
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Greybox Fuzzing and Its Applications

Permalink
https://escholarship.org/uc/item/2552c1n9

Author
Rong, Yuyang

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2552c1n9
https://escholarship.org
http://www.cdlib.org/

Greybox Fuzzing and Its Applications

By

YUYANG (PETER) RONG
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Hao Chen, Chair

Matt Bishop

Mohammad Sadoghi

Committee in Charge

2024

i

© Yuyang (Peter) Rong, 2024. All rights reserved.

Contents

Abstract . xvii

Acknowledgments . xix

1 Introduction 1

1.1 Greybox fuzzing . 1

1.2 Improving fuzzing performance using principled techniques 3

1.3 Specialized fuzzing for the LLVM backend . 5

1.4 Enhancing program understanding using fuzzer generated test cases 6

2 Integrity: finding integer errors by targeted fuzzing 8

2.1 Introduction . 8

2.2 Design . 11

2.2.1 Exploitation . 11

2.2.2 Exploration . 14

2.3 Implementation . 16

2.4 Evaluation . 17

2.4.1 Juliet test suite . 17

2.4.2 Real world applications . 20

2.4.3 Which non-crashing error is harmful? . 22

2.4.4 Comparison with Angora + UBSan . 27

2.4.5 Instrumentation reduction . 27

ii

2.5 Related work . 28

2.5.1 Detecting integer overflow . 28

2.5.2 Coverage-directed fuzzers . 29

2.5.3 Bug-directed fuzzers . 29

3 Valkyrie: improving fuzzing performance using principled techniques 31

3.1 Introduction . 31

3.2 Background and motivation . 37

3.3 Design . 39

3.3.1 Collision-free context-sensitive branch counting 39

3.3.2 Compensated mutation assisted solver . 44

3.3.3 Proactive bug exploitation . 54

3.4 Evaluation . 56

3.4.1 Magma benchmark . 58

3.4.2 Real-world open-source programs . 62

3.4.3 Effectiveness of deterministic branch counting 64

3.4.4 Effectiveness of deterministic solver . 66

3.4.5 Bug finding ability of Valkyrie . 68

3.4.6 Summary . 70

3.5 Discussion . 70

3.5.1 Unsolved predicates . 70

3.5.2 Bug detection . 71

3.5.3 Branch counting effectiveness . 71

3.6 Related work . 71

3.6.1 Branch counting methods . 71

3.6.2 Predicate Solving Methods . 72

3.6.3 Targeted fuzzers . 72

iii

3.6.4 Machine learning based fuzzers . 73

4 IRFuzzer: specialized fuzzing for LLVM backend code generation 74

4.1 Introduction . 74

4.2 Background . 78

4.2.1 LLVM . 78

4.2.2 Coverage guided fuzzing . 81

4.2.3 Challenges in compiler fuzzing . 82

4.3 Design . 84

4.3.1 LLVM IR mutation . 85

4.3.2 Matcher table feedback . 90

4.4 Implementation . 92

4.5 Evaluation . 92

4.5.1 Baseline comparison . 94

4.5.2 Comparison with end-to-end fuzzers . 95

4.5.3 Individual contributions . 97

4.5.4 Bug categories and analysis . 98

4.5.5 Bugs case study . 100

4.6 Related work . 103

5 Understanding programs by exploiting fuzzer generated test cases 105

5.1 Introduction . 105

5.2 Related work . 106

5.2.1 Code representation learning . 107

5.2.2 Fuzzing . 107

5.3 Method . 108

5.3.1 Fuzzing for obtaining inputs and outputs . 108

5.3.2 Model . 111

iv

5.3.3 Prompting . 111

5.4 Experimental results . 112

5.4.1 Clone detection results . 114

5.4.2 Code classification results . 116

5.4.3 Ablation study . 117

5.4.4 Data scale . 118

5.4.5 Case study . 119

5.5 Limitations . 121

6 Code representation pre-training with complements from fuzzer generated test

cases 123

6.1 Introduction . 123

6.2 Related work . 126

6.3 Code representation pre-training . 128

6.3.1 Fuzzing code corpus . 129

6.3.2 Static and dynamic information modeling . 130

6.3.3 Model training and inference . 132

6.4 Experiments . 133

6.4.1 Code representation learning . 134

6.4.2 Ablation study . 140

6.5 Future work and limitations . 142

7 Conclusion 144

7.1 Improving fuzzing performance using principled techniques 144

7.2 Specialized fuzzing for the LLVM backend . 145

7.3 Enhancing program understanding using fuzzer generated test cases 146

7.4 Future work . 147

v

List of Figures

1.1 The workflow of greybox fuzzers. 2

2.1 Cumulative distribution function (CDF) of the average L1 distance (Equation 2.4.1)

between the output of two decoders on the same input JPEG image. The CDF of

the normal images is cleanly separable from that of the exploit images. 26

3.1 Examples of branches that do not require instrumentation. Only thickened edges

need instrumenting. 45

3.2 Arithmetic mean of number of integer and memory bugs triggered per trial per day.

The black line shows 95% confidence interval. Valkyrie’s performance is the same

across ten trials. 58

3.3 Siginificant plot of Valkyrie. Valkyrie is superior than state-of-the-art on libpng,

libxml2, and poppler. 60

3.4 Branch coverage of six fuzzers in 24 hours time. Valkyrie-br is Valkyrie with only

branch coverage improvement, Valkyrie-solver is Valkyrie with only solver improve-

ment. Both design increased branch coverage compared with Angora in all programs.

Overall, Valkyrie ranked #1 on geometric mean number of branches reached. 63

3.5 Branch coverage of four fuzzers in 24 hours time. Valkyrie not only finds more branch

coverage but also is the fastest one on eight of ten applications thanks to deterministic

algorithms. 64

vi

3.6 Plots of branch coverage over 24 hours for all evaluated fuzzers on objdump and

pdftotext. 64

3.7 The difference between preidcates solved by Valkyrie and Angora over 16 seeds. . . 67

4.1 Overview of IRFuzzer. Green shaded components are the contributions of this chapter,

orange shaded components are AFL++, and blue shaded components are from LLVM.

We first create a LLVM IR mutator that guarantees the correctness of the generated

input (Section 4.3.1). We introduce a new coverage metric to keep track of the

backend code generation while providing a mutation guide to the mutation module

(Section 4.3.2). 76

4.2 Examples of failed and successful CFG mutations, respectively. 77

4.3 LLVM can be roughly partitioned into three components, frontend, middle end, and

backend. 79

4.4 AFL can be modelled as a four-stage loop that tests the executable repeatedly. . . . 80

4.5 An example of how IRFuzzer mutates a module using different strategies. 84

4.6 Distributions of bugs found by IRFuzzer. IRFuzzer has found 78 new bugs, 57 have

been fixed. 99

4.7 A piece of code we generated, simplified to CFG only. Two optimization passes are

involved in this compiler hang. TurnSwitchRangeIntoICmp will transform Figure 4.7a into

Figure 4.7b. FoldValueComparisonIntoPredecessors will undo the transformation, causing

an infinite loop. 100

4.8 Two bugs we found in LLVM codebase. Both of them will lead to compiler crash and

have been fixed. 102

5.1 Per-problem clone detection performance on the POJ104 test set, using Coder-

BERT+FineT or CoderBERT+FuzzT. The horizontal axis shows the ID of the

POJ104 problems, and the vertical axis is the MAP@R. 120

vii

5.2 Per-problem clone detection performance on the POJ104 test set, using UniX-

coder+FineT or UniXcoder+FuzzT. The horizontal axis shows the ID of the POJ104

problems, and the vertical axis is the MAP@R. 121

6.1 An illustration of different pre-training and fine-tuning paradigms for code under-

standing. 124

6.2 An illustration of implementation variations of the same functional purposes. Fig-

ure 6.2a is dramatically different from its Figure 6.2b iterative counterpart regarding

their structures, even though their functional equivalence is explicitly demonstrated

by the consistent behaviors. On the other hand, the subtle change in Figure 6.2c is

barely observable in comparisons to Figure 6.2b, but can lead to distinct execution

results. 125

6.3 An overview of FuzzPretrain. (a) The input sequences are composed of both the code

and test cases which are concatenated then encoded by a transformer. FuzzPretrain

learns code feature representations by (b) static information modeling (SIM) through

masked tokens predictions, (c) dynamic information matching (DIM) to match test

cases to code, and (d) dynamic information distillation (DID) to summarize the

holistic information about code structure and functionality. 128

6.4 The fuzzing process collects test cases that embed dynamic behavior from program

datasets. 129

6.5 Qualitative studies for code search. The functional equivalence of code snippets are

marked by their shared colors. Only a few classes are highlighted with bright colors

to be visually distinguishable. 136

6.6 Effects of different components for dynamic information modeling. We constructed

three variants of FuzzPretrain with either DIM or DID or both being removed to be

compared. 140

viii

6.7 Dynamic information modeling by MLM. The “Mask” variant replaces DIM by MLM

for both code and test cases while “Match” is the design we adopted and “Both” is

the combination of the two. 140

6.8 Positive pairs in DID. The “Execution” variant constructs the positive pairs in DID

using code T s and its test cases T d, and our “Holistic” design contrasts code to its

concatenation with test cases T s ⊕ T d. 141

ix

List of Tables

2.1 Verified, unique arithmetic errors that Integrity found in real world applications,

compared with Angora + UBSan. Note that the total numbers of unique errors at

the bottom are fewer than the sums of the rows above because some programs share

the same library and therefore we removed these duplicate errors when calculating

the totals. 9

2.2 Errors that Integrity found on the Juliet test suite. A“-” cell means that the

corresponding test set on the top contains no corresponding subset on the left.

Integrity found all the errors with no false positive. Every test contains one inserted

arithmetic error except subset s02 of CWE197, where half of its inserted bugs contain

two truncation errors each. 19

2.3 Unique errors that Integrity found in common open-source programs. Note that the

total numbers of unique errors at the bottom are fewer than the sums of the rows

above because when calculating the totals we removed the duplicate errors in the

libraries shared by different programs. 21

2.4 Benign arithmetic errors determined by statistics of traces. We use the benign errors

found by manual inspection as the ground truth when calculating the precision and

recall of the benign errors determined by statistics of traces. 24

2.5 Number of instrumented arithmetic operations before and after instrumentation

reduction . 28

x

3.1 Examples of path compressions in Figure 3.1. Grey areas in column five means

that we didn’t allocate memory for thoese edges. Notice how edge f and h must be

executred, thus there is no need to instrument them. 46

3.2 Conversion table between branch predicate expressions, their corresponding objective

functions and solver targets. δ represents the smallest possible positive value that

the numerical type can represent. For integers, δ = 1. 46

3.3 The list of fuzzers we used in our evaluation. Included are their respective versions

and the arguments we provided to invoke the fuzzer. 57

3.4 The list of projects we used in our evaluation. Included are their respective versions,

the binary we used and the arguments we provided to invoke the binaries. 57

3.5 Average time used to trigger a bug in Magma. Bolded text shows the fastest to

trigger a bug. 59

3.6 Bitmap size for Valkyrie before and after optimization. On average we reduced 69%

of all instrumentations and 28% of runtime. 66

3.7 Bitmap utilization for AFL and Angora on open-source programs. We evaluated their

respective utilizations under default sizes and adjusted sizes. “*” indicates failure,

AFL refuses to run jhead with only 8K bitmap. 67

3.8 Bugs found by Valkyrie and Angora. Valkyrie found six bugs in three programs while

Angora only found three. 68

4.1 Instruction modeling for IR instructions. 88

4.2 Matcher table size in all architectures in LLVM on commit 860e439f. Since GlobalIsel

is a new CodeGen framework introduced in 2015, only eight architectures have

implemented it. 90

xi

4.3 Branch table coverage and matcher table coverage on 29 target CPUs across 12 targets

in SelectionDAG. Statistics are the arithmetic mean over five trials. Bold entries are

the best among baseline fuzzers. FM means AFL++ coupled with FuzzMutate, IRF

means IRFuzzer . 94

4.4 Average branch table coverage and matcher table coverage of CSmith (CS), GrayC,

and IRFuzzer (IRF). O2 and O3 stands for different optimization levels. Bold entries

are the winners. 96

5.1 Dataset statistics. 112

5.2 Clone detection results on CodeNet. Compared with normal fine-tuning (FineT),

our fuzz tuning (FuzzT) leads to significant improvements and new state-of-the-arts.

C++1000∗ contains 16% of all problems, which is a roughly 6.3x downsample of the

original dataset (see Table 5.8 for results on other scales). Bold stats are better. . . 112

5.3 Clone detection results on POJ104. Our fuzz tuning (FuzzT) leads to state-of-the-art

results. Bold stats are better. 113

5.4 Code classification results on CodeNet. Our fuzz tuning (FuzzT) leads to new state-

of-the-arts. C++1000† contains 40% of all problems, which is a 2.5x downsample of

the original dataset (see Table 5.9 for results on other data scales). Bold stats are

better. 114

5.5 Code classification results on POJ104. Our fuzz tuning (FuzzT) leads to new state-

of-the-arts. Bold stats are better. 114

5.6 Comparing using raw and decoded fuzzing test cases in tuning clone detection (CD)

and code classification (CC) models on POJ104. MAP@R and the error rate are

evaluated for the two tasks, respectively. Bold stats are better. 117

5.7 Comparing different prompts for our fuzz tuning on the clone detection (CD) and

code classification (CC) tasks on POJ104. Bold stats are better. 117

xii

5.8 How different methods scale with the size of training/tuning dataset on the C++1000

clone detection task. Bold stats are better. 118

5.9 How different methods scale with the size of training/tuning dataset on the C++1000

code classification task. Bold stats are better. 119

6.1 Evaluations on code search. Results of our base models (CodeBERT and UniXcoder)

are from [170]’s paper, which are marked in grey because of different training data.

The first and second rows in the header indicate the programming language of the

query and the target code snippets, respectively. The column “DYN” indicates

whether a model was trained using the test cases or not. mAP scores (%) are reported. 135

6.2 Evaluations of code representations on inductive code search. 137

6.3 Evaluations in novel data domains. Results of the base models are marked in grey as

training on different data from ours. Results marked with ∗ are reproduced using the

checkpoints from authors. 138

6.4 Comparisons with the state-of-the-arts that adopt the same backbone network as ours

with 125M parameters. Results marked with ∗ are reproduced using the checkpoints

from authors. 139

xiii

List of Code Snippets

2.1 A test in CWE197 s02, which contains two truncation errors on Line 4 and Line 6. . 19

2.2 An example of benign integer overflow. After LLVM optimization passes, the C

program was translated into the IR shown in the figure, the syntax slighted modified

for readability. On Line 3, the add instruction overflows when the loop variable

%iter var is 0, but the overflown result will never be used. 22

2.3 Divide by zero error in jmemmgr.c of libjpeg-ijg happens when the parameter

samplesperrow is zero. 22

3.1 Code snippet copied from libjpeg-9d. The program requires the length to be a specific

amount to continue. 39

3.2 Two seemingly easy bugs AAH001 and MAE014 in Magma. Valkyrie can trigger this

bug in seconds while other fuzzers can take hours. 61

3.3 Code snippet copied from xpdf. The program accesses the array without checking

the bound. 69

4.1 SelectionDAG in LLVM that consumes a matcher table to do instruction selection. . 81

4.2 A piece of LLVM IR program generated by function generation(Section 4.3.1.1). The

function returns a 64 bit integer, so we allocate a stack memory and load from it to

return. We will fill the memory in later mutations. 84

4.3 IR program mutated from Listing 4.2. Line Line 4 to Line 10 are introduced by

sCFG insertion(Section 4.3.1.2). We insert sCFG by splitting the Entry block into

two and generate a switch instruction. 84

xiv

4.4 IR program mutated from Listing 4.3. Instruction insertion(Section 4.3.1.3) generated

Line 8, Line 12, and Line 15. The placeholder memory is also used by %PHI to avoid

undefined behavior (Line 16). 84

4.5 A snippet of code in AArch64 where the index (IntImm) is not sanitized before usage.

This diff is our patch to fix this bug. 102

4.6 A snippet of code in LLVM where index of a vector is treated as signed value. This

diff is our patch to fix this bug. 102

xv

Abstract

Reliable software is vital to society. Much effort has been spent to ensure the robustness and

reliability of the software, including unit testing, model checking, static analysis, etc. However,

these approaches do not scale well.

Greybox fuzzing can test the software with little or no human intervention. A greybox fuzzer

utilizes a mutator to automatically generate inputs to test the program. Unlike a random input

generator, greybox fuzzer also monitors the program behavior to determine if the generated input

triggers a new behavior. Inputs that trigger new behaviors are saved for future mutation. This

monitoring is simple yet effective in practice. As a result, much work have focused on different parts

of the fuzzer to improve its overall performance and applications.

Despite its popularity, some aspects of greybox fuzzing and its applications have not been

thoroughly studied. In this thesis, we cover three aspects of greybox fuzzing. First, many fuzzers

aim to increase branch coverage. However, high branch coverage is only a sufficient condition

for triggering bugs. We revisit some designs of the fuzzing process to increase the likelihood of

finding bugs. We first design a tool called Integrity. Integrity sanitizes integer operations within the

program, which are harder to spot compared with memory errors. Integrity has discovered eight

new integer errors in open-source programs. While randomized fuzzers excel at increasing branch

coverage, they struggle with solving predicates set by Integrity. To trigger bugs more effectively,

we propose a deterministic fuzzer Valkyrie. Valkyrie uses principled approaches, such as gradient

descent and compressed branch coverage, to eliminate the randomness in fuzzers while increasing

throughput. Our evaluation shows that Valkyrie can find bugs faster than the state-of-the-art in

many cases.

Second, generic fuzzing is often less effective than specialized fuzzing. By incorporating expert

knowledge into the fuzzer, a specialized fuzzer can reach deeply nested code more quickly. We

select the LLVM backend as a test bed to see if a specialized strategy can find bugs in compilers.

We develop IRFuzzer with a tailored mutation and monitoring method customized for the LLVM

xvi

backend. We model LLVM intermediate representation (IR) so that IRFuzzer guarantees to generate

valid input for the LLVM backend. IRFuzzer monitors matcher table coverage to track “behavior”

in a more fine-grained manner with little overhead. IRFuzzer has found 78 new bugs in upstream

LLVM, with 57 of them fixed, five of which have been backport to LLVM 15. These findings

demonstrate that specialized fuzzing provides useful, actionable insights to LLVM developers.

Finally, fuzzers generate large quantities of inputs as a byproduct, which are often discarded

after the fuzzing process is completed. These inputs trigger different behaviors of the program.

We notice that these behaviors can be vital for training large language models (LLMs). With this

observation, we propose using source code coupled with their test cases for LLM training, where

each test case is composed of a fuzzer-generated input and its corresponding output. We first build

a dataset on top of an existing one by pairing test cases. Then, we develop methods to fine-tune

a trained model and pretrain a new model on this dataset. With this new training scheme, we

contribute a new code understanding model, FuzzPretrain. Our evaluation shows that FuzzPretrain

yielded more than 6%/19% mean average precision (mAP) improvements on code search over its

baseline trained with only source code or abstract syntax trees (AST), respectively.

xvii

Acknowledgments

During the reception at the 2023 LLVM Developers’ Meeting, I was talking to Steven, my

manager at AMD, and his friend Max. I was asking how to become Chris Lattner, as I felt that I

couldn’t contribute as much as he did in his master thesis. That eventually lead to a discussion

of what it really means get a PhD degree. Steven, being another PhD who is twice my age, said

something that struck me:

A PhD is all about break it down and build it up again.

Looking back, many people contributed to the “break down” and “build up” process in various

ways. They might not even realize it, but their help turned out to be invaluable to me. As such, I

am listing some of these individuals here as a formal thank you.

I was working on Integrity when Professor Hao Chen offered me a PhD position. I agreed,

thinking that doing research is pretty fun (foolish me). This position turned out to be more dedicated

than I expected, as Hao spent many sleepless nights with me reviewing my papers. I have learned a

lot from him: from research ideas to project management, those are all lessons that I couldn’t learn

elsewhere. Many of his insights also contributed to this thesis.

I have to thank my lifelong friend Yaguxun Gao: achieving this degree would have been impossible

without her. We spent countless hours talking about life and feelings, playing mobile games, and

walking her dog Neko, when I was home. Even though she is on the other side of the planet,

her words always find a way to build me up over and over again during my darkest times. She

encouraged me and trusted me like no one ever has, and for that, I will always be grateful.

I was struggling on research when Steven Neuendorffer offered me an internship at AMD. It

was a fun and productive summer that changed the course of my PhD. I learned more about

compilers, contributed to the open-source community, and connected with more compiler experts

that I wouldn’t have known otherwise. Our work together eventually led to IRFuzzer, which gave

me a boost of confidence that I could finish this. Moreover, this internship also greatly aided my

job hunting: it wouldn’t have be so successful without the work we did.

xviii

Professor Fu Song sparked my interest in compiler technologies. He taught Compilers and Theory

of Computation, which encouraged me to set foot in the area of compilers and got interested in

LLVLM during my undergraduate years. He also provided valuable advice during my PhD studies.

Many hardships broke me down during my PhD study. I survived them so I could build myself

up again. Those are the life lessons that I had to learn the hard way. As I like to phrase it, they

were not obstacles, they were training data, and now the model is trained.

xix

Chapter 1

Introduction

1.1 Greybox fuzzing

Reliable software is vital to our society. Despite the efforts spent to enhance the robustness and

reliability of software, such as unit testing, model checking, and static analysis, vulnerabilities still

remain in many codebase. However, these approaches do not scale very well as they require expert

knowledge of how the software works. To solve this issue, an automated approach is necessary.

In 2014, American Fuzzy Lop (AFL)[1] was proposed. Unlike random input generators, which

are not effective in program testing, AFL introduced a “behavior monitor,” or coverage monitor,

to determine if a new input triggered new program behaviors. If so, the input is saved for future

mutation. Because AFL only uses a modified compiler without examining the source code, this

approach is often referred to as greybox fuzzing.

1

Figure 1.1: The workflow of greybox fuzzers.

Formally, greybox fuzzing consists of four stages, as shown in Figure 1.1. First, a program is

compiled with a modified compiler that instruments the source code to automatically track code

coverage. AFL uses afl-clang or afl-clang++ to assign a hash ID to each edge in the control

flow graph (CFG). Whenever an edge is executed, the corresponding counter will increment to

reflect that behavior. If the program crashes unexpectedly or times out, the input will be saved for

further investigation, as these often represent bugs in the program. Otherwise, if the program exits

normally, a coverage report is generated. The behavior monitor uses these reports to determine if a

new behavior has been observed. Different fuzzers can define “behavior” differently: AFL considers

only branch coverage when determining if there is a new behavior. As we will see in Chapter 4,

other metrics are used to define new behaviors. When a new behavior is triggered, the new input

(or seed) is stored in a queue for future testing. AFL uses a simple first-in-first-out queue to store

seeds. However, in Chapter 2 and Chapter 3, we will see that it is necessary to prioritize some seeds

over others. The mutation strategy takes stored seeds to apply further random mutation. Various

methods have been developed and deployed, including bit flipping, byte incrementing, slicing, etc.

Despite its simplicity, after some time of fuzzing, AFL can generate seeds that are valid and can

be effectively applied to different applications. Fuzzers can be used to detect bugs in compilers [2–5],

smart contracts [6, 7], or Web APIs [8, 9]. Researchers have also found ways to fuzz libraries with

2

a simple setup [10–13]. Operating systems can be fuzzing with proper settings [14–18], as well as

IoT devices [19–21]. Even hardware can be modeled as software so it can be fuzzed [22]. Machine

learning models have been researched alongside fuzzers: they are either subject to fuzzing [23–26],

or have emerged as part of the fuzzer [27–29].

Since then, many researchers have conducted studies to improve the effectiveness of AFL,

including all stages of AFL’s execution. Some work has investigated how to use less instrumentation

to reduce the execution overhead [30–34]. Researchers have also studied more effective behavior

monitoring approaches other than branch coverage [35, 36]. Different methods have been proposed

to prioritize seeds to improve the performance of fuzzing [37–42]. More advanced mutation strategies,

especially grammar-based strategies, have been developed and demonstrated to enhance fuzzing

performance compared with random mutation [43–46]. Many aspects of fuzzing and its applications

are still neglected. In the following sections, we will cover three aspects of greybox fuzzing and its

applications that have not been well studied.

1.2 Improving fuzzing performance using principled techniques

Covering more branches is only a necessary condition for triggering bugs. Fuzzers need a signal

better than branch coverage to know that a bug has been reached, and thus spend more energy to

trigger it. Sanitizers [47] serve as a good oracle for bugs, and some work rely on sanitizers [41, 48]

to guide fuzzing. However, despite the existence of undefined behavior sanitizers [49, 50], integer

errors are often not targeted in many fuzzing practices.

Integer arithmetic errors are a major source of software vulnerabilities. Since they rarely cause

crashes, they are unlikely to be found by fuzzers without special techniques to trigger them. In

Chapter 2, we design and implement Integrity, which finds integer errors using fuzzing. Our key

contribution is that, through targeted instrumentation, we empower fuzzers with the ability to

trigger integer errors. In our evaluation, Integrity found all the integer errors in the Juliet test

suite [51] with no false positive. On nine popular open-source programs, Integrity discovered a

3

total of 174 true errors, including eight crashes and 166 non-crashing errors. A major challenge

during error review is to efficiently determine if a non-crashing error was harmful. While solving this

problem precisely is challenging because it depends on the semantics of the program, we propose

two methods to identify potentially harmful errors, based on the statistics of traces produced by the

fuzzer and by comparing the output of independent implementations of the same algorithm. Our

evaluation demonstrates that Integrity is effective in finding integer errors.

On the other hand, we find that Integrity often cannot solve some integer constraints we

instrumented. After investigation, we believe that instrumentation and mutation strategies call for

a revisit for two reasons. First, branch coverage feedback that is based on random edge ID can

lead to branch collision, i.e., two edges share the same ID, lowering the effectiveness of behavior

monitoring. Besides, state-of-the-art fuzzers heavily rely on randomized methods to reach new

coverage. These approaches may be useful to improve branch coverage, but cannot effectively solve

constraints instrumented by Integrity. Even Angora [44], which advocates for a mutator based on

gradient descent, often turns to heuristics and randomness as a last resort.

We believe deterministic techniques deliver consistent and reproducible results. To validate

our belief, we propose Valkyrie in Chapter 3. Valkyrie is a greybox fuzzer whose performance is

primarily boosted by deterministic techniques. Valkyrie combines collision-free branch coverage with

context sensitivity to maintain accuracy while introducing an instrumentation removal algorithm to

reduce overhead. It also pioneers a new mutation method, the compensated step, allowing fuzzers

that use solvers to adapt to real-world fuzzing scenarios without randomness. Expanding Integrity’s

idea, Valkyrie proactively identifies possible exploit points in target programs, including not only

integer errors but also memory errors. Valkyrie utilizes its solver to trigger the possible exploits.

We implement and evaluate Valkyrie on the standard benchmark Magma [52], and a wide variety

of real-world programs. Valkyrie triggered 21 unique integer and memory errors, 10.5% and 50%

more than AFL++ [53] and Angora [44], respectively. Valkyrie reached 8.2% and 12.4% more

branches in real-world programs, compared with AFL++ and Angora, respectively. We also verify

that our branch counting and mutation method is better than the state-of-the-art, which shows that

4

deterministic techniques trump random techniques in consistency, reproducibility, and performance.

1.3 Specialized fuzzing for the LLVM backend

Many strategies focus on generic methods [1, 53, 54], meaning the fuzzer does not have any

prior knowledge about the program under test. However, it has been shown in multiple applications

that a tailored fuzzer tends to find more vulnerabilities [55–58]. As such, our aim in Chapter 4 is to

fuzz the backend of the LLVM [59]. Due to the complexity of LLVM, manual testing is unlikely

to suffice, yet formal verification is difficult to scale. End-to-end fuzzing can be used, but it has

difficulties in achieving high coverage of some components of LLVM.

In Chapter 4, we implement IRFuzzer to investigate the effectiveness of specialized fuzzing of

the LLVM compiler backend. We focus on two approaches to improve the fuzzer: guaranteed input

validity using constrained mutations and improved feedback quality. We model LLVM IR using

a descriptive language so that the mutator in IRFuzzer can generate a wide range of LLVM IR

inputs, including structured control flow, vector types, and function definitions. IRFuzzer also

instruments coding patterns in the compiler to monitor the execution status of instruction selection.

The instrumentation provides a new coverage feedback called matcher table coverage, which can

be used to determine if a new behavior is triggered. It can also provide an architecture specific

guidance to the mutator. As a result, even if IRFuzzer is architecture agnostic, it is capable of

fuzzing all backend targets in LLVM.

We show that IRFuzzer is more effective than existing fuzzers by fuzzing. We conduct evaluation

on 29 mature LLVM backend targets. Comparison with end-to-end fuzzers like CSmith [60] and

GrayC [3] demonstrates the necessity of specialized fuzzing. Our evaluation also demonstrates how

valid input mutation and matcher table coverage individually contribute to the end results. In the

process, we reported 78 confirmed new bugs in LLVM upstream, out of which 57 have been fixed,

and five have been backport to LLVM 15. These findings shows that specialized fuzzing provides

useful, actionable insights to LLVM developers.

5

1.4 Enhancing program understanding using fuzzer generated test

cases

While the halting problem is undecidable [61], the semantic understanding of programs has

attracted significant attention in the community, as it can be applied to traditional software

engineering tasks like testing, bug analysis, code repair [62–64]. Inspired by the recent successes of

large language models (LLMs) in natural language understanding, tremendous progress has been

made by treating programming languages as another form of natural language and training LLMs

on program code [65–67]. However, programs are fundamentally different from texts, as they are

structured and syntax-strict to be properly compiled or interpreted to perform a desired set of

behaviors given any inputs. Existing work benefits from syntactic representations to learn from code

less ambiguously in the forms of abstract syntax tree (AST), CFG, etc. However, programs with

the same purpose can be implemented in various ways, showing different syntactic representations,

while those with similar implementations can have distinct behaviors. It is hard, if not impossible,

to capture all program behaviors in one dataset. On the other hand, fuzzers generate a large amount

of inputs as a byproduct, which are often discarded after fuzzing is completed. We hypothesize that

these inputs generated by the fuzzers can be useful to LLMs as they can trigger different program

behaviors. Therefore, we propose to incorporate the relationship between the program, its inputs,

and corresponding outputs into learning, in order to achieve a deeper semantic understanding of

programs.

In Chapter 5, we first construct two new datasets based on POJ104 [67] and CodeNet [68]. We

apply AFL++ on the programs contained in these two datasets and couple the source code with the

inputs generated by the fuzzer. Then we use these data to fine-tune a pre-trained LLM. We verify

the effectiveness of the proposed method on two program understanding tasks, including code clone

detection and code classification, and it outperforms the current state-of-the-art by large margins.

As a follow-up, we wish to pretrain a new model to incorporate this semantic information better.

Hence, in Chapter 6, we propose FuzzPretrain to explore the dynamic information of programs

6

revealed by their test cases and embed it into the feature representations of code as complements.

We carefully design a distillation process so that the test case is only required during pre-training.

FuzzPretrain yielded more than 6%/19% mean average precision (mAP) improvements on code

search over its counterparts trained with only source code or AST, respectively. Our experiments

demonstrate the benefits of learning discriminative code representations from program executions.

7

Chapter 2

Integrity: finding integer errors by

targeted fuzzing

2.1 Introduction

Integer arithmetic errors are a significant source of security vulnerabilities [69]. Integer overflow

and underflow1 are undefined behavior in many languages, such as C/C++, and may cause security

check bypass or malicious code execution. For example, on April 22, 2018, attackers created a

massive number of Beauty Coins (BEC) in two transactions by exploiting an integer overflow in

ERC20 [71], which forced the exchange platform OKEx to roll back all the transactions two days

later [72]. Divide-by-zero causes the program to crash and so may be used to launch denial of service

attacks. The number of reported integer arithmetic bugs has been increasing rapidly in recent years,

which account for 104, 232, and 635 Common Vulnerabilities and Exposures (CVE) in 2016, 2017,

and 2018, respectively.

Prior work showed how to detect integer overflows when they happen. For example, Integer

Overflow Checker (IOC)[49, 50], which has been included in Undefined Behavior Sanitizer (UB-

1The term underflow sometimes refers to float point underflow. However, in accordance with Common Weakness
Enumeration (CWE) [70], in this chapter “underflow” means that the result of an integer arithmetic operation is
smaller than the smallest value that the type can represent.

8

Table 2.1: Verified, unique arithmetic errors that Integrity found in real world applications, compared
with Angora + UBSan. Note that the total numbers of unique errors at the bottom are fewer than
the sums of the rows above because some programs share the same library and therefore we removed
these duplicate errors when calculating the totals.

Program
Errors found by Integrity Errors found by Improvement

Crashing Non-crashing Total(I) Angora + UBSan(A) (I - A)

cjpeg 1 12 13 0 +13
djpeg 17 17 14 +3
file 17 17 0 +17
img2txt 3 21 24 2 +22
jhead 2 4 6 4 +2
objdump 5 5 0 +5
readelf 38 38 0 +38
tiff2ps 27 27 1 +26
tiffcp 2 31 33 2 +31

Total 8 166 174 23 +151

San) [73] since LLVM 3.5. However, they relied on the programmer to manually create test cases

to trigger those bugs, which is laborious and unreliable. We face the challenge of how to generate

these test cases automatically and efficiently.

Fuzzing is an automated approach for finding software bugs. Starting with AFL, graybox fuzzers

have made great strides in finding bugs fast. They instrument programs with the code for recording

program state during execution and use that information to guide input mutation. Fuzzers differ in

their strategies for exploration, which aims at expanding branch coverage. Previous exploration

strategies include matching magic bytes [74], finding sanity checks and checksums [75, 76], measuring

the distance between the input and target location [77, 78], and solving constraints like Angora [44].

Besides exploration, another goal of fuzzing is exploitation. In the context of fuzzing, exploitation

refers to triggering bugs, regardless if the bug may be used to launch attacks. It is difficult to find

good exploitation strategies. As a result, most fuzzers randomly mutate the input to hope that some

mutated input might trigger bugs. Given the huge space of input, the probability that a randomly

mutated input will trigger a bug is low. Moreover, fuzzers have difficulty in detecting bugs that

do not crash the program because they lack reliable signals that indicate bugs in those cases. For

9

example, arithmetic errors cause a program to misbehave (e.g., to produce wrong results), but they

rarely cause the program to crash.

Our goal is to allow fuzzers to exploit integer arithmetic errors efficiently. Our key technique is

to provide fuzzers with critical information by targeted instrumentation such that the information

can later be used to guide fuzzers to exploit potential bugs. For example, to detect overflow when

adding two 32-bit signed integers, we extend both the operands to 64 bits, compute their sum

(which cannot overflow), and, if the sum is out of the range of 32-bit signed integers, execute a

special guard branch to send a signal to the fuzzer to indicate the error. This way, if the fuzzer can

reach the guard branch, then an integer overflow occurs. The same idea can be used to check for

other bugs, such as index out of range, null pointer dereference, etc.

In principle, the above idea works with any fuzzer. However, to find bugs efficiently, we need to

overcome three challenges. First, we need to select a fuzzer that efficiently solves the constraints

indicating arithmetic errors (Section 2.2.2.1). Second, the guard branches inserted by the fuzzer

have much lower expected reachability than the original branches, because the guard branches

indicate arithmetic errors but most arithmetic operations should not have such errors. Therefore,

we need to redesign the fuzzer’s scheduling algorithm to assign different priorities to the original and

guard branches, respectively (Section 2.2.2.2). Finally, we need to send a unique signal to the fuzzer

to indicate arithmetic errors if the guard branches are explored. The fuzzer should let the program

continue exploring branches after receiving the signal, in contrast to when the signal indicates a

memory violation (Section 2.2.2.3).

It might be tempting to implement the above idea by simply combining a sanitizer (e.g.,

UBSan [73]) with a fuzzer. However, because of the challenges described above, such a naive

combination would result in poor performance, as we will show in Section 2.4.4. Instead, we

implemented our approach in a tool called Integrity. As we will show in Section 2.4, Integrity is

effective in finding integer arithmetic errors in both standard test suites and popular open-source

programs. On the Juliet Test Suite [51], Integrity found all the bugs with no false positive (Table 2.2).

Table 2.1 shows the bugs that Integrity found on 9 popular open-source programs from 6 packages.

10

In total, Integrity found 174 unique arithmetic errors, where 8 caused crash but 166 did not. We

define a unique error by a unique (file name, line number, column number) tuple.

Fuzzing is attractive because it provides inputs that witness errors. When an error caused a

crash, there is no doubt that the program misbehaved. However, when the error did not cause a

crash, verifying whether the error caused the program to misbehave becomes difficult as the decision

must take domain knowledge into consideration. We made progress on this problem by proposing

two methods. The first method is based on the statistics of the traces generated by the fuzzer. If

an integer arithmetic error occurred on most traces generated by the fuzzer where the arithmetic

operation executed, then the error was likely benign, as long as the fuzzer had adequate path

coverage. The other method is based on comparing the output of independent implementations of

the same algorithm on the same input. If an integer error caused one implementation to misbehave,

then the other independent implementation of the same algorithm will unlikely generate a similar

output, as long as the output is a deterministic function of the input. These two approaches, when

applicable, call attention to integer errors that are potentially harmful.

2.2 Design

Fuzzers mutate the input to find bugs in the program. They have two goals: (1) exploration:

explore different paths; and (2) exploitation: trigger bugs (regardless whether they can be used

to launch attacks). Previously, fuzzers were used predominantly to find memory errors. To use

fuzzers to find integer arithmetic errors effectively, we need to modify both their exploration and

exploitation strategies.

2.2.1 Exploitation

2.2.1.1 Arithmetic operations

We detect integer overflow and underflow during addition (+), subtraction (-), multiplication

(*), shift left (<<), and divide by zero during division (/) and remainder (%). We instrument LLVM

11

IR code to detect those errors as follows.

• +, -, *: We promote both the operands to the next longer type (e.g., from int32 t to int64 t,

and from uint32 t to uint64 t), evaluate the expression in the longer type, and check if the

result is out of the range of the original type. As long as the width of the next longer type is

as least doubled (e.g., int8 t, int16 t, int32 t, int64 t), which is the case in C and most

C-like languages, the operation in the longer type never overflows. For example, to check if

(int8 t)x + (int8 t)y overflows, we compute (int16 t)x + (int16 t)y and check if the

sum is out of the range of int8 t.

• <<: A left shift operation x << n overflows if and only if hp(x) + n is greater than or equal to

the width of (number of bits in) the result type, where the function hp(x) is the position of

the highest non-zero bit of x. For example, hp(0b00000001) = 0, hp(0b10000000) = 7.

• / and %: We check if the second operand is 0. For /, we also check if the operands are MININT

and -1 because MININT / -1 = MAXINT + 1 overflows.

2.2.1.2 Range inference

Integer types have different ranges. To infer the correct integer type, we must determine both

the bit width and sign.

Bit width inference For each operation, LLVM promotes every operand shorter than 32 bits

to 32 bits, executes the operation, and then truncates the result back to the destination type when

necessary. Therefore, if a truncation follows the operation, then we use the destination type of the

truncation to infer the bit width; otherwise, we use the left-hand side of the operation.

Sign inference LLVM IR does not distinguish between signed and unsigned variables. LLVM

determines if an operation on 32 or more bits may have signed overflow or unsigned overflow using

the sign information from abstract syntax tree (AST), and encodes that information as a tag in the

arithmetic instructions. For example, add nsw (no signed wrap) and add nuw (no unsigned wrap).

We use these tags to infer the sign. However, operations on integers shorter than 32 bits carry no

12

such tag because they never overflow in the range of 32-bit integers. In those cases, we infer the

sign of each operand using the cast operation before the arithmetic operation. When LLVM casts

the shorter type to 32 bits, we examine if the cast is signed or unsigned. If both operands are cast,

we take the sign of the operand of the longer type if the operands have different bit widths. If they

have the same bit width, and if either operand undergoes an unsigned cast, we infer the sign of the

destination type as unsigned; otherwise, we infer the sign as signed.

2.2.1.3 Instrumentation reduction

When we instrument an integer arithmetic operation to check for arithmetic errors, we create

new branches. When a program has many integer arithmetic operations, the instrumentation would

create many new branches for the fuzzer to explore. However, these branches differ from the original

branches in the program in a very important way for the fuzzer: we expect most original branches to

be reachable but few instrumented branches to be reachable (because the latter represent arithmetic

errors). Since unreachable branches waste the fuzzer’s computing budget, during instrumentation

we eliminate branches that are guaranteed unreachable as follows:

• While we need to check both overflow and underflow of signed operations, we need not

check underflow of unsigned operations, because once promoted to a wider type, underflow

becomes overflow. For example, when the original type is 8-bit unsigned int, (uint8 t)0 - 1

= 0xff causes underflow. However, when promoted to 16-bit unsigned int, (uint16 t)0 - 1

= 0xffff causes an overflow on the original type because the result 0xffff is larger than the

upper limit of the original type, 0xff.

• We do not check shift operation on negative integers for the same reason as above.

• When an operation is square, we do not check for underflow because it cannot.

• When a value is added to a negative constant or is subtracted by a positive constant, we do

not check for overflow; similarly, when a value is added to a positive constant or is subtracted

by a negative constant, we do not check for underflow.

13

Section 2.4.5 will show that the above optimization significantly reduced the number of branches

that the instrumentation added to the program, and hence the number of constraints that the fuzzer

tries to solve.

2.2.2 Exploration

The instrumentation described in Section 2.2.1 reduces the problem of exploitation to the

problem of exploration. At each operation with potential integer arithmetic errors, Integrity

inserts a conditional statement to check for integer arithmetic errors. When an error happens, the

conditional statement executes a branch, called the guard branch. In principle, we can use any

fuzzer to do the exploration. However, we desire to select a fuzzer that can explore arithmetic

errors efficiently. Moreover, since the guard branches are inherently different from the branches

in the original program (original branches), the fuzzer must treat them differently: the fuzzer

should triage between the original and guard branches when scheduling branches (Section 2.2.2.2),

and should behave differently between when arithmetic errors occur and when other errors occur

(Section 2.2.2.3).

2.2.2.1 Fuzzer choice

Section 2.2.1 provides critical information to the fuzzer by instrumenting the guard branches

that represent those errors. While we may use any fuzzer to take advantage of that information, we

selected Angora [44] for its two beneficial properties.

First, Angora fuzzes individual branches and can prioritize different branches. With enough

computing budget, Angora fuzzes every branch on a path at least once. Since we associate every

potential arithmetic error with a guard branch, Angora exploits (tries to trigger) every arithmetic

error on the path. Angora also allows us to triage different branches, which is handy because the

original branches and guard branches have different expected reachability (Section 2.2.2.2).

Second, Angora’s input mutation strategy fits our goal well. When fuzzing a branch, Angora

uses byte-level taint tracking to identify the input byte offsets that flow into the predicate that

14

Algorithm 1 Integrity’s scheduling algorithm.

function pop . Returns the next branch to fuzz
return priorityQueue.pop()

end function
function push(b) . Pushes a new or existing branch onto the queue

if b is a newly found branch then
if b.tag = Tag.Original then

b.priority ←MAX PRIORITY
else

b.priority ← GUARD INIT PRIORITY
end if

else
b.priority ← b.priority − 1

end if
priorityQueue.push(b)

end function

guards the branch. Then, Angora considers the predicate as a blackbox function on those byte

offsets and uses gradient descent to find an input that satisfies the predicate. When the blackbox

function is linear or monotonic, this mutation strategy guarantees to find a solution quickly. + and -

are linear functions, and * is a monotonic function. When their operands take their values directly

from in the input, Angora can solve the predicates of those operations efficiently.

2.2.2.2 Branch triage

As discussed in Section 2.2.1.3, original branches and guard branches have different expected

reachability: we expect most original branches to be reachable but few guard branches to be

reachable because few arithmetic operations have errors. Moreover, before the fuzzer can reach an

original branch b, it cannot explore any guard branch that b dominates.2 Therefore, we must let the

fuzzer assign higher priority to the original branches than to the guard branches.

We replaced Angora’s scheduling with the following algorithm:

• At compile time, instrument each branch with a tag to indicate whether it is an original

branch or a guard branch.

2A node d dominates a node n if every path from the entry node to n must go through d.

15

• At run time, store all the branches to be fuzzed in a priority queue.

• When finding a new branch, assign the branch a priority according to the branch tag (original

or guard branch), and then push the branch onto the priority queue (PUSH in Algorithm 1).

• When failing to solve a branch, lower the priority of the branch and push it onto the priority

queue (PUSH in Algorithm 1).

• When ready to explore a new branch, call POP in Algorithm 1 to get the branch with the

highest priority.

2.2.2.3 Signal of errors

When the fuzzer receives a signal indicating an error in the program, it stops the program

execution and records the input, and the error and its location. Memory access violation, such

as segmentation fault, is the most common signal. To reuse this framework, Integrity lets the

instrumented branches send a pre-determined signal to the fuzzer to indicate arithmetic errors.

However, merely sending a signal would be inadequate. Fuzzers stop the program when receiving

signals. It makes sense when the signal is triggered by a memory error because the program cannot

continue anyway. However, when the signal is triggered by an arithmetic error, the fuzzer should

let the program continue to explore more paths, particularly when the error is false positive (see

Section 2.4.2.1 for examples). Without this ability, a false positive arithmetic error early in the

program would prevent the fuzzer from exploring most paths because most paths descend from the

location of that error. We implemented this desirable function in Angora.

2.3 Implementation

We implemented Integrity as an LLVM pass in 924 lines of C++. We also modified Angora to do

branch triage (Section 2.2.2.2) and to deal with the new signal of arithmetic errors (Section 2.2.2.3)

in 3419 lines of Rust.

16

We found that some programs may use 64-bit types (uint64 t, for example). However, Angora

supported only 64-bit constraints, which was inadequate to check the overflow of the arithmetic

operation on two 64-bit integers. To tackle this problem, we extended Angora to support 128-bit

constraints. We did so by using u128 and uint128 t in Rust and C, respectively. In the case of a

128-bit or higher precision integer operation, we created a new struct that has two (or more) 128-bit

unsigned integers inside and implemented all the arithmetic traits (Add, Sub, Mul, etc.) for it.

Regardless, in this chapter we deal with general arithmetic operation errors instead of big

integer errors, which should’ve done by using our tool to fuzz bit integer libraries like GNU multiple

precision arithmetic library [79].

2.4 Evaluation

We evaluated the performance of Integrity on both the Juliet test suite [51] and popular

open-source programs. We also evaluated the impact of instrumentation reduction described in

Section 2.2.1.3.

All our experiments ran on a Linux server with two Intel Xeon Gold 5118 CPUs and 256 GB

RAM.

We set MAX PRIORITY and GUARD INIT PRIORITY in Algorithm 1 to 65,535 and

65,534, respectively, to guarantee that the fuzzer will try to solve all the original branches at least

once before solving the guard branches.

2.4.1 Juliet test suite

The Juliet test suite, developed by the National Security Agency (NSA), contains tests for errors

listed in Common Weakness Enumeration (CWE) [70]. It organizes the tests in a hierarchy: at the

top level, the suite contains one test set for each CWE. Then, each test set contains many subsets,

and each subset contains many tests. Each test is a C or C++ program containing a carefully

designed and inserted error. This test suite provides ground truth for evaluating the false positive

17

and false negative of Integrity.

We used Juliet Test Suite v1.3 and selected the following test sets relevant to integer arithmetic

errors:

• CWE190 Integer Overflow

• CWE191 Integer Underflow

• CWE194 Unexpected Sign Extension

• CWE197 Numeric Truncation Error

• CWE369 Divide by Zero

We excluded the following tests in the above test sets:

• Deterministic errors: These errors always happen regardless of the input, e.g., overflow caused

by constant integers.

• Floating point errors, since we focus on integer arithmetic errors only.

• C++ programs. As discussed in Section 2.2.2.1, we used Angora as the fuzzer, and currently

it supports only C programs. This is not an inherent limitation of Integrity.

Two CWEs related to integer arithmetic errors are worth mentioning. One of them is

CWE197 Numeric Truncation Error. Integer truncation causes an error when the result is out

of the range of the destination type. Therefore, to detect this error accurately, we must detect

the destination type (both sign and width) accurately. For example, consider x & 0x0000ffff. If

the destination type has more than 16 bits or if it is unsigned 16-bit integer, then no overflow can

happen. In all the tests of CWE197, it is easy to infer the destination types accurately because of the

way how those errors were injected. However, in real world programs, we found that accurately

inferring the destination type in the context of integer truncation was difficult. Therefore, we

disabled this rule when checking real world programs in Section 2.4.2.

18

Table 2.2: Errors that Integrity found on the Juliet test suite. A“-” cell means that the corresponding
test set on the top contains no corresponding subset on the left. Integrity found all the errors with
no false positive. Every test contains one inserted arithmetic error except subset s02 of CWE197,
where half of its inserted bugs contain two truncation errors each.

CWE190 CWE191 CWE194 CWE197 CWE369

bugs
added

bugs
found

bugs
added

bugs
found

bugs
added

bugs
found

bugs
added

bugs
found

bugs
added

bugs
foundSubset

s01 114 114 76 76 304 304 152 152 112 112
s02 38 38 38 38 0 0 76 114 38 38
s03 190 190 114 114 - - - - - -
s04 114 114 190 190 - - - - - -
s05 114 114 190 190 - - - - - -
s06 190 190 - - - - - - - -
s07 190 190 - - - - - - - -

1 short CWE_197_s02_trunc_twice(char* inputBuffer){

2 short data = 0;

3 if (fgets(inputBuffer , 14, stdin) != NULL) {

4 data = (short)atoi(inputBuffer);

5 }

6 return (char) data;

7 }

Listing 2.1: A test in CWE197 s02, which contains two truncation errors on Line 4 and Line 6.

The other one is CWE680_Integer_Overflow_to_Buffer_Overflow. This error happens when

calling the function malloc(site t) and when size t is defined by uint32 t, which occurs on

only 32-bit platforms. Since the fuzzer that we used(Angora) ran only on 64-bit platforms, we did

not test this error.

Table 2.2 shows that Integrity found all the bugs in the test sets of the above five CWEs with

no false positives. Every test case has one inserted arithmetic error except subset s02 of CWE197.

This subset contains 76 tests, where half of the tests contains two truncation errors each as shown

in Listing 2.1: first truncating the result of atoi into short, and then further into char, both of

which cause truncation errors. Therefore, Integrity found a total of 38 + 38× 2 = 114 unique errors

in this subset of 76 tests.

We tried Angora and Angora + UBSan on this test set, respectively. Neither of them found any

19

bugs.

2.4.2 Real world applications

We evaluated Integrity on popular real world applications. We selected 9 applications from 6

packages that have many integer operations, such as image processing and executable file parsing.

Detailed version and command line arguments are shown in Table 2.3. On each program, we ran

Integrity on 12 cores for 72 hours.

Table 2.3 shows all the unique errors that Integrity found. We identified a unique error by the

(file name, line number, column number) tuple where the error occurs. We divide those errors

into three categories. The first category contains all errors that caused crashes (Section 2.4.2.2).

Then, we manually reviewed the remaining errors to identify benign ones. We determined an

error to be benign when we found strong evidence that the error did not cause the program to

misbehave (Section 2.4.2.1). After excluding those benign errors, the remaining errors belong to the

non-crashing error category (Section 2.4.3).

It is also worth mentioning that tiff2ps and tiffcp share the same underlying library(libtiff). As

a result, Integrity found 6 duplicate non-crashing errors and 19 benign errors in both program. We

removed those duplicate errors from total error count in Table 2.1 and Table 2.3.

2.4.2.1 Benign errors

An error is benign when we found strong evidence that the error had been expected by the

programmer and therefore did not cause the program to misbehave. We classify all the benign

errors found into two classes:

Intentional overflows The programmer intended to use the result of an overflown value. One

example is v << (32 - b) >> (32 - b), where the programmer intended to exact the lower b bits

from the unsigned 32-bit integer v, and implemented it by shifting v by 32− b bits to the left and

then shifting by 32 − b bits to the right. As long as b is in (0, 32], the implementation correctly

achieved the programmer’s goal, even though overflow might happen during the left shift.

20

Table 2.3: Unique errors that Integrity found in common open-source programs. Note that the total
numbers of unique errors at the bottom are fewer than the sums of the rows above because when
calculating the totals we removed the duplicate errors in the libraries shared by different programs.

Package Version Program
Unique errors

Divide
by zero

Overflow
to crashing

Non-crashing Benign

libjpeg-ijg v9a cjpeg 1 12 63
djpeg 17 101

file 5.32 file 17 7
libcaca 0.99beta99 img2txt 1 2 21 36
jhead 3.00 jhead 2 4 4
binutils 2.29 objdump -x 5 11

readelf -a 38 27
libtiff 4.0.7 tiff2ps 27 36

tiffcp -i 2 31 49

Total 4 4 166 315

Unused overflown values This class of benign errors is commonly introduced by compiler

optimization.

while (i--) { /* loop body */ }

is an example, Listing 2.2 shows the compiled LLVM IR. The loop subtracts 1 from the loop variable

(an unsigned integer) and saves the result in another variable just before checking the predicate

that if the loop variable is not 0. When the loop variable is 0, the subtraction underflows, but its

result will never be used because the loop finishes.

2.4.2.2 Crashes

Arithmetic errors may cause crashes in two different ways. Divide by zero causes a crash

immediately, while overflown or underflown values may cause a crash when used as indices to arrays.

Integrity discovered eight crashes, among which four are divide by zero, and four are overflow.

Listing 2.3 shows a divide by zero error on Line 4 in the program libjpeg-ijp. Integrity found an

input that caused the parameter samplesperrow to become 0, which then caused divide by zero on

21

1 ; <label >: loop_head:

2 %loop_var = load i32 , i32*%loop_ptr , align 4

3 %next_loop_var = add nsw i32 %loop_var , -1

4 store i32 %next_loop_var ,i32*%loop_ptr ,align 4

5 %cond = icmp ne i32 %loop_var , 0

6 br i1 %cond , label %loop_body , label %loop_end

7 ; <label >: loop_body: /* body */

8 br label %loop_head

9 ; <label >: loop_end:

Listing 2.2: An example of benign integer overflow. After LLVM optimization passes, the C program
was translated into the IR shown in the figure, the syntax slighted modified for readability. On
Line 3, the add instruction overflows when the loop variable %iter var is 0, but the overflown result
will never be used.

1 // jmemmgr.c:395~435

2 ... alloc_sarray (..., unsigned samplesperrow , ...) {

3 ...

4 ltemp = ... / ((long) samplesperrow * SIZEOF(JSAMPLE));

5 ...

6 }

Listing 2.3: Divide by zero error in jmemmgr.c of libjpeg-ijg happens when the parameter
samplesperrow is zero.

Line 4.

2.4.3 Which non-crashing error is harmful?

An error is said to be harmful when it triggers unexpected behavior, e.g. to produce a wrong

result. Harmful errors may or may not be exploitable in the context of software security, yet they

still cause problems in software correctness and reliability. If an arithmetic error causes a crash, it

is definitely a harmful error. However, when it does not cause a crash, it is non-trivial to validate

whether it is harmful.

We manually inspected all the 481 non-crashing errors reported by Integrity and determined

that 315 (or 65 %) were benign. However, manual inspection is tedious and unscalable.

Automatically determining if an arithmetic error is harmful is challenging because it depends

on the semantics of the application. Nevertheless, we made progress on this problem by proposing

two methods, one based on statistics of the traces generated by the fuzzer, and the other based on

22

comparing the output of independent implementations of the same algorithm on the same input.

Although they do not prove whether each error is harmful, they provide evidence that some errors

are harmful and some are benign. We believe that the evidence is strong, and we plan to quantify it

in a probabilistic framework in future work. These two approaches, when applicable, call attention

to integer errors that are potentially harmful.

2.4.3.1 By statistics of traces

This method is based on the conjecture that a harmful bug in a popular open-source program

unlikely occurs during most executions, because otherwise it would have been noticed, reported,

and fixed with high probability. By this conjecture, if an integer arithmetic error occurred on most

traces generated by the fuzzer where the arithmetic operation executed, then the error was likely

benign, as long as the fuzzer had adequate path coverage.

To implement the above idea, for each non-crashing arithmetic error, we measured its rate of

occurrence on all the traces where the arithmetic operation occurred. When this rate is above

a threshold, we consider this error to be benign. We used the benign errors that we manually

determined in Table 2.3 as the ground truth. Then, at each threshold, we counted the number of

benign errors using the rule above, and calculated precision and recall based on the ground truth.

That is, let G be the set of benign errors that we manually determined, and S be the set of benign

errors that we identified by the statistics of traces. Then precision is |S∩G||S| and recall is |S∩G||G| .

Table 2.4 shows the number of benign arithmetic errors and their precision and recall with regard

to the ground truth. The overall precision is 79.2% at the threshold of 0.95, and is 75.7% at the

threshold of 0.70. The overall recall is 37.5% at the threshold of 0.95, and is 67.3% at the threshold

of 0.70. On several programs, this method was quite accurate. For example, at the threshold of

0.95, this method achieved both 100% precision and 100% recall on jhead, and 100% precision on

cjpeg. On 7 out of 9 programs the precision reaches above 80%, which indicates that our method

can efficiently rule out part of benign error and thus reduce human labor.

23

Table 2.4: Benign arithmetic errors determined by statistics of traces. We use the benign errors
found by manual inspection as the ground truth when calculating the precision and recall of the
benign errors determined by statistics of traces.

Program
Benign errors Benign errors determined by statistics of traces

found by Threshold=0.95 Threshold=0.70

manual inspection Count Precision Recall Count Precision Recall

cjpeg 63 8 100.0 % 12.7 % 48 87.5 % 66.7 %
djpeg 101 19 100.0 % 18.8 % 42 97.6 % 40.6 %
file 7 6 83.3 % 71.4 % 8 87.5 % 100.0 %
img2txt 36 18 88.9 % 44.4 % 39 59.0 % 69.9 %
jhead 4 4 100.0 % 100.0 % 5 80.0 % 100.0 %
objdump 11 12 83.3 % 90.9 % 12 83.3 % 90.9 %
readelf 27 28 71.4 % 74.1 % 36 72.2 % 96.3 %
tiff2ps 36 25 88.0 % 61.1 % 37 62.2 % 63.9 %
tiffcp 49 46 67.4 % 63.3 % 53 67.9 % 73.5 %

Total 315 149 79.2 % 37.5 % 280 75.7 % 67.3 %

2.4.3.2 By comparing independent implementations

This method uses two independent implementations P and Q of the same algorithm to evaluate

whether an arithmetic error is likely harmful. If P and Q (1) agree (have identical or similar output)

on all the inputs that trigger no arithmetic errors but (2) disagree (have different outputs) on the

inputs that trigger arithmetic errors in P , then the errors in (2) are likely harmful. This is based on

the conjecture that when an input triggers a harmful arithmetic error in P , it unlikely also triggers

an arithmetic error in Q, and even if it does, the two errors unlikely cause P and Q to generate

similar output. Obviously, the first property above requires the output to be a deterministic function

of the input, i.e., no randomness may affect the output.

We applied the above method on the program djpeg in the libjpeg-ijg package. A JPEG encoder

compresses an image by (1) dividing the image into 8 × 8 matrices and applying discrete cosine

transform (DCT) to each matrix, (2) suppressing the high-frequency signals by element-wise dividing

each matrix by a predefined matrix and rounding the result to the nearest integer, and (3) discarding

all the tailing zeros. The decoder reverses the above operations, where it can infer the number of

24

discarded zeros based on the size of the small matrix and that of the image.

Since a JPEG decoder uses floating point arithmetic, two independent decoders may create

slight different outputs on the same input. However, if the difference is large, then at least one

decoder is misbehaving. We measured the difference as the average L1 distance between two images.

More precisely, let

• A and B: two images of dimension m× n.

• Ai,j : a 3-channel vector representing the RGB values of the pixel at (i, j)

• A
(k)
i,j : the value of the kth channel. This value is in the range [0, 255], and k ∈ {1, 2, 3}.

Definition 2.4.1. The average L1 distance between two images A and B of identical size is:

D(A,B) =

∑
c∈C(A,B)

∑
k∈[1,3] | c(k) |

| C(A,B) |
(2.1)

where

C(A,B) = {Ai,j −Bi,j : i ∈ [1,m], j ∈ [1, n], A[i, j] 6= B[i, j]}

To evaluate whether non-crash arithmetic errors in libjpeg-ijg are harmful, we selected libjpeg-

turbo as an alternative, independent implementation. libjpeg-turbo has the same API as libjpeg-ijg ;

however, its decoder uses SIMD instructions to accelerate arithmetic operations while libjpeg-ijg

does not.

We prepared two sets of JPEG images as input to the decoders:

• Normal images: We randomly picked 100 JPEG images from Android system images, LATEX

testing images, libjpeg testing images, and GNOME 3.28 desktop images. None of them

triggered arithmetic errors on either decoder.

• Exploit images: We collected images produced by Integrity that triggered arithmetic errors

25

100 101 102 103
0

0.2

0.4

0.6

0.8

1

Average L1 difference

C
D

F

normal images
exploit images

Figure 2.1: Cumulative distribution function (CDF) of the average L1 distance (Equation 2.4.1)
between the output of two decoders on the same input JPEG image. The CDF of the normal images
is cleanly separable from that of the exploit images.

in the program djpeg in the package libjpeg-ijg, and then removed the following from the

collection:

– Broken images: Integrity generated many images that are invalid JPEG and therefore

cannot be rendered.

– Images whose width or height is less than 8 pixels. Since JPEG encoder partitions images

into 8 × 8 matrices, the decoder’s behavior on those images may be implementation-

dependent.

– Images that triggered only the benign errors described in Section 2.4.2.1

After filtering, we were left with 67 exploit JPEG images.

Figure 2.1 compares the cumulative distribution functions (CDF) of the average L1 distance

(Equation 2.4.1) between normal and exploit images. The figure cleanly separates the CDF of

normal and exploit images with no overlap: the L1 distance of normal images ranges from 0.0 to 6.0

with a median of 2.4, while the distance of exploit images ranges from 16.9 to 342.4 with a median

of 217.2. This implies that those arithmetic errors that Integrity found in libjpeg-ijg are harmful.

26

2.4.4 Comparison with Angora + UBSan

We compared Integrity with simple combination of Angora and UBSan. We ran Angora with

UBSan in the same experimental configuration as we described in Section 2.4.2.

Table 2.1 compares the number of verified bugs found by Integrity and Angora+UBSan, respec-

tively. Integrity found many more bugs than Angora on each program. On all program together,

Integrity found 174 bugs while Angora+UBScan found only 23 bugs. Angora+UBSan found no bug

in file, objdump and readlef , but Integrity found a total of 60 bugs in them. This result shows that

Integrity performs far superior than simple combination of Angora and UBSan. Without proper

information sharing (Section 2.2.2.2 and Section 2.2.2.3), the fuzzer and the sanitizer cannot cooper-

ate well because the fuzzer would not know where the potential bugs lie and divert computation

power accordingly.

As a side note, we had to overcome engineering difficulties to combine Angora and UBSan.

Angora compiles two binaries for each program: one uses Data Flow Sanitizer (DFSan) [80] to do

taint tracking, and the other monitors the execution traces. DFSan instruments instructions to track

data flow. If the program calls a function in third-party libraries, DFSan needs a modeled function

to know how to propagate the taint. When we initially compiled the programs using UBSan and

DFSan, it failed because DFSan could not find the modeled functions instrumented by UBSan. [47]

also warned such issues when using multiple sanitizers. We applied a temporary hack to overcome

the compilation problem: we enabled DFSan and disabled UBSan when compiling the binary for

taint tracking, and enabled UBSan and disabled DFSan when compiling the binary for monitoring

execution traces.

2.4.5 Instrumentation reduction

To evaluate the effect of instrumentation reduction described in Section 2.2.1.3, we instrumented

five libraries with and without reduction and compared the number of instrumented arithmetic

operations. Table 2.5 shows that overall this technique eliminated 9% instrumented arithmetic

operations.

27

Table 2.5: Number of instrumented arithmetic operations before and after instrumentation reduction

Library
of instrumentation Remaining

after reduction before reduction instrumentation

libpng 2518 2773 90.80 %
binutils 16,432 18,203 90.27 %
libjpeg 14,335 15,312 93.62 %
libtiff 7383 8123 90.89 %
libpcap 714 887 80.50 %

Total 41,382 45,298 91.36 %

2.5 Related work

2.5.1 Detecting integer overflow

Integer overflow has been extensively studied [49, 50, 81–84]. IOC [49, 50] instruments AST to

test for overflow. It is now part of LLVM’s UBSan [73].

IOC tends to generate many benign overflows. IntEQ [81] and IntFlow [82] intend to cut down

reported benign overflows. Both use the assumption that an overflown value is benign unless it is

used in a sink. IntFlow combines static and dynamic analysis to determine if any overflown value

flows into a sink. IntEQ relies on symbolic execution to achieve this goal. It computes a value flown

into a sink in both high and low precision and compares the two values. Both these tools rely on

the user to provide input (test cases) for finding overflows. Integrity overcomes this limitation by

triggering arithmetic errors automatically through program instrumentation targeting arithmetic

errors.

z3 [83] is a tool for solving integer-related symbolic constraints. IntScope [84] uses symbolic

execution to detect integer overflow. Unlike IOC, IntScope does not rely on source code but

translates x86 binary to an intermediate representation called PANDA first, then symbolically

executes PANDA to detect possible arithmetic errors. Since Integrity uses fuzzing, it inherits the

advantages of fuzzing over symbolic execution, such as faster execution and tolerating obscure code

(e.g., external libraries, system API, etc).

28

2.5.2 Coverage-directed fuzzers

A coverage-directed fuzzer mutates the input to explore paths in the hope to trigger bugs on

some of these paths [1, 27, 43, 44, 74, 77, 78, 85–88]. If a mutated input explores a new path,

the fuzzer keeps the input as a seed. AFL [1] and LibFuzzer [86] employ evolutionary algorithms

to mutate input. Driller [87] and QSYM [88] try to solve complex path constraints by concolic

execution. VUzzer[74] and REDQUEEN [43] learn magic bytes and generate satisfying input without

symbolic execution. bohme2017directed [77] and chen2018hawkeye [78] direct fuzzing to a set of

target program locations efficiently. Angora [44] models a path constraint as a black-box function,

and uses optimization methods such as gradient descent to solve it. NEUZZ [27] also uses gradient

descent to explore new paths and approximates the target program’s branch coverage by a neural

network.

Many coverage-directed fuzzers can turn on various sanitizers to detect bugs during explo-

ration [47, 73, 89–92]. For example, Address Sanitizer [89], Memory Sanitizer [90], Thread Sani-

tizer [92], and Undefined Behavior Sanitizer [73] detect invalid memory addresses, use of uninitialized

memory, data races, and undefined behavior, respectively. However, those fuzzers only passively

detect those bugs when they are triggered by random mutation. By contrast, Integrity instruments

arithmetic operations with potential errors to triggers them actively.

2.5.3 Bug-directed fuzzers

Besides integer arithmetic errors, researchers developed fuzzers to exploit other vulnerabilities.

petsios2017slowfuzz [93] targets algorithmic complexity vulnerabilities guided by resource usage.

jeong2019razzer [15] guides fuzzing towards potential data races in the kernel, then deterministically

triggers a race. NEZHA [94] exploits the behavioral asymmetries between multiple test programs to

focus on inputs that are more likely to trigger semantic bugs. Tensorfuzz [95] use coverage-guided

fuzzing methods for neural networks to find numerical errors in a trained neural network. Dowser [96]

determines “interesting” array accesses that likely harbor buffer overflow, and triggers overflow

by taint tracking and symbolic execution. TIFF [97] infers input types by dynamic taint analysis,

29

and sets input bytes with defined interesting values based on its type to maximize the likelihood

of triggering memory-corruption bugs. Compared with those fuzzers, which were built to detect

those specific bugs, Integrity reduces the problem of exploitation to the problem of exploration, and

therefore can work with most fuzzers and can benefit from the advances of exploration technologies.

30

Chapter 3

Valkyrie: improving fuzzing

performance using principled

techniques

3.1 Introduction

Greybox fuzzing has achieved much progress over the past few years, becoming more accepted

in industry applications while receiving much attention in academia. Fuzzing’s scalability and

soundness have led security researchers to find a multitude of vulnerabilities in a wide variety

of software, including IoT devices [19–21], Android apps [98], kernels [14–18], and application

software [1, 38, 39, 44, 53].

Many state-of-the-art greybox fuzzers are based on American Fuzzy Lop (AFL) [1]. AFL is

a classic mutation-based greybox fuzzer offering a versatile and robust architecture that allows

developers to port its design to numerous platforms and operate on vastly different fuzzing targets.

This has sparked interest in the research community, conceiving a number of AFL-derived fuzzers

with numerous improvements [31, 38, 39, 43, 44, 53].

However, their respective strategies are limited by randomized algorithms. For example, AFL-

31

based fuzzers obtain program feedback in the form of branch coverage by recording the hit counts

of each branch in a fixed-size bitmap called branch count table. Branches’ IDs are determined

randomly at static time to index the table. Randomly assigned IDs result in potential collisions

where two branches correspond to the same ID, also known as the branch collision problem. On

the other hand, the importance of context-sensitive branch counting can be corroborated by its

extensive implementation in newer fuzzers [44, 53]. The increased unique branches brought by this

new context information exacerbate branch collision problem.

An intuitive solution to mitigate this problem is to increase the branch count table’s size, which

is state-of-the-art fuzzers’ approach. However, during our tests with programs such as tcpdump, the

utilization rate of bitmaps can reach up to 36.6% even when enabling context-sensitivity using an

enlarged 1MiB bitmap. As shown by Gan et al. [31], such utilization rates can induce very high

collision rates, while an enlarged buffer reduces execution throughput by 30% on some programs.

AFL++’s LTO mode statically assigns each branch a unique ID to achieve collision-free. However,

its design does not accommodate for context-sensitivity, which is important for the fuzzer to detect

subtle but important changes in a program’s execution state.

Therefore, fuzzer developers have to face a trade-off between fine-grained but slow feedback or a

fast but inaccurate one. Such trade-off has been carefully studied in [35]. Thus, there is a need for

a better solution that takes a principled approach towards providing detailed, accurate, and efficient

branch counting.

On the other hand, little effort is put into mutators. AFL-based fuzzers generally use heuristic

methods, most of which are based on randomization. Even fuzzers with solvers have unrealistic

assumptions, which often lead to failure and force the fuzzer to turn to randomization as a last

resort. For example, in Angora, lots of “odd heuristics and parameters” [99] are added to the code.

These heuristics caused uneven performances across trials. Therefore, [100] proposes a series of

methods including repeated trials to guarantee the comparison is fair. However, real-world bugs are

far and rare. Even ten repeated trials cannot guarantee a bug being found.

We carefully study the state-of-the-art fuzzers with embedded solvers and find these fuzzers

32

generally work in the following fashion. First, the fuzzer picks an unsatisfied branch predicate

to solve. Then, it identifies the input sections that can affect the predicate’s outcome through

techniques such as dynamic taint analysis. Next, the fuzzer uses the solver to identify and exploit

certain features of the predicate to solve it. The fuzzer continues to solve the target predicate

until either the predicate is satisfied or the solver has exhausted its time budget. It then picks

another predicate and repeats the process mentioned above. For instance, REDQUEEN attempts

to identify and tackle checksums and hashes through techniques similar to magic byte matching,

but it cannot solve general arithmetic predicates [43]. QSYM uses a modified concolic solver to

solve the target predicate, but these solvers cannot solve constraints with complicated forms such as

nonconvexity [88]. Angora converts the predicate to an objective function f(x) to optimize using

gradient descent, where x represents sections of input bytes [44]. Using numerical differentiation,

Angora approximates the objective function’s gradient and performs descent by mutating the

corresponding input sections.

Some solvers fall back to random mutation when their assumptions do not hold for scenarios

in real-world programs. Mathematical methods such as gradient descent are designed to work on

functions in the real domain, which renders these solving methods ineffective against real-world

constraints where many are in the bounded integer domain. Therefore, fuzzers that utilize these

methods can only solve a subset of the predicates for the following reasons. 1) They believe the

mutation amount ∆x is always an integer, and 2) the predicate may overflow when the mutation

amount derived from an integer ∆x is too large. Therefore we need to find a way to allow solvers

assuming real domain to work with branch predicates in real-world programs, allowing the fuzzer to

release its full potential instead of rolling a dice and hoping for the best.

The fuzzing process involves two distinct tasks: exploration and exploitation. During the

exploration phase, the fuzzer generates seeds to achieve broader coverage of the target codebase.

Conversely, the exploitation phase focuses on uncovering bugs by generating seeds that lead to

program crashes or other notable behaviors. While state-of-the-art fuzzers employ various strategies

for exploration, many rely on heuristic-based methods for bug exploitation. For instance, popular

33

fuzzers like AFL and AFL++ employ random mutation techniques to blindly trigger bugs. In

contrast, more advanced fuzzers like Angora identify specific instructions and attempt to insert

values such as NULL or INT MAX to trigger out-of-bounds memory access bugs. However, these

approaches may fall short in detecting bugs that require non-trivial triggering conditions, such as

specific input values or particular triggering mechanisms. Consequently, the effectiveness of the

fuzzer may be compromised in such cases.

These problems are the current blocking issues when we hope to improve fuzzing effectiveness.

A collision-prone and imprecise branch coverage feedback mechanism will cancel out the benefits of

improved mutation methods, as the fuzzer would likely miss the resulting increased program states.

A more sophisticated mutator cannot deliver its promise unless the fundamental assumptions hold

under most circumstances. Ineffective exploitation methods render the fuzzer incapable of triggering

bugs within code that has been already explored. We believe deterministic algorithms produce more

consistent, predictable, reproducible results. Therefore, we wish to eliminate the randomness used

in these two components. After re-evaluating these methods, we design techniques that address

each aspect of the issues mentioned above:

First, we combine the best of two worlds by designing a branch coverage feedback mechanism

that is collision-free and context-sensitive. We use static analysis to identify all possible branches

present within the program. Instead of assigning each branch a static ID like current approaches, we

give each branch a relocatable, function-local incremental ID. Additionally, we statically determine

all possible first-order function contexts, i.e., function contexts are determined solely by the call

site. For each function, we identify its direct call sites at static time. For indirect function calls,

we assume any function with the same signature may be called at runtime. Thus, each branch’s

context-sensitive ID at runtime is determined by its function-local ID and the current function

context. Furthermore, we develop an algorithm to remove unnecessary instrumentation while

maintaining accuracy to reduce the table size. We also prove the correctness of the algorithm. To

adapt to more extensive programs, we statically determine the required size for the branch counting

table and negotiate a suitably-sized buffer automatically with the fuzzer at initialization. This

34

approach allows for more fine-grained feedback while reducing overhead, improving the fuzzer’s

ability to observe execution state changes in the program.

Next, we design a compensated step method that adapts solver algorithms developed for values

in the real domain to integer domains, where many real-world programs run. To demonstrate the

effectiveness of this approach, we use a gradient descent solver and apply our modifications. The

high-level idea of this method is to clip the fractional values that could not be applied to integer

values and compensate them to other components of the input vector. We denote the input vector

as x, the original mutation amount as ∆x ∈ Rn, where n is the dimensions of the input vector, i.e.,

the number of input bytes of a predicate. Our target is to find a compensated mutation amount

∆x′ ∈ Zn, such that f(x + ∆x) ≈ f(x + ∆x′). We also make some modifications to the original

gradient descent solver such that compensated mutation can perform well in real-world situations.

Specifically, we first modify the initial step size such that it is set to the smallest possible value by

which the predicate can change, then doubling the step size value upon each successful descent step.

We also used a different differential approach to get a more precise gradient.

Finally, we propose proactive exploitation that augments the fuzzer’s bug detection capabilities.

This method works by first identifying exploit points, i.e., locations where bugs may be present, in the

target program during static analysis. We identify values according to its exploitation type that may

trigger a bug, including divide by zero, out-of-bounds memory access, and memory allocation. In

contrast with filling the input with interesting or randomized values, we utilize the solver to change

the specific input values such that each exploit point will possibly trigger a bug during fuzzing. In

order to maintain fuzzing throughput, we prioritize conventional exploration, i.e., we first solve as

many branch predicates as possible, thus covering as much code as possible, then for all exploit points

found in the covered code, we attempt to trigger bugs within the program. Additionally, we devise a

way to lower the runtime costs due to the added instrumentation code based on the observation that

most instrumented code during one execution of the fuzzed program does not require execution. We

clone each function into copies that are instrumented with different instrumentation types, such as

one copy for exploration feedback, another two for memory-related exploitation and integer-related

35

exploitation, respectively. At runtime, we only execute the corresponding instrumented function if

it contains the target predicate or exploit point.

We implement a prototype fuzzer Valkyrie to deliver better performance through our improve-

ments. We evaluate Valkyrie’s effectiveness on standard dataset Magma and real-world programs.

On Magma, Valkyrie found 21 unique integer and memory errors with no need for any random-

ization methods, 10.5% and 50% more than AFL++ and Angora, respectively. We also examine

the performance of Valkyrie on real-world programs. First, our tests show that Valkyrie increased

branch coverage by 8.2% compared with AFL++, and 12.4% compared with Angora. Second, we

demonstrate that Valkyrie’s branch counting mechanism allows for collision-free branch counting.

At the same time, when using a bitmap with comparable size to Valkyrie’s, AFL and Angora result

in significant bitmap utilization rates, leading to high occurrences of collisions. Finally, we compared

Valkyrie’s solver with Angora’s to show that even without any heuristics, our compensated step

mutation can still do better than Angora.

This chapter makes the following contributions:

1. We propose a collision-free branch counting method and an algorithm to reduce branch count

table size.

2. We propose an efficient mutation method for predicate solver. With the new solver, we can

effectively target some memory and integer bugs during fuzzing.

3. We implement a prototype fuzzer Valkyrie using these deterministic techniques and evaluated

its effectiveness and performance.

4. We demonstrate Valkyrie delivers a more stable and uniform performance than other commonly

seen fuzzers on benchmarks and real-world programs.

36

3.2 Background and motivation

AFL is a classic mutation-based greybox fuzzer. AFL monitors the program state by inserting

light instrumentation and monitoring branch coverage states. It then uses a series of heuristics and

randomized methods to mutate existing seeds. The instrumented program is executed using the

mutated seed. AFL will save the new seed if a new branch state is triggered.

Most fuzzers in the AFL family inherit these techniques with some modifications. For instance,

fuzzers in the AFL family generally use a fixed-sized bitmap to record branch coverage information,

allowing the fuzzer to identify new triggered states and save the mutated input as a seed for further

mutation. During program execution, the instrumentation code increments the branch’s bitmap

entry whenever a new branch is executed. Some AFL-derived fuzzers implement context-sensitive

branch counting [44, 53] to assist in discerning more unique states.

However, since the branch ID is determined randomly during instrumentation, it is not unique

and can lead to branch collision. Gan et al. demonstrated that collisions are non-trivial and increase

with the number of branches present within a program [31]. Paired with context-sensitivity, which

significantly increases the number of unique branches observable by the fuzzer. Branch collisions

pose a significant challenge when improving fuzzing effectiveness.

There are several attempts to mitigate the problem. For instance, Angora defaults to a larger

bitmap size, which has been proved ineffective by Gan et al. since it does not eliminate collisions

and slows down execution speed significantly. Gan et al. proposed CollAFL, which assigns IDs

using non-random algorithms that greatly reduces collisions. AFL++ offers an optional LTO

mode that provides collision-free branch counting [53]. However, the former cannot adjust to

programs automatically, while the latter is experimental and buggy. Besides, both approaches lack

context-sensitivity.

Fuzzers in the AFL family randomly mutate the entire input. Random mutation becomes

somewhat ineffective after the “easy” branches are solved. More recent developments focus on using

solvers to solve branch predicates to dive deeper into the code. It is guaranteed to alter the control

37

flow once the predicate is solved and possibly yield a new path. Many solvers have been proposed,

including input-to-state-correspondence [43], concolic solvers [88], and gradient methods [44]. These

fuzzers generally operate using the following workflow: 1) it identifies the corresponding input

sections of the target predicate, 2) then it derives relevant properties of the predicate, such as the

gradient, and 3) it mutates the input sections with its predicate solver using the above information.

However, these methods are limited in real-world scenarios. For example, the gradient method

used in Angora assumes the input domain to be continuous when it is discrete in most cases. This

limits its ability to solve many real-world predicates, which becomes difficult and almost impossible

to solve using continuous domain assumptions. Listing 3.1 is an example code copied from libjpeg,

where three input bytes are involved, two of which describes the buffer length and the other is the

number of components in the buffer. There is a sanity check before the program consumes the buffer.

Angora may convert the check into an objective function f(x) = |gxT − 8| where g = [256, 1,−3]

is the gradient. Then Angora tries to minimize it using classic gradient descent, where one can

move input in arbitrarily small steps. Suppose the initial point is xinit = [0, 12, 1]. When trying to

take a small step −αg, say α = 0.1, −αg = [0,−0.1, 0.3], later two dimensions will find it unable to

accept a fractional value and thus floored step to [0,−1, 0] and result to x = [0, 11, 0]. Angora would

stagnate at this point. Since the first and the second dimensions are going in opposite directions,

and all dimensions must be positive, Angora cannot find a next step.

One may argue that in this situation, we can use ceiling or rounding to solve this problem.

However, we can always find code snippets where one operation works and the other two fail. The

root cause is not clipping operations we choose to use, but that the assumption Angora made is not

true in real-world programs, as each byte is bounded to [0, 255] and the smallest step by which one

input byte can change is either 1 or −1.

Bug exploitation in programs is another area that state-of-the-art fuzzers cannot perform as

well as expected. In this chapter, exploitation refers to the process where the fuzzer tries to

detect bugs from exploit points by generating a seed that crashes the program at the exploit point.

State-of-the-art fuzzers generally employ heuristics-based bug exploitation methods. Popular fuzzers

38

1 static unsigned int NEXTBYTE (void);

2 static void process_SOFn (...) {

3 unsigned int length = (NEXTBYTE () << 8) + NEXTBYTE ();

4 unsigned int num_components = NEXTBYTE ();

5 if (length != 8 + num_components * 3)

6 ERREXIT("Bogus SOF marker length");

7 ...

8 }

Listing 3.1: Code snippet copied from libjpeg-9d. The program requires the length to be a specific
amount to continue.

such as AFL and AFL++ generally use random mutation and, in some cases, dictionary values

in an attempt to trigger bugs within the program. Angora only targets a small subset of possible

exploitation points, for example, buffer indexing operations, and sets pre-defined values based on

heuristics, such as INT MAX or NULL. While these methods have been able to find numerous bugs in

the history of these tools, more have been overlooked due to their non-trivial triggering conditions.

Thus, we need a proactive bug exploitation method that allows the fuzzer to find these bugs within

the explored program code.

3.3 Design

To overcome the limitations of state-of-the-art fuzzers, we propose the following improvements:

1. a branch counting mechanism that combines collision-free and context-sensitivity, with an

instrumentation removal algorithm to reduce memory overhead while maintaining accuracy,

2. a predicate solver that adapts traditional optimization techniques designed for the real domain

to bounded integer domain.

3. a bug triggering method based on our predicate solver.

3.3.1 Collision-free context-sensitive branch counting

Following the common practice in fuzzing, we record the visit counts of branches and use them

to approximate the state of the program. We designed our mechanism to be both context-sensitive

39

and collision-free to improve the accuracy of the branch counting feedback. In current collision-free

branch counting techniques, each branch is given a static unique ID b. Context-sensitive branch

counting techniques generally use a context identifier c to differentiate between branches when

appearing in different function contexts. Thus, we denote the tuple (c, b) as the context-sensitive

branch. Our mechanism ensures that we record the visit count of each unique context-sensitive

branch separately.

In contrast to AFL-derived branch counting mechanisms which use fixed-size branch counting

tables, we wish to find the minimal space required for storing all the visit counts, allowing the fuzzer

to adapt to any given program automatically. We achieve this in three steps. First, we identify

all the unique context-sensitive branches. Then, in each function, we find the branches that don’t

need to be instrumented. Finally, for those branches that need instrumentation, we assign a unique

sequential ID to each context-sensitive branch. This ID serves as the index of the branch in the

branch-counting table.

3.3.1.1 Static branch edge ID generation

In contrast with AFL++’s approach of assigning a globally unique ID for each branch, we give

each branch a relocatable function-local ID by visiting every function in the program, traversing

the branch edges, and generating an incremental sequential ID statically for each branch. Then we

collect the number of branches in each function. We also maintain an additional global function

offset variable during runtime that is updated when calling or exiting a function. Thus the offset

for each branch can be calculated by taking the function-local branch ID plus the function offset.

Thus, we can dynamically calculate the unique branch ID using branch relocation depending on the

specific function context.

3.3.1.2 Calculate the number of context-sensitive branches

Let F be the set of all functions in the program, f ∈ F be a function, branch count(f) be the

number of branches in f , and context count(f) be the number of different calling contexts of f .

40

Then the amount of branches is

n =
∑
f∈F

context count(f) · branch count(f)

We calculate branch count(f) through the control flow graph of f . Calculating context count(f)

is more involved:

To avoid the explosion of the number of calling contexts (e.g., caused by recursion), we consider

only one-level context, i.e., the context is determined by the call site only. Thus, we can determine

explicit call sites easily.

3.3.1.3 Indirect function call context generation

To assign function context offsets for indirect function calls, we must identify all possible

functions an indirect call site can call. To determine implicit call sites precisely, we would need

precise points-to analysis. However, that is both difficult and expensive [101, 102].

Therefore, to find possible function contexts within a reasonable amount of time, we employ our

method of approximating all candidate values of function pointers in indirect call sites. First, we

determine the number of branch table entries that are required for each function in each context

by taking the maximum number of branches of all functions. Then, we iterate over all function

declarations in the program or library and classify them according to their function prototypes.

Next, we find all operations that take the address of any function and add the respective functions

to the candidate list. Finally, we find all candidate functions for each indirect function call site

with the same function prototype. We reserve the amount of branch table entries required for each

context. The function base offset is resolved at runtime by matching the actual pointer value with

all possible candidate values.

41

3.3.1.4 Calculate the ID of each context-sensitive branch

Conceptually, for each function, we reserve a contiguous region of IDs that can store all the

context-sensitive branches in the function.

To implement this, during instrumentation,

• In each function f

– for each branch b, we sequentially assign a function-local ID, ID(b), starting from 0.

– for each potential call site c, we sequentially assign a context ID, IDf (c), starting from 0.

• We arbitrarily assign an order to all the functions, and assign an ID offset, offset(f), to each

function in the following way: for each function fi, we set its offset offset(fi) = offset(fi−1) +

context count(fi−1) · branch count(fi−1). We initialize offset(f0) as 0.

At runtime, the ID of the context-sensitive branch (c, b) in function f is:

offset(f) + IDf (c) · branch count(f) + ID(b)

3.3.1.5 Redundant branch instrumentation removal

The benefit of instrumentation removal is twofold. First, it allows us to shrink the branch count

table’s size, reducing the memory overhead. Besides, branch counting is a time-consuming job where

the program has to calculate the offset, fetch the entry, and save the result. If we could reduce the

number of reported branches without affecting the distinguishability, then we can use the reduced

branch counting to same runtime by not reporting these edges. To that end, we wish the path after

instrumentation removal to be distinguishable from a different path after compression. Here, we

formally define path and distinguishability:

Definition 3.3.1 (Path). For a program with a CFG, the set of all edges are E. A complete path is

a sequence of edges between basic blocks that represents one execution of a program. A compressed

path is a subsequence of a complete path where only edges in E′ ⊂ E are kept.

42

Definition 3.3.2 (Distinguishability). Suppose we have two complete paths P and Q, and their

compressed paths P ′ and Q′. P ′ and Q′ are said to be distinguishable when P = Q if and only if

P ′ = Q′.

We do not need to instrument an edge if whether it is taken does not distinguish two different

paths. This introduced two requirements for our instrumentation removal. First, for each loop, at

least one edge needs to be instrumented. Otherwise, we wouldn’t distinguish how many times the

loop has been executed. We use LLVM’s definition of the loop1 here and assume each loop has one

and only one header block. Besides, for any basic block, exactly one of its outgoing edges needs

no instrumentation. Because we can infer the status of that edge from other edges’ status. For a

basic block, if none of its instrumented outgoing edge is executed, then the only one that is not

instrumented must be executed, and vice versa, if any instrumented edge is executed, then the edge

without instrumentation is not executed. To satisfy both properties, we put labels on the edges

before we instrument them. Algorithm 2 shows the algorithm.

For instance, in Figure 3.1, we only need to instrument and record the visit counts of branches

a, c and g to sufficiently distinguish different paths. Our algorithm would work in the following

fashion to achieve this result. Initially, all edges are labeled as delete. We iterate over all loops’

header block(A and C) first and mark the loops’ outgoing edges(a and g) as keep. Then for each

basic block, we have exactly one outgoing edge labeled as delete and mark others as keep. Thus

only c is kept. Notice that whether we keep c or b doesn’t change the branch table’s size, nor the

distinguishability of the instrumentation. We will prove this property in Theorem 1. Finally, we

instrument all edges marked as keep, including branches a, c and g.

Table 3.1 shows how paths are compressed after our instrumentation optimization. Column four

of the table shows the branch counting table if no compression is used. Each edge needs a counter

to record how many time it has been executed. On the other hand, with our path compression we

observe that only three edge need instrumentation, shortening our table size from eight entries to

three entries, saving memory usage. Because many edges doesn’t have a corresponding counter,

1https://llvm.org/docs/LoopTerminology.html

43

https://llvm.org/docs/LoopTerminology.html

they don’t report their execution at runtime, lowering our runtime overhead. We find that the

compression rate (column three) can be as high as 50%, that means we can save more than half of

the runtime overhead. Finally, as we will prove in the following sections, the distinguishability is

not affected by compression, which removes the necessity to convert the compressed path to the full

path, since we can directly compare the compressed path and differentiate two execution traces.

We formally prove the algorithm’s correctness:

Theorem 1. Let P and Q be two paths. Let E be the set of all edges in the CFG, and E′ ⊂ E be

the set of edges kept by Algorithm 2. Let P ′ and Q′ be the compressed path of P and Q, respectively,

generated from E′. Then P = Q if and only if P ′ = Q′.

Proof. Necessity (the right direction): Since P = Q, their subsequence on E′ must also be equal.

Sufficiency (the left direction): Prove by contradiction. Assume P 6= Q but P ′ = Q′. Let

P = (A, p1, · · ·), Q = (A, q1, · · ·), where A is the longest common prefix of P and Q. Therefore, p1

and q1 are different but they start from the same basic block B, so B must have n > 1 outgoing

edges. Algorithm 9 to Algorithm 15 of Algorithm 2 guarantees that at least n− 1 of the edges are

marked keep, so at least one of p1 and q1 is marked as keep.

If both p1 and q1 are marked as keep, then they both appear in E′, so P ′ = (A′, p1, · · ·) and

Q′ = (A′, q1, · · ·) where A′ is the compressed path of A. Since p1 6= q1, P ′ 6= Q′, but this contradicts

our assumption.

If only one of p1 and q1 are marked as keep. Without loss of generality, let p1 be marked as

keep. So P ′ = (A′, p1, · · ·). The assumption P ′ = Q′ implies that Q = (A, q1, B, p1, · · ·), i.e., Q

contains a cycle (q1, B) and no edge in the cycle is marked as keep. But Algorithm 3 Algorithm 8

of Algorithm 2 prevented this.

3.3.2 Compensated mutation assisted solver

While random mutation operators generally used by the AFL family of fuzzers can quickly solve

“easy” predicates, predicates with a small feasible input space are difficult for them to solve, especially

44

Algorithm 2 Procedure for determining which branches to instrumentation in a function.

1: function FindEdgesToInstrument(CFG)
2: Mark all edges as delete.
3: for Loop l ∈ CFG do
4: h← l’s header block
5: for Edge e = (h, b) ∈ h’s outgoing edge do
6: Mark edge (h, b) as keep.
7: end for
8: end for
9: for Block b ∈ CFG do

10: E = set of all outgoing edges of b
11: if ∃e1 6= e2 ∈ E, both are markded as delete then
12: ∀e ∈ E, mark e as keep
13: mark e1 as delete
14: end if
15: end for
16: Instrument all edges marked with keep
17: end function

A B2

B1

B3

C D
in

a
d

b
e

c

f h

g

out

Figure 3.1: Examples of branches that do not require instrumentation. Only thickened edges need
instrumenting.

when the predicate is an equality comparison. In Listing 3.1, num_components has 256 possibilities,

thus 256 possible inputs to satisfy the comparasion. However, there are 2563 possible inputs for

three bytes, making it difficult for fuzzers that randomly generate inputs. On the other hand, even

state-of-the-art fuzzers with a solver may fail because their assumptions are not true.

Therefore, we need a new solver that properly handles the bounded integer domain that largely

exists in real-world programs.

We use the notation f(x) to represent its objective function for each predicate. x is a vector

determined by a subset of the input bytes. The fuzzer maps input bytes to x using dynamic taint

analysis tools like DataFlowSanitizer [80]. The range of each dimension of x is determined by its

type, bit width, and signs, which Valkyrie computes by static analysis. For simplicity, we refer to

45

Table 3.1: Examples of path compressions in Figure 3.1. Grey areas in column five means that we
didn’t allocate memory for thoese edges. Notice how edge f and h must be executred, thus there is
no need to instrument them.

Path
Compressed Compression Uncompressed Compressed
path rate Matcher table Matcher table

a b c d e f g h a b c d e f g h

bfh - 100% 1 1 1

cefh c 75% 1 1 1 1 1

adbfgh ag 66% 1 1 1 1 1 1 1 1

cefggh cgg 50% 1 1 1 2 1 1 2

adadadbfggh aaagg 55% 3 1 3 1 2 1 3 2

adcefgh acg 57% 1 1 1 1 1 1 1 1 1 1

adcefggggh acgggg 40% 1 1 1 1 1 4 1 1 1 4

Table 3.2: Conversion table between branch predicate expressions, their corresponding objective
functions and solver targets. δ represents the smallest possible positive value that the numerical
type can represent. For integers, δ = 1.

Predicate Objective Angora’s constraint Valkyrie’s constraint

a > b f = b− a f < 0 f < 0
a < b f = a− b f < 0 f < 0
a = b f = a− b |f | ≤ 0 f = 0
a ≥ b f = b− a− δ f < 0 f < 0
a ≤ b f = a− b− δ f < 0 f < 0
a 6= b f = a− b −|f | < 0 f < 0 or f > 0

the maximum and minimum value that can be represented by xi as mini and maxi.

f is a blackbox function determined by the predicate, as shown in Table 3.2. When the predicate

becomes unreachable because a new input alters the program path, we set f(x) to a value that

violates the objective. For example, when the objective is f(x) < 0, then we set f(x) = +∞.

The effectiveness of state-of-the-art predicate-solving fuzzers implies that many predicates in the

program are solvable using principled methods. For example, Angora assumes that the objective

functions of predicates are continuous, therefore it uses a gradient-descent-derived solver. However,

program inputs usually take the form of byte values that are bounded and discrete. Therefore,

solvers developed with a continuous range assumption require modifications to adapt to real-world

46

situations.

We design a compensated mutation technique that mitigates this problem. The main idea of

compensated mutation is when given a target step ∆x ∈ Rn that the solver wants to apply to the

input, we find a ∆x′ ∈ Zn such that f(x + ∆x) ≈ f(x + ∆x′). To do this, we clip the fractional

values that could not be applied to integer values and compensate them to other components of the

input vector. To demonstrate how this approach works and its effectiveness, we apply this technique

to a gradient descent solver, albeit with some modifications.

3.3.2.1 Compensation from real domain to integer domain

Current methods resort to integer flooring when given a vector of fractional numbers ∆x ∈ Rn

to apply to a vector of integer numbers. However, we cannot guarantee that the floored value

b∆xc will result in a similar function value, especially when components have large coefficients in

the function. To avoid precision loss due to rounding techniques of any kind, we wish to find an

integer vector ∆x′ ∈ Zn such that f(x + ∆x) ≈ f(x + ∆x′). The main idea behind the compensated

step is that for a ∆x as well as its gradient on the function, we traverse through each component,

apply a suitable integer mutation value, and compensate the fractional values that were not applied

into other components. We denote ri as the amount that we intend to add to xi and ∆x′i for the

actual integer value that is added. The difference between ri and ∆x′i is the value that needs to be

compensated to another component of the input vector. We call this difference carry amount and

use notation ci. Thus we have:

ci = ri −∆x′i

However, in many cases, it is not possible for the last dimension to take fractional values or reach

its upper bound. To ensure that the function value remains the same, we introduce the concept

of a “carry amount” (ci−1) to be added to the next dimension. If we applying the carry amount

(ci) to the ith component, the objective function value should change by cigi, where gi represents

47

the partial derivative of dimension i. However, since ci is a fractional value that cannot be directly

applied, we need to carry this amount over to dimension j. In order to maintain the same change in

the function value, we should add another term of cigi

gj
to the original value xj . As a result, the

representation ri of the ith dimension consists of two parts. The first part is the original value xi,

and the second part is the carry amount from the last dimension, which is ci−1gi−1
gi

. We can write

the compensation process in Equation 3.1:

c0 = 0

r1 = ∆x1

ri = ∆xi +
ci−1gi−1

gi

ci = ri −∆x′i

(3.1)

Finally, to obtain the integer value ∆x′i, most of the time we use ∆x′i = bric. This is different

than b∆xic. As shown in Equation 3.1, ri is the sum of the target value ∆xi and the amount carried

over from the previous component ci−1 corrected by the fraction of gradients gi−1

gi
. There are few

exceptions where we don’t floor ri:

1. xi+ bric > maxi. This means we could overflow this dimension, thus we set ∆x′i = maxi−xi.

2. xi + bric < mini. Similarly, we set ∆x′i = mini − xi.

3. The carry amount ci is so large that all the dimensions will be overflown by it. In this case

we try ∆x′i = drie.

48

It is not hard to derive the following relation using calculus and Equation 3.1:

f(x + ∆x′) ≈ f(x) + gT∆x′

= f(x) +
∑
i

gi(ri − ci)

= f(x) +
∑
i

[(gi ·∆xi + gi ·
ci−1gi−1

gi
)− gici]

= f(x) +
∑
i

∆xigi − gncn

= f(x + ∆x)− gncn

(3.2)

Therefore, the loss of our method can be as low as |gncn|. In practice, we use a permutation

matrix to sort the components in the descending order of the absolute value of their gradients for

the following reasons:

1. Since in most cases ci−1 < 1, we need gi−1

gi
> 1, otherwise the compensation won’t affect ri

too much.

2. We also want gi−1

gi
to be as small as possible, so it would not amplify ri too much that we

have to push x′i to its bound.

3. As shown in Equation 3.2, a small |gn| would reduce the error incurred by compensated step.

The whole process is described in Algorithm 3. First, we sort the inputs based on the gradient.

Then we calculate ri for each dimension based on Equation 3.1. We then choose ∆x′ based on ri as

described before.

This method is applicable to any solver that can obtain the gradient of each input component.

The gradient can be obtained using a variety of methods, such as using white-box analysis and

receiving an explicit expression, or through numerical methods to approximate the gradient. In our

approach, we use a numerical estimation. In the following section, we describe our modifications for

improved numerical differentiation in real-world fuzzing scenarios in the following part.

49

Algorithm 3 Compensated step

1: function CompensatedStep(x ∈ Zn,∆x,g ∈ Rn)
2: P ← Permutation matrix s.t. ∀i < j, |Pgi| ≥ |Pgj |
3: x← Px
4: ∆x← P∆x
5: g ← Pg . Sort dimensions in the descending order of the absolute value of the gradient
6: c0 ← 0,g0 ← 1
7: for i in 1..n do
8: ri ← ∆xi +

ci−1gi−1

gi

9: ∆x′i = bric
10: if xi + ∆x′i > maxi then
11: ∆x′i = maxi − xi

12: else if xi + ∆x′i < maxi then
13: ∆x′i = mini − xi

14: else if ri −∆x′i is too large for the rest dimensions then
15: ∆x′i = drie
16: end if
17: ci = ri −∆x′i
18: end for
19: return P−1∆x′

20: end function

3.3.2.2 Compensated gradient descent

With the compensated step, here we modify the traditional gradient descent solver to tackle

real-world scenarios. Although compensated step can be applied to any solvers, we find gradient

descent better suited for our needs. Compensated step heavily rely on a gradient to work, which is

the same for gradient descent.

Modified differentiation for a more accurate gradient. Since the predicates’ mathematical

expressions are unknown and we treat them as black-box functions, we cannot derive a gradient

symbolically. However, the traditional differentiation method lack accuracy since a valid gradient’s

absolute value may be less than 1. For example x = 5, f(x) = bx/4c, where flooring the result is the

semantic of integer division in C programs. In this case, we find f(x+ 1) = f(x) = f(x− 1) = 1

and end up with zero gradient. We need an approximated gradient instead of a zero gradient to

keep the algorithm going.

Therefore, to obtain the partial gradients of a particular predicate, we use a modified numerical

differentiation method on each dimension to derive a partial gradient. When calculating differentia-

tion for dimension i, we create a unit vector ei ∈ Rn where only the i-th element is 1 and all other

50

elements is 0. We add and subtract x with this ei and observe f ’s value change to derive a gradient.

Furthermore, we introduce amplifiers β+ and β− to increase the unit step size. β+ and β− starts

with 1. We keep doubling β+ and β− until we find a non-zero f(x+β+ei)−f(x) or f(x)−f(x−β−ei).

Then we can compute the gradient in the i-th dimension, gi, using Equation 3.3:

gi =
f(x + β+ei)− f(x− β−ei)

β+ + β−
(3.3)

If the amplifier β grows very significant without finding a practical value, we consider the

gradient to be zero. β is considered large if β > 1
2(maxi −mini). If both directions turn out to be

zero, we assume this direction to have zero gradient. By repeating this process on all dimensions,

we get a differentiation vector g.

Determine the step size in descent. In the state-of-the-art solver, it takes a step ∆x = −αg

to descend in each iteration. However, it is challenging to set α. If we set it too small, x may move

slowly or even stagnate. For example, f(x) = bx/4c, if we move x by 1, f(x) will not change. But if

we set it too large, we may overshoot, causing the function to descend more than intended.

Therefore, we take the advantage of the fact that given a small step ∆x, f is approximately

linear. There is an ε ball Bε(x) such that for small enough ε ∈ R such that given ||∆x||∞ < ε, g

being the gradient, we have

f(x + ∆x) ≈ f(x) + gT∆x

We select an α such that f(x) will change approximately by the smallest possible increments or

decrements.

v = max(1, min
gk 6=0

(|gk|))

α =
v

gTg

(3.4)

If v is small, f(x− αg)− f(x) ≈ −v by Equation 3.2. We introduced a minimum non-zero gradient

gk because if |gk| > 1, the minimal change possible to f(x) is |gk| instead of 1, since f(x) is a

51

Algorithm 4 Descent routine

Require: f
1: function Descent(x,g ∈ Rn)
2: v ← max(1,mini s.t.gi 6=0 |gi|)
3: α← v/gTg
4: xprev ← x, fprev = f(xprev),
5: loop
6: ∆x′ ←CompensatedStep(xcurr,−αg,g)
7: xcurr ← xcurr + ∆x′, fcurr = f(xcurr)
8: if fcurr =∞ or |fprev| ≤ |fcurr| then . Next step doesn’t exist or the function is not descending.
9: return xprev

10: else if IsSolved(fcurr) then
11: return xcurr

12: end if
13: α← 2α, xprev ← xcurr, fprev ← fcurr
14: end loop
15: end function

discrete function. In each iteration, we double the step size to descend quicker. We revert the

descent parameters to the initial state when we can no longer descend.

For non-linear functions, we could recalculate gradient in every step. However, since each

dimension’s gradient calculation requires us run the program under test a few times, calculating

gradient is very expensive. We recognize that there are three possible outcomes for non-linear

predicates. First, the execution path changes and the predicate is unreachable. In this case, we

have no choice but to stop descending and use the value from the previous step as a result, a new

gradient will be calculated later. Secondly, the function value may drop less than expected or even

increase. We test if the new function value is still descending; if not, we return the previous step

and recalculate the gradient. Finally, the function value may drop more than expected. Since our

goal is to do gradient descent instead of keeping the function linear, we are fine with this step and

keep going until we run into previous two cases.

The overall modified gradient algorithm is listed in Algorithm 4. We start by calculating the

step size using Equation 3.4. Then we would decide whether to ascend or descend based on the

current status of the function. Once the actual step ∆x is determined, we calculate the compensated

step using Algorithm 3. Finally we apply the integer step.

52

3.3.2.3 Solving motivating example

In the case of the example in Listing 3.1, we first formalize it as “given f(x) = gTx− 8, find

xeq, s.t. f(xeq) = 0 ” Suppose the input has been sorted by gradient, thus g = [256,−3, 1] and the

initial point is xinit = [0, 1, 13], f(xinit) = 2.

We start with v = 1, α = v
gT g

, i.e. we try to decrease function’s value by only 1. The first

dimension will have r1 = ∆x1 = − g1

gT g
. We find x1 is already 0 and cannot decrease more.

Thus we carry all the r1 to the next dimension, i.e. c1 = r1 = − g1

gT g
,∆x′1 = 0.

c1 is then applied to the next dimension, thus we have r2:

r2 = ∆x2 +
c1g1

g2

= − g2

gTg
− g1

gTg

g1

g2

= − 1

g2

1

gTg
(g2

1 + g2
2)

= − 1

g2

1

gTg
(gTg − g2

3)

=
1

3
(1− 1

gTg
)

r2 is again floored to 0, leaving c2 = r2,∆x′2 = 0.

Interestingly, we have

r3 = ∆x3 +
c2g2

g3

= − 1

gTg
+

g2

g3

1

3
(1− 1

gTg
)

= − 1

gTg
− (1− 1

gTg
)

= −1

Therefore ∆x′3 = −1 and we end up with ∆x′ = [0, 0,−1]. This would give us x = [0, 1, 12],

f(x) = 1. Since the descent is successful, we would double the step size, i.e. set v = 2 and descent

again. Following a similar process would give us x = [0, 1, 10], f(x) = −1. Because the absolute

value is not descending, we would abort the descent instead of taking the step. We calculate the

53

gradient again and restart using v = 1. The final step would give us xeq = [0, 1, 11], f(xeq) = 0.

3.3.3 Proactive bug exploitation

Current exploitation methods employed by state-of-the-art fuzzers such as AFL++ are merely

best efforts, which are generally based on heuristics and magic byte insertions. These methods are

ineffective when exploiting bugs that require non-trivial triggering conditions. Instead, we extend

the predicate solver which is designed for program exploration into the domain of bug exploitation.

We identify and designate exploit predicates, which are possible exploit points transformed into

a predicate that the solver can handle. When exploit predicates are solved, they trigger a bug

instead of explore a new path. The proactive bug exploitation process is divided into exploit point

identification through static analysis and exploit predicate solving during fuzzing.

3.3.3.1 Exploit point identification

During static analysis, we identify susceptible instructions that have a probability of triggering

a crash as exploitation points. For each possible exploitation site, we identify an exploitable value,

i.e., a value that will trigger a crash at this point, where we instrument predicates for the solver to

try triggering these bugs. Here, we select three exploitation cases where an architecture failure will

be triggered:

Divide by zero. The relevant susceptible instruction takes the form of a division operation,

specifically result = dividend / divisor. We instrument a predicate divisor == 0 so that the

solver will try to move the divisor to zero. In practice, we find programmers will most likely check

if divisor is zero, while forgetting the possibility that the divisor can overflow to zero. Therefore,

we instrument another predicate divisor == MAX + 1.

Memory indexing. If the memory index is larger than the size of the buffer, there may be a

buffer overflow. Although buffer size is hardly known at runtime, all we need is to guide the solver

to push the index to a higher value. The solver either finds it impossible due to index checks in the

program, or trigger a buffer overflow. For each indexing, we instrument a predicate idx > MAX.

54

Memory allocation. If the size of memory allocation is not sanitized properly, a memory

corruption can happen. There are two possibilities. If the allocated memory is less than desired,

then it may result in a future buffer overflow, which may happen when the argument overflows to

a small value. For example, malloc((uint8 t)(257)) only allocates 1 byte of memory instead of

257 due to integer overflow. On the other hand, large allocation size requests may result in resource

exhaustion, leading to the program being killed or returning a null pointer that may not be properly

sanitized. This can happen when malformed or malicious inputs are processed without proper

checks within the program or an integer underflow, for example malloc(10 - 12). Therefore, we

instrument two predicates: size > MAX and size < 0. One predicate targets a very large allocation

size while the other targets an integer underflow.

3.3.3.2 Exploration prioritized scheduling

We observe that if the buggy code cannot be reached by the fuzzer, then the bug cannot be

triggered regardless of the resources spent on exploitation. Therefore, we prioritize exploration over

exploitation so that we will have a better chance of triggering bugs. In each round of fuzzing, we

always try to solve exploration predicates first, we only start trying exploitation predicates after

we exausted exploration predicates. We achieve this by always setting exploitation predicates with

lower initial priority. Since state-of-the-art fuzzers are using priority queue to do scheduling, our

approach brings no overhead to the fuzzer. What’s more, this approach guarantees that the solver

will attempt to solve exploration predicates before proceeding to trigger exploit points. In our

experience fuzzing Magma dataset (Section 3.4.1), the solver will attempt on all exploit predicates

at least once except for a few trials.

On the other hand, we realize that most exploit predicates are infeasible since each one of them

represents a bug. Therefore, spending too many resources on exploitation in a fuzzing campaign is

unwise. Because our solver is deterministic, we will discard an exploit predicate after one attempt,

as we have no reason to believe the second attempt will work. One exception is that we may find a

predicate with different initial points. Since some predicates can be non-convex, the solver will try

55

to solve the same predicate with different initial points.

3.4 Evaluation

We are interested to know how well Valkyrie works in practice. We implemented Valkyrie to

conduct a series of experiments to analyze the effectiveness of the entire fuzzer and individual com-

ponents. We borrowed from Angora the dynamic taint tracking framework and instrumentation base

code. We used the LLVM compiler framework for program analysis and instrumentation. However,

the branch counting algorithm and the solver are independent of Angora’s. The implementation of

our branch counting mechanism uses gllvm [103] to consolidate the program’s compiled LLVM IR into

one module, allowing for full-program analysis. We have open-sourced Valkyrie, including all docker

images and seeds used in evaluation to Github: https://github.com/organizations/ValkyrieFuzzer.

We propose the following research questions to help us understand the results and implications

of our designs:

• RQ1: Is Valkyrie state-of-the-art? How does it fare on benchmarks such as Magma?

• RQ2: How does Valkyrie perform against similar fuzzers on real-world open-source programs?

• RQ3: Is our branch counting mechanism a better trade-off than that of AFL++ or Angora?

• RQ4: Is the solver assisted with compensated step better?

• RQ5: Can branch counting and solver contribute to bug finding in real world applications?

To answer these questions, we designed experiments to examine Valkyrie’s performance on

Magma and a select group of open-source programs. We then conducted two close examinations to

address the latter two questions adequately.

First, we test Valkyrie on benchmark Magma v1.1 [52], then on real-world programs. We intend

to test Valkyrie on a more robust benchmark FuzzBench [104], but Angora is not provided in the

benchmark. The reason is that FuzzBench only allows programs to be compiled once, but Angora

56

Table 3.3: The list of fuzzers we used in our evaluation. Included are their respective versions and
the arguments we provided to invoke the fuzzer.

Package Version Arguments

afl 2.57b -m 2048 -t 1000+

MoptAFL commit 339a21e -m 2048 -t 1000+

aflplusplus 3.01a -m 2048 -t 1000+

angora commit 3cedcac -M 2048 -T 1

Table 3.4: The list of projects we used in our evaluation. Included are their respective versions, the
binary we used and the arguments we provided to invoke the binaries.

Package Version Program Arguments

libjpeg-ijg v9d cjpeg @@
jasper 2.0.12 imginfo -f @@
jhead 3.04 jhead @@
binutils 2.35 nm -C @@
binutils 2.35 objdump -x @@
xpdf 4.00 pdftotext @@
binutils 2.35 readelf -a @@
binutils 2.35 size @@
libpcap / tcpdump 1.9.1 / 4.9.3 tcpdump -e -vv -nr @@
libxml 2.9.10 xmllint @@

requires two compilations to generate two versions of binaries. For fairness of the testing, we borrow

the framework from Unifuzz [105] to test real-world programs. Each fuzzer runs in a containerized

environment with one core. Each experiment lasted 24 hours and was repeated ten times, as

suggested by [52]. In both experiments, we select AFL, AFL++, and Angora for comparison. We

choose AFL as the reference fuzzer since it is a source of inspiration for many others. We also

include AFL++, which has merged many improvements and function enhancements developed for

AFL. We enabled llvm mode, with AFLfast’s power scheduling [38], MOpt’s mutator [39], and

non-colliding branch counting for AFL++. Angora is also a solver-based fuzzer with similar design

goals to Valkyrie. We intend to compare to one of Angora’s successors Matryoshka [85]. However,

the tool is not available to us. Table 3.3 shows the the fuzzers’ versions and arguments, Table 3.4

shows the versions and arguments of targets we fuzzed.

57

Figure 3.2: Arithmetic mean of number of integer and memory bugs triggered per trial per day.
The black line shows 95% confidence interval. Valkyrie’s performance is the same across ten trials.

3.4.1 Magma benchmark

To test whether Valkyrie is state-of-the-art, we would like to work on a benchmark with ground

truth first. We examined Valkyrie’s performance against other popular fuzzers on Magma v1.1 [52].

Magma is a collection of targets with real-world environments. It contains seven libraries and 16

binaries. Magma manually forward-ported these bugs in older versions to the latest versions. Unlike

LAVA-M [106] where all bugs are synthetic and magic byte comparison, Magma has a spectrum of

bugs covering most categories in Common Weakness Enumeration (CWE). Magma contains 118

bugs in total. There are 15 integer errors, six of which are divide-by-zero, and 58 memory overflows.

The rest 45 bugs include use-after-free, double-free, 0-pointer dereference, etc.

However, Angora is a coverage-guided fuzzer that isn’t designed to trigger bugs. We borrow

ideas from [73, 107], for each potential bug, e.g. buffer overflow, we would insert a branch if (ptr >

buf_len)report(); so that Angora can see and solve the predicate. Therefore, for a fair comparison,

we only tested on 15 integer errors and 58 memory bugs that can be converted to a predicate.

MoptAFL is also reported to be the best in the benchmark [52], therefore we included MoptAFL

in this evaluation. We used the version provided in the benchmark. We want to see how Valkyrie

compares with the state-of-the-art fuzzers.

58

Table 3.5: Average time used to trigger a bug in Magma. Bolded text shows the fastest to trigger a
bug.

Bug ID Valkyrie angora aflplusplus moptafl afl

AAH037 15s 15s 39s 20s 20s
AAH041 15s 15s 1m 33s 21s
JCH207 5m 16m 3m 1m 53s
AAH055 4h 8h 27m 4m 43m
AAH015 7h 6h 4m 1m 1h
MAE016 20s - 1m 1m 3m
AAH020 8h 11h 2h 23m 3h
MAE008 20s - 6h 27m 5m
AAH024 15s 15s 1m 16h -
AAH045 49s 15s 15h 3h -
MAE014 20s - 23h 2h 2h
AAH032 5h 21h 1h 28m -
MAE104 3m 2m 22h 13h 16h
AAH014 20h 5h 21m 21h 14h
AAH026 46s 40s 22h 22h -
AAH007 1m 2m 22h - -
MAE115 9h 15h - 19h 12h
AAH017 7h - 21h 10h 20h
JCH201 4h - - 19h 21h
AAH001 1h - 23h - -
AAH010 22h - 9h - -

59

Figure 3.3: Siginificant plot of Valkyrie. Valkyrie is superior than state-of-the-art on libpng, libxml2,
and poppler.

We list Valkyrie’s performance on Magma in Figure 3.2. We calculate the arithmetic mean

number of bugs found per trial per day. However, state-of-the-art fuzzers rely on randomized

methods, a bug found in one trial may not be triggered in the another. Therefore, we also list all the

unique bugs found, including bug id and the time used to trigger it in Table 3.5. The time shown

is the arithmetic mean time to trigger a bug. If the fuzzer did not trigger a bug, then the time to

trigger is set to 24 hours for that fuzzer. Therefore, for non-deterministic fuzzers, the mean time

to trigger a bug becomes large when the bug is triggered only a few times. For example, AFL++

triggered the bug AAH001 in a few minutes in only one trial, so the mean is 23h across 10 trials.

Valkyrie finds 21 unique integer and memory errors in Magma, while AFL, ALF++, MoptAFL,

and Angora found 14, 19, 18, and 14 errors, respectively. Overall, Valkyrie ranked #1 and found

10.5% and 50% more errors compared with AFL++ and Angora, respectively. We conduct the

Mann-Whitney U test to obtain p-value between each pair of fuzzers and list the siginificant plot

of Valkyrie in Figure 3.3. Of 7 libraries, Valkyrie ranked #1 on libpng, libxml2, and poppler

(p < 0.001 compared with #2); tied #1 on openssl and php (p < 0.01 compared with #3); tied #2

on libtiff. No fuzzer found any integer or memory errors on sqlite3. We want to emphasize that

Valkyrie achieved the result with no randomization design.

Bug AAH001 demonstrates that not only randomness is not required in certain bugs, but also that

compensated steps can be effective in predicate solving. AAH001 is a divide-by-zero in libpng. We

listed the code snippet of AAH001 in Listing 3.2. To trigger it the mutator must change png_ptr->width

to 0x5555 5555 and png_ptr->channels to 3, and the later two conditions to false. [52] proved that

60

1 // AAH001

2 size_t row_factor_l = 1 + (png_ptr ->interlaced? 6: 0)

3 + (size_t)png_ptr ->width

4 * (size_t)png_ptr ->channels

5 * (png_ptr ->bit_depth > 8? 2: 1);

6 size_t row_factor = (png_uint_32)row_factor_l;

7 if (png_ptr ->height > PNG_UINT_32_MAX/row_factor) {...}

8 // MAE014

9 char *dir_start = value_ptr + maker_note ->offset;

10 int NumDirEntries = php_ifd_get16u(dir_start , ImageInfo ->motorola_intel);

Listing 3.2: Two seemingly easy bugs AAH001 and MAE014 in Magma. Valkyrie can trigger this
bug in seconds while other fuzzers can take hours.

it is hard for the randomized method to trigger it and claimed that only a fuzzer with a solver

could trigger this easily. However, Angora failed to trigger it. When Angora mutates the value

close to 0x5555 5555, even a small step in png_ptr->channels will overshoot and overflow the result.

For example, when setting png_ptr->channels to 4, the result will be a small value due to overflow;

when setting to 2, the result will be a large value. Angora may conclude that this variable has

negative gradient and start moving it to a smaller value. When it happens, Angora may get the

wrong gradient and cannot progress correctly. However, Valkyrie knows the upper bound of the

unsigned value and forces the solver not to exceed it using compensated steps. Thus Valkyrie is

able to solve it and triggered this bug within the hour in all ten trials.

Valkyrie is also the first to find many of the bugs compared with its peers. The reason is that

solver-based fuzzers work on predicates in a more orderly manner. Randomized methods can be

choked by a predicate, not knowing if it is a hard one or just infeasible, wasting its time budget.

However, Valkyrie can report with confidence wether the predicate can be solved and explore a new

path or report it unsolvable. One example is MAE014 as shown in Listing 3.2. dir_start is a pointer

to the buffer and php_ifd_get16u tries to get a u16 from the buffer. However, it does not check whether

dir_start is pointing to the last byte of the buffer, causing the code to over-read one byte from the

buffer. In the case of Valkyrie, it will try to increase the index of the read by setting up a predicate

dir start + 1 > MAX, thus triggering the bug in 20 seconds. However, it generally takes fuzzers

in AFL family hours to trigger it. Furthermore, these two examples demonstrate that our design in

61

Section 3.3.3 is effective.

Valkyrie found four unique errors on libtiff (AAH010, AAH014, AAH015, and AAH020), the same

number as other state-of-the-art fuzzers. However, on average, only three errors are triggered per

trial because 24 hours timeout is not enough for Valkyrie. The seeds corresponding to AAH010 and

AAH014 are scheduled with the same priority. There is no guarantee which one is taken out first. In

any trial, if one seed was taken, the other would not be taken before timeout. Thus the mean time

to trigger these two bugs are both 20+ hours.

We want to comment on another interesting finding regarding MoptAFL and AFL++. MoptAFL

is reported to be the best fuzzer in this benchmark, however, in our experiment, MoptAFL found

fewer bugs than AFL++. We carefully compared [52]’s result with ours and find that, in our

experiment, AFL++ found several bugs that were reported as untriggered. Some examples include

AAH001, AAH007 in libpng, both of which are only triggered once by AFL++ across ten trials. The

difference is surprising considering we used the same configuration provided by [52]. This further

proves that randomized methods are volatile and unstable, while our deterministic approach is

simpler and more reliable.

In summary, Valkyrie found 21 unique integer and memory errors on Magma, the most compared

with other state-of-the-art fuzzers. Also, Valkyrie had little to no variance across ten trials, while

others showed unstable performance. Therefore, we can answer RQ1 with confidence that Valkyrie

is state-of-the-art on Magma.

3.4.2 Real-world open-source programs

While performing well on Magma is sufficient to claim Valkyrie is state-of-the-art, we would like

to evaluate on real-world programs and see the branch coverage data. Therefore, to demonstrate

Valkyrie’s effectiveness on real-world programs already in production, we selected a series of open-

source programs to evaluate Valkyrie and demonstrate the effectiveness of its methods and techniques

in real-world situations. Of these open-source programs, there are image processors (jhead, imginfo),

binary file processing programs (nm, objdump, size, readelf), structured text parsing utilities

62

Figure 3.4: Branch coverage of six fuzzers in 24 hours time. Valkyrie-br is Valkyrie with only
branch coverage improvement, Valkyrie-solver is Valkyrie with only solver improvement. Both
design increased branch coverage compared with Angora in all programs. Overall, Valkyrie ranked
#1 on geometric mean number of branches reached.

(xmllint), pdf parsers(pdftotext), network utilities(tcpdump). Because different tools count branches

differently, for fairness of comparison, all branch coverage reported are generated by afl-cov [108].

The results of these experiments are shown in Figure 3.4. We obtain p-value between each

pair of fuzzers using Mann-Whitney U test. Valkyrie ranked #1 on seven out of ten applications

(p < 0.01 compared with #2), #1 tied with Angora (p = 0.0011 compared with #3) on jhead, #2

on cjpeg and imginfo (p < 0.05 compared with #3).

We also plotted the branch coverage against time in Figure 3.5. Valkyrie is the fastest fuzzer in all

programs except imginfo, i.e., Valkyrie spends less time to reach the same branch coverage compared

with other fuzzers. This trend is clearest in objdump, readelf, and size. It further demonstrated

the effectiveness of deterministic algorithms we introduced in branch counting and solver. While

state-of-the-art fuzzers are mutating randomly without knowing the detail of the program, Valkyrie

can flip a predicate within several steps.

We also wish to demonstrate that a more sophisticated solver algorithm is a suitable trade-off

between execution throughput and mutation effectiveness. Thus we present the growth of branch

coverage of Valkyrie as well as the three comparison fuzzers AFL, AFL++ and Angora over its

24-hour-run on programs objdump and pdftotext in Figure 3.6. In the case of objdump, the growth

of Valkyrie’s coverage is slower than that of Angora’s, but Valkyrie’s solver can solve a greater

63

Figure 3.5: Branch coverage of four fuzzers in 24 hours time. Valkyrie not only finds more branch
coverage but also is the fastest one on eight of ten applications thanks to deterministic algorithms.

Figure 3.6: Plots of branch coverage over 24 hours for all evaluated fuzzers on objdump and pdftotext.

number of predicates, resulting in Valkyrie’s lead over Angora and the other fuzzers after around 10

hours. In the case of pdftotext, both Angora’s and Valkyrie’s growth is slower than that of AFL++’s.

However, both can solve a critical branch that increases their coverage significantly, with Valkyrie

being the faster of the duo. Besides, Valkyrie is capable of solving more branches than Angora over

24 hours.

In summary, the geometric mean number of branches Valkyrie reached per target is 2452, 8.2%

and 12.4% more than AFL++ (2266) and Angora (2181), respectively. We can answer RQ2 with

confidence that Valkyrie is the state-of-the-art on real-world open-source programs.

3.4.3 Effectiveness of deterministic branch counting

We wish to understand the advantages of Valkyrie’s branch counting mechanism quantitatively.

We first controlled the variable to see how much improvement collision-free context-sensitive branch

counting design contributes. Therefore, we disabled our improved solver and compared it with

Valkyrie and Angora. The result is shown in Figure 3.4, the modified version is labeled as Valkyrie-

64

br. We find that Valkyrie-br outperformed Angora in all cases, proving that this design is effective.

Our study shows the improvement is contributed by two designs: branch instrument optimization

and context-sensitive collision-free branch counting.

We first examined the effectiveness of our branch table optimization strategies by obtaining

the buffer sizes required by Valkyrie, as shown in Column 2-4 in Table 3.6. We observe that our

optimization strategies can reduce the bitmap size by 69% on average. We used seeds generated by

AFL++ to evaluate how much runtime is reduced. Column 5-7 in Table 3.6 show that we reduced

runtime by 28% on average. Thus, given the same amount of time, Valkyrie can test the program

more.

We then analyzed the buffer utilization rates of AFL and Angora under the evaluated programs.

By default, AFL uses a 64K buffer. Angora uses 1M to allow context-sensitivity. The utilization

rate is shown in Columns 2 and 4 in Table 3.7. Many programs’ utilization rates exceed the

recommended limit of 4%, even ranging up to nearly 34%, indicating that a newly found branch has

a nearly 34% chance of colliding with existing branches. Under the default settings, many instances

have a high potential for branch collisions, as evidenced by the high bitmap utilization rate of up to

around 36%. Therefore, the default buffer sizes are too small for ordinary programs.

We further resized their bitmaps according to the size required by Valkyrie to achieve collision-

free branch counting and analyzed their utilization rates. Their bitmap sizes should be a strict power

of 2, so we found the closest value possible for each program, as listed in Column 7 in Table 3.7.

We list the utilization rate under such sizes Column 3 and 5 in Table 3.7. The utilization rates

have dropped to under 4% since we increased AFL’s buffer size for most programs. However, AFL

lacks context-sensitivity and can potentially lose the capability to identify branches that increase

the overall coverage. Angora, on the other hand, still exceeds the recommended limit greatly in

many cases, resulting in significant accuracy loss. In comparison, Valkyrie guarantees accuracy

while maintaining context-sensitivity, which is the second reason why the branch coverage increased

in Figure 3.4.

Therefore, we can answer RQ3 with confidence that Valkyrie’s branch counting mechanism is a

65

Table 3.6: Bitmap size for Valkyrie before and after optimization. On average we reduced 69% of
all instrumentations and 28% of runtime.

Program
Valkyrie bitmap size (B) Valkyrie bitmap runtime (µs)

Original Optimized Reduction Original Optimized Reduction

cjpeg 254,874 74,576 70.74% 10,331 7918 23.35%
imginfo 133,010 34,690 73.92% 20,769 12,583 39.41%
jhead 13,620 4396 67.72% 1124 776 30.92%
nm 1,758,594 542,688 69.14% 1491 1270 14.84%
objdump 2,196,528 691,048 68.54% 1405 1374 2.24%
pdftotext 400,858 112,808 71.86% 6312 5663 10.29%
readelf 353,222 132,352 62.53% 1229 902 26.57%
size 1,750,206 540,180 69.14% 1687 1359 19.44%
tcpdump 1,554,400 506,468 67.42% 1278 972 23.93%
xmllint 3,323,032 996,220 70.02% 1439 1115 22.52%

Total 11,738,344 3,635,426 69.03% 47,065 33,932 27.90%

better trade-off and outperforms that of comparable fuzzers.

3.4.4 Effectiveness of deterministic solver

In Figure 3.4 we evaluated Valkyrie with only solver enabled, the modified version is tagged as

Valkyrie-solver. The result shows that we improved branch coverage compared with Angora in all

open-source programs. While it is enough to evaluate the triggered bugs and branch coverage, we

would like to evaluate how compensated step helps the solver. Since both Valkyrie and Angora are

fuzzers based on gradient descent, we test the solver’s performance separately.

Although Valkyrie-solver is better than Angora in Figure 3.4, it would be unfair if we directly

compare the number of predicates solved in that experiment for the following reasons: 1) The initial

state of each solver is not the same. Listing 3.1 has shown that given a bad initial point, even a

fairly “easy” predicate can be hard to solve. 2) Different sets of predicates may be presented to two

solvers. When a unique predicate is solved by only one solver, the predicate may reveal a new path

with predicates that are not known to the other solver. 3) Different time budgets and scheduling

algorithms. Angora devotes much of its time to random search, which means the solver may not

66

Table 3.7: Bitmap utilization for AFL and Angora on open-source programs. We evaluated their
respective utilizations under default sizes and adjusted sizes. “*” indicates failure, AFL refuses to
run jhead with only 8K bitmap.

Program
AFL utilization Angora utilization Bitmap size (B)

Default (64K) Adjusted Default (1.0M) Adjusted Valkyrie Adjusted

cjpeg 2.11% 1.06% 0.24% 1.88% 74K 128K
imginfo 10.23% 10.30% 1.68% 23.94% 34K 64K
jhead 0.45% * 0.54% 49.51% 4.2K 8.0K
nm 7.92% 0.49% 33.14% 33.14% 542K 1.0M
objdump 5.26% 0.33% 24.98% 24.96% 691K 1.0M
pdftotext 3.30% 0.83% 18.88% 56.67% 112K 256K
readelf 10.92% 2.73% 4.05% 15.24% 132K 256K
size 4.49% 0.28% 14.75% 14.72% 540K 1.0M
tcpdump 20.85% 2.59% 34.64% 57.13% 506K 512K
xmllint 6.51% 0.41% 18.30% 18.29% 996K 1.0M

Figure 3.7: The difference between preidcates solved by Valkyrie and Angora over 16 seeds.

have enough time to solve the predicates.

Therefore, to provide a fair comparison environment, we randomly selected seeds generated by

AFL++. For each seed, we run both fuzzer three times with that seed being the only initial seed,

solving problem 1). We also disable fuzzers branch counting ability, so new seed is not added to the

seed queue, solving problem 2). There is no timeout in each experiment, the fuzzer will stop when

all predicates are either solved or discarded. This solves problem 3).

The predicates presented in the initial seed and the number of solved predicates by both solver

are plotted in Figure 3.7. We can find that given the same setting, Valkyrie is able to solve more

67

Table 3.8: Bugs found by Valkyrie and Angora. Valkyrie found six bugs in three programs while
Angora only found three.

Program Description Bugs found by each fuzzer

Angora Valkyrie Valkyrie-br Valkyrie-solver

cjpeg Floating point exception " " " "

imginfo Assertion failure-1 (qmfbid == JPC COX RF) " " " "

imginfo Assertion failure-2 (absstepsize >= 0) " " "

imginfo Assertion failure-3 (Check Section 3.4.5 details.) " "

pdftotext Throwing GMemException " " "

pdftotext Out of bound read " "

predicates than Angora on 12 out of 16 seeds. Four seeds (seed 13 to seed 16) saw a more than

ten predicate increase. Seed 16 solved 92 more predicates than Angora. This is because these four

seed are taken from tcpdump and xmllint ’s queue, where more predicates are presented in a seed.

Therefore, we do not consider them as outliers in our data.

On average, Valkyrie can solve 11 more predicates per seed. Notice that this is the solver’s

improvement over one seed, when in real-world fuzzing senario, thousands of seeds will be generated

over the course of 24 hours. This gives us a positive answer to RQ4, the compensated step does

improve the solver performance.

3.4.5 Bug finding ability of Valkyrie

In Section 3.4.1 we find that Valkyrie can find most memory and divide by zero errors compared

to the state-of-the-art. Although examples like AAH001 have demostrated solver’s effectiveness, we

wish to carry out a more detailed study to understand each components individual contribution to

bug finding in real-world settings. We first instrument programs in Unifuzz [105] using the approach

described in Section 3.3.3, then compiled these programs using Angora, Valkyrie, Valkyrie-br, and

Valkyrie-solver. Similar to previous evaluations, we run ecah fuzzer for 24 hours and ten times.

After fuzzing we collect all errors the fuzzers found, deduplicate them and found the following bugs

in three programs. The detailed bugs are listed in Table 3.8.

We find that Valkyrie is able to find six bugs while Angora only found three. Valkyrie-br

68

1 int Catalog :: countPageTree(Object *pagesObj) {

2 for (i = 0; i < kids.arrayGetLength (); ++i) {

3 kids.arrayGet(i, &kid); // Access without check

4 n2 = countPageTree (&kid);

5 if (n2 < INT_MAX - n) {

6 n += n2;

7 } else {

8 error(errSyntaxError , -1, ...);

9 n = INT_MAX;

10 }

11 kid.free();

12 }

13 }

Listing 3.3: Code snippet copied from xpdf. The program accesses the array without checking the
bound.

and Valkyrie-solver found four and five bugs respectively. The main difference comes from three

assertion failures in imginfo. The first and second assertion failure are qmfbid == JPC COX RF and

absstepsize >= 0, which can be solved by magic byte matching quickly, thus all fuzzers trig-

gered it. However, the third assertion failure is !((expn + (numrlvls - 1) - (numrlvls - 1 -

((bandno > 0) ? ((bandno + 2) / 3) : (0)))) & (∼0x1f)), which involves three variables

and a nested condition. Such predicate requires that the last five bits of the result are not all zeros.

Tradition solvers like Angora’s strugle to calculate the gradient when it reaches the boundaries, thus

unable to solve it. On the other hand, only Valkyrie and Valkyrie-br triggered an out of bound

read. After some study we find that the program attempt to access a buffer without checking the

index(Listing 3.3). We find that using Angora’s branch counting, the loop back edge colided with

other edge. When the other edge is executed repeatedly, Angora had no motivation to increase

the iteration of the loop, since to Angora’s eyes this has already been executed. Since there is no

collision in our branch counting, Valkyrie will try to increase the numer of iteration until its greater

than 128, a heuristics number set by [1, 53].

In summary, Valkyrie found six unique errors in three programs, ranked number one compared to

Angora and other varients of Valkyrie. We can answer RQ5 with confidence that both deterministic

branch counting and solver contributed to Valkyrie’s bug finding capability.

69

3.4.6 Summary

In the previous sections, we have addressed all research questions. Our results show that Valkyrie

triggers 21 unique integer and memory errors, 10.5% and 50% more than AFL++ and Angora,

respectively. In real-world programs, Valkyrie reached 2431 branches per target on average, 8.2%

and 12.4% more compared with AFL++ and Angora, respectively. We demonstrated that our

branch counting mechanism is a better solution for efficient and accurate feedback. Finally, we

demonstrated that our predicate solving algorithms works effectively on real-world branch predicates,

allowing Valkyrie to perform better than the other fuzzers we use for evaluation. Thus we claim that

Valkyrie, which utilizes accurate and efficient feedback and effective predicate solving, is principled

and reliable.

3.5 Discussion

3.5.1 Unsolved predicates

Previous sections demonstrated the effectiveness of our solver. However, there are scenarios

where our solver experience difficulty when solving branch predicates.

The solver is designed to solve single predicates. One possible cause would be unsolvable

predicates guarding dead code, such as redundant error checks. The solver would also have difficulty

solving some non-convex predicates, i.e., its local minima are not the global minimum.

If the predicate is nested, the solver may mutate the input and modify the outcome of its

parent predicate(s), rendering the target predicate itself unreachable. We can solve this by applying

Matryoshka’s framework for solving nested branch predicate(s) [85].

On the other hand, Valkyrie relies on DFSan [80], which can be slow when input space is large.

While deterministic methods are more predicable and stable, the extra workload may prevent it

from scale to large applications. Therefore, we would suggest a combined approach where we can

use Valkyrie to explore hard to trigger predicates, and use AFL++ to explore the code.

70

3.5.2 Bug detection

We may have missed bugs in Magma due to the following reasons. Apart from the aforementioned

issues, one main reason is that our work focus on increasing program coverage, our exploitation

instrumentation only targets a small subset of bugs. Many common problems such as null pointer

dereference, double free, use after free, etc. are not in the scope of this chapter. However, we

managed to find more bugs in three libraries in Magma and improved branch coverage by 12.4%

compared to Angora. This fact further proved that Valkyrie is a reliable tool.

3.5.3 Branch counting effectiveness

In Figure 3.4, we find that Valkyrie-solver can reach more branches than Valkyrie in rare cases,

e.g. readelf. Although the only difference between Valkyrie-solver and Valkyrie is the our branch

counting method, this does not suggest our method is less effective. Valkyrie-solver performed better

because branch counting with branch collisions may miss many branches. These missed branches

have two-sided effects. On the one hand, there may be key branches that lead to more coverage,

thus limiting solver’s ability. On the other hand, some difficult conditions are not generated in

the first place, thus saving fuzzer’s time. When the former effect is in dominance, Valkyrie will

outperform Valkyrie-solver, vice versa. These two-sided effects are neither predictable nor desirable,

which further justifies our motivation to eliminate branch collisions.

3.6 Related work

3.6.1 Branch counting methods

Since AFL, much work has been devoted to strike a balance between branch counting sensitiveness

and the probability of colliding. Angora [44] updated AFL’s method by adding a function context

to the branch counting table. CollAFL [31] proposed replacing AFL’s random ID generation with

one that would largely prevent duplicate edge IDs from occurring. However, its method is subject

to the bitmap size exceeding the number of branches in the target program and cannot integrate

71

context-sensitivity easily like Valkyrie did. Recent work [35] points out that branch counting is a

trade off. Fuzzers benefit from sensitive branch counting algorithms, yet the more sensitive it is,

the more computing budget is consumes. Angora uses an enlarged branch counting table to allow

context sensitivity. However, that brings substantial memory overhead to the fuzzing process. This

problem is sloved by Valkyrie by making branch counting collision free and reducing the size of

matcher table.

3.6.2 Predicate Solving Methods

Many work focuses on predicate solving. Solver-based fuzzers aim at better solvers on branch

predicates to reach high code coverage. REDQUEEN [43] solves hashes and checksums through

input-to-state-correspondance. KLEE [109] uses symbolic execution to solve predicates in the

program to generate seeds, but symbolic execution can be ineffective when program path is deep and

nested. This made KLEE ineffective compared to Valkyrie. Angora [44] solves branch predicates

using principled methods such as gradient descent, yet in this chapter we show that without

continuous assumption Angora’s solver may fail some simple cases. Angora’s method is largely based

on mathematical optimization through gradient descent. However, Angora cannot effectively solve

branches that are nested together. Matryoshka [85] proposes procedural methods for solving nested

constraints in real-world situations. Matryoshka solves nesting branches by a slightly modified

gradient solver, which is ad hoc and unjustifiable.

3.6.3 Targeted fuzzers

Targeted fuzzers attempt to target the potentially buggy code. AFLGo [77] proposed to reach the

target code by giving priority to those close to the target. IJON [36] tries to manually take out some

“important” program points and ask the fuzzer to put more time on it. However, unlike Valkyrie

which can identify potential buggy code automatically, both AFLGo and IJON requires a human

expert to label the target. IntEgrity [107] specifically target on integer errors and automatically

identifies them using static analysis. Unlike Valkyrie who targets integer errors and memory errors,

72

IntEgrity only targets integer errors, limiting its scope. Savior [110] also targets potential bugs, but

it focuses on using seed scheduling to find those that lead to potential buggy code. TOFO [111]

proposed a method to calculate the distances between all basic blocks in seed and target basic

block and reaches its target by always selecting the closest seed. Both Savior and TOFO focuses on

scheduling to reach targeted code faster and neglected exploration part of the fuzzing. Therefore,

their tool is useful when reaching target for exploitation is more important than exploration. Besides,

all the tools use randomized approach to reach a target, while only Valkyrie deals this by using a

new solving method.

3.6.4 Machine learning based fuzzers

Machine learning has become more and more popular in various areas. There have also been

many attempts to incorporate it into fuzzers. [27] attempts to use a neural network to smooth the

predicate to predicate a gradient when it can’t be calculated. [112] uses data driven method to learn

the input format from valid seeds to generate other seeds. [113] uses generative model to generate

C programs to fuzz compilers. However, their work only tests C compiler, which is a very narrow

scope. Large language models (LLM) have also started to play a role in the fuzzing community.

[114–117] seek to use LLM to generate or mutate inputs for fuzzing. On the other hand, [118]

attempts to reach more code by using an LLM to select program arguments. However, we believe

machine learning are black boxes that can’t be reasoned. While these approaches trump in fuzzing,

a more deterministic base line is needed to provide a reasonable baseline.

73

Chapter 4

IRFuzzer: specialized fuzzing for

LLVM backend code generation

4.1 Introduction

Modern compilers, such as LLVM [59], are complex software. For example, LLVM consists of

over seven million lines of C/C++ code contributed by more than 2500 developers1. Given the

size of this codebase and its importance in the computing ecosystem, an effective and scalable

verification method is critical. Despite extensive regression testing and wide usage, latent bugs

remain and their impact on users can be quite significant given the widespread distribution and

long lifetimes of compilers.

To reduce latent bugs, various techniques have been used to automate the verification of

compilers, such as partial model checking [119], fuzzing [60, 120, 121], and differential testing [122,

123]. Although end-to-end formal verification of compilers has been applied [124, 125], these

techniques have not yet scaled to practical compilers such as LLVM, which support a wide range

of architectures, programming languages, and use models, including just-in-time compilation and

link-time optimization.

1https://github.com/llvm/llvm-project

74

https://github.com/llvm/llvm-project

In the specific case of LLVM, another factor making verification difficult is that the interface

between the compiler optimization and machine code generation is widely used but not completely

specified. As a result, it can be difficult for backend developers to understand whether they have

completely implemented the wide range of possible inputs. In addition, backends often differ greatly

in their relative code maturity, including some targets that are relatively mature and other targets

for new devices that are in active development.

We find that the state-of-the-art fuzzers failed to find new bugs of a compiler backend for various

reasons. General-purpose fuzzing techniques, such as AFL++ [53], often do not consider input

validity and struggle to explore control paths in the compiler backend since most binary strings

are invalid compiler inputs. In order to test the compiler backend more effectively, we aim to

generate LLVM Intermediate Representation (LLVM IR) that complies with the language reference.

LLVM includes llvm-opt-fuzzer and llvm-isel-fuzzer that generates valid IR for middle end

and backend fuzzing, respectively [126]. Both of them are based on the library FuzzMutate [127]

for valid IR mutation. However, FuzzMutate can’t construct complex control flow, and it only

generates a few instructions with scalar types. On the other hand, end-to-end fuzzing tools, such as

CSmith [60] and GrayC [3], test the whole pipeline of the compiler, but they cannot to efficiently

explore control paths in the compiler backend. CSmith does not take any feedback from the compiler,

which contributes to its ineffectiveness. A more fundamental reason is that front-end parser and

middle-end optimizations may limit the set of features seen by the compiler backend. High level

languages like C may not exercise all backend features in LLVM. Therefore, even if GrayC used

branch coverage feedback from libFuzzer [86], it missed many backend bugs introduced before LLVM

12, which were found by us. As a result, when a new language, such as Rust, is introduced, new

backend bugs may still arise [128].

Generating valid IR is challenging with three major difficulties. In order to generate a complex

control flow graph (CFG), we have to maintain all data dependencies to avoid use-before-definition

situations. A valid CFG can be easily invalidated by a jump, as shown in Figure 4.2. This challenge

does not exist in C generation if one does not generate goto statements. Besides, modelling the

75

Figure 4.1: Overview of IRFuzzer. Green shaded components are the contributions of this chapter,
orange shaded components are AFL++, and blue shaded components are from LLVM. We first
create a LLVM IR mutator that guarantees the correctness of the generated input (Section 4.3.1).
We introduce a new coverage metric to keep track of the backend code generation while providing a
mutation guide to the mutation module (Section 4.3.2).

instructions missing in FuzzMutate isn’t trivial. We must make sure that the types of the operands

in each IR instruction match, but enumerating the large numbers of natively supported vector types

is infeasible. Finally, it is difficult to model intrinsic functions for all architectures, as intrinsics are

often poorly documented and vary from architecture to architecture.

We also observe that AFL++’s feedback mechanism performed poorly when testing the backend.

It uses branch coverage as feedback, which runs into severe branch collision problems when fuzzing

large codebase such as LLVM. Naively increasing the branch counting table size introduces huge

overhead [31]. A more fundamental reason is that much code generation logic in the LLVM backend

is implemented using table-driven state machines. A matcher table encapsulates all possible states

as a constant byte array, meaning that branch counting can’t observe this logic during fuzzing. The

fuzzer needs a better feedback on whether the seed is interesting or not. If the seed is not interesting,

the feedback should also inform the mutator what type of input is more desired.

To address these issues, we design a specialized fuzzer, IRFuzzer, for fuzzing the LLVM compiler

backend. Figure 4.1 shows the overall structure of IRFuzzer. We first design a mutator that

generates valid IR (Section 4.3.1). We maintain the correctness of CFG during mutation. We also

use a descriptive language to list the requirements of each instruction type. This approach ensures

that inputs to the compiler backend are always valid, increasing the efficiency of fuzzing. Our work

76

BB1 BB2 BB3

a Original CFG

BB1 BB2 BB3

b Naive mutation by random edge insertion. After
mutation BB2 no longer dominates BB3, thus every
value in BB3 referencing BB2 will invalidate the
whole module.

BB1 BB2

source

...

sCFG

BB2

sink

BB3

c Mutation by sCFG insertion. It breaks BB2 into
two halves. No matter how complicated sCFG is, the
domination relations are unchanged.

Figure 4.2: Examples of failed and successful CFG mutations, respectively.

expands the FuzzMutate to include aspects where compiler backends often have special handling,

including multiple basic blocks with complex control flow, function calls, intrinsic functions, and

vector types. Using IRFuzzer, we are able to generate a wider range of instructions and explore

control paths in the compiler backends more efficiently.

Then, we introduce a new coverage metric (Section 4.3.2) by instrumenting the table-driven

state machines in LLVM, enabling the design space to be more efficiently explored. New entries that

are covered in the matcher table means new features are executed. Working together with branch

coverage, they can provide a better feedback on whether a seed is interesting or not. Furthermore,

the matcher table has all information about the instructions and intrinsics in one architecture. As

a result, we use the matcher table to determine which instructions and intrinsics haven’t been

fuzzed. We design a feedback loop from the matcher table coverage to our mutator. IRFuzzer

will periodically generate a coverage report containing the states that haven’t been executed. The

report will be sent to the mutator to guide future mutations, enabling IRFuzzer to test on different

backends with no prior knowledge of the architecture.

We evaluate IRFuzzer on 29 mature backend architectures in LLVM (Section 4.5). Our results

show that IRFuzzer is more effective than the state-of-the-art fuzzers such as AFL++ and GrayC.

IRFuzzer generated inputs code with better edge coverage and matcher table coverage on 28 LLVM

backends. Leveraging these techniques, we were able to find and report 78 confirmed, new bugs in

77

LLVM, 57 of which have been fixed, five have been back ported to LLVM 15. This demonstrates

the high impact on improving the correctness of LLVM backend targets.

This chapter uses LLVM to demonstrate the importance of having a specialized fuzzer for the

compiler backend. Since modern compilers have similar intermediate representations, we expect

that our approach can be easily applied to other compilers without requiring heavy engineering

efforts. We made the following contributions:

• We have designed and implemented IRFuzzer. To the best of our knowledge, IRFuzzer is the

first backend fuzzer that uses coverage feedback to guide IR mutation.

• We compared IRFuzzer with other state-of-the-art fuzzers on LLVM upstream and found it to

be the most effective on matcher table coverage metric.

• We carefully analyzed and categorized the bugs we found during our testing. In total, we

discovered 78 confirmed new bugs in LLVM, 57 of them have already been fixed, five have

been back ported to LLVM 15.

4.2 Background

4.2.1 LLVM

LLVM [59] is a mature compiler framework consisting of many components that can be targeted

to different architectures. At its core lies the LLVM Intermediate Representation (LLVM IR),

which serves as a target-independent abstraction separating the concerns of high-level programming

languages from the low-level details of particular architectures. LLVM can be roughly partitioned

into three layers as shown in Figure 4.3: A frontend, such as clang, translates programming

languages to LLVM IR, including lexer, parser, AST transformation, etc. The middle-end, called

opt, processes LLVM IR and performs common target-independent optimizations. The backend,

called llc, converts LLVM IR to a target-specific machine code representation and eventually emits

binary or assembly code for the target architecture. The LLVM backend supports multiple target

78

Figure 4.3: LLVM can be roughly partitioned into three components, frontend, middle end, and
backend.

architectures through a plug-in abstraction, and the code to support a target architecture typically

involves the implementation of API functions to describe common aspects along with target specific

code to implement more unusual concepts.

The LLVM IR describes a static single-assignment (SSA) form [129], with a fixed set of instruc-

tions. Instructions are strongly typed, and the type of each value must match between its definition

and all uses. A wide range of types are supported, including integers with arbitrary bit width up to

65,536 , floating point values, pointers, vectors, and other aggregate types. As with most high-level

languages, LLVM IR allows the definition of functions, and the control flow between functions is

implemented using the call instruction. Architecture specific intrinsic have no corresponding IR

instructions, but are represented as function calls at IR level.

Control flow within a function in LLVM IR is represented using basic blocks and branch

instructions. Special PHI instructions allow instructions in a basic block to refer to values defined

in other basic blocks. Therefore, PHI instructions must respect control flow constraints and may

only refer to values defined in predecessor blocks. This domination constraint [130] means that

techniques used in high-level language generation cannot be easily adapted to LLVM IR.

79

Figure 4.4: AFL can be modelled as a four-stage loop that tests the executable repeatedly.

The process of instruction selection in the LLVM backend replaces target-independent LLVM

IR instructions with target-specific machine code instructions. LLVM provides two different

frameworks to implement instruction selection that may be leveraged by the target backend plug-in.

SelectionDAG [131] is the more mature instruction selection framework and is leveraged by all

targets. In SelectionDAG, the code in each basic block is converted into a directed acyclic graph

(DAG) representing the data dependency between instructions, and instruction selection is performed

on the DAG. Since SelectionDAG processes each basic block independently, it can miss opportunities

for optimization across basic blocks. GlobalIsel [132] is a newer framework that is only leveraged by

some targets. GlobalIsel preserves the basic block structure within a function during instruction

selection, enabling more optimization opportunities.

Both frameworks use patterns to describe rewrite rules applied during instruction selection.

Some patterns are relatively simple and replace a single LLVM IR instruction with a single

machine instruction. More complicated patterns may replace multiple LLVM IR instructions, or

generate multiple machine instructions. Patterns may also include complex predicates to limit their

applicability only to specific situations. For example, a pattern may only apply when a particular

operand is a constant, or a certain hardware feature is enabled.

Most patterns are described declaratively in an LLVM-specific language called TableGen [133].

80

1 void SelectCodeCommon(SDNode *N, char *MatcherTable) {

2 bool Result;

3 while (true) {

4 switch (MatcherTable[Idx ++]){

5 case OPC_CheckOpcode: {

6 uint16_t Opc = MatcherTable[Idx ++];

7 Opc |= (unsigned short) MatcherTable[Idx ++] << 8;

8 Result = (Opc == N->getOpcode ());

9 }

10 case OPC_CheckPredicate:

11 ...

12 ...

13 }

14 }

15 }

Listing 4.1: SelectionDAG in LLVM that consumes a matcher table to do instruction selection.

In order to optimize the application of patterns, TableGen translates individual patterns into a

state-machine representation implemented as a large byte array in C++ known as the matcher table.

During compilation, the state machine in the matcher table is executed on each IR instruction and

determines the correct pattern (if any) to apply. Listing 4.1 is a C++ code snippet used to evaluate

the matcher table in SelectionDAG. SDNode is a data structure that represents an IR instruction.

The while loop iteratively reads a command from the matcher table based on the current state,

represented by the idx variable, evaluates the command, and selects the next state that will be

evaluated. For example, Opc_CheckOpcode will check if the opcode of a given SDNode representing an

instruction in the SelectionDAG graph matches a particular opcode. The Result will be used in

future iterations, depending on the next entry in the matcher table. Evaluation of the matcher table

continues until a single pattern is selected, or a state is reached where no patterns can apply.

Note that all patterns are evaluated using the same set of conditional branches in the switch

statement in Listing 4.1. As a result, control flow coverage in the code is a poor indicator of

whether all patterns have been exercised.

4.2.2 Coverage guided fuzzing

American Fuzzy Lop (AFL) [1] is a widely used open-source fuzzing framework that implements a

form of coverage-guided fuzzing, Figure 4.4 shows an overview of AFL. Rather than simply generate

81

arbitrary inputs to a program under test (PUT), AFL instruments the PUT with the ability to

track control-flow coverage. When a particular program input results in increased code coverage,

AFL stores this input in a seed cache for future use. When generating new random program inputs,

AFL prefers to select previous inputs from the seed cache and further mutate them, rather than

generating completely random input. Using this strategy, AFL and coverage-guided fuzzing tools

are able to more quickly explore all different control-flow paths of the PUT, when compared to

black-box fuzzing techniques without instrumentation.

Many variations of coverage guided fuzzing have been developed, with the goal of finding bugs

more efficiently by exploring a wider range of program behaviors with future executions of the

PUT [134]. There are studies on the impact of different feedback algorithms [35, 36, 40]. Different

methods are proposed to prioritize seeds to improve the performance of fuzzing. [38, 39, 42]. Some

fuzzers also target on triggering specific bugs [15, 48, 107]. More advanced mutation strategies

also show better fuzzing performance compared with random mutation [27, 30, 43–45]. Many

improvements of have been implemented in AFL++ [53], making it a good framework for further

development.

LLVM also introduces its own coverage guided fuzzing framework libFuzzer [86], coupled with

FuzzMutate [127], it can be used to fuzz LLVM backend. However, FuzzMutate only generates a

limited type of code and is not under active development. Still, the framework provides us with

helpful insights into how should we mutate LLVM IR.

4.2.3 Challenges in compiler fuzzing

We believe that compilers represent a particularly challenging area to apply fuzzing, due to the

size and complexity of the PUT involved. First, the input program has to be semantically meaningful.

With program context, many structured fuzzing techniques [55, 135] based on context-free grammar

cannot be directly applied. For example, generating an IR instruction depending on a value that

hasn’t been defined yet may cause the module verifier to abort. While high-level languages use

notions like scope or lifetime to notate whether a value can be used, LLVM IR does not have that.

82

We can only reason the lifetimes of values in basic blocks by static analysis. For two blocks A and

B, only when A must be executed before B, or A dominates B, can B directly reference values in

A. However, when changing control flows, it is very easy to break that domination relation. For

example, in Figure 4.2b, by adding an edge to the CFG we may invalidate the whole module and be

rejected. We have to carefully maintain the CFG so that if a A dominates B, the relation remains

the same after the control flow mutation.

In addition, we have to make sure the input has the correct syntax. LLVM IR is a strongly

typed language with numerous types, including vector types and struct types, making it infeasible

to explicitly enumerate types of legal operations. This challenge doesn’t exist in some high-level

programming language generation tasks like C [60, 121] and JavaScript [4, 55, 56, 136]. What’s worse,

each architecture can implement its customized LLVM IR instructions called intrinsic functions.

The internal definition of intrinsic are often poorly documented, as the implementation details are

often proprietary. These constraints make it hard to enumerate and model all of them without

architecture specific knowledge.

LLVM IR implements an SSA representation of code, which only allows each variable to be

assigned once. Consequently, it is very easy to reason if a variable is used at static time. If an

IR instruction is not used, it is a dead code and the compiler erases it. Therefore, we wish our

generated instructions to rely not only on constants but also other instructions.

Finally, machine instructions do not correlate with instruction selection’s control flow, rendering

traditional code coverage ineffective. When compiling LLVM IR to binary executable, both backend

algorithms (SelectionDAG and GlobalIsel) use a table-driven method. Architecture developers will

write code generation patterns in TableGen. These patterns will be compiled by LLVM into a static

table known as a matcher table. The matcher table contains both data and control instructions for

the pattern. At runtime, a while loop will consume this table. Thus, different instructions may be

generated using the same control flow with different data.

83

4.3 Design

1 define i64 @f(i32 %I, <4 x i32 > %V) {

2 Entry:

3 %ret_p = alloc i64 , 1

4 %ret = load i64 , ptr %ret_p

5 ret i64 %ret

6 }

Listing 4.2 A piece of LLVM IR program generated by function generation(Section 4.3.1.1). The function
returns a 64 bit integer, so we allocate a stack memory and load from it to return. We will fill the memory in
later mutations.

1 define i64 @f(i32 %I, <4 x i32 > %V) {

2 EntrySrc:

3 %ret_p = alloc i64 , 1

4 switch i32 %I, label %sCFG_Default [

5 i32 1, label %sCFG_1

6]

7 sCFG_Default:

8 br label %EntrySink

9 sCFG_1:

10 br label %EntrySink

11 EntrySink:

12 %ret = load i64 , ptr %ret_p

13 ret i64 %ret

14 }

Listing 4.3 IR program mutated from Listing 4.2. Line Line 4 to Line 10 are introduced by sCFG
insertion(Section 4.3.1.2). We insert sCFG by splitting the Entry block into two and generate a switch

instruction.

1 define i64 @f(i32 %I, <4 x i32 > %V) {

2 EntrySrc:

3 %ret_p = alloc i64 , 1

4 switch i32 %I, label %sCFG_Default [

5 i32 1, label %sCFG_1

6]

7 sCFG_Default:

8 %I64 = zext i32 %I, i64

9 br label %EntrySink

10 sCFG_1:

11 %I1 = add i32 %I, 1

12 %J64 = call @f(i32 %I1, <4 x i32 > %V)

13 br label %EntrySink

14 EntrySink:

15 %PHI = phi i64 [%J64 , %sCFG_1], [%I64 , %sCFG_Default]

16 store i64 %PHI , %ret_p

17 %ret = load i64 , ptr %ret_p

18 ret i64 %ret

19 }

Listing 4.4 IR program mutated from Listing 4.3. Instruction insertion(Section 4.3.1.3) generated Line 8,
Line 12, and Line 15. The placeholder memory is also used by %PHI to avoid undefined behavior (Line 16).

Figure 4.5: An example of how IRFuzzer mutates a module using different strategies.

84

To overcome those challenges in Section 4.2.3, we design IRFuzzer with two new components.

Figure 4.1 shows the new components of IRFuzzer. During mutation, we first generate a function if

there isn’t one (Section 4.3.1.1). Then we change the control flow graph (CFG) to create more control

flows (Section 4.3.1.2). Finally, we generate new IR instructions and mutate them (Section 4.3.1.3).

Figure 4.8 shows an example of the mutation process using these mutation strategies. After mutation,

we create a new method to measure the coverage of the program (Section 4.3.2).

4.3.1 LLVM IR mutation

In order to generate a wide variety of input while avoiding invalid inputs, we adopt a mutation-

based strategy. This strategy starts with small valid seed inputs and modifies the seed inputs in

ways that should also generate valid inputs. By randomly selecting between a number of small,

well-defined mutations, we expect to eventually generate a broad class of valid inputs while avoiding

invalid inputs. Figure 4.8 shows an overview of our design. We first generate an empty function

is non is present (Listing 4.2). Then, we mutate the control flow by sCFG insertion (Listing 4.3).

Finally, we modify or insert instructions in basic blocks (Listing 4.4).

4.3.1.1 Function generation

The LLVM backend has a significant amount of target-specific code related to function calls.

As a result, it is important to generate a wide range of function definitions and function calls with

different arguments and return types.

IRFuzzer implements a mutation strategy capable of generating new function definitions with

arbitrary arguments and return types. One important constraint is that the return type of the

function signature matches the type of each return instruction in the function definition. To ensure

this, the function generation strategy also synthesizes a load instruction of an appropriate type as the

operand for a return instruction. Although the value returned from the load may be uninitialized,

later mutations may store values to the memory, validating the return value.

IRFuzzer also implements a mutation strategy to generate new call instructions which refer to

85

specific function declarations. The mutator is free to select any declared function and will generate

compatible arguments and return values for the call, as with any other primitive instruction. Intrinsic

functions are target specific operations that correspond to complicated machine instructions, and

generating them will increase the code we can test. Yet they are treated as functions at middle-end.

In particular, this mutation strategy will also select intrinsic functions to call.

4.3.1.2 Control flow graph mutation

Another area where target-specific code in the LLVM backend differs relates to control flow.

Many machine code optimizations, such as jump threading, restructure control flow. In addition,

certain compiler optimizations may select specific jump instructions, but this optimization can only

be performed after instruction selection when code size and alignment are known. For instance,

a common compiler optimization is to first select jump instructions into a “short” form with a

limited offset range and then only later replace the short form with a “long” jump instruction if

a larger offset is required. Control flow optimization can also affect register lifetimes, exercising

target-specific code for spilling and restoring values from the stack.

IRFuzzer implements a structured approach to generating control flow. Inserting and removing

arbitrary branches in the code can greatly change dominator constraints between basic blocks. For

example, in Figure 4.2b, mutated from Figure 4.2a, BB2 no longer dominates BB3 after mutation.

If any value in BB3 refers BB2, the module is invalid after mutation. We implement an elegant

approach that uses sub-control flow graph, or sCFG, shown in Figure 4.2c. Instead of changing

edges, we split a block and insert sCFG inside.

A sCFG is a CFG with a single source entry block and a single sink exit block that will be

placed inside a larger CFG. Within the sCFG, we allow the synthesis of an arbitrary control flow

graph. However, every control flow edge starting in the sCFG must be contained within the sCFG,

except for source edges, sink edges, and return instructions. With this restriction, we can insert

sCFG into a program without breaking the dominator constraint by randomly selecting a block and

splitting it into two. The first part is source and the second sink. After block splitting, we generate

86

random sCFG starting from source and ending with sink.

The sCFG can be constructed with three main control schemas: branch, switch, and return,

corresponding to different terminators of the basic block. We start with only one basic block and

randomly select the terminator of the block. If the return schema is selected and the function

requires a return type, we pick any value available that matches the return type of the function. If a

branch or switch is selected as the terminator, we will find a previously generated non-constant value

as a condition. If no such values can be found, we will allocate a stack memory as a placeholder.

The branch can go to one of three places: sink, self-loop or return. If we generate a self-loop, we

will also update all the PHI nodes in the block to include a new value.

Finally, all terminators will be generated when we are mutating CFG. Note that our instruction

generation strategies will not mutate terminators in order to protect the integrity of the CFG.

4.3.1.3 Instruction modeling and generation

A key aspect of the LLVM backend is to convert the wide range of LLVM IR types to the

(usually small) set of types natively implemented by each target architecture. Therefore, to exercise

all features of code generation, it is necessary to generate IR instructions with as many data types

as possible. However, many IR instructions only operate on a restricted set of data types, and

FuzzMutate only modelled scalar types, which is trivial and limited. In order to model these

restrictions for vector types, we categorize instructions as shown in Table 4.1. These definitions are

reflected in the code as declarative declarations expressing both restrictions on the types of operands

and constraints between the types of different operands. For example, the anyIntOrVecInt constraint

restricts the valid types for a particular operand to be any integer type or vector of integer type.

The matchFirstOperand constraint restricts the type of operand to be the same as the type of the first

operand.

When generating a new instruction, we first randomly select an opcode and use the declarations

to randomly select values that exist in the code with a compatible type. If no value exists with

a compatible type, then the mutator will create a new operation with a compatible type. For

87

Table 4.1: Instruction modeling for IR instructions.

Operation type Opcode Argument descriptions

Unary operation fneg : anyFloatPointOrVectorFloatPoint

Binary operations
add, sub, mul, (s|u)(div|rem) : anyIntOrVecInt sameAsFirst

fadd, fsub, fmul, fdiv, frem : anyFPOrVecFP sameAsFirst

Bitwise operations shl, lshr, ashr, and, or, xor : anyIntOrVecInt sameAsFirst

Vector operations
extractelement : anyVector anyInt

insertelement : anyVector matchScalarOfFirst anyInt
shufflevector : anyVector matchLengthOfFirst VecOfConstI32

Aggregate operations
extractvalue : anyAggregateOrArray anyConstInt

insertvalue : anyAggregateOrArray matchScalarOfFirst anyConstInt

Memory operation getelementptr : anySized pointerOfFirst anyInt

Casting operations

trunc : anyNonBoolIntOrVecInt anyIntOrVecIntWithLowerPrecision
zext, sext : anyIntOrVecInt anyIntOrVecIntWithHigherPrecision

fptrunc : anyNonHalfFPOrVecFP andFPOrVecFPWHigherPrecision
fptoui, fptosi : anyFPOrVecFP matchLengthOfFirstWithInt
uitofp, sitofp : anyIntOrVecInt matchLengthOfFirstWithFP

ptrtoint : anyPtrOrVecPtr matchLengthOfFirstWithInt
ptrtoint : anyIntOrVecInt matchLengthOfFirstWithPtr
bitcast : anyType anyTypeWithSameBitWidth

Other operations
icmp : anyIntOrVecInt sameAsFirst
fcmp : anyFPOrVecFP sameAsFirst
select : anyBoolOrVecBool matchLengthOfFirst sameAsSecond

numerical types, the new operation could generate a random constant, undef, or poison.

In addition, a small number of operations are not modeled declaratively. For instance, store

and load memory operations are structured differently enough from other operations that modeling

them is not necessary. Some other instructions have constraints which are too complex to be

simply handled in the declarative framework, and we resort to custom generators. For instance,

instructions representing PHI nodes must be created with a number of operands equal to the number

of predecessor blocks and must occur at the start of their basic block. Similarly, call instructions

are handled manually too, since we must select a function declaration and find values that exactly

match the operand types of the declaration.

To ensure that values are defined before they are used, the mutator searches for values defined in

the following locations: global variable, function argument, values in dominators, and values defined

by previous instructions in the same basic block. If no value with a compatible type exists, the

mutator will attempt to generate a load from a compatible pointer, if one exists. Lastly, if a value

with a compatible pointer type exists, the mutator will fall back to either creating a new global

88

variable, a new constant value, or a load from a stack memory location.

In some cases, the mutator may create IR instructions that define values which are never used.

Since such dead code is likely to be removed by the compiler before instruction selection, the mutator

will attempt to create a use for such values. One possibility is to store dead values to stack memory

or a global variable. Alternatively, if there are instructions after the definition, or the current block

dominates other blocks, the mutator may select an instruction with a compatible operand to replace.

When generating instructions, it is possible that the mutator allocated new stack memory as

placeholders. In order to avoid undefined behavior, the mutator will again attempt to replace loads

from these placeholders with other values of compatible type. If no such value exists, then the

mutator will store a value into the placeholder location.

We don’t model intrinsic functions, as they vary from architecture to architecture, potentially

consuming a lot of time with little outcome. Instead, we rely on the feedback from matcher table

coverage (Section 4.3.2.2). Matcher table coverage report contains a list of intrinsics that haven’t

been generated in the form of function definitions. Then, the mutator will randomly generate call

instructions to intrinsic from this report.

4.3.1.4 Instruction shuffling

Another strategy shuffles instructions in the basic block. Changing instruction orders inside a

basic block will change how backend does instruction scheduling. When shuffling, instruction orders

need to be carefully handled otherwise a use-after-definition condition may arise. Our goal is to

make sure that for each define-use edge, after shuffling define appears before use. This can be done

by topological sorting.

We first remove all instructions except for the terminator from a basic block. Then we construct

a directed acyclic graph from the dependencies between removed instructions. In this graph, each

node represents an instruction and each edge represents a dependency between instructions. To

make the shuffling random, instead of a breadth-first traversal, we random access the nodes that

have no dependencies.

89

Table 4.2: Matcher table size in all architectures in LLVM on commit 860e439f. Since GlobalIsel is
a new CodeGen framework introduced in 2015, only eight architectures have implemented it.

Architecture SelectionDAG GlobalIsel Architecture SelectionDAG GlobalIsel

AArch64 489,789 278,233 Mips 54,044 60,449
AMDGPU 493,556 338,444 NVPTX 186,134 -
ARC 1998 - PowerPC 190,304 83,201
ARM 201,172 130,029 RISCV 2,191,899 190,009
AVR 2973 - Sparc 6607 -
BPF 3586 - SystemZ 53,271 -
CSKY 19,076 - VE 71,577 -
Hexagon 178,277 - WASM 25,991 -
Lanai 2337 - X86 680,916 61,488
M68k 18,850 2388 XCore 3854 -
MSP430 9103 -

4.3.2 Matcher table feedback

4.3.2.1 Matcher table instrumentation

Machine instruction generation does not correspond to compiler control flow. Different instruc-

tions can be generated by the same control flow due to the matcher table. Consequently, many

patterns may not be generated yet even if edge coverage is high. To overcome this, we track the

usage of the matcher table.

Similar to edge coverage, we allocate a table when the compiler starts in order to track the

coverage of the matcher table. Every time an entry in the matcher table is accessed, we will record

that access in our table as well.

Natively tracking the number of accesses like edge coverage is a huge memory overhead. The

second and fifth column of Table 4.2 show the size of the matcher table in different architectures. The

matcher tables for mainstream architectures like X86 and AArch64 have several hundred thousand

entries, RISCV even has about two million entries. Natively assigning a counter to each entry like

AFL++ will cost hundreds of KB of runtime memory, which will lower the fuzzing throughput [35].

Unlike control flow where the edge’s execution count represents different program semantics, a

matcher table entry being accessed multiple times only means the same pattern is triggered multiple

90

times. Therefore, we only track whether an entry is accessed or not, i.e., we use a boolean to track

each entry. During instrumentation, we pack eight booleans into a byte to save space. If the table

size is not a multiple of eight, we pad extra booleans.

During fuzzing, to access an entry in the matcher table, the fuzzer can calculate the offset of

the entry’s corresponding boolean using its index. After execution, the instrumented compiler will

report a matcher table coverage back to the fuzzer. The fuzzer will use edge coverage and matcher

table coverage together. If either table shows new coverage, we will consider the input as new.

4.3.2.2 IR mutation feedback

While the matcher table can help filter out not interesting seeds, it also contains knowledge

whether an instruction or intrinsic is generated or not. We wish to pass that feedback to the mutator,

so it can generate more diverse inputs. However, decoding the meaning of each entry in the matcher

table is non-trivial, as LLVM hides this information when preparing the matcher table.

We first modify TableGen to dump a look-up table specifying the correspondence of matcher

table entries and machine instruction patterns. The pattern reveals the condition on a specific

instruction or intrinsic being generated.

Prior to fuzzing, we dump this look-up table for each architecture. During fuzzing, we will

decode the matcher table coverage using the look-up table to determine which instructions haven’t

been generated yet. For instructions that haven’t been generated, we model the condition of

it; for intrinsic, we model the intrinsic as an LLVM IR function definition. Finally, we compile

this information into a report and send back to the mutator to increase the chance of them been

generated. This feedback is done every ten minutes, so we can provide a meaningful feedback while

minimizing the runtime overhead.

91

4.4 Implementation

Our implementation is based on prior work FuzzMutate[127] and AFL++ [53]. FuzzMutate

introduced a naive mutator with around 1000 lines of code. We add more mutation strategies for

function calls, control flow graph mutation, and arbitrary data types. The mutator described in

Section 4.3.1 consists of approximately 2000 new lines of C++ code, which has been contributed to

the upstream LLVM’s repository, augmenting the existing mutator strategies.

We implement our matcher table coverage described in Section 4.3.2.1. The implementation

combines a compiler plugin to measure the size of each matcher table and insert appropriate

instrumentation, along with a small runtime library to allocate and track the coverage information.

It is implemented in around 1000 lines of C and C++.

We modify TableGen to dump a look-up table for each matcher table described in Section 4.3.2.2.

Our decode and feedback report code is implemented in around 1000 line of C++. IRFuzzer has

been open-sourced2, the mutator has been contributed to LLVM upstream and merged to LLVM 16.

4.5 Evaluation

In order to understand how IRFuzzer helps to test LLVM code generation, we implement

IRFuzzer and evaluate it. In the rest of this section, we will fuzz LLVM with different settings and

tools to gain some insights to these research questions.

• RQ1: How does IRFuzzer compare with state-of-the-art backend fuzzers?

• RQ2: How does IRFuzzer compare with end-to-end fuzzers like CSmith and GrayC?

• RQ3: Does mutator and feedback individually contribute to IRFuzzer?

• RQ4: Can IRFuzzer help find new bugs in LLVM?

• RQ5: What are the insights we can gain from the bugs we found?

2https://github.com/DataCorrupted/IRFuzzer

92

https://github.com/DataCorrupted/IRFuzzer

The upstream LLVM repository (commit 860e439f) currently supports 21 architectures listed

in Table 4.2, excluding experimental ones. We only test on mature architectures that have a

matcher table size larger than 25 000. In addition, each architecture may provide different features

that can be enabled on different hardware. For simplicity, we select the backend of some popular

microchips, which has a predefined set of features. These backends are widely used from user

product to server applications, justifying the variety of our choice. All architectures we tested are

under active development. As a result, we select 29 target CPUs3 across 12 architectures.

We use two baseline fuzzers: AFL++ with no modification and AFL++ whose mutation module

replaced with FuzzMutate. We will refer to it as FuzzMutate thereafter. All fuzzers used AFL++’s

default scheduling. For fairness, we collect the seeds generated by each fuzzer and measure their

branch table coverage and matcher table coverage. Branch coverage is reported by AFL++ using

classical instrumentation and a default 64 KB table. Matcher table coverage is calculated as the

entries accessed divided by matcher table size listed in Table 4.2.

We prepare two versions of IRFuzzer. The one labelled IRF has all designs described in

Section 4.3. On the other hand, we strip all the feedback mechanism described in Section 4.3.2 and

label it IRFbare. When comparing with FuzzMutate, IRFbare’s performance will tell us how our

mutator is doing, while comparing with IRF can reveal the contribution of the feedback mechanism.

Each fuzzer process was dedicated to a single processor core on an x86 64 server with two

20-core CPUs and 692 GB of memory. Each fuzzing process lasted for one day to allow adequate

exploration [100]. In addition, each experiment was repeated five times and the results were averaged

to reduce random effects. To demonstrate IRFuzzer’s ability to mutate IR modules and to provide

a fair comparison with AFL++, each fuzzer process was initialized with 92 seed. The seeds are

randomly selected from LLVM’s unit testing, and they are smaller than 256 bytes to increase the

throughput. The seeds are published in the artifact [137].

3“Target CPU” is used in LLVM to label a backend corresponding to a microchip. It can also refer to GPU or
other DSP.

93

Table 4.3: Branch table coverage and matcher table coverage on 29 target CPUs across 12 targets in
SelectionDAG. Statistics are the arithmetic mean over five trials. Bold entries are the best among
baseline fuzzers. FM means AFL++ coupled with FuzzMutate, IRF means IRFuzzer

Arch Target CPU
Branch coverage Matcher table coverage

Seeds AFL++ FM IRF IRFbare Seeds AFL++ FM IRF IRFbare

AArch64

apple-a16 59.8% 87.1% 82.9% 94.7% 93.9% 0.7% 1.6% 2.6% 8.2% 7.3%
apple-m2 59.8% 86.9% 83.3% 94.8% 93.6% 0.7% 1.6% 2.6% 8.2% 7.2%
cortex-a715 60.0% 87.7% 83.2% 94.0% 93.6% 0.7% 1.7% 2.6% 9.4% 7.2%
cortex-r82 60.1% 87.0% 82.9% 93.9% 93.6% 0.7% 1.6% 2.6% 7.6% 7.2%
cortex-x3 60.0% 93.3% 85.2% 94.1% 94.5% 0.7% 7.1% 2.7% 9.1% 7.6%
exynos-m5 60.3% 87.4% 83.2% 93.9% 94.5% 0.7% 1.7% 2.6% 7.8% 7.5%
tsv110 60.0% 87.3% 82.9% 93.2% 94.1% 0.7% 1.6% 2.6% 7.5% 7.3%

AMDGPU
gfx1036 70.8% 90.0% 89.1% 96.9% 96.7% 0.9% 2.1% 2.7% 4.9% 4.5%
gfx1100 71.2% 89.7% 89.9% 97.0% 96.3% 1.0% 2.1% 2.9% 4.9% 4.5%

ARM generic 55.5% 87.9% 82.5% 88.6% 88.4% 1.7% 4.3% 4.3% 5.2% 5.1%

Hexagon
hexagonv71t 64.8% 88.0% 86.0% 93.6% 93.2% 1.7% 6.6% 17.0% 30.6% 21.0%
hexagonv73 64.9% 89.5% 85.7% 94.4% 93.4% 1.7% 7.3% 17.4% 32.2% 21.1%

Mips mips64r6 52.5% 81.0% 72.7% 85.9% 84.5% 3.8% 10.0% 15.3% 17.8% 16.6%

NVPTX sm 90 46.6% 77.5% 77.5% 87.0% 84.5% 1.7% 3.1% 4.7% 26.5% 6.2%

PowerPC pwr9 60.3% 87.3% 86.9% 94.5% 94.1% 1.2% 3.6% 7.1% 19.6% 15.9%

RISCV
rocket-rv64 53.7% 83.0% 76.6% 86.4% 87.4% 1.2‰ 2.0‰ 2.2‰ 2.2‰ 2.3‰
sifive-u74 54.5% 83.1% 75.9% 86.7% 86.6% 1.4‰ 2.4‰ 2.9‰ 3.0‰ 3.0‰
sifive-x280 55.0% 84.1% 75.7% 88.6% 89.7% 1.4‰ 2.7‰ 3.1‰ 30.6‰ 31.5‰

SystemZ
z15 55.3% 84.0% 81.5% 89.9% 91.0% 5.2% 13.7% 27.1% 43.8% 38.7%
z16 55.3% 83.7% 81.8% 89.8% 89.7% 5.2% 14.1% 26.5% 43.9% 37.6%

VE generic 49.0% 80.4% 70.2% 84.4% 83.1% 3.5% 8.1% 11.4% 14.0% 12.6%

WASM
bleeding-edge 46.8% 84.7% 70.5% 82.9% 83.2% 4.1% 36.9% 10.9% 37.6% 35.9%
generic 46.6% 80.2% 69.7% 80.6% 81.9% 4.1% 11.8% 10.6% 11.7% 11.8%

X86

alderlake 61.2% 88.0% 84.6% 94.7% 93.7% 0.7% 1.8% 3.1% 8.0% 6.2%
emeraldrapids 60.5% 93.4% 84.4% 93.7% 93.5% 0.6% 12.5% 3.2% 13.9% 12.4%
raptorlake 61.2% 93.5% 85.8% 94.5% 93.7% 0.7% 6.2% 3.3% 8.0% 6.2%
sapphirerapids 60.5% 88.4% 85.4% 93.7% 93.2% 0.6% 1.8% 3.3% 14.0% 12.2%
znver3 61.8% 86.6% 84.0% 93.8% 94.3% 0.7% 1.6% 3.0% 7.7% 6.5%
znver4 61.0% 87.6% 84.0% 93.7% 94.2% 0.7% 1.8% 3.2% 13.2% 12.6%

4.5.1 Baseline comparison

To evaluate our strategy, we compare with two baseline implementations: AFL++ and the

upstream LLVM implementation of FuzzMutate. Unmodified AFL++ lacks an LLVM IR-aware

mutator, and hence we expect it to often generate invalid inputs that fail to meet the syntactic and

semantic constraints of LLVM IR. On the other hand, FuzzMutate has a limited LLVM IR-aware

mutator.

The result can be found in Table 4.3. The 3rd and 8th column shows the coverage brought by

94

initial seeds. Bold numbers are the best statistical significance (p < 0.05) when compared with

other baseline fuzzers using Mann Whitney U Test.

Overall, we see AFL++ performed poorly for the purpose of testing LLVM compiler backends.

In most backends, it cannot increase much matcher table coverage due to its lack of support for

structured input; IRFuzzer covered more branches than AFL++ on 28 target CPUs. The output

generated by AFL++ did not provide significant coverage of instruction selection patterns, as

measured by the low matcher table coverage.

Both FuzzMutate and IRFuzzer reached high code coverages. FuzzMutate reached more than

75% except for generic-la64, mips64r6, generic VE, and generic WebAssembly. On the other hand,

IRFuzzer performed better, achieving over 80% branch coverage for all target CPUs.

It is not sufficient to only compare branch coverage [31]. More significantly, IRFuzzer reached

number one in matcher table coverage on all CPUs, indicating significantly better coverage of

instruction selection patterns.

We observe that in generic WebAssembly, IRFuzzer shows no significance compared with other

fuzzers. After investigation, we find that generic WebAssembly disabled many features, limiting the

maximum reachable matcher table to 11.8%. This does not show that IRFuzzer is less effective on

WebAssembly, as we can see that IRFuzzer still rank number one in the bleeding-edge version.

In summary, IRFuzzer achieved higher branch coverage and matcher table coverage on 28 out

of 29 target CPUs. To answer RQ1, IRFuzzer is better at coverage when fuzzing LLVM code

generation compared with state-of-the-art fuzzers.

4.5.2 Comparison with end-to-end fuzzers

In order to better understand the benefits of targeted fuzzing compared to end-to-end fuzzing,

we also compare IRFuzzer with CSmith [60] and GrayC [3]. Unlike IRFuzzer, end-to-end fuzzers

generates C code, which must be processed by the compiler frontend and middle-end before reaching

the backend. As a result, they exercise the entire compilation pipeline, rather than focusing on just

the backend. Note that although CSmith generates random, syntactically correct C code, it does not

95

Table 4.4: Average branch table coverage and matcher table coverage of CSmith (CS), GrayC, and
IRFuzzer (IRF). O2 and O3 stands for different optimization levels. Bold entries are the winners.

Arch
Branch table coverage Matcher table coverage

CS GrayC IRF CS GrayC IRF

O2

AArch64 94.8% 96.1% 93.3% 5.2% 6.9% 7.9%
ARM 90.7% 92.3% 87.2% 4.5% 4.5% 5.1%
X86 94.8% 96.1% 91.9% 3.5% 4.2% 4.7%

O3

AArch64 95.3% 96.2% 92.6% 5.4% 6.9% 7.7%
ARM 91.1% 92.5% 86.1% 4.5% 4.5% 4.9%
X86 94.9% 96.2% 91.5% 3.5% 4.2% 4.6%

implement any instrumentation and lacks feedback from executions to guide the generation process.

While GrayC relies on branch coverage feedback, it does not have feedback that is customized

for backends of the compilers. Besides, to test end-to-end fuzzers, we have to cross compile C to

different architectures. Cross compilation itself is difficult, as we have to set up the proper tool

chain for it. Therefore, we test on three most widely used architectures using generic backend.

CSmith generates C files with no initial seed. To make comparison fair, we also run IRFuzzer

with no initial seed, since IRFuzzer is capable of generating LLVM IR from scratch. GrayC relies on

deprecated APIs in LLVM 12 and can’t instrument the latest LLVM, thus we download the artifact

provided by GrayC [138]. The artifact consists of 715,147 C programs across ten trials. We run

CSmith for 24 hours and repeat eight times, generating a total of 506,971 C programs.

We cross compile these C programs to different architectures. After compilation, we measure

the resulting control-flow and matcher table coverage in the compiler backend, using the same

instrumentation as IRFuzzer. llc default optimization to O2, therefore we only test O2 and O3, as

O0 and O1 are often subsets of O2. The results are shown in Table 4.4.

IRFuzzer achieved higher matcher table coverage on all architectures and all optimizations.

Even with branch coverage feedback, GrayC is not able to generate C inputs with more matcher

table coverage, further demonstrating the necessity for specialized backend fuzzing. We looked

into the code generated by end-to-end fuzzers and found the reason for the coverage differences.

The inferiority of matcher table coverage of end-to-end fuzzers was largely related to a lack of

96

coverage of vector data types. Vector instructions can only be generated when the frontend and

middle-end decide a vector instruction will speed up a particular piece of code, which turns out to

be rather unlikely for random C programs. However, since IRFuzzer operates on IR instructions, it

can generate vector operations without relying on the frontend or middle-end of the compiler.

On the other hand, CSmith and GrayC achieved higher branch coverage. After investigation,

we find that the size of generated files contributed to the difference. IRFuzzer generates bit code

less than 10 KB to achieve higher throughput. Seeds generated by CSmith average to more than

40 KB after we compiled them to bit code. This means that many backend edges are executed

more times, which would increase branch coverage in AFL’s design. This does not show IRFuzzer’s

inferiority. IRFuzzer can reach fair coverage in much smaller inputs, showing the efficiency of

specialized backend fuzzing.

Our evaluation answers RQ2, IRFuzzer achieved higher matcher table coverage than state-of-

the-art end-to-end fuzzers. This shows that backend testing should not solely rely on end-to-end

fuzzing, and that specialized fuzzing can improve matcher table coverage significantly.

4.5.3 Individual contributions

We are interested to know how each component helps IRFuzzer. Therefore, we strip all feedbacks

in IRFuzzer to get IRFuzzerbare. Comparison of fuzzing results can be found in Table 4.3.

Comparing IRFuzzerbare with FuzzMutate, we find that IRFuzzerbare always reach higher

branch coverage and matcher table coverage. This means that our mutator is able to generate more

diverse input than FuzzMutate. Although FuzzMutate is also a structured mutator, it lacks many

advanced features we designed in Section 4.3.1. Sifive-x280 best demonstrates this improvement:

on sifive-x280, IRFuzzerbare can cover 31.5‰ of the matcher table, while FuzzMutate only reached

3.1‰.

On the other hand, when comparing the last two columns of Table 4.3, we find that IRFuzzer is

able to cover more matcher table in 26 out of 29 target CPUs compared with IRFuzzerbare. IRFuzzer

didn’t show superiority on three target CPUs (rocket-rv64, sifive-x280, generic WebAssembly)

97

mainly because both fuzzers reached coverage ceilings allowed by that target CPU. However, we find

that sometimes IRFuzzer has less branch coverage. We find the contribution of feedback mechanism

is double-sided. The newly introduced matcher table coverage and feedback to mutator lowered

the throughput, affecting the overall branch coverage. On the other hand, the feedback is valuable

in generating more diverse inputs, contributing to higher matcher table coverage. For example, in

NVPTX, IRFuzzer achieved 26.5% matcher table thanks to our feedback when IRFuzzerbare only

covered 6.2%. Since our end goal is to test the code generation part of the backend, we believe this

tradeoff is acceptable. We can answer RQ3 confidently that both mutator and feedback design

contributed to improve the matcher table coverage.

4.5.4 Bug categories and analysis

We collect all crashes found in Section 4.5.1 and Section 4.5.2. We also fuzzed other architectures

with no features to extend our scope. Since GlobalIsel also uses matcher table design, we can apply

IRFuzzer on it with little modification. We also fuzzed GlobalIsel for AArch64, Mips, and X86.

In the process, we found hundreds of crashes in the LLVM compiler. Even though these crashes

all have unique stack traces, it doesn’t necessarily mean they are different bugs. Some crashes

have different paths but have the same root cause. Therefore, we manually analyzed all of them

and report the ones we believe are bugs. In this section, we only report the bugs that have been

confirmed. In total, IRFuzzer found 78 confirmed bugs. We manually verified that these bugs are

found by IRFuzzer only and published the details anonymously [137].

These bugs are distributed in different places in LLVM codebase. Figure 4.6a shows the

distribution of these bugs across LLVM. CodeGen is the library shared between architectures,

meaning that a bug in CodeGen may affect all architectures. We are surprised to find that CodeGen

and some widely adopted architectures have more bugs than we expected. This indicates that LLVM

backend still needs more specialized fuzzing to be more fail-safe.

To better study these bugs, we categorize them into six categories: hang, memory errors,

assertion failures, logic errors, missing patterns, and other bugs. Hang, memory errors and assertion

98

X
86

A
A
rc
h6
4

C
od
eG

en

A
M
D
G
P
U

N
V
P
T
X

H
ex
ag
on

W
A
SM

R
IS
C
V

A
R
M

B
P
F

V
E

X
C
or
e

P
ow

er
P
C

0

5

10

15
6

2

2

3

6
2

10 11
9

5

2

5
7

3
1 1 1 1 1

#
of

b
u

g
s

Confirmed

Fixed

a Bugs categorized by locations. CodeGen refers to the code
shared by all architectures, thus bugs in it can potentially
affect all architectures.

A
ss
er
ti
on

P
at
te
rn

L
og
ic

M
em

or
y

H
an
g

O
th
er

0

10

20 4
6

5

3

3
1

18
16

10
7

3 3

#
of

b
u

g
s

b Bugs categorized by causes. Most of the
severe bugs are compiler hangs, memory errors,
and assertion failures.

Figure 4.6: Distributions of bugs found by IRFuzzer. IRFuzzer has found 78 new bugs, 57 have
been fixed.

failures are the most severe ones as they have a direct impact on end users. Missing patterns means a

certain machine instruction is permitted by the hardware specification, but no matching instruction

selection pattern exists. Logic error and missing patterns won’t immediately affect the user, but may

generate ineffective or even wrong machine instructions. Figure 4.6b shows the number of bugs in

each category. Most bugs are assertion errors or missing patterns. They arise from developers’ false

assumption that some properties holds true during compilation, while our fuzzer proved otherwise.

We are working closely with the LLVM community to fix the bugs. 57 have been fixed, five of

which are back ported to LLVM 15 as security patches. It’s surprising that, despite heavy fuzzing,

all fixed bugs are introduced before LLVM 15. This demonstrates that specialized fuzzing for

compiler backend is necessary, and it provides actionable insight to developers.

We can answer RQ4 now. We found six compiler hangs, ten memory errors, and 22 assertion

failures. We also found 15 logic errors and 22 missing patterns in the matcher table. In total, we

found 78 new bugs, 57 have been fixed, five have been back ported to LLVM 15 as security patches.

99

BB1 BB2 BB3 BB4 BB5

x == 3 x == 2

x == 2

x == 3

a Original CFG

BB1 BB2 BB3 BB4 BB5

x == 2 || x == 3

x == 2

x == 3

b Optimized CFG

Figure 4.7: A piece of code we generated, simplified to CFG only. Two optimization passes are
involved in this compiler hang. TurnSwitchRangeIntoICmp will transform Figure 4.7a into Figure 4.7b.
FoldValueComparisonIntoPredecessors will undo the transformation, causing an infinite loop.

4.5.5 Bugs case study

4.5.5.1 Compiler hang

LLVM may execute multiple optimizations repeatedly until a fixed point is reached. However,

this strategy can result in an infinite loop if not applied carefully, such as when one optimization

undoes the effects of a previous optimization. Four of six hangs we found are caused by this problem.

For example, Figure 4.7 shows a simplified CFG corresponding to the code generated by IRFuzzer.

This CFG will cause a compiler hang due to the interaction between two optimization passes. BB2

in Figure 4.7a consists of a switch statement with two self loop edges. The TurnSwitchRangeIntoICmp

optimization attempts to rewrite the condition as a branch predicate because x == 2 || x == 3

can be optimized using bit operations, rewriting Figure 4.7a into Figure 4.7b. However, the

FoldValueComparisonIntoPredecessors optimization converts this code back into a switch statement to

reduce the number of comparison operations, turning the CFG back to Figure 4.7a. As a result, a

fixed point is never reached, creating an infinite loop.

This bug is hard to trigger since the bug can only be triggered when the switch in Figure 4.7b

has exactly two destinations (BB2 and BB3), and the switch conditions are consecutive, enabling

the TurnSwitchRangeIntoICmp optimization. This combination is unlikely to be created during manual

testing, and can only happen through the interaction of two largely unrelated pieces of code. Yet,

we are able to discover this catastrophic combination through our CFG mutation strategy in a time

frame amenable to run fuzzing on every nightly build with little human intervention.

100

In this case, we answer RQ5 by advising the developers to carefully read code that may modify

the same location before they push out a new optimization that changes the code.

4.5.5.2 Memory error

LLVM often hides memory management from the developers so they don’t have to manually

manage it. Still, we found five memory errors: one null pointer dereference, two double frees and

two out of bounds (OOB) accesses. After inspection, we determined that both double free bugs

were indirectly caused by OOB accesses, which didn’t result in crash immediately. All four OOB

accesses are caused by developers using constants from the program under compilation without

validation. In these cases, an OOB access or undefined behavior in the program being compiled

were able to crash the compiler itself.

As an example, we consider a case involving vector types, shown in Listing 4.5. LLVM natively

supports to enable SIMD optimizations. The insertelement IR instruction instruction inserts a value

into a vector at a specified index. If the given index is out of the bounds, the behavior is undefined.

The compiler can leverage this to remove the insertelement instruction.

In most cases, LLVM’s module verifier checks for invalid indices, and will reject any negative

indices before compilation. As a result, developers may implicitly assume that indices in this code

are always non-negative. However, the module verifier does allow undef as a valid index. undef in

LLVM represents a value that can be anything, and is represented as an index IntImm of −1 at this

point in the code, resulting in an OOB access at Line 7.

This example shows that our IR instruction mutation method is better than high-level language

generation, since undef is not a primitive high-level language construct and will only be introduced

through other optimizations. By generating LLVM IR directly, we have more control over instruction

operands and can directly generate values like undef. To answer RQ5, we recommend developers to

be careful about uncommon values like undef and poison, which may appear during compilation.

101

1 bool CombinerHelper :: matchCombineInsertVecElts (...){

2 while (...) {

3 + if (IntImm >= NumElts || IntImm < 0)

4 - if (IntImm >= NumElts)

5 return false;

6 if (! MatchInfo[IntImm])

7 MatchInfo[IntImm] = TmpReg;

8 CurrInst = TmpInst;

9 ...

10 }

11 }

Listing 4.5 A snippet of code in AArch64 where the index (IntImm) is not sanitized before usage. This diff is
our patch to fix this bug.

1 bool IRTranslator :: translateExtractElement(

2 const User &U,

3 MachineIRBuilder &MIRBuilder)

4 {

5 Register Idx;

6 const LLT VecIdxTy = LLT:: scalar(PreferredVecIdxWidth);

7 Idx = MIRBuilder

8 - .buildSExtOrTrunc(VecIdxTy , Idx)

9 + .buildZExtOrTrunc(VecIdxTy , Idx)

10 .getReg (0);

11 ...

12 }

Listing 4.6 A snippet of code in LLVM where index of a vector is treated as signed value. This diff is our
patch to fix this bug.

Figure 4.8: Two bugs we found in LLVM codebase. Both of them will lead to compiler crash and
have been fixed.

4.5.5.3 Logic error

Logic error usually starts with unclear documentation or undocumented assumptions. Middle-end

and backend are developed by different programmers, who may interpret ambiguous documentations

differently.

For example, Listing 4.6 shows a bug we found in the LLVM backend. When translating the

IR instruction extractelement, the index is extended as a signed integer. The code translates

constants like char 255 into -1. This bug generates incorrect machine instructions and affects the

LLVM backend for seven architectures.

The bug was introduced in LLVM nine years ago and was never noticed for several reasons.

First, it is less common for compiler frontends to generate vector operations, as we have seen in

102

Section 4.5.2, and even more rare to use an index that is large enough to wrap around to a negative

integer. However, more importantly, we discovered that the documentation was ambiguous with

respect to the desired behavior. The documentations indicated that “The index may be a variable of

any integer type” without giving more details on how it should be interpreted. Therefore, when this

bug was introduced nine years ago, it was actually compliant with the incomplete documentation at

the time. This exemplifies how complex software interfaces can be incompletely specified, which

further justifies our specialized fuzzing. In this case, we have fixed the bug and updated the

documentation to reflect the intended interpretation of the index as an unsigned integer. To answer

RQ5, we encourage developers of LLVM to communicate more on the documentations. Review and

update documentations with the development of the code would be a good practice.

4.6 Related work

Prior work has focused on compiler testing [139–141]. One popular approach is to generate

inputs for compilers to compile. Purdom[142] generates program based on context free grammar.

Superion[135] and Nautilus[55] also relies on context free grammar for fuzzing. However, context

free grammar based methods cannot generate semantically meaningful programs. These efforts are

effective in testing frontend parsers, but cannot reach the backends effectively.

While many fuzzers are testing the frontend of the compiler using grammar based method [143],

some work also tests the correctness of middle-end [2, 119, 144, 145]. To the best of our knowledge,

IRFuzzer is the first one to verify the compiler backend using an architecture independent method.

Some work does end-to-end tests using high-level programming languages. CSmith[60], YARP-

Gen[121], and Grayc [3] generate C and C++ programs. AI has also been used for program generate

for the purpose of compiler testing [113–115]. However, end-to-end testing implies that there is a

need to create a generator for every language, like JavaScript [56, 136], Rust [146], and Java [147–149].

POLYGLOT[150] introduced a language-free IR and mutator based on it. Most fuzzers have no

feedback from the compiler. Even though Grayc [3] introduced branch coverage feedback, it was

103

unable to trigger backend bugs due to language limitations and compiler optimizations discussed

in Section 4.5.5.3. Instead of directly generating a program, Equivalence Modulo Inputs [122,

151, 152] mutates an existing C program to preserve its semantics. Therefore, the program before

and after mutation should have the same behavior. Combining CSmith and EMI, Lidbury et al.

mutate program to test OpenCL compiler [153]. However, the language limits these work, since the

generator cannot help when the language frontend cannot exercise a feature in the compiler.

Formal verification is another valuable part of compiler verification [154]. Verasco [124] is a

formally verified C analyzer. CompCert [155] is a compiler for a subset of C that is formally verified.

There is work that verifies other languages, like Rust [156] and Lustre [125]. However, formal

verification cannot scale to large compilers like LLVM, therefore it has a limited impact in the

community.

There is also work on intermediate representation generation. FuzzMutate directly generates

LLVM IR[127]. However, FuzzMutate has no feedback unless combined with fuzzers like AFL++[53]

or libFuzzer[86]. Some work focus on testing of a specific compiler [157, 158]. Tzer focuses on

IR mutation in the context of a tensor compiler [158]. However, Tzer relies on LLVM’s Coverage

Sanitizer that only tracks code coverage. Similar to IRFuzzer’s approach, ClassMing directly mutates

on Java byte code[159]. Neither Tzer nor ClassMing designed a feedback method that can apply to

LLVM’s scenarios.

104

Chapter 5

Understanding programs by

exploiting fuzzer generated test cases

5.1 Introduction

Code intelligence powered by machine learning has attracted considerable attention in both the

AI and software engineering community. Particularly, code representation learning, which aims to

encode functional semantics of source code, lays the foundation for achieving the intelligence and is

of great interest. The learned representation can be applied to various downstream tasks, including

code classification [67], code summarization [65], clone detection [66, 67], etc.

Many efforts inspired by the developments of natural language understanding have been devoted

to learning code representations, among which it has been increasingly popular to adopt large

language models (LLMs) that are capable of learning contextual information from data at scale [160,

161]. The LLMs can then be fine-tuned on domain-specific code to achieve superior performance

compared with tradition models.

Despite being effective, these natural language processing methods do not fit perfectly for handling

programs. Specifically, programs are heavily structured and syntax-strict (to be understood by

compilers or interpreters), while natural language corpus is not. As basic units of programs,

105

functions and subroutines can take a variety of argument values to demonstrate different logical

behaviors or return different results. That being said, the relationship between inputs and possible

outputs/behaviors essentially represents the functions/subroutines and further the whole programs.

In this chapter, we propose to incorporate such a relationship into learning for a deeper

understanding of programs. In fact, given enough inputs to execute all pieces of the code, then the

outputs would include enough runtime information we need to profile and understand the program.

However, it is nontrivial to generate a limited number of inputs that are representative enough to

execute every part of the code. Without a proper strategy, we may end up with a large number of

inputs that execute similar parts of codes. To address the issue, we opt to utilize fuzz testing (also

known as fuzzing) [162], which is a common software testing practice and dynamic analysis tool

whose original goal is to find software bugs by executing as much code as possible. More specifically,

we repurpose fuzz testing to generate input and output data for assisting code representation

learning, and we demonstrate how the input and output data (i.e., test cases) can be appropriately

incorporated into existing LLMs to achieve superior program understanding performance.

The contributions of this chapter are three-fold. First, by recognizing the essence code repre-

sentation learning, we propose to take advantage of the relationship between inputs and possible

outputs for achieving a deeper understanding of programs. Second, we, for the first time, repurpose

fuzz testing to assist code presentation learning, marrying these two concepts from different commu-

nities for achieving more powerful AI. Third, we obtain state-of-the-art results on typical program

understanding tasks including clone detection and code classification, in comparison to prior arts.

5.2 Related work

In this section, we introduce related work on code understanding (from the natural language

understanding community) and fuzzing (from the software engineering community).

106

5.2.1 Code representation learning

Inspired by the success of LLMs in natural language processing [163–165], LLMs trained on

programming languages have also been widely used to drive code intelligence. For instance, [166]

proposed cuBERT to train BERT models on a curated and deduplicated corpus of 7.4M Python files

from GitHub, and adapt the pre-trained models to various code classification tasks and a program

repair task. Thereafter, a bunch of methods have been developed and a variety of LLMs have been

trained on code data, including CodeBERT [160], CodeT5 [167], and CodeGPT [168].

The importance of comprehending syntax and structures for learning code representations has

also been pointed out by several prior arts, and methods that incorporate programming-language-

specified features, including abstract syntax tree [169, 170], control or data flow graphs [171],

and intermediate representation of code [172] have been developed. These methods only utilize

information available for static analysis. It is generally difficult for static analysis to be both safe

and sound [173] when analyzing the behavior of programs. For instance, a path that exists on the

control flow graph may never be executed due to data-flow limitations. Our work is the first to take

dynamic program information (by generating and exploiting test cases with inputs and outputs) into

account for code representation learning. An input will lead to execution of part of the program and

an output (or some behaviors if no output is required), which would reflect the functionality of that

part of the program. We hypothesize that if we have enough inputs to execute the code sufficiently,

the outputs would also include enough runtime information that we need to profile the program.

5.2.2 Fuzzing

Fuzz testing, or fuzzing, is a process that tests the correctness of programs. Fuzzing can be

roughly considered as a four-stage loop. First the program is executed with a given input. Second,

the behavior of the program is monitored to determine if any new behavior is triggered. Third, if a

new behavior is present, the corresponding input will be saved into a store, otherwise, the input

is discarded as not interesting. Finally, a mutator takes a saved input in the store, mutates it in

different fashions and sends the input for another round of execution.

107

American Fuzzy Lop (AFL) [1] is the first fuzzer to implement behavior monitoring using branch

coverage. It tracks which edges of the control flow graph have been executed. Since the invention

of AFL, many innovations have been made to improve the overall fuzzing performance. [31, 40]

modified branch coverage to lower the overhead while improving tracking sensitivity. [38] proposed

that power scheduling is better than a first-in-first-out queue for input store and improved the

fuzzing performance by a magnitude. [44] introduced new mutation algorithms and showed superior

performance than random mutation. Many of the changes have been incorporated into a more

modern tool called AFL++ [53].

Unfortunately, current use of fuzzers only focuses on the bugs in the software [19, 55, 107] and

did not show possibility of adopting fuzzing results in code representation learning for AI. We

identify that these results can be used to profile programs and improve the performance of code

representation learning and program understanding.

5.3 Method

As mentioned in Section 5.1, programs show strict syntax. To inspire deeper understanding of

the syntax and logical behaviors of a program or functions/subroutines (which are the building

blocks of the program), we attempt to exploit the relationship between their inputs and possible

outputs/behaviors for achieving improved understanding of programs and code, akin to how engineers

understands third-party code.

However, with existing learning techniques, it seems nontrivial to generate inputs that could

lead to execution of sufficient part of the code, thus we resort to fuzzing to achieve this goal.

5.3.1 Fuzzing for obtaining inputs and outputs

Despite being widely adopted for testing software, fuzzing has rarely been adopted in machine

learning tasks. In general, fuzzing is a software testing practice, whose goal is to find software bugs

by executing as much code as possible. To achieve this, it executes the program with different inputs

108

and monitors the behavior of each execution. Therefore, as byproducts of fuzzing, a large number

of inputs may be produced by a fuzzer, each triggering a new behavior of the program under test.

Fuzzing is programming language agnostic in general. However, with only source code, we

have to compile the programs into executable files for fuzzing. We mainly describe details for four

mainstream languages (C, C++, Java, and Python), and a tool was specifically designed to build

the programs for fuzzing. This tool interacts with the compiler or interpreter to automatically fix

some problems that prevent it from being fuzzed. Since the main aim of this work is to assist models

to better understand programs, we fix problems that do not affect the semantics and functionality

of code but prevent fuzzing.

For C and C++, we treat them as C++ files. Some semantics-irrelevant errors in the program

would prevent the code from compiling and fuzzing. For example, missing headers, absent return of

a main function that is defined to have one, and misuse of reserved keyword. In order to fix these

compilation errors, we designed a compiler plugin that can automatically fix these. First we run the

lexer and parser on the program to gain abstract syntax tree, which would make code transformation

much easier. Then we designed a parser to parse error message from the compiler. We introduce

several fixes to correct the program for different errors.

1. Missing headers. We included most commonly used headers in the C++ library at the head

of each program.

2. Incorrect return type and/or arguments. For instance, if a main function is defined as

“int main()” but provides no return, we fixed it by added “return 0;” to the end of the program.

3. Misuse of keywords in the standard library. Reserved keywords might be misused as

variables and we added a “fixed_” prefix to each of such variables to avoid keyword violation.

4. Incorrect struct definition. Many structures were defined without a semicolon after it, we

will append that semicolon.

5. Undeclared identifier. We notice that many programs use static values as a constant value,

109

yet the value is sometimes missing. We would analyze the usage of the constants and insert

definitions for them.

For Java programs, we compiled them into bytecodes using Kelinci [174] to instrument them for

fuzzing. Not all programs we tested were named Main.java but they all defined a Main class. In order

to compile them, we changed the Main class to its file name in order to compile it. For each program,

a TCP server was added to communicate with a fork server which then sends data to the fuzzer.

Python is the most difficult language. First many lexical errors are not as easy to fix as C/C++

and Java. For example, if the program mixed tabs and spaces, it is hard to infer what is the intended

indention. To solve this, we used autopep81 to transform the program. The next challenge is that

Python2 and Python3 can’t be easily distinguished, therefore, it is unclear which interpreter should

be used for fuzzing. To detect the version, also to verify the correctness of the transformation, we

treated all code as Python3 in the first place and try to compile python program to bytecode using

py compile. If the compilation failed, then it was probably a Python2 implementation and we tried

to convert it to Python3 using 2to32. Finally, we had to instrument the behavior monitoring and

reporting to communicate with the fuzzer. We used py-afl-fuzz3 to achieve this.

We want to point out that all the changes made in this section are for fuzzing only. When

training models in the following sections, the programs remain unchanged.

We selected AFL++ [53] as our fuzzer and fuzzed all experimental data on a server with 2

20-core 40-thread x86 64 CPUs and 692GB of memory. Each fuzzer only has one thread and ran

until it exhausts all paths or a K-minute timeout is triggered. The stored inputs that are of interest

to AFL++ can then be utilized to execute the program and obtain outputs, and they constitute the

fuzzing test cases. The test cases (i.e., pairs of inputs and outputs) were produced in bytes and we

may decode it into human readable strings.

1https://pypi.org/project/autopep8/
2https://docs.python.org/3/library/2to3.html
3https://pypi.org/project/python-afl/

110

https://pypi.org/project/autopep8/
https://docs.python.org/3/library/2to3.html
https://pypi.org/project/python-afl/

5.3.2 Model

Although it is possible to train representation learning models from scratch using the obtained

fuzzing test cases, it can be more effective to take advantage of previous pre-training effort. In

particular, given a pre-trained LLM, we attempt to take these test cases as model inputs somehow.

Considering that the LLM was mostly trained on programming language and natural language

corpus [160, 167, 170], the source code of the program is fed into the model together with fuzzing

test cases, by concatenating the two parts.

5.3.3 Prompting

The fuzzing test cases in their raw format are a series of bytes, and, by decoding, we can obtain

a series of Unicode strings which are unorganized. To help LLMs better understand these test

cases, we introduce cloze prompts [175]. Prompt have shown significant power in natural language

processing since the invention of LLMs. Considering that LLMs can be pre-trained on both natural

language corpora and programming language corpora, we design both natural-language-based

prompts and programming-language-based prompts for each pair of input (denoted by [INPUT]) and

output (denoted by [OUTPUT]) as follows:

1. Natural-language-based prompt:

(a) [SEP] + “input: ” + [INPUT] + “,” + “output: ” + [OUTPUT];

(b) [SEP] + “input is ” + [INPUT] + “and” + “output is ” + [OUTPUT];

2. Programming-language-based prompt:

(a) [SEP] + ”cin>>” + [INPUT] + ”;” + ”cout<<” + [OUTPUT]; (For C/C++)

(b) [SEP] + “System.in ” + [INPUT] + “;” + “System.out” + [OUTPUT]; (For Java)

(c) [SEP] + “input()” + [INPUT] + “\n” + “print” + [OUTPUT]; (For Python)

In experiments, we found that the programming-language-based prompts are more effective and

we will stick with it in the sequel of this chapter, if not specified. This is unsurprising since the

111

Table 5.1: Dataset statistics.

Dataset # of problems # of programs

POJ104 104 52K
C++1000 1000 500K
Python800 800 240K
Java250 250 75K

Method Java250 Python800 C++1000∗

Rule-based w/SPT(AROMA) [68] 19.00 19.00 -
GNN w/SPT(MISIM) [68] 64.00 65.00 -
CodeBERT+FineT [160] 81.47 83.23 44.94
UniXcoder+FineT [170] 84.35 85.00 49.75

CodeBERT+FuzzT (ours) 83.39 85.64 54.92
UniXcoder+FuzzT (ours) 86.74 86.01 60.21

Table 5.2: Clone detection results on CodeNet. Compared with normal fine-tuning (FineT), our fuzz
tuning (FuzzT) leads to significant improvements and new state-of-the-arts. C++1000∗ contains
16% of all problems, which is a roughly 6.3x downsample of the original dataset (see Table 5.8 for
results on other scales). Bold stats are better.

fuzzing test cases can stay in harmony with the source code with such a prompt.

Each prompted pair of input and output can be concatenated together before being further

concatenated with the source code. Pre-trained LLMs can be tuned on downstream datasets with

their inputs being modified to consider both the source code and fuzzing test cases. We call this

method fuzz tuning in the chapter.

5.4 Experimental results

In this section, we report experimental results to verify the effectiveness of our fuzz tuning.

We consider popular tasks (i.e., clone detection and code classification) and datasets involving

mainstream languages including C, C++, Java, and Python. Experiments were performed on

NVIDIA V100 GPUs using PyTorch 1.7.0 [176] implementations.

Datasets. Our experiments were performed mainly on two datasets, i.e., POJ104 [67] and

112

Table 5.3: Clone detection results on POJ104. Our fuzz tuning (FuzzT) leads to state-of-the-art
results. Bold stats are better.

Method MAP@R

CodeBERT+FineT [160] 84.29
GraphCodeBERT+FineT [171] 85.16
PLBART+FineT [177] 86.27
SYNCOBERT+FineT [178] 88.24
CodeT5+FineT [167] 88.65
ContraBERT+FineT [179] 90.46
UniXcoder+FineT [170] 90.52

CodeBERT+FuzzT (ours) 92.01
UniXcoder+FuzzT (ours) 93.40

CodeNet [68]. POJ104 has been incorporated into CodeXGlue [168] and is widely used. It consists

of 104 problems, each containing 500 C/C++ implementations. CodeNet is a recently proposed

large-scale dataset for AI for code applications, and it contains programs written in C++, Java, and

Python. In particular, it has four subsets for these languages: Java250, Python800, C++1000, and

C++1400. We chose Java250, Python800, and C++1000 for experiments, which cover all the three

languages in CodeNet. Java250 consists of 250 problems where each includes 300 Java programs,

and Python800 consists of 800 problems where each includes 300 Python programs. C++1000

consists of 1000 problems where each includes 500 C++ programs, and it is mainly used to verify

the effectiveness of our method over various training scales (i.e., our fuzz tuning will be performed

on various subsampling ratios of the set) in this chapter. See Table 5.1 for a summarization of key

information of all datasets.

Pre-trained LLMs. To make our experiments more comprehensive, our fuzz tuning (FuzzT)

was tested on two different LLMs: CodeBERT [160] and UniXcoder [170] that were pre-trained on

both natural languages and programming languages.

Obtaining test cases. We set K = 5 for the fuzzer. In POJ104, 90.3% of all fuzzed programs

quits before timeout, which justifies our decision. Taking advantage of our effort in Section 5.3.1,

all datasets have more than 95% of the programs compiled / validated, and all of them have more

113

Method Java250 Python800 C++1000†

GIN [68] 6.74% 5.83% -
CodeGraph+GCN [68] 5.90% 12.2% -
C-BERT+FineT [68] 2.60% 2.91% -
CodeBERT+FineT [160] 2.37% 2.19% 16.34%
UniXcoder+FineT [170] 2.02% 1.95% 14.57%

CodeBERT+FuzzT (ours) 1.77% 1.61% 7.63%
UniXcoder+FuzzT (ours) 1.56% 1.28% 6.18%

Table 5.4: Code classification results on CodeNet. Our fuzz tuning (FuzzT) leads to new state-
of-the-arts. C++1000† contains 40% of all problems, which is a 2.5x downsample of the original
dataset (see Table 5.9 for results on other data scales). Bold stats are better.

Table 5.5: Code classification results on POJ104. Our fuzz tuning (FuzzT) leads to new state-of-
the-arts. Bold stats are better.

Method Error Rate

TBCNN [67] 6.00%
ProGraML [180] 3.38%
OSCAR [172] 1.92%
CodeBERT+FineT [160] 1.61%
UniXcoder+FineT [170] 1.61%

CodeBERT+FuzzT (ours) 1.40%
UniXcoder+FuzzT (ours) 1.38%

than 90% of programs fuzzed.

5.4.1 Clone detection results

The clone detection task aims to measure the similarity between two code snippets or two

programs, which can help reduce bugs and prevent the loss of intellectual property.

Given a code snippet or the source code of a program as a query, models should detect semantically

similar implementations on the test set. POJ104 is adopted as the default dataset for code clone

detection on CodeXGlue, thus we did experiment on it first. We followed previous work [168] and

used a 64/16/24 split. That said, training was performed on 64 problems while validation and test

were performed on other 16 and 24 problems, respectively. Besides, We further experimented on

114

CodeNet which shows a larger data scale and variety. Java250, Python800, and C++1000 were

used, and we followed [68] which used a 50%/25%/25% split for training/validation/test for all

these concerned sets. C++1000 is mainly used to test our method over various training scales in

Section 5.4.4 with the full test set, and we will only discuss results on the smallest subsampling

ratio (which is roughly 6.3x, achieving by randomly selecting 16% of the problems for experiments)

in this subsection. We denoted such a subsampled set as C++1000∗. All models tested here were

tuned on a single V100, for no longer than 8 GPU hours.

Results were evaluated using the mean average precision@R (MAP@R) [181]. To train our

models, we followed previous work [168] and directly set the learning rate, batch size, and maximal

sequence length (for code tokens) to 2e-5, 8, and 400, respectively. We used the Adam optimizer [182]

to fine-tune each pre-trained model for 2 epochs. The best model on the validation set is selected to

test. We adopted the same hyper-parameters on both POJ104 and CodeNet.

Table 5.3 provides the results on POJ104. It is obvious that, when the proposed fuzz tuning

is applied, we obtain significant performance gains with both CodeBERT and UniXcoder. More

specifically, comparing with the normal fine-turning (FineT) method, we obtained +7.72% and

+2.88% absolute gains in MAP@R with CodeBERT and UniXcoder, respectively. Such practical

improvements clearly demonstrate the benefits of incorporating fuzzing test cases into program

understanding. In addition, fuzz tuning obtained models (i.e., CodeBERT+FuzzT and UniX-

coder+FuzzT) outperform all other state-of-the-art models significantly, leading to obvious empirical

superiority (i.e., +2.94%) comparing even with a very recent winning solution on the CodeXGLUE

benchmark 4 called ContraBERT.

Table 5.2 demonstrates the results on CodeNet. Apparently, on CodeNet, our fuzz tuning also

leads to significant performance gains on CodeBERT and UniXcoder, when compared with FineT.

4https://microsoft.github.io/CodeXGLUE/

115

https://microsoft.github.io/CodeXGLUE/

5.4.2 Code classification results

The concerned code classification task [67] requires that we assign the same label to programs

that were implemented to solve the same problem and achieve the same goal. The experiments

were also performed on POJ104 and CodeNet, where each unique problem is considered as a single

class. For POJ104, we adopted the same dataset split as in [172]’s work, and, for CodeNet, we kept

the official data split [68]. As previously mentioned, C++1000 in CodeNet is mainly used to test

our method over various training scales in Section 5.4.4, and we will only discuss results on the

smallest subsampling ratio (which is 2.5x, achieving by randomly selecting 40% of the programs

for experiments) here. We denoted such a subsampled tuning set as C++1000†. We followed the

hyper-parameter setting of CodeBERT in defect detection to set a learning rate of 2e-5, a training

batch size of 32, and a maximal sequence length (for code tokens) of 400. We tuned pre-trained

LLMs for 10 epochs and selected the models that performed the best on the validation set and

report their results on the test sets. Error rate of different methods are reported for comparison.

All our code classification models were were tuned on two V100, for no longer than 8 hours.

Table 5.5 and Table 5.4 summarize the results. Similarly, We observe that our fuzz tuning

bring significant improvement, comparing with the normal fine-tuning (FineT) method, it leads to

+0.21% and +0.23% absolute performance gain in reducing the error rate with CodeBERT and

UniXcoder, respectively, on POJ104. Fuzz tuning obtained models (i.e, CodeBERT+FuzzT and

UniXcoder+FuzzT) also outperform all previous models on this task on POJ104, leading to new

state-of-the-arts. The same conclusion can also be drawn on CodeNet, showing that the effectiveness

of our method hold on various programming languages.

The results on both clone detection and code classification demonstrate the effectiveness of our

fuzz tuning. Both tasks requires the model to understand not only the structure of the code, but

further the semantics, which is hard to acquire by simply looking at the code. Yet, provided with

inputs and outputs, the model can excel. We contribute this accuracy gain to program profiling

provided through fuzzing. These profiles include essential dynamic information that isn’t used by

any other models.

116

Table 5.6: Comparing using raw and decoded fuzzing test cases in tuning clone detection (CD) and
code classification (CC) models on POJ104. MAP@R and the error rate are evaluated for the two
tasks, respectively. Bold stats are better.

Decoding CD CC

CodeBERT+FineT 84.29 1.61%
CodeBERT+FuzzT

-in bytes 84.21 1.55%
-in UTF-8 string 92.01 1.40%

Table 5.7: Comparing different prompts for our fuzz tuning on the clone detection (CD) and code
classification (CC) tasks on POJ104. Bold stats are better.

Prompt Type CD CC

CodeBERT+FineT 84.29 1.61%
CodeBERT+FuzzT

-w/o prompt 89.36 1.51%
-NL prompt, type (a) 91.14 1.54%
-NL prompt, type (b) 91.59 1.58%
-PL prompt, for C/C++ 92.01 1.40%

5.4.3 Ablation study

In this subsection, we investigate impacting factors in our method: including the quality of test

cases, decoding, and prompting.

Random cases vs fuzzing cases. Given the success of fuzz tuning in clone detection and

code classification, the effectiveness of incorporating test cases can be recognized. One may expect

that random input generator can work to some extent, for providing test cases. Unfortunately, our

evaluation shows otherwise. We tried following this idea and crafted around 2000 inputs for each

program, yet none of them is valid and understandable to the program. This result is expected, since

the chance of a byte being a digit is only 10/256, there is less than 1% change of generating a 3-digit

number. Thus, it is reasonable to conclude that random input generator is prone to generating

invalid inputs, which lead to crash and hang of the program and cannot be used to profile it. By

contrast, our fuzzer provides behavior monitoring, all these ineffective inputs are filtered and not

reported in the first place.

117

Table 5.8: How different methods scale with the size of training/tuning dataset on the C++1000
clone detection task. Bold stats are better.

Method 4% (↓25x) 8% (↓12.5x) 16% (↓∼6.3x)

CodeBERT+FineT 26.92 36.79 44.94
CodeBERT+FuzzT 30.66 40.57 54.92
UniXcoder+FineT 34.71 43.06 49.75
UniXcoder+FuzzT 42.53 51.83 60.21

Decoding. As mentioned in Section 5.3.1, the fuzzer processes obtained inputs as a series of

bytes. We argue that reading test cases as bytes will cause severe performance degradation, since

LLMs are pre-trained using human-readable codes and natural languages, which explains why we

decode the obtained bytes before feeding them to LLMs. To verify the effectiveness of decoding, we

compare using human-readable UTF-8 strings and those raw bytes, both with cloze prompts, for

program understanding. The experiment was conducted on the POJ104 clone detection task and

the POJ104 code classification task. Table 5.6 shows the results. Apparently, human-readable test

cases perform much better than bytes-format ones on both two tasks.

Prompting. We then compare the performance of fuzz tuning with and without prompting.

Table 5.7 demonstrates the results. For prompting, two types of natural-language-based (NL-based)

prompts and the advocated programming-language-based (PL-based) prompt are tested. Apparently,

prompting is beneficial. As has been mentioned in Section 5.3, the PL-based prompt outperforms the

two types of NL-based prompts. It shows a +2.65% absolute gain on the POJ104 clone detection

task and a +0.11% absolute gain on code classification, compared with an implementation of fuzz

tuning without prompts. For clone detection, prompting is always effective, no matter it is NL-based

or PL-based, while, for code classification, the NL-based prompts fail.

5.4.4 Data scale

We then investigate whether our fuzz tuning is effective on various training data scales. To

achieve this, we subsampled from C++1000 in CodeNet to construct data sets of various scales to

perform fuzz tuning. The official split of C++1000 was considered to construct test sets [68], and

118

Table 5.9: How different methods scale with the size of training/tuning dataset on the C++1000
code classification task. Bold stats are better.

Method 10% (↓10x) 20% (↓5x) 40% (↓2.5x)

CodeBERT+FineT 34.38% 19.15% 16.34%
CodeBERT+FuzzT 30.90% 12.53% 7.63%
UniXcoder+FineT 21.66% 16.24% 14.57%
UniXcoder+FuzzT 14.48% 8.39% 6.18%

the same test sets were adopted for testing models obtained on all these training scales. For clone

detection, we sampled 4%, 8%, and 16% of the training and validation problems (i.e., subsampled

the training and validation set by 25x, 12.5x, and roughly 6.3x). For the code classification task, we

sampled 10%, 20% and 40% (i.e., subsampled by 10x, 5x, and 2.5x) of the training and validation

and keep the sample ratio between the two sets as 4:1. We adopted the same experimental settings

as in Section 5.4.1 and Section 5.4.2.

Results of different fuzz tuning scales are provided in Table 5.8 and Table 5.9. Apparently, our

fuzz tuning is effective on all these training scales. In particular, for clone detection, when only 4%

of the data is used for training, normal fine-tuning of CodeBERT and UniXcoder shows an MAP@R

of only 26.92 and 34.71, respectively, while, by introducing fuzz tuning, we can achieve 30.66 and

42.53, respectively, showing even more obvious superiority than with 16% of the data. It is also

possible for both fine-tuning and fuzz tuning to scale to more than 16% of the data, yet it requires

more than 10 epochs to reach their performance plateaus and weaken the necessity of pre-training,

thus we will leave it to future work for exploration. The same conclusion can be drawn for code

classification.

5.4.5 Case study

In this section, we extract some real cases in the concerned dataset (i.e., POJ104) to show how our

fuzz tuning works. Figure 5.1 reports the achieved per-program MAP@R and the performance gap

between FuzzT and FineT on the POJ104 test set, with CodeBERT. We see that FuzzT outperforms

FineT on 17 out of the 24 test problems.

119

Figure 5.1: Per-problem clone detection performance on the POJ104 test set, using Coder-
BERT+FineT or CoderBERT+FuzzT. The horizontal axis shows the ID of the POJ104 problems,
and the vertical axis is the MAP@R.

Figure 5.1 demonstrates that using the normal fine-tuning leads to very low MAP@R on Problem

103 of POJ104 5, yet our fuzz tuning more than doubled the score. Although POJ104 does not

describe each problem in detail, we did some investigations and conjecture that this particular

problem is asking how many identical consecutive letters are there in a given string, if letter case is

ignored. Our investigations show that many programmers all unifies the letter case in the string

first, but they disagree on whether to use uppercase letters or lowercase letter sand disagree on how

to achieve this, leading to different implementations including utilizing standard library calls (i.e.,

to convert each character “c” using “toupper(c)”), calculating offset by casting (i.e., implementing

something like c-’A’+’a’), and static mapping (i.e., using “caseMap[c]”). This will pose challenges to

models for understanding their functionality, if fine-tuning on source code only. One may expect this

particular problem to be addressed by pre-training on relevant data or by taking more advantage of

static information of programs. This is possible, since for other pre-trained LLMs, Problem 103

5Note that Problem 1-80 are training and validation problems, and Problem 81-104 are test problems.

120

Figure 5.2: Per-problem clone detection performance on the POJ104 test set, using UniXcoder+FineT
or UniXcoder+FuzzT. The horizontal axis shows the ID of the POJ104 problems, and the vertical
axis is the MAP@R.

may not be the most challenging one. However, other issues similarly exist, e.g., UniXcoder+FineT

shows its worst performance on Problem 88, as can be seen in Figure 5.2.

By contrast, since the programs achieve the same goal, the test cases can help convey that

information to the model. This further demonstrates our idea and explains the effectiveness of our

fuzz tuning.

5.5 Limitations

Fuzzers are designed to reach deep and complex control flow in large software. Many programs

for current AI for code datasets do not have complex control flow. As a result, AFL++ can quickly

cover all program branches before generating many inputs for us to feed to the model. We plan to

try data-flow coverage as a more accurate coverage metric in the future.

AFL++ uses branch coverage to track fuzzing progress. Although it works well on C/C++

121

programs, it may be ineffective on languages with exceptions, which are implicit control flow. For

example, AFL++ cannot distinguish different exceptions thrown in the same block, which sometimes

leads to low coverage in Python programs. To overcome this issue, one possible way is to change

from branch coverage to line coverage.

Although our current implementation requires a fuzzer, our approach can also work on tasks

with only functions or code snippets as long as we can acquire adequate input/output pairs of the

functions or code snippets, which may have some engineering challenges but is not infeasible. For

example, in recent years, the software engineering community has proposed various ways to fuzz

bare functions [86, 183].

122

Chapter 6

Code representation pre-training with

complements from fuzzer generated

test cases

6.1 Introduction

Code representation learning is drawing growing attention across the community of artificial

intelligence (AI) and software engineering (SE) [114, 184, 185]. It aims to abstract the structure

and the underlying functionality of the source code and embed such semantics into a latent

representational space via unsupervised pre-training. By providing general understanding of

programs, it is a fundamental task to achieve code intelligence, which enables automated code

analysis and processing by fine-tuning with budgeted computation resources or limited human

annotations [168, 184, 186]. Further, as pre-trained models of code are better structured commonsense

reasoners than that of natural language [187], code understanding helps with learning and reasoning

for NLP related tasks.

The pre-training recipes [164, 165] for natural languages have been shown effective in code

representation learning [160, 188]. However, they neglect that the structure of the code (exhibited by

123

a Conventional paradigm
learns to understand source
code from a large scale
of unlabeled code snippets,
then applied the pre-trained
model on downstream tasks
for supervised fine-tuning by
task-specific labels.

b Auto-generated test cases have been
shown beneficial to code understand-
ing on downstream tasks [116]. How-
ever, assuming the availability of test
cases on every downstream task re-
stricts their applicability by incuring
additional efforts and times for pro-
gram executions.

c We propose FuzzPretrain to utilize
dynamic program information to aid in
a more comprehensive understanding
of code during pre-training. Program
executions are not conducted for code
on downstream tasks, hence, there is
no compromise on flexibility.

Figure 6.1: An illustration of different pre-training and fine-tuning paradigms for code understanding.

how its elements, e.g ., variables and statements, are organized) must comply with precise and rigorous

rules. These rules, often referred to as code syntax, are defined by language specification to ensure

successful compilation and execution. This inspires recent works to leverage static analysis [189]

to parse and present the structure of code less ambiguously by its syntactic representations, e.g .

abstract syntax tree (AST) [169, 170] and control flow graph (CFG) [190]. However, since learning

from code as it is a type of static data, existing methods overlook the underlying executable programs.

Whilst programs are built with specific purposes of performing a set of behaviors indicated by

their functionality, it is challenging to derive such semantics from code structure [185]. This is

because the same purposes can be implemented by different algorithms in different ways, while the

behaviors of programs are susceptible to subtle discrepancies in code. As depicted in Figure 6.2a and

Figure 6.2b, the recursive and iterative insertion sort are notably different regarding their structures,

even though they share the same functionality. Meanwhile, the subtle change in Figure 6.2c that

is hard to be noticed can lead to distinct execution results. How to learn discriminative feature

124

a Recursive insertion sort. b Iterative insertion sort. c Buggy insertion sort.

Figure 6.2: An illustration of implementation variations of the same functional purposes. Figure 6.2a
is dramatically different from its Figure 6.2b iterative counterpart regarding their structures, even
though their functional equivalence is explicitly demonstrated by the consistent behaviors. On the
other hand, the subtle change in Figure 6.2c is barely observable in comparisons to Figure 6.2b, but
can lead to distinct execution results.

representations of code that embed not only the static information from its structure but also the

dynamic information about its functionality remains an unsolved problem.

In this work, we aim to embed the functional purposes of code into its feature representations, to

address the aforementioned limitations of existing works. The key idea is to abstract the behaviors

of programs from their input-output relationships (represented by test cases) and enforce the model

to infer such information from source code that are readily available in downstream tasks. To

achieve this, we take advantage of fuzzing [143] to produce test cases that cover the logic paths of

code as comprehensive as possible. Moreover, we propose a novel method called FuzzPretrain for

joint static and dynamic information modeling. Particularly, in addition to exploring code structure

by masked language modeling [165], it formulates a dynamic information matching (DIM) pretext

task to tell test cases of different programs apart according to their correspondence to code. By

doing so, the model learns holistic feature representations of code and its test cases, encoding both

the structure and functionality. FuzzPretrain also involves a self-distillation objective to accomplish

a dynamic information distillation (DID) objective. Thereby, the dynamic information is not only

properly modelled but distilled from the holistic representations to code features, so to benefit in

practice where the test cases are not required.

We make three contributions in this chapter: (1) We propose to leverage the test cases of

125

programs obtained with the help of fuzzing as explicit indications of functionality to complement

their code and syntactic representations. To the best of our knowledge, this is the first attempt to

unveil the benefits of fuzzing to code representation pre-training. (2) We introduce a novel code

pre-training method named FuzzPretrain. It simultaneously models the structure and functionality

of code while distilling from such holistic information to represent code in its feature space. It is ready

to benefit downstream tasks without extra cost on test cases generations. (3) Extensive experiments

on four code understanding downstream tasks demonstrate the effectiveness of FuzzPretrain on

complementing both source code and its syntactic representations, e.g . AST, by dynamic program

information for learning discriminative feature representations.

6.2 Related work

Code representation learning. Large language models [163–165] have achieved unprecedented

breakthrough in natural language processing in recent years [165, 188, 191]. Such successes of LLMs

have been consistently transferred to code representation learning and advance code intelligence.

Early works in the field devote to building large-scale code corpus [68, 184] to be trained simply

as plain text at the natural language conventions [160, 168, 192]. However, the rigorous syntax of

programming languages exhibit additional information about code semantics [171, 193]. In this case,

recent efforts turn to code-specific designs, e.g ., pre-training by identifier detection and infilling [167]

or parsing the structure of code by its syntax [170, 190]. Despite being effective, existing approaches

consider code as a type of static data and ignore the fact that it is corresponding to an executable

program with unique functionality exhibited by its runtime behaviors. Such dynamic information of

programs is a critical indicator to tell them apart from others with different purposes but challenging

to be inferred from code structures.

Static and dynamic code analysis. Static and dynamic analysis are two common strategies

in SE for ensuring the security of software products, and the former has been widely adopted in code

representation learning for constructing syntactic representations [170, 171]. For early detection

126

of potential vulnerabilities, static analysis [189] is usually carried out by parsing the structure

information of the code for inspections, while dynamic analysis [194] detects runtime errors during

program executions. Fuzz testing [143], or fuzzing, is a popular dynamic analysis technique, which

aims to generate a set of inputs that achieve high code coverage then feed those inputs to programs

for execution to observe any unexpected outcome. Overall, the two types of code analysis strategies

are usually adopted together as mutual complements to ensure the soundness and completeness of

testing.

Large language models meet software testing. There are recent efforts on automated bugs

mining by LLMs [195, 196], which hold an opposite objective to ours on benefiting software testing

by code generation. On the other hand, harnessing program execution traces for comprehensive code

representation learning has been widely studied both before and after the emergence of LLMs [185,

197–200]. Considering that fuzzing is a language-agnostic process, test cases are much easier to

collect than execution traces [201] and this is crucial for constructing code understanding models

with multilingual support.

Whilst [201, 202] explore the benefits of test cases for program synthesis rather than code

semantically discrimination that investigated in our work, [116] share the same insight with us

to leverage auto-generated test cases to benefit discriminative code understanding. However, it is

noteworthy that although both [116] and us adopt a pre-training followed by a fine-tuning scheme

(Figure 6.1a), there are key differences in our methodologies with a different focus on the two

phases. [116] assumes the availability of test cases on every downstream tasks (Figure 6.1b), however,

collecting additional information about structure or functionality of code requires sufficient expertise

in SE and this undoubtedly hampers model’s applicability and flexibility. By contrast, we aim to

explore program executions only in pre-training to preserve the benefits of dynamic information to

code understanding in practice where test cases are not mandatory (Figure 6.1c). We demonstrate

in our experiments that exploring test cases only in pre-training is neither straightforward nor

trivial, considering the distribution discrepancy between test cases and source code.

127

(b) Static Info Modeling(a) Model architecture

[Prefix] Code <SEP> <EOS>Test cases

···

···

···

···

Attention+FFAttention+FF

···

def fibonacci(<mask>):
 n1, n2, arr = 0,<mask>[]
 for _ in range(n):
 arr.<mask>(n1)
 n1, n2 = n2, n1<mask>n2
 return arr

def fibonacci(n):
 n1, n2, arr = 0, 1, []
 for _ in range(n):
 arr.append(n1)
 n1, n2 = n2, n1 + n2
 return arr

def fibonacci(n):

 return arr

Input: 1; Output: [0]
Input: 3; Output: [0,1,1]

MLM
Distill

Input: 1; Output: [0]
Input: 3; Output: [0,1,1]

Input: 1; Output: 2
Input: 2; Output: 4

Match

(c) Dynamic Info Matching

(d) Dynamic Info Distillation

Test cases Only required when pre-trainingCodeSpecial tokens

Figure 6.3: An overview of FuzzPretrain. (a) The input sequences are composed of both the code
and test cases which are concatenated then encoded by a transformer. FuzzPretrain learns code
feature representations by (b) static information modeling (SIM) through masked tokens predictions,
(c) dynamic information matching (DIM) to match test cases to code, and (d) dynamic information
distillation (DID) to summarize the holistic information about code structure and functionality.

6.3 Code representation pre-training

Given a piece of source code S and a sequence encoder fθ parameterized by θ, our objective is

to explore the underlying semantics of the code and encode them in a latent representational space

Xs = fθ(S) = {xs1,xs2, · · · ,xs|S|} ∈ Rk×|S| in k-dimensions. This is to provide general understanding

of code, which enables efficient fine-tuning on downstream tasks.

In this chapter, we propose to explore the dynamic information obtained during program

executions to complement the static information learned from code structure, such that we can

embed both in feature representations of code. To that end, we formulate FuzzPretrain whose

overview is depicted in Figure 6.3. We first collect a large-scale code corpus based on CodeNet [68]

and pair each code snippet with multiple test cases synthesized with the assistance of a customized

fuzzer. We denote the test cases corresponding to S as D and concatenate it with the code as its

joint static and dynamic representation H = S ⊕D. By feeding S (or H) into fθ, the features Xs

(or Xh) are trained by masked tokens predictions (Figure 6.3 (b)) and test cases to code matching

(Figure 6.3 (c)). Besides, FuzzPretrain distills from the holistic features Xh of code and test cases

128

Figure 6.4: The fuzzing process collects test cases that embed dynamic behavior from program
datasets.

and embed it into Xs, in order to adapt to downstream tasks where test cases D are not available.

6.3.1 Fuzzing code corpus

Fuzzing is a software verification technique that plays an important role in identifying vulnera-

bilities and enhancing software reliability. A fuzzer verifies the software by repeatedly generating

inputs for the software to execute. For each execution, the fuzzer monitors the internal state of the

software to determine if the input triggers new behavior. These inputs will be stored for future input

generation. Input generation and behavior monitoring together allow the fuzzer to effectively focus

on exploring new program behaviors. We believe these inputs contain runtime information that

cannot be easily found using static analysis. Therefore, using those test cases, i.e., program inputs

and corresponding outputs, should supply extra dynamic information to the language model. We

employ methods outlined in FuzzTuning [116] to carry out preprocessing, compilation, and fuzzing

of the code corpus. For C++ programs, we applied the same preprocessing as in FuzzTuning and

used AFL++’s [53] to perform instrumentation and compilation for fuzzing. For Java programs, we

compiled them to JVM bytecode using openjdk-18 1 and instrument the bytecode using Kelinci

1https://jdk.java.net/18/

129

https://jdk.java.net/18/

[174]. For Python, we modified the interpreter to report the program behaviors during execution

via py-afl-fuzz 2. We fuzz the program using AFL++ [53] and extract the inputs. Finally, we

re-run the program and record the output of the execution. Figure 6.4 shows our fuzzing process for

obtaining dynamic information from program datasets. More details about fuzzing existing code

corpus can be found in [116].

6.3.2 Static and dynamic information modeling

To investigate the versatility of learning with dynamic program information, we build the

FuzzPretrain upon two representative models trained on either code or AST, namely CodeBERT [160]

and UniXcoder [170], respectively. We want to emphasize that FuzzPretrain is a generic method that

can be integrated into arbitrary static-based models more than the two studied here. FuzzPretrain

is ready to benefit different representations of code in a plug-in manner once they are serialized as

a sequence of tokens. For clarity, we introduce our designs in terms of source code inputs in this

section. The designs for other models like UniXcoder are similar.

Input/Output representations. As illustrated in Figure 6.3 (a), we follow [160] to concatenate

different parts of inputs together with an <SEP> token and put an end-of-sentence <EOS> token to

the end of the concatenation. CodeBERT adopts a begin-of-sentence token <BOS> as the prefix for

the input sequences while UniXcoder takes <BOS><ENCODER-ONLY><SEP> [170]. For the test cases,

we follow [116] to decode them from a series of bytes to Unicode strings and then prompt them in

a form of natural language to be “Input is: INPUT; Output is: OUTPUT”. This is inspired by how

programming online judgement tools present problem descriptions along with its example test cases

to human. We concatenate multiple test cases of a program with the <SEP> token to form D. We

learn from multiple test cases at a time because a single test case is likely to invoke only a part of a

program, and only with sufficient number of test cases can we profile the behaviors of the program

comprehensively.

We follow the common recipe of natural language processing to split the concatenation of prefix,

2https://pypi.org/project/python-afl/

130

https://pypi.org/project/python-afl/

code, test cases, and suffix as WordPiece [203]. By feeding the token sequence S into the encoder

fθ, CodeBERT adopts the feature of the <BOS> token as its sequence-level representation xs while

UniXcoder applies average pooling on all the tokens to obtain xs.

Static information modeling. To learn from the structure of code S according to the depen-

dencies among tokens, we adopt the conventional masked language modeling (MLM) which has

been shown simple yet effective on context understanding [165]. We follow the common practices to

randomly choose 15% of the tokens in S and replace 80% of the selections with a special <MASK>

token, 10% with random tokens and the remaining are left unchanged. Formally, given the code

S, a subset M ⊂ S of it is masked out and leaving a sequence S̃ with replaced tokens. Then, the

learning objective is to predict M given the context in S̃:

LSIM(S) = −
∑
m∈M

log p(m|X̃s), (6.1)

where m is one of the masked token and X̃s is the features of S̃ produced by fθ. The term p(m|X̃s)

denotes the probability that m is correctly reconstructed given the incomplete context X̃s.

Dynamic information modeling. To learn from the dynamic program information obtained

during executions, we propose to match the input-output mappings derived from test cases with the

functionality inferred from the code. Given a code sequence S, we randomly sample an unmatched

test cases list D− and decide whether to concatenate S with its own test cases D or the negative

one D− to form an input sequence H at each training step. We then pair H with a binary label

y ∈ {0, 1} indicating whether the mapping relationships embedded in it are consistent. After that,

H is encoded by fθ to compute its sequence-level representation xh, which is further fed into an

additional linear projection layer FC followed by a binary classifier fφ:

LDIM(S,D) = BCE(y, fφ(FC(xh))). (6.2)

In Equation 6.2, the feature xh of H is linearly transformed the fed into the classifier fφ to predict

131

how likely the code and test cases in H are matched. Our DIM objective is formulated as a binary

cross-entropy loss (BCE) to supervised the predictions from fφ by the binary label y.

With the supervision of LDIM, the model is able to derive dynamic information about the

execution behaviors of programs and code, given their test cases. However, test cases are not

available in many downstream tasks in practice. Therefore, we further devise a dynamic information

distillation (DID) objective to simultaneously learn the holistic information from both code and test

cases H = S⊕D and enforce encoding such information in the features of code S. Inspired by [204],

we formulate DID in the contrastive learning paradigm to identify the holistic representation H from

a list of random samples H− according to the corresponding source code S. To be concrete, we follow

[205] to maintain a stale copy fθ̂ of the backbone encoder, which shares the identical architecture

with fθ and is updated accordingly by exponential moving average (EMA) [206]. We then compute

the sequence-level feature representation xs of S and x̂h of H by fθ and fθ̂, respectively. Given the

holistic features X− of a set of random samples H− computed by fθ̂, which are likely with different

semantics from H, we train fθ to optimize:

LDID(S, S ⊕D) = − log
g(x̂h,xs)

g(x̂h,xs) +
∑

x−∈X− g(x−,xs)
. (6.3)

The function g(x, y) = exp(cos(x, y)/τ) in Equation 6.3 computes the exponential cosine similarity

between two vectors where τ is a temperature hyperparameter controlling the concentration degree

of the similarity distribution. In contrast to LDIM, we always compute the holistic feature x̂h of

code and its own (matching) test cases to avoid the distractions from inconsistent structure and

functionality.

6.3.3 Model training and inference

The proposed FuzzPretrain model is optimized alternatively according to static information

modeling LSIM (Equation 6.1), dynamic information matching LDIM (Equation 6.2) and dynamic

information distillation LDID (Equation 6.3) on each mini-batch of data following [170, 207]. At

132

each training step, the stale encoder fθ̂ is updated according to fθ by EMA: θ̂ = λθ̂ + (1− λ)θ with

a momentum factor λ, and the holistic representations x̂h obtained from code and its corresponding

test cases will be fed into the queue X− with the oldest ones inside being removed in a first-in-first-

out manner. After pre-training, we keep only the transformer encoder fθ which is able to yield

discriminative feature representations of code Xs = fθ(S) when only it is available but not the test

cases D at inference or on downstream tasks.

6.4 Experiments

Datasets. [68] proposed a large-scale dataset CodeNet, consisting of over 14 million code samples

and about 500 million lines of code, which is intended for training and evaluating code models.

We adopted the C++1000, C++1400, Python800, Java250 benchmark datasets of CodeNet3 to be

fuzzed as the training data of FuzzPretrain. We then evaluated FuzzPretrain extensively on four

code understanding benchmark datasets of CodeXGLUE [168]4: (1) another subset of CodeNet [68]

collected by [170] consisting of 50K functions implemented in Python, Java, and Ruby for solving

one of 4, 053 online coding problems; (2) POJ-104 [67] which contains 104 C/C++ coding problems

with 500 code submissions to each; (3) Devign [208] which is composed of vulnerable functions

from four large and popular C-language open-source projects with manual labels; (4) CosQA which

contains 20,604 pairs of code and real-world web queries [209] with annotations from human experts

indicating whether the questions raised by the queries can be properly addressed by the code. All

the data used for fine-tuning and testing are carefully aligned with previous studies [160, 170].

Evaluation protocols. We first investigated the discrimination ability of the learned code

representations by code-to-code search (abbreviated as code search in the chapter) on the subset of

CodeNet collected by [170]. In this task, submissions of the same coding problems are assumed to

share the same semantics regardless of their implementations. The feature distances between code

pairs were adopted to measure their semantic similarity and the mean average precision (mAP) was

3Licensed under the Apache License, Version 2.0
4Licensed under Creative Commons Zero v1.0 Universal

133

reported to quantify the quality of the retrieval results. We then studied the effects of FuzzPretrain

to several downstream tasks in unseen domains, including clone detection, defect detection and

text-to-code search (abbreviated as text search). The objective of clone detection is similar to that of

code search but with fine-tuning in target domains. We followed the same protocol of [160]’s work

to test on POJ-104 and use mAP@R to assess the results, with only the top-R (R = 499) most

similar samples were considered in retrieval. In the task of text search, which requires retrieving code

snippets according to textual queries, the mean reciprocal rank (MRR) is adopted as the metric

following [170]’s work. This evaluation was conducted on CosQA. Defect detection was carried out

on Devign and the accuracy (Acc) of binary classification is adopted with a fixed threshold of 0.5.

Implementation details. Both our base models, i.e. CodeBERT [160] and UniXcoder [170],

followed [164] to take a 12-layers transformer with 125M learnable parameters for sequence encoding.

We followed their designs to set the batch size to 2048 and 1024 while the maximum sequence

length to 512 and 1024 for CodeBERT and UniXcoder, respectively. In inputs, 400 and 800 tokens

are reserved for code and AST, respectively, and the rest are for test cases. The test cases of each

program were concatenated with the code or the AST by the separation token until reaching the

length limits, while the rest was dropped. The FuzzPretrain model was updated by the Adam

optimizer [182] during training with a learning rate of 2e−5 for 10K steps. For dynamic information

distillation LDID (Equation 6.3), we followed [205] to set the momentum coefficient m = 0.999, the

temperature τ = 0.07, and the number of random samples |H−| = 216. The overall pre-training

process took round 12/20 hours on 8 Nvidia V100 GPUs for training with code and AST, respectively.

6.4.1 Code representation learning

Learning with modality discrepancy. To study whether the inconsistency between pre-

training and deployment will refrain FuzzPretrain from benefiting general code understanding,

we adopted the code search task to identify equivalent functions without fine-tuning the code

representations or learning additional classifiers. Considering that FuzzPretrain was trained on

different data from its base models (CodeBERT and UniXcoder), to derive reliable conclusions

134

Table 6.1: Evaluations on code search. Results of our base models (CodeBERT and UniXcoder)
are from [170]’s paper, which are marked in grey because of different training data. The first and
second rows in the header indicate the programming language of the query and the target code
snippets, respectively. The column “DYN” indicates whether a model was trained using the test
cases or not. mAP scores (%) are reported.

Ruby Python Java
Model DYN

Ruby Python Java Ruby Python Java Ruby Python Java
Overall

CodeBERT 7 13.55 3.18 0.71 3.12 14.39 0.96 0.55 0.42 7.62 4.94
CodeBERT-MLM 7 22.45 5.67 1.95 6.74 25.70 5.01 3.61 5.84 13.45 10.05
CodeBERT-MLM+RTD 7 13.22 1.00 0.10 1.24 14.35 1.20 0.20 0.18 6.34 4.20
FuzzCodeBERT 3 27.92 14.88 7.92 15.39 30.47 10.26 9.94 10.65 17.75 16.13
FuzzCodeBERT w/o DIM 3 24.05 14.08 6.96 16.32 27.51 9.54 8.66 9.76 13.49 14.49
FuzzCodeBERT w/o DID 3 18.21 2.92 0.72 2.88 25.67 3.13 0.80 1.98 17.98 8.25

UniXcoder 7 29.05 26.36 15.16 23.96 30.15 15.07 13.61 14.53 16.12 20.45
UniXcoder-MLM 7 20.49 13.54 3.25 10.40 19.49 3.69 4.13 5.14 12.29 10.27
UniXcoder-MLM+Contrast 7 30.83 25.73 16.46 25.44 30.50 16.80 16.01 17.26 18.86 21.99
FuzzUniXcoder 3 42.84 29.83 17.70 33.73 47.77 21.94 20.83 23.52 33.78 30.22
FuzzUniXcoder w/o DIM 3 22.50 13.52 6.66 15.31 22.99 6.81 7.54 6.84 12.94 12.79
FuzzUniXcoder w/o DID 3 12.92 5.10 1.36 5.56 14.86 0.87 0.96 0.50 6.81 5.44

from fair comparisons, we built several fairer baselines. The baselines were trained under the

exactly same settings as FuzzPretrain but learning from only code or AST without test cases. We

presented CodeBERT/UniXcoder-MLM to train by MLM solely as the baselines following [179],

and CodeBERT-MLM+RTD/UniXcoder-MLM+Contrast to adopt all the losses dedicated to

code understanding in their papers for comprehensive exploration on static information modeling.

Correspondingly, we denote the two variants of FuzzPretrain built upon CodeBERT and UniXcoder

as FuzzCodeBERT and FuzzUniXcoder, respectively.

As shown in Table 6.1, the superior performances attained by FuzzCodeBERT and FuzzUniXcoder

over their static baselines demonstrate that FuzzPretrain is able to yield discriminative code

representations that are beneficial to downstream tasks where test cases are not given. We attribute

the performance superiority obtained by FuzzPretrain to the designs of not only modeling the

dynamic information jointly from code and test cases but also distilling such knowledge to be

encoded into the feature representations of code. This is evident by the degradation of FuzzPretrain

when training without either of the proposed components. Such performance drops further verify

the effectiveness of our delicate designs and demonstrate that it is non-trivial to benefit code

135

(a) A case study

def iroha():
 a, b, c = input().split()
 shead = a[0].upper()
 sshead = b[0].upper()
 ssshead = c[0].upper()
 print(shead + sshead + ssshead)
if __name__ == "__main__":
 iroha()

def iroha():
 a, b, c = input().split()
 s = a[len(a)-1]
 sshead = b[0]
 sstail = b[len(b)-1]
 sss = c[0]
 if s == sshead and sstail == sss:
 print("YES")
 else:
 print("NO")
if __name__ == "__main__":
 iroha()

a,b,c = input().split()
if a[len(a)-1] == b[0] and b[len(b)-1] == c[0]:
 print("YES")
else:
 print("NO")

Reference NN from UniXcoder

NN from FuzzPretrain

False positive

Anchor

True positive

(b) Features from UniXcoder

(c) Features from FuzzPretrain

Figure 6.5: Qualitative studies for code search. The functional equivalence of code snippets are
marked by their shared colors. Only a few classes are highlighted with bright colors to be visually
distinguishable.

representation learning by dynamic program information. It is also noteworthy that applying either

DIM or DID solely benefits CodeBERT but not UniXcoder. Our hypothesis is that there is a

trade-off between the new knowledge acquired and the prior knowledge forgotten during continual

learning. It is always easier for the new knowledge to outweigh the prior for a less optimal base

model.

Qualitative studies. For more intuitive understanding of FuzzPretrain’s advantages on code

search, we show an example in Figure 6.5 (a) to exhibit the nearest neighbors of a reference code

snippet decided by either UniXcoder or its FuzzPretrain counterpart. It is not surprising that

the code with similar structure (e.g . variable or function names and the main entry point) can

be easily confused with each other by the static-based method even though the false positive

example is with different purposes from the reference. On the other hand, such functionality-wise

relationships between code snippets are exposed by their execution behaviors, hence, are well

captured by FuzzPretrain. To provide a global picture of the learned code features, we adopted

t-SNE [210] to visualize the python code for 50 randomly selected problems (classes), which were

136

Table 6.2: Evaluations of code representations on inductive code search.

c1000 c1400 py800 java250 Overall

CodeBERT 13.95 13.22 31.23 26.72 21.28
CodeBERT+MLM 26.34 24.08 48.71 34.94 33.52
FuzzCodeBERT 69.98 68.65 78.13 69.98 71.69

UniXcoder 17.57 15.89 55.28 45.49 33.56
UniXcoder+MLM 32.84 30.28 46.79 46.90 39.20
FuzzUniXcoder 71.72 68.40 80.27 77.43 74.45

encoded by the static-based model or our FuzzPretrain in Figure 6.5 (b) and (c), respectively.

The functional equivalence of code are highlighted by the same colors, with only a few random

problems are marked with bright colors to avoid chaos. As depicted, the features of functionally

equivalent code snippets yielded by UniXcoder can sometimes spread over the feature space sparsely

due to their implementation variations. However, our FuzzPretrain forms more compact clusters

which are consistent with the underlying semantics of code. These visualizations help explain the

potential benefits of jointly learning from the static and dynamic information to comprehensive

code understanding.

Inductive zero-shot code search. We adopted the testing split provided by UniXcoder [170]

for evaluation of code search, it is likely to overlap with our training data in CodeNet by sharing the

coding problems. Therefore, we consider the searching of those overlapping samples as transductive

inference problems. This is also a practical scenario given that the training data of the latest code

models covers a large proportion of open-source projects in Github and is likely to involve the

code-of-interests to users. We have also evaluated in an inductive setup where the query and the

candidate code snippets are submissions to 50 coding problems of each programming language that

have never been seen during pre-training. As shown in Table 6.2, the superiority of our FuzzPretrain

over both the base models and our baselines still holds. That is, these results show that our model

is effective not only in the transductive inference setup for code search, but also in an inductive

setup where no training/test overlap exist.

137

Table 6.3: Evaluations in novel data domains. Results of the base models are marked in grey as
training on different data from ours. Results marked with ∗ are reproduced using the checkpoints
from authors.

Model DYN Clone Defect Text

CodeBERT 7 82.7 62.1 65.7
CodeBERT-MLM 7 88.7 63.5 67.4
CodeBERT-MLM+RTD 7 84.7 62.0 66.3
FuzzCodeBERT 3 93.0 64.1 69.1

UniXcoder 7 90.5 64.5∗ 70.1
UniXcoder-MLM 7 91.2 63.8 69.8
UniXcoder-MLM+Contrast 7 91.1 65.2 69.7
FuzzUniXcoder 3 92.2 64.5 70.7

Code understanding in novel domains. We investigated whether our learned code features

are transferable and beneficial to downstream tasks in unseen data domains [168] in Table 6.3. We

see non-negligible performance advantages obtained by our FuzzPretrain over these static-based

methods which learn from only the code structures. Although introducing contrastive learning by

feeding the same code inputs to the encoder twice [211] (i.e., “Contrast” in Table 6.3) is helpful to

UniXcoder-MLM on defect detection, it leads to subtle performance degradation on the other two

tasks. In fact, FuzzPretrain can obtain a similar improvement (from 64.5% to 65.6%) by integrating

such a code-to-code contrast as well. This implies the potential of our dynamic information modeling

on more advanced base models.

Comparisons with more state-of-the-arts. Although FuzzPretrain adopted different pre-

training data from the popular bi-modal dataset [184] to enable compilation and fuzzing, we

compared it with the state-of-the-art models regardless to demonstrate its competitiveness on code

understanding. Specifically, we compared FuzzPretrain with three types of methods. RoBERTa [164]

learns at the natural language conventions. DISCO [212], CodeRetriever [213], and ContraBERT [179]

benefit from contrastive learning as in our solution. GraphCodeBERT [171], CodeExecutor [185]

and TRACED [200] explore program functionality from DFG or execution traces. Note that, we

evaluated CodeExecutor without re-ranking by execution traces to be more practical.

138

Table 6.4: Comparisons with the state-of-the-arts that adopt the same backbone network as ours
with 125M parameters. Results marked with ∗ are reproduced using the checkpoints from authors.

Model (Year) Clone Defect Text

RoBERTa (2019) 76.7 61.0 60.3
GraphCodeBERT (2020) 85.2 62.9 68.4
DISCO (2022) 82.8 63.8 -
CodeRetriever (2022) 88.8 - 69.7
ContraBERT (2023) 90.5 64.2 66.7∗

CodeExecutor (2023) 70.5∗ 59.0∗ 13.1∗

TRACED (2024) 91.2 65.9 -
FuzzCodeBERT 93.0 64.1 69.1
FuzzUniXcoder 92.2 64.5 70.7

As shown in Table 6.4, the performance advantages of FuzzPretrain over GraphCodeBERT

implies that mining the functionality of programs from the intricate dependencies among variables

is more challenging than modeling from the concrete input-output behavior represented by test

cases. Besides, TRACED is good at code understanding in finer granularity (e.g . defect detection)

by learning from the detailed internal status of programs in execution traces while our FuzzPretrain

is superior on global understanding of code snippets (e.g . clone detection) as the test cases

we adopted is invariant to implementation variations that are agnostic to functionality. Whilst

the methods that are based on contrastive learning of source code yielded promising results,

FuzzPretrain’s competitiveness demonstrate the effectiveness of learning with complements from

dynamic information. More importantly, FuzzPretrain can be integrated into those methods to

further benefit from more advanced modeling of static information.

Comparisons to commercial LLMs. Commercial LLMs have recently shown remarkable

zero-shot capability to various code understanding and generation downstream tasks. Whilst our

proposed ideas are generic and integrable into any static-based models regardless of their scale, we

further conducted a preliminary comparison to the ”text-embedding-ada-002” model from OpenAI

to demonstrate our specialization on the task of semantic code search. To be concrete, we followed

OpenAI’s instruction of getting code embeddings5 to evaluate their model for python-to-python

5https://platform.openai.com/docs/guides/embeddings/use-cases

139

Figure 6.6: Effects of different components for dynamic information modeling. We constructed three
variants of FuzzPretrain with either DIM or DID or both being removed to be compared.

Figure 6.7: Dynamic information modeling by MLM. The “Mask” variant replaces DIM by MLM
for both code and test cases while “Match” is the design we adopted and “Both” is the combination
of the two.

code search in CodeNet [68]. The OpenAI’s model yielded 35.91% mAP while ours are 30.47%

and 47.77% when adopting either CodeBERT or UniXcoder as the base model, respectively. Given

that CodeNet carefully removed near-duplicated submissions to the same coding problems with

over-high syntactic similarity, such initial evaluation results indicate that semantic code search

is fundamentally challenging and the test cases we adopted are strong indicators of program’s

functionality, which ensure our competitiveness to the larger and more complex models.

6.4.2 Ablation study

Effects of dynamic information modeling. To study the independent contributions of DIM

(Equation 6.2) and DID (Equation 6.3) to dynamic information modeling, we constructed and

140

Figure 6.8: Positive pairs in DID. The “Execution” variant constructs the positive pairs in DID
using code T s and its test cases T d, and our “Holistic” design contrasts code to its concatenation
with test cases T s ⊕ T d.

compared three variants of FuzzPretrain by removing either or both of them. As shown in Figure 6.6,

the variant of FuzzPretrain trained with only DID (w/o DIM) often out-performed the baselines

(MLM) trained with neither DIM nor DID. This indicates that the test cases concatenated after the

source code or its syntactic representations potentially play the roles of data augmentation to perturb

the distributions of code by supplementing the dynamic information from test cases. Although

adopting either DIM or DID is slightly better than FuzzPretrain occasionally, the consistent

improvements we brought to different base models on both the retrieval (clone detection) and

classification (defect detection) tasks demonstrate the generality of combining the two designs, which

is critical for a pre-training method.

Dynamic information modeling using MLM. To justify our DIM’s effectiveness on dynamic

modelling over the conventional MLM, we replace or combine it with MLM on both code and test

cases to form two variants of FuzzPretrain as “Mask” and “Both” in Figure 6.7, respectively. The

performance superiority of “Match” to the two variants indicates that applying MLM in test cases is

sub-optimal. From our training logs, we observe that the encoder could accurately reconstruct the

masked tokens in test cases (or code) regardless of whether the code (or the test cases) is available in

the model input. This implies that syntactic and functional representations are both very informative

and can be well reconstructed independently, which makes it less straightforward to associate them

by MLM. On the contrary, the labels for our DIM is defined only by the relationships between

141

code and test cases, hence, it is infeasible to predict such labels without learning their correlations.

Besides, the “Both“ alternative tends to associate code with arbitrary patterns in test cases, which

are explored by MLM. The resulted correlations can be distracting to code understanding considering

the randomness in test cases introduced by fuzzing.

Positive pairs in DID. To justify our design of DID, we built a variant of FuzzPretrain which

formulates the LDID to identify test cases D according to their corresponding code S or AST by

constructing the positive pairs in Equation 6.3 to be (S,D) instead of (S, S ⊕D) in FuzzPretrain.

We denote this variant as “Execution” and FuzzPretrain as “Holistic” to be compared in Figure 6.8.

Although the performances of the “Execution” variant on clone detection are on par with that of

the “Holistic” counterpart, its inferiority on defect detection is non-negligible. We believe that this

is due to the distribution discrepancies between code and test cases (e.g . test cases are likely to

involve an exhaustive list of random numbers as inputs which are barely seen in code). It is more

reasonable to jointly learn from test cases and source code to simultaneously benefit from dynamic

information and mitigate the negative impacts from distribution discrepancies.

6.5 Future work and limitations

Fuzzing code corpus. Our current pre-training data is restricted to OJ-like code corpus (i.e.,

CodeNet) [68], which refrains us from ablating affecting factors in the data distribution in making fair

comparison to existing methods. To be more specific, most commonly adopted code corpus [184] are

composed of standalone functions spread over various software projects (e.g ., CodeSearchNet), whose

test cases cannot be easily obtained. Whilst OJ data is showing some unique characteristics to benefit

our FuzzPretrain model on understanding similar code snippets as indicated by our remarkable

performance advantages on POJ-104 [67] (Table 6.4), this also limits our model’s generalization

ability to other type of code corpus, e.g . the F1-score of clone detection on BigCloneBench [66]

yielded by our FuzzUniXcoder was 1% lower than that by UniXcoder pre-trained on CodeSearchNet.

Yet, when both pre-trained on the same selected subset of CodeNet, our FuzzPretrain leads to

142

+0.9% F1 gain in comparison to existing pre-training strategies using, for example, the MLM loss

on CodeBERT. Exploring fuzzing on more diverse code corpus help address this limitation.

Text-code tasks. Following the discussion about fuzzing code corpus in the previous paragraph,

we would like to mention that, since CodeNet does not contain text description of each code,

pre-training on it may not fully unleash the power of pre-training on text-code downstream tasks.

That is to say, although we have shown the effectiveness of our FuzzPretrain on the text code search

task in Table 6.3 and Table 6.4, even better results can be obtained if we can pair the CodeNet

data with text descriptions or if we can pre-train on a dataset with not only texts and code but

also test cases. This also withholds FuzzCodeBERT and FuzzUniXcoder from surpassing every

state-of-the-art methods on text-code tasks. In addition to exploiting datasets, extensive experiments

presented in this chapter also verifies complementary effects of dynamic program modeling to these

methods, which implies that combining more advanced methods [214, 215] with our FuzzPretrain

also leads to superior performance than that of FuzzCodeBERT and FuzzUniXcoder.

Code generation. Our designs for dynamic information modeling are all about the holistic

comprehensions of code in a global picture, while how to benefit token-wise code understanding by

using it is not straightforward. We tested UniXcoder with and without our FuzzPretrain on the

python dev split of the line-level code completion task in the CodeXGLUE benchmark [168], our

FuzzUniXcoder yielded 42.73%/72.03% Exact Match/Edit Sim vs. 42.68%/71.88% by UniXcoder.

We did not observe clear improvements brought by FuzzPretrain on code generation tasks which

are usually conducted at token-level, leaving an interesting problem to be studied in the future.

143

Chapter 7

Conclusion

In this thesis, we explore three aspects of greybox fuzzing that have not been well studied.

First, we study the necessary improvements in fuzzers to trigger more bugs. Then, we evaluate the

effectiveness of specialized fuzzing on the LLVM backend. Finally, we discover a way to use the

byproduct of fuzzing to enhance the code understanding ability of large language models (LLMs).

Still, there are many aspects that can be further studied. For example, it is challenging for fuzzers to

automatically adapt to different input formats [43, 44]. However, with the development of LLMs, it

is worth investigating how LLMs can assist fuzzers in generating inputs that fit various formats [46].

We summarize the contributions and potential future work in this chapter.

7.1 Improving fuzzing performance using principled techniques

We first design and implement Integrity to trigger integer arithmetic errors using fuzzing in

Chapter 2. By identifying and instrumenting integer arithmetic operations with potential errors,

Integrity provides critical information to the fuzzer to help it trigger potential bugs. Integrity found

all the integer errors in the Juliet test suite with no false positive. On nine popular open-source

programs, Integrity discovered a total of 174 true errors, including eight crashes and 166 non-crashing

errors. To efficiently determine whether a non-crashing error is harmful, we propose two methods to

144

find potentially harmful errors. The first one is based on the statistics of traces produced by the

fuzzer. On the other hand, we can compare the output of independent implementations of the same

algorithm on the same input. Our evaluation demonstrated that Integrity is effective in finding

integer errors.

With the experience from developing Integrity, we identify the challenges that the state-of-

the-art mutation-based greybox fuzzers face when finding vulnerabilities in real-world scenarios.

State-of-the-art fuzzers cannot achieve better performance for two reasons. First, they lack accurate

and fine-grained branch counting feedback. Additionally, their mutation strategies are not well-

suited to real-world scenarios. In Chapter 3, we propose a new fuzzer, Valkyrie to address these

challenges. Valkyrie implements collision-free context-sensitive branch counting, which eliminates

branch collisions while preserving context sensitivity. Besides, Valkyrie implements a predicate

solver for fuzzing that adapts optimization algorithms from the real domain to the integer domain.

Finally, we use the solver to assist in triggering bugs by converting potentially exploitable code into

predicates.

We evaluate Valkyrie on the Magma benchmark as well as real-world programs. Our results

show that Valkyrie triggers 21 unique integer and memory errors, 10.5% and 50% more than AFL++

and Angora, respectively. In real-world programs, Valkyrie’s branch counting mechanism proved

effective by eliminating branch collisions and maintaining context-sensitivity, while AFL++ and

Angora incur high bitmap utilization rates, indicating significant branch collision probabilities. For

coverage statistics, Valkyrie reached 8.2% more branches on average compared with AFL++, and

12.4% compared with Angora.

7.2 Specialized fuzzing for the LLVM backend

Even though generic fuzzing has helped the community identify thousands of bugs, we argue that

specialized fuzzing is necessary. We propose IRFuzzer in Chapter 4, a fuzzer specializing in fuzzing

LLVM instruction selection. To generate inputs that are semantically and syntactically correct, we

145

first identify the challenges in IR generation that don’t exist in high-level language generation. We

create a mutator that maintains semantic correctness by splitting a block and inserting a sCFG

in between. Then, we ensure that the IR instruction we inserted is syntactically correct using a

descriptive language to model all IR instructions. Therefore, the IR program we generate can always

be compiled by the backend. We also propose a new coverage metric to better monitor the fuzzing

status and keep track of program behavior. IRFuzzer also decodes this coverage table for mutation

guidance.

Our evaluation shows that IRFuzzer outperforms existing backend and end-to-end state-of-the-

art fuzzers. IRFuzzer achieved higher matcher table coverage in all LLVM backend architectures.

Specialized fuzzing is required for specialized tools, and IRFuzzer is efficient enough to be used

within the context of a regular development process.

Using IRFuzzer, we have identified 78 bugs in upstream LLVM code that have been confirmed by

developers. Except for six bugs that will hang the compiler, all others will crash it. 57 of these bugs

have been fixed, demonstrating that these bugs provide useful insights to LLVM developers. These

findings indicate that there are fertile opportunities for specialized fuzzing despite the popularity

of end-to-end compiler testing. We demonstrated that IRFuzzer is effective in finding bugs in the

LLVM backend. We have also open-sourced IRFuzzer 1 to assist the community in testing various

downstream compilers.

7.3 Enhancing program understanding using fuzzer generated test

cases

Finally, we have found a valuable use for the inputs generated by the fuzzer, which would

otherwise be discarded. In Chapter 6, we point out that exploiting informative test cases helps in the

understanding of programs. We have developed fuzz tuning, a novel method that takes advantage

of fuzzing together with prior large-scale pre-training efforts to achieve this goal. Our fuzz tuning

1https://github.com/SecurityLab-UCD/IRFuzzer

146

https://github.com/SecurityLab-UCD/IRFuzzer

repurposes fuzzers to generate informative test cases that well-represent the functionality of programs,

and it introduces appropriate cloze prompts to incorporate the test cases into the processing. By

performing comprehensive experiments on two datasets and two program understanding tasks, we

have verified the effectiveness of this method and achieved new state-of-the-arts.

As a follow-up, we make the first attempt to facilitate comprehensive program profiling and

effective code representation learning using the test cases. To benefit from such a new modality

of data that is often not available in downstream tasks, we proposed FuzzPretrain for joint static

and dynamic information modeling. Specifically, FuzzPretrain is trained not only to accomplish the

conventional masked tokens prediction objective but also to learn the input-output relationships

from test cases encoding the program-specific runtime behaviors, as well as enforcing the model to

infer such dynamic knowledge from code structures solely. Extensive experiments were conducted

on various code understanding downstream tasks. The notable performance advantages yielded by

FuzzPretrain over models learned from only the structure of code demonstrate the potential benefits

of the complements from program executions.

7.4 Future work

As shown in Chapter 4, a fuzzer with a customized mutator can greatly improve the fuzzing

results. However, it is challenging for fuzzers with little expert knowledge to adapt to different file

formats. On the other hand, LLMs demonstrate a high capability in understanding and adapting to

various contexts. We hypothesize that LLMs can understand and generate various input formats

given proper training. Some prior attempts have been made to use LLMs for fuzzing [216–219].

However, these approaches focus only on text-based inputs and do not scale well.

We envision a fuzzer whose mutation engine is based on an LLM to harness the power of LLMs.

We plan to fine-tune an LLM so it can adapt to non-text file formats like jpeg, mp4, elf, etc.

To achieve this, we encode each file in a hexadecimal format for the LLM to process. We have

fine-tuned based on llama2-7b [220]. Our initial evaluation shows that this fuzzer can outperform

147

the state-of-the-art fuzzers on Magma [52]. However, further investigation is required to determine

whether LLMs can help detect vulnerabilities in real-world programs.

148

Bibliography

[1] American Fuzzy Lop. Accessed: 2024-03-24. url: http://lcamtuf.coredump.cx/afl/.

[2] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. “Fuzzing Loop Optimizations in

Compilers for C++ and Data-Parallel Languages”. In: Proc. ACM Program. Lang. 7.PLDI

(June 2023). doi: 10.1145/3591295.

[3] Karine Even-Mendoza et al. “GrayC: Greybox Fuzzing of Compilers and Analysers for C”.

In: Proceedings of the 32nd ACM SIGSOFT International Symposium on Software Testing

and Analysis. ISSTA 2023. Seattle, WA, USA: Association for Computing Machinery, 2023,

pp. 1219–1231. doi: 10.1145/3597926.3598130.

[4] Junjie Wang et al. “FuzzJIT: Oracle-Enhanced Fuzzing for JavaScript Engine JIT Compiler”.

In: 32nd USENIX Security Symposium, USENIX Security 2023, Anaheim, CA, USA, August

9-11, 2023. Ed. by Joseph A. Calandrino and Carmela Troncoso. USENIX Association, 2023.

url: https://www.usenix.org/conference/usenixsecurity23/presentation/wang-

junjie.

[5] Frédéric Tuong et al. “SymRustC: A Hybrid Fuzzer for Rust”. In: Proceedings of the

32nd ACM SIGSOFT International Symposium on Software Testing and Analysis. ISSTA

2023. ¡conf-loc¿, ¡city¿Seattle¡/city¿, ¡state¿WA¡/state¿, ¡country¿USA¡/country¿, ¡/conf-loc¿:

Association for Computing Machinery, 2023, pp. 1515–1518. isbn: 9798400702211. doi:

10.1145/3597926.3604927.

149

http://lcamtuf.coredump.cx/afl/
https://doi.org/10.1145/3591295
https://doi.org/10.1145/3597926.3598130
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-junjie
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-junjie
https://doi.org/10.1145/3597926.3604927

[6] Sven Smolka et al. “Fuzz on the Beach: Fuzzing Solana Smart Contracts”. In: Proceedings

of the 2023 ACM SIGSAC Conference on Computer and Communications Security. CCS

’23. New York, NY, USA: Association for Computing Machinery, 2023, pp. 1197–1211. isbn:

9798400700507. doi: 10.1145/3576915.3623178.

[7] Jianzhong Su et al. “Effectively Generating Vulnerable Transaction Sequences in Smart Con-

tracts with Reinforcement Learning-guided Fuzzing”. In: Proceedings of the 37th IEEE/ACM

International Conference on Automated Software Engineering. ASE ’22. New York, NY, USA:

Association for Computing Machinery, 2023. isbn: 9781450394758. doi: 10.1145/3551349.

3560429.

[8] Chenyang Lyu et al. “MINER: a hybrid data-driven approach for REST API fuzzing”. In:

Proceedings of the 32nd USENIX Conference on Security Symposium. SEC ’23. Anaheim,

CA, USA: USENIX Association, 2023. isbn: 978-1-939133-37-3.

[9] Yi Liu et al. “Morest: model-based RESTful API testing with execution feedback”. In:

Proceedings of the 44th International Conference on Software Engineering. ICSE ’22. Pitts-

burgh, Pennsylvania: Association for Computing Machinery, 2022, pp. 1406–1417. isbn:

9781450392211. doi: 10.1145/3510003.3510133.

[10] Peng Chen et al. “Hopper: Interpretative Fuzzing for Libraries”. In: Proceedings of the 2023

ACM SIGSAC Conference on Computer and Communications Security. CCS ’23. New York,

NY, USA: Association for Computing Machinery, 2023, pp. 1600–1614. isbn: 9798400700507.

doi: 10.1145/3576915.3616610.

[11] Andrea Fioraldi et al. “LibAFL: A Framework to Build Modular and Reusable Fuzzers”.

In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications

Security. CCS ’22. Los Angeles, CA, USA: Association for Computing Machinery, 2022,

pp. 1051–1065. isbn: 9781450394505. doi: 10.1145/3548606.3560602.

[12] Harrison Green and Thanassis Avgerinos. “GraphFuzz: library API fuzzing with lifetime-

aware dataflow graphs”. In: Proceedings of the 44th International Conference on Software

150

https://doi.org/10.1145/3576915.3623178
https://doi.org/10.1145/3551349.3560429
https://doi.org/10.1145/3551349.3560429
https://doi.org/10.1145/3510003.3510133
https://doi.org/10.1145/3576915.3616610
https://doi.org/10.1145/3548606.3560602

Engineering. ICSE ’22. Pittsburgh, Pennsylvania: Association for Computing Machinery,

2022, pp. 1070–1081. isbn: 9781450392211. doi: 10.1145/3510003.3510228.

[13] Jianfeng Jiang, Hui Xu, and Yangfan Zhou. “RULF: Rust Library Fuzzing via API Depen-

dency Graph Traversal”. In: 2021 36th IEEE/ACM International Conference on Automated

Software Engineering (ASE). 2021, pp. 581–592. doi: 10.1109/ASE51524.2021.9678813.

[14] Sergej Schumilo et al. “kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels”. In:

26th USENIX Security Symposium (USENIX Security 17). Vancouver, BC: USENIX Associ-

ation, Aug. 2017, pp. 167–182. isbn: 978-1-931971-40-9. url: https://www.usenix.org/

conference/usenixsecurity17/technical-sessions/presentation/schumilo.

[15] Dae R. Jeong et al. “Razzer: Finding Kernel Race Bugs through Fuzzing”. In: 2019 IEEE

Symposium on Security and Privacy (SP). 2019, pp. 754–768. doi: 10.1109/SP.2019.00017.

[16] Meng Xu et al. “Krace: Data Race Fuzzing for Kernel File Systems”. In: 2020 IEEE

Symposium on Security and Privacy (SP). 2020, pp. 1643–1660. doi: 10.1109/SP40000.

2020.00078.

[17] Wen Xu et al. “Fuzzing File Systems via Two-Dimensional Input Space Exploration”. In:

2019 IEEE Symposium on Security and Privacy (SP). 2019, pp. 818–834. doi: 10.1109/SP.

2019.00035.

[18] Dae R. Jeong et al. “SegFuzz: Segmentizing Thread Interleaving to Discover Kernel Con-

currency Bugs through Fuzzing”. In: 2023 IEEE Symposium on Security and Privacy (SP).

2023, pp. 2104–2121. doi: 10.1109/SP46215.2023.10179398.

[19] Jiongyi Chen et al. “IoTFuzzer: Discovering Memory Corruptions in IoT Through App-based

Fuzzing.” In: NDSS. 2018.

[20] Xueqiang Wang et al. “Looking from the Mirror: Evaluating IoT Device Security through

Mobile Companion Apps”. In: 28th USENIX Security Symposium (USENIX Security 19).

Santa Clara, CA: USENIX Association, Aug. 2019, pp. 1151–1167. isbn: 978-1-939133-06-9.

151

https://doi.org/10.1145/3510003.3510228
https://doi.org/10.1109/ASE51524.2021.9678813
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://doi.org/10.1109/SP.2019.00017
https://doi.org/10.1109/SP40000.2020.00078
https://doi.org/10.1109/SP40000.2020.00078
https://doi.org/10.1109/SP.2019.00035
https://doi.org/10.1109/SP.2019.00035
https://doi.org/10.1109/SP46215.2023.10179398

url: https://www.usenix.org/conference/usenixsecurity19/presentation/wang-

xueqiang.

[21] Yaowen Zheng et al. “Efficient greybox fuzzing of applications in Linux-based IoT devices via

enhanced user-mode emulation”. In: Proceedings of the 31st ACM SIGSOFT International

Symposium on Software Testing and Analysis. ISSTA 2022. New York, NY, USA: Association

for Computing Machinery, 2022, pp. 417–428. isbn: 9781450393799. doi: 10.1145/3533767.

3534414.

[22] Timothy Trippel et al. “Fuzzing Hardware Like Software”. In: 31st USENIX Security Sympo-

sium (USENIX Security 22). Boston, MA: USENIX Association, Aug. 2022, pp. 3237–3254.

isbn: 978-1-939133-31-1. url: https://www.usenix.org/conference/usenixsecurity22/

presentation/trippel.

[23] Danning Xie et al. “DocTer: documentation-guided fuzzing for testing deep learning API

functions”. In: Proceedings of the 31st ACM SIGSOFT International Symposium on Soft-

ware Testing and Analysis. ISSTA 2022. New York, NY, USA: Association for Computing

Machinery, 2022, pp. 176–188. isbn: 9781450393799. doi: 10.1145/3533767.3534220.

[24] Yinlin Deng et al. “Fuzzing deep-learning libraries via automated relational API inference”.

In: Proceedings of the 30th ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. ESEC/FSE 2022. New York, NY,

USA: Association for Computing Machinery, 2022, pp. 44–56. isbn: 9781450394130. doi:

10.1145/3540250.3549085.

[25] Anjiang Wei et al. “Free lunch for testing: fuzzing deep-learning libraries from open source”.

In: Proceedings of the 44th International Conference on Software Engineering. ICSE ’22.

Pittsburgh, Pennsylvania: Association for Computing Machinery, 2022, pp. 995–1007. isbn:

9781450392211. doi: 10.1145/3510003.3510041.

[26] Jiazhen Gu et al. “Muffin: testing deep learning libraries via neural architecture fuzzing”.

In: Proceedings of the 44th International Conference on Software Engineering. ICSE ’22.

152

https://www.usenix.org/conference/usenixsecurity19/presentation/wang-xueqiang
https://www.usenix.org/conference/usenixsecurity19/presentation/wang-xueqiang
https://doi.org/10.1145/3533767.3534414
https://doi.org/10.1145/3533767.3534414
https://www.usenix.org/conference/usenixsecurity22/presentation/trippel
https://www.usenix.org/conference/usenixsecurity22/presentation/trippel
https://doi.org/10.1145/3533767.3534220
https://doi.org/10.1145/3540250.3549085
https://doi.org/10.1145/3510003.3510041

Pittsburgh, Pennsylvania: Association for Computing Machinery, 2022, pp. 1418–1430. isbn:

9781450392211. doi: 10.1145/3510003.3510092.

[27] Dongdong She et al. “NEUZZ: Efficient Fuzzing with Neural Program Smoothing”. In: 2019

IEEE Symposium on Security and Privacy (SP). 2019, pp. 803–817. doi: 10.1109/SP.2019.

00052.

[28] Dongdong She et al. “MTFuzz: fuzzing with a multi-task neural network”. In: Proceedings of

the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on

the Foundations of Software Engineering. ESEC/FSE 2020. Virtual Event, USA: Association

for Computing Machinery, 2020, pp. 737–749. isbn: 9781450370431. doi: 10.1145/3368089.

3409723.

[29] Mingyuan Wu et al. “Evaluating and Improving Neural Program-Smoothing-based Fuzzing”.

In: 2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE). 2022,

pp. 847–858. doi: 10.1145/3510003.3510089.

[30] Yuyang Rong et al. “Valkyrie: Improving Fuzzing Performance Through Deterministic

Techniques”. In: 22nd IEEE International Conference on Software Quality, Reliability and

Security, QRS 2022, Guangzhou, China, December 5-9, 2022. IEEE, 2022, pp. 628–639. doi:

10.1109/QRS57517.2022.00069.

[31] Shuitao Gan et al. “CollAFL: Path Sensitive Fuzzing”. In: 2018 IEEE Symposium on Security

and Privacy (SP). 2018, pp. 679–696. doi: 10.1109/SP.2018.00040.

[32] Jiang Zhang et al. “SANRAZOR: Reducing Redundant Sanitizer Checks in C/C++ Pro-

grams”. In: 15th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 21). USENIX Association, July 2021, pp. 479–494. isbn: 978-1-939133-22-9. url:

https://www.usenix.org/conference/osdi21/presentation/zhang.

[33] Mingzhe Wang et al. “RIFF: Reduced Instruction Footprint for Coverage-Guided Fuzzing”. In:

2021 USENIX Annual Technical Conference (USENIX ATC 21). USENIX Association, July

153

https://doi.org/10.1145/3510003.3510092
https://doi.org/10.1109/SP.2019.00052
https://doi.org/10.1109/SP.2019.00052
https://doi.org/10.1145/3368089.3409723
https://doi.org/10.1145/3368089.3409723
https://doi.org/10.1145/3510003.3510089
https://doi.org/10.1109/QRS57517.2022.00069
https://doi.org/10.1109/SP.2018.00040
https://www.usenix.org/conference/osdi21/presentation/zhang

2021, pp. 147–159. isbn: 978-1-939133-23-6. url: https://www.usenix.org/conference/

atc21/presentation/wang-mingzhe.

[34] Chin-Chia Hsu et al. “Instrim: Lightweight instrumentation for coverage-guided fuzzing”.

In: Symposium on Network and Distributed System Security (NDSS), Workshop on Binary

Analysis Research. Vol. 40. 2018.

[35] Jinghan Wang et al. “Be Sensitive and Collaborative: Analyzing Impact of Coverage Metrics

in Greybox Fuzzing”. In: 22nd International Symposium on Research in Attacks, Intrusions

and Defenses (RAID 2019). Chaoyang District, Beijing: USENIX Association, Sept. 2019,

pp. 1–15. isbn: 978-1-939133-07-6. url: https://www.usenix.org/conference/raid2019/

presentation/wang.

[36] Cornelius Aschermann et al. “Ijon: Exploring Deep State Spaces via Fuzzing”. In: 2020 IEEE

Symposium on Security and Privacy (SP). 2020, pp. 1597–1612. doi: 10.1109/SP40000.

2020.00117.

[37] Alexandre Rebert et al. “Optimizing Seed Selection for Fuzzing”. In: 23rd USENIX Secu-

rity Symposium (USENIX Security 14). San Diego, CA: USENIX Association, Aug. 2014,

pp. 861–875. isbn: 978-1-931971-15-7. url: https : / / www . usenix . org / conference /

usenixsecurity14/technical-sessions/presentation/rebert.

[38] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. “Coverage-Based Greybox

Fuzzing as Markov Chain”. In: IEEE Transactions on Software Engineering 45.5 (2019),

pp. 489–506. doi: 10.1109/TSE.2017.2785841.

[39] Chenyang Lyu et al. “MOPT: Optimized Mutation Scheduling for Fuzzers”. In: 28th USENIX

Security Symposium (USENIX Security 19). Santa Clara, CA: USENIX Association, Aug.

2019, pp. 1949–1966. isbn: 978-1-939133-06-9. url: https://www.usenix.org/conference/

usenixsecurity19/presentation/lyu.

[40] Jinghan Wang, Chengyu Song, and Heng Yin. “Reinforcement Learning-based Hierarchical

Seed Scheduling for Greybox Fuzzing”. In: Network and Distributed System Security Sym-

154

https://www.usenix.org/conference/atc21/presentation/wang-mingzhe
https://www.usenix.org/conference/atc21/presentation/wang-mingzhe
https://www.usenix.org/conference/raid2019/presentation/wang
https://www.usenix.org/conference/raid2019/presentation/wang
https://doi.org/10.1109/SP40000.2020.00117
https://doi.org/10.1109/SP40000.2020.00117
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/rebert
https://doi.org/10.1109/TSE.2017.2785841
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu
https://www.usenix.org/conference/usenixsecurity19/presentation/lyu

posium (NDSS). 2021. doi: 10.14722/ndss.2021.24486. url: https://par.nsf.gov/

biblio/10313742.

[41] Han Zheng et al. “FISHFUZZ: Catch Deeper Bugs by Throwing Larger Nets”. In: 32nd

USENIX Security Symposium (USENIX Security 23). Anaheim, CA: USENIX Association,

Aug. 2023, pp. 1343–1360. isbn: 978-1-939133-37-3. url: https://www.usenix.org/

conference/usenixsecurity23/presentation/zheng.

[42] Dongdong She, Abhishek Shah, and Suman Jana. “Effective Seed Scheduling for Fuzzing

with Graph Centrality Analysis”. In: 2022 IEEE Symposium on Security and Privacy (SP).

2022, pp. 2194–2211. doi: 10.1109/SP46214.2022.9833761.

[43] Cornelius Aschermann et al. “REDQUEEN: Fuzzing with Input-to-State Correspondence.”

In: NDSS. Vol. 19. 2019, pp. 1–15.

[44] Peng Chen and Hao Chen. “Angora: Efficient Fuzzing by Principled Search”. In: 2018 IEEE

Symposium on Security and Privacy (SP). 2018, pp. 711–725. doi: 10.1109/SP.2018.00046.

[45] Mingyuan Wu et al. “One Fuzzing Strategy to Rule Them All”. In: Proceedings of the

44th International Conference on Software Engineering. ICSE ’22. Pittsburgh, Pennsylvania:

Association for Computing Machinery, 2022, pp. 1634–1645. doi: 10.1145/3510003.3510174.

[46] Dominic Steinhöfel and Andreas Zeller. “Language-Based Software Testing”. In: Commun.

ACM 67.4 (Mar. 2024), pp. 80–84. issn: 0001-0782. doi: 10.1145/3631520. url: https:

//doi.org/10.1145/3631520.

[47] Dokyung Song et al. “SoK: Sanitizing for Security”. In: 2019 IEEE Symposium on Security

and Privacy (SP). 2019, pp. 1275–1295. doi: 10.1109/SP.2019.00010.

[48] Sebastian Österlund et al. “ParmeSan: Sanitizer-guided Greybox Fuzzing”. In: 29th USENIX

Security Symposium (USENIX Security 20). USENIX Association, Aug. 2020, pp. 2289–2306.

isbn: 978-1-939133-17-5. url: https://www.usenix.org/conference/usenixsecurity20/

presentation/osterlund.

155

https://doi.org/10.14722/ndss.2021.24486
https://par.nsf.gov/biblio/10313742
https://par.nsf.gov/biblio/10313742
https://www.usenix.org/conference/usenixsecurity23/presentation/zheng
https://www.usenix.org/conference/usenixsecurity23/presentation/zheng
https://doi.org/10.1109/SP46214.2022.9833761
https://doi.org/10.1109/SP.2018.00046
https://doi.org/10.1145/3510003.3510174
https://doi.org/10.1145/3631520
https://doi.org/10.1145/3631520
https://doi.org/10.1145/3631520
https://doi.org/10.1109/SP.2019.00010
https://www.usenix.org/conference/usenixsecurity20/presentation/osterlund
https://www.usenix.org/conference/usenixsecurity20/presentation/osterlund

[49] Will Dietz et al. “Understanding Integer Overflow in C/C++”. In: ACM Trans. Softw. Eng.

Methodol. 25.1 (Dec. 2015). issn: 1049-331X. doi: 10.1145/2743019.

[50] Will Dietz et al. “Understanding integer overflow in C/C++”. In: 2012 34th International

Conference on Software Engineering (ICSE). 2012, pp. 760–770. doi: 10.1109/ICSE.2012.

6227142.

[51] Software Assurance Reference Dataset. Accessed: 2024-03-24. Nov. 3, 2017. url: https:

//samate.nist.gov/SARD/testsuite.php.

[52] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. “Magma: A Ground-Truth Fuzzing

Benchmark”. In: Proc. ACM Meas. Anal. Comput. Syst. 4.3 (Nov. 2020). doi: 10.1145/

3428334.

[53] Andrea Fioraldi et al. “AFL++ : Combining Incremental Steps of Fuzzing Research”. In:

14th USENIX Workshop on Offensive Technologies (WOOT 20). USENIX Association, Aug.

2020. url: https://www.usenix.org/conference/woot20/presentation/fioraldi.

[54] Kostya Serebryany. “OSS-Fuzz - Google’s continuous fuzzing service for open source software”.

In: Vancouver, BC: USENIX Association, Aug. 2017.

[55] Cornelius Aschermann et al. “NAUTILUS: Fishing for Deep Bugs with Grammars.” In:

NDSS. 2019.

[56] Soyeon Park et al. “Fuzzing JavaScript Engines with Aspect-preserving Mutation”. In: 2020

IEEE Symposium on Security and Privacy (SP). 2020, pp. 1629–1642. doi: 10.1109/SP40000.

2020.00067.

[57] Bahruz Jabiyev et al. “FRAMESHIFTER: Security Implications of HTTP/2-to-HTTP/1

Conversion Anomalies”. In: 31st USENIX Security Symposium (USENIX Security 22).

Boston, MA: USENIX Association, Aug. 2022, pp. 1061–1075. isbn: 978-1-939133-31-1. url:

https://www.usenix.org/conference/usenixsecurity22/presentation/jabiyev.

156

https://doi.org/10.1145/2743019
https://doi.org/10.1109/ICSE.2012.6227142
https://doi.org/10.1109/ICSE.2012.6227142
https://samate.nist.gov/SARD/testsuite.php
https://samate.nist.gov/SARD/testsuite.php
https://doi.org/10.1145/3428334
https://doi.org/10.1145/3428334
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://doi.org/10.1109/SP40000.2020.00067
https://doi.org/10.1109/SP40000.2020.00067
https://www.usenix.org/conference/usenixsecurity22/presentation/jabiyev

[58] Samuel Groß et al. “FUZZILLI: Fuzzing for JavaScript JIT Compiler Vulnerabilities.” In:

NDSS. 2023.

[59] Chris Lattner and Vikram Adve. “LLVM: a compilation framework for lifelong program anal-

ysis & transformation”. In: International Symposium on Code Generation and Optimization,

2004. CGO 2004. 2004, pp. 75–86. doi: 10.1109/CGO.2004.1281665.

[60] Xuejun Yang et al. “Finding and Understanding Bugs in C Compilers”. In: Proceedings of the

32nd ACM SIGPLAN Conference on Programming Language Design and Implementation.

PLDI ’11. San Jose, California, USA: Association for Computing Machinery, 2011, pp. 283–

294. doi: 10.1145/1993498.1993532.

[61] Alan Mathison Turing et al. “On computable numbers, with an application to the Entschei-

dungsproblem”. In: J. of Math 58.345-363 (1936), p. 5.

[62] Junjie Wang et al. “Software Testing with Large Language Models: Survey, Landscape, and

Vision”. In: IEEE Transactions on Software Engineering (2024), pp. 1–27. doi: 10.1109/

TSE.2024.3368208.

[63] Yangruibo Ding et al. Vulnerability Detection with Code Language Models: How Far Are

We? Accessed: 2024-04-03. 2024. arXiv: 2403.18624 [cs.SE].

[64] Xin-Cheng Wen et al. SCALE: Constructing Structured Natural Language Comment Trees

for Software Vulnerability Detection. 2024. arXiv: 2403.19096 [cs.SE].

[65] Srinivasan Iyer et al. “Summarizing Source Code using a Neural Attention Model”. In:

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers). Ed. by Katrin Erk and Noah A. Smith. Berlin, Germany: Association

for Computational Linguistics, Aug. 2016, pp. 2073–2083. doi: 10.18653/v1/P16-1195.

[66] Jeffrey Svajlenko et al. “Towards a Big Data Curated Benchmark of Inter-project Code

Clones”. In: 2014 IEEE International Conference on Software Maintenance and Evolution.

2014, pp. 476–480. doi: 10.1109/ICSME.2014.77.

157

https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1109/TSE.2024.3368208
https://doi.org/10.1109/TSE.2024.3368208
https://arxiv.org/abs/2403.18624
https://arxiv.org/abs/2403.19096
https://doi.org/10.18653/v1/P16-1195
https://doi.org/10.1109/ICSME.2014.77

[67] Lili Mou et al. “Convolutional neural networks over tree structures for programming language

processing”. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence.

AAAI’16. Phoenix, Arizona: AAAI Press, 2016, pp. 1287–1293.

[68] Ruchir Puri et al. CodeNet: A Large-Scale AI for Code Dataset for Learning a Diversity of

Coding Tasks. Accessed: 2024-04-03. 2021. arXiv: 2105.12655 [cs.SE].

[69] Bob Martin et al. “2011 CWE/SANS top 25 most dangerous software errors”. In: Common

Weakness Enumer 7515 (2011). url: https://www.sans.org/top25-software-errors/.

[70] CWE - Common Weakness Enumeration. Accessed: 2024-03-24. Apr. 3, 2018. url: https:

//cwe.mitre.org/.

[71] BatchOverflow Exploit Creates Trillions of Ethereum Tokens, Major Exchanges Halt ERC20

Deposits — CryptoSlate. Accessed: 2024-03-24. Apr. 25, 2018. url: https://cryptoslate.

com/batchoverflow-exploit-creates-trillions-of-ethereum-tokens/.

[72] BeautyChain (BEC) Withdrawal and Trading Suspended. Accessed: 2024-03-24. Apr. 24, 2018.

url: https://support.okex.com/hc/en-us/articles/360002944212-BeautyChain-

BEC-Withdrawal-and-Trading-Suspended-Update-.

[73] LLVM UndefinedBehaviorSanitizer. Accessed: 2024-03-24. url: https://clang.llvm.org/

docs/UndefinedBehaviorSanitizer.html.

[74] Sanjay Rawat et al. “VUzzer: Application-aware Evolutionary Fuzzing.” In: NDSS. Vol. 17.

2017, pp. 1–14.

[75] Hui Peng, Yan Shoshitaishvili, and Mathias Payer. “T-Fuzz: Fuzzing by Program Transfor-

mation”. In: 2018 IEEE Symposium on Security and Privacy (SP). 2018, pp. 697–710. doi:

10.1109/SP.2018.00056.

[76] Tielei Wang et al. “TaintScope: A Checksum-Aware Directed Fuzzing Tool for Automatic

Software Vulnerability Detection”. In: 2010 IEEE Symposium on Security and Privacy. 2010,

pp. 497–512. doi: 10.1109/SP.2010.37.

158

https://arxiv.org/abs/2105.12655
https://www.sans.org/top25-software-errors/
https://cwe.mitre.org/
https://cwe.mitre.org/
https://cryptoslate.com/batchoverflow-exploit-creates-trillions-of-ethereum-tokens/
https://cryptoslate.com/batchoverflow-exploit-creates-trillions-of-ethereum-tokens/
https://support.okex.com/hc/en-us/articles/360002944212-BeautyChain-BEC-Withdrawal-and-Trading-Suspended-Update-
https://support.okex.com/hc/en-us/articles/360002944212-BeautyChain-BEC-Withdrawal-and-Trading-Suspended-Update-
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://doi.org/10.1109/SP.2018.00056
https://doi.org/10.1109/SP.2010.37

[77] Marcel Böhme et al. “Directed Greybox Fuzzing”. In: Proceedings of the 2017 ACM SIGSAC

Conference on Computer and Communications Security. CCS ’17. Dallas, Texas, USA:

Association for Computing Machinery, 2017, pp. 2329–2344. isbn: 9781450349468. doi:

10.1145/3133956.3134020.

[78] Hongxu Chen et al. “Hawkeye: Towards a Desired Directed Grey-box Fuzzer”. In: Proceedings

of the 2018 ACM SIGSAC Conference on Computer and Communications Security. CCS

’18. Toronto, Canada: Association for Computing Machinery, 2018, pp. 2095–2108. isbn:

9781450356930. doi: 10.1145/3243734.3243849.

[79] The GNU Multiple Precision Arithmetic Library. Accessed: 2024-03-24. 2016. url: https:

//gmplib.org/.

[80] LLVM DataFlowSanitizer. Accessed: 2024-03-24. url: https://clang.llvm.org/docs/

DataFlowSanitizer.html.

[81] Hao Sun et al. “IntEQ: Recognizing Benign Integer Overflows via Equivalence Checking

across Multiple Precisions”. In: 2016 IEEE/ACM 38th International Conference on Software

Engineering (ICSE). 2016, pp. 1051–1062. doi: 10.1145/2884781.2884820.

[82] Marios Pomonis et al. “IntFlow: improving the accuracy of arithmetic error detection using

information flow tracking”. In: Proceedings of the 30th Annual Computer Security Applications

Conference. ACM. 2014, pp. 416–425.

[83] Yannick Moy, Nikolaj Bjørner, and David Sielaff. “Modular bug-finding for integer overflows

in the large: Sound, efficient, bit-precise static analysis”. In: Microsoft Research 11 (2009).

[84] Tielei Wang et al. “IntScope: Automatically Detecting Integer Overflow Vulnerability in X86

Binary Using Symbolic Execution.” In: NDSS. Citeseer. 2009.

[85] Peng Chen, Jianzhong Liu, and Hao Chen. “Matryoshka: Fuzzing Deeply Nested Branches”.

In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications

Security. CCS ’19. London, United Kingdom: Association for Computing Machinery, 2019,

pp. 499–513. isbn: 9781450367479. doi: 10.1145/3319535.3363225.

159

https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/3243734.3243849
https://gmplib.org/
https://gmplib.org/
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://doi.org/10.1145/2884781.2884820
https://doi.org/10.1145/3319535.3363225

[86] Kosta Serebryany. “Continuous Fuzzing with libFuzzer and AddressSanitizer”. In: 2016 IEEE

Cybersecurity Development (SecDev). 2016, pp. 157–157. doi: 10.1109/SecDev.2016.043.

[87] Nick Stephens et al. “Driller: augmenting fuzzing through selective symbolic execution”. In:

Proceedings of the Network and Distributed System Security Symposium (NDSS). 2016.

[88] Insu Yun et al. “QSYM : A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing”.

In: 27th USENIX Security Symposium (USENIX Security 18). Baltimore, MD: USENIX

Association, Aug. 2018, pp. 745–761. isbn: 978-1-939133-04-5. url: https://www.usenix.

org/conference/usenixsecurity18/presentation/yun.

[89] Konstantin Serebryany et al. “AddressSanitizer: A Fast Address Sanity Checker”. In: 2012

USENIX Annual Technical Conference (USENIX ATC 12). Boston, MA: USENIX Asso-

ciation, June 2012, pp. 309–318. isbn: 978-931971-93-5. url: https://www.usenix.org/

conference/atc12/technical-sessions/presentation/serebryany.

[90] Evgeniy Stepanov and Konstantin Serebryany. “MemorySanitizer: Fast detector of unini-

tialized memory use in C++”. In: 2015 IEEE/ACM International Symposium on Code

Generation and Optimization (CGO). 2015, pp. 46–55. doi: 10.1109/CGO.2015.7054186.

[91] Wookhyun Han et al. “Enhancing memory error detection for large-scale applications and

fuzz testing”. In: Network and Distributed Systems Security (NDSS) Symposium 2018. 2018.

[92] LLVM ThreadSanitizer. Accessed: 2024-03-24. url: https://clang.llvm.org/docs/

ThreadSanitizer.html.

[93] Theofilos Petsios et al. “SlowFuzz: Automated Domain-Independent Detection of Algorithmic

Complexity Vulnerabilities”. In: Proceedings of the 2017 ACM SIGSAC Conference on

Computer and Communications Security. CCS ’17. Dallas, Texas, USA: Association for

Computing Machinery, 2017, pp. 2155–2168. isbn: 9781450349468. doi: 10.1145/3133956.

3134073.

160

https://doi.org/10.1109/SecDev.2016.043
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://www.usenix.org/conference/usenixsecurity18/presentation/yun
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://www.usenix.org/conference/atc12/technical-sessions/presentation/serebryany
https://doi.org/10.1109/CGO.2015.7054186
https://clang.llvm.org/docs/ThreadSanitizer.html
https://clang.llvm.org/docs/ThreadSanitizer.html
https://doi.org/10.1145/3133956.3134073
https://doi.org/10.1145/3133956.3134073

[94] Theofilos Petsios et al. “NEZHA: Efficient Domain-Independent Differential Testing”. In:

2017 IEEE Symposium on Security and Privacy (SP). 2017, pp. 615–632. doi: 10.1109/SP.

2017.27.

[95] Augustus Odena et al. “Tensorfuzz: Debugging neural networks with coverage-guided fuzzing”.

In: International Conference on Machine Learning. PMLR. 2019, pp. 4901–4911.

[96] Istvan Haller et al. “Dowsing for Overflows: A Guided Fuzzer to Find Buffer Boundary

Violations”. In: 22nd USENIX Security Symposium (USENIX Security 13). Washington,

D.C.: USENIX Association, Aug. 2013, pp. 49–64. isbn: 978-1-931971-03-4. url: https://

www.usenix.org/conference/usenixsecurity13/technical-sessions/papers/haller.

[97] Vivek Jain et al. “TIFF: Using Input Type Inference To Improve Fuzzing”. In: Proceedings

of the 34th Annual Computer Security Applications Conference. ACSAC ’18. San Juan, PR,

USA: Association for Computing Machinery, 2018, pp. 505–517. isbn: 9781450365697. doi:

10.1145/3274694.3274746.

[98] Baozheng Liu et al. “FANS: Fuzzing Android Native System Services via Automated In-

terface Analysis”. In: 29th USENIX Security Symposium (USENIX Security 20). USENIX

Association, Aug. 2020, pp. 307–323. isbn: 978-1-939133-17-5. url: https://www.usenix.

org/conference/usenixsecurity20/presentation/liu.

[99] Andreas Zeller. When Results Are All That Matters: The Case of the Angora Fuzzer. Accessed:

2024-03-24. Oct. 2019. url: https://andreas-zeller.info/2019/10/10/when-results-

are-all-that-matters-case.html.

[100] George Klees et al. “Evaluating Fuzz Testing”. In: Proceedings of the 2018 ACM SIGSAC

Conference on Computer and Communications Security. CCS ’18. Toronto, Canada: Associa-

tion for Computing Machinery, 2018, pp. 2123–2138. isbn: 9781450356930. doi: 10.1145/

3243734.3243804.

[101] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. “Context-Sensitive Interprocedural

Points-to Analysis in the Presence of Function Pointers”. In: Proceedings of the ACM

161

https://doi.org/10.1109/SP.2017.27
https://doi.org/10.1109/SP.2017.27
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/papers/haller
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/papers/haller
https://doi.org/10.1145/3274694.3274746
https://www.usenix.org/conference/usenixsecurity20/presentation/liu
https://www.usenix.org/conference/usenixsecurity20/presentation/liu
https://andreas-zeller.info/2019/10/10/when-results-are-all-that-matters-case.html
https://andreas-zeller.info/2019/10/10/when-results-are-all-that-matters-case.html
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804

SIGPLAN 1994 Conference on Programming Language Design and Implementation. PLDI

’94. Orlando, Florida, USA: Association for Computing Machinery, 1994, pp. 242–256. isbn:

089791662X. doi: 10.1145/178243.178264.

[102] Bjarne Steensgaard. “Points-to Analysis in Almost Linear Time”. In: Proceedings of the 23rd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL ’96.

St. Petersburg Beach, Florida, USA: Association for Computing Machinery, 1996, pp. 32–41.

isbn: 0897917693. doi: 10.1145/237721.237727.

[103] gllvm: Whole Program LLVM in Go. Accessed: 2024-03-24. url: https://github.com/SRI-

CSL/gllvm.

[104] Jonathan Metzman et al. “FuzzBench: an open fuzzer benchmarking platform and service”. In:

Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering. ESEC/FSE 2021. Athens,

Greece: Association for Computing Machinery, 2021, pp. 1393–1403. isbn: 9781450385626.

doi: 10.1145/3468264.3473932.

[105] Yuwei Li et al. “UNIFUZZ: A Holistic and Pragmatic Metrics-Driven Platform for Evaluating

Fuzzers”. In: 30th USENIX Security Symposium (USENIX Security 21). USENIX Association,

Aug. 2021, pp. 2777–2794. isbn: 978-1-939133-24-3. url: https://www.usenix.org/

conference/usenixsecurity21/presentation/li-yuwei.

[106] Brendan Dolan-Gavitt et al. “LAVA: Large-Scale Automated Vulnerability Addition”. In:

2016 IEEE Symposium on Security and Privacy (SP). 2016, pp. 110–121. doi: 10.1109/SP.

2016.15.

[107] Yuyang Rong, Peng Chen, and Hao Chen. “Integrity: Finding Integer Errors by Targeted

Fuzzing”. In: Security and Privacy in Communication Networks - 16th EAI International

Conference, SecureComm 2020, Washington, DC, USA, October 21-23, 2020, Proceedings,

Part I. Ed. by Noseong Park et al. Vol. 335. Lecture Notes of the Institute for Computer

162

https://doi.org/10.1145/178243.178264
https://doi.org/10.1145/237721.237727
https://github.com/SRI-CSL/gllvm
https://github.com/SRI-CSL/gllvm
https://doi.org/10.1145/3468264.3473932
https://www.usenix.org/conference/usenixsecurity21/presentation/li-yuwei
https://www.usenix.org/conference/usenixsecurity21/presentation/li-yuwei
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1109/SP.2016.15

Sciences, Social Informatics and Telecommunications Engineering. Springer, 2020, pp. 360–

380. doi: 10.1007/978-3-030-63086-7_20.

[108] afl-cov. Accessed: 2024-03-24. url: https://github.com/mrash/afl-cov.

[109] Cristian Cadar, Daniel Dunbar, and Dawson Engler. “KLEE: unassisted and automatic

generation of high-coverage tests for complex systems programs”. In: Proceedings of the 8th

USENIX Conference on Operating Systems Design and Implementation. OSDI’08. San Diego,

California: USENIX Association, 2008, pp. 209–224.

[110] Yaohui Chen et al. “SAVIOR: Towards Bug-Driven Hybrid Testing”. In: 2020 IEEE Sym-

posium on Security and Privacy (SP). 2020, pp. 1580–1596. doi: 10.1109/SP40000.2020.

00002.

[111] Zi Wang, Ben Liblit, and Thomas W. Reps. “TOFU: Target-Orienter FUzzer”. In: CoRR

abs/2004.14375 (2020). arXiv: 2004.14375. url: https://arxiv.org/abs/2004.14375.

[112] Junjie Wang et al. “Skyfire: Data-Driven Seed Generation for Fuzzing”. In: 2017 IEEE

Symposium on Security and Privacy (SP). 2017, pp. 579–594. doi: 10.1109/SP.2017.23.

[113] Xiao Liu et al. “DeepFuzz: Automatic Generation of Syntax Valid C Programs for Fuzz

Testing”. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence and

Thirty-First Innovative Applications of Artificial Intelligence Conference and Ninth AAAI

Symposium on Educational Advances in Artificial Intelligence. AAAI’19/IAAI’19/EAAI’19.

Honolulu, Hawaii, USA: AAAI Press, 2019. isbn: 978-1-57735-809-1. doi: 10.1609/aaai.

v33i01.33011044.

[114] Yinlin Deng et al. “Large Language Models Are Zero-Shot Fuzzers: Fuzzing Deep-Learning

Libraries via Large Language Models”. In: Proceedings of the 32nd ACM SIGSOFT In-

ternational Symposium on Software Testing and Analysis. ISSTA 2023. New York, NY,

USA: Association for Computing Machinery, 2023, pp. 423–435. isbn: 9798400702211. doi:

10.1145/3597926.3598067.

163

https://doi.org/10.1007/978-3-030-63086-7_20
https://github.com/mrash/afl-cov
https://doi.org/10.1109/SP40000.2020.00002
https://doi.org/10.1109/SP40000.2020.00002
https://arxiv.org/abs/2004.14375
https://arxiv.org/abs/2004.14375
https://doi.org/10.1109/SP.2017.23
https://doi.org/10.1609/aaai.v33i01.33011044
https://doi.org/10.1609/aaai.v33i01.33011044
https://doi.org/10.1145/3597926.3598067

[115] Chunqiu Steven Xia et al. Fuzz4All: Universal Fuzzing with Large Language Models. Accessed:

2024-04-03. 2024. arXiv: 2308.04748 [cs.SE].

[116] Jianyu Zhao et al. “Understanding Programs by Exploiting (Fuzzing) Test Cases”. In: ACL

(2023). url: https://aclanthology.org/2023.findings-acl.678.pdf.

[117] Jie Hu, Qian Zhang, and Heng Yin. Augmenting Greybox Fuzzing with Generative AI.

Accessed: 2024-04-03. 2023. arXiv: 2306.06782 [cs.CR].

[118] Dawei Wang et al. “CarpetFuzz: Automatic Program Option Constraint Extraction from

Documentation for Fuzzing”. In: 32nd USENIX Security Symposium (USENIX Security 23).

Anaheim, CA: USENIX Association, Aug. 2023, pp. 1919–1936. isbn: 978-1-939133-37-3. url:

https://www.usenix.org/conference/usenixsecurity23/presentation/wang-dawei.

[119] Nuno P. Lopes et al. “Alive2: Bounded Translation Validation for LLVM”. In: Proceedings of

the 42nd ACM SIGPLAN International Conference on Programming Language Design and

Implementation. PLDI 2021. Virtual, Canada: Association for Computing Machinery, 2021,

pp. 65–79. doi: 10.1145/3453483.3454030.

[120] Andrea Fioraldi et al. “LibAFL: A Framework to Build Modular and Reusable Fuzzers”.

In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications

Security. CCS ’22. Los Angeles, CA, USA: Association for Computing Machinery, 2022,

pp. 1051–1065. doi: 10.1145/3548606.3560602.

[121] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. “Random Testing for C and C++

Compilers with YARPGen”. In: Proc. ACM Program. Lang. 4.OOPSLA (Nov. 2020). doi:

10.1145/3428264.

[122] Vu Le, Mehrdad Afshari, and Zhendong Su. “Compiler Validation via Equivalence modulo

Inputs”. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation. PLDI ’14. Edinburgh, United Kingdom: Association for

Computing Machinery, 2014, pp. 216–226. doi: 10.1145/2594291.2594334.

164

https://arxiv.org/abs/2308.04748
https://aclanthology.org/2023.findings-acl.678.pdf
https://arxiv.org/abs/2306.06782
https://www.usenix.org/conference/usenixsecurity23/presentation/wang-dawei
https://doi.org/10.1145/3453483.3454030
https://doi.org/10.1145/3548606.3560602
https://doi.org/10.1145/3428264
https://doi.org/10.1145/2594291.2594334

[123] Qirun Zhang, Chengnian Sun, and Zhendong Su. “Skeletal Program Enumeration for Rigorous

Compiler Testing”. In: Proceedings of the 38th ACM SIGPLAN Conference on Program-

ming Language Design and Implementation. PLDI 2017. Barcelona, Spain: Association for

Computing Machinery, 2017, pp. 347–361. doi: 10.1145/3062341.3062379.

[124] Jacques-Henri Jourdan et al. “A Formally-Verified C Static Analyzer”. In: POPL 2015:

42nd symposium Principles of Programming Languages. ACM Press, 2015, pp. 247–259. url:

http://xavierleroy.org/publi/verasco-popl2015.pdf.

[125] Timothy Bourke et al. “A formally verified compiler for Lustre”. In: PLDI 2017: Program-

ming Language Design and Implementation. ACM Press, 2017, pp. 586–601. url: http:

//xavierleroy.org/publi/velus-pldi17.pdf.

[126] Fuzzing LLVM libraries and tools. Accessed: 2024-04-03.

[127] Justin Bogner. Adventures in Fuzzing Instruction Selection. Accessed: 2024-04-03. Mar. 2017.

[128] Seo Sanghyeon. Rust triggers LLVM ARM backend bug. Accessed: 2024-04-03. 2013.

[129] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. “Global Value Numbers and Redundant

Computations”. In: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages. POPL ’88. San Diego, California, USA: Association for

Computing Machinery, 1988, pp. 12–27. doi: 10.1145/73560.73562.

[130] Reese T. Prosser. “Applications of Boolean matrices to the analysis of flow diagrams”. In:

Papers Presented at the December 1-3, 1959, Eastern Joint IRE-AIEE-ACM Computer Con-

ference. IRE-AIEE-ACM ’59 (Eastern). Boston, Massachusetts: Association for Computing

Machinery, 1959, pp. 133–138. isbn: 9781450378680. doi: 10.1145/1460299.1460314.

[131] The LLVM Target-Independent Code Generator. Accessed: 2024-04-03.

[132] GlobalIsel. Accessed: 2024-04-03.

[133] TableGen Overview. Accessed: 2024-04-03.

165

https://doi.org/10.1145/3062341.3062379
http://xavierleroy.org/publi/verasco-popl2015.pdf
http://xavierleroy.org/publi/velus-pldi17.pdf
http://xavierleroy.org/publi/velus-pldi17.pdf
https://doi.org/10.1145/73560.73562
https://doi.org/10.1145/1460299.1460314

[134] Xiaogang Zhu et al. “Fuzzing: A Survey for Roadmap”. In: ACM Comput. Surv. 54.11s (Sept.

2022). doi: 10.1145/3512345.

[135] Junjie Wang et al. “Superion: Grammar-Aware Greybox Fuzzing”. In: 2019 IEEE/ACM

41st International Conference on Software Engineering (ICSE). 2019, pp. 724–735. doi:

10.1109/ICSE.2019.00081.

[136] Samuel Groß. “Fuzzil: Coverage guided fuzzing for javascript engines”. In: Department of

Informatics, Karlsruhe Institute of Technology (2018).

[137] Anonymous. IRFuzzer artifacts. Accessed: 2024-04-03. Zenodo, Mar. 2024. doi: 10.5281/

zenodo.8388300.

[138] Karine Even-Mendoza et al. Artifact of GrayC: Greybox Fuzzing of Compilers and Analysers

for C. Version GrayC-ISSTA-2023-V1.0. Accessed: 2024-04-03. July 2023. doi: 10.5281/

zenodo.7978251.

[139] Junjie Chen et al. “A Survey of Compiler Testing”. In: ACM Comput. Surv. 53.1 (Feb. 2020).

doi: 10.1145/3363562.

[140] Haoyang Ma. A Survey of Modern Compiler Fuzzing. Accessed: 2024-04-03. 2023. arXiv:

2306.06884 [cs.SE].

[141] Michaël Marcozzi et al. “Compiler Fuzzing: How Much Does It Matter?” In: Proc. ACM

Program. Lang. 3.OOPSLA (Oct. 2019). doi: 10.1145/3360581.

[142] Paul Purdom. “A sentence generator for testing parsers”. In: BIT Numerical Mathematics

12.3 (1972), pp. 366–375.

[143] Andreas Zeller et al. The Fuzzing Book. Retrieved 2024-01-18 17:28:37+01:00. CISPA

Helmholtz Center for Information Security, 2024. url: https://www.fuzzingbook.org/.

[144] William Mansky and Elsa Gunter. “A framework for formal verification of compiler op-

timizations”. In: Interactive Theorem Proving: First International Conference, ITP 2010,

Edinburgh, UK, July 11-14, 2010. Proceedings 1. Springer. 2010, pp. 371–386.

166

https://doi.org/10.1145/3512345
https://doi.org/10.1109/ICSE.2019.00081
https://doi.org/10.5281/zenodo.8388300
https://doi.org/10.5281/zenodo.8388300
https://doi.org/10.5281/zenodo.7978251
https://doi.org/10.5281/zenodo.7978251
https://doi.org/10.1145/3363562
https://arxiv.org/abs/2306.06884
https://doi.org/10.1145/3360581
https://www.fuzzingbook.org/

[145] Nuno P. Lopes et al. “Practical Verification of Peephole Optimizations with Alive”. In:

Commun. ACM 61.2 (Jan. 2018), pp. 84–91. doi: 10.1145/3166064.

[146] Kyle Dewey, Jared Roesch, and Ben Hardekopf. “Fuzzing the Rust Typechecker Using CLP

(T)”. In: 2015 30th IEEE/ACM International Conference on Automated Software Engineering

(ASE). 2015, pp. 482–493. doi: 10.1109/ASE.2015.65.

[147] Yuting Chen et al. “Coverage-Directed Differential Testing of JVM Implementations”. In:

Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and

Implementation. PLDI ’16. Santa Barbara, CA, USA: Association for Computing Machinery,

2016, pp. 85–99. doi: 10.1145/2908080.2908095.

[148] Emin Gün Sirer and Brian N. Bershad. “Using Production Grammars in Software Testing”.

In: Proceedings of the 2nd Conference on Domain-Specific Languages. DSL ’99. Austin, Texas,

USA: Association for Computing Machinery, 2000, pp. 1–13. doi: 10.1145/331960.331965.

[149] Mingyuan Wu et al. “JITfuzz: Coverage-Guided Fuzzing for JVM Just-in-Time Compilers”.

In: Proceedings of the 45th International Conference on Software Engineering. ICSE ’23.

Melbourne, Victoria, Australia: IEEE Press, 2023, pp. 56–68. doi: 10.1109/ICSE48619.

2023.00017.

[150] Yongheng Chen et al. “One Engine to Fuzz ’em All: Generic Language Processor Testing

with Semantic Validation”. In: 2021 IEEE Symposium on Security and Privacy (SP). 2021,

pp. 642–658. doi: 10.1109/SP40001.2021.00071.

[151] Vu Le, Chengnian Sun, and Zhendong Su. “Finding Deep Compiler Bugs via Guided Stochastic

Program Mutation”. In: Proceedings of the 2015 ACM SIGPLAN International Conference

on Object-Oriented Programming, Systems, Languages, and Applications. OOPSLA 2015.

Pittsburgh, PA, USA: Association for Computing Machinery, 2015, pp. 386–399. doi: 10.

1145/2814270.2814319.

167

https://doi.org/10.1145/3166064
https://doi.org/10.1109/ASE.2015.65
https://doi.org/10.1145/2908080.2908095
https://doi.org/10.1145/331960.331965
https://doi.org/10.1109/ICSE48619.2023.00017
https://doi.org/10.1109/ICSE48619.2023.00017
https://doi.org/10.1109/SP40001.2021.00071
https://doi.org/10.1145/2814270.2814319
https://doi.org/10.1145/2814270.2814319

[152] Vu Le, Chengnian Sun, and Zhendong Su. “Finding Deep Compiler Bugs via Guided

Stochastic Program Mutation”. In: SIGPLAN Not. 50.10 (Oct. 2015), pp. 386–399. doi:

10.1145/2858965.2814319.

[153] Christopher Lidbury et al. “Many-Core Compiler Fuzzing”. In: Proceedings of the 36th

ACM SIGPLAN Conference on Programming Language Design and Implementation. PLDI

’15. Portland, OR, USA: Association for Computing Machinery, 2015, pp. 65–76. doi:

10.1145/2737924.2737986.

[154] Maulik A. Dave. “Compiler Verification: A Bibliography”. In: SIGSOFT Softw. Eng. Notes

28.6 (Nov. 2003), p. 2. doi: 10.1145/966221.966235.

[155] Xavier Leroy. “Formal Verification of a Realistic Compiler”. In: Commun. ACM 52.7 (July

2009), pp. 107–115. doi: 10.1145/1538788.1538814.

[156] Vytautas Astrauskas et al. “Leveraging Rust Types for Modular Specification and Verifica-

tion”. In: Proc. ACM Program. Lang. 3.OOPSLA (Oct. 2019). doi: 10.1145/3360573.

[157] Haoyang Ma et al. “Fuzzing Deep Learning Compilers with HirGen”. In: Proceedings of the

32nd ACM SIGSOFT International Symposium on Software Testing and Analysis. ISSTA

2023. Seattle, WA, USA: Association for Computing Machinery, 2023, pp. 248–260. doi:

10.1145/3597926.3598053.

[158] Jiawei Liu et al. “Coverage-Guided Tensor Compiler Fuzzing with Joint IR-Pass Mutation”.

In: Proc. ACM Program. Lang. 6.OOPSLA1 (Apr. 2022). doi: 10.1145/3527317.

[159] Yuting Chen, Ting Su, and Zhendong Su. “Deep Differential Testing of JVM Implementations”.

In: 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). 2019,

pp. 1257–1268. doi: 10.1109/ICSE.2019.00127.

[160] Zhangyin Feng et al. “CodeBERT: A Pre-Trained Model for Programming and Natural

Languages”. In: Findings of the Association for Computational Linguistics: EMNLP 2020.

Online: Association for Computational Linguistics, Nov. 2020, pp. 1536–1547. doi: 10.18653/

v1/2020.findings-emnlp.139.

168

https://doi.org/10.1145/2858965.2814319
https://doi.org/10.1145/2737924.2737986
https://doi.org/10.1145/966221.966235
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3360573
https://doi.org/10.1145/3597926.3598053
https://doi.org/10.1145/3527317
https://doi.org/10.1109/ICSE.2019.00127
https://doi.org/10.18653/v1/2020.findings-emnlp.139
https://doi.org/10.18653/v1/2020.findings-emnlp.139

[161] Yujia Li et al. “Competition-level code generation with AlphaCode”. In: Science 378.6624

(2022), pp. 1092–1097. doi: 10.1126/science.abq1158. eprint: https://www.science.

org/doi/pdf/10.1126/science.abq1158. url: https://www.science.org/doi/abs/10.

1126/science.abq1158.

[162] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: brute force vulnerability discovery.

Addison-Wesley Professional, 2007. isbn: 0321446119.

[163] Colin Raffel et al. “Exploring the limits of transfer learning with a unified text-to-text

transformer”. In: J. Mach. Learn. Res. 21.1 (Jan. 2020). issn: 1532-4435.

[164] Yinhan Liu et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach. Accessed:

2024-04-03. 2019. arXiv: 1907.11692 [cs.CL].

[165] Jacob Devlin et al. “BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding”. In: Proceedings of the 2019 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies, Volume 1

(Long and Short Papers). Minneapolis, Minnesota: Association for Computational Linguistics,

June 2019, pp. 4171–4186. doi: 10.18653/v1/N19-1423.

[166] Aditya Kanade et al. “Learning and evaluating contextual embedding of source code”. In:

Proceedings of the 37th International Conference on Machine Learning. ICML’20. JMLR.org,

2020.

[167] Yue Wang et al. CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models

for Code Understanding and Generation. Accessed: 2024-04-03. 2021. arXiv: 2109.00859

[cs.CL].

[168] Shuai Lu et al. CodeXGLUE: A Machine Learning Benchmark Dataset for Code Understand-

ing and Generation. Accessed: 2024-04-03. 2021. arXiv: 2102.04664 [cs.SE].

[169] Sindhu Tipirneni, Ming Zhu, and Chandan K. Reddy. “StructCoder: Structure-Aware

Transformer for Code Generation”. In: ACM Trans. Knowl. Discov. Data 18.3 (Jan. 2024).

issn: 1556-4681. doi: 10.1145/3636430.

169

https://doi.org/10.1126/science.abq1158
https://www.science.org/doi/pdf/10.1126/science.abq1158
https://www.science.org/doi/pdf/10.1126/science.abq1158
https://www.science.org/doi/abs/10.1126/science.abq1158
https://www.science.org/doi/abs/10.1126/science.abq1158
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/N19-1423
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2102.04664
https://doi.org/10.1145/3636430

[170] Daya Guo et al. UniXcoder: Unified Cross-Modal Pre-training for Code Representation.

Accessed: 2024-04-03. 2022. arXiv: 2203.03850 [cs.CL].

[171] Daya Guo et al. “GraphCodeBERT: Pre-training Code Representations with Data Flow”.

In: CoRR abs/2009.08366 (2020). arXiv: 2009.08366. url: https://arxiv.org/abs/2009.

08366.

[172] Dinglan Peng et al. “How could Neural Networks understand Programs?” In: International

Conference on Machine Learning. PMLR. 2021, pp. 8476–8486.

[173] Jubi Taneja, Zhengyang Liu, and John Regehr. “Testing Static Analyses for Precision and

Soundness”. In: Proceedings of the 18th ACM/IEEE International Symposium on Code

Generation and Optimization. CGO 2020. San Diego, CA, USA: Association for Computing

Machinery, 2020, pp. 81–93. isbn: 9781450370479. doi: 10.1145/3368826.3377927.

[174] Rody Kersten, Kasper Luckow, and Corina S. Păsăreanu. “POSTER: AFL-Based Fuzzing

for Java with Kelinci”. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer

and Communications Security. CCS ’17. Dallas, Texas, USA: Association for Computing

Machinery, 2017, pp. 2511–2513. isbn: 9781450349468. doi: 10.1145/3133956.3138820.

[175] Fabio Petroni et al. “Language Models as Knowledge Bases?” In: Proceedings of the 2019

Conference on Empirical Methods in Natural Language Processing and the 9th International

Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong, China:

Association for Computational Linguistics, Nov. 2019, pp. 2463–2473. doi: 10.18653/v1/D19-

1250.

[176] Adam Paszke et al. “PyTorch: an imperative style, high-performance deep learning library”.

In: Proceedings of the 33rd International Conference on Neural Information Processing

Systems. Red Hook, NY, USA: Curran Associates Inc., 2019.

[177] Wasi Ahmad et al. “Unified Pre-training for Program Understanding and Generation”.

In: Proceedings of the 2021 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies. Ed. by Kristina Toutanova

170

https://arxiv.org/abs/2203.03850
https://arxiv.org/abs/2009.08366
https://arxiv.org/abs/2009.08366
https://arxiv.org/abs/2009.08366
https://doi.org/10.1145/3368826.3377927
https://doi.org/10.1145/3133956.3138820
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250

et al. Online: Association for Computational Linguistics, June 2021, pp. 2655–2668. doi:

10.18653/v1/2021.naacl-main.211.

[178] Xin Wang et al. SynCoBERT: Syntax-Guided Multi-Modal Contrastive Pre-Training for Code

Representation. Accessed: 2024-04-03. 2021. arXiv: 2108.04556 [cs.CL].

[179] Shangqing Liu et al. “ContraBERT: Enhancing Code Pre-Trained Models via Contrastive

Learning”. In: Proceedings of the 45th International Conference on Software Engineer-

ing. ICSE ’23. Melbourne, Victoria, Australia: IEEE Press, 2023, pp. 2476–2487. isbn:

9781665457019. doi: 10.1109/ICSE48619.2023.00207.

[180] Chris Cummins et al. ProGraML: Graph-based Deep Learning for Program Optimization and

Analysis. Accessed: 2024-04-03. 2020. arXiv: 2003.10536 [cs.LG].

[181] Kevin Musgrave, Serge Belongie, and Ser-Nam Lim. “A metric learning reality check”. In:

European Conference on Computer Vision. Springer. 2020, pp. 681–699.

[182] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. Accessed:

2024-04-03. 2017. arXiv: 1412.6980 [cs.LG].

[183] Kyriakos Ispoglou et al. “FuzzGen: Automatic Fuzzer Generation”. In: 29th USENIX Security

Symposium (USENIX Security 20). USENIX Association, Aug. 2020, pp. 2271–2287. isbn:

978-1-939133-17-5. url: https://www.usenix.org/conference/usenixsecurity20/

presentation/ispoglou.

[184] Hamel Husain et al. CodeSearchNet Challenge: Evaluating the State of Semantic Code Search.

Accessed: 2024-04-03. 2020. arXiv: 1909.09436 [cs.LG].

[185] Chenxiao Liu et al. “Code Execution with Pre-trained Language Models”. In: Findings of the

Association for Computational Linguistics: ACL 2023. Ed. by Anna Rogers, Jordan Boyd-

Graber, and Naoaki Okazaki. Toronto, Canada: Association for Computational Linguistics,

July 2023, pp. 4984–4999. doi: 10.18653/v1/2023.findings-acl.308.

171

https://doi.org/10.18653/v1/2021.naacl-main.211
https://arxiv.org/abs/2108.04556
https://doi.org/10.1109/ICSE48619.2023.00207
https://arxiv.org/abs/2003.10536
https://arxiv.org/abs/1412.6980
https://www.usenix.org/conference/usenixsecurity20/presentation/ispoglou
https://www.usenix.org/conference/usenixsecurity20/presentation/ispoglou
https://arxiv.org/abs/1909.09436
https://doi.org/10.18653/v1/2023.findings-acl.308

[186] Dhavleesh Rattan, Rajesh Bhatia, and Maninder Singh. “Software clone detection: A sys-

tematic review”. In: Information and Software Technology 55.7 (2013), pp. 1165–1199. issn:

0950-5849. doi: https://doi.org/10.1016/j.infsof.2013.01.008. url: https:

//www.sciencedirect.com/science/article/pii/S0950584913000323.

[187] Aman Madaan et al. Language Models of Code are Few-Shot Commonsense Learners. Ac-

cessed: 2024-04-03. 2022. arXiv: 2210.07128 [cs.CL].

[188] Alec Radford et al. “Language models are unsupervised multitask learners”. In: OpenAI blog

1.8 (2019), p. 9.

[189] Brian A Wichmann et al. “Industrial perspective on static analysis”. In: Software Engineering

Journal 10.2 (1995), p. 69.

[190] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. “Learning to Represent

Programs with Graphs”. In: International Conference on Learning Representations. 2018.

url: https://openreview.net/forum?id=BJOFETxR-.

[191] Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural Information Pro-

cessing Systems. Ed. by I. Guyon et al. Vol. 30. Curran Associates, Inc., 2017. url: https://

proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-

Paper.pdf.

[192] Mark Chen et al. “Evaluating Large Language Models Trained on Code”. In: CoRR

abs/2107.03374 (2021). arXiv: 2107.03374. url: https://arxiv.org/abs/2107.03374.

[193] Vincent J. Hellendoorn et al. “Global Relational Models of Source Code”. In: International

Conference on Learning Representations. 2020. url: https://openreview.net/forum?id=

B1lnbRNtwr.

[194] Saket Khatiwada, Miroslav Tushev, and Anas Mahmoud. “Just enough semantics: An

information theoretic approach for IR-based software bug localization”. In: Information and

Software Technology 93 (2018), pp. 45–57. issn: 0950-5849. doi: https://doi.org/10.1016/

172

https://doi.org/https://doi.org/10.1016/j.infsof.2013.01.008
https://www.sciencedirect.com/science/article/pii/S0950584913000323
https://www.sciencedirect.com/science/article/pii/S0950584913000323
https://arxiv.org/abs/2210.07128
https://openreview.net/forum?id=BJOFETxR-
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=B1lnbRNtwr
https://openreview.net/forum?id=B1lnbRNtwr
https://doi.org/https://doi.org/10.1016/j.infsof.2017.08.012
https://doi.org/https://doi.org/10.1016/j.infsof.2017.08.012

j.infsof.2017.08.012. url: https://www.sciencedirect.com/science/article/pii/

S0950584916302269.

[195] Max Schäfer et al. “An Empirical Evaluation of Using Large Language Models for Automated

Unit Test Generation”. In: IEEE Transactions on Software Engineering 50.1 (2024), pp. 85–

105. doi: 10.1109/TSE.2023.3334955.

[196] Sungmin Kang, Juyeon Yoon, and Shin Yoo. “Large Language Models are Few-Shot Testers:

Exploring LLM-Based General Bug Reproduction”. In: Proceedings of the 45th International

Conference on Software Engineering. ICSE ’23. Melbourne, Victoria, Australia: IEEE Press,

2023, pp. 2312–2323. isbn: 9781665457019. doi: 10.1109/ICSE48619.2023.00194.

[197] Ke Wang, Rishabh Singh, and Zhendong Su. Dynamic Neural Program Embedding for

Program Repair. Accessed: 2024-04-03. 2018. arXiv: 1711.07163 [cs.AI].

[198] Ke Wang and Zhendong Su. “Blended, precise semantic program embeddings”. In: Pro-

ceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and

Implementation. PLDI 2020. London, UK: Association for Computing Machinery, 2020,

pp. 121–134. isbn: 9781450376136. doi: 10.1145/3385412.3385999.

[199] Jordan Henkel et al. “Code vectors: understanding programs through embedded abstracted

symbolic traces”. In: Proceedings of the 2018 26th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering. ES-

EC/FSE 2018. Lake Buena Vista, FL, USA: Association for Computing Machinery, 2018,

pp. 163–174. isbn: 9781450355735. doi: 10.1145/3236024.3236085.

[200] Yangruibo Ding et al. “TRACED: Execution-aware Pre-training for Source Code”. In:

Proceedings of the 46th IEEE/ACM International Conference on Software Engineering. ICSE

’24. New York, NY, USA: Association for Computing Machinery, 2024. isbn: 9798400702174.

doi: 10.1145/3597503.3608140.

[201] Eui Chul Shin, Illia Polosukhin, and Dawn Song. “Improving Neural Program Synthesis with

Inferred Execution Traces”. In: Advances in Neural Information Processing Systems. Ed. by

173

https://doi.org/https://doi.org/10.1016/j.infsof.2017.08.012
https://doi.org/https://doi.org/10.1016/j.infsof.2017.08.012
https://www.sciencedirect.com/science/article/pii/S0950584916302269
https://www.sciencedirect.com/science/article/pii/S0950584916302269
https://doi.org/10.1109/TSE.2023.3334955
https://doi.org/10.1109/ICSE48619.2023.00194
https://arxiv.org/abs/1711.07163
https://doi.org/10.1145/3385412.3385999
https://doi.org/10.1145/3236024.3236085
https://doi.org/10.1145/3597503.3608140

S. Bengio et al. Vol. 31. Curran Associates, Inc., 2018. url: https://proceedings.neurips.

cc/paper_files/paper/2018/file/7776e88b0c189539098176589250bcba-Paper.pdf.

[202] Xinyun Chen, Dawn Song, and Yuandong Tian. “Latent Execution for Neural Program

Synthesis Beyond Domain-Specific Languages”. In: Advances in Neural Information Processing

Systems. Ed. by M. Ranzato et al. Vol. 34. Curran Associates, Inc., 2021, pp. 22196–

22208. url: https : / / proceedings . neurips . cc / paper _ files / paper / 2021 / file /

ba3c95c2962d3aab2f6e667932daa3c5-Paper.pdf.

[203] Yonghui Wu et al. Google’s Neural Machine Translation System: Bridging the Gap between

Human and Machine Translation. Accessed: 2024-04-03. 2016. arXiv: 1609.08144 [cs.CL].

[204] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive Representation Distillation.

Accessed: 2024-04-03. 2022. arXiv: 1910.10699 [cs.LG].

[205] Kaiming He et al. “Momentum Contrast for Unsupervised Visual Representation Learning”.

In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

2020, pp. 9726–9735. doi: 10.1109/CVPR42600.2020.00975.

[206] James M Lucas and Michael S Saccucci. “Exponentially weighted moving average control

schemes: properties and enhancements”. In: Technometrics 32.1 (1990), pp. 1–12.

[207] Alexis Conneau and Guillaume Lample. “Cross-lingual language model pretraining”. In:

Proceedings of the 33rd International Conference on Neural Information Processing Systems.

Red Hook, NY, USA: Curran Associates Inc., 2019.

[208] Yaqin Zhou et al. “Devign: effective vulnerability identification by learning comprehensive

program semantics via graph neural networks”. In: Proceedings of the 33rd International Con-

ference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates

Inc., 2019.

[209] Junjie Huang et al. “CoSQA: 20,000+ Web Queries for Code Search and Question Answering”.

In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics

and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long

174

https://proceedings.neurips.cc/paper_files/paper/2018/file/7776e88b0c189539098176589250bcba-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/7776e88b0c189539098176589250bcba-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/ba3c95c2962d3aab2f6e667932daa3c5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/ba3c95c2962d3aab2f6e667932daa3c5-Paper.pdf
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1910.10699
https://doi.org/10.1109/CVPR42600.2020.00975

Papers). Ed. by Chengqing Zong et al. Online: Association for Computational Linguistics,

Aug. 2021, pp. 5690–5700. doi: 10.18653/v1/2021.acl-long.442.

[210] Laurens van der Maaten and Geoffrey Hinton. “Visualizing Data using t-SNE”. In: Journal

of Machine Learning Research 9.86 (2008), pp. 2579–2605. url: http://jmlr.org/papers/

v9/vandermaaten08a.html.

[211] Tianyu Gao, Xingcheng Yao, and Danqi Chen. “SimCSE: Simple Contrastive Learning of

Sentence Embeddings”. In: Online and Punta Cana, Dominican Republic: Association for

Computational Linguistics, Nov. 2021, pp. 6894–6910. doi: 10.18653/v1/2021.emnlp-

main.552.

[212] Yangruibo Ding et al. “Towards Learning (Dis)-Similarity of Source Code from Program

Contrasts”. In: Proceedings of the 60th Annual Meeting of the Association for Computa-

tional Linguistics (Volume 1: Long Papers). Dublin, Ireland: Association for Computational

Linguistics, May 2022, pp. 6300–6312. doi: 10.18653/v1/2022.acl-long.436.

[213] Xiaonan Li et al. “CodeRetriever: A Large Scale Contrastive Pre-Training Method for Code

Search”. In: Proceedings of the 2022 Conference on Empirical Methods in Natural Language

Processing. Ed. by Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang. Abu Dhabi, United

Arab Emirates: Association for Computational Linguistics, Dec. 2022, pp. 2898–2910. doi:

10.18653/v1/2022.emnlp-main.187.

[214] Yue Wang et al. “CodeT5+: Open Code Large Language Models for Code Understanding

and Generation”. In: Proceedings of the 2023 Conference on Empirical Methods in Natural

Language Processing. Ed. by Houda Bouamor, Juan Pino, and Kalika Bali. Singapore:

Association for Computational Linguistics, Dec. 2023, pp. 1069–1088. doi: 10.18653/v1/

2023.emnlp-main.68.

[215] Xiaonan Li et al. “Soft-Labeled Contrastive Pre-Training for Function-Level Code Represen-

tation”. In: Findings of the Association for Computational Linguistics: EMNLP 2022. Ed. by

Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang. Abu Dhabi, United Arab Emirates:

175

https://doi.org/10.18653/v1/2021.acl-long.442
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2022.acl-long.436
https://doi.org/10.18653/v1/2022.emnlp-main.187
https://doi.org/10.18653/v1/2023.emnlp-main.68
https://doi.org/10.18653/v1/2023.emnlp-main.68

Association for Computational Linguistics, Dec. 2022, pp. 118–129. doi: 10.18653/v1/2022.

findings-emnlp.9.

[216] Chunqiu Steven Xia et al. “Fuzz4All: Universal Fuzzing with Large Language Models”. In:

Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. ICSE

’24. ¡conf-loc¿, ¡city¿Lisbon¡/city¿, ¡country¿Portugal¡/country¿, ¡/conf-loc¿: Association for

Computing Machinery, 2024. isbn: 9798400702174. doi: 10.1145/3597503.3639121. url:

https://doi.org/10.1145/3597503.3639121.

[217] Ruijie Meng et al. “Large language model guided protocol fuzzing”. In: Proceedings of the

31st Annual Network and Distributed System Security Symposium (NDSS). 2024.

[218] Jueon Eom, Seyeon Jeong, and Taekyoung Kwon. CovRL: Fuzzing JavaScript Engines with

Coverage-Guided Reinforcement Learning for LLM-based Mutation. Accessed: 2024-05-08.

2024. arXiv: 2402.12222 [cs.CR].

[219] Chenyuan Yang et al. White-box Compiler Fuzzing Empowered by Large Language Models.

Accessed: 2024-05-08. 2023. arXiv: 2310.15991 [cs.SE].

[220] Hugo Touvron et al. Llama 2: Open Foundation and Fine-Tuned Chat Models. Accessed:

2024-05-08. 2023. arXiv: 2307.09288 [cs.CL].

176

https://doi.org/10.18653/v1/2022.findings-emnlp.9
https://doi.org/10.18653/v1/2022.findings-emnlp.9
https://doi.org/10.1145/3597503.3639121
https://doi.org/10.1145/3597503.3639121
https://arxiv.org/abs/2402.12222
https://arxiv.org/abs/2310.15991
https://arxiv.org/abs/2307.09288

	Abstract
	Acknowledgments
	Introduction
	Greybox fuzzing
	Improving fuzzing performance using principled techniques
	Specialized fuzzing for the LLVM backend
	Enhancing program understanding using fuzzer generated test cases

	Integrity: finding integer errors by targeted fuzzing
	Introduction
	Design
	Exploitation
	Exploration

	Implementation
	Evaluation
	Juliet test suite
	Real world applications
	Which non-crashing error is harmful?
	Comparison with Angora + UBSan
	Instrumentation reduction

	Related work
	Detecting integer overflow
	Coverage-directed fuzzers
	Bug-directed fuzzers

	Valkyrie: improving fuzzing performance using principled techniques
	Introduction
	Background and motivation
	Design
	Collision-free context-sensitive branch counting
	Compensated mutation assisted solver
	Proactive bug exploitation

	Evaluation
	Magma benchmark
	Real-world open-source programs
	Effectiveness of deterministic branch counting
	Effectiveness of deterministic solver
	Bug finding ability of Valkyrie
	Summary

	Discussion
	Unsolved predicates
	Bug detection
	Branch counting effectiveness

	Related work
	Branch counting methods
	Predicate Solving Methods
	Targeted fuzzers
	Machine learning based fuzzers

	IRFuzzer: specialized fuzzing for LLVM backend code generation
	Introduction
	Background
	LLVM
	Coverage guided fuzzing
	Challenges in compiler fuzzing

	Design
	LLVM IR mutation
	Matcher table feedback

	Implementation
	Evaluation
	Baseline comparison
	Comparison with end-to-end fuzzers
	Individual contributions
	Bug categories and analysis
	Bugs case study

	Related work

	Understanding programs by exploiting fuzzer generated test cases
	Introduction
	Related work
	Code representation learning
	Fuzzing

	Method
	Fuzzing for obtaining inputs and outputs
	Model
	Prompting

	Experimental results
	Clone detection results
	Code classification results
	Ablation study
	Data scale
	Case study

	Limitations

	Code representation pre-training with complements from fuzzer generated test cases
	Introduction
	Related work
	Code representation pre-training
	Fuzzing code corpus
	Static and dynamic information modeling
	Model training and inference

	Experiments
	Code representation learning
	Ablation study

	Future work and limitations

	Conclusion
	Improving fuzzing performance using principled techniques
	Specialized fuzzing for the LLVM backend
	Enhancing program understanding using fuzzer generated test cases
	Future work

