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Abstract

Sustaining a robust metabolic network requires a balanced and fully functioning proteome.

In addition to amino acids, many enzymes require cofactors (coenzymes and engrafted

prosthetic groups) to function properly. Extensively validated resource allocation models,

such as genome-scale models of metabolism and gene expression (ME-models), have the

ability to compute an optimal proteome composition underlying a metabolic phenotype,

including the provision of all required cofactors. Here we apply the ME-model for Escherichia

coli K-12 MG1655 to computationally examine how environmental conditions change the

proteome and its accompanying cofactor usage. We found that: (1) The cofactor require-

ments computed by the ME-model mostly agree with the standard biomass objective func-

tion used in models of metabolism alone (M-models); (2) ME-model computations reveal

non-intuitive variability in cofactor use under different growth conditions; (3) An analysis of

ME-model predicted protein use in aerobic and anaerobic conditions suggests an enrich-

ment in the use of peroxyl scavenging acids in the proteins used to sustain aerobic growth;

(4) The ME-model could describe how limitation in key protein components affect the meta-

bolic state of E. coli. Genome-scale models have thus reached a level of sophistication

where they reveal intricate properties of functional proteomes and how they support different

E. coli lifestyles.

Author summary

Escherichia coli is capable of growing in many environments, each of which requires a dif-

ferent collection of enzymes to metabolize the nutrients within that environment. Each

individual enzyme requires its own set of amino acids and oftentimes cofactors, which are

accessory molecules essential for the enzyme to function. Thus, the composition of the
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micronutrients (amino acids, cofactors, etc.) within a cell will differ depending on its met-

abolic needs. The presented work is the first effort to employ metabolic models to probe

the connection between E. coli’s diverse growth environments and its biomass composi-

tion. We first show how differences in model-predicted enzyme use for aerobic or anaero-

bic growth results in distinct amino acid and cofactor usage. Alternatively, we show that

the metabolic models can predict how modifying the cell’s biomass composition will affect

growth. For example, by modeling the exposure of E. coli to trimethoprim or sulfamethox-

azole—two antibiotics that target folate (vitamin B9) synthesis—we predicted how E. coli
could adapt to grow under folate-limited conditions. This work demonstrates how models

can be used to study antibiotic resistance of drugs that target amino acid or cofactor

synthesis.

Introduction

Genome-scale metabolic models (M-model) are established approach for studying an organ-

ism’s metabolic capabilities. M-models have shown significant success in predicting the meta-

bolic capabilities of a cell by integrating all the experimentally determined enzymatic reactions

taking place in an organism [1–4]. These predictions are based on the stoichiometric con-

straints of the organism’s metabolic network and its metabolic interactions with the environ-

ment. Additionally, M-models often rely on an empirically derived biomass objective function

which relates the growth rate of the simulation to the biosynthesis of all major biosynthetic

building blocks needed to synthesize RNA, protein, and other macromolecules [5].

The use of this biomass objective function, however, implies that the abundance of all

major components in a cell does not change based on growth rate or condition. In actuality,

the macromolecular composition of a cell is highly dependent on its specific growth environ-

ment. This variability is due to the fact that the macromolecular composition of a cell is a func-

tion of the specific collection of proteins used to sustain growth in a particular environment. A

key component of synthesizing a functional proteome—along with translating the amino acid

chain and folding the peptides into their proper 3D structure—involves equipping enzymes

with the necessary prosthetic groups and coenzymes. These accessory enzyme cofactors often

drive the chemical conversions at the heart of an enzyme’s activity, making their presence

essential for detectable catalytic activity [6,7]. The functions of some cofactors, such as flavins

and iron-sulfur clusters, are so essential for core metabolism that their activity can be traced

back to the beginning of life [8]. Thus, ensuring that all coenzymes and prosthetic groups are

available to enzymes is essential for any robustly growing organism. The scarcity of one or

more of the essential micronutrients can have a profound impact on the metabolic state of an

organism, such as the disruption in energy metabolism and lactate secretion that is seen in E.

coli growing in iron-limited stress conditions [9].

Despite their importance in sustaining metabolism, cofactor biosynthesis is not modeled

mechanistically in M-models. This is due to the fact that cofactors are either enzyme prosthetic

groups and thus have no modeled metabolic function (pyridoxine, biotin, etc.) or can be recy-

cled (NAD, folates, etc.), meaning there is no metabolic process driving their biosynthesis.

Thus, cofactors have often been incorporated into the biomass objective function to force the

essential biosynthetic activity of enzymes forming these cofactors [5]. Biomass objective func-

tions have been studied for M-models of various bacterial and archaea species providing

insight into the essentiality of individual cofactors in prokaryotes [10]. However, even when

included in the biomass objective function, a negligible amount of each cofactor is required to
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be synthesized for growth, causing cofactor synthesis to have little impact on metabolism over-

all. Furthermore, the specific requirement of the cofactors in the M-model is condition inde-

pendent. Modeling efforts have been made to assess how the biomass function composition

(lipid and amino acid composition) affects metabolic fluxes [11], but a mechanistic model has

not been employed to relate cofactor demand to condition-dependent metabolism.

To that end, various methods have extended M-models to explicitly include the synthesis

and use of the gene expression machinery, including coenzymes and prosthetic groups [12].

These modeling methods include resource balance analysis (RBA) [13,14], whole-cell model-

ing [15], flux-balance models that incorporate expression, thermodynamics, and resource allo-

cation constraints (ETFL) [16], and other resource allocation models [17]. One such method

to model resource allocation is termed genome-scale models of Metabolism and Expression

(ME-models) [18–20], and they are capable of explicitly computing over 80% of the proteome

by mass in enterobacteria. ME-models can provide a wide range of new biological insight

including direct computations of proteome allocation [21], the effect of temperature on pro-

teostasis [22], and the effect of membrane and volume constraints on metabolism [19]. Fur-

thermore, their ability to compute the optimal proteome abundances for a given condition

make them ideal for mechanistically integrating transcriptomics and proteomics data. Here we

employ the E. coli ME-model [23] to examine the relationship between growth condition and

cellular biomass composition. This work presents the first effort to apply a resource allocation

model to comprehensively study the role that essential cofactors and other essential biomass

components play in defining the metabolic capabilities of E. coli.

Results

Modifications to the ME-model

E. coli K-12 MG1655, along with many other microbes, are capable of de novo synthesizing all

of the essential cofactors needed for growth listed in Table 1. Thus, the pathways that require

these cofactors are included in both the E. coli K-12 MG1655 M-model (iJO1366 [24]) and

ME-model (iJL1678b [23]). Unlike M-models, however, the activity of the prosthetic groups in

Table 1 is also explicitly modeled by the ME-model, as iJL1678b mechanistically describes all

the processes required to produce a functioning proteome (Fig 1). Thus, for a particular enzy-

matic reaction to carry flux in the model, not only must the amino acids be synthesized in the

proper proportions, but enzyme prosthetic groups must also be available. The condition-spe-

cific synthesis demand of both prosthetic groups and amino acids can therefore be assessed

through ME-model computation.

Unlike prosthetic groups, coenzymes such as NAD and folates act as carriers that donate and

accept energy (e.g., electrons carried by NAD(H)) or chemical moieties (e.g., single carbon

groups carried by folates). These coenzymes are therefore regenerated throughout the network,

meaning the synthesis of a coenzyme is not directly coupled to its activity. As is the case in M-

models, coenzyme synthesis is not required for growth in the default ME-model and therefore

is included as part of a “biomass constituent demand” reaction [23], analogous to the biomass

objective function in M-models. iJL1678b was thus modified to account for the activity of these

coenzymes and to couple coenzyme synthesis to its metabolic function (see Materials and

Methods). Coenzymes were included in the analysis if they met 2 criteria: 1) they function in

the cell exclusively as coenzymes within the E. coli metabolic network (i.e., cannot act as a meta-

bolic precursor for biosynthesis) 2) they (or a very close derivative) are included in the E. coli
wild-type biomass objective function. The activity of each coenzyme that met these criteria was

determined based on the flux through the reaction that synthesizes the coenzyme (Table A in

S1 Text, see Materials and Methods). Using this modified ME-model, growth simulations
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could effectively de novo predict the composition of E. coli K-12 MG1655’s appropriate biomass

objective function in a condition dependent manner.

Validating ME-model predictions of biomass composition

With the model extensions outlined above, the ME-model was simulated under aerobic and

anaerobic glucose M9 minimal media in silico conditions. The computed synthesis fluxes of

amino acids, prosthetic groups, and coenzymes were then growth normalized to enable a com-

parison with the iJO1366 biomass objective function (Fig 2). The computed amino acid syn-

thesis fluxes quantitatively agreed with the empirically derived numbers contained in the

iJO1366 wild-type biomass objective function (BOF) and showed slight differences between

aerobic and anaerobic simulations. This agreement suggests that amino acid composition of

the proteome under multiple growth conditions is generally well represented by the BOF,

though subtle changes in the amino acid composition could be observed depending on the

growth condition.

Unlike amino acids, many of the cofactor requirements in the iJO1366 BOF are not derived

from empirical data. In many cases, they are simply included with small coefficient values to

ensure that the essential cofactor biosynthetic pathways are active in M-model computations

[5,10]. Therefore, the quantitative comparison of the ME-model predicted cofactor usage to

the M-model biomass objective function does not provide a high-confidence validation. This

comparison does, however, confirm that the ME-model predicts the synthesis of most cofac-

tors within a reasonable range, which is suitable for this study.

The predictions of cofactor composition provided by the ME-model are dependent on both

the activity of specific reactions in a computed solution as well as the kinetic parameters used to

couple reaction flux to enzyme abundance [27]. Thus, a stark difference in cofactor demand is

expected when comparing two different computed metabolic states, which is observed for aerobic

and anaerobic states (Fig 2). Reactions that are less utilized in anaerobic conditions, such as oxi-

dative phosphorylation reactions and pyruvate dehydrogenase, see a decrease in their accompa-

nying cofactors, ubiquinone 8 (q8) and thiamine diphosphate (thmpp, vitamin B1), respectively.

There are a few discrepancies between the iJO1366 BOF and ME-model predicted biomass

compositions. For example, bis-molybdopterin guanine dinucleotide (bmocogdp), adenosyl-

Table 1. Summary of the vitamins synthesized by E. coli K-12 MG1655.

Cofactor Name (BIGG ID) General Function Cellular Role Essentiality from Xavier

et al. [10]

Vitamin

Thiamin (thm) Energy metabolism Prosthetic group Universal B1

Riboflavin (ribflv) Redox metabolism Prosthetic group/redox

coenzyme

Universal (FMN, FAD) B2

Niacin (nac) NAD(P) precursor, electron carrier Coenzyme Universal (NAD, NADP) B3

Pantothenoic Acid (pnto__R) CoA precursor, fatty acid biosynthesis Coenzyme Universal (CoA) B5

Pyridoxine (pydxn) Versatile coenzyme that participates in transamination,

decarboxylation, etc.

Prosthetic group Universal B6

Biotin (btn) Required for carboxylase activity Prosthetic group Conditional B7

Folate (thf) Carrier of single carbon moieties Coenzyme Universal B9

Cobalamin (cbl1) Certain isomerases and methyltransferases, not essential in

E. coli K-12 MG1655

Prosthetic group Conditional B12

Menaquinone 8 (mqn8) Electron carrier Coenzyme Conditional (quinones) K2

Ubiquinone 8 (q8) Electron carrier Coenzyme Conditional (quinones) -

2-Demethylmenaquinone 8

(2dmmq8)

Electron carrier Coenzyme Conditional (quinones) -

https://doi.org/10.1371/journal.pcbi.1007817.t001
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cobalamin (adocbl, vitamin B12), 2-demethyl menaquinone 8 (2dmmq8), and menaquinone

8 (mqn8, vitamin K2) are included in the wild-type objective function but have a predicted

ME-model synthesis of zero for aerobic and anaerobic conditions. This discrepancy is partly

because the wild-type objective function is formulated based on the wild-type biomass content

of the cell, not the minimal set of biomass metabolites required for growth (represented by the

“core” biomass objective function). The ME-model solutions, however, will predict only the

minimal cellular content required for growth. Bis-molybdopterin guanine dinucleotide and

adenosyl-cobalamin cofactors are not required for growth on glucose M9 minimal media and

are thus not synthesized by the ME-model. 2-demethyl menaquinone 8 and menaquinone 8

are ancient naphthoquinone electron carriers that have been mostly associated with anaerobic

growth, as opposed to ubiquinone 8 which is mostly used for aerobic growth [28]. The ME-

model predicts the sole use of ubiquinone 8 for aerobic conditions and incorrectly predicts the

use of no quinones for anaerobic growth. Naphthoquinones and ubiquinones have notably

Fig 1. Difference in M- and ME-model scope. M-models offer a means to comprehensively probe the capabilities of enzymatic conversions possible within an organism.

This modeling method is based on the stoichiometry of reactions in the organism’s metabolic network and can be used to predict possible growth supporting nutrient

environments (demonstrated in Monk et al.) [25,26]. By mechanistically accounting for enzyme synthesis and activity, ME-models add additional information about the

proteome sustaining the growth state. Thus, ME-models offer the ability to study how proteome allocation and cofactor use affects condition-dependent growth. Due to

the inconsistency in how the terms cofactor, prosthetic group, and coenzyme are used in the scientific literature, the definitions applied in this study are listed in the

table.

https://doi.org/10.1371/journal.pcbi.1007817.g001
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Fig 2. Comparison of growth-normalized ME- and M-model computed amino acid and cofactor synthesize rates. The ME-model biomass synthesis demands

are a function of the predicted intracellular fluxes provided by the simulation, whereas the M-model values are provided by the biomass objective function. ME-

model predictions are shown for aerobic and anaerobic in silico conditions.

https://doi.org/10.1371/journal.pcbi.1007817.g002
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different redox potentials and therefore resource allocation models that incorporate thermody-

namics could have the potential to address this discrepancy more closely [16].

Growth condition-dependent biomass composition

The modified iJL1678b model was used to simulate growth on 557 nitrogen, phosphorus, sul-

fur, and carbon sources under aerobic and anaerobic in silico conditions (S1 Table). For these

simulations, glucose M9 minimal media was used as the base in silico condition. Then the base

carbon, sulfur, phosphorus, or nitrogen source was supplemented with one of the 557 metabo-

lites, and the model was optimized. To facilitate a comparison across a diverse set of in silico
conditions, the computed biosynthesis demand of each cofactor and amino acid was normal-

ized by the total protein biomass predicted for the condition (see Materials and Methods).

The computed micronutrient demands from the 592 growth-supporting simulations effec-

tively provided condition-dependent biomass compositions predicted de novo from the

ME-model.

Variability was observed for many of the micronutrients depending on nutrient source and

aerobicity. This variability was particularly notable for the cofactors, which were found to vary

by several orders of magnitude (Fig 3A, using BiGG IDs [29] shown in Table B in S1 Text).

The range of amino acid biosynthetic demands across conditions, however, were much nar-

rower. The standard deviation of each micronutrient was further observed as a function of

nutrient source and aerobicity (Fig 3B). These computations showed that the variation in

cofactor use was largely driven by the carbon and nitrogen sources used for the simulations.

Carbon and nitrogen sources also displayed greater variation in the computed growth rates

(Fig A in S1 Text, refer to Materials and Methods for a discussion of model parameterization

and growth rates). Little variation in micronutrient demand and growth rate was observed

among phosphorus and sulfur sources. Furthermore, Fig 3B suggests that aerobic and anaero-

bic conditions show a similar amount of biomass composition variability.

Furthermore, a subset of the enzyme cofactors was computationally predicted to be

required only in specific growth conditions. The use of some of these cofactors (e.g., ubiqui-

none-8, protoheme (pheme), and heme O (hemeO)) differed based on the aerobicity of the

model simulations (Fig B in S1 Text). This behavior is expected for these cofactors, as they are

primarily required for aerobic respiration functions. The demand of other cofactors such as

bis-molybdopterin guanine dinucleotide (bmocogdp), adenosylcobalamin (adocbl), and siro-

heme (sheme) are specific to individual growth conditions. For example, bis-molybdopterin

guanine dinucleotide is a molybdopterin-containing prosthetic group required for numerous

membrane-bound oxidoreductases used for respiration on non-oxygen electron acceptors and

for detoxifying oxidation products of biotin and methionine [30]. Among the oxidoreductases

that require bis-molybdopterin guanine dinucleotide is formate dehydrogenase (FDH) [31]

used by the in silico cell when the primary carbon source is a derivative of formate, glycine, or

a purine. FDH is also required for the catabolism of urate [32,33]. Adenosyl-cobalamin is com-

putationally required for growth only when the carbon or nitrogen source is ethanolamine, as

adenosyl-cobalamin in an essential cofactor for ethanolamine ammonia-lyase, the first step of

ethanolamine catabolism. Siroheme is computationally required in most growth conditions

for the activity sulfite reductase. (SULR), an essential step in the reduction of sulfate to hydro-

gen sulfide for sulfur assimilation. Growth on other sulfur sources, such as cysteine and cyste-

ine derivatives, is computationally predicted to alleviate the need for siroheme.

Characterizing the aerobic and anaerobic growth by predicted biomass composition.

The differences in biomass composition between aerobic and anaerobic growth conditions

were also analyzed. PCA decomposition of the computed micronutrient demands showed that

PLOS COMPUTATIONAL BIOLOGY Model predictions of condition-dependent biomass composition
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aerobic (filled points) and anaerobic (outlined points) simulations could be differentiated

along principal component 1 (Fig 4). Principal component 1 thus describes the biomass con-

stituents with demands that differ based on the aerobicity of simulation. Further investigation

of the vector weightings of principle component 1 suggested a general decrease in cofactor use

for anaerobic conditions relative to aerobic growth. The cofactors most negatively weighted in

component 1 (favored in aerobic conditions) include ubiquinone-8 (q8), protoheme (pheme),

and hemo O (hemeO) which are cofactors highly involved in the electron transport chain in

aerobic conditions. Alternatively, one of the few cofactors that was positively weighted in com-

ponent 1 (favored under anaerobic conditions) was NAD. This observation is expected given

the increase in the rate of glycolysis (and thus NAD turnover) observed in fermentative anaer-

obic metabolism. The distinct increase in the use of NAD in anaerobic solutions is shown as a

histogram in Fig 4.

Some amino acids appeared to be preferentially utilized in aerobic conditions. Three of the

four most negatively weighted amino acids in component 1 are L-histidine, L-tryptophan, and

L-methionine, suggesting the proteomes used in aerobic conditions are enriched in these

amino acids. These three amino acids are peroxyl scavenging amino acids, and thus proteins

enriched in these amino acids could have more redox reactivity [34]. In fact, it has been

hypothesized that the diversification of amino acids was in part driven by the presence of oxy-

gen and its oxidative properties [34]. It is therefore unsurprising that aerobic metabolic states

Fig 3. Variation in the synthesis demand (i.e., the amount of each micronutrient that must be synthesized to sustain growth) of enzyme cofactors and amino acids

by growth condition. A) The maximum and minimum biosynthesis demand for each amino acid and cofactor across all growth conditions. B) Stacked bar chart showing

the standard deviation in normalized synthesis demand of each nutrient source and aerobicity.

https://doi.org/10.1371/journal.pcbi.1007817.g003
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would utilize proteins containing these three amino acids. Furthermore, L-histidine is effective

at forming metal ion ligation sites for metalloproteins [35]. Metalloproteins, particularly those

with iron metal centers [36], are needed to sustain the increase in redox reaction activity that

occurs in aerobic conditions. Therefore, the increase in L-histidine residues-containing pro-

teins could reflect the increase in metalloprotein use in aerobic growth.

Principal component 2, on the other hand, does not appear to be associated with the aerobi-

city of the simulation but it is well correlated with growth rate (ρ = -0.50, p-value = 2.99 x

10−40). This suggests that this component could capture the components in the model that are

still dependent on growth rate even following the normalization by computed protein

biomass.

Fig 4. Differences in the synthesis demand of enzyme cofactors and amino acids by aerobicity. PCA analysis of all computed growth conditions reveals aerobic

(filled points) and anaerobic (outlined points) growth conditions can be resolved by principal component 1. The protein biomass normalized micronutrient demand

for L-histidine and NAD are shown next to their component 1 weighting. The two histograms demonstrate the clear separation in aerobicity-dependent demand of

these micronutrients. A table of the principal component vector weightings is shown on the right.

https://doi.org/10.1371/journal.pcbi.1007817.g004
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Clustering growth conditions by predicted biomass composition. Having characterized

the major differences in computed biomass compositions during aerobic and anaerobic

growth, we next focused on more deeply characterizing differences among the aerobic in silico
growth conditions. It was shown in Fig 3 that the nutrient source variation was similar for aer-

obic and anaerobic conditions, and thus only aerobic conditions were used to simplify analy-

sis. First, univariate analysis was performed to identify growth conditions that resulted in

uniquely high or low biomass demand needed for growth. The normalized biomass demands

for the 330 aerobic growth supporting conditions were z-scored and absolute values greater

than 3 were selected as outliers. The heatmap in Fig 5A shows these identified outliers as well

as the accompanying log2 fold change from the mean.

Multiple growth conditions computationally required a much higher folate (thf, vitamin

B9) biosynthesis demand than the remaining conditions. These conditions include glycine

(gly) and prolylglycine (progly) as carbon or nitrogen sources, formate (for) and L-cysteine-

L-glycine (cgly) as carbon sources, and L-threonine O-3-phosphate (thrp) and L-threonine

(thr__L) as nitrogen sources. On average these growth conditions require 8-fold higher folate

demand than the average of all remaining conditions. Wild-type E. coli cannot utilize formate

or glycine as sole carbon sources, but E. coli growth using formate has been engineered by

overexpressing formate-tetrahydrofolate ligase along with other components of the folate and

serine cycles of Methylobacterium extorquens AM1. Further adaptive laboratory evolution of

this strain showed that mutations in the rate limiting step of folate biosynthesis was necessary

for robust growth, presumably to increase the rate of folate synthesis [37]. The model suggests

that growth on glycine would require a notable increase in the activity of the folate-dependent

glycine cleavage system, which could potentially be obtained through adaptive laboratory

evolution.

Additionally, computed pyridoxal phosphate (pydx5p, vitamin B6) demand is significantly

higher (6.6-fold higher than remaining nutrient sources) when 2,3-diaminopropionate

(23dappa), D-serine (ser__D), putrescine (ptrc), agmatine (agm), L-arginine (arg__L), D-cys-

teine (cys__D) are carbon sources and when L-ornithine (orn) is a nitrogen or carbon source.

Thus, growth on this set of nutrients uniquely requires high activity of enzymes with pyridoxal

phosphate prosthetic groups. Four nutrient sources (L-arginine, putrescine, agmatine, and

L-ornithine) are key precursors or intermediates in L-arginine or L-ornithine metabolism.

Pyridoxal phosphate has an important role in amino acid metabolism as a common cofactor

for transaminase reactions [38]. Therefore, it is logical that pyridoxal phosphate will be highly

involved in the metabolism of L-arginine (a urea cycle component) and other derivatives that

are highly involved in nitrogen metabolism, particularly in humans.

The remaining three growth conditions (D-serine, D-cysteine, and 2,3-diaminopropionate)

are outliers due to activity of unique pyridoxal phosphate-containing enzymes such as 2,3-dia-

minopropionate ammonia lyase (DAPAL) [39], D-serine deaminase (SERD_D) [40], and D-

cysteine desulfhydrase (CYSDDS) [41] which are required to metabolize 2,3-diaminopropio-

nate, D-serine, and D-cysteine, respectively. Interestingly, only the D-stereoisomers of serine

and cysteine are outliers for pyridoxal phosphate synthesis. For the case of serine, serine race-

mase (SERR) is not present in E. coli to convert D- to L- serine directly, causing these two ste-

reoisomers to be metabolized differently. L-serine, in fact, is an outlier for a different set of

biomass components than D-serine including coenzyme A (coa, vitamin B5) and 4Fe-4S

(4fe4s) iron sulfur clusters. This is because L-serine deaminase (SERD_L) requires a 4Fe-4S

iron sulfur cluster cofactor instead of pyridoxal phosphate. Alternatively, D-cysteine has a high

computational pyridoxal phosphate requirement due to D-cysteine desulfhydrase (CYSDDS)

activity. L-cysteine desulfhydrase (CYSDS) also requires pyridoxal phosphate for activity [42]
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but is incorrectly annotated in the ME-model. Correcting this annotation error will be a prior-

ity in future model development.

Also of note are 10 fatty acid carbon sources (e.g., hexanoate (hxa), tetradecenoate (ttdcea),

etc.) which are distinguished by the high demand for riboflavin (ribflv, vitamin B2) needed for

growth on these substrates. Wild-type E. coli K-12 MG1655 is capable of growing only on long

chain fatty acids, though E. coli mutants exist that are capable of growing on short and medium

Fig 5. Characterization of aerobic condition-dependent biomass compositions. A). Outlier analysis was performed to find growth conditions with z-scored biomass

constituent synthesis demands with absolute values greater than 3. The colors on the heatmap denote the log2 fold change of the outlier compared to the average

biosynthetic demand of all aerobic growth conditions. B) Hierarchical clustering using Ward’s linkage was performed to divide the in silico growth conditions into 6

clusters based on their predicted biomass demands. All 6 clusters contained multiple biomass demand values that were statistically different (p< 1x10-5 by Wilcoxon rank-

sum test and log2 fold change>0.15) compared to the non-cluster demands. The significant log2 fold changes are shown comparing growth conditions in each cluster

compared to the average for growth conditions not in the cluster. Error bars represent the standard deviation of the log2 fold change values.

https://doi.org/10.1371/journal.pcbi.1007817.g005
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chain fatty acid as well [43]. This is largely dependent on the strain’s basal expression of β-oxi-

dation enzymes, which often require FAD, a riboflavin containing cofactor.

The outlier conditions in Fig 5A were removed and the remaining aerobically computed

biomass compositions were normalized by the maximum cofactor or amino acid demand (see

Materials and methods). Using hierarchical clustering, these 274 growth supporting condi-

tions were partitioned into 6 groups based on the similarity of their computed biomass compo-

sition (Table 2). The differences in the biomass composition of the growth conditions could

be examined in greater detail if the number of clusters was further increased, but 6 clusters was

found to optimize the gap statistic for the computed solutions [44]. The 6 clusters range in size

from 12 to 161 growth conditions and represent groups of conditions that exhibit distinct in
silico biomass compositions. The biomass compositions for the conditions within each of these

clusters could therefore be considered different enough to necessitate a unique biomass objec-

tive function (S2 Table). The clusters were characterized by performing a Wilcoxon rank-sum

test on the micronutrient demands of conditions in the cluster compared to all conditions out-

side of the cluster. The biomass demands that were significantly different (p< 1x10-5 and

absolute log2 fold change >0.15 relative to the non-cluster average) for each cluster are sum-

marized in Fig 5B.

The largest cluster was cluster 3 which contained growth substrates computationally metab-

olized with proteome compositions similar to the default growth environment (i.e., glucose

M9 in silico media). This cluster represented the growth substrates that are predicted to have a

minimal impact on the computed biomass composition relative to the default growth state.

Cluster 3 included the vast majority of the phosphorus and sulfur sources, consistent with the

observation in Fig 3B that these sources cause little variability in the biomass composition.

These are the conditions in which a biomass objective function obtained from growth on glu-

cose M9 minimal media would be most applicable.

Interestingly, nucleotide nutrient sources partition into three different clusters (Clusters 2,

5, and 6 Table 2). Cluster 2 contained 41 growth conditions, most of which were conditions

where the primary carbon source is a nucleotide or nucleotide derivative. Cluster 5, however,

contained 12 growth conditions where the primary carbon source is the deoxynucleotide ver-

sion of many of the nucleotides in Cluster 2. Despite the minor difference in chemical struc-

ture for the metabolites in the two clusters, they differed greatly in the biomass constituents

used for their metabolism (Fig 5B). For example, the deoxynucleotide required ~50–25% less

thiamine diphosphate (thmpp, vitamin B1), riboflavin (ribflv, vitamin B2), and biotin (btn,

vitamin B7) due to lessened computed pyruvate hydrogenase and lipid metabolism activity

when metabolizing deoxynucleotides. Metabolizing the deoxynucleotides in Cluster 5 addi-

tionally required a proteome containing 18% more L-cysteine content than the proteome of

metabolites outside of Cluster 5. This increase in L-cysteine content implies that metabolizing

Table 2. Clustering characterization.

Cluster Cluster summary Number of conditions in

cluster

1 TCA cycle intermediates and derivatives 29

2 Nucleotides and derivatives as carbon sources 41

3 Glucose and other nutrients with minimal impact on biomass composition

(most phosphorus and sulfur sources)

161

4 D-alanine and misc. non-glucose sugars 13

5 Deoxynucleotides as carbon sources 12

6 Nucleotides and derivatives as nitrogen sources 18

https://doi.org/10.1371/journal.pcbi.1007817.t002
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the metabolites in Cluster 5 requires the expression of more proteins with active sites involved

in proton shuttling or covalent catalysis through nucleophilic interactions [45,46].

Multi-scale analysis of micronutrient limitation in E. coli metabolism

As demonstrated above, resource allocation models such as ME-models offer the ability to

comprehensively study how the metabolic needs of an organism can directly influence its use

of essential biomass constituents. Alternatively, ME-models can be applied to understand the

opposite relationship: the relationship between biomass constituent availability and the meta-

bolic state of the organism. These biomass components, particularly cofactors, are involved in

many important cellular functions, thus their activity can have a profound impact on the cellu-

lar phenotype [47,48].

Despite the importance of these biomass components for a cell’s metabolic sustainability,

many strains of E. coli have lost the ability to synthesize some of these cofactors and amino

acids throughout their evolutionary history [49]. The evolution of auxotrophy is commonly

observed in clinical strains of E. coli, and thus understanding the metabolic consequences of

auxotrophy can lead to a better understanding of the interactions between pathogenic

microbes and their host environment [26,50]. The ME-model was applied to study E. coli
auxotrophs under in silico conditions where availability of the essential metabolite is limited.

The predicted cellular response was studied on three levels of resolutions: a phenotypic level, a

subsystem level, and by observing changes in the activity of individual reactions.

Characterizing growth under micronutrient limitation. There are multiple physiologi-

cal scenarios where bacteria could face growth in excess or limitation of one of the essential

biomass constituents studied here. Conditions of nutrient excess (Fig C in S1 Text) can

include growth in the human gut, while nutrient limited conditions can include growth under

antibiotic stress (e.g., growth in the presence of antifolates) or auxotrophic growth in condi-

tions of nutrient limitation. Given E. coli’s notable capabilities to evolve and adapt to growth

under stress, we apply the ME-model to predict how E. coli could adapt to nutrient limitation

by reallocating its existing proteome.

Reactions were knocked out that rendered the ME-model auxotrophic for 11 essential bio-

mass components (Table C in S1 Text). To gauge how nutrient limitation of these biomass

components impacts growth, in silico growth rates were observed as a function of the uptake

rate of each of the 11 essential amino acids or cofactors. Optimal growth rates were computed

as a function of essential metabolite availability. For these simulations, the uptake rate of each

essential metabolite was determined at the maximum growth rate. The auxotrophic model was

then optimized with the metabolite uptake rate constrained to values ranging from 100% to

5% the uptake rate at maximum growth. The simulations predicted that, while amino acid lim-

itation elicited a consistent response in the computed growth rate, there was notable variability

in the response of the in silico cells depending on the essential cofactor (Figs D and E in S1

Text). Most notably, tetrahydrofolate auxotrophs were predicted to be particularly growth sen-

sitive to drops in tetrahydrofolate availability below the optimal amount (Fig 6). This drop in

growth occurred in three phases, one in which growth drops gradually to 55.5% of the maxi-

mum as folate availability decreased to 65.0% of the optimal. The second phase consists of the

sharp decrease in growth from 55.5% to 28.9% of the maximum growth as folate availability

decreased from 65.0% to 60.0%. The third phase displayed a gradual decrease in the computed

growth rate to 0.

The change in protein allocation underlying folate limitation and the resulting drop in

growth rate was also assessed. This analysis was performed using ME-model predictions of

protein abundance and the metabolic subsystem annotations provided by iJO1366. In the first
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Fig 6. Computed growth rate in auxotrophic models of iJL1678b when the availability of the essential cofactor in the legend is limited. For each of the 7

metabolites shown in the legend, reactions were imposed into the model creating an auxotrophy for that metabolite (Table C in S1 Text). Top panel: The growth

rate is plotted as a function of the availability of the metabolite indicated in the legend. The percent change in the growth rate compared to the wild-type

(prototroph) model is shown. Middle panel: Model-predicted metabolic changes in response to tetrahydrofolate limitation. The mass fraction of protein allocated

to each metabolic subsystem during tetrahydrofolate limitation is shown (columns) Bottom panel: Heatmap showing fraction of maximum growth rate-

normalized reaction fluxes. The 15 reactions with the highest standard deviation are shown and are highlighted in red if the reaction relies on folate activity. If

reaction fluxes were perfectly correlated throughout the tetrahydrofolate limitation simulations, then these reactions were grouped together. The number in

parentheses shows the number of other reactions represented by the row. The right column depicts a simulation with the highest folate availability and the left

column depicts a simulation with the lowest folate availability.

https://doi.org/10.1371/journal.pcbi.1007817.g006
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phase of folate limitation, the protein allocated to various subsystems was highly variable, with

the amount of protein allocated to purine and pyrimidine metabolism notably increasing.

During the drop in growth in phase 2, protein allocation to methionine metabolism, cofactor

biosynthesis, and purine and pyrimidine biosynthesis dropped and was reallocated to glycoly-

sis and glycerophospholipid metabolism. The third phase was marked by relatively consistent

protein allocation with a minor increase in methionine metabolism and cofactor biosynthesis.

The ME-model thus shows a disruption (and thus a compensation by increasing protein allo-

cation) in purine and methionine metabolism, which is known to occur upon treatment with

antifolate antibiotics [51,52].

Using the ME-model, metabolic changes can be observed at a higher resolution by charac-

terizing the individual reactions driving the global changes described above (Fig 6). For exam-

ple, when folate is optimally available, the phosphoribosylglycinamide formyltransferase

(GARFT, purN) reaction is active which uses formyl-tetrahydrofolate (10fthf) to produce

N2-Formyl-N1-(5-phospho-D-ribosyl)glycinamide (fgam), an important intermediate in

purine biosynthesis. Folate limitation results in a transition to using GAR transformylase-T

(GAR, purT), an ATP driven reaction that can produce fgam from free formate. The shift from

using GARFT to GART likely contributes to the increase in protein allocation needed for

purine metabolism. Folate inhibitors have in fact been shown to significantly impact the activ-

ity of this metabolic node, leading to rapid accumulation of N1-(5-Phospho-D-ribosyl)glycina-

mide (gar) and depletion of fgam [53]. However, purN activity was shown to be essential for E.

coli survival during antifolate treatment, potentially to recycle tetrahydrofolate from the cellu-

lar reserves of formyl-tetrahydrofolate. Additionally, the large drop in growth observed in

phase 2 of Fig 6 coincides with a decrease in 3-methyl-2-oxobutanoate hydroxymethyltransfer-

ase (MOHMT), an essential step in coenzyme A biosynthesis.

Alternatively, a similar analysis was performed for niacin limited growth states (Figs F and

G in S1 Text). In a niacin limited environment, the cellular pools of reduced and oxidized

NADP and NAD would be highly depleted. Therefore, an optimally growing cell in this state

would likely have to redirect flux into pathways that maximize growth while requiring less

activity of these two cofactors. iJL1678b predicts that the optimal approach to optimize NAD

and NADP use is: 1) to upregulate the Entner-Doudoroff pathway (bypassing lower glycolysis)

2) to increase activity of the glyoxylate shunt to donate electrons to the quinate pool via malate

and 3) to donate electrons to the quinate pool via formate (pyruvate formate lyase (PFL) and

formate dehydrogenase (FDH4pp)) and lactate (D-lactate dehydrogenase (LDH_D2)). It is

unclear the metabolic route to donate electrons from formate is feasible since PFL is typically

only expressed in anaerobic conditions in E. coli K-12 MG1655 [54]. Given the rise in antimi-

crobial resistance to some antifolates antibiotics, understanding metabolic strategies for toler-

ating nutrient stress could provide insight how to combat this resistance through possible

combinatorial therapies or to potentiate the antibiotic’s activity.

Discussion

The presented work provides the first computational study applying resource allocation mod-

els to highlight the systems-level interplay between E. coli’s condition-dependent metabolic

state and biomass composition. The ME-model of E. coli K-12 MG1655 is one such resource

allocation model suited to examine this relationship, given that it inherently provides predic-

tions of the functional proteome required to sustain a particular metabolic phenotype, includ-

ing cofactor usage. Using the iJL1678b model, simulations were performed on all growth

supporting nutrients in the model, demonstrating notable variability in the computed biomass

composition depending on the specific growth environment. To determine the metabolic
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consequences of acquired auxotrophy (or nutrient limitation through antibiotic treatment),

the relationship between metabolism and cofactor or amino acid availability was examined.

These results provide insight into the metabolic deficiencies that could accompany a drop in

the availability of essential nutrients.

After validating the ME-model predicted biomass objective functions (Fig 2), simulations

were performed for growth on 557 nutrient conditions aerobically and anaerobically, thus pro-

viding 592 de novo predictions of condition-dependent biomass objective functions. Analysis

of these biomass compositions suggested that unique biomass functions could be appropriate

for anaerobic and aerobic simulations. For example, an aerobic objective function could

include an increase in the abundance of peroxyl scavenging amino acids such as L-histidine,

L-tryptophan, and L-methionine along with an increase in most enzyme cofactors, with NAD

being the exception (Fig 4).

ME-models can predict new methods for improving the efficacy of antibiotics either by

manipulating the microenvironment of the bacteria or suggesting combinatorial drug thera-

pies. Given that B vitamins, such as folate (vitamin B9), provide good targets for antibiotic

treatments, the model predictions of growth condition-dependent cofactor demand could be

useful for designing cellular microenvironments to increase or decrease the susceptibility of E.

coli to some antimicrobials. For example, trimethoprim and sulfamethoxazole are antibiotics

that inhibit the synthesis of tetrahydrofolate via inhibition of dihydrofolate reductase and dihy-

dropteroate synthetase, respectively. Trimethoprim is commonly used to treat urinary tract

infections, but ~30% of infections in the US have been shown to be resistant to this antibiotic

[55]. The analysis in Fig 5 suggests that treating E. coli with antifolates in a glycine rich envi-

ronment could potentiate the effect of the antibiotics by increasing the cellular demand of

folates. Likewise, the predicted metabolic response to folate limitation could suggest combina-

torial therapies for antimicrobials that target the production of these cofactors. The results in

Fig 6 predict that disrupting the activity of the phosphoribosylglycinamide metabolic node

could improve the efficacy when treating E. coli infections with antifolates.

The presented work contains several notable limitations. First, the computed synthetic

demand for each biomass component was normalized by the computed protein biomass. This

normalization works well for amino acids and prosthetic groups, whose synthetic demands are

a function of protein abundance. However, coenzyme (e.g., NAD, folate, etc.) usage is not nec-

essarily a function of protein abundance. Future work should be done to normalize and ana-

lyze these classes of biomass components separately to gain a more nuanced view of their

condition-dependent activity. Second, a pseudo-kinetic term with a constant value was applied

to couple the activity of coenzymes to their biosynthetic demand. This approach was sufficient

for the current study as we sought to characterize only the differences in cofactor use across

conditions. Future studies to characterize coenzyme demand at a quantitative level should esti-

mate this term from experimental data and perform a sensitivity analysis around the estimated

value. Last, this work provides a new look into the inherent coupling between cell synthesized

cofactors and metabolism. However, a separate integral part of a functional proteome is the

metal ion cofactors that form the enzymatic center of many enzymes. Due to the interchange-

ability of some ion cofactors and intricate mechanisms underlying enzyme mismetallation,

fully examining metal ion cofactors was out of the scope of this study [56]. Future work is war-

ranted to study the metalloproteome and how metal ion availability shapes metabolism.

Lastly, the predictions from this computational study are well suited for future experimental

validation. First, many of the cofactor and amino acid auxotrophs are the product of only sin-

gle gene knockouts in E. coli K-12 MG1655, meaning these strains either already exist in single

knockout libraries [57] or can be easily synthesized. Adaptive laboratory evolution of these

auxotrophs in low concentrations of their essential nutrients could provide valuable insight
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into mechanisms of E. coli adaptation to re-invest its protein toward pathways that maximize

growth, while minimizing cofactor use. Second, this work provides predictions of ways to

manipulate the growth environment of E. coli to potentiate the effect of antibiotics. Future test-

ing of these predictions in vivo would further underscore the utility of this modeling method.

Materials and methods

Software

All constraint-based modeling analyses were performed using Python 3.6 and the COBRApy

software [58]. ME-model operations were performed using the COBRAme framework [23].

Since ME-models are ill-scaled [18], qMINOS [59,60], which supports quad (128-bit) precision,

was used for ME-model simulations. M-model simulations were performed using the iJO1366

model of E. coli K-12 MG1655 metabolism [24], since iJL1678b-ME was reconstructed using this

M-model of E. coli as a scaffold. All M-model optimizations were performed using the Gurobi

(Gurobi Optimization, Inc., Houston, TX) linear programming (LP) solver.

ME-model modifications for modeling cofactor activity

The iJL1678b ME-model of E. coli K-12 MG1655 was used for all simulations in this study. The

activity of enzyme prosthetic groups is inherent in the ME-model formulation [18], which uses

coupling constraints to connect the synthesis of individual enzymes (including their accessory

groups) to the reactions they catalyze. Coenzymes (NAD, folates, etc.) have some of the same prop-

erties as enzymes in that they are recycled within the network in both M- and ME- models. These

models therefore ensure that the coenzymes are balanced, but they do not require the biosynthesis

of these coenzymes. As a result, models have incorporated these coenzymes in the biomass objec-

tive function to force their biosynthesis in a way that is independent of their use in the model.

The iJL1678b ME-model was thus modified to couple the biosynthesis of coenzymes to their

activity, similar to other enzymes in the model. This is accomplished using a pseudo-kinetic term

to relate the concentration of the coenzyme pool to its activity in the metabolic network, which

we will simply call kactivity. This term represents a very rough estimation of the first-order kinetics

of the reactions involving the coenzyme in the network. This term was chosen as 1x104 hr -1 and

applied to each reaction where the uncharged version of the coenzyme acts as a reactant:

1þ
mu
kactivity

 !

uncharged coenzymeþmet 1! charged coenzymeþmet 2

With the addition of this new constraint the formal ME-model optimization problem

becomes the following:

max
v;m

m
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For more details and discussion on the ME-model formulation and theory please refer to

[18].

For this study, we were interested in the relative activity of these coenzymes across varying

growth conditions. It was thus important that the computed coenzyme abundances were

within a reasonable range (Fig 2), but quantitative accuracy of the abundance predictions was

not necessary. Therefore, accounting for the complex kinetics of the coenzymes throughout

the reconstruction was outside the scope of this work. This simple approach effectively relates

the rate of coenzyme biosynthesis with its metabolic activity and growth rate.

Changes and corrections were applied to iJL1678b-ME to allow the model to be used for

this study. First, the biomass constituent demand reaction flux was set to zero. This reaction is

included in the default ME-model to account for the synthesis of many of the coenzymes

whose activity is modeled directly with the modified ME-model. It is thus no longer necessary.

Furthermore, the uptake of any metal cation not included in M9 media was constrained to

zero. Malate oxidase was made irreversible as suggested in Monk et al. [25]. Corrections were

further made to iJL1678b-ME to more accurately compute prosthetic group use. For example,

acetolactate synthase (ilvH and ilvI) and 2-oxoglutarate dehydrogenase (sucA, sucB, and lpd)

were updated to correctly require FAD and thiamine diphosphate as prosthetic groups.

ME-model parameterization and optimization procedure

The keff coupling parameters [18] for each metabolic reaction in iJL1678b-ME were deter-

mined based on a machine learning approach that incorporated enzyme features, network

properties, and proteomics data to predict keffs [27,61] from a set of in vivo derived enzyme

turnover rates [62]. In order to capture the high catalytic efficiency and encourage model
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activity of pyruvate dehydrogenase the keff of this reaction was set to 1500 s-1 [63]. The remain-

ing keffs for expression machinery and transport reactions were set to a default value of 65 s-1

[18], as parameterizing these processes were out of the scope of the machine learning

approach. The unmodeled protein value [18] was set to 0 for all simulations. Setting this

parameter to 0 allows analysis of poor nutrient sources but results in a computed growth rate

in aerobic glucose M9 media of 1.75 hr -1 (Fig A in S1 Text), well above the observed growth

rate of E. coli. However, since this parameter is similarly applied to all simulations, the high

computed growth rates will not impact the relative changes in computed proteome composi-

tions seen in the various growth conditions. All remaining parameters were set to their default

values [23].

Due to non-linearities stemming from the enzyme coupling constraints, ME-models cannot

be optimized directly as an LP and thus are solved using a binary search algorithm. To perform

the binary search, the following procedure was implemented. First, each symbolic coefficient

(growth rate, μ) or reaction bound was compiled into a function by sympy [64]. Then, an LP

file was created for the qMINOS solver with all of these symbolic functions evaluated to 0.

While the model will always be feasible at 0, starting with a known feasible point results in a

basis which can be used to speed up the next run. Afterwards, for each instance of the binary

search in μ, values in the LP were replaced by recomputed ones, and the problem was resolved

using the last feasible basis. This approach was continued until the difference in maximum fea-

sible μ and minimum infeasible μ was within the defined tolerance (1x10-13).

Computing biomass constituent demand

The amino acid biosynthetic demand was determined based on the translation flux and amino

acid composition of each protein in the model. Prosthetic group demand was determined

based on the sum of the complex formation fluxes of all enzyme complexes containing the

appropriate prosthetic group. Due to the high participation of coenzymes throughout the met-

abolic network, the biosynthetic flux of each cofactor was determined based on the activity of a

reaction in its biosynthetic pathway (Table A in S1 Text). This was sufficient given that each

cofactor contains one direct biosynthetic pathway. For the comparison of the ME-model pre-

dictions to the iJO1366 biomass objective function, the computed biomass constituent demand

values were normalized by the computed growth rate. For the analysis of conditions dependent

biomass compositions, however, the computed biomass demands were normalized by the total

protein biomass of the simulation, provided by the “protein_biomass_to_biomass” reaction in

the ME-model solution. Global RNA and protein abundances in the ME-model are governed

by an empirical RNA-to-protein ratio constraint that is a nonlinear function of growth rate

[18]. Since amino acid and prosthetic group abundances will be highly correlated with total

protein content, this normalization by protein biomass is required.
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protein, by mass, allocated to each metabolic subsystems when an excess of the essential nutri-

ent listed in the legend is provided. The log2 fold change in growth-normalized protein alloca-

tion relative to the wild-type model is shown. A subsystem was included if at least one

auxotroph saw a log2 fold change with an absolute value greater than 0.2. Fig D in S1 Text.

ME-model computed growth rates of E. coli auxotrophs in conditions of nutrient limitation.

Fig E in S1 Text. Principal component analysis of metabolic flux predictions from excess to

10% of the optimal availability of the amino acids and cofactors in Fig D. The points corre-

sponding to the metabolite shown above the plot are highlighted in red, and the point size cor-

responds to the fraction of the optimal availability (large points represent high availability and

vice versa). Fig F in S1 Text. Model-predicted metabolic changes in response to niacin limita-

tion. Top panel: Fraction of protein allocated to each metabolic subsystem by mass for varying

niacin availability (columns) Bottom panel: Heatmap of reaction fluxes normalized by the

maximum flux value for the reaction across all levels of niacin limitation. The 20 reactions

with the highest standard deviation are shown and are highlighted in red if the reaction relies

on NAD or NADP activity. If reaction fluxes were perfectly correlated throughout the niacin

limitation simulations, then these reactions were grouped together. The number in parenthesis

shows the number of other reactions represented by the row. The rightmost column depicts a

simulation with the highest niacin availability and the leftmost column depicts a simulation

with the lowest niacin availability. Fig G in S1 Text: Comparison of the computed metabolic

flux state in optimal niacin availability and the flux state with 10% of the optimal niacin avail-

ability. Reactions are shown in green or red if they are upregulated or downregulated in lim-

ited niacin availability, respectively.
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29. King ZA, Lu J, Dräger A, Miller P, Federowicz S, Lerman JA, et al. BiGG Models: A platform for integrat-

ing, standardizing and sharing genome-scale models. Nucleic Acids Res. 2016; 44: D515–22. https://

doi.org/10.1093/nar/gkv1049 PMID: 26476456

30. Ezraty B, Bos J, Barras F, Aussel L. Methionine sulfoxide reduction and assimilation in Escherichia coli:

new role for the biotin sulfoxide reductase BisC. J Bacteriol. 2005;187. https://doi.org/10.1128/JB.187.

1.231-237.2005 PMID: 15601707

31. Axley MJ, Grahame DA. Kinetics for formate dehydrogenase of Escherichia coli formate-hydrogen-

lyase. J Biol Chem. 1991; 266. Available: https://pubmed.ncbi.nlm.nih.gov/1906883/ PMID: 1906883

32. Xi H, Schneider BL, Reitzer L. Purine Catabolism in Escherichia coli and Function of Xanthine Dehydro-

genase in Purine Salvage. J Bacteriol. 2000; 182: 5332. https://doi.org/10.1128/JB.182.19.5332-5341.

2000 PMID: 10986234

33. Iwadate Y, Kato JI. Identification of a Formate-Dependent Uric Acid Degradation Pathway in Escheri-

chia coli. J Bacteriol. 2019; 201. https://doi.org/10.1128/JB.00573-18 PMID: 30885932

34. Granold M, Hajieva P, Toşa MI, Irimie F-D, Moosmann B. Modern diversification of the amino acid rep-

ertoire driven by oxygen. Proc Natl Acad Sci U S A. 2018; 115: 41–46. https://doi.org/10.1073/pnas.

1717100115 PMID: 29259120

35. McCleverty JA, Meyer TJ. Comprehensive Coordination Chemistry II: From Biology to Nanotechnology.

Newnes; 2003.

36. Wayne Outten ECT F. Iron-Based Redox Switches in Biology. Antioxid Redox Signal. 2009; 11: 1029.

https://doi.org/10.1089/ars.2008.2296 PMID: 19021503

37. Kim S-J, Yoon J, Im D-K, Kim YH, Oh M-K. Adaptively evolved Escherichia coli for improved ability of

formate utilization as a carbon source in sugar-free conditions. Biotechnology for Biofuels. 2019. https://

doi.org/10.1186/s13068-019-1547-z PMID: 31497067

38. John RA. Pyridoxal phosphate-dependent enzymes. Biochimica et Biophysica Acta (BBA)—Protein

Structure and Molecular Enzymology. 1995; 1248: 81–96. https://doi.org/10.1016/0167-4838(95)

00025-p PMID: 7748903

PLOS COMPUTATIONAL BIOLOGY Model predictions of condition-dependent biomass composition

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007817 June 23, 2021 22 / 24

https://doi.org/10.1186/s12918-014-0110-6
http://www.ncbi.nlm.nih.gov/pubmed/25227965
https://doi.org/10.1038/ncomms1928
https://doi.org/10.1038/ncomms1928
http://www.ncbi.nlm.nih.gov/pubmed/22760628
https://doi.org/10.1128/AEM.02246-14
http://www.ncbi.nlm.nih.gov/pubmed/25304508
https://doi.org/10.1073/pnas.1705524114
http://www.ncbi.nlm.nih.gov/pubmed/29073085
https://doi.org/10.1371/journal.pcbi.1006302
http://www.ncbi.nlm.nih.gov/pubmed/29975681
https://doi.org/10.1038/msb.2011.65
https://doi.org/10.1038/msb.2011.65
http://www.ncbi.nlm.nih.gov/pubmed/21988831
https://doi.org/10.1038/nbt.3956
http://www.ncbi.nlm.nih.gov/pubmed/29020004
https://doi.org/10.1073/pnas.1307797110
https://doi.org/10.1073/pnas.1307797110
http://www.ncbi.nlm.nih.gov/pubmed/24277855
https://doi.org/10.1038/s41467-018-07652-6
http://www.ncbi.nlm.nih.gov/pubmed/30531987
https://doi.org/10.1073/pnas.1909987116
http://www.ncbi.nlm.nih.gov/pubmed/31767748
https://doi.org/10.1093/nar/gkv1049
https://doi.org/10.1093/nar/gkv1049
http://www.ncbi.nlm.nih.gov/pubmed/26476456
https://doi.org/10.1128/JB.187.1.231-237.2005
https://doi.org/10.1128/JB.187.1.231-237.2005
http://www.ncbi.nlm.nih.gov/pubmed/15601707
https://pubmed.ncbi.nlm.nih.gov/1906883/
http://www.ncbi.nlm.nih.gov/pubmed/1906883
https://doi.org/10.1128/JB.182.19.5332-5341.2000
https://doi.org/10.1128/JB.182.19.5332-5341.2000
http://www.ncbi.nlm.nih.gov/pubmed/10986234
https://doi.org/10.1128/JB.00573-18
http://www.ncbi.nlm.nih.gov/pubmed/30885932
https://doi.org/10.1073/pnas.1717100115
https://doi.org/10.1073/pnas.1717100115
http://www.ncbi.nlm.nih.gov/pubmed/29259120
https://doi.org/10.1089/ars.2008.2296
http://www.ncbi.nlm.nih.gov/pubmed/19021503
https://doi.org/10.1186/s13068-019-1547-z
https://doi.org/10.1186/s13068-019-1547-z
http://www.ncbi.nlm.nih.gov/pubmed/31497067
https://doi.org/10.1016/0167-4838%2895%2900025-p
https://doi.org/10.1016/0167-4838%2895%2900025-p
http://www.ncbi.nlm.nih.gov/pubmed/7748903
https://doi.org/10.1371/journal.pcbi.1007817


39. Uo T, Yoshimura T, Nishiyama T, Esaki N. Gene cloning, purification, and characterization of 2,3-diami-

nopropionate ammonia-lyase from Escherichia coli. Biosci Biotechnol Biochem. 2002; 66: 2639–2644.

https://doi.org/10.1271/bbb.66.2639 PMID: 12596860

40. Reed TA, Schnackerz KD. The kinetics of Schiff-base formation during reconstitution of D-serine apo-

dehydratase from Escherichia coli with pyridoxal 5’-phosphate. Eur J Biochem. 1979; 94: 207–214.

https://doi.org/10.1111/j.1432-1033.1979.tb12887.x PMID: 374078

41. Nagasawa T, Ishii T, Kumagai H, Yamada H. D-Cysteine desulfhydrase of Escherichia coli. Purification

and characterization. Eur J Biochem. 1985; 153: 541–551. https://doi.org/10.1111/j.1432-1033.1985.

tb09335.x PMID: 3908101

42. Awano N, Wada M, Mori H, Nakamori S, Takagi H. Identification and functional analysis of Escherichia

coli cysteine desulfhydrases. Appl Environ Microbiol. 2005; 71: 4149–4152. https://doi.org/10.1128/

AEM.71.7.4149-4152.2005 PMID: 16000837

43. Salanitro JP, Wegener WS. Growth of Escherichia coli on Short-Chain Fatty Acids: Growth Characteris-

tics of Mutants. Journal of Bacteriology. 1971. pp. 885–892. https://doi.org/10.1128/jb.108.2.885-892.

1971 PMID: 4942768

44. Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data set via the gap statistic.

Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2001. pp. 411–423. https://

doi.org/10.1111/1467-9868.00293

45. Holliday GL, Mitchell JBO, Thornton JM. Understanding the Functional Roles of Amino Acid Residues

in Enzyme Catalysis. Journal of Molecular Biology. 2009. pp. 560–577. https://doi.org/10.1016/j.jmb.

2009.05.015 PMID: 19447117

46. Ribeiro AJM, Tyzack JD, Borkakoti N, Holliday GL, Thornton JM. A global analysis of function and con-

servation of catalytic residues in enzymes. J Biol Chem. 2020; 295: 314–324. https://doi.org/10.1074/

jbc.REV119.006289 PMID: 31796628

47. Holm AK, Blank LM, Oldiges M, Schmid A, Solem C, Jensen PR, et al. Metabolic and transcriptional

response to cofactor perturbations in Escherichia coli. J Biol Chem. 2010; 285: 17498–17506. https://

doi.org/10.1074/jbc.M109.095570 PMID: 20299454

48. Herrington MB, Chirwa NT. Growth properties of a folA null mutant of Escherichia coli K12. Can J Micro-

biol. 1999; 45: 191–200. PMID: 10408091

49. Bouvet O, Bourdelier E, Glodt J, Clermont O, Denamur E. Diversity of the auxotrophic requirements in

natural isolates of Escherichia coli. Microbiology. 2017; 163: 891–899. https://doi.org/10.1099/mic.0.

000482 PMID: 28651684

50. Seif Y, Choudhary KS, Hefner Y, Anand A, Yang L, Palsson BO. Metabolic and genetic basis for auxot-

rophies in Gram-negative species. Proc Natl Acad Sci U S A. 2020. https://doi.org/10.1073/pnas.

1910499117 PMID: 32132208

51. Rohlman CE, Matthews RG. Role of purine biosynthetic intermediates in response to folate stress in

Escherichia coli. J Bacteriol. 1990; 172: 7200–7210. https://doi.org/10.1128/jb.172.12.7200-7210.1990

PMID: 2254281

52. Kwon YK, Higgins MB, Rabinowitz JD. Antifolate-Induced Depletion of Intracellular Glycine and Purines

Inhibits Thymineless Death in E. coli. ACS Chemical Biology. 2010. pp. 787–795. https://doi.org/10.

1021/cb100096f PMID: 20553049

53. Zampieri. Nontargeted Metabolomics Reveals the Multilevel Response to Antibiotic Perturbations. Cell

Rep. 2017; 19: 1214–1228. https://doi.org/10.1016/j.celrep.2017.04.002 PMID: 28494870

54. Sawers G, Suppmann B. Anaerobic induction of pyruvate formate-lyase gene expression is mediated

by the ArcA and FNR proteins. J Bacteriol. 1992; 174: 3474–3478. https://doi.org/10.1128/jb.174.11.

3474-3478.1992 PMID: 1592804

55. Mulder M, Verbon A, Lous J, Goessens W, Stricker BH. Use of other antimicrobial drugs is associated

with trimethoprim resistance in patients with urinary tract infections caused by E. coli. Eur J Clin Micro-

biol Infect Dis. 2019; 38: 2283–2290. https://doi.org/10.1007/s10096-019-03672-2 PMID: 31494829

56. Imlay JA. The mismetallation of enzymes during oxidative stress. J Biol Chem. 2014; 289: 28121–

28128. https://doi.org/10.1074/jbc.R114.588814 PMID: 25160623

57. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. Construction of Escherichia coli K-12

in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006; 2: 2006.0008. https://

doi.org/10.1038/msb4100050 PMID: 16738554

58. Ebrahim A, Lerman JA, Palsson BO, Hyduke DR. COBRApy: COnstraints-Based Reconstruction and

Analysis for Python. BMC Syst Biol. 2013; 7: 74. https://doi.org/10.1186/1752-0509-7-74 PMID:

23927696

PLOS COMPUTATIONAL BIOLOGY Model predictions of condition-dependent biomass composition

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007817 June 23, 2021 23 / 24

https://doi.org/10.1271/bbb.66.2639
http://www.ncbi.nlm.nih.gov/pubmed/12596860
https://doi.org/10.1111/j.1432-1033.1979.tb12887.x
http://www.ncbi.nlm.nih.gov/pubmed/374078
https://doi.org/10.1111/j.1432-1033.1985.tb09335.x
https://doi.org/10.1111/j.1432-1033.1985.tb09335.x
http://www.ncbi.nlm.nih.gov/pubmed/3908101
https://doi.org/10.1128/AEM.71.7.4149-4152.2005
https://doi.org/10.1128/AEM.71.7.4149-4152.2005
http://www.ncbi.nlm.nih.gov/pubmed/16000837
https://doi.org/10.1128/jb.108.2.885-892.1971
https://doi.org/10.1128/jb.108.2.885-892.1971
http://www.ncbi.nlm.nih.gov/pubmed/4942768
https://doi.org/10.1111/1467-9868.00293
https://doi.org/10.1111/1467-9868.00293
https://doi.org/10.1016/j.jmb.2009.05.015
https://doi.org/10.1016/j.jmb.2009.05.015
http://www.ncbi.nlm.nih.gov/pubmed/19447117
https://doi.org/10.1074/jbc.REV119.006289
https://doi.org/10.1074/jbc.REV119.006289
http://www.ncbi.nlm.nih.gov/pubmed/31796628
https://doi.org/10.1074/jbc.M109.095570
https://doi.org/10.1074/jbc.M109.095570
http://www.ncbi.nlm.nih.gov/pubmed/20299454
http://www.ncbi.nlm.nih.gov/pubmed/10408091
https://doi.org/10.1099/mic.0.000482
https://doi.org/10.1099/mic.0.000482
http://www.ncbi.nlm.nih.gov/pubmed/28651684
https://doi.org/10.1073/pnas.1910499117
https://doi.org/10.1073/pnas.1910499117
http://www.ncbi.nlm.nih.gov/pubmed/32132208
https://doi.org/10.1128/jb.172.12.7200-7210.1990
http://www.ncbi.nlm.nih.gov/pubmed/2254281
https://doi.org/10.1021/cb100096f
https://doi.org/10.1021/cb100096f
http://www.ncbi.nlm.nih.gov/pubmed/20553049
https://doi.org/10.1016/j.celrep.2017.04.002
http://www.ncbi.nlm.nih.gov/pubmed/28494870
https://doi.org/10.1128/jb.174.11.3474-3478.1992
https://doi.org/10.1128/jb.174.11.3474-3478.1992
http://www.ncbi.nlm.nih.gov/pubmed/1592804
https://doi.org/10.1007/s10096-019-03672-2
http://www.ncbi.nlm.nih.gov/pubmed/31494829
https://doi.org/10.1074/jbc.R114.588814
http://www.ncbi.nlm.nih.gov/pubmed/25160623
https://doi.org/10.1038/msb4100050
https://doi.org/10.1038/msb4100050
http://www.ncbi.nlm.nih.gov/pubmed/16738554
https://doi.org/10.1186/1752-0509-7-74
http://www.ncbi.nlm.nih.gov/pubmed/23927696
https://doi.org/10.1371/journal.pcbi.1007817


59. Yang L, Ma D, Ebrahim A, Lloyd CJ, Saunders MA, Palsson BO. solveME: fast and reliable solution of

nonlinear ME models. BMC Bioinformatics. 2016; 17: 391. https://doi.org/10.1186/s12859-016-1240-1

PMID: 27659412

60. Ma D, Yang L, Fleming RMT, Thiele I, Palsson BO, Saunders MA. Reliable and efficient solution of

genome-scale models of Metabolism and macromolecular Expression. Sci Rep. 2017; 7: 40863. https://

doi.org/10.1038/srep40863 PMID: 28098205

61. Heckmann D, Campeau A, Lloyd CJ, Phaneuf P, Hefner Y, Carrillo-Terrazas M, et al. Kinetic profiling of

metabolic specialists demonstrates stability and consistency of in vivo enzyme turnover numbers.

https://doi.org/10.1073/pnas.2001562117 PMID: 32873645

62. Davidi D, Noor E, Liebermeister W, Bar-Even A, Flamholz A, Tummler K, et al. Global characterization

of in vivo enzyme catalytic rates and their correspondence to in vitro kcat measurements. Proceedings

of the National Academy of Sciences. 2016; 113: 3401–3406. https://doi.org/10.1073/pnas.

1514240113 PMID: 26951675

63. Ebrahim A, Brunk E, Tan J, O’Brien EJ, Kim D, Szubin R, et al. Multi-omic data integration enables dis-

covery of hidden biological regularities. Nat Commun. 2016; 7: 13091. https://doi.org/10.1038/

ncomms13091 PMID: 27782110

64. Joyner D, Čertı́k O, Meurer A, Granger BE. Open source computer algebra systems: SymPy. ACM

Commun Comput Algebra. 2012; 45: 225–234.

PLOS COMPUTATIONAL BIOLOGY Model predictions of condition-dependent biomass composition

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007817 June 23, 2021 24 / 24

https://doi.org/10.1186/s12859-016-1240-1
http://www.ncbi.nlm.nih.gov/pubmed/27659412
https://doi.org/10.1038/srep40863
https://doi.org/10.1038/srep40863
http://www.ncbi.nlm.nih.gov/pubmed/28098205
https://doi.org/10.1073/pnas.2001562117
http://www.ncbi.nlm.nih.gov/pubmed/32873645
https://doi.org/10.1073/pnas.1514240113
https://doi.org/10.1073/pnas.1514240113
http://www.ncbi.nlm.nih.gov/pubmed/26951675
https://doi.org/10.1038/ncomms13091
https://doi.org/10.1038/ncomms13091
http://www.ncbi.nlm.nih.gov/pubmed/27782110
https://doi.org/10.1371/journal.pcbi.1007817



