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ABSTRACT OF THE DISSERTATION

Synthesis and Tunneling Spectroscopy of Tunable Materials for Topological
Superconductivity

by

Cliff Chen

Doctor of Philosophy, Graduate Program in Physics
University of California, Riverside, December 2021

Dr. Peng Wei, Chairperson

This thesis presents experimental work on the synthesis and characterization of materials

for topological superconductivity. First, an introduction to the theory of conventional and

topological superconductors is presented along with an overview of current experimental

work in the field. There are two main material systems considered in this work: Au (111)

and NbSe2 thin films. The Au (111) approach is a hybrid superconducting system that

seeks to leverage the strong spin-orbit interaction in the surface states of Au (111) films

to engineer Majorana zero modes. Tunneling experiments presented on these films reveal

the presence of surface state superconductivity and enhanced Zeeman effect from large

Landé g-factors. The NbSe2 approach explores the synthesis of this material in wafer scale

substrates and the effects of lattice strain on the superconducting properties of the films.

Raman spectroscopy reveals that in-plane strain, controlled by synthesis temperature, is

responsible for altering the electronic properties of the material.
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Chapter 1

Introductions

1.1 In Search of Better Hardware

Quantum computers are heralded as the next paradigm for information technology.

These new machines promise massive parallelism, exponential speedups, and super secure

transfer of data as some of their key selling points. Large tech companies like Microsoft,

Google, and IBM have certainly bought into the hype and are now big players in the

quantum computing race. Google, for instance, reported the first demonstration of quantum

supremacy using superconducting qubits [11]. Meanwhile IBM has brought their quantum

services to the cloud where users can submit custom programs to be ran on actual quantum

hardware [26]. In short, with so much money and manpower backing the field, it seems that

achieving a reliable quantum computer isn’t too far off in the future.

Of course, that doesn’t mean there are no major hurdles in the way. It should

come as no surprise that trying to build a computer using quantum mechanics was going

to be a long climb upwards. Beneath the shiny veneer of quantum computing hype lies a
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myriad of problems that stem from one core truism: quantum states are sensitive. In fact,

the very act of measurement and the way one measures a quantum state changes the state

itself [116]. Add on to this the fact that no human involvement is required for measurement

as the environment is also a perfectly good measurer, it is becomes clear that steps must

be taken to ensure the purity of quantum states [131]. Luckily, Peter Shor provides an

answer to this problem of decoherence with the introduction of quantum error correction

[151]. The idea is to redundantly encode information into multiple qubits upon which one

can perform syndrome analysis to detect for errors and apply the appropriate operation to

correct them. Problem solved, right?

Unfortunately, not quite. The need for more qubits means the need for more

hardware, and the need for more hardware means the number of additional problems can

scale faster than what the error correcting codes can handle. There are new correction

schemes that can work with rather noisy qubits, but the fundamental problem of noisy

qubits persists [44]. A new way to encode information in quantum hardware must be

found, and that is the motivation for the work in this thesis.

Enter topology. Topology is the study of deformations or homeomorphisms as

mathematicians would call them. The idea is that two objects, whether they be physical

objects or mathematical objects, are “similar” if they can be deformed into one another.

A common example is that a coffee mug is the same as a donut because the two objects

possess a single hole. The only way to change the donut so that it is no longer homeomorphic

to the coffee mug is to rip the donut apart. By doing so we have removed the property

that ties two the objects together, a.k.a. the fact that there was a hole. This concept of
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“holeness” is a topological property of both objects and cannot be removed under small

perturbations; for example, simply stretching the donut doesn’t remove the presence of the

hole. Consequently, this suggests a unique way of storing information. Encoding data into

the topological properties of the system can protect it from noise and extend its lifetime.

That is, until the noise rises to the point that it changes the topology of the system, which

is akin to ripping the donut.

Physicists have been taking advantage of topology to aid them in their studies of

the universe for quite some time now. It shows up in many fields from classical electro-

magnetics to fluid dynamics to modern theory of superconductors. In fact, Gauss’ law is

an example of a topological concept in physics: any deformation of the Gaussian surface

enclosing a charge will not change the value of the surface integral unless that deformation

encapsulates new charge [154]. Similarly, Dirac has invoked topological arguments in an

effort to address the existence of magnetic monopoles [59]. As this thesis will showcase,

physicists have extended the use of topology to the study of the electronic properties of

solids. The past couple of decades has resulted in new classifications of materials based on

the topological nature of their electronic behavior. This new understanding has resulted in

discoveries that leverage these topological properties to create robust qubits for quantum

computing [71, 72]. We will explore one possible path in this thesis.

1.2 Overview of Thesis

We take a hardware approach to solve the noisy qubit problem, with an emphasis

on exploring the fundamental electronic properties of topological superconducting materials.
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A critical challenge that arises whenever building a new qubit is how to synthesize the

required materials. This forms the first major body of work presented here. The second

challenge is understanding how to engineer the correct physics in our materials to make them

viable for quantum computing. This is an active area of research at many institutions, and

we present our contributions to this effort.

Chapter 2 starts with a general overview of “conventional” superconductivity. Su-

perconductivity has grown to encompass a wide variety of phenomena and we only cover

certain parts. We introduce concepts from the semi-classical Ginzburg-Landau theory and

expand upon them in the fully quantum BCS theory. Topics covered include: the su-

perconducting order parameter and its symmetries, the influence of a magnetic field on a

superconductor, Bogoliubov quasi-particles, and quantum tunneling of superconductors.

Chapter 3 introduces the theory behind topological superconductivity. We cover

the origins of Majorana fermions and how they can appear in solid-state systems. From there

we dive into the first theoretical realizations of Majorana fermions as well as subsequent

experimental efforts taken to observe them in real life. We also introduce the material

system covered in this thesis and the next steps being undertaken to improve it.

Chapter 4 explores the experimental methods used to synthesize and characterize

the materials. This includes an overview of the growth methodology and the principles

behind the proper synthesis of high-quality materials. We also discuss the cryostat and

measurement electronics used to characterize the samples grown.

Chapter 5 presents the results of synthesis and tunneling spectroscopy measure-

ments taken on Nb-Au films. We demonstrate the ability to grow high quality epitaxial

4



Au (111) thin films on sapphire. To study these films, we take a bit of an unconventional

approach to fabricating tunnel junctions using silver paste. Such methodology is commonly

used to create point contact junctions, but our results demonstrate that this can also be

used to for tunneling by the additional deposition of an appropriate tunnel barrier material.

Our devices demonstrate superconductivity in the surface bands of Au (111), and we discuss

signatures of topological superconductivity.

Chapter 6 focuses on the growth and characterization of NbSe2 thin films. NbSe2

is a member of the transition metal dichalcogenide family, a group of compounds that are

part of the “next-generation” of 2D materials after the discovery of graphene. We provide

an overview of the interest in transition metal dichalcogenides and the properties that make

NbSe2 unique. We demonstrate the growth of NbSe2 thin films and discuss how lattice

strain can be used to control superconductivity in this material.

Chapter 7 concludes with some final thoughts about the work presented and the

path moving forward.
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Chapter 2

Superconductivity:

Ginzburg-Landau and BCS

Superconductors are materials that possess no electrical resistance once the tem-

perature drops below a threshold known as the critical temperature. H. Kamelingh Onnes

discovered this anomaly in 1911 when he dipped elemental mercury into liquid Helium and

found the resistivity dropped to zero [163]. Since his discovery, the zoo of superconductors

and the corresponding theory to describe them has grown immensely. Similarly, the field of

superconducting electronics has equally grown to a large size with some of the most sensitive

electronic detectors being made out of superconductors [23]. The purpose of this chapter

is not to provide a thorough review of all types of superconductors, properties and their

applications. Instead, we aim to review some of the basics regarding the essential physics

of superconductors relevant to our discussion of topological superconductivity.
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2.1 Ginzburg-Landau Approach to Superconductivity

One of the most celebrated semi-classical approaches to superconductivity comes

from Ginzbug-Landau (GL) theory, named after Vitaly Ginzburg and Lev Landau. Their

treatment of superconductivity was based on Landau’s prior work on the theory of second-

order phase transitions. The starting point is the concept of the order parameter which is

a numeric quantity that is zero before the transition and non-zero after the transition. By

studying behavior of this quantity, one can determine whether a transition has occurred as

well as other details of the transition. A characteristic of GL theory for superconductors is

that the order parameter is described by a complex number ψ = ∆eiθ. Initially, this complex

number was interpreted as a pseudo-wavefunction of the superconducting electrons with |ψ|2

being the density ns of the electrons. Later findings would prove this interpretation to be

false, with BCS theory to provide a more apt description of the order parameter.

2.1.1 The Free Energy and Ginzburg-Landau Equations

Free Energy Expansion

The validity of Ginzburg-Landau (GL) theory rests on two assumptions:

1. The temperature of the superconductor is near the critical temperature or |T−TcTc
| . 1.

2. The order parameter ψ and electromagnetic fields do not have rapid spatial variations.
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Due to these assumptions, GL theory works best as a phenomenological theory

describing macroscopic behavior where the microscopic mechanics are not of crucial impor-

tance. We start our discussion with the Landau expansion of the Helmholtz free energy

density of a superconductor [158]:

fs = fn + α|ψ|2 +
β

2
|ψ|4 +

1

4m
|(~
i
∇− 2e

c
A)ψ|2 +

B2

8π
(2.1)

Here α, β are the temperature dependent coefficients of the expansion with β > 0,

and fn is the free energy of the system in the non-superconducting state which we take to be

constant. m, e refer to electron mass and charge respectively and A is the vector potential.

From here a variety of macroscopic phenomena can be derived. As a simple exercise, we will

show that superconducting transition is second-order with respect to temperature. Let’s

consider the case with zero fields and no gradients in the order parameter. Then the free

energy expansion reduces to:

fs = fn + α|ψ|2 +
β

2
|ψ|4 (2.2)

The natural state of the system in thermal equilibrium is the one with the lowest

free energy which guides us to search for the value of ψ that minimizes the above expression.

Taking a derivative with respect to |ψ| and setting the expression equal to zero, we arrive

at:

0 = α|ψ|+ β|ψ|3 (2.3)
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The value of |ψ| depends crucially on the sign of α. If α > 0, the minimum of

eqn. 2.2 occurs at |ψ| = 0 which means that the system remains in the normal, non-

superconducting state. On the other hand, α < 0 implies f is minimized at |ψ|2 = −α
β .

We can now Taylor expand the temperature dependent parameters α, β to 1st and 0th

order respectively based on the assumption that we are below but close to the transition

temperature to obtain:

|ψ| =

√
−α(T − Tc)

β
α < 0, T < Tc (2.4)

We see that as the temperature approaches Tc and moves below, α changes sign

from positive to negative, and the order parameter smoothly transitions from zero to a

nonzero value, characteristic of a 2nd order phase transition. This is clear from Figure 2.1

which shows |ψ| increasing continuously from zero at the transition temperature Tc.

(a) α > 0, T > Tc (b) α / 0, T / Tc (c) α < 0, T < Tc (d) |ψ| vs T

Figure 2.1: Evolution of free energy as α changes sign. The red dots indicate the new min-

imum when α < 0. Figure (d) shows that the order parameter approaches zero continuously

as T → Tc
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In addition, the above derivation also hints at another property of the supercon-

ducting transition, and that is the spontaneous breaking of a continuous symmetry, some-

thing found commonly in Landau’s theory of phase transitions. Consider that we derived

what value the magnitude |ψ| = ∆ should take, but what about the phase? What value

does it take on? The answer is whatever the system deems most favorable at the moment

of the transition. This rather vague claim is due to the fact that the above free energy

expression is dependent purely on the magnitude of the order parameter. As such, the free

energy has a U(1) symmetry; the phase is allowed to vary freely, and it will have no bearing

on the transition. In reality, because the order parameter is complex, it still must acquire

some phase after the transition, and it does so spontaneously by picking whatever value it

deems worthy based on the current state of the material. Therefore, after the transition

the system is no longer invariant under rotations of the phase. This symmetry breaking

is intimately tied to the theory of Nambu-Goldstone modes [68, 20] which are low-energy

excitations that appear whenever a continuous symmetry is broken.

The Ginzburg Landau Differential Equations

To work with more complicated situations involving fields and gradients, we turn

to the Ginzburg-Landau differential equations. We derive these equations by minimizing

the full free energy expression (2.1) with respect to both ψ and A. It should be pointed out

that we are minimizing with respect to the full order parameter ψ and not ∆ = |ψ|. This

requires us to take the derivative with respect to ψ∗. Similarly, we minimize with respect

to A through the transformation A→ A + δA and keep only the first order terms.

10



δfs
δψ∗

= αψ + βψ|ψ|2 +
1

4m
(
~
i
∇− 2e

c
A)2ψ = 0 (2.5)

δfs
δA

=
2e

c

[
ψ(

~
i
∇+

2e

c
A)ψ∗ − ψ∗(~

i
∇− 2e

c
A)ψ

]
−∇× (∇×A) = 0 (2.6)

Using the fact that j = c
4π∇ × B and simplifying the algebra, we arrive at the

Ginzburg-Landau equations [158].

αψ + βψ|ψ|2 +
1

4m
(
~
i
∇− 2e

c
A)2ψ = 0 (2.7)

e~
2mi

(ψ∗∇ψ − ψ∇ψ∗)− 2e2

mc
|ψ|2A = j (2.8)

From here we can actually derive a well known property of superconductors called

flux quantization. Magnetic fields passing through an annulus made of superconducting

material can only do so in integer spacing of h/2e in SI units or hc/2e in CGS units.

Consider the situation shown in Figure 2.2.

Figure 2.2: Magnetic field threading a superconducting annulus.

The circular geometry poses a particular constraint on the superconducting phase

θ. Specifically, if one were to complete one full rotation around the annulus and add up

all the differential changes in the phase, they would find that the total phase difference

would be equal to an integer multiple of 2π. This has to be the case because the order

11



parameter must remain single valued. Should the phase differ by any other amount, this

would result in an ambiguity as to what is the correct value of the order parameter at a

particular location on the annulus. Mathematically, this constraint is equal to:

∮
∇θ · dl = 2πn (2.9)

Now we make use of equation 2.8. We assume that the magnitude of the order

parameter does not vary along the path we take in the annulus; this is justifiable if we are

deep within the superconductor where field effects are sufficiently screened out. Therefore,

our order parameter has the spatial dependence: φ(r) = ∆eiθ(r). This allows us to rewrite

equation 2.8 as

j =
e

m
|ψ|2(~∇θ − 2e

c
A) (2.10)

In addition, assume that no current is flowing in the region of the annulus where

we take our circular path so that j = 0. Then we get an expression for ∇θ in terms of A.

Substituting this value of ∇θ into the constraint equation gives:

∮
∇θ · dl = 2πn =

∮
2e

~c
A · dl (2.11)∮

2e

~c
A · dl =

∫
2e

~c
A · dS =

2e

~c
Φ (2.12)

Φ =
nhc

2e
(2.13)

We see that the flux threading the annulus is quantized in units of hc/2e (CGS

units). This quantization forms the basis for the detection and control of sensitive quantum
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devices. The classic example is the superconducting SQUID which acts as a highly sensitive

magnetometer enabling the detection of very small magnetic fields down to 10−13 T [39]. It

also serves as the basis for the Little-Parks effect [92] in which the transition temperature

of a superconducting ring varies periodically with the amount of magnetic flux threaded

through the loop. This effect has been proposed as a means to detect unconventional

superconductivity and novel pairing mechanisms [90]. Specifically, the Little-Parks effect

is typically periodic in integer units of the flux quantum nΦ = nhc/2e. However, different

pairing mechanisms such as triplet pairing can result in a shift so that periodicity is now

in units of half-integer flux quanta (n+ 1/2)hc2e [54]. Furthermore, the precise threading of

magnetic flux may allow for control over topological phase transitions for Majorana zero

modes using flux-induced methods, but more remains to be seen on this front [162].

2.1.2 Superconductivity in Magnetic Fields

In the previous section, we touched on one interaction between the magnetic field

and a superconductor. However, the situation dealt with the superconductor affecting the

magnetic field in a region unoccupied by the superconductor itself. What are about the

sections that are occupied? The answer is the Meissner effect. Shortly after Onnes’ dis-

covery of superconductivity, Walther Meissner found that superconductors expel magnetic

fields from their interior, much like a Faraday cage shielding its innards from electrostatic

fields [109]. This effect is caused by surface currents in the superconductor that create a

diamagnetic response to cancel out the external magnetic field.

The effect is not perfect, however. The magnetic field does in fact penetrate into

the superconductor but only a small distance λ, called the penetration depth, that is on the
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order of tens to hundreds of nanometers. Furthermore, under suitably large magnetic fields

the superconducting state will be broken and a return to the normal state will occur. The

field at which this transition occurs is known as the critical field Bc and can be understood in

terms of an energy argument. At low temperatures, the superconducting state is the default

state because its free energy is lower in comparison to that of the normal state. As the

magnetic field increases, the diamagnetic response of the superconductor also increases to

maintain the shielding. At some point the energy gained by establishing the diamagnetism

will put the free energy of the superconducting state above that of the normal state causing

a phase transition back to the non-superconducting state. The critical field is thus the

crossover point when the diamagnetic energy + the superconducting free energy surpasses

that of the normal state:

Fs − Fn = −α
2

2β
= −B

2
c

8π
(2.14)

Here we used the fact that there is no field deep within a superconductor so

equation 2.2 can be used to calculate the free energy difference Fs − Fn. We have also

neglected any contributions to the free energy from the surface layer where the magnetic

penetration takes effect assuming that the layer is thin relative to the bulk. The last equality

is found through the fact that since B = 0 inside the the superconductor, then M = −H/4π.

Therefore, the work done to establish this magnetization is given as

−
∫ H

0
M · dH = B2/8π (2.15)
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This completes the result in equation 2.14. We refer to this “version” of the critical

field as the thermodynamic critical field [158] as it is calculated based on an energy argument

involving the thermodynamic potentials.

A Higher Critical Field for Parallel Orientations

One key aspect left out of the discussion so far is the geometry of the supercon-

ductor and its orientation with respect to the magnetic field. As we will derive shortly, a

thin film of superconducting material oriented parallel to a magnetic field will have a higher

critical field than if it was oriented perpendicularly. This enhancement of the critical field

by proper orientation of a superconducting film is of crucial importance for the discussion

of Majorana zero modes as it bolsters the ability to tune a topological phase transition

without destruction of the superconducting state.

Figure 2.3: A thin superconducting film of thickness d lying y-z plane aligned parallel to

an external magnetic field in the z-direction.

To see how this effect can occur using Ginzburg-Landau theory, we start by making

a modification to the free energy density. So far, we have been working with the Helmholtz

free energy density which is valid in situations in which B = H + 4πM is constant. In the
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event that we wish to hold the external auxiliary magnetic field H constant as one would

do in a laboratory setting, we need to use the Gibbs free energy density g instead. The two

quantities are related as: g = f −B ·H/4π [158].

With these changes in mind, consider Figure 2.3 where Hext = Hẑ and our thin

film lies in the y-z plane. We take the planar area of the film to be much greater than the

thickness d and penetration depth λ so that our we can ignore boundary effects along the

perimeter and focus on the bulk. We calculate the Gibbs free energy per unit area as:

G =

∫ −d/2
d/2

f −B ·H/4π dx (2.16)

=

∫ −d/2
d/2

fn + α|ψ|2 +
β

2
|ψ|4 +

1

4m
|(~
i
∇− 2e

c
A)ψ|2 +

B2

8π
−B ·H/4π dx (2.17)

To proceed further, we make an approximation of the magnetic field inside the

superconductor. Specifically, we take B ≈ Hext. This approximation is valid since d < λ

so the sample does not develop a strong diamagnetic response meaning there is little field

variation across the sample thickness. Therefore, we can take the London gauge in which

Ay =
∫
B dx ≈ Bx holds true. We also neglect any variation in the phase of the order

parameter so θ stays constant as well across the thickness. Completing the integration gives:

G = d

[
fn + α|ψ|2 +

β

2
|ψ|4 − H2

ext

4π

]
+
e2H2

extd
3|ψ|2

12mc2
(2.18)

Now the value of the order parameter is the one that minimizes this free energy

so setting δG/δ|ψ| = 0 and solving for |ψ| to find the non-trivial solution:

|ψ|2 = −α
β
− e2H2

extd
2

6mc2
(2.19)

16



The breakdown of superconductivity occurs when |ψ| → 0. We set ψ = 0 and

solve for Hext to get:

Hext =

√
−6αmc2

βe2d2
=

√
24Hcλ

d
(2.20)

The last equality made use of two facts:

1. Equation 2.4 showed that −α/β = |ψ|2H=0 = ns(H = 0).

2. The penetration depth can be defined in terms of the superconducting number density

ns(H = 0) [73]: λ =
√

mc2

16πnse2

We see from equation 2.20 that the in-plane critical field is inversely proportional

to the thickness d of the film. Thinner the sample, the higher the critical field. We also see

that the value is proportional to the penetration depth λ. The relationship between these

parameters and the critical field can again be understood in terms of an energy argument.

With thin samples and large penetration depths, the external field enters the superconductor

wholly. Therefore, as far as the external magnetic field is concerned, it does not “see” the

superconductor which means there is very little diamagnetic response that would increase

the free energy of the system. Consequently, the superconducting state remains the state

with the lower energy and superconductivity is allowed to resist the deteriorating effects of

the magnetic field. We will use this effect to our advantage when engineering topological

superconductors.
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2.2 BCS Theory of Superconductors

While Ginzburg-Landau theory was successful in its prediction of macroscopic

superconducting phenomena, its validity holds only near the transition temperature where

fluctuations in the order parameter is small. Furthermore, the theory is phenomenological

and does not seek to provide a microscopic picture of what causes superconductivity, instead

opting to describe the effects. The first truly “quantum” breakthrough in the theory of

superconductivity came in 1957 thanks to Bardeen, Cooper, and Schrieffer [18]. They

accurately proposed that superconducting currents were comprised of pairs of electrons,

now called Cooper pairs, and that the formation of these pairs came as a result of electron-

phonon interactions. Their pivotal work laid the groundwork for much of the modern theory

of the microscopic physics of superconductors. In this section we will review through the

salient portions of BCS theory relevant to our later discussion of Majorana zero modes.

Mean Field Hamiltonian and Canonical Transformation

We begin our discussion with the mean field BCS Hamiltonian also known as

the Bogoliubov-de Gennes Hamiltonian. Derivation of this Hamiltonian can be found in

reviews and lecture notes of BCS theory and we simply quote the result [157, 79]. It should

be noted that this approach is different from the original derivation by Bardeen, Cooper,

and Schrieffer who used a variational approach instead.

HBCS =
∑
kkk

[∑
σ

εkkkc
†
kkkσckkkσ + ∆c†kkk↑c

†
−k−k−k↓ + ∆∗c−k−k−k↓ckkk↑ + const.

]
(2.21)
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Here εkkk = ~2k2
2m − µ is the kinetic energy relative to the Fermi level µ. In addition,

we no longer use ψ as our order parameter and instead use ∆ as is traditional for BCS theory.

Solutions to this Hamiltonian can be found via a canonical transformation known as the

Bogoliubov-Valatin transform [22]. To complete this transform, we rewrite the first term in

the Hamiltonian using the anti-commutation relations for fermionic operators: {ckkkσ, c†k′k′k′σ′} =

δkk′kk′kk′,σσ′ and the fact that the sum is over all kkk.

HBCS =
∑
kkk

[
εkkkc
†
kkk↑ckkk↑ + εkkk(1− c−k−k−k↓c†−k−k−k↓) + ∆c†kkk↑c

†
−k−k−k↓ + ∆∗c−k−k−k↓ckkk↑ + const.

]
(2.22)

We express this Hamiltonian now as a matrix equation and by solving for the

eigenvalues and eigenvectors we can arrive at the Bogoliubov-Valatin transformation matrix

that diagonalizes Hamiltonian.

HBCS =
∑
kkk

(
c†kkk↑ c−k−k−k↓

) εkkk ∆

∆∗ −εkkk


 ckkk↑

c†−k−k−k↓

+ const (2.23)

We have absorbed the single εkkk term into the constant as it simply provides an

overall offset to the Hamiltonian. The energy eigenvalues can be easily solved for to obtain:

Ekkk =
√
ε2kkk + |∆|2 (2.24)
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In addition, the eigenvectors are given as:

γkkk↑ = u∗kkkckkk↑ − vkkkc
†
−k−k−k↓ (2.25)

γ−k−k−k↑ = v∗kkkc
†
kkk↑ − u

∗
kkkc−k−k−k↓ (2.26)

|ukkk|2 =
1

2
(1 +

εkkk
Ekkk

) (2.27)

|vkkk|2 =
1

2
(1− εkkk

Ekkk
) (2.28)

Let’s take some time to discuss the above results. First, the eigenvector solutions

are known as Bogoliubov quasi-particles or Bogoliubons, and they are a superposition of

both electrons and holes; this makes it obvious that these particles are not Cooper pairs since

they can only be made of at most one electron. Second, these quasi-particles do not come

for free: equation 2.24 shows that we must pay a minimum cost of ∆ to create a Bogoliubon.

As a result, the order parameter ∆ is often referred to as the superconducting gap as it

sets the energy gap that must be overcome to establish an excitation. The coefficients

ukkk, vkkk that appear in the eigenvectors are known as the coherence factors, and they set the

relative weights of the electron and hole contributions. The behavior of the coefficients with

respect to the kinetic energy εkkk is plotted in Figure 2.4. As our kinetic energy moves above

the Fermi level, the quasi-particles transition to a more electron-like character while below

the Fermi level the particles behave more hole-like. Incidentally, this also shows that it is

possible to achieve Bogoliubons with equally weighted electrons and holes. In other words,

we have made a quasi-particle that can potentially act as its own anti-particle, something

that is necessary in the formation of Majorana zero modes.
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(a) Bogoliubon energy spectrum. (b) Coherence factor amplitudes vs εk

Figure 2.4: (a) Due to the presence of the superconducting gap, the energy spectrum

is always non-zero. Here the Fermi level lies at E=0. (b) Below the Fermi energy, the

coherence factor |vk|2 dominates and the quasi-particles are mainly composed of holes. At

the Fermi energy, the quasi-particles are equally weighted superpositions of electrons and

holes. Above, they are mostly electrons.

With these quasi-particle solutions, we can rewrite the mean field Hamiltonian in

the following diagonal form:

HBCS =
∑
kkk,σ

Ekkkγ
†
kkkσγkkkσ + const. (2.29)

Now it becomes clear that under the Bogoliubov-Valatin transform that our Hamil-

tonian can be expressed in terms of non-interacting fermionic quasi-particles; this is because

there are no off-diagonal terms that couple different quasi-particle operators. The form of

this Hamiltonian is similar to that of the harmonic oscillator and suggests that the ground
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state consists of no quasi-particle excitations. But, if the ground state has no quasi-particles,

then what is it comprised of? The answer is Cooper pairs, and we will explore how the

BCS ground state supports the creation of electron pairs in the next section.

Before we move on, there may be some confusion as to why equation 2.24 only has

positive eigenvalues when there should also be a negative value as well due to the square root.

The answer is that we are taking the perspective of Landau and view these quasi-particles as

positive energy excitations above a ground state [156]. Therefore, instead of interpreting one

of the eigenvector solutions as the creation of negative energy particles, we alternatively view

it as the annihilation of positive energy particles. Many presentations of BCS theory take

this excitation perspective and present the energies as such. Furthermore, some treatments

purposefully double the degrees of freedom further by considering a duplicate set of quasi-

particles but with negative energies. This is often done to aid in the mathematical treatment

of the theory or interpretation of experimental data [40, 157].

2.2.1 BCS Ground State

Since the ground state contains no Bogoliubons, the corresponding wavefunction

must act as a “vacuum” to the quasi-particle operators γkkkσ. One way is to create such a

wavefunction is to take advantage of the fact that the Bogoliubon operators obey fermionic

commutation relations [34]:

|ΨBCS〉 =
∏
kkkσ

γkkkσ |0〉 (2.30)

22



Here the product is over all kkk and spin σ, and the |0〉 represents the true vacuum

state. This wavefunction indeed behaves as a vacuum to the quasi-particles because acting

on this state with γk′k′k′σ for any k′k′k′ would result in a zero. This is due to the fact that the

operator would anti-commute with all operators in the product resulting in a wavefunction

that is equal to the negative of itself, hence it must be zero. One can now substitute in the

definitions of the quasi-particle operators in terms of the electron operators to obtain the

wavefunction as it is traditionally expressed [158, 18]:

|ΨBCS〉 =
∏
kkk

(ukkk + vkkkc
†
−k−k−k↓c

†
kkk↑) |0〉 (2.31)

There are several key points to note about this wavefunction:

1. The wavefunction is comprised of Cooper pairs since it involves the creation of elec-

trons in pairs at opposite momentum.

2. The coherence factor vkkk sets the probability that a pair of electrons participates in

the ground state while ukkk is the probability that it does not. Incidentally, this also

explains why as vkkk increases in magnitude, the corresponding quasi-particle operator

γ†kkk gains more of a hole-like character. The reason is that the corresponding electron

c†kkk is more likely to be part of the ground state and not be available to participate in

the superposition that forms the quasi-particle.

3. Not all pairs created are Cooper pairs. For electrons below the Fermi level deep in

the Fermi sea, all nearby electron states are occupied. As a result, a phonon cannot

scatter one electron state to another as it is already occupied. Only near the Fermi
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level where there are empty states can the electron-phonon interaction take effect.

Therefore, Cooper pairs are only formed from electrons near the Fermi surface.

4. The wavefunction has an indeterminate number of particles. Instead, if one were

to expand the product, it can shown that the wavefunction is a superposition of all

possible electron states with an even number of electrons occurring in pairs.

The evenness of the ground state means that adding an additional Cooper pair to

a superconductor cannot change the fermion parity (even-oddness) of the system. Even the

creation of a Bogoliubon in an isolated superconductor does not change the parity since it

involves a Cooper pair breaking apart into two quasi-particles. In the case of topological

superconductors, however, it is possible to end up with a ground state that can have even or

odd parity [71, 47, 134]. This is due to the fact that Majorana zero modes are excitations at

zero energy, allowing them to change the parity of the system without changing the energy.

2.2.2 The Energy Gap and its Symmetries

The energy gap ∆ as presented so far has been a constant. In reality, the gap is

in general a position or momentum dependent function [152]:

∆(rrr) ∝ 〈c↓(rrr)c↑(rrr)〉T (2.32)

∆(kkk) ∝
∑
k′k′k′

Vkk′kk′kk′〈ckkk↓c−k−k−k↑〉T (2.33)

Here 〈...〉T represents a thermal average such as in statistical mechanics. We show

the gap function in both its real and momentum space versions. The key point of emphasis
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here is that because the gap function depends on the electron operators ckkk, it must also

obey the same the symmetry requirements under exchange of these operators. In particular,

the gap function follows the SPOT principle[91]: the gap function, and consequently the

wavefunction of the Cooper pairs, must remain anti-symmetric under spin S, parity P , orbit

O, and time T permutation operations; this can be expressed as SPOT = −1. This implies

that either one or three of these possible permutations must be anti-symmetric. Different

combinations of which ones are anti-symmetric and which ones are not lies at the heart of

unconventional superconductivity [153].

Equations 2.32, 2.33 show the gap function for a superconductor that obeys one

type of pairing relation. In this case, it pairs electrons of opposite spin which means that

the Cooper pairs have a singlet spin wavefunction. This is common for superconductors

whose gap functions are equal to a constant, also known as s-wave superconductors; as a

result, the spin part of the gap function carries the anti-symmetry property. In general,

determining the precise kkk-dependence of ∆ is a non-trivial task, and it is common to work

with a form of the gap function that is expanded to low orders in kkk [170, 160, 134]. Some

choices for the functions are:

∆(kkk) ∝



const. s-wave

kx + iky 2D chiral p-wave

cos(kx)− cos(ky) 2D dx2−y2-wave

(2.34)

For our discussion of Majorana zero modes in 1D nano-wires, the gap function

will have a p-wave symmetry with ∆ ∝ sin(k). This choice of pairing is key to achieving

Majoranas in nano-wire setups because it is odd in k which guarantees that ∆ → 0 as
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k → 0. The vanishing of the gap ensures that the quasi-particle band structure cannot

be adiabatically connected to a trivial Bose-Einstein condensate which means that the

superconductor remains topological [71, 8]. The existence of solid-state superconductors

with intrinsic p-wave symmetry is still debated with some experimental evidence supporting

their existence [100]. However, such materials are not needed for Majorana zero modes as

it has been shown that it is possible to engineer effective p-wave pairing by combining

conventional materials in the right way [6].

2.2.3 Density of States and Tunneling Into Superconductors

The existence of the energy gap ∆ in a superconductor has consequences for its

quasi-particle density of states. When the superconducting gap forms, it must expel all

single electron states from that region of the energy diagram. So what happened to those

states that were present before the superconducting transition? The answer is that they

are pushed to the edges of the gap causing a spike in the density of states near the gap as

we will show.

To derive the new density of states, we can use the fact that the total number of

single electron states is conserved [158]. This is because the electron operators ckkk are con-

nected to the new quasi-particle operators γkkk via a unitary transform (Bogoliubov-Valatin

transform) which is an isomorphism and must preserve the number of states. Consequently,

the states within an interval dε before the transition must map onto quasi-particle states

that live in an interval dE after the transition. Here ε and E refer to the energies of the

states in the normal and superconducting state respectively. This implies the following

relation:
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Dn(ε)dε = Ds(E)dE ⇒ Ds(E) = Dn(ε)
dε

dE
(2.35)

We make the approximation that Dn(ε) ≈ Dn(µ) since we only care about the

states close to the Fermi level µ. Therefore, the normal density of states can be approxi-

mated as a constant. Working out dε/dE, we find:

Ds(E) =


Dn(µ) E√

E2−|∆|2
E > |∆|

0 E < |∆|
(2.36)

Figure 2.5a shows the classic gap feature associated with superconductors where

there is a spike near the gap edges.

Tunneling Spectroscopy

The density of states can be directly observed using tunneling probes in which

the differential conductance of the probe is proportional to the density of states of the

superconductor. To see how this can occur, consider the situation shown in Figure 2.5b

in which a normal metal is separated from a superconductor by a thin barrier that allows

electrons to tunnel through:

Here we consider the semiconductor model of tunneling [158]. This means that

electrons undergo elastic transitions from one material to the other after accounting for the

applied potential difference eV . In addition, the density of states of the superconductor

is reflected about the chemical potential. This is akin to doubling the degrees of freedom

and treating the negative energy Bogoliubons as being a completely filled Fermi sea. Our
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(a) Superconductor density of states (b) Tunneling diagram of a NIS junction

Figure 2.5: (a) Below the gap ∆, there are no available quasi-particle states. The states

that were present in the gap before the superconducting transition are pushed to side causing

a spike in the density of states near the gap edge. (b) Semiconductor-model of tunneling

into a superconductor. The density of states for the superconductor is doubled with the

bottom half filled up to form a Fermi sea. Electrons from the normal metal can tunnel

horizontally to the empty states in the superconductor.

energy scale is measured relative to the Fermi level of the normal metal. We can express

the current flowing from the normal metal to the superconductor as follows:

In→s ∝
∫
|t|2Dn(E)fn(E)Ds(E + eV )(1− fs(E + eV ))dE (2.37)

This equation expresses the electrical current as a probability current. The chance

for an electron to hop over is equal to: probability that initial state has an electron available

fn(E) ∩ probability of tunneling |t|2 ∩ probability that final state is empty to receive the

electron 1−fs(E+ eV ). Upon integration over all possible states, we get the current in one
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direction. The total current flowing through the interface must include the reverse current

Is→n as well:

Itot = In→s + Is→n ∝
∫
|t|2Dn(E)Ds(E + eV )(f(E)− f(E + eV ))dE (2.38)

f(E) =
1

1 + eE/kbT
(2.39)

Here we assume that the Fermi-Dirac distribution works well for the electron

distribution functions in the normal metal and superconductor. To see how the density

of states can be extracted, we approximate the normal metal’s DOS as a constant as before

and consider the differential conductance dI/dV :

G = dI/dV ∝ Dn(µ)|t|2
∫
Ds(E)(−∂f(E + eV )

∂(eV )
)dE (2.40)

Our final result shows that the differential conductance is simply the density of

states of the superconductor convolved with the derivative of the Fermi-Dirac function.

This derivative is Gaussian-like and accounts for the thermal broadening associated with

finite temperatures. In the limit T → 0, the conductance will approximate the DOS of

the superconductor very well. For topological superconductors, it has been theoretically

predicted that tunneling into a Majorana zero mode will give a quantized conductance of

2e2/h at zero bias (V = 0) [86].
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Chapter 3

Topological Superconductivity

In recent decades, it has become clear that topology can play a powerful role in

determining the electronic behavior of solids. The rise of topological insulators, magnetic

skyrmions, topological superconductors, etc. are testament to the ever growing use of

topology to discover new quantum excitations in solids [108, 132, 57]. One of the driving

forces behind the interest in these topological excitations is the fact that they are governed

by global properties of the system rather than local effects. As a result, they are naturally

robust against perturbations. The focus of this chapter is to explore one of these topological

particles called Majorana zero modes and see how they arise in superconducting systems.

3.1 The Original Majorana Fermions

The origin of Majorana fermions dates back to the 1930s to the nascent period of

quantum field theory. It is around this time that Italian physicist Ettore Majorana stepped

into the scene with a modification of Dirac’s equation. In particular, he recognized the
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importance of a specific representation of the matrices used in Dirac’s equation [40]. This

subtle change enabled his discovery of the particle that bears his name.

(iγµ∂µ −m)ψ = 0 (3.1)

Here ∂µ = (∂t,−i∂x,−i∂y,−i∂z) and γµ are a set of 4 × 4 matrices known as the

Dirac matrices. Note that we have set ~ = 1 as is standard with particle physics discussions.

The γµ do not have a unique form. In particular, Majorana chose the matrices to be purely

imaginary:

γ0 = i

 0 −σ1

σ1 0

 γ1 = i

 0 σ0

σ0 0



γ2 = i

σ0 0

0 −σ0

 γ3 =

 0 σ2

−σ2 0


Here the σµ are the 2× 2 Pauli matrices with σ0 being the identity and σ(1,2,3) =

σ(x,y,z). This choice for the Dirac matrices makes the Dirac equation real with ψ being a

purely real solution. Furthermore, the Dirac equation decouples into two independent sets

of uncoupled equations.

(i∂t − p · σ)ψr − imrσ2ψ
∗
r = 0 (3.2)

(i∂t − p · σ)ψl − imlσ2ψ
∗
l = 0 (3.3)
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Since the two sets of equations are uncoupled, the “mass” term is allowed to be

different for each set. We won’t solve the equations here, but instead we highlight some

properties manifest within Majorana’s equation that carry over to the condensed matter

version.

1. The reality of ψr and ψl implies that these fields are invariant under charge-conjugation

symmetry meaning these particles are their own anti-particles.

2. Majorana’s equations are no longer invariant under the substitution: ψ → ψeiθ with

θ being a real constant. This means the particles do not have a gauge symmetry that

supports coupling to the electromagnetic field and, thus, the particles are charge-

neutral.

3. When discussing solutions to the Majorana equation, the spinor fields ψr and ψl are

sometimes written in a 4-component form as:

Ψl =

−iσ2ψ∗l

ψl

 Ψr =

 ψr

iσ2ψ∗r

 (3.4)

This form may seem unusual since it artificially doubles the degrees of freedom but

writing it as such comes naturally in superconducting systems as we will see shortly.

3.2 Majorana Fermions in Solids

The prior section examined Majorana fermions as individual particles in their

own right. In solids, however, the only genuine particles are the electrons and ions that

make up the atoms. This certainly does not mean that Majorana fermions cannot appear
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in solids, rather they will manifest as quasi-particles. Unsurprisingly, Majorana fermions

naturally arise in superconducting materials. The Bogoliubov-de Gennes (BdG) formalism

of superconductivity easily facilitates a description of quasi-particles that includes Majorana

fermions. To see this, we follow reference [40] and write the mean-field Hamiltonian in real-

space:

H =

∫
dr

[∑
σ

(− ~2

2m
∇2 − µ)c†σ(r)cσ(r) + ∆(rrr)c†↑(r)c†↓(r) + ∆∗(rrr)c↑(r)c↓(r)

]
+ const.

(3.5)

To write this in matrix form like equation 2.23, we define a 4-component column

vector known as a Nambu spinor:

Ψ(r) =



c↑(r)

c↓(r)

c†↓(r)

−c†↑(r)


=

 ψ(r)

iσyψ
†(r)

 (3.6)

It should be noted that in defining this column vector, we have doubled the degrees

of freedom. Specifically, c↓(r) is not independent from c†↓(r) since the two are related by

Hermitian conjugation. Therefore, the number of eigenvectors and eigenvalues we obtain

will be doubled and only half of the solutions will be independent and physical; in other

words, there will be two solutions that refer to the same quantum state. This redundancy

gives rise to charge conjugation or particle-hole symmetry in superconductors as shown

below.
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Using this vector we can write the Hamiltonian as:

H =

∫
drΨ†(r)

(− ~2
2m∇

2 − µ) ∆(r)

∆∗(r) −σy(− ~2
2m∇

2 − µ)σy

Ψ(r) + const. (3.7)

One can diagonalize this Hamiltonian like we did for equation 2.23 to derive the

eigenvector solutions. We will not do this here and instead discuss a bit more on the Nambu

spinor. In defining this vector, one can already see some similarities to the spinor fields in

equation 3.4. In particular, the Nambu spinor is invariant under charge conjugation C.

CΨ(r) = τyσy(Ψ
†(r))T = Ψ(r) (3.8)

τyσy =



0 0 0 −1

0 0 1 0

0 1 0 0

−1 0 0 0


(3.9)

Here τy and σy refer to the Pauli matrices in particle-hole and spin space respec-

tively. Specifically, τy acts on the upper and lower halves of the Nambu spinor while σy

acts on the operators within the halves. This invariance automatically implies that super-

conducting systems are capable of supporting excitations that are their own anti-particle.

Furthermore, this also implies that these particle are charge neutral. This shouldn’t be

too surprising since the previous discussion of BCS theory showed that it was possible to

achieve Bogoliubons with equal superpositions of electrons and holes. The formalism here

simply highlights this fact more readily.
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However, just because a superconductor can support particles that are their own

anti-particles does not mean that it is topological. We saw earlier that BCS theory requires

quasi-particles to pay an energy price of ∆ to exist. Majorana zero modes, on the other

hand, are zero-energy excitations that live right at the Fermi level. In fact, the requirement

of zero energy inherently guarantees that the excitation is its own anti-particle via charge

conjugation symmetry of the Hamiltonian [9, 40]. This property means that for every

eigenstate with energy E, there is another eigenstate with energy −E; negative energy is

considered here because we have artificially doubled the degrees of freedom with the Nambu

spinor. Therefore, zero energy particles will consequently end up as their own charge-

conjugate partner, a.k.a. their own anti-particle. In general, an operator that creates a

Majorana zero mode must obey [141]:

γ̂, γ̂2 = 1, [Ĥ, γ̂] = 0 (3.10)

The question now is: what has to occur for our system to support these kinds of

operators? The answer to this question was kindly provided by Alexei Kitaev in his toy

model of a superconducting nano-wire which will be covered below [71].
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3.3 Kitaev’s Nanowire

This section will be based largely on Kitaev’s paper on unpaired Majorana fermions

[71]. As it turns out, creating an operator that satisfies the first two conditions of equation

3.10 is not difficult. It is actually a simple mathematical exercise to define new fermionic

creation/annihilation operators γ, γ† that obey the Majorana rules in terms of the old

fermionic operators c, c†.

γ1 = c+ c† (3.11a)

γ2 = −i(c− c†) (3.11b)

c = (γ1 + iγ2)/2 (3.11c)

c† = (γ1 − iγ2)/2 (3.11d)

We refer to these new operators as Majorana operators, and we need two of them

to define a single Dirac operator c. This forms the basis for why Majorana zero modes can

only appear in pairs, and it is also the reason why they are often referred to as “half” of an

electron. We will now use these operators to write down the Hamiltonian for a 1D lattice

chain that is the basis for Kitaev’s nano-wire.

H =
∑
i

[
−µ(c†ici −

1

2
)− t(c†ici+1 + c†i+1ci) + ∆cici+1 + ∆∗c†ic

†
i+1

]
(3.12)

H =
i

2

∑
i

[−µγi,1γi,2 + (t+ ∆)γi,2γi+1,1 + (−t+ ∆)γi,1γi+1,2] (3.13)
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This Hamiltonian describes the lattice in Figure 3.1. We will not solve for the

energy eigenstates here but instead highlight two distinct regimes of this system. Consider

equation 3.13 in two scenarios:

1. t,∆ = 0, µ < 0. The Hamiltonian reduces down to a simple harmonic oscillator like

form reminiscent of the diagonalized BCS Hamiltonian 2.29. The ground state is

therefore a state that is empty of any particles occupying the lattice. This is the

trivial state.

2. |∆| = t > 0, µ = 0. Then the Hamiltonian becomes H = it
∑

i γi,2γi+1,1. This

Hamiltonian is very similar to the trivial case except that the pairing occurs for

operators γ from different lattice sites. This also means that the Majorana operators

at the ends of the lattice are left out of the Hamiltonian as they have no neighboring

partners. However, they do not “disappear” so to speak because the total number

of Majorana operators must be conserved; each lattice sites provides two Majorana

fermions so to have two Majoranas disappear would imply a lattice site suddenly

vanished which is unphysical. Rather, they combine to form a highly non-local fermion

that is localized at the ends of the wire with an energy of zero; the zero energy cost is

why the operators are “zeroed” out of the Hamiltonian. This is the topological state

of the nano-wire.

Scenario 2 is important for the observation of single Majorana fermions because

the definition of the Majorana operators in equation 3.11 makes no indication that the

corresponding particles should be spatially separated. This is the reason why Majorana
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(a) Trivial Phase (b) Topological Phase

Figure 3.1: The lattice structure for Kitaev’s 1D nano-wire. Each lattice site (indicated

by the oval, corresponding to operator ci) contains two Majorana fermions γi,1, γi,2. (a) In

the trivial phase, the Majoranas pair within each lattice site as indicated by the black line

connecting them. (b) The topological phase has the Majoranas pair between lattice sites.

As a result, the Majoranas at the ends of the wire are left unpaired. The appearance of

these edges states is what separates the trivial and topological phases of the wire despite

the bulk pairing appearing to be the same.

zero modes are difficult to come by: they just pair up with their partner Majorana and

form a regular Dirac fermion. It is under this new pairing that we have truly bisected a

Dirac fermion such that the pair of Majoranas appear far apart from each other.

The presence of the Majorana edge state also has consequences for the ground

state of the system. In the original BCS theory, the ground state 2.31 only contained an

even number of electrons (fermions) because the base particles were Cooper pairs. However,

Majorana zero modes have zero energy and thus live at the Fermi level with the Cooper pairs

for free. This means the ground state in the topological phase can support an odd number of

fermions, and the ground state manifold becomes degenerate with respect to fermion parity.

Manipulating the fermion parity of the system via topological phase transitions serves as

the basis for topological quantum computation as we will discuss in a later section.
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Interestingly enough, the existence of these edge modes can also be determined

from studying the bulk properties. The excitation spectrum of the bulk is:

E = ±
√

(2tcos(k) + µ)2 + 4|∆|2sin2(k) (3.14)

Here k lives in the 1st Brillouin zone with −π ≤ k ≤ π. This spectrum is markedly

different from the Bogoliubon spectrum 2.24. In particular, the second term with the energy

gap ∆ is now k dependent, and it is an odd function of k which guarantees the energy

spectrum closes(go to zero) at k = 0, k = π under suitable tuning of the parameters µ, t.

The gap closing signals a topological phase transition by changing the sign of the topological

invariant:

Z(H) = sgn(PfH(k = 0))sgn(PfH(k = π))) (3.15)

Here Pf stands for the Pfaffian operation, and it has the relation (PfM)2 = det(M)

for a skew-symmetric matrix M . Just to clarify the notation above, equation 3.15 is the

product of the signs of the Pfaffian of the Hamiltonian at k = 0 and k = π. This quantity

is known as a topological invariant, and, in this case, it is a Z2 invariant meaning it has

two possible values, ±1; 1 is trivial, -1 is topological. In general, topological invariants are

used to classify mathematical structures based on homeomorphisms [132]. In other words,

two objects A,B are the “same”, share the same value of the topological invariant, if there

exists a continuous, invertible transformation (homeomorphism) f : A ↔ B that changes

A to B and vice versa. In the discussion of topological superconductors and insulators, the

object in question is the Hamiltonian, and two Hamiltonians are topologically equivalent if
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it is possible to smoothly transform one Hamiltonian into the other without closing the bulk

gap. In general, the topological invariant cannot change unless the bulk gap closes. As a

result, if two regions of the system possess different topological invariants, whether these are

regions in real space or parameter space, a gap closing must occur at the transition between

these two spaces. This gives rises to the commonly found edge states seen in topological

insulators [67]. The correlation between the bulk gap closing and edge states is known as

the bulk-edge (bulk-boundary) correspondence principle [145, 9].

In our case, the invariant changing sign indicates the closing of the bulk spectrum

gap and vice versa. Shown in figure 3.2, as we tune the parameters µ, t, the bulk spectrum

closes first at k = 0, opens up, and then closes again at k = π. At each gap closing,

the Pfaffian changes sign signaling the transition to and from the topological phase. The

change in sign is tied to the particle-hole symmetry of the Hamiltonian. At finite k, the

states with energy E have a particle-hole symmetric partner with energy −E. The two

exceptions to this rule are the states at k = 0, k = π; these states map onto themselves

under charge conjugation. Since the Pfaffian is related to the determinant, which is a

product of all the energy eigenvalues, this means that at finite k the eigenvalues occur in ±

pairs. Therefore, a gap closing at finite k would not be able to change the Pfaffian since the

eigenvalues transform as E → −E and −E → E, thus preserving the sign of the product.

At k = 0, k = π however, there are no pairs of energy eigenvalues since these states map onto

themselves. Therefore, the gap closing at these k values is allowed to change the sign of the

Pfaffian. This is why p-wave superconductivity is crucial for the appearance of Majorana

zero modes: it makes ∆ an odd function of k which in turn ensures the bulk gap can close
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at k = 0 and thus change the value of the topological invariant.

(a) µ = −3t

Trivial

(b) µ = −2t

Phase Transition

(c) µ = −1t

Topological

(d) µ = 1t

Topological

(e) µ = 2t

Phase Transition

(f) µ = 3t

Trivial

Figure 3.2: Evolution of the nano-wire’s bulk spectrum as we tune the Hamiltonian parameters

µ, t. The phase transition occurs when the bulk gap closes (goes to zero) in (b), (e). After the closing

in (b), the gap reopens and the wire enters the topological regime (c), (d) with the appearance of

Majorana zero modes along the edges.

One useful simplification of the topological invariant is found when the supercon-

ducting gap ∆ is much smaller than the other energy parameters in the system. Then
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equation 3.15 simplifies to equation 3.16 in which v represents the number of Fermi points

of the system in the normal state in the interval (0, π) [40, 71]. This provides a simply guide

to identifying possible 1D topological superconductors: simply look for systems in which it

is possible for one to occupy an odd number of Fermi points in the right half of the Brillouin

zone. We will see how to engineer this scenario when discussing the nano-wire approach to

Majorana zero modes. This criterion only applies to fully gapped systems however.

Z = (−1)v (3.16)

One may wonder now about the stability of the topological phase. Is it possible to

destroy the Majorana zero modes with small perturbations to the Hamiltonian? The answer,

thankfully, is no. One cannot move the Majoranas away from zero energy individually;

doing so would violate particle-hole symmetry as one Majorana would remain at zero but

its particle-hole symmetric partner would be at finite energy [9]. Therefore, one must couple

the Majoranas if one wishes to move these particles away from the Fermi level. However, the

presence of the bulk gap means that there are no zero-energy excitations in the bulk that

can couple the Majorana zero modes, and the spatial separation of the modes prevents any

meaningful overlap of the wavefunctions. Therefore, the Majorana fermions are protected

both energetically and spatially. This level of protection naturally means that Majorana

zero modes possess long lifetimes which is why they are incredibly attractive for use in

quantum computation.
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3.4 Detecting Majorana Zero Modes

Now that we know it is possible to achieve Majorana zero modes theoretically, how

do we experimentally confirm their existence? There are a number of detection schemes

available, but, for the sake of brevity, we highlight three approaches to tackling this problem:

tunneling, Josephson effects, and Majorana-based teleportation.

Tunneling spectroscopy is one of the most common ways experimentalists use to

probe for Majorana fermions. It was theoretically predicted that tunneling into a Majorana

bound state should result in a conductance peak at zero bias whose amplitude should be

equal to exactly 2e2/h [86]. The idea is that when the bias voltage V is below the gap

|∆|, there can only be two possible scattering processes available: normal reflection and

Andreev reflection. Normal reflection simply sends the electron back to where it came, but

Andreev reflection is a special process only available in superconductors. In this unique

scenario, the incident electron drags a partner electron from below the Fermi level to form

a Cooper pair and enter the superconductor while producing a hole that is backscattered

away in the tunneling lead. Normally Andreev reflection is suppressed in tunnel junctions

by the presence of the barrier, but a Majorana bound state modifies the scattering process

by raising the Andreev reflection probability to unity at zero bias resulting in a perfect

conductance channel of 2e2/h. Away from V = 0 but V < |∆|, the conductance quickly

drops to zero due to the lack of available states and the presence of the barrier preventing

further Andreev reflection. In terms of experimental progress using tunneling, the results

have been promising but also inconclusive. We will discuss more on the shortcomings of

this approach in the context of semiconducting nano-wires in the next section.
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Another direction for detection is to analyze the effects of Majorana fermions

on Josephson effects. This approach was relevant before tunneling signatures came into

picture. In Kitaev’s original paper [71], he showed that when two p-wave superconductors

are connected by a narrow quantum wire, the current-phase relation is 4π periodic instead of

the conventional 2π periodicity; this is commonly dubbed the “fractional” Josephson effect.

The reason is that the supercurrent passing across the junction is carried by single electrons

as opposed to Cooper pairs. The effect is valid in both DC and AC cases, although in the

AC case, the frequency of oscillation, eV/~, needs to be set such that the junction evolves

adiabatically with the occupation of the Andreev bound states in the junction unchanged

[82]. On the other hand, in the limit of short junctions in which there is overlap of the

Majorana wavefunctions, non-adiabatic transitions are required to restore the 4π effect [37].

The fractional Josephson effect further extends to modifying the I-V relation as well since

phase and voltage in a Josephson junction are related as 2eV/~ = dφ/dt. Consequently,

Shapiro steps can also be used as a measure of Majorana zero modes [147, 158]. This effect

occurs when the junction is irradiated with photons and the Josephson frequency is equal

to an integer multiple of the photon frequency: nωp = 2eV/~. The result is a series of

step structures in the I-V curve (or spikes in the dI/dV) of the junction. With the 4π

effect in place, the steps only appear for even integer multiples of the photon frequency

resulting in missing steps in the Shapiro staircase [64]. Some experimental work confirmed

missing Shapiro steps in Josephson junctions made from InAs quantum wells, although it

was established that no topological phase was achieved [31].
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The last approach incorporates elements of the two previous methods and is known

as electron teleportation through Majorana bound states [47]. The idea is to form an island

of a topological superconductor and take advantage of the charging energy associated with

adding electrons to the island. Since the ground states of the superconductor are degenerate

with respect to fermion parity, it is possible to tune the charging energy such that a ground

state with an even number of electrons has the same energy as one with an odd number.

When this happens, electrons can undergo resonant tunneling into one Majorana bound

state on the island and appear at the other end with phase coherence. The coherence

implies that interfering an electron that passes through the island with one that does not

will result in interference effects in the tunneling conductance. The mixing of the two

electrons can be done in an Aharonov-Bohm interferometer and the resulting conductance

is periodic in units of h/2e flux threaded through the device [171]; the setup is similar to that

of a superconducting SQUID. This approach is particularly attractive for experimentalists

because it both demonstrates the non-local behavior of Majorana zero modes and serves as

a way to measure the parity state of a pair of Majoranas [164].

3.5 Realizing Majorana Zero Modes

While Kitaev showed that unpaired Majorana zero modes can appear from some-

thing as simple as a re-pairing of Majorana fermions in a lattice, achieving this effect in

reality is another story in entirely. One of the key building blocks of Kitaev’s theory is

p-wave superconductivity, a property that does not appear readily in nature [100, 142].

Therefore, physicists have turned to engineering the required superconducting properties
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using hybrid systems. Here we will review one of the major material thrusts physicists have

been pushing to achieve Majorana zero modes before discussing the approach taken in this

thesis.

3.5.1 Semiconducting Nano-wires

Semiconducting nano-wires stand at the forefront of achieving Majorana zero

modes in 1D systems. The idea behind this approach is to form an effective p-wave pairing

utilizing four ingredients: superconductivity, spin-orbit coupling, magnetism, and Fermi

level tunability. Superconductivity is a given requirement in any scheme for Majorana

fermions, but what is the role of the other three?

Spin-orbit coupling correlates the spin of an electron with its momentum. This

effect is the result of the spin-orbit interaction and broken inversion symmetry at interface

of materials. For the Rashba variety of spin-orbit coupling, it is often incorporated in

a Hamiltonian with the term: α(p × ẑ) · σ [104]. Here ẑ is the direction perpendicular

to the surface of the material, σ is the Pauli spin matrix vector, p = ~k is the electron

momentum, and α is the strength of the coupling. Through this interaction, the energy

dispersion of the electrons splits into two spin-dependent bands; one spin species moves

to higher k values and the other moves down as shown in Figure 3.3. The spin-direction

lies in-plane, perpendicular to the length of the wire. If we introduce a magnetic field into

the Hamiltonian via µBσz along the ẑ direction, this results in the spin-orbit bands anti-

crossing to create a gap at k = 0 [88]. Consequently, we enter a “spin-less” regime. Now, if

we move the Fermi level into the gap so that we only have one pair of Fermi points, we have
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(a) Spin-orbit split bands (b) With magnetic field (c) With superconductivity

Figure 3.3: (a) Spin-orbit coupling splits the bands based on electron spin. Here the spins are

aligned perpendicular to the wire length but in-plane. (b) Adding a magnetic field perpendicular to

the spin-orbit field introduces a gap at k = 0 and aligns the spins partially allowing for a “spin-less”

regime. The Fermi level is indicated by µ which is tuned to lie within the Zeeman gap ensuring so

that only one band is occupied. (c) Superconductivity opens a second gap at higher k thus fully

gapping the spectrum about the Fermi level. Spin-orbit coupling keeps some level of anti-alignment

in the spins allowing s-wave pairing to still occur. Increasing the magnetic field will cause the gap

at k = 0 to close signaling a transition.

the possibility of creating spin-less superconductivity once we introduce the pairing ∆.

Why is “spin-less” important? Recall that in Kitaev’s nano-wire [71], spin was not

considered. Incorporating spin can actually nullify topological superconductivity by intro-

ducing a Kramer’s degeneracy [6]: the spin adds an additional degree of freedom, allowing

for the possibility that two Majorana fermions can appear at each end of the nano-wire.

This is problematic because the two Majoranas at each end can combine to form a regular

Dirac fermion thus destroying the entire effort behind Kitaev’s original proposal. Luckily,

the magnetic field breaks time-reversal symmetry and removes the Kramer’s degeneracy by

47



polarizing the spins. It does not polarize it completely, however. Spin-orbit coupling still

anti-aligns the two spin-bands to some extent based on momentum. This is crucial because

many proposals involving semiconducting nano-wires utilize s-wave superconductors which

can only form singlet Cooper pairs [122, 99]. The anti-alignment ensures superconducting

pairing can still happen in this system.

Continuing the setup, we now tune the Fermi level into the gap so that only one

pair of Fermi points exist; in other words, we only occupy one band. This is a requirement

for achieving a topological phase transition because when the superconducting gap is the

lowest energy scale in the system, the topological invariant 3.15 reduces to [71]:

Z(H) = (−1)p (3.17)

Here p is the number of pairs of Fermi points. One may think of this as though each

occupied band provides a pair of Majorana zero mode so occupying an odd number of bands

will ensure one pair of Majoranas remains leftover. Finally, we introduce superconductivity

∆, and the final payoff for incorporating all four effects is that the occupied band now

experiences an effective p-wave pairing once the topological criterion is achieved: B >√
µ2 + ∆2 [7]. Thus, we have successfully engineered a 1D p-wave superconductor with

Majorana zero modes at its edges.

Some of the earliest successes in identifying signatures of Majorana zero modes

come from this approach. This is due to the fact that high-quality InAs or InSb nano-wires

can be reliably grown and form clean, epitaxial interfaces with superconducting aluminum

[80, 98]. In addition, these nano-wires possess large g-factors that allow the system to achieve
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greater Zeeman gaps needed for Fermi level tuning without destruction of superconductivity

from magnetic fields. In recent times, it has also been verified that these wires can even

grow into each other, allowing the formation of complex networks required for quantum

braiding schemes [121, 52].

First evidences of Majorana zero modes based on this material system came around

2012 [42, 32, 113]. Various groups reported observations of zero-bias peaks in the dI/dV

spectrum of nano-wires with proximity induced superconductivity. An example of such a

device from work done in 2016 is shown in Figure 3.4. These peaks only exist at finite

magnetic fields, only for fields perpendicular to the spin-orbit direction, and survive under

a range of chemical potentials, all in agreement with qualitative, theoretical predictions.

However, the peaks amplitudes were not quantized at 2e2/h and some results could be

explained in terms of more trivial effects like Kondo resonance. Studies were also performed

using InSb quantum wells patterned into nano-wires for SQUID devices [135]. As the

magnetic field was tuned to induce a topological transition, the first (odd) Shapiro step

disappeared as an indication of the fractional Josephson effect. Similar work has been done

in InAs wires in which a sensitive SQUID detector was used to measure a change in the

frequency of the radiation outputted from the Josephson junction as a sign of the 4π effect

[84].

However, this approach has experienced a few setbacks. In particular, tunneling

spectroscopy was relied on as the go-to method for Majorana detection. This approach has

since been demonstrated both theoretically and experimentally inadequate due to the fact

that sub-gap Andreev bound states can appear very close to zero bias giving false signatures
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Figure 3.4: (A) Schematic of the InSb nanowire proximitized by a superconductor with

the associated spin-orbit split bands. (B) SEM image of the nanowire device. (C) Schematic

of the nanowire setup. S corresponds to the parent superconductor and N is the normal

metal used for the tunneling lead. The green line is the electrostatic gate used to tune a

section of the nanowire to form a tunnel barrier. Only one Majorana mode is probed in this

setup. (D) The differential conductance at 65mK under zero magnetic field. In addition

to the two coherence peaks, two smaller peaks are seen that correspond to Andreev bound

states. From reference [113]/ Reprinted with permission from AAAS.
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of Majoranas [94, 95, 111]. Moreover, the conductance of these states can also take on values

equal to 2e2/h which further complicates interpretation of the data. As a result, previous

work done showing the fusion of two Andreev bound states to form a Majorana bound state

as well as the demonstration of 2e2/h zero bias conductance has been called into question

[185, 45]. Moreover, many experiments only examined tunneling into one end of the wire

which cannot confirm the non-locality of Majoranas, i.e. there should be two zero bias

peaks at either ends of the wire in the topological phase. Recent experimental evidence has

demonstrated both of these shortcomings in InSb wires [181]. Yu et. al. show the presence

of nearly quantized conductance peaks at zero bias on one end of a quantum wire in the

supposed topological regime but do not observe any peaks at the other end of the wire. It

is clear that more decisive detections schemes must be employed to accurately confirm the

existence of Majorana zero modes.

A final comment of this approach is the issue of scalability. While it has been

demonstrated that these wires can be grown reliably enough for basic research, it is still

an open question whether it is possible to achieve a level of control required for large scale

devices. The epitaxy procedures for existing nano-wire networks can be quite complicated

[52], and this is not accounting for the additional fabrication processes required for adding

electrostatic gates and leads. Therefore, moving forward with this methodology will require

further mastery over the material growth aspect.

3.5.2 Majorana Zero Modes Have Struck Gold

If semiconductors can be leveraged for their spin-orbit effects to achieve Majorana

zero modes, what about metals? It has been demonstrated previously that the surface
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bands in an Au (111) film experience large spin-orbit coupling of 110meV [85]. This

is attractive because the size of the topological gap at finite k generally increases with

large spin-orbit strengths [5]. Therefore, combining gold films with superconducting and

magnetic materials should yield similar results to that of semiconducting nano-wires. This

is the material approach taken within this thesis and will be the point of emphasis for the

tunneling studies performed.

Both theory and experiment have already demonstrated promise with this ap-

proach. Theory shows that Majorana zero modes can localize and persist in such a film as

long as its width is narrowed down to approximately the superconducting coherence length

[129]; this helps to reduce the strictness of the 1D-ness requirement. In addition, it has also

been calculated that electrostatic gates are capable of tuning the Fermi level of the surface

bands despite screening effects of the metallic film [130].

Experimental progress has achieved a number of milestones with this material

system so far [169, 105]. First, deposition of an EuS dielectric results in a large shift of

the surface band bottoms towards the Fermi level. This is important because the Zeeman

gap that opens in the Rashba bands occurs near the band bottom so we need to bring the

band bottoms closer to the Fermi energy so that electrostatic gates can actually tune the

chemical potential without suffering from screen effects. In addition, EuS is ferromagnetic

so its exchange field can enhance the Zeeman gap. Second, superconductivity has been

demonstrated to exist in the surface bands. This is also important because the surface

bands are separated from the bulk bands by an energy gap so it is not immediately obvious

that proximity superconductivity can be transferred to the surface states; achieving this
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theoretically requires scattering processes to induce pairing in the surface states [130]. For-

tunately, tunneling signatures reveal the presence of two superconducting gaps that cannot

be accounted for by spin-splitting of the density of states.

The culmination of these two successes has allowed for the observation of zero

bias peaks using STM near the edges of EuS islands deposited on Au nano-wires. This is

shown in Figure 3.6. The peaks only appear after a certain finite in-plane magnetic field is

achieved, and they appear at the same time at opposite ends of the island. This non-locality

helps to rule out possible Andreev bound state signatures as there is no a priori reason why

two such peaks will appear at the same time, unless they are Majoranas. In addition, the

appearance of these two zero bias peaks is well corroborated with numerical simulations.

The peaks in question were observed along the edge of an island that was aligned right

up against the edge of the Au nano-wire. Simulations show that this scenario results in a

concentration of the Majorana wavefunction at the two observed points accounting for the

zero bias peaks; EuS islands located away from the Au wire edge would show a smeared

out wavefunction instead.
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Figure 3.5: Fabricated gold nano-wires with EuS islands deposited on the surface. The plot shows

a peak in the dI/dV scan at high bias voltages corresponding to the Au (111) surface band bottom.

The peak position shifts dramatically closer to the Fermi energy (blue curve) once EuS covers the

surface. This is important for tunability of the Fermi level. From reference [105]/ Reprinted with

permission from National Academy of Sciences.
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Figure 3.6: EuS islands on top an epitaxial Au nano-wire. An STM is used to scan along the

edges of the island. The scans show a hard superconducting gap along the edges of the island except

for the edge that lines up with the edge of the Au nano-wire. At points 1 and 8, a zero bias peak

emerges as the magnetic field is tuned in accordance with theory simulations. From reference [105]/

Reprinted with permission from National Academy of Sciences.
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In wake of these achievements, further refinement of the Au (111) system has been

proposed and summarized in reference [177]. Recall that prior work using gold nano-wires

suffered from two main limitations: high Fermi energy relative to the Rashba band bottoms,

which results in the occupation of multiple subbands, and a small Landé g-factor of 2, which

required high magnetic fields to close the trivial gap and open the topological gap [169, 105].

This is why deposition of EuS on top of the Au surface and the use of an interface exchange

field was a necessary step to help resolve both of these issues. As it turns out, one can

pursue the use of EuS even further and flip the prior work on its head: instead of EuS films

on top of gold wires, it more advantageous to deposit EuS wires on top of a gold film.

This new approach, which shares similarities to the ideas in reference [123], is

shown in Figure 3.7 [177]. An EuS strip is deposited on top of a superconducting gold

film. The region under the EuS experiences a large shift in the chemical potential of the

surface bands relative to the uncovered gold. Through a combination of normal and Andreev

reflection with the surrounding bare regions, a bound state in the region under the strip

can be created. Next, adding sufficient Zeeman energy to exceed the superconducting gap

∆ results in a gapless band structure (shown in 3.7 (b: b)) that is capable of supporting

zero energy states for Majorana zero modes. The shifting of the chemical potential is a

key ingredient in this approach as it is responsible for ensuring that the gap closure points

do not appear too close to each other which limits the size of the topological region in the

phase diagram [177]. Therefore, deposition of EuS, or similar material, to modulate the

chemical potential is necessary.
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It should be mentioned that one key advantage of this approach in comparison to

semiconducting nano-wires is scalability. Single element metal films are regularly grown in

labs and are simpler to achieve when put against materials that require the proper reactions

between constituents; for instance, the growth of high mobility HgTe quantum wells required

for observation of the quantum spin Hall effect took some time to achieve [81]. Moreover,

existing fabrication tools, such as ion millers, are readily available to pattern these films into

1D networks for Majorana braiding, unlike semiconducting quantum wires which require

special growth procedures [52].

Of course, this does not mean there are no challenges ahead. In particular, deposi-

tion of EuS into 1D wire networks remains to be seen. Moreover, theoretical work indicates

that the size of the topological regime varies periodically with respect to the width of the

wire and the chemical potential shift under the wire [177]. This will require fine tuning of

material parameters to ensure a robust topological transition. An additional question also

arises: are there other materials besides EuS that can fulfill a similar role? A key bottleneck

in the engineering of synthetic topological superconductors lies in the proper synthesis of

each ingredient material. For the Au (111) system, this material must fulfill two important

requirements: Fermi energy tuning and enhanced Zeeman interaction. In a later section of

this thesis, we will explore one possible alternative: tellurium.
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(a) EuS Wire Geometry (b) Band Structure of the EuS wire setup

Figure 3.7: (a: a-b) Schematic of an EuS wire on top of a gold film. (a:c) The EuS dielectric

shifts the Rashba bands relative to Fermi energy in comparison to the bare gold regions. (b: a) The

Rashba bands of the EuS wire in the normal state. (b: b) The Bogoliubov-de Gennes spectrum

along ky for a Zeeman field = 0 (black-dotted) and with a Zeeman field (colored). The red and blue

colors correspond to states with spin parallel or anti-parallel to the field. When VZeeman > ∆, the

gap closes. (b: c) The E = 0 contour of the energy spectrum. (b: d) The corresponding geometry

for the band structure calculations. Reprinted with permission from the American Physical Society,

reference [177].

3.6 Quantum Computation Using Majorana Zero Modes

The end goal for all the work being done in Majorana zero mode research is

to build a quantum computer. Unlike “conventional” approaches to quantum computing

such as transmons or trapped ions [127, 76] which rely on manipulation of multi-level

systems, a Majorana based computer revolves around working with a set of degenerate

ground states. Specifically, Majorana zero modes, despite being described by a fermion
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operator γ, do not obey traditional exchange statistics [134]. Moving Majoranas around

each other, otherwise known as “braiding”, is a non-Abelian operation. The end result is

not the original wavefunction with a ±1 factor tacked on the front, but an entirely different

state. In general, the braiding operator for two Majoranas γn, γm can be written as [9]:

U(γn, γm) = exp(±π
4
γnγm) =

1√
2

(1± γnγm) (3.18)

Consider two pairs of Majorana zero modes γ1, γ2 and γ3, γ4. Each pair can com-

bine to form a Dirac fermionic mode so that we have four possible logical quantum states

|00〉 |01〉 , |10〉 , |11〉; here |00〉 means neither pair formed a mode and |11〉 means both formed

a mode. Under exchange of γ2 from the first pair and γ3 from the second pair, we can trans-

form the state |00〉 into: U(γ2, γ3) |00〉 = 1√
2
(|00〉 − i |11〉) [9]. This ability to generate new

states from exchange operations lies at the heart of Majorana based quantum computers.

The added bonus to all of this is that the resulting quantum states are long lived as a result

of topological protection.

However, as with any approach, there is no free lunch. One of the key drawbacks to

Majorana quantum computing is the need for high fidelity braiding operations. Physically

exchanging Majoranas is difficult as it must be done adiabatically to ensure the system

does not leave the ground state manifold [36]. Luckily, recent work has shown that physical

braiding is not necessary. It turns out that tunneling measurements are capable of measuring

the parity of a Majorana island [164]; this is called measurement-based braiding. Such a

scheme will significantly simplify the hardware needed for executing quantum logic gates.
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Another challenge is the issue of parity. A collection of isolated Majorana qubits

have a total fixed fermion parity and exchanges of Majoranas will not change it. This is also

the reason why superpositions of states with different fermion parity are not possible and

why Majorana qubits require at least two pairs of Majoranas. The situation can change,

however, if a quasi-particle tunnels onto the island and switches the parity [69]. This event

can happen due to environmental perturbations or even within the Majorana island itself

as a result of thermal excitations. This process is called quasi-particle poisoning and its

frequency of occurrence is a genuine concern in the design of Majorana devices [4].
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Chapter 4

Experimental Methods

4.1 Molecular Beam Epitaxy and Thin Film Growth

4.1.1 The Hardware

Molecular beam epitaxy (MBE) is the process of depositing thin films on substrates

in ultra high-vacuum using thermally heated material sources [65]. The high vacuum ex-

tends the mean free path of any gaseous atom so the evaporated material travels ballistically

from the source to the substrate. In addition, atmospheric contamination is reduced to a

minimum allowing the growth of very high quality materials such as HgTe quantum wells for

quantum spin hall studies [78]. The MBE system used for the work in this thesis is shown

below along with a representative diagram of the system. Here we explore the operation

and purpose of the different components of the vacuum chamber.
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Figure 4.1: Ultra high-vacuum MBE chamber

Pumping System The ultra high-vacuum is held by a combination of pumps: scroll,

turbo, and ion. Scroll pumps achieve “rough” vacuum (10−2 − 10−3 Torr) to prepare the

system for the other pumps. The high-vacuum regime (10−6 − 10−8 Torr) is achieved via

turbo pumps; these pumps are similar to that of a jet turbine with multiple sets of blades

spinning at high speeds to extract air from the system. The blades of a turbo pump cannot

handle high airflow loads and require a backing pumping (such as a scroll pump) to remove

air expelled by the turbo. The final pump that is used to bring the system into the ultra

high-vacuum regime (< 10−8 Torr) is the ion pump. This pump works similar to that of

a large capacitor: gas molecules passing through are ionized and then accelerated towards

a reactive, solid electrode to bond with the electrode material. Like the turbo pump, ion

pumps require another backing pump to pull the system into the high-vacuum regime before

operation. The various sections of the vacuum system are connected by conflat flanges and

below tubes with gate valves used to isolate the different sections.
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Knudsen Cells Name after Martin Knudsen, the Knudsen cell (K-Cell for short) is an

thermal evaporator for low-vapor pressure materials. Material is placed into a crucible and

then heated by running current through nearby filaments. Control of the evaporation rate

of the material is accomplished by controlling the heating power. K-cells are best suited

for low temperature evaporation materials such as tellurium, selenium, bismuth, etc. It

can also be used to evaporate higher temperature metals like gold or aluminum but care

has to be taken to ensure proper shielding of the filaments otherwise excess heating of

surrounding vacuum parts can occur. Below shows the inner structure of a homemade K-

cell. Supporting metal pieces are made either from molybdenum or tantalum due to their

high thermal integrity. The heater wiring is tantalum wire wound through PBN (poly-

boron nitride) rings. A small thermo-couple (C or K type) is mounted near the crucible to

measure the temperature. Alumina ceramic pieces are used to electrically isolate the wiring

from the rest of the K-cell parts.

E-Beam Evaporator Refractory metals like tungsten or niobium require much higher

temperatures to evaporate than what is available from K-cells. To accomplish this, e-beam

evaporation is used. The process involves heating a thin filament to achieve thermionic emis-

sion. The emitted electrons are then accelerated by a potential difference and redirected

so they bombard the evaporating material. This form of heating can achieve tempera-

tures above 2500◦C. There are two general types of e-beam evaporators: crucible and rod.

Crucible-based evaporators hide the emitting filament away from the evaporation source.

The emitted electrons are then redirected using a magnetic field through a 270◦ arc to bom-
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bard the material. This type of evaporation system is commonly found in cleanrooms. The

e-beam evaporator used in this thesis is of the latter rod variety. Here a rod of the material

to be evaporated is biased at high positive voltages relative to a nearby filament. A picture

of the evaporator is shown below. The advantage of this setup is that the electrons are

focused to a much smaller area on the rod allowing easier evaporation of high melting point

materials. The disadvantage is that the filament is exposed to the resulting evaporation

and can weaken over time from ion bombardment.

4.1.2 Thin Film Growth

The process of depositing thin films onto a substrate is the starting point of much

of modern condensed matter nanoscience. This thesis primarily makes use of only thermal or

e-beam evaporation, but there are other choices as well such as sputtering, pulse-laser, chem-

ical vapor, atomic-layer, etc. Despite the differences between each methodology, they all

share three common characteristics when it comes to thin film growth: choice of substrate,

temperature profile, and level of material flux. Proper tuning of these three parameters is

crucial for high-quality growth of thin films.

Substrate Choice

Substrate choice is the starting point of any growth process as choosing the right

substrate can easily make or break a growth. The first point of consideration in picking a

substrate is lattice mismatch, i.e. the difference in lattice parameters between the substrate

and the desired film. Atoms like to line up with existing atoms and so picking a substrate
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with similar lattice parameters on the surface to that of the film greatly aids in achieving

the right growth. Mismatching the lattice introduces strain into the film and results in

defects as the film tries to relax itself [50, 165]. Moreover, the defects can act as scattering

centers that impact the physical and electrical properties of the film [3]. But, this negative

view of lattice mismatch is only one side of the coin. We can turn the problem on its head

and instead take advantage of strain to engineer new properties into the film [27, 93]. This

will be the subject of Chapter 6.

However, it is often not possible to pick substrates with matching parameters

either due to lack of options, lack of desired properties of the substrate, or deterioration of

the substrate in response to the growth conditions. Luckily, lattice mismatch is only one

part of the story. In recent times, the rise of van der Waals materials has demonstrated

the growth of films on substrates with large lattice mismatches [183, 55, 114]. Therefore,

other substrate factors such as wettability, presence of dangling bonds, and step edges are

equally important players in the growth process. For example, in the case of copper epitaxy,

control of the surface termination of sapphire (Al2O3) changes the surface morphology and

substrate-epilayer bonding of the deposited films [120]. Similarly, the growth of high quality

NbSe2 on MoS2 was achieved due to the inert surface of the substrate despite the large

mismatch [77]. In general, developing proper passivation techniques can reduce reactivity

of the substrate surface which allow for increased wettability and a reduction in the number

of nucleation sites [41, 159].

A final comment on this section is the influence of substrate cleaning. Obviously

contaminants on the substrate surface will hinder proper growth of the film. How to remove
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said contaminants is easier said than done, however. We will go over the cleaning methods

used in the growth of Nb-Au and NbSe2 films in the later chapters.

Temperature Profile

The second knob to tune is the temperature profile of the growth process. Atoms

impinging on the surface of the substrate will have a limited lifetime to move around on the

surface before they settle down or bond with another atom [183]. The temperature of the

substrate controls the mobility and lifetime of these “adatoms” with higher temperatures

leading to higher mobilities. For epitaxial layer growth, it is important that mobilities

be sufficiently high so that adsorbed adatoms can travel far enough to find the edge of

the growing film; if it does not find the edge, then the adatom will fixate at some point

on the substrate and form a new nucleation site. How high is sufficient depends on the

film grown and the substrate. In the growth of epitaxial Te capping layers on Bi2Te3, the

sample was cooled to 150K for growth [125] whereas epitaxial niobium on sapphire required

temperatures from 750◦C to 900◦C [172]. Figuring out the correct temperature is very much

a trial and error game as every growth system is different, and there is often difficulty in

measuring the true temperature of the substrate.

Material Flux

Adjusting the rate of material flux impinging the substrate also has significant

effects on the growth of thin films, particularly for heteroepitaxial films. First off, changing

the ratios of constituent elements changes the stoichiometry of the compounds produced.

For example, the MBE growth of MnBi2Te3 versus MnBi4Te7 was found to be governed
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by the amount of Mn flux relative to Bi and Te [83]. Secondly, the reactivities of the

constituent elements affects which materials need to be supplied in excess. The MBE growth

of transition metal dichalcogenides is often characterized by the oversupply of chalcogen

flux due to the low reactivity of the transition metals [184, 114]. Under supply can lead to

vacancies and dangling bonds within the films. Moreover, different elements have distinct

evaporation temperatures meaning the sticking ratio of adatoms will differ by element [183].

Fine tuning the correct flux ratio of the sources also requires trial and error for each type

of growth and growth system.
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Reflection High Energy Electron Diffraction

(a) RHEED Diagram

(b) Reciprocal lattice and Ewald’s sphere

Figure 4.4: (a) Schematic of the RHEED setup for imaging the film surface during growth.

The distance between the point of incidence to the screen is L. The diffraction pattern

forms streaks on the screen with a spacing of w. (b) Ewald’s sphere provides a useful tool

to understand the diffraction condition 4.1. Since the film is treated as a 2D surface, the

reciprocal lattice in 3D is a grid of rods emanating from the surface. Intersection of the

rods with Ewald’s sphere (radius = ki) indicates a diffraction peak.
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Adjusting the knobs on the three parameters discussed tunes what kind of growth

will occur. There are three common models describing the different growth types: Frank-van

der Merwe (layer by layer), Volmer-Weber (island), or Stranski-Krastanov (island + layer)

[62, 165, 183]. A rule of thumb for determining the type of growth mode is based on the

surface energy of the film, the substrate, and the interface between the two. For instance,

if the film has a higher surface energy, island growth occurs in an attempt to minimize

the film surface area; if the substrate dominates, layer growth occurs to wet the substrate

as much as possible. Other principles discussed previously, such as lattice mismatch and

temperature, also affect what growth mode takes place as well as the kinetics of the crystal

formation.

However, from an experimentalist perspective, these principles are just theoretical

guides, and in-situ empirical evidence of the growth process still serves as the best judge

for what kind of growth type has actually occurred. In this thesis, the tool used to make

this judgment call is reflection high energy electron diffraction (RHEED) [101]. The basic

principle of RHEED is to shoot a small, highly energetic beam of electrons (15keV) at the

substrate at a shallow, glancing angle. The reflected electrons are imaged by a fluorescent

screen to form a diffraction pattern from which one can learn information about the film

surface. A diagram of the setup is shown in Figure 4.4.
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The location of the diffraction streaks is determined by the von Laue condition

[13]:

∆k ·R = 2πm (4.1)

Here ∆k is the change in wavevector of the scattered electron and R is lattice

vector of the film’s surface. This condition basically states that the change in wavevector

k must be an element of the reciprocal lattice of the film surface. Furthermore, since we

are only working with the surface, the corresponding reciprocal lattice in 3D consists of an

array of rods shown in Figure 4.4. Ewald’s sphere [13] helps to determine the location of the

diffraction maxima. This sphere has a radius of ki with the origin of the reciprocal lattice

sitting at the edge of the sphere. Intersection of the reciprocal rods with the sphere indicate

a diffraction peak. In reality the intersection of the rods and the sphere will not occur as

points but more commonly as streaks. This is due to the fact that realistic RHEED beams

have a finite dispersion in their energy (not perfectly monochromatic), and the reciprocal

lattice points of a film are not perfectly singular so the reciprocal rods have a finite width.

The different growth modes can be determined by the shape of the RHEED streaks.

Layer-by-layer growth corresponds to narrow lines, island growth corresponds to dots, and

island+layer has characteristics of the two previous cases. These qualitative features allow

an experimentalist to tailor the growth recipe accordingly to achieve the desire film. In this

thesis, layer growth is the goal so the sharper and more narrow the RHEED streaks are, the

better. Examples of each growth type and corresponding RHEED pattern is shown below.
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(a) Three types of growth modes.

(b) Layer by Layer (c) Island (d) Island + Layer

Figure 4.5: Corresponding RHEED patterns for the three types of growth modes com-

monly found in thin films.

Quantitative information is also present within the RHEED pattern. The electron

wavevectors ki,kf ,∆k = kf −ki form a similar triangle with that of the diffraction spacing

w and the distance between point of incidence to the fluorescent screen L [101]. This allows

one to calculate the reciprocal lattice constant a∗ of the film as:

a∗ =
2πw

λL
(4.2)

Here λ is the wavelength of the RHEED beam. In practice, knowing the wavelength

is not necessary, and a∗ is calculated by using a reference sample with a known reciprocal

lattice constant a∗r and streak spacing wr while holding the RHEED wavelength λ and

distance L constant. Now we can form a ratio from equation 4.2 giving a∗ = a∗r(wr/w).
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One can also convert this reciprocal distance into the real space lattice constant to confirm

the film possesses the correct crystal structure.

A final word about RHEED is that it also allows one to check the in-plane rota-

tional symmetry of the film. In general, 2D crystals only have 2, 3, 4, or 6 fold symmetry

with regards to rotation [13]. Therefore, rotating the sample along its azimuthal axis should

result in the RHEED pattern repeating every so often in accordance with the crystal sym-

metry. This simple check is useful to confirm that the correct crystal is growing.

4.2 He3 Cryostat and Measurement

4.2.1 Cryostat Hardware and Software

The cryostat used in this thesis is a 300mK He3 Heliox system from Oxford In-

struments. A diagram of the fridge is shown below.

Figure 4.6: Oxford He3 Heliox Cryostat
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The cryostat is split into a series of concentric cylinders. From outer to inner, the

sections roughly are: outer vacuum chamber, liquid nitrogen jacket, liquid He bath, inner

vacuum chamber, and sample space. Samples are inserted into the cryostat top-down via a

long probe. Temperature control is achieved by balancing heating from coiled-wire heaters

and the cooling power of the liquid He bath. An 8 Tesla superconducting magnet is also

available for operation. More about the specific operating procedures of the fridge can be

found in the appendix.

The unique aspect of this fridge is its ability to cool down to a base temperature

of 240mK using He3, an isotope of Helium. This occurs by condensing He3 into a liquid

and then pumping on He3 vapor to reduce its pressure and consequently its temperature.

Currently, the fridge is capable of sustaining this base temperature for up to 30 hours.

However, hold times can shorten if care is not taken to properly insulate the sample chamber.

Convective heat transfer must be kept down to a minimum by ensuring the vacuum chambers

are adequately evacuated; < 10−3 Torr for the outer vacuum chamber and < 5× 10−6 Torr

for the inner vacuum chamber. In addition, the radiation baffles on the sample probe must

fall into place to block thermal radiation coming from the warmer portions of the sample

chamber. For instance if no baffles were inserted, the Stefan-Boltzmann law indicates that

the room temperature section of the sample space can emit up to ≈ 46mW/cm2 down to the

base area. With a baffle in place that is held at 77K, an emittance of only ≈ 0.2mW/cm2

is possible, which is two orders of magnitude smaller. The use of a liquid nitrogen jacket

also aids in this purpose. Finally, electrical wiring with low thermal conductivity must be

used in the sample chamber to prevent further heat transfer.
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Below shows a diagram of the sample probe used to mount the devices for mea-

surement. All wiring on the probe that runs from the vacuum feed-through down to the

base uses Constantan wire due to its low thermal conductivity and low variation in resis-

tivity with respect to temperature. Custom PCB low-pass filters are mounted along the

length of the probe using copper brackets. Custom PCB boards are also used as the holder

for the samples to be measured. Interconnects between different sections of the probe use

standard PCB headers purchased from Digikey.

(a) Heliox Probe

(b) Close-up of sample space

Figure 4.7: Heliox Sample Probe. All wiring is Constatan wire. The sample mount is

custom designed PCB boards using commercially available connectors. The RC filter boards

are mounted further away from the sample to reduce the thermal load so that the system

can achieve its base temperature.

All control of the fridge is done using a suite of homemade LabView programs.

This includes temperature control and magnet control. Below shows the main LabView

program used to operate the cryostat. Temperature readings, cryogen levels, and system
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status is all displayed. Information about the He level is also uploaded to a Google drive on

the cloud for record keeping. The software is setup as a state machine that communicates

using a message-based queue. Auxiliary programs can write commands to the queue that

the program will process. This provides a simple interface for controlling the fridge.

4.2.2 Measurement Electronics

The measurements in this thesis are mainly focused on transport. Here we will

discuss the process for a differential conductance measurement. A schematic of this setup

is shown below. Differential conductance dI/dV is simply the derivative of the I(V) curve.

One could simply measure this curve then numerically differentiate the data to obtain the

dI/dV , but the sensitivity is limited by the resolution of the voltage data points and the

noise in the measured current. A more commonly used methodology is to DC bias a small

AC voltage signal to use as the probe for the differential conductance. The validity of this

approach is based on the small signal expansion of the I(V) curve.

I(V + δV ) = I(V ) +
dI

dV
δV +O(δV 2) (4.3)

Here δV represents the small AC signal. We see that the first order component is

now proportional to dI/dV . Feeding this signal into a lock-in amplifier locked on to the AC

probe frequency allows for accurate extraction of the differential conductance. This ideas

serves as the basis for the above setup. A lock-in amplifier provides an AC signal that is

DC biased using a transformer. The output is put through a double RC low pass filter with
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a roll-off of ≈ 1KHz to reduce extraneous noise. The signal is then scaled down using a

resistive voltage divider and sent to the sample probe. Additional passive filtering is done

at the input to the sample probe using π-filters before passing through another RC filter at

low temperature. Once the probing signal passes through the sample, the current is then

filtered to remove the DC component. The AC component is sent to a sensitive current-

to-voltage amplifier who output is in turn fed into the input of the lock-in amplifier. The

measurement process consists of successive adjusting the DC bias applied and measuring

the differential conductance signal from the lock-in.
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(a) Full K-Cell (b) Heating

Cage

Figure 4.2: (a) One of the homemade K-cells used in the MBE system. The K-cell

is constructed from a CF flange feed-through that supports a heating cage. The cage is

wrapped in tantalum foil to contain the thermal heat from the cage. Ceramic tubes are

used to insulate the wires from surrounding support rods. (b) The heating cage with the

foil removed. The wiring is tantalum. The cage is kept in shape by PBN rings.
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Figure 4.3: E-Beam Evaporator. The copper head contains 4 pockets to allow loading

of 4 different evaporation sources. Temperatures of the head are kept low by active water

cooling.

Figure 4.8: Cryostat LabView control program.
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Figure 4.9: Schematic of dI/dV measurement

(a) Homemade double RC filter PCB (b) AC + DC circuit schematic

Figure 4.10: (a) The board material is standard FR4 with an immersion gold finish for the

soldering pads. The backside is a large copper pour, also with immersion gold finish, that serves

as the ground plane. The surface mounted components are metal film resistors and C0G dielectric

capacitors. These specific types of components do not suffer from significant variations in electrical

values with respect to temperature making them ideal for cryogenic circuits. (c) Homemade audio

voltage transformer circuit to DC bias the AC signal. An AC signal is fed into the primary winding

to generate a small AC signal on the secondary. The series resistor in the secondary is used to

prevent saturation of the transformer’s magnetic core. The capacitor provides a low impedance

shunt for the AC signal to return back to the transformer.
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Chapter 5

Topological Superconductivity in

Au Thin Films

As it was stated earlier in Chapter 2, evidence of Majorana zero modes was

observed in Au (111) films proximitized by superconducting vanadium and EuS islands

[169, 105]. In this thesis we wish to expand upon this approach by exchanging the vana-

dium for niobium. The rationale is to enhance the size of the topological gap by increasing

the size of the superconducting gap in the surface states. Bulk vanadium superconducts at

around 5K whereas niobium does so at 9K. Since both materials are conventional s-wave

superconductors, BCS theory predicts that the magnitude of the pairing gap at T ≈ 0 pro-

portional to the transition temperature: |∆| = 1.76kBTc [158]. Therefore, simply swapping

to niobium can almost double the gap.

This chapter presents the successful growth of Au (111) films on top of niobium

with a sapphire substrate; MBE and e-beam evaporation are the deposition methods used.
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The films are characterized by a combination of RHEED, AFM, and resistivity measure-

ments. Additional conductance measurements are studied using point contact spectroscopy

in the tunneling limit. The results indicate that superconductivity is induced in the surface

bands and that a tellurium capping layer enhances the Landé g-factor of the Au film. We

discuss possible origins for this effect and next steps.

5.1 Growth of Nb-Au Thin Films

Niobium in its bulk form possesses a BCC (body centered cubic) structure with a

cubic lattice constant of 3.3Å. However, the (110) crystal plane has a 2D hexagonal structure

with lattice constant of 2.86Å. It has been found that deposition on A-plane sapphire results

in a Nb film that is naturally oriented in the (110) direction [167]. Furthermore, the Au

(111) crystal plane is also hexagonal with a closely matching lattice constant of 2.88Å. Such

minimal mismatch suggests that growth of Au (111) on niobium should be possible.

We purchase the A-plane sapphire from MTI Corporation and clean the substrates

using a specialized detergent solution. After loading the sample into the MBE chamber,

the Nb-Au film is grown according to the following recipe. Representative RHEED images

of the two films are also shown below.

1. Outgas substrate for 30 minutes at 500◦C.

2. Cool down to 100◦C.

3. Deposit 1nm of Nb using the e-beam evaporator. Substrate temperature is held at

100◦C.
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4. Anneal “seed” layer until RHEED pattern appears, approx. 400-450◦C.

5. Continue Nb deposition at current substrate temperature. Substrate heating is ad-

justed as needed depending on the evolution of the RHEED pattern.

6. Once desired thickness is achieved, cool down sample to room temperature.

7. Deposit desired thickness of Au using a K-cell. Substrate is held at room temperature.

8. Anneal film ≈ 100◦C to improve Au RHEED.

9. Let sample cool to room temperature before removing from chamber.

Figure 5.1: Representative RHEED patterns for the Nb and Au layers grown. The direc-

tions shown are relative to the sapphire crystal plane.

Figure 5.1 shows some example RHEED images of the Nb and Au films. The

images are taken along two distinct symmetry directions that are 30◦ apart from each

other rotated along the azimuthal axis; the directions indicate the crystal orientation with

respect to the A-plane sapphire plane. The sharp lines in the RHEED patterns indicate that
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the growth of the Nb and Au films is epitaxial and follows the layer-by-layer growth mode.

Moreover, the niobium and gold RHEED streaks have similar spacings along both directions

as expected with calculated surface lattice constants of 2.92Å and 2.83Å respectively.

(a) 5nm Au film (b) 15nm Au film (c) 15nm Au film

Figure 5.2: AFM image showing the smooth surface of a 5nm and 15nm Au film grown

on top of niobium.

The smooth surface of the film is corroborated by atomic force microscopy (AFM)

images shown in Figure 5.2. The images are taken using a Brudker 5000 Dimension AFM

system with the tip engaged in tapping mode. The scans indicate uniform coverage of

the sapphire substrate and are even capable of resolving the granular structure of the Au

film. These features are the terraces that form from the layer by layer growth observed in

RHEED. Occasionally the edges of these terraces will curve at 60◦ or 120◦ angles in line with

the hexagonal structure of Au (111); this can be seen in the center dark region of Figure

5.2 (c). Some artifacts are present in the AFM scans caused by external vibrations to the

equipment during measurement. In addition, pinholes can be observed in some samples

which is most likely the result of impurities adsorbed onto the substrate surface prior to

growth.
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The AFM images shown above correspond to Au films deposited close to room

temperature. Normally deposition of Au occurs at elevated substrate temperatures to in-

crease surface mobility of the adsorbed atoms to achieve epitaxial growth [168], but we have

found that our films are surprisingly sensitive to temperature. Attempting to deposit Au

films at temperatures ≈ 150◦ already leads to dissociation of the layer. This is seen in Fig-

ure 5.3 in which the Au layer is now composed of a large network of plateaus that percolate

across the substrate surface. The surface of the plateaus are quite flat and one can even

see repetition of the terraces which indicate layer by layer growth. However, the canyons

and valleys that appear are problematic for further deposition of additional materials. The

cause of this dissociation at such low temperatures is still unclear and more effort needs to

be taken to understand the mechanism driving this effect.

Figure 5.3: AFM image showing the formation of irregular canyons and valleys in the Au

film as a result of deposition at elevated temperatures.
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5.2 Point Contact Spectroscopy and BTK Theory

A point contact is when two banks of material touch each other but only at a

minuscule point. Unlike tunnel junctions where the two banks are separated by an insulating

barrier, here the materials are typically in intimate contact, and this changes the physics of

the junction. Electrons no longer tunnel due to quantum probability but instead travel in

ballistic fashion from side to the other. The condition for this to occur is when the mean free

path l is much greater than that of the contact radius a. Surprisingly, a potential difference

can still develop across the point contact despite what appears to be a lack of scattering in

the contact. The reason is that only a finite current can flow through such a small orifice

for a given voltage giving rise to a measurable resistance. This is known as the Sharvin

resistance, and it is purely a geometric consequence of the junction [149, 117]. One may

also think of this resistance as the result of limiting the number of transverse transmission

channels between the two reservoirs of material.

Point contacts can be used to study a number of phenomena, and in this chapter

we use this technique to probe superconductors. We consider a point contact made between

a normal metal and superconductor. The theory of transport through such a junction is

most commonly captured in the framework of BTK (Blonder, Tinkham, Klapwijk) theory

[21]. There are four types of scattering processes available for an incident electron from the

metal encountering the contact shown in Figure 5.5:
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Figure 5.4: Setup of a point contact. Here l is the mean free path of the electron and a

is the contact radius. When l >> a, the electrons can travel through the contact without

any backscattering due to the improbable nature for an electron to make it pass the small

orifice and then reflect back through.

1. Andreev reflection with probability amplitude A. A hole is created below the Fermi

surface.

2. Normal reflection with probability amplitude B.

3. Transmission as an electron-like quasi-particle (above the Fermi surface) with proba-

bility amplitude C.

4. Transmission as a hole-like quasi-particle (below the Fermi surface) with probability

amplitude D.

Total probability for all possible events must sum to one: |A|2+|B|2+|C|2+|D|2 =

1. These amplitudes can be found by solving the Bogoliubov-de Gennes equation for the

wavefunctions on the normal and superconducting sides with a Dirac delta potential at the
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Figure 5.5: Different scattering processes available in a point contact. The black curves

are the dispersion relations for the normal metal and superconductor. The figure focuses

on the dispersions near the Fermi surface hence the reason the metal’s quadratic dispersion

appears linear. Here an incident e− from the normal metal can scatter into 4 possibilities.

The red curve is a Dirac delta potential with amplitude Z that separates the two materials

and accounts for any barrier that is created from an imperfect contact.

interface to account for any barrier caused by an imperfect contact. One will find that the

probability amplitudes will depend on energy E. Following reference [21], we can use these

probability amplitudes to find the total current through the junction as:

I = 2NnAevf

∫ ∞
−∞

f→(E)− f←(E)dE (5.1)

Here Nn is the density of states of the normal metal, A the contact area, vf

the Fermi velocity, f→ the electron distribution function for electrons flowing metal →

superconductor, and f← the distribution function for electrons flowing the other way. We
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make the assumption that all particles that are incident on the interface, whether it be

from the normal or superconducting side, can be described by the Fermi-Dirac distribution

f(E) = 1/(1 + eE/kbT ). Therefore, f→ = f(E − eV ). As for f←, we use the fact that

all electrons passing through the contact must undergo one of the four processes described

above so that we have:

f← = |A|2(1− f→(−E)) + |B|2f→(E) + (|C|2 + |D|2)f(E) (5.2)

The first term is simply a statement of Andreev reflection in reverse: a hole incident

on the interface will drag an electron out of the superconductor and back into the metal;

1− f→(−E) is the distribution of holes approaching the interface with the negative energy

accounting for the fact that holes lie below the Fermi level µ. Second term is simply the

portion of normal reflected electrons that contribute to the reverse current. And the last

term is the number of quasi-particles in the superconductor that transmit across as electrons.

The total current expression and differential conductance can now be simplified down to:

I = 2NnAevf

∫ ∞
−∞

(f(E − ev)− f(e))(1 + |A|2 − |B|2) (5.3)

dI

dV
= 2NnAevf

∫ ∞
−∞

(−∂f(E − eV )

∂V
)(1 + |A|2 − |B|2) (5.4)

This equation simply states that the current through a contact is enhanced by

Andreev reflection due to the fact that it is a process that moves two electrons across the

interface and that normal reflection reduces the current. The specific values for A, B can

be found in reference [21], and they differ significantly depending on if E < ∆ or E > ∆. In

addition, the strength Z of the Dirac delta potential at the interface also drastically changes
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the shape of the differential conductance curve. We plot below several different dI/dV curves

with varying Z values showing a transition from a Andreev reflection dominated regime to

a tunneling regime.

(a) Z = 0 (b) Z = 0.5 (c) Z = 5

Figure 5.6: Evolution of the differential conductance through a point contact as the barrier

strength Z is changed.

At Z = 0, the contact is perfect, and below the gap ∆ there is a doubling of the

conductance compared to that above the gap as expected for Andreev reflection. At Z = 0.5,

the barrier introduces normal reflection that reduces conductivity below the gap. Finally,

at Z = 5, the differential conductance mirrors that of a tunnel junction. This evolution is

expected because a stronger strength Dirac delta potential isolates the two banks from each

other more effectively. Therefore, it is possible for a point contact to convert into a tunnel

junction in the limit of high Z. We will take advantage of this fact later in the chapter.

We conclude this section with some final words about generalized models of point

contact spectroscopy. The first point is that an additional term Γ can be included in the

expressions for the probability amplitudes, A, B, C, D. This accounts for any inelastic
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scattering that contributes to broadening of the differential conductance that cannot be

accounted for by temperature [128, 28]. The second point is that point contact spectroscopy

is actually a “directional” process. This means that the differential conductance depends

on the angle with which the electrons are injected into the sample surface [28]. The BTK

theory presented above is treated in the 1D limit, but realistic point contacts are 3D. This

fact actually allows one to probe for the pairing symmetry in a superconductor and study

the Fermi surface topology [124, 56, 29]. Lastly, point contacts can be used to measure

the electron-phonon interaction in metals. Backscattering in point contacts introduces a

measurable correction to the current that is detectable in the derivative of the differential

conductance d2I
dV 2 [28].

5.3 Point Contact Spectra of Au Films

Surprisingly, point contacts can be made using silver paste. Numerous studies

of superconductivity using silver paste point contacts have been reported in the literature

[28, 30]. The goal is to attach a thin wire, typically gold, onto the surface of the desired

material using a small droplet of silver paste. The gold wire serves as one of the source-drain

electrodes in the device. A picture of the setup is depicted below.
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Figure 5.7: Setup of a silver-paste point contact. A thin Au wire is held down by a small

droplet of silver paste. A capping layer of Se or Te serves as the tunnel barrier to limit the

flow of silver paste onto the Au surface.

This approach may seem counterintuitive as silver paste contacts are macroscopic

in size, and one may wonder how a minuscule contact area is achieved with this rough

approach. The prevailing theory is that many superconducting materials possess an intrinsic

oxide layer on their surface which serves as an insulating barrier. When silver paste is placed

on the surface, the silver particles in the paste can migrate into pinholes and imperfections

within the oxide layer forming a series of microbridges in the spot area [56]. The size of

these defects and the silver particles is microscopic allowing for the surprising formation of

point contacts. It should be kept in mind that this approach most likely results in many

point contacts in parallel as there is no control over how and where the silver paste diffuses

to on the surface.

One issue arises, however, in the Nb-Au films considered here: Au does not oxidized

readily. Therefore, there is no intrinsic barrier that forms upon which silver paste can be

placed without electrically shorting the electrode to the film. We overcome this problem

by depositing a capping layer of selenium (Se) or tellurium (Te) to serve as an artificial
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barrier. Both elements are semiconductors with direct bandgaps of 400meV for tellurium

and 1.6eV for selenium [66, 63]. Therefore, these materials act as insulators within the

range of the low probing voltages used in this study. The selenium or tellurium capping

layer is deposited at room temperature in-situ using the MBE chamber after the growth of

the Au (111) film. Capping layer thicknesses ranged from 2 - 5nm for Se and 7 - 10nm for

Te.

Initial tests were done using Se capping. Figure 5.8 below plot the differential

conductance of Se capped Au films taken at 4.2K under zero magnetic field; the data is

normalized to the normal state conductance. We observe that adjusting the thickness of

the Se capping layer allows for a transition from Andreev reflection dominated transport

to tunneling. For 2nm of Se, a single peak at Vsd = 0mV is found. As the thickness of the

Se increases, the peak splits into two coherence peaks and the conductivity below the gap

depresses to below that of the normal state value. This fits well with schematic setup of

silver paste point contacts. Thinner barriers tend to have larger pinholes or imperfections

which increases the likelihood of the silver paste coming into intimate contact with the film.

As thicknesses increase, the defects in the capping layer appear less and the only method

of transport is through tunneling across the Se barrier.

The transition between the two regimes can be taken into account with BTK

theory. The black dotted lines plot the corresponding BTK fits with the Γ parameter

included to account for additional possible broadening. The curves fit well with the data

(fitting values presented in the table) but indicate that the external broadening Γ is quite

large, almost as large as the superconducting gap. This is problematic as any possible finer
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Figure 5.8: Differential conductance of point contact devices with different Se barrier

thicknesses taken at 4.2K. The table shows the fitting parameters used for the BTK fits

(black dotted lines). Tuning the Se thickness allows one to transition from an Andreev

reflection dominated regime to a tunneling regime.

features are most likely obscured. Furthermore, the subgap conductance is still quite high

in comparison to the normal state conductance; in other words, no hard gap is observed.

These problems are summarized in another device shown in Figure 5.9. This plots

the differential conductance at 300mK of a 8nm Nb/5nm Au film capped with 6nm of Se as a

function of the out of plane magnetic field; the data is normalized in units of the conductance

quantum G0 = 2e2/h. We observe that the measured conductance in the subgap region to

be quite large, ≈ 8-9 G0, even though theoretically the superconducting gap should prevent

all conduction at these low temperatures. The most probable explanation is provided by
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the Landauer formalism [33] which suggests that this is the result of a leaky barrier which

allows for multiple transmission channels to remain present even in the superconducting

phase. Furthermore, while not shown in the plot, BTK fits to the different slices of the

density plot produce broadening values Γ that is on the order of 0.2-0.3 meV, which is once

again comparable to the magnitude of the superconducting gap. These results demonstrate

that using an Se capping layer as a tunnel barrier is insufficient for detection of Majorana

zero modes via tunneling spectroscopy.

Figure 5.9: Density of plot of the differential conductance of a 8nm Nb/5nm Au point

contact device capped with 6nm of Se as a function of out of plane magnetic field at 300mK.

The conductance is quite high even in the subgap regime indicating a leaky barrier.
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5.4 Tunneling into Gold and Topological Superconductivity

We switch to tellurium as the next choice of tunnel barrier materials. Using 7nm of

Te, we immediately find a substantial reduction in the broadening Γ. We believe this is the

result of better crystalline quality and uniform coverage of the tellurium film. Figure 5.10

plots the differential conductance taken at 300mK of a 15nm Au / 8nm Nb bilayer capped

with 7nm Te. Here we observe a bulk superconducting gap of ∆B ≈ 0.85meV and the

appearance of two smaller subgap peaks at ±0.33meV. We claim these smaller peaks are in

fact the coherence peaks of a second superconducting gap forming in the surface bands of Au

(111). Two points support this notion. First, the conductance at Vsd = 0mV is dramatically

reduced in comparison to the Se capped samples which demonstrates the device operates

as a tunnel junction instead of a metallic point contact. This fact is corroborated by fitting

the data to a superposition of two BTK curves of equal weights (black dotted line) with the

broadening Γ limited by the resolution of the dV voltage sweep used in the measurement.

The fit gives a barrier strength of Z ≈ 2.57 for the BTK curve corresponding to the bulk

gap which means the contact lies within the tunneling regime. Therefore, the conductivity

is dominated by quantum tunneling at the interface instead of ballistic transport into the

bulk Au film.

Secondly, the smaller peaks retain their position under application of a magnetic

field. Figure 5.11 plots the differential conductance of the device at 300mK as a function

of the in-plane magnetic field. The density plot shows the subgap peaks maintain their

location with increasing field in contrast to possible spinful Andreev bound states which

would shift in energy in response to the Zeeman interaction. As a result, it is reasonable to
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Figure 5.10: Differential conductance of a 8nm Nb/15nm Au/7nm Te point contact device.

The extrinsic broadening Γ is reduced significantly allowing for the observation of a second

superconducting gap. The subgap conductance also approaches zero indicating that the

device is truly in the tunneling regime.

conclude that the smaller peaks correspond to a surface gap of ∆s ≈ 0.33meV.

Interestingly, the surface gap does not persist for all values of the magnetic field. In

Fig 5.11, the surface coherence peaks disappear around 1.2-1.4T when the tunneling spectra

changes from a “U” to a “V” shape, but the bulk gap persists beyond. Closing the surface

gap but maintaining bulk superconductivity marks a boundary between two superconduct-

ing regimes that may be attributed to a possible phase transition. In a superconductor with

Rashba spin-orbit coupling such as this one, the influence of the in-plane magnetic field can

drive the system into a gapless phase where the ungapped portions of the Fermi surface

correspond to Bogoliubons with zero energy [182, 123, 177]. The transition is predicted to

occur when ∆ = gµB with g, µB corresponding to the Landé g-factor and Bohr magneton,

respectively. Substituting in the value of the surface gap and corresponding magnetic field

allows us to get a rough estimate of the g-factor as ≈ 4, twice the usual value of 2. This is
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a most unusual result as gold is known to have the standard g-factor of 2 [110], and we will

see further evidence of changes in the gyromagnetic ratio is subsequent devices.

Figure 5.11: In-plane magnetic field dependence of the dI/dV of the device listed in Figure

5.10. As the field increases, the two peaks at ± 0.33meV do not change in energy which

helps to solidify that they are in fact the coherence peaks of the surface gap.

A cleaner transition between the two superconducting regimes is observed in a

thinner 5nm Au/8nm Nb bilayer sample capped with 10nm Te. The differential conductance

taken at 300mK as a function of the in-plane magnetic field is plotted in Fig 5.12a. As before

with the 15nm Au sample, the zero field subgap conductance at Vsd = 0mV approaches zero

indicating the device operates within the tunneling regime. However, the presence of the

additional coherence peaks from the surface gap is noticeably missing. It should be pointed

out that the Au film in this device is only 5nm thick so the proximity effect is expected to

induce a larger gap into the Au (111) surface bands in comparison to the 15nm Au sample

shown in Fig. 5.11. Therefore, the superficial disappearance of the surface gap is most
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Figure 5.12: (a)Differential conductance of a 9nmTe/5nm Au/12nm Nb film at 300mK as

a function of the in-plane magnetic field. A diamond-shaped gap structure is observed along

with the appearance of Andreev bound states (b) 4-terminal resistance vs. field at different

temperature. (c) 4-terminal resistance vs. temperature at different in-plane magnetic fields.

likely the result of significant overlap with the bulk gap.

Still, the presence of superconductivity in the surface states is detectable from

its magnetic field dependence. The density plot in Figure 5.12 reveals the presence of a

diamond-shaped structure which we attribute to be opening and closing of the surface gap.

The upper and lower tips of the diamond at ±3T are where a noticeable transition occurs

in the shape of the tunneling spectra as the curves change from a “U” to a “V” shape.

From this point onwards, the tunneling gap continues to persist albeit wider and shallower.

We emphasize that superconductivity is still present in the sample as indicated in Fig

5.12b,c; the four terminal resistance measurements clearly indicated that the film remains
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superconducting at 300mK for all ranges of the magnetic field. This further points to the

possibility of gapless superconductivity present in the surface states of Au (111) [182, 123].

A subsequent sample of 8nm Nb/10nm Au/9nm Te showed similar behavior. Fig-

ure 5.13 plots the differential conductance through a point contact on the 10nm Au film

in the tunneling regime at 300mK. We observed only a single set of coherence peaks at

±0.5meV, and the associated gap closed much faster, disappearing at only around 0.5T

for in-plane fields. The presence of Andreev bound states is also observed, as seen in the

zero field plot. Furthermore, these states appeared to shift in energy as the in-plane field

changes but the fast closing gap obscures the traces. We emphasize as before that bulk

superconductivity is still present in the film as shown in Figure 5.14. A broad but notice-

able gap feature is still observed and the resistance of the film remains at zero at 300mK

through the sweep of the magnetic up to 3.25T. Therefore, we have further evidence of the

ability to close the gap without the destruction of bulk superconductivity.

The origin of the rapid reduction of the gap at small in-plane fields is unclear given

that the prior 14nm Au thick film showed a gap closing closer to 1T. Moreover, the lack of

a second pair of coherence peaks calls into question whether the features correspond to the

surface gap or the bulk gap. Current evidence suggests the former claim for two reasons.

First, the zero field transition temperature suggests an estimated BCS gap of approximately

which does not correspond to the ±0.5meV peaks. Secondly, the subgap conductance is

lower in this device in comparison to previous point contacts. This further suggests that

conductivity is strictly limited to only the tunneling at the interface between the gold and

tellurium layers, and it should not have significant contributions from the bulk. But, neither
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of these reasons account for the closing of the gap at small fields. In the next section we

discuss evidence of a possible mechanism that could result in this effect.

(a) (b)

Figure 5.13: (a)Differential conductance of a 9nmTe/10nm Au/8nm Nb film using silver

paste point contacts in the tunneling regime as a function of the in-plane magnetic field at

300mK. Unlike prior films, the in-plane field appears to close the superconducting gap much

sooner at only ≈ 0.5T. (b) Logarithmic plot of the data in sub-figure (a). The appearance

of subgap Andreev bound states is visible at zero field.
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(a) (b)

Figure 5.14: (a)Differential conductance of a 9nmTe/10nm Au/8nm Nb film using silver

paste point contacts in the tunneling regime as a function of the in-plane magnetic field

at 300mK at higher fields. A broad but noticeable gap feature is still observable. (b) 4-

terminal resistance vs. field at 300mK. This shows that superconductivity is still present

up to ≈ 3.25T.

5.5 The Enhanced Landé g-Factor

In addition to the surface gap, we also observe two smaller subgap peaks corre-

sponding to the formation of Andreev bound states in the 5nm Au/12nm Nb film. These

symmetric peaks are present at zero field and shift in opposite directions as the in-plane field

is changed. They coalesce at zero bias at around ±0.5T before merging into the coherence

peaks at +/-1T; their paths are traced out in Fig. 5.15a. The fusion of two Andreev bound

states at zero bias has previously been discussed as possible evidence of the formation of
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Majorana bound states [35], but we emphasize that this is not the case here. A line cut at

zero bias shown in Fig. 5.15b makes it clear that the zero bias peak is unstable with respect

to the magnetic field. A true zero bias peak corresponding to a Majorana zero mode would

appear only after the gap closes and persist until superconductivity is destroyed [6, 40].

Figure 5.15: (a) Highlighted paths of the Andreev bound states. (b) Line cut at Vsd =

0mV of the density plot in Figure 5.12a. The zero bias peak appears at 0.5T but does not

persist indicating that it cannot correspond to a Majorana zero mode. (c) Position of the

Andreev bound states as a function of the magnetic field. The colored lines correspond to

linear fits with red (blue) corresponding to up (down) spins. The average g-factor is ≈ 12

based on the fits.

However, the slope of the trace lines in Fig. 4a suggests that the Zeeman energy

acquired by the bound states is quite large. To confirm this, we plot out the subgap peak

positions with respect to the field in Fig. 4c. The data is fitted to the Zeeman energy

gµBB with spin S = 1
2(−1

2) corresponding to the red (blue) lines. From this, we extract an
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average Landé g-factor of ≈12, a six-fold increase above the conventional g = 2. This large

g-factor associated with states at the interface between the Au and Te layers increases the

acquired Zeeman energy and allows the magnetic field to overcome the surface pairing gap

sooner than the bulk; this also corroborates well with the early closing of the surface gap

in the device featured in Figure 5.11 and in Figure 5.13. Enhanced g-factors are desirable

for topological superconductors because they allow for a topological phase transition using

smaller magnetic fields that will not destroy superconductivity [80, 98]. Furthermore, this

effect is a local one: it only occurs at the interface between Au and Te. Reducing the

lateral dimensions of the Te layer to a thin quasi-1D nano-wire on top of the Nb/Au film

can can serve as a fruitful playground for exploring the formation of Majorana zero modes

[123, 177].

Now we discuss possible origins for this enhanced g-factor. Given that gold and

niobium both possess the standard g-factor of 2 [177], it suggests that the observed effect

is caused by the tellurium barrier. The g-factor of a bound state is determined not just by

the main host material but also the confining barriers where the tails of the wavefunction

leak into the classically forbidden area. This effect has been observed in GaAs/AlxGa1−xAs

quantum wells in which electrostatic gates are used to push the confining potential, and

consequently the bound state, into the barriers thereby changing the gyromagnetic ratio

[139, 155]. However, it is not clear whether leakage into the tellurium barrier can account

for the observed six-fold increase in the g-factor in this scenario. This is especially true

considering that there is no obvious mechanism which would shift the Andreev bound states

further into the barrier.
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Another possible cause may lie in the effects of spin-orbit coupling. Deviations

from the free electron g = 2 can occur as a consequence of spin-orbit interaction on the

band structure of a semiconductor; this was shown to account for the large g ≈ 50 seen in

InSb [136]. The Roth-Lax-Zwerdling formula for the gyromagnetic ratio in semiconductors

depends on both the spin-orbit interaction strength and the size of the band gap [136].

Smaller band gaps and larger spin-orbit strengths can lead to higher g-factors. Tellurium is

a narrow, direct band gap (≈ 0.4eV) semiconductor and since it is in proximity with the Au

(111) surface which has large spin-orbit strengths of ≈ 50meV, this would naively suggest

a possibly larger value for g [10, 85].

However, the aforementioned formula is typically applied to semiconductors with

zinc-blende structure in which the Dresselhaus spin-orbit interaction is of primary concern

[38]. The scenario here is that the bound state observe lives within the gold film and not

within the tellurium capping layer, at least not a significant portion of it. Therefore, it

is not clear how spin-orbit effects in the tellurium play a role in the apparent shift. An

alternative explanation might suggest that spin-orbit effects in the Au (111) surface are

responsible, but, to the author’s knowledge, no prior work has been done to reveal any

discrepancies between the surface and bulk g-factors in gold. Moreover, it remains to be

seen if the observed g-factor is anisotropic as only one field direction has been measured.

One final point arises in this discussion in regards to the origin of the Andreev

bound states. These states can appear whenever there are variations in the superconducting

gap that allow for multiple Andreev reflections to create a bound state. Reports of similar

Andreev bound state behavior was seen previously in aluminum/iron interfaces [19]. These
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subgap states are the result of spin-dependent phase shifts caused by the ferromagnetic

iron lead. However, it is not clear if this is the mechanism behind the observed states as

tellurium is not inherently magnetic. Previous reports of current induced magnetization

have been observed in bulk trigonal tellurium [49], but whether this effect is present in thin

films remains to be seen.

Another probable cause may come from magnetic impurities in the silver paste

used to form the contact. But, prior reports indicate that silver paste is not hysteretic

[51], and no magnetization should be present at zero field. Therefore, one might expect

the Andreev bound states to coalesce at zero bias when the field is zero because there is

no magnetization present to create spin-dependent scattering to differentiate up and down

spins. Yet, the trace lines in Figure 5.15 (a) clearly shows the bound states split at zero field.

The cause of this splitting is currently still unknown and more investigation is required.

To conclude, the enhanced g-factor that appears to be caused by the deposition

of tellurium is attractive because it allows for a larger Zeeman effect. However, it is still an

open question whether this material can meet the requirements for topological supercon-

ductivity in gold. In particular, it has yet to be established that deposition of tellurium is

capable of tuning the Fermi energy of the gold surface. This is a necessary ingredient as

it dictates the size of the topological regimes one can achieve. More work must be done in

either point contact devices or tunnel junctions to observe whether the surface band edge

has shifted after tellurium deposition. Additional studies must also be conducted to un-

cover the origin of the enhanced gyromagnetic ratio. This is important as it can determine

whether the effect is electrically tunable, a powerful capability for the control and manipu-
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lation of possible Majorana zero modes. For example, Ge/Si nano-wires and quantum dots

can experience significant changes in the g-factor for holes as a consequence of spin-orbit

interaction which can be modified via electric fields [46, 75]. These experiments can also

help to further elucidate the origin behind the Andreev bound states and determine if they

are a consequence of tellurium or magnetic impurities.
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Chapter 6

Tunable Superconductivity in

NbSe2 Thin Films

6.1 Transition Metal Dichalcogenides (TMDs)

6.1.1 First there was graphene

The 2010 Nobel prize in Physics was awarded to Andre Geim and Konstatin

Novoselov for their ground-breaking work in graphene, an atomically flat sheet of carbon

organized in a honeycomb lattice [1, 119]. The key ingredient to this achievement laid in the

successful isolation and identification of graphene using a combination of sticky tape, high

quality graphite crystals, and properly tuned thicknesses of silicon oxide on silicon wafers

[53]. This discovery has put graphene in the spotlight as researchers eagerly explore new

applications for this material [118, 15].
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One of graphene’s main selling points is the effect of dimensionality. Whittling

the thickness of a crystal down to a nanometer or less does more than simply reduce the

amount of material present. For one, the surface area to volume ratio increases dramatically

which allows graphene to act as an excellent sensor for chemical detection [144]. Structural

integrity can also ironically improve due to the removal of weak van der Waals interactions.

This is why graphite appears weak and yet graphene is one of the strongest tensile materials

to date [87]. In this thesis, we are concerned with another important effect of dimensionality,

and that is confinement. Quantum mechanics starts to play a large effect on the electronic

properties of solids when the electrons are confined to small regions and what better way

to confine electrons than by reducing the size of the crystal in which they live. A famous

example in the context of graphene is the photon-like dispersion of the electrons which

leads to a half-integer quantum Hall effect [187]. This is why graphene and other layered

materials serve as ideal playgrounds for studying physics in a truly 2D world.

6.1.2 Now comes transition metal dichalcognides (TMD)

In the wake of graphene’s success came the next generation of 2D materials, and

amongst them a family of compounds known as transition metal dichalcogenides (TMDs)

rose to the forefront. These materials are similar to graphene in that bulk crystals are

composed of 2D sheets stacked on top of each other, however their elemental composition

distinctly separates them from their carbon counterparts.
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Firstly, in contrast to graphene’s singular and signature honeycomb lattice, mono-

layer TMDs possess three commonly found structural phases: 1T (octahedral), 1H (trigonal

prismatic), and 1T’ (orthorombic) [183]. The 1H polytype is of particular interest because

it has a honeycomb lattice like graphene except that the two sub-lattices are composed of

different elements resulting in a crystal that lacks inversion symmetry. Consequently, the

band structure at the K and K’ valleys of the Brillouin zone are no longer equivalent, and

this allows one to distinguish the two points by a new “valley” degree of freedom [176, 175].

The Hall effect has been used to confirm this fact by showing that charge carriers from

different valleys move in opposite directions resulting in a opposite Hall voltages depending

on the carrier type [102]. In fact, a new field of research dubbed “valleytronics” has arisen

from the ability to tune this extra knob in 1H TMDs [143]. Similar structure-driven physics

has also been discovered in the case of 1T’ TMDs in regards to the quantum spin Hall effect

[133].

Structural considerations aside, the variety of elemental compositions and ability

to adjust the thickness with sub-nanometer resolution have allowed TMDs to occupy a wide

variety of possible electronic behavior from insulator all to way to superconductor [106]. For

example, the inclusion of heavier elements leads to stronger spin-orbit interaction in TMDs

than in graphene allowing for new spin-correlated phenomena to be explored [166]. In

addition, reducing the number of layers causes a dimensional crossover from the 3D to the

2D limit where confinement effects can significantly alter the physics. In the case of MoS2,

multi-layer samples are indirect bandgap semiconductors whereas a monolayer has a direct

gap [103]. Similarly, monolayer NiTe2 has been theoretically predicted to superconduct
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despite the bulk lacking any such ability [188]. The reduction in dimension also permits

researchers to use gating to tune the electron density over a significant portion of the sample.

An famous example is the ability for thin flakes of MoS2 to transition from a band insulator

to a superconductor under high doping from ionic liquids [180].

Furthermore, there is no a priori reason why one must limit themselves to just one

TMD material. The van der Waals structure of these layered crystals offer a convenient

path for researchers to engineer new designer materials by stacking different TMDs on top

of each other to form heterostructures [96]. The interaction between layers can enable new

physics and applications not present in naturally occurring substances [190, 89]. One can

go even further and adjust the relative angle with which one stacks a layer on top another.

This can alter the electronic properties of the total structure through the creation of Moire

superlattices and has opened up a whole new field of “twistronics” [25]. This idea was first

demonstrated in “magic-angle” graphene in which superconductivity emerged as a result of

the angular misalignment of two graphene sheets [185, 24].

6.1.3 Superconductivity in NbSe2

A number of TMDs are known to exhibit superconductivity. The transition to this

phase can either occur naturally, be induced by gating, or through chemical intercalation

[173, 150, 180, 12, 106]. The unique crystalline structure of TMDs endows superconductivity

in these systems with novel properties. Among the possible candidates, we focus on 2H-

NbSe2 in this thesis.
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Figure 6.1: (a) Diagram showing the different polytypes commonly found in layered TMD mate-

rials. (b) Table of different layered TMDs. (c) Band structure of MoS2 as number of layers changes.

(d) Schematic representation of the band structure of 1H MoS2. The orange and blue colors cor-

respond to up and down spin bands. The K and K’ valleys have opposite spin splitting as a result

of inversion symmetry breaking and spin-orbit interaction. Figures adapted with permission from

Springer Nature: Nature Review Materials, reference [106], Copyright 2017.

2H-NbSe2 is an type-II s-wave superconductor that can superconduct down to even

a monolayer [43, 161]. As discussed before, the honeycomb lattice of TMD materials results

in a lack of inversion symmetry. Consequently, a strong spin-orbit field at the K and K’

valleys of the Brillouin zone appears and polarizes the spins of the electrons to the out of

plane direction. This is commonly referred to as Ising spin-orbit coupling and the effect as

spin-valley locking [138, 58]. Therefore, pairing electrons at the K and K’ valleys results

in Cooper pairs that are unusually robust against in-plane magnetic fields because of their

affinity to align along the spin-orbit field instead.
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Evidence of this effect has been observed in mono and few layer NbSe2 [173]. In

fact, the spin-valley locking is so strong that superconductivity persists even beyond the

Pauli limit which is defined as the field needed for the Zeeman effect to align the spins

in a singlet Cooper pairs, Hp ≈ 1.86Tc. The estimated upper critical in-plane field Hc2

was determined be ≈ 35T, over six times larger than the Pauli limit. Similar observations

have also been seen in gated MoS2 [97, 137]. Enhancement of the in-plane critical field has

been discussed previously in terms of spin-orbit scattering in which disorder randomizes the

electrons spins and prevents alignment by magnetic fields [74]. However, the TMD samples

studied were crystalline exfoliated flakes in which disorder was low and mean free paths

were long so scattering effects were ruled out as a viable explanation. This novel type of

spin-orbit enhanced superconductivity has been dubbed Ising superconductivity and serves

as an example of new correlated physics present in TMD materials.

However, enhancement of the critical field is not the primary motivation for ex-

ploring NbSe2 in this work. Rather, the presence of strong, intrinsic spin-orbit interaction

in a superconductor like NbSe2 makes it an attractive candidate for realizing Majorana

fermions. Several theoretical proposals have already explored this possibility in a number

of ways. In particular, it has been demonstrated a priori that pushing monolayer 2H-NbSe2

beyond the Pauli limit induces a transition to a nodal topological superconductor [58, 146].

The band structure in this phase is characterized by gapless nodes that are connected by

Majorana flat bands which allow for chiral Majorana edge states to appear. The ability

to tune this transition via only the magnetic field is particularly enticing when compared

to the semiconducting nano-wire approach that involves multiple parameters. So far, no
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Figure 6.2: H-T phase diagram of few layer NbSe2. As the sample thickness approaches

the monolayer limit, the in-plane critical field can easily rise above the Pauli limit. Reprint-

ed/adapted by permission from Springer Nature: Nature Physics, reference [173], Copyright

2015.

experimental observation of Majorana states have been reported using this approach. An-

other suggestion for achieving topological superconductivity is to p-dope monolayer TMDs

to promote triplet pairing between electrons in the same K or K’ valley that results in p-

wave superconductivity [60]. Another is to leverage the Ising spin-orbit coupling in TMDs

to generate Majorana zero modes in chains of magnetic impurities [148]. In general, bulk

NbSe2 is a popular substrate for exploring 2D topological superconductivity. Recent ex-

periments have observed evidence of Majorana fermions present at the interface between

NbSe2 and 2D ferromagnets or topological insulators [70, 17, 178].

In summary, NbSe2 has demonstrated to be a fertile playground for exploring novel

superconducting phenomena, and it is for these reasons why we explore the synthesis and

characterization of this material.
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6.2 Growth of NbSe2 Thin Films

A vast portion of TMD research utilizes the scotch-tape method for acquiring thin

flakes. This approach is fine in a research setting but severely lacks in scalability. Here we

detail efforts taken to synthesize thin films of NbSe2 in the 2H-phase using MBE on c-plane

sapphire substrates [27].

The substrates were purchased from Shinkosha Co. Through various tests, we

found that Shinkosha’s STEP c-plane sapphire yielded the best results. Growth of NbSe2

on c-plane sapphire might seem counterintuitive given the lattice constants for sapphire (a

≈ 4.76Å) and NbSe2 (a ≈ 3.44Å) differ quite a bit [107]. However, the crystal structure of

TMDs suggest growth is still possible as the out of plane bonds are van der Waals in nature

so interfacial coupling between the substrate and deposited layers is reduced. Furthermore,

if one examines supercells of NbSe2 and sapphire, the lattice mismatch reduces to only

≈7.8%. This type of superlattice matching has been reported in the growth of WSe2 on

c-plane sapphire [114]. Below we outline the general growth procedure taken in Figure 6.3.

All samples used in this study are capped with Se to prevent oxidation.

We find that deposition of a half to one monolayer buffer layer aids in the growth

of subsequent layers for low temperature growth samples. In addition, we also employ Nb-

flux interruption during the growth to extend the reaction time between the adsorbed Nb

and Se atoms on the substrate. The elevated substrate temperatures used in the deposition

are above the sublimation temperature of selenium so the sticking probability of Se atoms

is quite low in comparison to Nb. By closing the shutter to the Nb source at regular inter-

vals, we can oversupply Se and extend the Nb:Se ratio. This strategy has been previously
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Figure 6.3: General temperature profile of NbSe2 growth. For the low temperature growth,

an initial buffer layer is grown at room temperature and then annealed to 200◦C. From there the

main film growth occurs. We find that the best results involve a slow heating ramp to the final

temperature of 400◦C. The high temperature growth samples do not utilize a seed layer and simply

start at 600◦C.

employed to achieve epitaxial growth of NbSe2 on GaAs, WTe2 on MoS2, and WSe2 on

sapphire [179, 183, 184]. The effective flux ratio (Se:Nb) used is approximately 120:1.

Quality of the films is confirmed in several ways. Representative RHEED of the

deposited films are shown in Figure 6.4. Six-fold repetition of the RHEED pattern is

observed when the substrate is rotated about its azimuthal axis as expected for a film with

a honeycomb lattice. A TEM cross section of a 5 monolayer film further proves that the

growth is layer by layer by clearly resolving each individual layer. Moreover, the layers are

continuous over a wide distance. X-ray diffraction also confirms the uniform spacing of the

layers as shown in Figure 6.5 (a) in which the characteristic c-axis diffraction peaks appear.

The corresponding Miller indices are all even because the unit cell of 2H-NbSe2 encapsulates
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two monolayers [107]. Element-selective x-ray spectroscopy (EDX), shown in Figure 6.5 (d)

further highlights the clear interface formed between the deposited film and the substrate.

The relative signals from the Nb and Se also found to follow the stoichiometric ratio of 1:2

as expected for NbSe2.

Figure 6.4: (a) Schematic showing the Al atoms on sapphire (0001) surface. (b) Schematic of

NbSe2 surface and its epitaxial orientation with respect to the substrate in a. (c) RHEED patterns:

sapphire substrate along the [210] direction (top), 9 ML NbSe2 along the [210] direction (middle),

and along the [110] direction (bottom). (d) TEM image of a 5 ML NbSe2 sample. It can be clearly

seen that each NbSe2 monolayer extends continuously over a large scale. Reprinted with permission

from reference [27], Copyright 2020 American Chemical Society.
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6.3 Strain Controlled Superconductivity in NbSe2

Surprisingly, we find that the transport properties of the NbSe2 films can be tuned

by adjusting the substrate temperature during growth. Shown in Figure 6.6 a,b, the film

resistance versus temperature indicates a transition from superconducting to insulating be-

havior as the growth temperature of the film increases. With a 400 ◦C substrate temperature

during deposition, the film is wholly superconducting. But once temperatures approach 600

◦C, an upward U-turn is seen in the data. The samples were measured in a custom liquid

He dipping probe with a base temperature of 1.6K which is why some plots do not show

the full resistivity drop as the NbSe2 film becomes superconducting. Attempting to fit the

data to a variable-range hopping model does not work well which indicates the transition is

not the result of film degradation induced by elevated temperatures [112]. Instead, fitting

the plot of ln(R) vs T−1 (Figure 6.6 (a, inset) to a linear curve describes the data more

adequately. The conductivity is therefore governed by an energy gap: σ ≈ e−E/kBT with

E/kB ≈ 6.7K.

Despite the obvious change in transport behavior, RHEED does not reveal any

noticeable changes. Therefore, we turn to Raman spectroscopy to elucidate the cause as it

provides a more sensitive probe of the structural changes in a material [140, 14]. Figure 6.6

(c, d) shows the Raman spectra for a 5ML NbSe2 film and a bulk crystal. Identification of

the peaks is done via polarized Raman in which the p-polarization turns off the A1g peak

while maintaining the E1
2g peak, consistent with prior reports of 2H-NbSe2 [174]. Both

spectra resemble each other, but there is a clear blue-shift of the E1
2g peak in the MBE

grown film while the A1g peak red-shifts. This implies a hardening of the in-plane phonon
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modes as the E1
2g peak corresponds to an in-plane shearing vibration [126]. The hardening

of a mode is often unfavorable for superconductivity.

Additional measurements of the Raman spectra were taken to further study the

changes in the E1
2g and A1g peaks. Three samples with different transport properties (in-

sulating, superconducting, and one in between) were used in the study shown in Figure 6.7

(a); the corresponding resistance versus temperature plots are shown in Figure 6.5 (a). We

quantify the E1
2g and A1g peak positions via Gaussian peak fitting. A clear wavenumber

shift from 245 to 260 cm−1 is observed for the E1
2g peak when comparing the superconduct-

ing sample (Tg ≈ 400◦C) to the insulating one (Tg ≈ 600◦C). This shift is validated by

alignment of the sapphire peak at 418 cm−1 which remains constant because the growth

temperatures are too low to cause substantial changes to the substrate’s crystal structure.

The cause for this shift is most likely due to in-plane compressive strain that arises from

the film coupling to the sapphire. Additional confirmation is provided by selective area

diffraction of the film. Figure 6.7 (b) plots the line profile of the diffraction peaks for a

superconducting and insulating sample. The (122) diffraction spot shifts to higher k-values

for the insulating sample when compared to the superconducting one which confirms the

formation of in-plane compressive strain. The red-shift of the A1g is corroborated by XRD

measurements of the c-axis lattice constant. We find that the insulating films possess a

lower (002) peak as shown in Figure 6.7 (c) indicating expansion in the c-axis direction.

This expansion can also be the result of in-plane compression bunching the film.

The results presented here qualitatively match well with the predictions of BCS

theory which states that the electron-phonon coupling strength is weakened when the lattice
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stiffens, such as when compressive strain is present [18]. Similar results were also observed

in the TMD material MoS2 [48]. One possible alternative explanation is that the film

undergoes a structural phase transition from the 2H to the 1T phase under high temperature

growth. Prior work showed that 1T-NbSe2 is a Mott insulator which can be achieved by

growth at higher substrate temperatures, and this could account for the insulating transport

behavior seen in some samples [115]. However, density functional theory calculations from

collaborators determined that the active Raman modes are very different between the two

polytypes. We instead infer that strain is the main culprit behind the film’s transition from

a superconductor to an insulator at low temperature. This is supported by the fact that

strain can modify the band structure of TMD materials which can account for the observed

gap seen in the resistance measurements [61].

To conclude, we have observed the tuning of superconductivity in NbSe2 via strain.

Moreover, achieving this effect was accomplished entirely in-situ via temperature adjust-

ments to the MBE growth procedure. This can allow one to induce specific properties in

superconducting devices through the tuning of a single knob. In addition, the thin layered

structure of NbSe2 makes it a fertile playground for exploring all manners of proximity

effects that can lead to topological superconductivity [189, 58, 60].
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Figure 6.5: (a) X-ray diffraction of a NbSe2 sample. The starred peaks correspond to the substrate

and the background from the instrument. The inset provides a magnified image of the (002) peak

which also shows signatures of thickness fringes. (b) AFM image of a continuous (island-free) 3

ML NbSe2 sample. The visible substrate terraces indicate good surface coverage. (c) TEM based

selective area diffraction (SAD) data of the 5 ML NbSe2 sample (inset). The substrate diffraction

peaks are labeled in white and the NbSe2 diffraction peaks are in red. The c-axis (002) diffraction

of NbSe2 is aligned with the c-axis (006) diffraction of sapphire. (d) Element-selective spatially

resolved energy-dispersive X-ray spectroscopy (EDX) data of a line across the interface of the layer.

The data shows no element segregation in the film and a clear interface with the substrate. The

stoichiometric ratio between Nb and Se is determined to be 1:2. Reprinted with permission from

reference [27], Copyright 2020 American Chemical Society.
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Figure 6.6: (a) Resistance measurements of the superconductor to insulator transition in NbSe2

samples systematically tuned by varying the growth temperature (from 400 to 600 ◦C). Inset: the

ln(R) vs 1/T plot of the insulating sample. The linear fit works in the full temperature range from

13K and above, which gives an excitation gap E/kBT ≈ 6.7K. (b) Low-temperature zoomed-in

plot of the superconducting samples. Inset: the metallic samples demonstrating low temperature

insulating behavior. The color of each curve matches that of a. (c) Raman spectra comparison

between MBE grown superconducting NbSe2 (black) and a bulk sample (red). (d) Polarized Raman

spectroscopy identifying both the A1g and E1
2g Raman modes of the sample shown in the middle

panel of Figure 6.7 (a). The A1g is turned off when switching from s- to p-polarization, whereas

the E1
2g peak survives. Reprinted with permission from reference [27], Copyright 2020 American

Chemical Society.
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Figure 6.7: (a) Comparison of the Raman spectra among three samples having different electrical

properties (insulating, superconducting and sample in between). The color of the data matches that in

Figure 6.6 a. Gaussian fit (dashed line) is used to identify the locations of the E1
2g and A1g peaks. A

red shift of the A1g peak and a blue shift of the E1
2g peak are observed, which accompanies the loss of

superconductivity. (b) The comparison of the SAD results of two samples grown at Tg ≈ 600C◦ (top,

insulating) and at Tg ≈ 400C◦ (bottom, superconducting), respectively. A line cut is made from the NbSe2

SAD (002) peak to the NbSe2 SAD (122) peak crossing the sapphire SAD (102) peak. The line cut is

indicated by the dashed line shown in the TEM images (right). Gaussian fit is used to identify the locations

of the diffraction peaks. By aligning the NbSe2 (002) and sapphire (102) peaks (left), a clear shift of the

NbSe2 (122) peak is seen, indicating that the sample grown at Tg ≈ 600C◦ has a slightly smaller lattice

constant. (c) XRD results of two samples grown at Tg ≈ 600C◦ (top) and at Tg ≈ 400C◦ (bottom). The

NbSe2 (002) XRD peak shifts to lower angle for the sample grown at Tg ≈ 600 ◦C suggesting an expanded

c-axis lattice constant. The comparison is based on the aligned sapphire (006) XRD peak. Reprinted with

permission from reference [27], Copyright 2020 American Chemical Society.
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Chapter 7

Conclusions and Future Work

Topological superconductivity and Majorana zero modes constitute some of the

most exciting developments in condensed matter physics. Beside their obvious applications

for quantum computing, the fundamental physics behind these materials, which ties in ideas

from topology, make them interesting to study in their own right. This thesis explored the

synthesis and characterization of materials for topological superconductivity. We would like

to conclude this work with a brief summary of the salient results and provide some thoughts

on future research and outlooks for the field.

The first path towards Majorana zero modes this thesis tackled utilized epitaxial

Au (111) films proximitized by a base superconductor. We started from prior work done on

this system and explored new upgrades to better it [169, 105]. We successfully demonstrated

epitaxial growth of Au (111) on top of Nb (110) and the presence of superconductivity in the

surface bands of the Au film. Furthermore, our results showcased evidence of the closing of

the surface gap but persistence of bulk superconductivity. This is a necessary step towards
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engineering a topological phase transition. The use of tellurium as a tunnel barrier also

exhibited an enhancement of the g-factor to g ≈ 12, a six-fold increase from the standard

value of g = 2.

The second approach this thesis explored utilized NbSe2, a member of the “new

generation” of 2D materials. This layered material has been shown to superconduct down

to the monolayer limit, and theoretically been predicted to host chiral Majorana edge modes

once the material is pushed past the Pauli limit [173, 58, 60]. We demonstrated successful

growth of the NbSe2 films on c-plane sapphire and characterized the films with an array of

tools. Our results show that temperature adjustments during MBE synthesis can drastically

alter the transport properties of the films. Raman is used to identify in-plane strain as the

most plausible culprit behind this change.

These results demonstrated that appropriate growth conditions and combination of

materials can be used to engineer the necessary conditions for topological superconductivity.

This is particularly important given that inherent topological superconductors are rare, and

existing candidates are still under heavy debate [100, 142]. With this spirit in mind, we

would like to discuss next steps for the work presented here.

In regards to the Au (111) system, there are several experiments in mind that

should be completed. First, tunnel junctions using tellurium as the barrier should be fabri-

cated in order to rule out effects of silver paste on the observed features in the conductance

spectra. This would also provide further clarity into origin of the enhanced g-factor as

possible magnetic impurities are not present in this type of device.
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Secondly, differential conductance measurements need to be taken to confirm that

the Au (111) surface band bottoms shift closer to the Fermi level after tellurium deposition.

This shift is a result of the modification of the dielectric environment of the gold surface,

and it is needed to enhance the size of the topological regions in the topological phase

diagram [177]. Prior work cites tellurium to have a dielectric constant of ε ≈ 30 which is

comparable to that of EuS so potential results from this experiment seem promising [16, 2].

Secondly, more effort must be put into device fabrication of planar tellurium nano-

wires on top the Au surface. Theory has predicted that a topological gap can be opened in

such a wire that results in localized Majorana zero modes [123, 177]. Tunneling measure-

ments into the ends of the wire should reveal the presence of a zero bias peak [86]. This

work would not be definitive proof of Majorana zero modes, rather it provides a necessary

stepping stone to confirm that this approach is heading in the right direction. More con-

clusive evidence must be demonstrated through experiments such as electron teleportation

[47]. This experiment would also further test the origin of the enhanced Landé g-factor.

The current sentiment in this work is that its origin is a result of tellurium deposition, but

whether this effect continues to persist when the tellurium layer is reduced to a quasi-1D

nano-wire remains to be seen.

The NbSe2 approach must also head down similar paths. We have shown that

temperature plays a major role in determining the transport properties, and now efforts

must be made to narrow down the conditions that enable large grain growth of films that

superconduct [184, 183]. To the author’s knowledge, there is still no reported evidence of

MBE grown NbSe2 on sapphire that superconducts to the same level as that reported in
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exfoliated flakes [173]. Demonstrating such proof would be a major milestone as it showcases

scalable synthesis of a possible topological superconductor. In addition, combining these

films with other layered materials would provide a fertile playground for all manner of

quantum phenomena [96].

It would be an understatement to say that the pursuit of Majorana zero modes

and topological superconductors is hard. In fact, recent experiment work has been retracted

in response to controversy over the accuracy of the results [186, 45]. But, physicists and

engineers should not despair. With every new breakthrough, no matter how small, we

shrink the uncertainty in our knowledge and bolster the confidence in our approach, and

our goal inches ever closer.
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