of CodY

and Fur. Agr activity, on the other hand, declined and remained low over the two hour period.

Because agr positively regulates a number of virulence genes, dynamic changes in its activity

level could be expected in serum. However, consistent with the model prediction, previous stud-
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Figure 2.6: ICA analysis of in vivo and ex vivo data. (a) Change in iModulon activities at
24 hours post infection in a rabbit skin infection model. (b) Activity levels of select iModulons
in serum over the two hour time period. The thick line represents the mean activity across all
replicates and the thin line represents activity in each individual replicate (n=4). Activity levels
were around the inoculum values, (c) Comparison of iModulon activity between serum and blood
and two hour time point. The dashed red line is the 45 degree line; iModulons below the line
have higher activity in blood and those above the line have higher activity in serum. Red shaded
area contains iModulons with less than 5 fold change in activity in both conditions.

ies have demonstrated that agr transcription is dampened in human serum due to sequestration

of auto-inducing peptide (AIP) by human apolipoprotein B[59, 60].

We next calculated the differences in iModulon activities in blood and serum at the fi-

nal two hour time-point. Fur, CodY, PurR, SaeR, and Agr had similar activity levels in both

blood and serum (Figure 2.6b). Therefore, the activity of these regulators are likely governed

by the non-cellular fraction of the blood. iModulons PyrR, SigB, Translation, VraR, CcpA-1,
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and CcpA-2 had higher activity levels in blood than in the serum (Figure 2.6c). Glucose con-

centration in blood is lower than in serum, which likely explains the shift in CcpA-1 activity[61].

The lower glucose concentrations relieves CcpA mediated repression of its regulon, leading to

higher expression. The shift in the PyrR iModulon also corroborates previous studies, which

demonstrated that S. aureus strain JE2 (a derivative of LAC) requires more pyrimidine when

growing in blood than in serum[62]. The signals or cues driving the change in activity of the

other iModulons (SigB, Translation, VraR, and CcpA-2) remains unknown.

Overall, the imodulon analysis revealed that during acute infection, CodY and Fur play

key roles in rewiring the S. aureus metabolism in serum and blood when compared to TSB, while

SaeR (and not Agr) drives the virulence gene expression. In addition, SigB, Translation, and

VraR iModulons are uniquely activated by the cellular fraction of the blood and may thus be

responding to unique stresses they impart.These observations however are limited as the baseline

for comparisons for most of these analyses were in vitro growth in TSB. Though the differentially

activated iModulons may point to important roles that each of the associated regulators play

during acute infection, further analysis is still required to understand their relative contribution.

The model is also limited in that it is currently blind to the regulators that are not captured

in any of the 29 iModulons. This limitation will be alleviated over time as we incorporate more

sequencing data that is being generated at an ever increasing pace.

2.4 Discussion

Here, we described an ICA-based method to elucidate the organization of the modules in

TRN in S. aureus USA300 strains. Using this method, we identified 29 independently modulated

sets of genes (‘iModulons’) and their activities across the sampled conditions. This framework

38



for exploring the TRN provides three key advantages over traditional methods, especially when

working with non-model organisms: (1) the method provides an explanatory reconstruction of

the TRN; (2) it is an untargeted, and therefore unbiased, approach; and (3) the approach utilizes

expression profiling data, an increasingly ubiquitous resource.

First, iModulons quantitatively capture the complexities of transcriptional regulation

and enable a new way to systematically query the transcriptome. By recasting the data in terms

of explanatory iModulons, we gained a deeper understanding of large changes in transcription

profiles between CAMHB bacteriologic media and the more physiologically relevant mammalian

tissue culture-based media RPMI+10%LB. The analysis reduced the number of features needed to

capture most of the information in the transcriptome from hundreds of genes to fifteen iModulons.

Additionally, quantified activity levels of iModulons also enabled integration of regulatory activity

with metabolic models and revealed coordination between metabolic and regulatory networks.

Such reduction in complexity and the integration of different aspects of S. aureus biology (e.g.,

virulence, metabolism, stress response, etc.) will be crucial to understanding the mechanisms

that enable successful infection in-vivo.

Second, this method presents a platform for untargeted, global analysis of the TRN. Due

to its untargeted nature, we also identified two key virulence features of S. aureus. ICA revealed

coordinated regulation of genes in capsule biosynthesis, osmotic tolerance, and iron starvation

(Vim-3 iModulon). Both capsule formation and siderophore scavenging are important in nasal

colonization[63, 64]. Similarly, growth of S. aureus in Synthetic Nasal Medium (SNM3) increases

the expression of genes required for osmotolerance. Therefore, the Vim-3 iModulon may represent

a concerted regulation of genes required for successful nasal colonization. We also identified the

Phi-Sa3 phage iModulon, whose activity level correlated with that of the Vim-3 iModulon. The
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Phi-Sa3 iModulon did not include the virulence genes (e.g. sak, scn, etc.) that were acquired

with the phage, suggesting that phage replication genes were expressed independently of the

virulence genes. Given that its activity was correlated with Vim-3, this phage may also play an

important role in nasal colonization.

Lastly, ICA uses RNA-seq data to extract information about the TRN, making it more

accessible to non-model organisms including S. aureus. Reconstructing the TRN with traditional

methods is highly resource intensive, as they require targeted antibodies or specialized libraries of

plasmids containing all transcription factors of interest[65].. While these approaches have given

us great insights into TRNs of model organisms like E. coli [10], such comprehensive data is not

available for most microbes. Several studies have attempted to circumvent this by comparing the

expression profiles of wild-type S. aureus strains with their counterpart through transcription

factor knockout or introduction of a constitutively active transcription factor. However, these

approaches often overestimate the regulatory reach of the transcription factor, as such genetic

changes can trigger the differential expression of genes not directly under the regulator’s control.

By identifying iModulons consisting of independently regulated sets of genes, ICA-based method

improves on these approaches as it able to segregate specific regulator targets[7]. While a large

number of expression profiles are required to build such a model, a rapidly growing number of

expression profiles are already publicly available on Gene Expression Omnibus (GEO). Indeed,

utilizing only RNA-seq data, we predicted the previously unknown regulon of stress-associated

sigma factor σS and its possible roles in biofilm formation, growth rate control, and general

stress response. With the growing number of available expression profiles, such characterizations

can be extended to other undefined or poorly defined regulons. Therefore, in the absence of a

comprehensive set of targeted antibodies against S. aureus transcription factors, reanalyzing the
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publicly available database with ICA could be used to further reconstruct its TRN.

We have shown that ICA based decomposition can be utilized to build a quantitative

and explanatory model of S. aureus TRN from RNA sequencing data. Application of this model

enabled us to query metabolic and regulatory crosstalk, discover new potential regulons, find

coordination between metabolism and virulence, and unravel the S. aureus response to during

growth in blood. Due to this versatility, this model and other models generated through this

framework, may prove to be a powerful tool in any future studies of S. aureus and other non-

model organisms.

2.5 Materials and Methods

2.5.1 RNA extraction and library preparation

S. aureus USA300 isolates LAC, TCH1516 and ALE derivatives of TCH1516 (SNFR and

SNFM) were used for this study. The growth conditions and RNA preparation methods for

data acquired from Choe et al. has been previously described[66]. Detailed growth conditions,

RNA extraction and library preparation methods for other samples have also been already de-

scribed[67]. Briefly, an overnight culture of S. aureus was used to inoculate a pre culture and

were grown to mid-exponential growth phase (OD600 = 0.4) in respective media (CAMHB,

RPMI + 10% LB, or TSB). Once in mid-exponential phase, the preculture was used to inoculate

the media containing appropriate supplementation or perturbations. Samples were collected at

O.Ds and time-points indicated in the metadata. All samples were collected in biological dupli-

cates originating from different overnight cultures. Sample for control conditions were collected

for each set to account for batch effect.
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2.5.2 Determining Core Genome with Bi-Directional BLAST Hits (BBH)

To combine the data from the two strains, core genome containing conserved genes

between the LAC (GenBank: CP035369.1 and CP035370.1) and TCH1516 (GenBank:

NC 010079.1, NC 012417.1, and NC 010063.1) were first established using BBH[68]. In this

analysis, all protein sequences of CDS from both genomes are BLASTed against each other twice

with each genome acting as reference once. In this analysis, all protein sequences of CDS from

both genomes are BLASTed against each other twice with each genome acting as reference once.

Two genes were considered conserved (and therefore part of the core genome) if (1) the two genes

have the highest alignment percent to each other than to any other genes in the genome, and (2)

the coverage is at least 80%.

2.5.3 RNA Sequencing Data Processing

RNA sequencing pipeline used to analyze and perform QC/QA has been described in

detail previously[67]. Briefly, the sequences were aligned to respective genomes, LAC or TCH1516

using Bowtie2[69, 70]. The samples from ALE derivatives, SNFM and SNFR, were aligned to

TCH1516. The aligned sequences were assigned to open reading frames using HTSeq-counts

[71]. Differential expression analysis was performed using DESeq2 with p-value threshold of 0.05

and an absolute fold change threshold of 2[72]. To create the final counts matrix, counts from

conserved genes in LAC samples were represented by the corresponding ortholog in TCH1516.

The counts for accessory genes were filled with 0s if the genes were not present in the strain (i.e.

LAC specific genes had counts of 0 in TCH1516 samples and vice versa). Finally, to reduce the

effect of noise, genes with average counts per sample less than 10 were removed. The final counts

matrix with 2581 genes was used to calculate Transcripts Per Million (TPM).
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2.5.4 Computing robust components with ICA

Procedure for computing robust components with ICA has been described in detail pre-

viously [7]. Log2(TPM + 1) values were centered to strain specific reference conditions and used

as input of ICA decomposition. These conditions are labeled: ‘USA300 TCH1516 CAMHB U01-

Set000 Control 1’, ‘USA300 TCH1516 CAMHB U01-Set000 Control 2’ for TCH1516 and

‘USA300 LAC CAMHB U01-Set001 Control 1’, ‘USA300 LAC CAMHB U01-Set001 Control 2’

for LAC. Next, Scikit-learn (v0.19.0) implementation of FastICA algorithm was used to calcu-

late independent components with 100 iterations, convergence tolerance of 10-7, log(cosh(x)) as

contrast function, and parallel search algorithm[73, 74]. The number of calculated components

were set to the number of components that reconstruct 99% of variance as calculated by prin-

cipal component analysis. The resulting S-matrices containing source components from the 100

iterations were clustered with Scikit-learn implementation of DBSCAN algorithm with epsilon

of 0.1, and minimum cluster seed size of 50 samples (50% of the number of random restarts).

If necessary, the component in each cluster was inverted such that the gene with the maximum

absolute weighting the component was positive. Centroids for each cluster was used to define the

final weightings for S and corresponding A matrix. The whole process was repeated 100 times

to ensure that the final calculated components were robust. Finally, components with activity

levels that deviated more than 5 times between samples in the same conditions were also filtered

out.

2.5.5 Determining independently modulated sets of genes

ICA enriches components that maximize the non-gaussianity of the data distribution.

While most genes have weightings near 0 and fall under gaussian distribution in each component,
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there exists a set of genes whose weightings in that component deviates from this significantly.

To enrich these genes, we used Scikit-learn’s implementation of the D’Agostino K2 test, which

measures the skew and kurtosis of the sample distribution[75]. We first sort the genes by the

absolute value of their weightings and perform the K2 test after removing the gene with the

highest weighting. This was done iteratively, removing one gene at a time, until the K2 statistic

falls below a cutoff. We calculated this cutoff based on sensitivity analysis on agreement between

enriched iModulon genes and regulons inferred by RegPrecise[76]. For a range of cutoff (between

200-600), we ran the iterative D’Agostino K2 test on all components and checked for statistically

significant overlap of iModulons with the regulons predicted by RegPrecise using Fisher’s Exact

Test. For iModulons with significant overlap, we also calculated precision and recall. The cutoff

of 280 which led to the highest harmonic average between precision and recall (F1-score) was

chosen as the final cutoff.

2.5.6 Designating biological annotations to iModulons

To designate proper annotations to iModulons, we first compiled a dataset containing

previously predicted features such as regulons, genomic islands and plasmids. The regulons in

the datasets were inferred by either RegPrecise algorithm and by RNA-seq analysis of transcrip-

tion factor knockout strains or strains with constitutively active transcription factors[66, 77–80].

Genomic islands were determined by online IslandViewer4 tool[81] and phages were identified

with PHASTER[82]. For studies using different strains of S. aureus orthologs for TCH1516 and

LAC were determined using BBH. The enriched genes in iModulons were compared against this

dataset for significant overlap using Fisher’s Exact Test with FDR of 10-5. With this analysis

15 iModulons were enriched with high confidence (precision >= 0.5, recall >= 0.2) and 7 were
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enriched with low confidence. Additionally, iModulons containing genes with shared functions

(e.g. Translation and B-lactam Resistance) were annotated manually.

2.5.7 Differential Activation Analysis

Distribution of differences in iModulon activities between biological replicates were first

calculated and a log-norm distribution was fit to the differences. In order to test statistical

significance, absolute value of difference in activity level of each iModulon between the two

samples were calculated. This difference in activity was compared to the log-normal distribution

from above to get a p-value. Because differences and p-value for all iModulons were calculated,

the p-value was further adjusted with Benjamini-Hochberg correction to account for multiple

hypothesis testing problem. Only iModulons with change in activity levels greater than 5 were

considered significant.

2.5.8 Motif Enrichment and Comparison

Genes were first assigned to operons based on operonDB[83, 84]. For iModulon specific

motif enrichments, 150 base pairs segment upstream of all the genes in the iModulons were

collected. To avoid enriching ribosome binding sites, the segment started from 15 base pairs

upstream of the translation start site. For genes in minus strand, the reverse complement of the

sequence was used instead. If genes were part of an operon, then only the segment in front of the

first gene in the operon was used. Motifs and their positions were enriched from these segments

using the online Multiple Em for Motif Elicitation (MEME) algorithm[85, 86]. The following

default parameters were used: -dna -oc -mod zoops -nmotifs 3 -minw 6 -maxw 50 -objfun classic

-revcomp -markov order 0. Enriched motifs were compared to combined prokaryotic databases-
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CollecTF, Prodoric (release 8.9), and RegTransBase (v4) using TomTom[87–90]. The parameters

for TomTom were as follows: -oc -min-overlap 5 -mi 1 -dist pearson -evalue -thresh 10.0.

2.5.9 Metabolic modeling

Wemodeled growth in RPMI supplemented with iron, manganese, zinc, and molybdate by

setting the lower bound to the corresponding nutrient exchanges in iYS854 to -1 mmol/gDW/hr

(the negative sign is a modeling convention to allow for the influx of nutrients) [28], and -13

mmol/gDW/hr for oxygen exchange (as measured experimentally). Additionally, to account for

the utilization of heme by S. aureus terminal oxidases, we removed heme A from the biomass

reaction and added as a reactant in the cytochrome oxidase reaction with the stoichiometric

coefficient obtained from the biomass reaction[91]. Next, we constructed two condition-specific

GEMs (csGEMs) to compare two conditions with: 1) D-glucose as the main glycolytic source

and; 2) maltose as an alternative carbon source. In the first condition, we set the lower bound

to D-glucose exchange to -50 mmol/gDW/hr. Assuming that in the presence of D-glucose, ccpA

mediates the repression of multiple genes [22, 92], we set the upper and lower bounds of the

reactions encoded by genes of the ccpA iModulon to 0. Specifically, we only turned off the

set of 44 reactions obtained by running the “cobra.manipulation.find gene knockout reactions()”

command from the cobrapy package [93], feeding it the model and the 52 modeled genes which

form part of the ccpA iModulon. As such, we implemented a method similar to the switch-

based approach [94, 95], in which the boolean encoding for the gene-reaction-rule is taken into

account (i.e. isozymes, and protein complexes). Shutting down all of the reactions yielded a

model which could not simulate growth. We thus gap-filled the first csGEM with one reaction

(AcCoa carboxylase, involved in straight chain fatty acid biosynthesis). To simulate the second
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condition in which maltose serves as the main glycolytic source, we set the lower bound of

maltose exchange to -50 mmol/gDW/hr and blocked D-glucose uptake. No regulatory constraints

were added. Flux-balance analysis was implemented with the biomass formation set as the

functional network objective, and fluxes were sampled in both csGEMs 1000 times using the

“cobra.sampling.sample” command. To normalize flux values across conditions, we divided all

fluxes by the simulated growth rate. We compared the flux distribution of each reaction in

the two csGEMs using the Kolmogorov-Smirnov nonparametric test, yielding 93 reactions with

significantly differing flux distributions (p − value < 0.001) having a statistic larger than 0.99.

To identify whether there is a metabolic basis for the difference the Fur iModulon stimulation

between conditions, we identified a set of 34 reactions encoded by the 41 modeled genes which

are part of the Fur iModulon (again using the switch-based approach).

2.5.10 Targeted High-Performance Liquid Chromatography (HPLC)

For glucose detection, samples were collected every 30 minutes and filtered as described

above. Growth media was syringe-filtered through 0.22 µm disc filters (Millex-GV, Millipore-

Sigma) to remove cells. The filtered samples were loaded onto a 1260 Infinity series (Agilent

Technologies) high-performance liquid chromatography (HPLC) system with an Aminex HPX-

87H column (Bio-Rad Laboratories) and a refractive index detector. The system was operated

using ChemStation software. The HPLC was run with a single mobile phase composed of HPLC

grade water buffered with 5 mM sulfuric acid (H2SO4). The flow rate was held at 0.5 mL/minute,

the sample injection volume was 10 uL, and the column temperature was maintained at 45°C.

The identities of compounds were determined by comparing retention time to standard curves of

glucose. The peak area integration and resulting chromatograms were generated within Chem-
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Station and compared to that of the standard curves in order to determine the concentration of

each compound in the samples.

2.5.11 Microarray data analysis and projection

All microarray data was downloaded from GEO repository (GSE25454, GSE61669, and

GSE18793) and processed with the Affy package in R to get gene expression level[58, 96].

GSE25454 dataset consists of microarray data from samples grown to exponential phase in TSB

(TSB 0hr) and transferred to either blood, serum or TSB. Samples were then collected every 30

mins for 2 hours. The data was centered on ‘TSB 0 hr’ time-point. GSE61669 data consists of

expression profile from 24 hour rabbit skin infection. This data was centered on the expression

profile from the inoculum. Lastly, GSE18793 expression profile consists of data comparing WT

LAC and its isogenic agr mutant. This data was centered around the WT expression profile.

Data projection was used to convert centered gene expression values to iModulon activity level

as described before[7].

2.5.12 Data and Code Availability

All RNA-seq data have been deposited to the Short Read Archive (SRA). All RNA-seq

data were deposited to Sequence Read Archive (SRA). Custom code of ICA analysis can be found

on github (https://github.com/SBRG/precise-db).
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Chapter 3

Coupling of CcpA and CodY

activities coordinates carbon and

nitrogen metabolism associated gene

expression in S. aureus USA300

strains

3.1 Abstract

The complex crosstalk between metabolism and gene regulatory networks makes it diffi-

cult to untangle individual constituents and study their precise roles and interactions. To address

this issue, we modularized the transcriptional regulatory network (TRN) of the Staphylococcus
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aureus USA300 strain by applying Independent Component Analysis (ICA) to 385 RNA se-

quencing samples. We then combined the modular TRN model with a metabolic model to study

the regulation of carbon and amino acid metabolism. Our analysis showed that regulation of

central carbon metabolism by CcpA and central nitrogen metabolism by CodY are closely coor-

dinated. S. aureus, in general, increases the expression of CodY-regulated genes in the presence

of preferred carbons such as glucose. This transcriptional coordination was corroborated by

simulations with metabolic models that also showed increased amino acid biosynthesis in the

presence of glucose. Further, CodY and CcpA cooperatively regulate the expression of ribosome

hibernation promoting factor, thus linking metabolic cues with translation. In line with this

hypothesis, expression of CodY regulated genes is tightly correlated with expression of genes

encoding ribosomal proteins. Together, we propose a coarse-grained model where expression of

S. aureus genes encoding enzymes that control carbon flux and nitrogen flux through the system

is coregulated with expression of translation machinery to modularly control protein synthesis.

While this work focuses on three key regulators, the full TRN model we present contains 76

total independently modulated sets of genes, each with the potential to uncover other complex

regulatory structures and interactions.

3.2 Introduction

Metabolism plays an integral role in infection and antimicrobial resistance (AMR) in the

leading human bacterial pathogen Staphylococcus aureus. Metabolic requirements specific to

infection, intracellular persistence, biofilm formation, and colonization are rapidly being uncov-

ered[1–6]. Furthermore, the central role of metabolism in AMR and persistence is also coming

into view, adding to the complexity of known AMR mechanisms[7–9]. The complex metabolic
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circuits and responses underlying these phenomena are nevertheless difficult to unravel. Even

relatively well understood systems such as S. aureus central carbon metabolism can be difficult to

fully map as they are layered with multiple levels of gene regulation, post-translational and bio-

chemical controls, and unexpected molecular interactions[1, 10–12]. Some of these complexities

can be captured by genome-scale metabolic models (GEMs) that allow rapid query of metabolic

complexities through simulations of metabolic flux states, knock-out experiments, multi-strain

metabolic comparisons, and more[13, 14]. Alternatively, coarse-grained modeling of metabolism

attempts to peer beyond the detailed complexity and discover the general principles governing

the system. In the present work, we took guidance from the coarse-grained model proposed in

Escherichia coli coupled with, genome scale analyses of S. aureus transcriptional regulation and

metabolism to uncover similar staphylococcal system that balances resource allocation between

carbon and nitrogen metabolism[15–17].

Biological trade-offs represent an optimization frontier, where the cell must strike a bal-

ance between its multiple objectives and their limitations[15, 18]. Signatures of these balancing

acts can be found in transcriptomes and become apparent when their architecture is viewed at

systems level[19]. We previously described one such trade-off and its transcriptional imprint

using independent data sets from Gram-negative E. coli and Gram-positive S. aureus- in which

a balance was struck between genes regulated by stress associated sigma factors and growth as-

sociated translation machinery[20, 21]. This trade-off was observed in independent data sets in

both gram-negative E. coli and gram-positive S. aureus. Here, we expand significantly beyond

those observations to describe a trade-off between carbon and nitrogen metabolism in strains of

the globally disseminated, hypervirulent S. aureus USA300 lineage.

We first greatly expanded on our previously published transcriptional regulatory model
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of USA300 strains to incorporate all publicly available RNA sequencing data from the Sequence

Reads Archive (SRA)[21]. Models were then generated using independent component analysis

(ICA) that calculates independently modulated sets of genes (iModulons) and their activities

present in the input RNA sequencing samples. iModulons represent sources of signals in the

expression data, with transcriptional regulators being the most common source. Our model

showed that the activities of two global metabolic regulators, CcpA and CodY, which play critical

roles in central carbon and nitrogen metabolism respectively, are negatively correlated to one

another. This negative correlation pointed to condition-specific reallocation of resources towards

different metabolic subsystems. GEMs fitted with metabolomics data confirmed the inferences

made from the transcriptomic data. Furthermore, GEMs revealed specific metabolic intersections

including glutamate dehydrogenase and the folate cycle where coordination of metabolism by

the two regulators is required for optimal biomass production. Placing genes from CodY and

CcpA- associated iModulons onto the metabolic map demonstrated that they did not share any

metabolic reactions, but coregulated the expression of a gene encoding ribosome hibernation

factor. In light of these observations, we propose a model whereby CcpA and CodY coordinate

gene expression for carbon metabolism, nitrogen metabolism and translation, thus coordinating

protein production at specific stages.

3.3 Results

Expanding the USA300 iModulons using RNA-sequencing data from SRA database

Our previous work outlined 29 iModulons for USA300 strains that were generated from

108 in-house RNA-sequencing data[21]. To expand that model, we queried Sequence Reads

Archive (SRA) for all available USA300 specific RNA-sequencing data (Figure B.1) and combined
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it with 64 newly generated samples. Of the 576 sequencing samples available, 385 passed the

stringent QC/QA pipeline and were therefore incorporated into the new model (see Methods).

The final set of samples contained data from multiple at least 7 different USA300 isolates, 4

growth phases (exponential, stationary, biofilm and infection) and 10 base medium (Figure B.2).
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Figure 3.1: The updated iModulons for USA300 strains. (a) 385 RNA-sequencing samples from
diverse growth conditions were used to generate the expanded USA300 iModulons. The samples
were normalized to project specific control conditions to reduce signal from batch effect. (b)
iModulons were labeled based on significant association with other published regulons. (c) Full
iModulon names, size (gene content) and types in the current model after manual curation.

Before applying ICA, we normalized the log transformed Transcripts per Million (log-

TPM) data to a project specific control condition. This reduced batch specific variation in the
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data and reduced iModulons not associated with biological signals. Principal component analysis

of the log-TPM data showed that normalized samples tended to cluster with media types and

growth phases rather than by project (Figure 3.1a). For example, data from S. aureus grown to

late-log phase in SCFM2 (Synthetic Cystic Fibrosis Sputum Medium 2) and to stationary phase

in CDM did not cluster together, despite being from the same project.

Application of ICA to this normalized log-TPM data extracted 76 independent com-

ponents and genes with high absolute weightings within each components were assigned to a

corresponding iModulon. These enriched iModulon genes were then compared with existing lit-

erature of predicted regulons in S. aureus. Those iModulons that had significant overlap with

other predicted regulons were named after the associated regulator (Figure 3.1b). Lastly, some

iModulons with no known regulators, but associated other biological processes (e.g. prophages,

translation) were manually curated. In all, we were able to label 60 of the 76 iModulons with

either a regulator or a biological process (Figure 3.1c). In addition to the structure of the iMod-

ulon, the activities of each of the 76 iModulons in the 385 input samples were also calculated.

The activity represents the role each iModulon (and the associated regulator if known) in shap-

ing the role of transcriptome in the given sample. Higher iModulon activity represents higher

expression level of genes with positive weightings in the iModulon and lower expression of genes

with negatively weighted genes.

CcpA and CodY iModulon activities highlight balance of carbon and nitrogen

metabolism

Cumulatively, the 70 iModulons captured 70% of the variance in the input transcriptomic

data. The CodY-2, CcpA-3 (henceforth referred to as simply CodY and CcpA) and Translation
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iModulons had the highest explained variance (Figure 3.2a). CcpA is the catabolite repressor

protein in firmicutes that represses genes involved in alternate carbon utilization as well as other

central carbon metabolic pathways such as the Tricarboxylic acid (TCA) cycle in the presence

of high concentrations of glucose[22]. CodY, on the other hand, globally represses the genes

required for amino acid biosynthesis in response to high branched chain amino acid (BCAA)

or GTP concentrations. Lastly, the Translation iModulon almost entirely consists of ribosomal

genes (e.g. rplK, rplA etc.) and genes involved in translation such as infA and fusA which encode

translation initiation factor IF-1 and elongation factor G respectively. This iModulon has been

enriched in almost all bacteria and archaea for which iModulons have been calculated [20, 23–26].

Interestingly, activities of these three iModulons were highly correlated across all sam-

ples (Figure 3.2b). Along with CodY, CcpA, and Translation iModulons, activities of IL-

Vopr(iModulon containing the operon with isoleucine, leucine, and valine biosynthesis genes),

MntR, LacR PyrR and PurR iModulons were also highly correlated (Figure B.3). Correlation

of CcpA with LacR simply reflects the catabolite repression of lactose utilization genes by the

regulator CcpA. Similarly, ILV operon is regulated globally by CodY and locally by leucine atten-

uator [27]. This multi-layer regulation likely explains why this operon formed its own iModulon

whose activity was closely correlated with CodY. MntR iModulon contains genes required for

manganese uptake and its coordinated activity with CcpA confirms the association of manganese

concentration with glycolytic flux[28].

The correlated activity of CcpA and CodY iModulons suggested that S. aureus carefully

coordinates its central carbon and nitrogen metabolism (Figure 3.2c). Close examination of the

activities of these two iModulons showed a biphasic relationship. In conditions with preferred car-

bon sources and therefore low CcpA iModulon activity, CodY activity generally increased. This
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Figure 3.2:

(a) Explained variance of each of the iModulons; CcpA, Translation and CodY iModulons

explain the most variance in the transcriptome data. (b) Correlation between various metabolic

iModulons highlights coordination of gene expression between various metabolic subsystems.

(c) Activity of CcpA and CodY iModulons across all USA300 samples. Inactivation of CodY

does not alter CcpA activity but decrease in CcpA activity leads to increase in CodY activity.

This asymmetric relationship suggests that CcpA works upstream of CodY.
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effect was observed when glucose was added to both complex- Cation-Adjusted Mueller Hin-

ton Broth (CA-MHB)- and to a defined- Chemically Defined Medium(CDM1)- medium. Other

conditions without explicitly controlled glucose levels that showed low CcpA activity still had

concomitant high CodY activity, suggesting that this effect was not glucose specific. In condi-

tions with already low CodY activity however, removal of glucose (RPMI (-) glucose; substituted

with maltose) did not lead to further change in CodY activity, creating the second phase of the

trade-off plane.

On the other hand, increase in CodY iModulon activity did not necessarily lead to de-

crease in CcpA activity (Figure 3.2c; red markers). Samples from codY interrupted strains in

several different projects showed minimal effect on CcpA iModulon activity. These samples fell

well outside of the CcpA-CodY trade-off line (Figure 3.2c; grey dashed lines). Similar effects can

also be observed in samples treated with sub-inhibitory concentration of mupirocin. Mupirocin

activates the stringent response in S. aureus which leads to conversion of GTP to ppgpp and

subsequent derepression of CodY regulon[29]. As change in CcpA activity leads to change in

CodY activity but not necessarily vice-versa, this data suggests that CcpA works ‘upstream’ of

CodY.

3.3.1 Metabolic modeling confirms CcpA and CodY iModulon association

We used a previously published USA300 strain specific genome scale metabolic model

(GEM) to independently confirm the metabolic interaction between CodY and CcpA[30]. GEMs

are curated and mathematically formulated models of an organism’s metabolism that can be

used to simulate, study and design the metabolic pathways using a wide range of Constraints

Based Analysis and Reconstruction (COBRA) tools[14, 31].
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One such method, parsimonious Flux Balance Analysis (pFBA), can be used to calculate

metabolic flux state that optimizes a phenotype while minimizing total metabolic flux in a given

condition[13, 32]. Here, we used pFBA to determine the metabolic flux states that maximize

S. aureus biomass production given the measured uptake and secretion rates of various amino

acids and sugars in Chemically Defined Medium (CDM) and CDM + glucose (CDMG)[10].

In agreement with increased CodY iModulon activity in CDMG, total flux through reactions

catalyzed by enzymes that are encoded in CodY iModulon genes (“CodY reactions” for short),

doubled from 3 mmol/gDW/hr to 6 mmol/gDW/hr in presence of glucose (Figure 3.3a). A small

decrease in CcpA reactions was also observed.

pFBA however, gives an exact optimal solution and therefore does not account for varia-

tions or errors in input uptake data. We addressed this issue by sampling the CDM and CDMG

specific models which give distribution of feasible fluxes in each of the respective conditions. We

then mapped the flux distribution to various amino acid biosynthetic pathways. For simple in-

terpretation, we excluded amino acids that serve as intermediates for biosynthesis of other amino

acids (e.g. glutamine, glutamate and serine) and included only those amino acid for which unique

biosynthetic pathways could be defined (see Materials and Methods). Confirming pFBA analysis,

5 out of the 6 amino acid biosynthetic pathways had increased flux in CDMG when compared to

CDM (Figure 3.3b). The results of these two TRN agnostic metabolic modeling methods are in

agreement with our observation that CodY iModulon activity increases in presence of glucose.

CcpA and CodY reactions are coordinated at metabolic intersections

CcpA and CodY contained 110 and 86 genes respectively, with most genes involved in

central carbon and amino acid metabolism. Despite the large iModulon sizes and close metabolic
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proximity of the regulated genes, the two iModulons did not share any genes encoding metabolic

enzymes. The correlation in activity however, suggested that CcpA reaction and CodY reactions

must coordinate at metabolic level. Using USA300 GEM, we looked for this coordination at the

metabolite intersection of CcpA and CodY reactions i.e. metabolites that are involved in both

CcpA and CodY reactions.

We found these intersection metabolites by systematically looking for all metabolites in

USA300 GEM that can be found in both CodY and CcpA reactions. After taking out ‘non-

specific’ metabolites and cofactors (e.g. ATP, H2O, NADH etc), we were left with 22 intersection

metabolites (Table B.1). While some of these intersections like pyruvate, glutamate and oxaloac-

etate were expected as they play a crucial role in both carbon and nitrogen metabolism, other

intersection metabolites like sl2a6 and tetrahydrofolate (THF) are less understood in the context

of this trade-off. To further understand how change in simulated flux through CcpA and CodY

reactions in CDM and CDMG altered these key metabolic intersections we mapped the pFBA

solution fluxes from each media to the reactions around two of these intersections - glutamate

and methylTHF.

The glutamate-alpha ketoglutarate (αkg) link is a closely studied intersection in S. aureus

that connects amino acid and central carbon metabolism [5, 10]. The main enzyme at the

intersection, glutamate dehydrogenase (GLUDy) reversibly iterconverts αkg and glutamate and

is encoded by gudB gene, a constituent of the CcpA iModulon. However, this interconversion

also acts as an amine group donor or acceptor to 3 CcpA reactions and 8 CodY reactions (Table

B.1). In glucose free CDM, pFBA solution agreed with previous observation showing proline is

converted to αkg via glutamate and eventually fuels gluconeogenesis[10] (Figure B.3). However, in

CDMG, the flux through GLUDy changes direction and catalyzes conversion of αkg to glutamate
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Figure 3.3: (a) Sum of sampled fluxes through CodY and CcpA reaction shows increased flux
through CodY in CDMG. (b) Sampled fluxes through several amino acid biosynthesis pathways
also show increased flux in CDMG. (c) Flux through GLUDy reaction changes direction when
glucose is added. (d) Amino acids generated by accepting amine groups from L-glutamate. L-
glutamate is converted to akg in the process and regenerated by GLUDy. (e) Metabolic map of
folate cycle where CcpA and CodY regulated metabolism intersect. (f) Flux through reactions
in folate cycle in CDM and CDMG.

instead(Figure 3.3c). This makes up 98% of total flux that consumes αkg. The glutamate

in turn acts as an amine group donor for biosynthesis of various amino acids and accounts for

80% of total flux generating αkg in CDMG (Figure 3.3d). pFBA solution of this intersection
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therefore shows that in absence of glucose, GLUDy reaction converts glutamate to αkg to fuel

gluconeogenesis but in the presence of glucose it converts αkg to glutamate to fuel amino acid

biosynthesis.

The folate cycle represents another metabolic intersection of CcpA and CodY reactions.

The folate cycle is required for one carbon metabolism, nucleotide biosynthesis and amino acid

metabolism and the pathway leading up to the cycle is the target of sulfonamide class antibi-

otics[33]. The cycle consisted of 2 CodY reactions- MTHFR3 and METS (methionine synthase) -

and one CcpA reaction- GCCabc (glycine cleavage complex) (Figure 3.3e). In CDM, tetrahydro-

folate (THF) is converted to 5,10-methylenetetrahydrofolate (mlTHF) by GCCabc reaction which

cleaves glycine in the process (Figure 3.3f). THF is then regenerated from mlTHF by GHMT2r

reaction which also consumes glycine and generates serine. This consumption of glycine in folate

cycle by CcpA reaction is coupled with increased transport of glycine by CodY regulated GLYt2.

However, in CDMG where CcpA iModulon activity is low, there is no flux through the CcpA

reaction, GCCabc. Instead, GHMT2r runs in ‘reverse’ to convert THF from mlTHF consuming

serine and generating glycine instead. Together, combining iModulon structure with metabolic

simulation demonstrates how despite not sharing any genes at regulatory level,S. aureus coordi-

nates flux through CcpA and CodY iModulon reactions at these key metabolic intersections.

3.3.2 CcpA and CodY iModulons are coordinated with Translation iModulon

While CcpA and CodY iModulons do not share any metabolic genes, hpf, which encodes

ribosomal hibernation promoting factors (HPF), was enriched in both iModulons. HPF is a

small peptide that dimerizes 70S ribosomal subunits to form inactive 100S subunits[34, 35]. It

plays an important role in stress response, nutrition limitation and protects ribosomal pools from
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degradation[36–38]. Previous studies in S. aureus have shown that SigB and CodY regulate hpf

expression in response to heat and nutritional stress[36]. iModulon structure confirms the role of

the CodY and suggests and additional layer of control by CcpA (Figure 3.4a).
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Figure 3.4: Coordination of translation with metabolism. a) Gene weights in CcpA and CodY
iModulons shows that only the hpf is enriched in both iModulons. b) Upstream region of hpf
gene with its two alternative transcription start sites. Two CodY binding sites were detected
by ChIP-exo (purple bars). The previously recognized SigB(red) and Cody(purple) binding sites
and newly proposed CcpA (orange) binding site are highlighted. c) The negative correlation
between CodY and Translation iModulon suggests coordination of metabolism and translation
in S. aureus.

ChIP-exo data from our previous work found two CodY binding sites in the regulatory

region of the hpf gene (Figure 3.4b)[39]. To confirm the role of CcpA in hpf regulation, we

searched for catabolite repressor protein motif (WTGNNARCGNWWWCAW) in the same re-

gion. A matching motif was found in the region between the two CodY binding peaks (Figure

3.4b). This architecture, with two CodY binding sites flanking the CcpA binding site, is also

found in the regulatory region of B. subtilis BCAA operon where both regulators contribute

to the expression of the operon genes[40]. The signal from expression data and the presence

of binding motifs suggests that CcpA regulates hpf along with previously identified regulators

CodY and SigB.

In addition to coordinated regulation of translation associated hpf gene, CodY activity

was also strongly correlated with Translation iModulon activity. In contrast, CcpA and Trans-
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lation iModulon activities showed little correlation between them (Figure B.4). Similar to CcpA

and CodY activity correlation, codY knockout and stringent response activation by mupirocin

also disrupted correlation with Translation iModulon (Figure 3.4c). This also suggested that

the signal controlling Translation iModulon gene expression also works ‘upstream’ of CodY as

interruption of CodY had little effect on Translation iModulon activity. While the coordination

of the two iModulon activity is apparent, we were unable to further interrogate the nature of this

relationship since the signal behind the Translation iModulon is yet to be identified.

CcpA TranslationCodY

Carbon
Source

Intersection
Metabolites

Amino
Acids

Proteins

HPF

F6P-HPR ILV/GTP

1. 2. 3.

C.A.

B.

Figure 3.5: Coarse-grain model of protein synthesis in S. aureus. The solid lines represent
the parts of the protein synthesis pathway controlled by Ccpa (purple) and CodY (green). The
dashed lines represent new proposed roles of these regulators in (A) coordinating carbon and
nitrogen metabolism and (B,C) linking metabolic gene expression with expression of translation
associated proteins.

3.4 Discussion

Based on the data presented here, we propose a coarse grained model of transcriptional

regulation of metabolism involved in protein synthesis in S. aureus USA300 strains (Figure 3.5).

It is closely based on the model of proteome coordination in E. coli and extends these principles to

non-model pathogenic organism[15]. The coarse grain model simplifies the metabolism underlying

protein synthesis into three steps; (1) the generation of precursors from carbon sources, (2)

biosynthesis of amino acids from precursors or direct transport from the medium and (3) synthesis

of peptides from amino acids via translation.
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The generation of precursors from carbon sources is largely regulated by CcpA (purple

arrow). CcpA represses alternate carbon sources (including amino acids such as proline, glu-

tamine and aspartate) in the presence of preferred carbon and regulates other key aspects of

central metabolism such as gluconeogenesis and TCA cycle that are necessary to generate vari-

ous precursors[1, 10, 22, 41, 42]. The precursors in our model are represented by the intersection

metabolites derived from the USA300 GEM (Table B.1).These precursors are then converted to

amino acids via CodY regulated gene products (green arrow)[39, 42, 43].

Our analysis suggests that S. aureus USA300 strains coordinate their CcpA and CodY

activity to regulate carbon and nitrogen flow through the system. Metabolic modeling in CDMG

shows increased flux through amino acid biosynthetic reactions when compared to CDM. The

results of this TRN agnostic metabolic model agrees with the increased CodY activity in CDMG

and other glucose containing media. Despite close coordination of metabolic flux at different

intersections between CcpA and CodY reactions, it is still not clear how CcpA and CodY activities

are coordinated. In E.coli, Kochanowski et al. have observed similar coordination between

anabolic and catabolic fractions of metabolism[44]. The authors attribute active regulation by

Crp and passive changes in metabolic fluxes in response to change in metabolite concentrations

as the source of the coordination. Additionally, we also found a feed forward regulation whereby

CcpA and CodY control the expression of the gene encoding HPF protein which sequesters

ribosomes into inactive 100S forms, suggesting a mechanism by which translation is coordinated

with metabolic state of the cell [34, 36].

Lastly, the activity of Translation iModulon is also closely correlated with CodY activ-

ity, which may act as an additional layer of coordination between metabolism and translation.

However, we could not identify the signal or regulator controlling Translation activity. Ribo-
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somal RNA (rRNA) expression is regulated by ppgpp during stringent response which can be

activated by mupirocin treatment[29, 45]. We therefore expected mupirocin to also have an effect

on Translation iModulon activity, but we found that while CodY activity increased in response

to mupirocin as expected, there was minimal change in Translation activity (Figure 3.4c). This

suggests that stringent response, at least when induced by mupirocin treatment, does not play a

major role in expression of Translation iModulon genes.

The analysis of the coarse grained model of metabolic gene regulation presented here was

enabled by a computable model of TRN. iModulons enable us to query the TRN at multiple-

scales, giving insights into TRN from single gene membership level to global coordination of

regulators. By modularizing the TRN, our analysis enabled us to unravel complex regulatory

and metabolic interactions to understand regulation of central metabolism one regulator at a

time. This modularization can also be used to continually expand on the presented model. For

example, our previous work have shown that Translation iModulon activity in E. coli and S.

aureus is closely correlated with stress associated alternate sigma factors[20, 21]. This points to

a possible entry-point for coordination of general stress response with metabolism and protein

synthesis. Similarly, we have also found that both PyrR and PurR activity is correlated with

CodY and CcpA which may provide insights into regulation of nucleotide biosynthesis in response

to carbon or nitrogen availability. While we mainly focused on 3 iModulons- CcpA, CodY and

Translation- the current model contains 76 total iModulons, each of them rich with information

about transcriptional regulation and physiology of S. aureus.

74



3.5 Materials and Methods

3.5.1 Strains and Growth Conditions

The S. aureus USA300 isolate LAC or its derivative JE2 were used to collect the new RNA

sequencing data in this study. The complete description and condition for each of the samples

can be found in the model sample table. For RNA sequencing from knock samples, isolated from

the Nebraska Transposon Mutant Library were utilized[46]. Unless specified otherwise, samples

were grown in duplicates in 20mL of respective media until they reached the O.D600nm of 0.5. 3

mL of culture was harvested and immediately mixed with 6 mL of Qiagene RNA-protect Bacteria

Reagent, and incubated at room temperature for 5 minutes. The supernatant was decanted after

the samples were centrifuged for 10 mins and 17,500 RPM. The remaining cell pellets were stored

in -80C until they were prepared for RNA extraction.

3.5.2 RNA extraction and sequencing

Total RNA was isolated from the cell pellet in the Qiagen RNeasy Mini Kit columns and

following vendor procedures. An on-column DNase treatment was performed for 30 min at room

temperature. The ribosomal RNA was removed using RiboRid protocol, as described before[47].

RNA was quantified using a Nanodrop and quality assessed by running an RNA nano chip on a

bioanalyser. A Swift RNA Library Kit was used following the manufacturer’s protocol to create

sequencing libraries.

3.5.3 Processing RNA sequencing data for iModulon calculation

The iModulons were calculated from publically available RNA sequencing data from SRA

and the newly collected data in this study using pymodulon python package [48]. The steps used
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to calculate the iModulons described here were all completed using this package. All RNA

sequencing data labeled with S. aureus taxonomic ID was downloaded and manually curated to

obtain only the samples that were from USA300 isolates. Raw fastq files from curated samples

were downloaded, trimmed with TrimGalore and were then aligned to the USA300 TCH1516

genome ( NC 010079, NC 012417, NC 010063) using Bowtie2 [49]. QC/QA stats were collected

on each sample using MultiQC and samples that did not pass the QC thresholds (e.g. low read

depth, low correlation between replicates, missing metadata) were discarded[50]. Transcripts per

million (TPM) was calculated from the remaining high quality RNA sequencing samples. TPM

were log transformed and normalized to a control condition within the same BioProject.

3.5.4 Calculating iModulons from RNA sequencing data

Scipy’s implementation of FastICA was applied to log transformed and normalized TPM

data to generate independent components (ICs) and their activities[51, 52]. Unlike other decom-

position methods, ICA requires the number of dimensions to be calculated as an input. Therefore,

various models with different dimensionality were created and the one that maximized regulatory

iModulons and minimized single gene iModulon was chosen[53]. The iModulons were then au-

tomatically annotated if they overlapped significantly with a curated list of known or predicted

regulons and genomic features (e.g. prophages, SCCMec, ACME etc) in S. aureus. Other iMod-

ulons such as ‘Translation’ or ‘Autolysin’ were manually annotated as all genes contained within

the iModulons have a single function.
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3.5.5 Genomic scale modeling of S. aureus USA300 metabolism

USA300 specific Genome scale model (GEM) iYS854 was used for all metabolic simula-

tions in the paper. Exchange rate of amino acids, glucose, ammonium and acetate were adjusted

to constrain the model to CDM or CDMG specific conditions as described in detail before[30].

Briefly, the uptake or secretion rate for each metabolite from Halsey et al. were normalized

by growth-rate, to get growth adjusted solute uptake rate[10]. The exchange rates were then

constrained to +/-15% of uptake and exchange rate to account for variance in the data. Once

constrained the model was then used to calculate flux each media using pFBA as implemented in

the cobrapy package[31, 32]. To get CodY iModulon specific flux, genes in the CodY iModulon

were first mapped to metabolic reactions using gene product rule (GPR). The absolute value of

fluxes from the pFBA solution for the CodY reactions were then summed to get the final CodY

iModulon flux. To calculate valid amino acid biosynthesis pathway specific flux distribution, the

solution spaces of CDM and CDMG specific models were sampled 10,000 times using the Artifi-

cial Centering Hit-and-Run algorithm [54]. Next, the reactions in each amino acid biosynthetic

pathway was determined with the MinSpan algorithm[55]. Minspan calculates the set of shortest

metabolic pathways that are linearly independent of one another and span the null space of the

input model. Each independent pathway defines a mass balanced set of reactions and there-

fore enables unbiased modularization of metabolism into biologically meaningful pathways. The

sampled fluxes (v) can therefore be represented as linear weightings (α) of minspan pathways

(P).

v = P · a

The sampled fluxes were converted to pathway specific weightings (pathway fluxes) us-
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ing the minspan matrix. Pathways containing amino acid biosynthesis were manually curated

and only amino acid biosynthesis pathways that did not appear in multiple MinSpan pathways

were used for analysis as they can be easily interpreted and does not require analyzing linear

combinations of multiple pathways.

Lastly, the intersection metabolites were determined by comparing all metabolites that

were involved in at least one CodY and one CcpA reaction. The common metabolites ADP,

ATP, CO2, coenzyme A, H2O, hydrogen atom, sodium ion, NAD, NADH, NADP, NADPH,

ammonium (NH4), and phosphate were excluded from this designation.

3.5.6 Motif enrichment

The 150 base-pairs upstream of hpf gene (USA300HOU RS04065) was scanned for CcpA

motif (WTGNNARCGNWWWCAW) using Find Individual Motif Occurence (FIMO) within the

MEME suite[56, 57].
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Chapter 4

Interpreting roles of mutations in the

emergence of S. aureus USA300

strains with genetics and

independent component analysis of

gene expression

4.1 Abstract

The Staphylococcus aureus clonal complex 8 (CC8) can be divided into several sub-

types containing one of community associated methicillin resistant S. aureus (CA-MRSA)

USA300, hospital-associated MRSA (HA-MRSA) USA500 or basal methicillin susceptible S.
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aureus (MSSA) strains. This makes CC8 an ideal clade to study the emergence of mutations

important for resistance and community spread. Gene level analysis comparing USA300 against

MSSA and HA-MRSA strains have revealed key horizontally acquired genes important for its

rapid spread in the community. However, efforts to define contributions of point mutations and

indels have been confounded by strong linkage disequilibrium resulting from clonal propagation.

To break down this confounding effect, we combined genetic association testing with a model

of transcriptional regulatory network (TRN) to find candidate mutations that led to changes

in gene regulations. We used a De Bruijn graph genome-wide association study (DBGWAS) to

enrich mutations unique to the USA300 lineages. Next, we modeled the TRN by using Indepen-

dent Component Analysis on 628 RNA sequencing samples from USA300 and non-USA300 CC8

strains. Our models predicted several genes with strain-specific altered expression patterns as

well as DBGWAS enriched mutations. Examination of the regulatory region of one of the genes

that were enriched by both approaches, isdH, revealed a 38 base pair deletion containing Fur

binding site and a conserved SNP which likely led to the altered expression levels. Our results

demonstrate the utility of modeling gene regulation as a promising method to address the limits

of genetic approaches when studying emerging pathogenic strains.

4.2 Introduction

Comparative genomic methods are an important tool in understanding the emergence

and evolution of new strains of pathogens. In S. aureus alone, whole genome comparisons have

enabled rapid characterization of genetic basis for antibiotic resistance, increased virulence, host

specificity and altered metabolic capabilities [1–5]. However, genome-wide linkage disequilibrium

and strong lineage structuring currently limits the differentiation of causative alleles from genet-
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ically linked ones. By calculating lineage level associations, methods like bugwas address these

issues for single, recurring phenotypes like antibiotic resistance[6]. Endemic strains, on the other

hand, exhibit multiple complex phenotypes that may contribute to their emergence and pro-

liferation. For example, USA300 strains carry antibiotic resistance cassettes, Panton Valentine

Leukocidin (PVL) associated with pyomastitis, increased ability to colonize locations outside of

the nasopharynx, etc. As these strains often emerge clonally from closely related ‘basal strains,’

efforts to discern causal mutations that lead to their increased clinical burden is hampered by

strong population-stratification and genome-wide linkage disequilibrium[7–9]. Though recombi-

nation at species level is common in S.aureus, within clade recombination rates tend to be lower,

thus preserving the linkage disequilibrium[8, 10–12]. Due to this limitation, studies of emerging

strains often focus on gene level analysis such as acquisition of mobile genetic elements or loss

of gene function while determining the possible phenotypic effect (if any) of all enriched Single

Nucleotide Polymorphisms (SNPs) remains challenging[13].

Even if experimentally intractable, the large possible phenotypic space of an organism can

be explored quickly with computational models. Combined with GWAS, computational modeling

can be used as a sieve to filter enriched mutations with potential phenotypic effects and therefore

find candidate causal mutations[14–16]. Here, we used De Bruijn graph GWAS (DBGWAS) to

enrich mutations associated with the endemic USA300 strain within clonal complex 8 (CC8)[17].

Due to clonal expansion of USA300 strains from their progenitors within CC8, the enriched

USA300 specific mutations were in high linkage disequilibrium. Further complicating the matter,

we found that almost all mutations enriched within ORFs were unique to USA300 lineage and not

found in any other clonal complexes, precluding identification of potential causative mutations

by homoplasy.
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To get around these limitations of genetic approach, we built an ICA based model of tran-

scription regulation using 628 publicly available RNA sequencing samples from CC8 strains. By

factoring the RNA sequencing data into a series of signals and their activities, the ICA model of

TRN shows both the static gene-regulator interaction and the dynamic activity of these interac-

tions in a sample specific manner[18]. However, ICA is a generalized signal extraction algorithm

and therefore does not distinguish between biological sources of signals like regulatory elements

and ‘artificial’ sources that can be created by sourcing data from multiple strains. Therefore,

in addition to signals associated with gene regulators, ICA also outputs signals associated with

strain-specific changes in the gene regulation. By utilizing RNA sequencing data from hundreds

of samples to extract genes with strain-specific expression patterns, this modeling approach is

more likely to find strain-specific differences than previous approaches that focus on specific con-

ditions [19, 20]. The model revealed several genes with distinct expression patterns in USA300

strains that were also associated with a DBGWAS enriched mutation. Close analysis of one of

these genes, isdH, which encodes a haptoglobin binding protein, showed several mutations in

the gene regulatory region including deletion of the transcription factor Fur binding site in the

USA300 strain. Overall, our analysis shows how models of TRN can be used to extend the lim-

its of current GWAS approaches when studying emerging and endemic populations of bacterial

pathogens.
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4.3 Results

4.3.1 Classifying USA300 and non-USA300 genomes based on genetic mark-

ers

We sought to compare the genetic differences between USA300 CA-MRSA strains and

other subtypes within CC8 that have lower clinical and community burden. Given that both

subtypes exist within the same clonal complex, this comparison allowed us to probe the genetic

basis for the success of USA300 strains with limited confounding effects of different genetic

backgrounds. We analyzed 2038 S.aureus CC8 genomes which formed a closed pangenome,

suggesting that the sampled genomes mostly captured the gene level variations within the clonal

complex (Figure C.1a). The CC8 pangenome consisted of 19176 unique genes with 2291 core

genes that were present in at least 95% of the genomes analyzed. Among the remainder of the

genes, 931 were categorized as accessory genes and 15954 were uniquely found in less than 5%

of the genomes. Interestingly, we found a larger number of unique alleles in the ORFs than in

proximal 3’ and 5’ regions, indicating the presence of greater genetic variation among ORFs than

in the neighboring regulatory regions (Figure 4.1a).

Next, we classified the CC8 genomes into USA300 and non-USA300 strains using Genetic

Marker Inference (GMI). GMI was previously developed to rapidly and systematically identify

different subclades within inner-CC8 strictly based on genetic markers [21]. In this scheme,

USA300 genomes can be differentiated from non-USA300 genomes by the presence of either

SCCMecIVa or the presence of Panton-Valentine Leukocidin (PVL) in case of methicillin sensitive

S.aureus (MSSA). We added additional criteria that all genomes identified as USA300 by GMI

form a distinct subclade before they are labeled as USA300 i.e. PVL or SCCMECIVa positive
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genomes that grouped separately from other USA300 strains in the phylogenetic tree were not

labeled as USA300. Using the SCCMecFinder tool, we detected SCCMec cassettes in 1588

genomes of which 1358 were SCCMecIVa positive[22]. We also found 1431 PVL positive genomes

using BLASTn search with PVL encoding genes from USA300 TCH1516 (USA300HOU RS07645,

USA300HOU RS07650) as reference. Lastly, we reconstructed the CC8 phylogenetic tree based

on core Single Nucleotide Polymorphisms (SNPs) and rooted the tree using strain D592 (CC5)

as an outgroup (Figure 4.1b).

To identify the root of the USA300 clades, we first traversed up nodes of the phylogenetic

tree starting from known USA300 strain TCH1516 and determined the number of strains, fraction

PVL positive and fraction SCCMecIVa positive for each node during traversal. The root was

placed at the last node where greater than 90% of the strains within the subclade represented

by the node were SCCMecIVa and PVL positive (Figure 4.1b). As phylogenetic trees are nested,

root finding with this procedure is not dependent on the starting USA300 strain. Same root

was identified when the procedure was initialized with another well known USA300 reference

strain FPR3757 (Figure C.1b). Combining the genetic markers with phylogenetic grouping led

to the classification of 1449 genomes as USA300 and 589 genomes as non-USA300 (Figure 4.1c).

Strains previously identified as ‘early USA300’ were not part of our USA300 classification[21].

While many of these strains are PVL positive, they have variable SCCMec types and therefore

are likely to be genetically distinct from the endemic USA300 strains.

4.3.2 Enriching USA300 specific genes and mutations using DBGWAS

After classifying the genomes into USA300 and non-USA300 strains, we identified genes

and mutations associated with each subtype by using the De Bruijn graph Genome Wide Associ-
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Figure 4.1: CC8 pangenome and phylogeny. (a) Pangenomic analysis of CC8 genomes shows the
distribution of genes and mutations in ORFs and regulatory regions. (b) Prevalence of USA300
specific genetic markers, PVL and SCCMecIVa, as you traverse up the phylogenetic tree from
TCH1516. The gray dashed line represents the node where the USA300 root is placed. (c)
Phylogenetic tree of CC8 genomes classified into USA300 and non-USA300 strains.
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ation Study (DBGWAS)[17]. DBGWAS provides a reference-genome free method for conducting

GWAS analysis in prokaryotes by building a compacted De Brujin Graph to represent the pan

genome of input sequences. The nodes of the graph represent unique compacted k-mers that are

joined by edges to other nodes with k-mers that appear adjacent to it in genomes. The proce-

dure then searches for k-mers that appear with different frequencies in each classification and

outputs the enriched k-mer as well as it’s genetic neighborhood (called ‘components’) from the

De Bruijn graph. Visualizing the components associated with the enriched kmers makes it easier

to interpret the k-mers and makes it easy to identify large structural variations (e.g. cassette

acquisition) which are often represented by multiple enriched k-mers that fall within the same

component.

Many of the components were associated with genes and genetic elements expected to be

enriched with USA300 strains- SCCMecIVA (the GMI marker), Arginine Catabolite Repressor

Element (ACME), cap5E point mutation, multiple prophages etc were also enriched by DBG-

WAS. In total, we found 147 components that were enriched in this analysis, pointing to a large

array of mutations that are unique to the USA300 lineage (Figure 4.2a).

Currently, DBGWAS outputs the graph consisting of the nodes with the enriched k-mers

and its genetic neighborhood, but does not automatically yield the exact mutation associated

with each of the significant nodes. By analyzing the structure of the component graphs with

networkX, we were able to extract the exact genetic changes represented by these components[23].

Mobile genetic elements (MGEs) and large indels can be identified by a series of nodes that

are all enriched in either USA300 or non-USA300 genomes (Figure 4.2b). The enrichment of

multiple sequential k-mers in only one of the groups implies deletion of the sequence (or conversely

insertion) in the other group. SNPs and indels smaller than the kmer-size on the other hand form

91



MGE

SNP/InDel

Path1

Path 2

Path1:

Path 2:

ATGTACACAATAG

ATGTACACTATAG

A.

B.

C.

Figure 4.2: USA300 strains associated mutations. (a) DBGWAS recovers components associ-
ated with USA300 previously described markers of USA300 strains including mecA (SCCMec
IVa), arcA (ACME), cap5e mutation, seq, sek and Phi-PVL. In addition, components with many
other mutations scattered throughout the genome are also enriched. (b) Example of components
associated with MGEs; components have an series of nodes that are enriched in one group (blue
circles). (c) Example of components associated with SNP. Component graph contains a cycle
around the mutation location with the paths from the cycle forming a sequence unique to either
case or control group. Aligning the sequences reveals the enriched mutation.

‘cycles’ containing significant nodes (Figure 4.2c). Consequently, the k-mers in the nodes of each

of the ‘paths’ around the cycle represent sequences unique to either case or control group. The

enriched mutation can therefore be extracted by comparing the sequences with global alignment.

Lastly, the unique sequences from each path can also be mapped to reference genomes if needed.
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The exact mutations used in the subsequent sections were extracted from the components using

this method.

4.3.3 Genome-wide linkage and de novo mutations obfuscate identification of

causal mutations

Though these mutations were enriched in USA300 strains with DBGWAS, we could not

attribute the prevalence of any particular mutation to selection due to strong genome-wide link-

age. We quantified the linkage disequilibrium by calculating the square of the correlation coeffi-

cient (r2) for each of the enriched k-mer not associated with MGEs. High correlation coefficient

indicates tight co-occurrence of kmers in the genomes and therefore high linkage disequilibrium

between the sequences. There was a strong linkage between the k-mers that were enriched in

USA300 strains. Surprisingly, even k-mers that were 1.4 million base pairs away (the maximum

distance between two sites in the circular 2.8 million base pairs long S.aureus genome) still had

r2 > 0.9(Figure 4.3a).

To differentiate potential causal mutations from genetically linked alleles, we searched

for mutation hotspots by comparing the positions of USA300 mutations in open reading frames

(ORFs) to mutations in other clonal complexes. Barring recombination events, presence of

mutation hotspots in the same position in multiple clades could point to selection acting on the

sequence. Therefore, we searched for prevalence of enriched mutations in other non-CC8 clades.

We identified 61 SNPs within open reading frames (ORFs) that were enriched in USA300 strains.

To identify mutational hotspots in other clades, we downloaded all the amino acid sequences

belonging to the PATRIC genus protein family of each of the gene products encoded by the

selected ORFs. [24]. The PATRIC local protein family consists of sequences of homologous

93



A. M G I I A G I I K B I A S L I E Q G T G K

M G I I K G I I K B I A S L I E Q G Y G K

M G I I A G I I K B I K S L I E Q G R G K

M G I I A G I I K B I A S L I E Q G A G K

M G I I A G I I K B I K S L I E Q G D G K

R
a

re
 

C
o

m
m

o
n

P
o

ly
A

ll
e

li
c

C. D.

B.

Figure 4.3: Linkage Disequilibrium and de novo mutations in USA300 strains. (a) Enriched
k-mers showed high linkage disequilibrium, with some k-mers at 1.4 Mbp distance still having
r2 of greater than 0.98. (b) Schematic of position specific entropy analysis. Positions with
heterogeneous sequences have higher calculated entropy than more conserved sequences with
fewer mutations. (c) Using position specific entropy, we only found one example of shared
enriched mutation in ORFs of USA300 and non-USA300 strains. (d) Distance between the
position of enriched mutation in USA300 strains and the position of the nearest entropy peak in
other non-CC8 strains.

proteins within the same genus which were further filtered down to S.aureus species specific

sequences. After filtering, each protein family comprised 2,000 to 16,000 unique sequences and

the strains from which the amino acid sequences were derived spanned dozens of clades allowing

for broad comparisons (Figure C.2). Lastly, we removed sequences associated with ST239 as it
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is thought to have emerged from large-scale recombination of ST8 and ST30 strains[25].

We determined mutation hotspots by calculating position specific allelic entropy. Allelic

entropy at a given amino acid position is a function of the number of unique amino acids found

in that position and the frequency of the mutation[26]. Positions where all queried sequences

have the same amino acid have low entropy, while positions that have frequent amino acid

substitutions (hotspots) have high entropy (Figure 4.3b). This measure allows us to quickly

determine the positions of mutation hotspots while accounting for multiple possible amino acid

substitutions and rare mutations. Before calculating the position-specific entropy, all sequences

within each of the PATRIC local protein family were aligned with Multiple Sequence Alignment

(MSA). This alignment ensures proper comparison of amino acids even when there are deletions

or insertions in some of the genes in the family.

Of the 36 enriched ORF mutations only the Asp75Tyr mutation in the cap5E gene, which

was previously shown to ablate capsule production in USA300 strains, was found in other strains

(Figure 4.3c)[27]. Peaks in entropy corresponding to this mutation position were present in both

the CC8 and non-CC8 strains while all other mutation positions were unique to CC8. Despite not

having any perfect matches outside of the cap5E mutation, we found that for 28 of the mutations,

a peak was present in sequences from other clades within 71 MSA positions. Together, our data

suggests that mutations within ORFs in USA300 strains are likely de novo mutations and are

not acquired through horizontal gene transfer though many of these mutations have occurred in

hotspot regions (Figure 4.3d).
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4.3.4 iModulon model of CC8 TRN points to mutations associated with dif-

ferential regulation

The presence of genome-wide linkage and de novo mutations in ORFs severely limited the

ability to distinguish causal SNPs contributing to increased pathogenesis in USA300 strains. The

effect of some mutations, especially in ORFs, has been successfully linked to distinct phenotypes

such as the absence of a capsule in USA300 and USA500 strains[27]. However, the effect of

mutations associated with changes in gene regulations can be much more difficult to assess[13].

To look for mutations that may be associated with changes in transcriptional regulation, we

used ICA to model gene-regulation in CC8 strains which can predict strain specific differences

in expression patterns. We collected USA300 and NCTC8325 (including derivatives such as

HG001) RNA-sequencing data from Sequence Read Archive (SRA). After stringent QC/QA

and curation, 285 NCTC825 and 343 USA300 samples were used to create a single model of

transcription regulation using ICA[18, 28]. ICA calculates independently modulated sets of

genes, iModulons, and the activities of those gene sets in each sample. iModulons calculated by

ICA represent distinct sources of signals in the RNA-sequencing data. While most of the signals

can be associated with different regulatory elements, iModulons associated with other biological

features such as mobile genetic elements, genetic backgrounds are also enriched. In Escherichia

coli and Salmonella enterica Typhimurium, multi-strain ICA has been used to calculate strain-

specific iModulons that represent differences in gene expression[18, 29].

In our model, two iModulons captured a large number of genes with different expression

levels in the non-USA300 NCTC8325 and USA300 strains (Figure 4.4a; Figure C.3a). Most of

the genes in the strain-specific iModulons belonged to mobile elements associated with USA300

strains such as ACME, SCCMec, Phi-PVL etc(Figure 4.4b; Figure C.3b). However, the iModu-
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lons also contained core genes that are present in both strains, pointing to possible differences in

gene regulation.

CAT TTATTAGTGTTAATTGTAGCGCATCCCAATTAAATATTGCAACCTA
TCH1516

MW2, 2395,
 NCTC8325

-10

TCH1516 (USA300)
NCTC8325 (CC8b)
2395 (USA500)

CC8

CC1 MW2

Translation
     Start

(Deleted in TCH1516)

-35

Strains

TTTTATTAA

TTTTATTAT
TCH1516

MW2
2395 

NCTC8325

TAAGATTATATTTAATTGATAATAATTATCAATATCAA

A.

C.

B.

FUR Motif

Figure 4.4: Strain-specific regulatory changes in CC8 clade. (a) ICA analysis of USA300 and
NCTC8325 RNA-sequencing data identified an iModulon with strain specific activity.(b) The
strain-specific iModulon contained various horizontally acquired elements (e.g. ACME, PhiPVL)
that are prevalent in USA300 lineage as well as conserved genes with strain-specific expression
patterns. (c) Comparing the 5’ regulatory region of the gene isdH from various S. aureus strains
revealed a unique deletion containing Fur binding site in USA300 reference strain TCH1516.

We mapped the enriched mutations from DBGWAS onto the core genes enriched in the

strain-specific iModulon. 3 genes with mutations in the ORF or in the regulatory region were also

enriched in the iModulon. Of the these genes, gene isdH, encoding a heme scavenger molecule

showed distinct strain-specific expression levels in the 628 total RNA-sequencing profiles. K-mers

that are mapped to the upstream regulatory region of the isdH gene were enriched by DBGWAS.

Therefore, we compared the upstream regulatory region of several reference strains including

TCH1516 (USA300), NCTC8325 (CC8b), 2395 (USA500). Additionally, we included MW2 (CC1
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CA-MRSA) as the transcription start site (TSS) in the region has been experimentally confirmed

in this strain[30]. Comparisons showed a 38 base-pair deletion in the 5’ untranslated region

containing a transcription factor Fur binding site (q-val=0.033e-4). This deletion was detected

in all of the 1385 USA300 genomes, but only present in 95 of the 589 non-USA300 genomes.

As Fur is a repressor that blocks expression in presence of iron concentration, this deletion in

the Fur binding site may be responsible for the general increase in isdH expression observed in

USA300 samples (Figure C.4a). We also found a second mutation upstream of the predicted

-35 binding site that was also enriched in USA300. Interestingly, while the MW2 strain did not

have the 38 bp deletion, it contained the exact upstream A to T mutation. All other base-pairs

in the region were perfectly matched in between all the reference genomes. The combination of

evidence from genetic and transcriptomic analysis suggests that regulation of isdH is therefore

altered in USA300 strains compared to its non-USA300 progenitors.

4.4 Discussion

Emergence of CA-MRSA USA300 strains from HA-MRSA USA500 progenitors presents

a natural experiment to probe the genetic basis for success of the USA300 lineage. However, in

studying these groups, genetic methods like GWAS were limited in finding causal mutations due

to genome-wide linkage disequilibrium and presence of an unexpectedly large number of de novo

mutations unique to the USA300 lineage. Here, we demonstrated how a model of transcriptional

regulation with iModulons can be used to break through the impasse created by the high linkage

disequilibrium and predict candidate causal mutations. From the combined RNA sequencing

dataset of USA300 and non-USA300 strains, ICA calculated iModulons that captured strain

specific variation in gene expression. As expected, most genes in the iModulons were part of
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mobile genetic elements such as ACME and SCCMec because they have zero expression level in

non-USA300 samples. However, the iModulon also contained several core genes that are present

in both groups but are differentially regulated. A deeper analysis of the regulatory region of one

of these genes with enriched mutation, isdH, revealed a deletion of a DNA segment containing

the binding site of the Fur repressor. In congruence with this observation, we also found that

USA300 strains with the deleted Fur binding site showed general increase in isdH expression

level. Combining GWAS with large-scale transcriptomic modeling was therefore able to predict

potential causal mutations that led to the increased clinical burden of the USA300 lineage.

While the current analysis utilized the available DNA and RNA sequencing data, the

methods used here are scalable to the rapidly growing number of data in the public repositories.

Indeed, with the greater scale, we can get more granular insight into subclade specific differences.

The transcriptomic analysis consisted of samples primarily from the USA300 (CC8e and CC8f)

clades and the CC8b clade represented by NCTC8325 and its derivatives. However, the CC8b

clade is currently undersampled due to its minimal clinical burden compared to USA300. We

therefore combined strains from all non-USA300 clades into a single group for GWAS. The

misalignment of RNA sequencing samples from GWAS samples may explain the low number of

hits that were enriched by both methods when many other unique gene expression patterns have

been observed in USA300 strains. The scalability of the methods used herein will enable granular

and more in-depth analysis as these sequencing databases expand rapidly.

With time, the scaling of databases may be able to resolve the issue of imbalanced sam-

pling. On the other hand, resolving the confounding effect of linkage disequilibrium inherent in

emerging and endemic strains will require a new generation of modeling methods[9]. Our current

approach focuses on modeling the changes in gene regulation at the transcriptional level, but
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causal mutations can have any number of effects on the phenotype of the organism. New mod-

eling methods that can systematically predict these other phenotypes are now rapidly emerging.

Our recent work with Mycobacterium tuberculosis utilized a metabolic allele classifier (MACs)

which combines genome scale metabolic models with machine learning to estimate biochemical

effects of alleles thus mapping mutations to changes in metabolic fluxes[16]. Similarly, advances

in protein structure prediction with AlphaFold2 and RosettaFold puts us at the cusp of being

able to predict the effects of mutations on protein folding[31, 32]. Combination of these model-

ing techniques may therefore prove to be the breakthrough required to advance solutions to the

current challenges in population genetics of emerging pathogens.

4.5 Materials and Methods

4.5.1 Pangenomic Analysis

The pangenome analysis was run as described in detail before [26]. Briefly, “complete”

or “WGS” samples from CC8/ST8 were downloaded from the PATRIC database[24]. Sequences

with lengths that were not within 3 standard deviations of the mean length or those with more

than 100 contigs were filtered out. A non-redundant list of CDSs from all genomes was created

and clustered by protein sequence using CD-HIT with minimum identity and minimum alignment

length of 80%[33]. To get the 5’ and 3’ sequences, non-redundant 300 nucleotide upstream and

downstream sequences from the CDS were extracted for each gene.

The CDSs were divided into core, accessory and unique genes based on the frequency of

genes as previously described[26]. To calculate the frequency thresholds for each category, P (x),

the number of genes with frequency x and its integral F (x), the cumulative frequency less than
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or equal to x were calculated. The multimodal gene distribution can be estimated by sum of two

power laws as:

P (x) = c1x
−α1 + c2(N + 1− x)−α2 x = 1, 2, ..., N

where N is the total number of genomes, x is the gene frequency and (c1, c2, α1, α2, k) are

parameters fit based on the data. The cumulative distribution F (x) is then the integral of P (x)

with additional parameter k:

F (x) = k +
c1

1− α1
x1−α1 − c2

1− α2
(N + 1− x)1−α2

The parameters (c1, c2, α1, α2, k) were fitted based on the data using non-linear least

squares regression from scipy[34]. The frequency threshold of core genomes was defined as greater

than 0.9N+0.1x∗ and the threshold for unique genome was defined as 0.1x∗ , where x∗ represents

the inflection point of the fitted cumulative distribution.

4.5.2 Reconstructing the CC8 phylogenetic tree

The phylogenetic tree was reconstructed using the standardized PHaME pipeline on the

PATRIC sequences that passed the QC/QA[35]. Using the pipeline, the contigs and sequences

were aligned to the reference TCH1516 genome NC 010079 and plasmids NC 012417, NC 010063

[36] and core SNPs were calculated. The core SNPs were then used to estimate the phylogenetic

tree using IQ-TREE run with 1000 bootstraps and utilizing the ultrafast bootstrap[37, 38].

The tree was built using the ”TVMe+ASC+G4” model as suggested by the IQ-TREE Mod-

elFinder[39]. Finally, iTOL was used to visualize, annotate and root the tree with the USA100

D592 (NZ CP035791) from CC5 as the outgroup [40].
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4.5.3 Classification of USA300 and non-USA300 strains

The USA300 and non-USA300 strains were classified based on a previously proposed and

validated CC8 subtyping scheme[21]. In this scheme, USA300 strains can be identified from

the whole genome if they are PVL positive MSSA or MRSA with SCCMec IVa cassette. We

detected SCCMec types using SCCMecFinder, and only those genomes where the cassette could

be identified by both BLAST and k-mer based methods were marked as positive[22]. PVL was

detected using protein BLAST. To find the root of the USA300 strains in the phylogenetic tree,

the genomes in the tree were annotated by their PVL and SCCMec status. The tree was then

traversed up from reference strain TCH1516 to the CC8 root using ete3, while tracking the total

number of genomes, the total number of SCCMec IVa positive genomes and the number of PVL

positive genomes in each root[41]. The root of USA300 was placed manually where the number of

total genomes kept increasing while the number of PVL and SCCMec positive genomes plateaued.

All strains in the clade represented by the USA300 root were classified as USA300 regardless of

their SCCMec or PVL status.

4.5.4 DBGWAS and k-mer linkage calculations

DBGWAS was used to enrich mutations unique to USA300 strains. Alleles with frequency

less than 0.05 were filtered (-maf 0.05) and all components enriched with q-values less than 0.05

were documented (-SFF q0.05). Genome-wide linkage was estimated by Pearson correlation of the

presence/ absence of enriched k-mers and distance was measured based on the k-mer alignment

to the reference TCH1516 genome.

To determine the enriched ‘genetic event’ (e.g. SNP, indel, mobile genetic element etc),

the graph output from DBGWAS was first loaded onto a networkX model[23]. All nodes in the
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graph with frequency lower than 0.05 were discarded. MGEs were identified if all significant nodes

from DBGWAS had higher frequencies in one strain, e.g. all nodes associated with SCCMec had

higher frequencies in USA300 strains. To find SNPs and smaller indel events, the networkx

was used to find cycles in the graph, which results from bifurcation and eventual re-collapse of

debruijn graphs around mutations. For each cycle, the ‘end nodes’ representing the start and end

of the bifurcation were identified by finding the nodes in the cycle with highest frequency across

all samples. As ‘end nodes’ are present in both case and control samples, they will have higher

frequency than other nodes in the cycle which are specific to either case or control. Once the

end nodes are identified, the two paths around the bifurcations representing the case and control

specific sequences were identified using the shortest path algorithm in networkx. The sequences

from nodes of each path were concatenated, changing the sequences to reverse complements

and removing overlaps in sequences when required. The concatenated sequences from each path

were then compared using BioPython pairwise global alignments to find the SNPs or indels

that differentiate the sequences from case and control[42]. If reference sequences are passed,

the concatenated sequences are aligned to the reference sequences using BLAST and mutation

positions were converted from k-mer positions to positions in the reference genomes. The code

used for this analysis can be found in https://github.com/SBRG/dbgwas network analysis.

4.5.5 Mapping mutation hotspots with position specific Shannon entropy

For each of the CDS with enriched mutations, the PATRIC local protein family (PLfam)

was identified based on the reference TCH1516 genome. All available protein sequences for each

CDS PLfam were downloaded and filtered for S.aureus sequences. The multilocus sequence type

(MLST) of the source genome of each downloaded sequence was mapped using the PATRIC
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database. The sequences were divided into ST8 and non ST8 and ST239 sequences were filtered.

MAFFT was used for multiple alignment and position-specific Shannon entropy was calculated

on the aligned file[43]. The entropy was calculated as:

H(X) =

n∑
i=1

P (xi)log2P (xi)

where n in the total number of unique amino acids in the position and P (xi) is the

probability of finding the given amino acid.

4.5.6 Calculating strain-specific iModulons with independent component

analysis

ICA of RNA sequencing data was performed using the pymodulon package [28]. Using the

package, all available RNA sequencing data for NCTC8325 and USA300 strains were downloaded,

run through the QC/QA pipeline, manually curated for metadata and aligned to the TCH1516

genome (NC 010079, NC 012417, NC 010063). The combined data was then transformed into

log-TPM and normalized to a single reference condition (SRX3760886, SRX3760891). This is

in contrast to other ICA models that normalize the data to project specific reference conditions

to reduce batch effects. However, normalizing to project specific control conditions also erases

the strain specific information as almost all BioProjects contain data from only one isolate (e.g.

NCTC8325, TCH1516, LAC etc). ICA was then run as previously described in chapter 3. The

activities of the output iModulons were manually parsed to look for iModulons with the largest

strain specific differences.
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4.5.7 Fur box motif search

Motif search for the Fur box was conducted using FIMO from the online MEME suite[44].

The Bacillus subtilis Fur motif from collecTF was used as a reference[45].

4.6 Acknowledgements

Chapter 4, in part, is currently being prepared for submission for publication: Poudel,

S, Hyun J, Hefner Y, Nizet V, Palsson B Ø. ”Interpreting roles of mutations in the emergence of

S. aureus USA300 strains with genetics and independent component analysis of gene expression.”

The dissertation author was the primary author.

4.7 References

1. Young, B. C., Earle, S. G., Soeng, S., Sar, P., Kumar, V., Hor, S., Sar, V., Bousfield,
R., Sanderson, N. D., Barker, L., Stoesser, N., Emary, K. R., Parry, C. M., Nickerson,
E. K., Turner, P., Bowden, R., Crook, D. W., Wyllie, D. H., Day, N. P., Wilson, D. J. &
Moore, C. E. Panton-Valentine leucocidin is the key determinant of Staphylococcus aureus
pyomyositis in a bacterial GWAS. en. Elife 8 (Feb. 2019).

2. Bosi, E., Monk, J. M., Aziz, R. K., Fondi, M., Nizet, V. & Palsson, B. Ø. Comparative
genome-scale modelling of Staphylococcus aureus strains identifies strain-specific metabolic
capabilities linked to pathogenicity. Proc. Natl. Acad. Sci. U. S. A. 113, E3801–9 (June
2016).

3. Choudhary, K. S., Mih, N., Monk, J., Kavvas, E., Yurkovich, J. T., Sakoulas, G. & Palsson,
B. O. The Staphylococcus aureus Two-Component System AgrAC Displays Four Distinct
Genomic Arrangements That Delineate Genomic Virulence Factor Signatures. en. Front.
Microbiol. 9, 1082 (May 2018).

4. Correction for Copin et al., Sequential evolution of virulence and resistance during clonal
spread of community-acquired methicillin-resistant Staphylococcus aureus. en. Proc. Natl.
Acad. Sci. U. S. A. 116, 4747 (Mar. 2019).

5. Krishna, A., Holden, M. T. G., Peacock, S. J., Edwards, A. M. & Wigneshweraraj, S.
Naturally occurring polymorphisms in the virulence regulator Rsp modulate Staphylococcus
aureus survival in blood and antibiotic susceptibility. en. Microbiology 164, 1189–1195
(Sept. 2018).

105



6. Earle, S. G., Wu, C.-H., Charlesworth, J., Stoesser, N., Gordon, N. C., Walker, T. M.,
Spencer, C. C. A., Iqbal, Z., Clifton, D. A., Hopkins, K. L., Woodford, N., Smith, E. G.,
Ismail, N., Llewelyn, M. J., Peto, T. E., Crook, D. W., McVean, G., Walker, A. S. & Wilson,
D. J. Identifying lineage effects when controlling for population structure improves power
in bacterial association studies. en. Nat Microbiol 1, 16041 (Apr. 2016).

7. Steinig, E. J., Duchene, S., Robinson, D. A., Monecke, S., Yokoyama, M., Laabei, M., Slick-
ers, P., Andersson, P., Williamson, D., Kearns, A., Goering, R. V., Dickson, E., Ehricht, R.,
Ip, M., O’Sullivan, M. V. N., Coombs, G. W., Petersen, A., Brennan, G., Shore, A. C., Cole-
man, D. C., Pantosti, A., de Lencastre, H., Westh, H., Kobayashi, N., Heffernan, H., Strom-
menger, B., Layer, F., Weber, S., Aamot, H. V., Skakni, L., Peacock, S. J., Sarovich, D., Har-
ris, S., Parkhill, J., Massey, R. C., Holden, M. T. G., Bentley, S. D. & Tong, S. Y. C. Evolu-
tion and Global Transmission of a Multidrug-Resistant, Community-Associated Methicillin-
Resistant Staphylococcus aureus Lineage from the Indian Subcontinent. en. MBio 10 (Nov.
2019).

8. Challagundla, L., Reyes, J., Rafiqullah, I., Sordelli, D. O., Echaniz-Aviles, G., Velazquez-
Meza, M. E., Castillo-Ramırez, S., Fittipaldi, N., Feldgarden, M., Chapman, S. B., Calder-
wood, M. S., Carvajal, L. P., Rincon, S., Hanson, B., Planet, P. J., Arias, C. A., Diaz, L.
& Robinson, D. A. Phylogenomic Classification and the Evolution of Clonal Complex 5
Methicillin-Resistant Staphylococcus aureus in the Western Hemisphere. en. Front. Micro-
biol. 9, 1901 (Aug. 2018).

9. Bal, A. M., Coombs, G. W., Holden, M. T. G., Lindsay, J. A., Nimmo, G. R., Tattevin, P.
& Skov, R. L. Genomic insights into the emergence and spread of international clones of
healthcare-, community-and livestock-associated meticillin-resistant Staphylococcus aureus:
blurring of the traditional definitions. Journal of Global Antimicrobial Resistance 6, 95–101
(2016).

10. Uhlemann, A.-C., Dordel, J., Knox, J. R., Raven, K. E., Parkhill, J., Holden, M. T. G.,
Peacock, S. J. & Lowy, F. D. Molecular tracing of the emergence, diversification, and trans-
mission of S. aureus sequence type 8 in a New York community. en. Proc. Natl. Acad. Sci.
U. S. A. 111, 6738–6743 (May 2014).

11. Challagundla, L., Luo, X., Tickler, I. A., Didelot, X., Coleman, D. C., Shore, A. C., Coombs,
G. W., Sordelli, D. O., Brown, E. L., Skov, R., Larsen, A. R., Reyes, J., Robledo, I. E.,
Vazquez, G. J., Rivera, R., Fey, P. D., Stevenson, K., Wang, S.-H., Kreiswirth, B. N.,
Mediavilla, J. R., Arias, C. A., Planet, P. J., Nolan, R. L., Tenover, F. C., Goering, R. V.
& Robinson, D. A. Range Expansion and the Origin of USA300 North American Epidemic
Methicillin-Resistant Staphylococcus aureus. en. MBio 9 (Jan. 2018).

12. Everitt, R. G., Didelot, X., Batty, E. M., Miller, R. R., Knox, K., Young, B. C., Bowden,
R., Auton, A., Votintseva, A., Larner-Svensson, H., Charlesworth, J., Golubchik, T., Ip,
C. L. C., Godwin, H., Fung, R., Peto, T. E. A., Walker, A. S., Crook, D. W. & Wilson,
D. J. Mobile elements drive recombination hotspots in the core genome of Staphylococcus
aureus. en. Nat. Commun. 5, 3956 (May 2014).

106



13. Thurlow, L. R., Joshi, G. S. & Richardson, A. R. Virulence strategies of the dominant
USA300 lineage of community-associated methicillin-resistant Staphylococcus aureus (CA-
MRSA). en. FEMS Immunol. Med. Microbiol. 65, 5–22 (June 2012).

14. Nishizaki, S. S., Ng, N., Dong, S., Porter, R. S., Morterud, C., Williams, C., Asman, C.,
Switzenberg, J. A. & Boyle, A. P. Predicting the effects of SNPs on transcription factor
binding affinity. en. Bioinformatics 36, 364–372 (Jan. 2020).

15. Choi, Y., Sims, G. E., Murphy, S., Miller, J. R. & Chan, A. P. Predicting the functional
effect of amino acid substitutions and indels. en. PLoS One 7, e46688 (Oct. 2012).

16. Kavvas, E. S., Yang, L., Monk, J. M., Heckmann, D. & Palsson, B. O. A biochemically-
interpretable machine learning classifier for microbial GWAS. en. Nat. Commun. 11, 2580
(May 2020).
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Chapter 5

Conclusions

The accelerating accumulation of sequencing data presents an unprecedented opportunity

to harness the power of scale to address the challenges of infectious diseases and antimicrobial re-

sistance. However, new modeling systems and analytical tools are required to take full advantage

of this emerging resource. In this dissertation, we presented one such approach. We used ICA

to model the TRN of S. aureus USA300 strain from the growing number of publicly available

RNA sequencing data. Overall, we show that this model of the TRN is scalable, interpretable

and functional which makes it ideal to study non-model organisms where data and available

resources can be more sparse. The size and the coverage of the model grows with the increasing

number of publicly available data, enabling rapid characterization of new regulatory structures

and dynamics. The ensuing model generated by ICA can be used to understand the TRN from

gene to genome scale and aides in interpreting complex expression profiles and regulatory in-

teractions. Lastly, the model can be used in conjunction with existing modeling approaches,

extending the functionality of both methods. Taking advantage of this flexible modeling system,

we characterized the structure, dynamics and evolution of S. aureus USA300 strains.
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The second chapter of this dissertation describes the first ICA model of the TRN that

was built for this organism. The model was used to interpret complex expression profiles from

infection mimicking conditions, define the regulatory role of poorly understood alternative sigma

factor SigS, discover new potential interactions between expression of prophages and virulence

and connect metal requirements with carbon metabolism. The model opened the door for using

ICA to accelerate the characterization of the structure of TRN in S. aureus.

The third chapter explores transcriptional regulation of metabolism. Our work showed

that CcpA and CodY, the regulators of central carbon and amino acid metabolism respec-

tively, coordinated their activity. By integrating the TRN structure provided by iModulons with

metabolic models, we showed that this coordination also exists at the level of metabolic fluxes.

Furthermore, we show that these interactions extend to expression of translation associated genes,

thus integrating metabolic signals with protein synthesis. We combined these observations into a

single coarse grained model of coordinated protein synthesis regulation captured by CcpA, CodY

and Translation iModulons.

The fourth chapter demonstrates how ICA can be used to extend the limitations of genetic

approaches when studying emerging endemic strains. Here, we showed how inferring the role of

mutations contributing to the success of USA300 strains with traditional gene association studies

can be limited by strong genetic linkage and population structure. However, by modeling gene

regulation with ICA, we found several genes with enriched mutations that were also differentially

regulated in a strain-specific manner. In line with this observation, we found large changes in

the regulatory region of isdH gene in USA300 strains, including the deletion of Fur transcription

factor binding sites. This opens up new possibilities for combining genetic and transcriptomic

data to study mutations important for clinical success of new strains.
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Current systems biology and bioinformatics stands at the cusp of the next big revolution

like the ones brought on by the first draft of human genome or the first description of the

structure of DNA. This time, the acceleration in research and rapid expansion of knowledge

will be brought on by the emergence of new analysis and modeling methods and fueled by the

concurrent exponential growth in new biological data. Already new techniques, often derived

from the field of machine learning, have made great strides towards designing new drugs, solving

the protein folding problem, processing biological images, and deconvoluting high dimensional

nonlinear biological data. This work makes a small contribution towards this exciting new era

in the field of systems biology.
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Appendix A

Revealing 29 sets of independently

modulated genes in Staphylococcus

aureus, their regulators, and role in

key physiological response
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A.1 Supplementary Figures
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Figure A.1: Caption in the next page.
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Mathematical representation of S.aureus TRN. (a) RNA sequencing data were collected

in duplicates and their reproducibility was verified using Spearman correlation of TPM values.

Correlation between replicates (yellow bars) for all samples had r-squared 0.9, with most samples

having r-squared 0.95. Correlation between different samples (purple bars) had a wide range

of correlation, indicating the presence of diverse expression states. (b) The ICA decomposition

captured most of the information in the input RNA sequencing compendium (Dataset S7). 76%

of the total variance could be reconstructed from the product of S (Dataset S8) and A (Dataset

S9). (c) Histogram of gene coefficient in two example components (containing iModulon for

pyrmindine above and GR below). While most genes in a component have weights close to 0,

few statistically significant outliers (outside of the vertical dashed lines) with high weightings

(red bars) form an independently modulated set of genes (called an iModulon). Genes can have

both positive and negative coefficients and can be present in multiple iModulons. The genes xpt

and pbuX have negative coefficient in the PyrR iModulon (top histogram) indicating that these

genes are contra-regulated to genes with positive coefficient in the same iModulon(.e.g carAB).

Xpt and pbuX are also present in the GR iModulon (bottom histogram), indicating that these

two genes are regulated by multiple regulators. The first row of the matrix also contains the

threshold used to call iModulons. (d) Though iModulons represent independently regulated set

of genes, their activities are coordinated with one another. The coordination is visualized as a

heatmap depicting Pearson correlation of iModulon activities across all 108 samples.
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Figure A.2: Differential activation analysis and verification. (a) Volcano plot of differential
expression levels of genes between CAMHB and R10LB. 848 genes spanning at least 17 COG
categories (as determined by EggNog v4.5 [1]) were significantly differentially expressed. Genes
with greater than 2-fold change in expression and with p-value ¡ 0.05 were considered significantly
differentially expressed. (b) Glucose uptake was measured in R10LB and CAMHB. S.aureus
actively took up glucose in R10LB while no glucose was detected in CAMHB. Each line represents
a biological replicate in R10LB. (c) Riboswitch in conserved sequence upstream of xpt gene was
verified using riboswitch finder[2]. (d) The structure of the riboswitch was verified with RNAfold
within the ViennaRNA Package 2.0. [3]
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Fur iModulon activity

Figure A.3: Fur activity in response to changes in carbon source. (a) The activity of Fur
iModulons increased when the carbon source in R10LB was changed from glucose to maltose
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Figure A.6: Differentially expressed genes in Serum. Clustermap of 1177 genes that were
differentially expressed in at least one of the serum samples.
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A.2 Analysis of complex in vitro and ex vivo expression profiling

data with ICA and StaphNet

ICA analysis provides a low dimensional and biologically relevant decomposition of expres-

sion profiling data. This decomposition recasts the expression data into activity of independently

modulated sets of genes (iModulons), making the data far more interpretable. To demonstrate

this, we reanalyzed the ex vivo serum data from Figure 6 using a graph based model of S.aureus

TRN named StaphNet[4], and traditional differential expression analysis. Our analysis demon-

strates that output of ICA analysis is more interpretable than those provided by differential

expression analysis or by StaphNet.

StaphNet is a probabilistic functional gene network of USA300 strain FPR3757 built

by combining genomic data from multiple sources. Users can use this model to explore their

differential expression data using a method called ‘Context-centric Search.’ Given a set of

differentially expressed genes (DEGs) this algorithm finds hub genes (genes with = 20 con-

nections) which have neighbors that are significantly overlapped with input DEGs. This al-

lows the users to understand which genetic hubs the DEGs are centered around. Unlike ICA

analysis, StaphNet does not provide any form of activity or expression levels as output and

therefore cannot be used to generate time-series data as presented in Figure 6a. On the other

hand, while differential expression analysis gave gene expression levels for each of the time-

point, each time point had over 100 DEGs which could not be conveyed clearly in a time-series

plot. Therefore, we chose to compare the 2 hour time point. Traditional comparison of gene

expression after two hour growth in serum revealed that at this time-point there were 848

genes spanning dozen COG categories that were differentially expressed which made it diffi-
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cult to fully characterize the response of S.aureus. Analyzing the top 500 DEGs with Staph-

Net (the maximum number allowed by the algorithm) yielded at least 100 gene hubs that

were enriched in proximity to the DEGs (Dataset S10). These hubs are ranked by StaphNet

and the products of the top 5 hub genes were DNA-directed RNA polymerase subunit delta

(SAUSA300 RS14555), polysaccharide deacetylase (SAUSA300 RS14530), DUF3816 family pro-

tein (SAUSA300 RS14550), L-threonine dehydratase biosynthetic IlvA (SAUSA300 RS11075),

dihydroxy-acid dehydratase (SAUSA300 RS11035) (Table1). In contrast, ICA analysis provided

clear differential activation of different regulators in the serum (e.g. SaeR, AgrA, CodY, Fur).The

analysis also outputs the activity of each of these regulator associated iModulons, which allows

us to follow their dynamics through the time-course. For example, while both Fur and CodY

activity are very high in serum at 2 hour time-point, Fur activity jumps immediately when in-

troduced to serum while the CodY activity steadily increases over time to match Fur by 2 hours

(Figure 6a). Indeed these dynamics not cannot be readily inferred from the expression levels of

1177 genes that were differentially expressed in at least one of the serum time-points (Figure S6).

A.2.1 Methods

For methods used for ICA analysis of serum data, please see the main text. The dif-

ferentially expressed genes and their expression level in serum was used as reported by the

original paper[5]. The top 500 differentially expressed genes in Serum at 2 hour time-point

was submitted to the online implementation of the StaphNet Context-centric Search algorithm

(https://www.inetbio.org/staphnet/Network regulon form.php). The products of the top 5 hub

genes were determined using Aureowiki (Table 1)[6].
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A.3 Supplementary Tables

Table A.1: StaphNet context-specific search top hits

Rank USA300 FPR3757

locus tag

S. aureus GO terms p-value

1 SAUSA300 RS14555 6.65E-28

2 SAUSA300 RS14530 GO:0005975-carbohydrate

metabolic process

2.02E-27

3 SAUSA300 RS14550 4.20E-27

4 SAUSA300 RS11075 GO:0009097-isoleucine biosyn-

thetic process,GO:0006566-

threonine metabolic process

2.13E-25

5 SAUSA300 RS11035 GO:0009097-isoleucine biosyn-

thetic process, GO:0009099-valine

biosynthetic process

3.31E-23

Top 5 hubs (degree = 20) enriched from the top 500 differentially expressed genes in serum

at 2 hour time-point. The hubs were determined using the ‘Context-centric Search’ method from

StaphNet.
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Mäder, U. AureoWiki The repository of the Staphylococcus aureus research and annotation
community. en. Int. J. Med. Microbiol. 308, 558–568 (Aug. 2018).

7. Sastry, A. V., Gao, Y., Szubin, R., Hefner, Y., Xu, S., Kim, D., Choudhary, K. S., Yang,
L., King, Z. A. & Palsson, B. O. The Escherichia coli transcriptome mostly consists of
independently regulated modules. en. Nat. Commun. 10, 5536 (Dec. 2019).

8. Sastry, A. V., Poudel, S., Rychel, K., Yoo, R., Lamoureux, C. R., Chauhan, S., Haiman,
Z. B., Al Bulushi, T., Seif, Y. & Palsson, B. O. Mining all publicly available expression data
to compute dynamic microbial transcriptional regulatory networks en. July 2021.

9. Krueger, F. Trim galore. A wrapper tool around Cutadapt and FastQC to consistently apply
quality and adapter trimming to FastQ files 516 (2015).

10. Andrews, S. et al. FastQC: a quality control tool for high throughput sequence data (2010).

11. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods
9, 357–359 (Mar. 2012).

12. Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-
throughput sequencing data. en. Bioinformatics 31, 166–169 (Jan. 2015).

13. Ewels, P., Magnusson, M., Lundin, S. & Käller, M. MultiQC: summarize analysis results
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Appendix B

Coupling of CcpA and CodY

activities coordinates carbon and

nitrogen metabolism associated gene

expression in S. aureus USA300

strains
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B.1 Supplementary Figures

Figure B.1: Growth of available S. aureus and USA300 strain specific samples available in SRA.
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Figure B.2: Staphylococcus aureus RNA sequencing sample distribution based on SRA meta-
data and manual curation from linked publications, if available.
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Figure B.3: The iModulon activities formed distinct clusters indicating coordinated gene reg-
ulation. The highlighted individual clusters are presented in the smaller clustermaps.
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Figure B.4: The iModulon activities of CcpA and Translation activities showed little correlation.
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A. B.

Figure B.5: RNA sequencing quality control metrics. (a) Samples with less that 500,000 reads
were filtered out as were samples with Pearson correlation of less than 0.9 (b).
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Figure B.6: iModulon post-processing.(a) ICA models with different dimensionality were cre-
ated with OptICA. Model using 180 dimensions which had the maximum number of robust
components while still keeping single gene components to a minimum was chosen as the final
model. (b) Some iModulons were labeled based on data from gene knockout experiments. Here,
iModulon with lowest activity in delta arlRS strain was labeled as ArlRS iModulon.
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B.2 Creating the iModulon model for TRN of S. aureus USA300

data

This section provides detailed information on the steps taken to build the iModulon model

of S. aureus USA300 strains. The methods described in this section were developed previously

in E. coli, which contains further details and explanations[7, 8]. We started the process by down-

loading metadata for all the available S. aureus RNA sequencing data in the Short Reads Archive

(SRA). We then curated the metadata manually to separate samples from a USA300 lineage (e.g.

TCH1516, LAC, FPR3757 etc) from all other strains. Fastq files associated with these samples

were downloaded from SRA, trimmed with TrimGalore and aligned to the TCH1516 reference

genome, including the two plasmids ( NC 010079, NC 012417, NC 010063) using Bowtie2[9–11].

The gene read counts were then determined using HTSeqCount with intersection-strict criteria.

The counts were then normalized and transformed to create log2TPM[12].

The quality of the alignment was checked using fastqc and any data failing ‘per base

sequence quality,’ ‘per sequence quality score,’ ‘per base n content’, or ‘adapter content’ were

dropped. We also dropped samples with less than 500,000 reads aligned to one of the known CDS

in TCH1516 (Figure B.5a). These QC stats were organized into a single metadata using Mul-

tiQC[13]. Samples that had poor correlation with other samples or clustered with samples from

different projects were also excluded. For all samples that passed these QC steps, we searched

through online records including SRA, BioSample or linked publications to gather additional

information such as base media, growth conditions, mutations etc. We discarded samples that

had little or no metadata.

All samples were assigned to a specific project based on the source of the data i.e. all
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samples from the same BioProject or publication were assigned to the same project. The samples

in all projects were checked for reproducibility by checking the Pearson correlation between

log2TPM of replicates. Samples with no replicates or those with r-value less than 0.9 were

excluded at this step (Figure B.5b). For each project, we identified one reference or control

condition. This condition was used to center the data, by subtracting the log2TPM value of

the reference from all other conditions in the same project. This reduces iModulons associated

with inter-project batch effects. It also sets the log2TPM and all iModulon activities in reference

conditions to 0 which allows us to easily interpret activity of iModulons in other samples as fold

change from the control. The final 385 samples that passed these QC/QA steps were used to

calculate iModulons.

We applied FastICA implemented in the scikit-learn package to calculate the M and A

matrix from the logTPM data[14, 15]. FastICA was applied 100 times with random seed and

identical components from each run (which may contain slightly different values) were identified

after clustering with DBSCAN. Only components that appeared in each run were kept for further

analysis. Unlike PCA, the number of components that ICA calculates is not fixed and is a

required input in FastICA. Decomposing the transcriptome into too few components can lead to

signals from multiple regulators being combined into one iModulon. On the other hand, too many

components leads to over decomposition that results in iModulons with a single gene or iModulons

with near 0 activity in all samples. To determine the ideal number of components, we used our

previously developed OptICA method[16]. OptICA runs ICA with 10 to 340 components with

10 component increments as inputs. For each model, with different component number input, we

checked the number of robust and single gene iModulons. For the final model, we chose iModulons

calculated with 170 components as it maximized robust components while minimizing the number

134



of single gene iModulons(Figure B.6a).

Once the model with optimal dimensionality was identified, we annotated the iModu-

lons. iModulons were first annotated by comparing the enriched genes in each component to

other predicted regulons from regPRECISE and other literature sources(see ‘TRN’ object in the

model)[17]. iModulons with significant overlap with predicted regulons; significant overlap was

defined as hypergeometric test p-value ¡0.05, precision ¿= 0.5 and coverage ¿= 0.2. However,

we also manually curated iModulons as not all regulators have predicted regulons and ICA can

predict iModulons that are associated with other biological features (e.g. plasmids, prophages,

gene deletions etc). ‘Functional’ iModulons were named after the functions of enriched genes in

them e.g. Translation, Autolysins and Beta Lactam Resistance. In cases where data from regu-

lator deletion mutants were available, iModulons were named if they showed the highest change

in activity in the mutants (Figure B.6b).

B.3 Supplementary Tables

Table B.1: Metabolites at the intersection of CcpA and CodY regulated metabolism

Metabolite CodY Reactions CcpA Reactions

Tetrahydrofolate Methionine synthase Glycine cleavage complex
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Metabolite CodY Reactions CcpA Reactions

2-Oxoglutarate Phenylalanine transaminase;

Glutamate synthase;

Phosphoserine transaminase;

Tyrosine transaminase;

N-acetyl-LL-diaminopimelate

aminotransferase;

4-aminobutyrate transaminase;

Histidinol-phosphate transami-

nase reversible;

3-Aminopropanoate 2-

oxoglutarate aminotransferase

Glutamate dehydrogenase;

2-Oxoglutarate dehydrogenase;

Oxalosuccinate carboxy-lyase;

Ornithine transaminase;

Succinyldiaminopimelate

transaminase

L-Phenylalanine Phenylalanine transaminase L phenylalanine transporter

Acetaldehyde Ethanol NAD oxidoreductase Deoxyribose-phosphate aldolase

Sl2a61 Tetrahydrodipicolinate succiny-

lase

Succinyldiaminopimelate

transaminase

Glycerol Glycerol Dehydrogenase Glycerophosphodiester phospho-

diesterase; Glycerol kinase; Glyc-

erol symporter

L-Threonine Threonine synthase; L-threonine

deaminase

L-threonine dehydrogenase

L-Histidine L-Histidinal NAD oxidoreductase Histidase
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Metabolite CodY Reactions CcpA Reactions

Succinyl-CoA Tetrahydrodipicolinate succiny-

lase

Succinyl-CoA synthetase;

2-Oxoglutarate dehydrogenase

5,10-mTHF1 5,10-

methylenetetrahydrofolatereductase

Glycine cleavage complex

L-Alanine Alanine-Sodium symporter;

L-Alanine-proton symporter

L-alanine dehydrogenase

Gly-3-p1 Tryptophan synthase (indoleglyc-

erol phosphate)

Deoxyribose-phosphate aldolase

reversible; Glyceraldehyde-

3-phosphate dehydrogenase

(NADP)

Glycine Glycine-proton symporter Glycine-cleavage complex;

Glycine C-acetyltransferase

L-Aspartate Aspartate kinase;

L-Aspartate 2-oxoglutarate

aminotransferase

Aspartate-Sodium symporter
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Metabolite CodY Reactions CcpA Reactions

Pyruvate Anthranilate synthase;

Anthranilate synthase, ammonia;

Dihydrodipicolinate synthase;

Cystathionine b-lyase

Maltotriose transport via PTS;

L-alanine dehydrogenase; Pyru-

vate kinase;

Pyruvate formate lyase;

L-ascorbate transport via

PEP:Pyr PTS ;

N-Acetylneuraminate lyase;

Dihydroxyacetone phosphotrans-

ferase;

Trehalose transport via PEP:Pyr

PTS

Oxaloacetate L-Aspartate 2-oxoglutarate

aminotransferase

Citrate synthase;

Phosphoenolpyruvate carboxyki-

nase

L-Tryptophan Tryptophan synthase (indole) L-tryptophan-proton symporter

L-Arginine L-Arginine transporter Arginase

Acetyl-CoA Homoserine O-trans-acetylase;

Acetyl-CoA L-2, 3, 4, 5-

tetrahydrodipicolinate N2-

acetyltransferase

Pyruvate formate lyase;

Citrate synthase;

Glycine C-acetyltransferase

L-Tyrosine Tyrosine transaminase L-tyrosine-proton symporter
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Metabolite CodY Reactions CcpA Reactions

D-Glyceraldehyde Glycerol Dehydrogenase Glyceraldehyde facilitated diffu-

sion

L-Glutamate Phenylalanine transaminase;

Glutamate synthase;

Glutathione hydralase;

Phosphoserine transaminase;

Anthranilate synthase;

Tyrosine transaminase;

N-acetyl-LL-diaminopimelate

aminotransferase;

4-aminobutyrate transaminase;

Histidinol-phosphate transami-

nase reversible;

3-Aminopropanoate 2-

oxoglutarate aminotransferase;

4-amino-4-deoxychorismate syn-

thase;

Imidazole-glycerol-3-phosphate

synthase

Glutamate dehydrogenase;

Glutamate-Sodium symporter;

1-pyrroline-5-carboxylate dehy-

drogenase;

Ornithine transaminase re-

versible;

Succinyldiaminopimelate

transaminase

1Abbreviations: Gly-3-P:Glyceraldehyde 3-phosphate; 5,10-mTHF:5,10-methylTetrahydrofolate; Sl2a6: N-
Succinyl-2-L-amino-6-oxoheptanedioate
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Appendix C

Interpreting roles of mutations in the

emergence of S. aureus USA300

strains with genetics and

independent component analysis of

gene expression
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C.1 Supplementary Figures

A. B.

Figure C.1: (a) Cumulative distribution of unique genes used to fit the pangenomic parameters.
The core and unique genes threshold were calculated at 90% of the distance from the inflection
point (black dot) of the curve. (b) SCCMec and PVL distribution in the CC8 tree as it is traversed
up from FPR3757 leaf towards the root. Starting from FPR3757 gives the same deliniation
between USA300 and non-USA300 genomes as the search that starts from TCH1516.
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Figure C.2: S. aureus MLST distribution in PATRIC database
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A. B.

Figure C.3: SCCMec/ACME iModulons weighting and strain-specific activity. (a) Gene weight-
ing for the iModulon primarily containing SCCMec and ACME. Genes encoding SarY and AraC
family proteins were also enriched. (b) The activity of the SCCMec/ACME iModulon shows
clear strain-specific separation.
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Figure C.4: isdH gene shows strain-specific gene expression level. The increased expression
level in USA300 is in line with the deletion of Fur repressor binding site. The expression levels
are log-TPM centered on TCH1516 strain grown in RPMI + 10%LB.
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