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Abstract

The Green’s function coupled cluster (GFCC) method, originally proposed in the early 1990s,

is a powerful many-body tool for computing and analyzing the electronic structure of molecular

and periodic systems, especially when electrons of the system are strongly correlated. However, in

order for the GFCC to become a method that may be routinely used in the electronic structure

calculations, more robust numerical techniques and approximations must be employed to reduce

its extremely high computational overhead. In our recent studies, it has been demonstrated that

the GFCC equations can be solved directly in the frequency domain using iterative linear solvers,

which can be easily distributed in a massively parallel environment. In the present work, we

demonstrate a successful application of model-order-reduction (MOR) techniques in the GFCC

framework. Briefly speaking, for a frequency regime of interest which requires high resolution

descriptions of spectral function, instead of solving GFCC linear equation of full dimension for

every single frequency point of interest, an efficiently-solvable linear system model of a reduced

dimension may be built upon projecting the original GFCC linear system onto a subspace. From

this reduced order model is obtained a reasonable approximation to the full dimensional GFCC

linear equations in both interpolative and extrapolative spectral regions. Here, we show that the

subspace can be properly constructed in an iterative manner from the auxiliary vectors of the

GFCC linear equations at some selected frequencies within the spectral region of interest. During

the iterations, the quality of the subspace, as well as the linear system model, can be systematically

improved. The method is tested in this work in terms of the efficiency and accuracy of computing

spectral functions for some typical molecular systems such as carbon monoxide, 1,3-butadiene,

benzene, and adenine. As a byproduct, the reduced order model obtained by this method is also

found to provide a high quality initial guess which improves the convergence rate for the existing

iterative linear solver.
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INTRODUCTION

Green’s function formalisms[1–6] are a powerful tool for describing excitation and corre-

lation phenomena associated with molecules, clusters, nano-structures, and solids. Numer-

ous approximations and methods in the Green’s function framework have been developed

over the years. Typical developments include the outer valence Green’s function (OVGF)

method[7–10], the diagonal Green’s function approximations[11], the non-diagonal renor-

malized second-order method[12], the generalized perturbative methods[13, 14], the two-

hole-one-particle Tamm-Dancoff approximation (2h-p TDA)[15], the third-order quasipar-

ticle method[16], the algebraic-diagrammatic construction (ADC) methods[8, 17, 18], the

GW -related methods[19–24], and the Green’s function coupled cluster (GFCC) method[25–

27]. There are also efforts motivated by the development of various embedding methods,

such as dynamical mean field theories (DMFT)[28–34] and self-energy embedding theory

(SEET)[35–38], to develop efficient ways to include higher-order correlation in the Green’s

function calculation of larger systems. Many applications of these methods have been re-

ported in the literature of several research areas of computational physics, chemistry, and

materials[39–41].

In scenarios where the accurate description of many-body effects is required, only a limited

subset of the aforementioned developments may be reliably employed. One such choice

which has drawn some attention recently is the GFCC method. In essence, the GFCC

method belongs to a larger class of methods based on intermediate-state representations

(ISRs)[42, 43]. Similar to the linear response coupled cluster (LRCC)[44, 45] and equation-

of-motion coupled cluster (EOM-CC)[46–48] methods, the GFCC method employs the bi-

orthogonal formalism[49, 50] of the coupled cluster (CC) theory to express Green’s function

matrix in terms of the cluster operator and the so-called Λ operator. Practically, there

are two primary methods to numerically evaluate the CC Green’s function. The most

straightforward way is to directly diagonalize the non-Hermitian EOM-CC Hamiltonian

matrix in the (N ± 1)-particle space (i.e. ionization potential and electron attachment

EOM-CC method, or IP/EA-EOM-CC) to obtain all the eigenpairs needed to construct the

sum-over-states representation of the CC Green’s function (see Ref. 51 for more details).

As the dimension of the EOM-CC Hamiltonian matrix grows polynomially with the number

of orbitals used to describe the system, direct diagonalization via methods such as those
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provided by LAPACK and ScaLAPACK quickly become infeasible. If the spectral region of

interest is in the extreme ends of the spectrum of the EOM-CC Hamiltonian, one may utilize

standard iterative Krylov subspace methods, such as Arnoldi’s method and variants[52,

53], to obtain the eigenpairs of interest. The power of methods based on Krylov subspace

iterations is in that they are matrix-free, i.e. one need only knowledge of the matrix-vector

product to perform the partial diagonalization. However, if the spectral region of interest is

in the spectral interior of the EOM-CC Hamiltonian, the standard Arnoldi method exhibits

poor convergence for these embedded states, and one should employ spectral transformations

to achieve proper convergence behavior[53].

A typical workaround to obtain these embedded states is to introduce approximations

such as core-valence separation (CVS)[54]. In the CVS, one neglects the coupling between

core- and valence-excited states such that the dimension of the effective Hamiltonian for

the problem of interest may be reduced and the convergence to the target states may be

accelerated. There have been studies reporting the success of the CVS approximation in

relation to the ADC, CC2, CCSD, CC3, and CCSDR(3) methods (see Ref. 55 for a recent

review). For example, in the ADC calculations of the K-shell ionization spectra of small

and medium-size molecules[56–58], main ionic states, as well as some satellite states, may

be efficiently obtained with reasonable accuracy (0.4∼1.0 eV) when the CVS is employed.

However, if smaller errors and higher resolution of the spectra are required for the system of

interest, the use of CVS may not be sufficient. In the context of the EOM-CC calculations,

recent years have also seen several developments in the robust application of Krylov sub-

space methods to obtain embedded electronic states through methods such as asymmetric

Lanczos-chain-driven subspace algorithm[59], energy-specific Davidson algorithm[60], and

Generalized Preconditioned Locally Harmonic Residual (GPLHR) method[61].

Alternatively, the CC Green’s function matrix may be obtained directly in its analytic

form[25–27] through the evaluation of a shifted set of linear systems involving the IP/EA-

EOM-CC Hamiltonian at a frequency of interest[51, 62–66]. In the treatment of the GFCC

method as a linear system, one is able to bypass the need for the evaluation of the eigenstates

of the IP/EA-EOM-CC Hamiltonian explicitly, and in principle efficiently resolve the entire

spectrum of the IP/EA-EOM-CC Hamiltonian. Furthermore, due to its algebraic structure,

the solution of the linear systems posed by the GFCC method may be executed in a highly

scalable manner which is well suited for massively distributed computing architectures[65].
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Using a similar method for solving the GFCC linear systems as employed in this work, there

have been studies recently reported for the computation of the spectral function of, for

example, uniform electron gas,[67] light atoms,[68] heavy metal atoms,[69] and simple 1-D

periodic systems.[70] In addition, the application of the GFCC method to more complicated

3-D periodic systems seems imminent in that the relevant EOM-CC formalism has been

recently developed[67, 71].

Nevertheless, solving the GFCC linear system may be computationally demanding. In

particular, if a much higher frequency resolution is necessary to explore some detailed infor-

mation (for example the state of interest with weak intensity) or a much broad frequency

domain needs to be explored, the number of frequency points will become a very large

computational overhead of the GFCC method which prohibits its larger scale applications.

Fortunately, it seems there exists some interpolation techniques that can be utilized to clev-

erly address this problem. One such choice is the model-order-reduction (MOR) technique.

The MOR technique is originally introduced in the field of systems and control to reduce the

computational complexity of mathematical models in numerical simulations. The main mo-

tivation for using MOR techniques comes from limited computational, accuracy, or storage

capabilities. After applying MOR, the reduced and simplified model, which still captures

the main features of the original large model, can be used in place of the original one at

a much lower cost (see Ref. 72 for an overview of MOR techniques for linear dynamical

systems).

In the present study, we examine the potential to reduce the computational overhead of

the GFCC method by applying MOR techniques to interpolate and extrapolate the eval-

uation of the CC Green’s function. This work has been inspired, in part, by the recent

application of MOR techniques by Van Beeumen, et al.[73] to obtain accurate approxima-

tions of the X-Ray absorption spectrum within the time-dependent Hartree-Fock approxi-

mation for water clusters with reduced computational complexity. In this work, we project

the full dimensional GFCC linear system onto a subspace which serves as approximation to

exact CC Green’s function for a broad spectral range of interest. The quality and efficiency

of the proposed method for a series of representative molecular systems, such as carbon

monoxide, 1,3-butadiene, benzene, and adenine, will be assessed in terms of the reduction of

computational overhead and its comparison to other theoretical and experimental results.
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METHODOLOGY

For a brief review of the GFCC method employed in this work, we refer the readers

to Refs. 51, 62–66. For the purposes of this work, it is sufficient to consider the matrix

element of the retarded part of the analytical frequency dependent CC Green’s function of

an N -electron system,

GR
pq(ω) =〈Ψ|a†q(ω + (H − E0)− iη)−1ap|Ψ〉 (1)

where H is the electronic Hamiltonian of the N -electron system, |Ψ〉 is the normalized

ground-state wave function of the system, E0 is the ground state energy, and the ap (a†p)

operator is the annihilation (creation) operator for electron in the p-th spin-orbital. Besides,

ω is the frequency, η is the broadening factor, and p, q, r, s, . . . refers to general spin-orbital

indices (we also use i, j, k, l, . . . to label occupied spin-orbital indices, and a, b, c, d, . . . to label

virtual spin-orbital indices). By introducing bi-orthogonal CC formalism, the CC Green’s

function can then be expressed as

GR
pq(ω) =〈Φ|(1 + Λ)

¯
a†q(ω + H̄N − iη)−1āp|Φ〉 (2)

where |Φ〉 is the reference function, and the normal product form of similarity transformed

Hamiltonian H̄N is defined as H̄−E0. The similarity transformed operators Ā (A = H, ap, a
†
q)

are defined as Ā = e−TA eT . The cluster operator T and the de-excitation operator Λ are

obtained from solving the conventional CC equations. Now we can introduce an ω-dependent

IP-EOM-CC type operators Xp(ω) mapping the N -electron Hilbert space onto an (N−1)-

electron Hilbert space

Xp(ω) = Xp,1(ω) +Xp,2(ω) + . . .

=
∑

i

xi(p, ω)ai +
∑

i<j,a

xija (p, ω)a†aajai + . . . , (3)

that satisfies

(ω + H̄N − iη)Xp(ω)|Φ〉 = āp|Φ〉. (4)

Substituting this expression into Eq. (2), we end up with a compact expression for the

matrix element of the retarded CC Green’s function

GR
pq(ω) = 〈Φ|(1 + Λ)

¯
a†qXp(ω)|Φ〉, (5)
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which becomes

Gpq(ω) = 〈Φ|(1 + Λ1 + Λ2)
¯
a†q(Xp,1(ω) +Xp,2(ω))|Φ〉 (6)

in the GFCCSD approximation (GFCC with singles and doubles) with Xp,1/Λ1 and Xp,2/Λ2

being one- and two-body component of Xp/Λ operators, respectively. The spectral function

is then given by the trace of the imaginary part of the retarded GFCCSD matrix,

A(ω) = − 1

π
Tr
[
=
(
GR(ω)

)]
= − 1

π

∑

p

=
(
GR

pp(ω)
)
. (7)

As discusseded in our previous work on this subject[51, 62–66], the practical calculation

of GFCCSD matrix employing the above method involves the solution of the conventional

CCSD calculations (to get converged T and Λ cluster amplitudes), solving linear systems of

the form of Eq. (4) for all the orbitals (p’s) and frequencies of interest (ω’s), and performing

Eq. (6). The key step is to solve Eq. (4) for Xp(ω) for given orbital p and frequency ω,

and the overall computational cost approximately scales as O(NωN
6) with the Nω being

the number of frequencies in the designated frequency regime. Therefore, if a finer or

broader frequency range needs to be computed, Nω would constitute a sizable pre-factor,

and dramatically increase the computational cost.

To address this issue, in the context of high performance computing, one can divide the

full computational task posed by the GFCC method into several smaller tasks according

to the number of orbitals and frequencies desired. In so doing, one can distribute these

smaller tasks over the available processors to execute them concurrently. In this way, the

overall computational cost remains the same, but the time-to-solution can be significantly

reduced. In order to reduce the formal computational cost of the GFCC method, we must

further introduce some approximations in our calculations from the perspective of the linear

system solution method. Here, inspired by a similar application in the context of the time-

dependent Hartree-Fock method[73], we experiment the MOR technique in the context of

the GFCC method.

We can first represent Eqs. (4) and (6) as a linear multiple-input multiple-output (MIMO)

system Θ,

Θ(ω) =





(ω − iη + H̄N)X(ω) = b,

GR(ω) = cTX(ω).
(8)
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Here, the dimension of H̄N is D (For the GFCCSD method, D scales as O(N2
oNv) with

No being the total number of occupied spin-orbitals and Nv being the total number of

virtual spin-orbitals). The columns of b corresponding to free terms, and the rows of c

corresponding to 〈Φ|(1 + Λ)
¯
a†q. The transfer function of the linear system Θ,

γ(ω) = cT
(
ω − iη + H̄N

)−1
b (9)

describes the relation between the input and output of Θ, and is equal to its output GR(ω)

for (8).

To apply the interpolation based MOR technique for Θ, we need to construct an or-

thonormal subspace S = {v1,v2, · · · ,vm} with m � D and 〈vi|vj〉 = δij, such that the

original linear system (8) can be projected into to form a model system Θ̂,

Θ̂(ω) =





(ω − iη + ˆ̄HN)X̂(ω) = b̂,

ĜR(ω) = ĉTX̂(ω),
(10)

where ˆ̄HN = STH̄NS, X̂(ω) = STX(ω), b̂ = STb, and ĉT = cTS. With the proper

construction of the subspace S, we expect Θ̂(ω) ≈ Θ(ω) for designated frequency regime.

In practice, the subspace S is composed of the orthonormalized auxiliary vectors, Xp,

converged at selected frequencies ωk in a given frequency regime, [ωmin, ωmax]. Hence, the

transfer function of the reduced model Θ̂ interpolates the original model Θ at these selected

frequencies, i.e.,

ĜR(ωk) = GR(ωk)

for k = 1, . . . ,m. The sampling of the selected frequencies in the regime follows the adaptive

refinement strategy described in Ref. [73]. Basically, one can start with a uniformly sampled

frequencies in the regime to construct a preliminary level reduced order model. Then, based

on the error estimates of the computed spectral function between adjacent frequencies over

the entire regime, one can decide whether the corresponding midpoints between these adja-

cent frequencies need to be added to refine the sampling. This refinement process continues

until the maximal error estimate of the computed spectral function at the entire frequency

window is below the threshold or when the refined model order exceeds a prescribed upper

bound.

8
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RESULTS AND DISCUSSION

In the following, we discuss the interpolated and/or extrapolated results from our GFCC

method employing model order reduction technique (GFCC-MOR). The corresponding ac-

curacy and efficiency tests are focused on the computed spectral functions of the carbon

monoxide, s-trans-1,3-butadiene, benzene, and adenine molecules, and their comparisons to

those computed by the original GFCC method and to other theoretical and experimental

results. We used an experimental geometry[74] for the carbon monoxide molecule, and the

geometries of s-trans-1,3-butadiene, benzene, and adenine are obtained from Ref. 75, 76,

and 77, respectively. For each molecular system, conventional (Λ-)CCSD calculations were

performed by using the Tensor Contraction Engine (TCE) module implemented in NWChem

suite of quantum chemical codes.[78] The converged T and Λ amplitudes, as well as the two-

electron integral tensor, are then used to compute the auxiliary vectors, Xp, and the GFCC

matrix elements (and thereby the spectral functions).

Fig. 1 demonstrates how the expansion of the subspace improves the interpolated spectral

function computed by the GFCCSD-MOR method for the carbon monoxide molecule. The

calculation starts by solving the full-dimensional GFCC linear equations for the auxiliary

vectors, Xp, at three frequencies evenly distributed over [-43.54, -10.88] eV. The converged

Xp’s are then orthonormalized to construct the subspace S, upon which a reduced order

model (denoted as a three-frequency model) is built via the manner depicted in Eq. (10).

The blue dashed line in Fig. 1a shows the interpolated spectral function obtained from the

three-frequency model, in which the reduced order model is solved for every single frequency

point on a discretization of [-43.54, -10.88] eV (∆ω ≤0.027 eV). The corresponding peak

positions and the associated leading configurations at the peak positions are given in Tab. I.

Apparently, the interpolated results obtained from the three-frequency model is not able to

reproduce the GFCCSD spectral function to a sufficient accuracy. In the regime of [-25, -10]

eV, even though the positions of three main peaks roughly fit the full dimensional GFCCSD

results, the average deviation of the spectral function in this regime with respect to the

original GFCCSD result is above 0.1 eV−1. For the regime below -25 eV, in comparison

to the GFCCSD results, two satellites in [-35.00, -30.00] eV are missing from the result of

the three-frequency model. For the remaining peaks, larger offsets and different leading

configurations with respect to the original GFCCSD results can be observed (see Fig. 1
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and Tab. I). For example, a >1 eV shift can be observed for the peak below -40 eV,

and its associated leading configurations includes more contributions from 5σ−21σ∗ and

1π−15σ−11σ∗ two-electron processes which were barely found for the peaks in this regime in

the original GFCCSD calculation.[65]

The reduced order model may be improved by expanding the span of the subspace S,

i.e. including more orthonormalized Xp’s converged at some other frequencies picked by the

aforementioned adaptive refinement strategy. As can be seen from Fig. 1b and Tab. I, a

nine-frequency model already shows a sizable improvement in comparison with the three-

frequency model. In terms of the number of peaks, peak positions, and leading configurations

relating to the peak, the nine-frequency model in Fig. 1b brings back the two missing peaks

in [-35.00, -30.00] eV mentioned above, and produces negligible shifts and almost the same

leading configurations for all the peaks within [-43.54, -10.88] eV with respect to original

GFCCSD result. As for the peak height (i.e. the magnitude of the spectral function), for the

outer valence regime (>25 eV) and the inner valence regime (<25 eV), the average deviations

of the interpolated spectral function obtained from the nine-frequency model with respect to

the original GFCCSD result are below 0.01 eV−1 and 0.1 eV−1, respectively. Of course, one

can continue to refine the aforementioned adaptive refinement strategy to further improve

the model. For example, a 20-frequency model (Fig. 1c and Tab. I) with more frequencies

in the inner valence regime being picked produces same peak number, and almost same

peak positions and their associated leading configurations, but significantly suppresses the

maximum deviation of the spectral function in the inner valence regime from ∼1 eV−1 (at

∼-41 eV in Fig. 1b) towards 0.01 eV−1.

In addition to interpolation, the reduced order model can also be utilized to produces ex-

trapolated results over an extended frequency window. To assess the accuracy of this model

extrapolation, some demonstrative tests have been performed using the carbon monoxide

system previously discussed. The results of this assessment are outlined in Fig. 2 and Tab.

I. In this example, approximate spectral functions were produced on the domain [-43.54,

-10.88] eV using three different reduced order models built from different subsets of the orig-

inal frequency regime (namely, [-16.33, -10.88] eV, [-21.77, -10.88] eV, and [-27.21,-10.88]

eV), and are compared with the original GFCCSD spectral function. As is apparent, two

of the three models (excluding the five-frequency model in [-16.33, -10.88] eV) produce the

same number of peaks as the GFCCSD results. In the result from the five-frequency model

11
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in [-16.33, -10.88] eV, a low magnitude satellite is missing at ∼-32 eV. As for peak positions

and the associated leading configurations, except for the missing peak just discussed, all

three models give consistent results with the original GFCCSD results. The largest devia-

tion (∼0.55 eV) occurs for the satellite peak (at -39.27 eV) obtained from the extrapolation

of the five-frequency model in [-16.33, -10.88] eV. Further, the leading configurations of that

peak also show an increased contribution from 3σ−1 ionization process which was found

to be trivial in the original GFCCSD calculation.[65] Nevertheless, when the model covers

wider frequency regime (as can be seen from Fig. 2b,c and Tab. I), the extrapolated spec-

tral functions give almost the same peak positions and leading configurations as the original

GFCCSD results, and the deviation of the corresponding spectral functions also gradually

decreases.

Given the more or less same number of frequencies (and thereby the number of Xp’s

for constructing the subspace), it is instructive to compare the models shown in Figs. 1b

and 2b. Both models successfully reproduce the original GFCCSD peak multiplicity and

positions, and qualitatively reproduce the spectral function in the studied frequency regime.

However, there is a major difference between the two models in terms of the frequency points

distribution, i.e. the model in Fig. 1b requires five frequency points in the inner valence

regime of [-45.00, -25.00] eV, while all the frequency points required by the model in Fig. 2b

are located in the outer valence regime (>-25 eV). Note that, due to stronger many-body

effect in the inner valence regime, it usually requires much more effort for the linear solver

to converge the GFCC linear system for the Xp’s in that domain than it does for the Xp’s

in the outer valence regime.[65, 66] Therefore, in comparison to the model in Fig. 1b, the

model in Fig. 2b in general requires much less effort to be built, while still being able to

achieve the same level of accuracy for the studied frequency regime.

Remarkably, if higher accuracy for the extended frequency regime is desired, the results

given by extrapolating the model from a narrower frequency window may still be useful as

they can often be used as an effective initial guess to aid in the convergence of the iterative

linear solver used to solve the GFCC equations. Further, as the reduced order linear systems

may be solved directly, the use of these approximate solutions as initial guesses for the full

dimensional iterative solver can be of particular use in cases where convergence of these

solutions proves difficult. Typical examples of this state of affairs are shown in Fig. 3,

where convergence profiles (i.e. the residual norm of the linear equation going along with
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TABLE I. Vertical ionization potentials of the CO molecule, as well as associated molecular orbital

(p) and leading configurations (with associated contribution >0.1), obtained from the GFCCSD-

MOR calculations shown in Figs. 1 and 2. The cc-pVDZ basis is used in all the calculations. The

unit of all frequencies is eV.

3-freq. model in [-43.54, -10.88] 9-freq. model in [-43.54, -10.88] 20-freq. model in [-43.54, -10.88]

ω p Leading Conf. ω p Leading Conf. ω p Leading Conf.

-13.825 7 5σ−1 -13.797 7 5σ−1 -13.797 7 5σ−1

-16.873 5,6 1π−1 -16.737 5,6 1π−1 -16.737 5,6 1π−1

-19.512 4 4σ−1 -19.458 4 4σ−1 -19.458 4 4σ−1

-26.289 3,4,7 5σ−11π−11π∗ -26.370 3,4,7 5σ−11π−11π∗ -26.370 3,4,7 5σ−11π−11π∗

− − − -31.759 5,6 5σ−21π∗ -31.704 5,6 5σ−21π∗

− − − -33.446 3,4,7 5σ−11π−11π∗ -33.419 3,4,7 5σ−11π−11π∗

-36.439 3 3σ−1 -36.249 3 3σ−1 -36.249 3 3σ−1

-40.685 3 3σ−1, 5σ−21σ∗ -38.725 3 5σ−21σ∗ -38.725 3 5σ−21σ∗

-42.535 3 5σ−21σ∗, 1π−14σ−11π∗, -40.576 3 3σ−1, 1π−14σ−11π∗ -40.576 3 3σ−1, 1π−14σ−11π∗

1π−15σ−11π∗, 3σ−1

5-freq. model in [-16.33, -10.88] 8-freq. model in [-21.77, -10.88] 7-freq. model in [-27.21, -10.88]

ω p Leading Conf. ω p Leading Conf. ω p Leading Conf.

-13.797 7 5σ−1 -13.797 7 5σ−1 -13.797 7 5σ−1

-16.737 5,6 1π−1 -16.737 5,6 1π−1 -16.737 5,6 1π−1

-19.458 4 4σ−1 -19.458 4 4σ−1 -19.458 4 4σ−1

-26.397 3,4,7 5σ−11π−11π∗ -26.370 3,4,7 5σ−11π−11π∗ -26.370 3,4,7 5σ−11π−11π∗

− − − -31.895 5,6 5σ−21π∗ -31.759 5,6 5σ−21π∗

-33.800 3,4,7 5σ−11π−11π∗ -33.419 3,4,7 5σ−11π−11π∗ -33.446 3,4,7 5σ−11π−11π∗

-36.331 3 3σ−1 -36.249 3 3σ−1 -36.249 3 3σ−1

-39.270 3 5σ−21σ∗, 3σ−1 -38.834 3 5σ−21σ∗ -38.853 3 5σ−21σ∗

-40.875 3 3σ−1, 1π−14σ−11π∗ -40.630 3 3σ−1, 1π−14σ−11π∗ -40.651 3 3σ−1, 1π−14σ−11π∗

the iterations) resulting from using different initial guesses in the same iterative linear solver

are compared at two frequencies in the inner valence regime (namely at -31.565 eV and -

26.395 eV, respectively). In this regime, there are two satellites dominated by the 5σ−21π∗

and 5σ−11π−11π∗ two-electron processes, respectively. In the blue curves depicted in Fig.

3, the linear solver employs up to the second order perturbative terms of the Xp’s as the
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FIG. 3. Convergence performance test of the linear equation solver (direct inversion in the iterative

subspace, or DIIS, adapted to complex space) employing different initial guess vectors for the

calculations of Xp’s at chosen orbital indices, p’s, and frequencies, ω’s, for the carbon monoxide

molecule. The number of micro-iteration iterates used in the test is 10. (a) corresponds to the

GFCCSD calculations of the Xp’s significantly contributing to the first satellite peak in the valence

band of the spectral function. (b) corresponds to the GFCCSD calculations of the Xp’s significantly

contributing to the second satellite peak in the valence band of the spectral function. X
(0)+(1)+(2)
p

is the sum of 0th, 1st, and 2nd order terms of the Xp that have been given in Ref. 63. Xextrapol.
p

is obtained by extrapolating the eight-frequency model in [-21.77, -10.88] eV shown in Fig. 2b to

the designated frequencies.

initial guess of the solution (the analytic perturbative terms of the Xp’s were given in Ref.

63), while in the green curve the linear solver employs the extrapolated results (from the

eight-frequency model in Fig. 2b) as the initial guess of the solution. As can be seen, in

comparison with using the low-order perturbative terms of the Xp’s, using the extrapolated
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results as the initial guess for the iterative solver can drastically improve the convergence

profile for the solutions of interest. For example, after the first iteration, the relative residual

norms shown in the green curves are at least two orders of magnitude smaller than the ones

in the blue curves for both cases. As iterations progress, the blue curves fail to converge

(i.e. relative residual norm being < 10−5) within 80 steps in both case (indicating that a

larger number of micro-iterations iterates and more iterations may be needed in the DIIS

linear solver used in this study). In contrast, using the MOR extrapolated results as an

initial guess for the linear solver convergence is achieved within 80 iterations in both of the

cases examined. It is worth mentioning that the convergence would generally be expected

to be improved if higher order terms are included in the initial guess. However, this can

be time-consuming in practice since the computational complexity of computing the third

and higher order terms of Xp’s[63] would become similar to that of solving the GFCC linear

equation itself.

In the following, we examine the interpolative and extrapolative capabilities of the pro-

posed GFCC-MOR method in differing frequency regimes than the ones previously discussed

and in relation to different GFCC methods. Fig. 4 shows the spectral functions of the carbon

monoxide molecule in both core and valence regimes computed by the conventional GFCC

methods (including GFCCSD and GFCC-i(2,3)[66]) and the corresponding GFCC-MOR

methods. Note that in comparison with the GFCCSD method, the GFCC-i(2,3) method

includes the treatment of inner triples, which was demonstrated in our previous work being

able to improve the many-body description of both main ionic states and satellites. In the

core regime, the reduced order models are constructed in the regime of [-304.77, -293.89]

eV, and the resulting interpolatory and extrapolatory features are examined in the broader

regime of [-326.57, -293.91] eV. In the valence regime, the models are constructed in the

regime of [-21.77, -10.88] eV, and interpolated and extrapolated to the broader regime of

[-43.54, -10.88] eV. As can be seen, the profiles of the spectral functions obtained from the

GFCC-MOR calculations approximate the available original GFCC results relatively well

in both core and valence regimes. Tiny differences are only detected in the middle valence

regime, where, in comparison to the GFCCSD results, the eight-frequency model in [-21.77,

-10.88] eV blue-shifts the satellite located at ∼-32.00 eV by ∼0.55 eV (see the inset of Fig.

4b), and in comparison to the GFCC-i(2,3) results, the result from the ten-frequency model

in [-21.77, -10.88] eV exhibits some tiny shoulder peaks located in [-35.00, -30.00] eV (see
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FIG. 4. Spectral functions of the carbon monoxide molecule in the core and valence energy regimes

directly computed by conventional GFCCSD and GFCC-i(2,3) methods (green shadow), and the

corresponding GFCC-MOR methods (blue dashed line) with η=0.027 eV and ∆ω ≤0.027 eV. The

selected frequencies whose corresponding auxiliary vectors, Xp, are used to construct the reduced

order models are pointed out by red upper triangle markers in each subplot. The GFCC results are

obtained from Refs. 65 and 66. The insets show the magnified the satellite peaks in the designated

regimes.

the inset of Fig. 4d).

Note that, in Fig. 4c (and its inset), by extrapolating the six-frequency model from the

regime of [-304.77, -293.89] eV to [-326.57, -293.89] eV, three significant satellites, which were

not reported in the previous GFCC-i(2,3) calculations,[66] are identified at -320.85, -315.41,

and -308.88 eV, respectively (a weaker shoulder peak can also be seen at ∼-316.77 eV). The

configuration analysis shows that these satellites are mainly attributed to the 1π−12σ−11π∗

two-electron process (classified as the so-called direct shake-up states), and are consistent

with the configuration analysis of the satellites obtained from GFCCSD/GFCCSD-MOR
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FIG. 5. Comparison of different theoretical ionization potentials and experimental values. The

GFCC-MOR results are read from Fig. 4a,c. The experimental values, SAC-CI, and ADC results

are collected from Refs. 79 and 80.

calculations in the regime of [-326.57, -293.91] eV (see the inset of Fig. 4a), as well as

other theoretical analysis.[79, 80] To further confirm the accuracy of the core level results

obtained from the GFCC-MOR calculations, we compare the positions of the main peak and

two rightmost satellites observed in Fig. 4a,c with the available ionization potentials com-

puted from other theories, as well as the corresponding experimental values. As can be seen

from Fig. 5, similar to the difference between ADC(4) and ADC(3) results, since higher-

order excitations (e.g. ionic triple excitations) are taken into account in the schemes,[66] the

GFCC-i(2,3)-MOR results show significant improvement over the GFCCSD-MOR results,

especially the positions of the two satellites are red-shifted by ∼5.0 eV and ∼8.0 eV, re-

spectively. Even though the GFCC-i(2,3)-MOR results still underestimate the experimental

values by 1∼2 eV, the relative positions of the three peaks are very close to the experimental

values and SAC-CI results. In particular, the spacing between the two satellites (∼6.5 eV)

in the GFCC-i(2,3)-MOR results is almost same as what are observed from the experiment

and the SAC-CI calculation, and is better than the ADC(4) results (∼8.0 eV).

To further test the efficiency of the proposed GFCC-MOR method, we examine its ap-

plication to some larger systems. In Fig. 6, the spectral functions of the 1,3-butadiene,

benzene, and adenine molecules over broad core and valence energy regimes computed by

the GFCCSD-MOR methods (blue dashed line) are exhibited and compared with the re-

ported GFCCSD results (green shadow). The reported GFCCSD results are shown between
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-300.00 eV and -285.00 eV for the core regime (Fig. 6a,c,e), and between -19.00 eV and

-7.00 eV for the valence regime (Fig. 6b,d,f). For 1,3-butadiene and benzene, the auxil-

iary vectors used for the model construction are collected from the frequency window of

[-299.33, -285.72] eV in the core regime and the frequency window of [-21.77, -8.16] eV in

the valence regime, respectively. For the larger system, the adenine molecule, the auxiliary

vectors are collected from the frequency windows of [-296.61, -293.89] eV in the core regime

and [-13.61, -8.16] eV in the valence regime, respectively, due to the fact that more peak

features are exposed in these narrower frequency windows. As can be seen, the spectral

functions obtained from the combination of the interpolated and extrapolated results of

the reduced order model fit the original GFCCSD results pretty well in the designated fre-

quency windows spread over both core and valence regimes. In particular, the five-frequency

model from the frequency window of [-13.61, -8.16] eV is able to well reproduce the original

GFCCSD peak features between -21.77 eV and -8.00 eV. We further compare the reduced

order model results with available theoretical results from other Green’s function methods

and experimental photoelectron spectra (PES). For example, in Fig. 7, the extrapolated

spectral function of adenine molecule in this work is compared with the reported ADC re-

sult and the photoelectron spectrum (PES). As can be seen, in comparison to the ADC(3)

results, the GFCCSD-MOR calculation gives almost same results in terms of peak positions

and heights. In comparison with the experimental spectrum, the GFCCSD-MOR spectral

function gives almost same peak positions and peak profile as the PES in [-12.00, -4.00] eV.

As we discussed in our previous work,[66] special attention should be paid when comparing

the spectral function profile with the PES results. In principle, the spectral function (or the

pole strength) is computed through the overlap integrals between the initial states and their

final ionic states. The relative peak intensities in the PES requires not only the calculation of

the overlap integrals, but also the dipole integrals describing the dipole interactions between

the initial states and their corresponding final ionic state manifolds. Therefore, the relative

intensities exhibited in the PES are expected to be different from those observed from the

calculated spectral functions, except that when the photon energy is much higher than the

ionization potentials in the PES measurement, and there are no appreciable initial state

correlation effects for the system. From this perspective, the reason why the GFCCSD-

MOR spectral function gives almost same peak positions and peak profile as the PES in

[-12.00, -4.00] eV can be attributed to the following observations, (i) the photon energy used
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to record the PES (i.e. 80 eV) is much higher than the energy regime, and (ii) the effects of

electron correlation in this energy regime are weak such that even the results from the single-

particle theory (e.g. outer-valence Green’s function method) fits the PES very well (see Fig.

10 in Ref. 81). When going beyond this regime, since the aforementioned two conditions

are gradually violated as witnessed by the appearance of more and more satellite states that

requires the treatment of many-body effects, the comparison between the computed spectral

function and the PES should only be in the peak positions. Here, for the regime below -12

eV, both the ADC(3) and GFCCSD-MOR peak positions are systematically blue-shifted by

∼1 eV with respect to the PES peaks, but the relative positions of these peaks still fit the

PES very well.

It is important to emphasize that while the conventional GFCC and proposed GFCC-

MOR methods presented in this work yield similar quality results, the latter is significantly

more efficient than the former. For the spectral function calculation in the frequency regime

of [-43.54, -10.88] eV, the conventional GFCC calculations requires the solution of the full

dimensional GFCC linear equation at every single frequency point in a 1200 points discretiza-

tion (if ∆ω ≤0.027 eV), while the GFCC-MOR calculations only requires the solution of the

full dimensional GFCC linear equation at 5∼10 frequency points. Due to this large disparity

between the number of the solutions of the full dimensional linear equation required between

the two methods, the computational cost of constructing the reduced order model from the

small set of solutions required by the GFCC-MOR method is negligible in contrast to the

cost of solving the linear systems themselves. As such, the overall computational cost of the

GFCC-MOR method presented in this work is roughly two orders of magnitude less than

that of the conventional GFCC method.

CONCLUSION AND OUTLOOK

In this work, we demonstrated the efficacy of the application of model order reduction to

the GFCC method (the GFCC-MOR method) in efforts to reduce the computational cost of

evaluating the CC Green’s function in specific spectral regimes. In the conventional GFCC

method, one must solve the full dimensional GFCC linear system at every frequency point

in some discretization of a spectral region of interest to evaluate the CC Green’s function.

In contrast, the GFCC-MOR method reduces the computational cost of evaluating the CC
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Green’s function by selecting only a few points in the spectral region of interest to solve

the full dimensional linear systems, and then projects this problem onto a model basis

of reduced order which is constructed from the full dimensional auxiliary vectors at these

frequencies. The dimension reduction in the reduced order model allows for rapid evaluation

of an approximate CC Green’s function in a (possibly fine) discretization of the spectral

region of interest. Relevant accuracy comparisons have been performed for computing the

spectral functions of the carbon monoxide, 1,3-butadiene, benzene, and adenine molecules

in both the core and valence regimes. The GFCC-MOR results show excellent agreement

with the full dimensional GFCC results. By extrapolation, the GFCC-MOR method may

also be utilized to either predict the results in some energy regimes where the original GFCC

results are unavailable, or provide a reasonable initial guess to aid in the convergence of the

full dimensional GFCC linear equation in that regime. Moreover, the GFCC-MOR method

has been shown to be very efficient, and the associated cost of approximating the GFCC

spectral functions for the molecules studied in this work was found to be roughly two orders

of magnitude smaller than the original GFCC method. Therefore, the MOR technique has

shown a great capability to offload a large computational overhead from the original GFCC

method, and a great potential to broaden the large-scale applications of this method.

To further reduce the computational cost of the GFCC-MOR method, the MOR technique

may be applied to the GFCC method in a different way. For example, one can build separate

reduced order models for every single diagonal Green’s function curve directly (and the sum

of these curves then gives the approximate spectral function). Besides, one can also consider

employing the perturbative cluster amplitudes in the GFCC-MOR method. For example,

as discussed in the earlier GFCC work of Nooijen and Snijders,[27], the cluster amplitudes

used in the GFCC-MOR method may be further replaced by their first-order perturbative

terms. Apparently, this approximation further accelerate the calculations by skipping the

expensive CC ground state calculations, and does not affect the connectedness of the GFCC

diagrams. As can be seen from some preliminary results for the carbon monoxide (see Fig.

8), even though some small deviations (<1 eV) for the satellites are observed in the inner

valence regime, this approximation works relatively well for reproducing the entire spectral

function profile over the designated regime computed by the conventional GFCC method.

The subspace construction and utilization in these directions are currently under intensive

development, and more tests and discussions will be presented in our future papers.
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Fermion Systems, edited by P.-O. Löwdin, Advances in Quantum Chemistry, Vol. 9 (Academic

Press, 1975) pp. 105–197.

[3] R. Mattuck, A Guide to Feynman Diagrams in the Many-Body Problem: Second Edition,

Dover Books on Physics (Dover Publications, 2012).

[4] A. Abrikosov, L. Gorkov, I. Dzyaloshinski, and R. Silverman, Methods of Quantum Field

Theory in Statistical Physics, Dover Books on Physics (Dover Publications, 2012).

[5] A. Fetter and J. Walecka, Quantum Theory of Many-Particle Systems, Dover Books on Physics

(Dover Publications, 2012).

[6] A. Migdal, Theory of finite Fermi systems and application to atomic nuclei , Interscience mono-

graphs and texts in physics and astronomy (Wiley-Interscience Publ., 1967).

22

mailto:peng398@pnnl.gov
mailto:rvanbeeumen@lbl.gov
mailto:dbwy@lbl.gov
mailto:karol.kowalski@pnnl.gov
mailto:cyang@lbl.gov
http://dx.doi.org/10.1063/1.1680762
http://dx.doi.org/ https://doi.org/10.1016/S0065-3276(08)60040-4
http://dx.doi.org/ https://doi.org/10.1016/S0065-3276(08)60040-4
https://books.google.com/books?id=1P_DAgAAQBAJ
https://books.google.com/books?id=JYTCAgAAQBAJ
https://books.google.com/books?id=JYTCAgAAQBAJ
https://books.google.com/books?id=t5_DAgAAQBAJ
https://books.google.com/books?id=4c08PAAACAAJ


[7] L. S. Cederbaum, J. Phys. B 8, 290 (1975).

[8] W. von Niessen, J. Schirmer, and L. Cederbaum, Comput. Phys. Rep. 1, 57 (1984).

[9] J. V. Ortiz, “The electron propagator picture of molecular electronic structure,” in Computa-

tional Chemistry: reviews of Current Trends, Vol. 2, edited by J. Leszczynski (World Scientific:

Singapore, 1997).

[10] J. V. Ortiz, WIREs Comput. Mol. Sci 3, 123 (2013).

[11] V. G. Zakrzewski, O. Dolgounitcheva, A. V. Zakjevskii, and J. Ortiz, International Journal

of Quantum Chemistry 110, 2918 (2010).

[12] J. V. Ortiz, J. Chem. Phys. 108, 1008 (1998).

[13] S. Hirata, M. R. Hermes, J. Simons, and J. V. Ortiz, J. Chem. Theory Comput. 11, 1595

(2015).

[14] S. Hirata, A. E. Doran, P. J. Knowles, and J. V. Ortiz, J. Chem. Phys. 147, 044108 (2017).

[15] W. von Niessen, G. H. F. Diercksen, and L. S. Cederbaum, J. Chem. Phys. 67, 4124 (1977).

[16] J. V. Ortiz, J. Chem. Phys. 104, 7599 (1996).

[17] J. Schirmer, Phys. Rev. A 26, 2395 (1982).

[18] A. Dreuw and M. Wormit, WIREs Comput. Mol. Sci 5, 82 (2015).

[19] L. Hedin, Phys. Rev. 139, A796 (1965).

[20] J. J. Rehr and R. C. Albers, Rev. Mod. Phys. 72, 621 (2000).

[21] M. van Schilfgaarde, T. Kotani, and S. Faleev, Phys. Rev. Lett. 96, 226402 (2006).

[22] G. Samsonidze, M. Jain, J. Deslippe, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 107,

186404 (2011).

[23] J. J. Kas, J. J. Rehr, and L. Reining, Phys. Rev. B 90, 085112 (2014).

[24] L. Reining, WIREs Comput. Mol. Sci 0, e1344 (2018).

[25] M. Nooijen and J. G. Snijders, Int. J. Quantum Chem. 44, 55 (1992).

[26] M. Nooijen and J. G. Snijders, Int. J. Quantum Chem. 48, 15 (1993).

[27] M. Nooijen and J. G. Snijders, J. Chem. Phys. 102, 1681 (1995).

[28] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

[29] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A. Marianetti,

Rev. Mod. Phys. 78, 865 (2006).

[30] D. Vollhardt, Ann. Phys. (Berlin) 524, 1 (2012).

[31] P. Werner and A. J. Millis, Phys. Rev. B 74, 155107 (2006).

23

http://stacks.iop.org/0022-3700/8/i=2/a=018
http://dx.doi.org/http://dx.doi.org/10.1016/0167-7977(84)90002-9
http://dx.doi.org/10.1002/wcms.1116
http://dx.doi.org/http://dx.doi.org/10.1063/1.475463
http://dx.doi.org/ 10.1021/acs.jctc.5b00005
http://dx.doi.org/ 10.1021/acs.jctc.5b00005
http://dx.doi.org/10.1063/1.4994837
http://dx.doi.org/http://dx.doi.org/10.1063/1.435389
http://dx.doi.org/http://dx.doi.org/10.1063/1.471468
http://dx.doi.org/10.1103/PhysRevA.26.2395
http://dx.doi.org/10.1002/wcms.1206
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/RevModPhys.72.621
http://dx.doi.org/10.1103/PhysRevLett.96.226402
http://dx.doi.org/ 10.1103/PhysRevLett.107.186404
http://dx.doi.org/ 10.1103/PhysRevLett.107.186404
http://dx.doi.org/10.1103/PhysRevB.90.085112
http://dx.doi.org/10.1002/wcms.1344
http://dx.doi.org/10.1002/qua.560440808
http://dx.doi.org/10.1002/qua.560480103
http://dx.doi.org/http://dx.doi.org/10.1063/1.468900
http://dx.doi.org/ 10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.78.865
http://dx.doi.org/10.1002/andp.201100250
http://dx.doi.org/10.1103/PhysRevB.74.155107


[32] P. Werner, A. Comanac, L. de’ Medici, M. Troyer, and A. J. Millis, Phys. Rev. Lett. 97,

076405 (2006).

[33] D. Zgid and G. K.-L. Chan, J. Chem. Phys. 134, 094115 (2011).

[34] D. Zgid, E. Gull, and G. K.-L. Chan, Phys. Rev. B 86, 165128 (2012).

[35] A. A. Kananenka, E. Gull, and D. Zgid, Phys. Rev. B 91, 121111 (2015).

[36] T. N. Lan, A. A. Kananenka, and D. Zgid, J. Chem. Phys. 143, 241102 (2015).

[37] A. A. Rusakov and D. Zgid, J. Chem. Phys. 144, 054106 (2016).

[38] T. N. Lan and D. Zgid, J. Phys. Chem. Lett. 8, 2200 (2017).

[39] G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).

[40] S. V. Faleev, M. van Schilfgaarde, and T. Kotani, Phys. Rev. Lett. 93, 126406 (2004).

[41] J. B. Neaton, M. S. Hybertsen, and S. G. Louie, Phys. Rev. Lett. 97, 216405 (2006).

[42] F. Mertins and J. Schirmer, Phys. Rev. A 53, 2140 (1996).

[43] F. Mertins, J. Schirmer, and A. Tarantelli, Phys. Rev. A 53, 2153 (1996).

[44] H. J. Monkhorst, Int. J. Quantum Chem. 12, 421 (1977).

[45] H. Koch and P. Jørgensen, J. Chem. Phys. 93, 3333 (1990).

[46] J. Geertsen, M. Rittby, and R. J. Bartlett, Chem. Phys. Lett. 164, 57 (1989).

[47] D. C. Comeau and R. J. Bartlett, Chem. Phys. Lett. 207, 414 (1993).

[48] J. F. Stanton and R. J. Bartlett, J. Chem. Phys. 98, 7029 (1993).

[49] J. Schirmer and F. Mertins, Theoretical Chemistry Accounts 125, 145 (2010).

[50] T. Helgaker, P. Jorgensen, and J. Olsen, Molecular Electronic-Structure Theory (Wiley, 2014).

[51] K. Bhaskaran-Nair, K. Kowalski, and W. A. Shelton, J. Chem. Phys. 144, 144101 (2016).

[52] W. E. Arnoldi, Quarterly of Applied Mathematics 9, 17 (1951).

[53] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. A. Van der Vorst, eds., Templates for

the Solution of Algebraic Eigenvalue Problems: A Practical Guide (Society for Industrial and

Applied Mathematics, Philadelphia, PA, 2000) pp. xxvii+403.

[54] L. S. Cederbaum, W. Domcke, and J. Schirmer, Phys. Rev. A 22, 206 (1980).

[55] P. Norman and A. Dreuw, Chem. Rev. 118, 7208 (2018).

[56] G. Angonoa, O. Walter, and J. Schirmer, J. Chem. Phys. 87, 6789 (1987),

https://doi.org/10.1063/1.453424.

[57] J. Wenzel, M. Wormit, and A. Dreuw, J. Chem. Theory Comput. 10, 4583 (2014),

https://doi.org/10.1021/ct5006888.

24

http://dx.doi.org/ 10.1103/PhysRevLett.97.076405
http://dx.doi.org/ 10.1103/PhysRevLett.97.076405
http://dx.doi.org/http://dx.doi.org/10.1063/1.3556707
http://dx.doi.org/10.1103/PhysRevB.86.165128
http://dx.doi.org/10.1103/PhysRevB.91.121111
http://dx.doi.org/http://dx.doi.org/10.1063/1.4938562
http://dx.doi.org/10.1063/1.4940900
http://dx.doi.org/10.1021/acs.jpclett.7b00689
http://dx.doi.org/10.1103/RevModPhys.74.601
http://dx.doi.org/10.1103/PhysRevLett.93.126406
http://dx.doi.org/10.1103/PhysRevLett.97.216405
http://dx.doi.org/10.1103/PhysRevA.53.2140
http://dx.doi.org/10.1103/PhysRevA.53.2153
http://dx.doi.org/10.1002/qua.560120850
http://dx.doi.org/10.1063/1.458814
http://dx.doi.org/https://doi.org/10.1016/0009-2614(89)85202-9
http://dx.doi.org/https://doi.org/10.1016/0009-2614(93)89023-B
http://dx.doi.org/http://dx.doi.org/10.1063/1.464746
http://dx.doi.org/10.1007/s00214-009-0597-x
https://books.google.com/books?id=NtJIBAAAQBAJ
http://dx.doi.org/http://dx.doi.org/10.1063/1.4944960
http://dx.doi.org/ 10.1137/1.9780898719581
http://dx.doi.org/ 10.1137/1.9780898719581
http://dx.doi.org/10.1103/PhysRevA.22.206
http://dx.doi.org/10.1021/acs.chemrev.8b00156
http://dx.doi.org/10.1063/1.453424
http://arxiv.org/abs/https://doi.org/10.1063/1.453424
http://dx.doi.org/10.1021/ct5006888
http://arxiv.org/abs/https://doi.org/10.1021/ct5006888
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FIG. 6. Spectral functions of the 1,3-butadiene, benzene, and adenine molecules in the core and

valence energy regimes directly computed by conventional GFCCSD method (green shadow), and

interpolated and extrapolated by their reduced order models (blue dashed line) with η=0.027 eV

and ∆ω ≤0.027 eV. The selected frequencies whose corresponding auxiliary vectors, Xp, are used

to construct the reduced order models are indicated by red upper triangle markers in each subplot.
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FIG. 7. The spectral function of the adenine molecule in the valence energy regimes directly

computed by the GFCCSD-MOR method (green shadow), and in comparison with previously

reported ADC(3) and experimental results. The experimental PES was recorded at a photon

energy of 80 eV for θ=0o, and peak positions are labeled by green arrows. The eigenvalues and

the associated pole strength from the ADC(3) calculation are labeled by bars. The ADC(3) results

and the PES spectrum are collected from Ref. 81.
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FIG. 8. The spectral functions of the carbon monoxide molecule in the valence energy regimes

computed by the GFCC-MOR methods with amplitudes T and Λ being replaced by their first

order perturbative terms. The selected frequencies whose corresponding auxiliary vectors, Xp, are

used to construct the reduced order models are indicated by red upper triangle markers.
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(p’s) and frequencies (!’s), as well as performing contractions of Eq. (5). The key step is to

solve Eq. (3) for Xp(!) for given orbital p and frequency !, and the overall computational

cost approximately scales as O(N!N6) with the N! being the number of frequencies in the

designated frequency regime. Therefore, if a broader frequency range needs to be computed,

N! would be a large pre-factor, and dramatically increase the computational cost.

To address this issue, on the high performance computing side, one can divide the entire

task into several small tasks according to the number of p’s and !’s, and distribute the

small tasks over the available processors. In this way, the overall computational cost keeps

the same, but the time-to-solution could be significantly reduced. In order to reduce the

computational cost, we need to further introduce some approximations in our calculations

from the methodology side. Here, inspired by a previous spectral computation study,[69]

we experiment an MOR technique in our GFCC calculations with the purpose of generating

a high-quality reduced order model to well approximate the original GFCC results for a

designated broad frequency regime. In the following, we will briefly introduce this technique,

and how it can be implemented in our GFCC framework.

[...some MOR intro...]

Eqs. (3) and (5) can be represented by a linear multiple-input multiple output (MIMO)

system ⇥ with D being the length of its dimension,

⇥(!) =

8
<
:

(! � i⌘ + H̄N)X(!) = b,

GR(!) = cTX(!).
(6)

with the column of c corresponding to h�|(1 + ⇤)
¯
a†

q. To apply the MOR technique for ⇥,

we need to construct an orthonormal subspace S = {v1,v2, · · · ,vm} with m ⌧ D and

hvi|vji = �ij, such that the the original linear system (6) can be projected into to form a

model system ⇥̂,

⇥̂(!) =

8
<
:

(! � i⌘ + ˆ̄HN)X̂(!) = b̂,

ĜR(!) = ĉTX̂(!),
(7)

where ˆ̄HN = STH̄NS, X̂(!) = STX(!), b̂ = STb, and ĉT = cTS. With the proper

construction of the subspace S, we expect ⇥̂(!) ⇡ ⇥(!) for designated frequency regime.

In practice, the subspace S is composed of the orthonormalized Xp’s vectors converged at

select frequencies in a given frequency regime, [!0, !1]. The sampling of the select frequencies

in the regime follows the adaptive refinement strategy described in Ref. [69]. Basically, one
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FIG. 7. The spectral function of adenine molecules in the valence energy regimes directly computed

by the reduced-dimension GFCCSD method (green shadow), and in comparison with previously

reported ADC(3) and experimental results. The experimental PES was recorded at a photon

energy of 80 eV for ✓=0o, and peak positions are labeled by green arrows. The eigenvalues and

the associated pole strength from the ADC(3) calculation are labeled by bars. The ADC(3) results

and the PES spectrum are collected from Ref. 77.

FIG. 8. The spectral functions of carbon monoxide molecule in the valence energy regimes com-

puted by the GFCC-MOR methods with amplitudes T and ⇤ being replaced by their first order

perturbative terms. The select frequencies whose corresponding auxiliary Xp vectors are used to

construct the reduced order models are pointed out by red upper triangle markers.
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