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Abstract This systematic review classifies smartwatch-based healthcare applications
in the literature according to their application and summarizes what has led to feasible
systems. To this end, we conducted a systematic review of peer-reviewed smartwatch
studies related to health care by searching PubMed, EBSCOHost, Springer, Elsevier,
Pro-Quest, IEEE Xplore, and ACM Digital Library databases to find articles between
1998 and 2016. Inclusion criteria were as follows: (1) a smartwatch was used, (2) the
study was related to a healthcare application, (3) the study was a randomized controlled
trial or pilot study, and (4) the study included human participant testing. Each article
was evaluated in terms of its application, population type, setting, study size, study
type, and features relevant to the smartwatch technology. After screening 1119 articles,
27 articles were chosen that were directly related to health care. Classified applications
included activity monitoring, chronic disease self-management, nursing or home-based
care, and healthcare education. All studies were considered feasibility or usability
studies, and had limited sample sizes. No randomized clinical trials were found. Also,
most studies utilized Android-based smartwatches over Tizen, custom-built, or iOS-
based smartwatches, and many relied on the use of the accelerometer and inertial
sensors to elucidate physical activities. The results show that most research on
smartwatches has been conducted only as feasibility studies for chronic disease self-
management. Specifically, these applications targeted various disease conditions whose
symptoms can easily be measured by inertial sensors, such as seizures or gait distur-
bances. In conclusion, although smartwatches show promise in health care, significant
research on much larger populations is necessary to determine their acceptability and
effectiveness in these applications.
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1 Background

Recent advances in smartwatches have led to several applications in remote health
monitoring and mobile health (mHealth) [1]. The smartwatch is a new technology
that combines features of smartphones with continuous data monitoring that
promote health, such as step-tracking, heart rate monitoring, energy expenditure,
and physical activity levels [2]. They can provide feedback to users that allow
them to monitor their health, perform just-in-time interventions such as medication
use based on symptoms, and direct communication with caregivers and physicians
[3]. However, widespread adoption of the technology in health care and telemed-
icine is limited by barriers specific to smartwatches, such as cost, wearability, and
battery life [4]. Thus, the following review examines smartwatch use in healthcare
applications and the appropriate features that have led to feasible smartwatch-
based remote health monitoring applications.

Health care and telemedicine have recently relied on the use of smartphones
to enable remote health monitoring of patients in the community [5–12].
Examples of effective smartphone-based healthcare applications include those
for the self-management of long-term illnesses [5], smoking cessation [6],
family planning/contraception [7], and psychological therapies [8], among other
clinical research applications [9–12]. Smartphones allow for continuous interac-
tive communication from any location, computing power to support multimedia
software applications, and continuous monitoring of individuals through wire-
less sensing technologies [12]. However, smartphones cannot be worn to pro-
vide certain continuous sensing information such as heart rate and are not
always carried during behaviors of interest, such as during high levels of
activity [13].

Besides the ability to wear smartwatches to collect continuous sensing data
such as heart rate and activity, smartwatches have many other practical features
that make them ideal platforms for healthcare applications [14]. First, unlike
smartphones, smartwatches are ubiquitous in that they are typically worn even
when at home and during nighttime. Also, similar to smartphones, smartwatches
are able to combine sensor information such as accelerometers, gyroscopes,
compasses, and heart rate, with global positioning satellite (GPS) data. This is
particularly promising in applications that require continuous physical activity
monitoring to identify unexpected changes in activity patterns and propose alarms
and help based on the given localized area. Alarms and messages can also be more
easily observed than those sent to smartphones, as individuals can receive vibra-
tions, text, and sounds while wearing the watch. Finally, there is unlimited
development potential regarding the use of smartwatches in healthcare applica-
tions, and the modularity of software applications (apps) allows for personaliza-
tion to each individual’s healthcare needs.
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2 Methods

2.1 Rationale

Previous reviews on smartwatches [1, 3] have found that although there have been
several research studies that involve the use of smartwatches, very few have been tested
beyond feasibility. In this review, we assess whether any studies have tested beyond
feasibility and usability, and which healthcare applications have utilized smartwatches
in their interventions. Furthermore, unlike in Lu et al. [1], this review looks further into
the technology utilized behind each study by examining the smartwatch sensors, type
of smartwatch used, and the features that were most important for classification. We
will also examine the current smartwatches on the market to see what other sensing
mechanisms and features of the watches may be beneficial to healthcare applications
and how they fit in current clinical trial study design, as their fit in current clinical trials
and the design for clinical interventions was not expanded upon in Reeder et al. [3].

2.2 Objectives

Given the above rationale, this review seeks to answer the following research
questions:

[RQ1] Assess whether any studies related to smartwatches in healthcare applica-
tions have been tested beyond feasibility and usability.
[RQ2] Identify the types of healthcare applications in which smartwatches have
been utilized.
[RQ3] Identify the populations and test conditions of previous healthcare studies
that utilized smartwatches.
[RQ4] Compare the sensing technologies, classification features, and smartwatch
features of the current smartwatch-based healthcare systems and identify the
smartwatch technologies and features currently available on the market for future
research applications.

The above research questions will determine how smartwatches fit in current clinical
trial design for various healthcare applications. They will also help determine which
healthcare applications can benefit from smartwatches in their system design, and
which smartwatch and sensing technologies are most appropriate to use. In order to
answer these questions, a systematic review analysis described below was performed to
assess the healthcare application types, details of the testing conducted, and the features
of smartwatch technologies that were most important. To compare the resulting tech-
nology features from the chosen articles, a brief search using a web search engine
(Google Search) was performed to find currently available smartwatches on the market
and their technological features. This search was performed to help guide future
researchers on smartwatch selection in future healthcare applications and is included
alongside the results of the systematic review described below on smartwatch studies
related to health care.
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2.3 Eligibility Criteria

A peer-reviewed study was included if (1) a smartwatch was used, (2) the scope of the
study was related to a healthcare application, (3) the study was a randomized controlled
trial or pilot study that evaluated the delivery of an intervention using a smartwatch, and
(4) the study included testing on any human participants. Studies that used a combi-
nation of smartwatches and smartphones to deliver the intervention or application were
included. Excluded studies were those that (1) solely relied on mobile phones or
smartphones and a smartwatch was not used; (2) did not provide any specific inter-
vention, education, or care aimed at improving health; (3) were considered a review
paper on previously reported studies, a case report, poster, abstract, or editorials; (4) did
not include testing on human participants; or (5) were not related to a healthcare
application.

We searched articles published between 1998 and 2016, as the first wristwatch
computer was invented and patented in 1998, a Linux-based wristwatch developed by
Steve Mann [15]. Studies that were published in a language other than English were
included if they met the above inclusion criteria and translated using a machine
translation service (Google translate). Outcomes of the review included healthcare
application type, population type the system was tested on, experimental setting
(laboratory or community), number of participants, and the type of study (e.g., ran-
domized controlled trial, feasibility study, usability study). In addition, details about the
smartwatch use in the study, namely the operating system used, type of smartwatch,
most important sensors used and classification features, and connectivity type (e.g.,
Bluetooth to smartphone connection), were reported for each study.

2.4 Information Sources

In order to find eligible intervention smartwatch studies for health care, we conducted a
literature search for the use of smartwatches in health care in the PubMed,
EBSCOHost, Springer, Elsevier, ProQuest, IEEE Xplore, and ACM Digital Library
databases from 1998 to 2016, when the literature search was conducted. The search in
each database was limited to English and those with English translations. The keywords
we searched were Bsmartwatch application,^ Bsmartwatch app,^ Bsmartwatch apps,^
and Bsmartwatch health care.^ Note that we performed the same searches with the
keyword Bsmart watch^ instead of Bsmartwatch^ for all of the above terms in each
database; however, this did not produce any new results and often misinterpreted the
search as a Bwatch^ or Bsmart,^ resulting in irrelevant articles. Selected articles from
the literature search were screened for potential eligible studies based on the above
criteria. Those titles and abstracts who fulfilled the inclusion criteria were sent to two
independent reviewers who checked and verified the relevant material. In addition, to
ensure literature saturation, reference lists from selected studies were included in the
search and analyzed using the inclusion criteria.

2.5 Search Strategy

Both qualitative and quantitative studies were included in the search, including case
reports, review articles, posters, abstracts, book chapters, and editorials. However, the
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search was limited to those articles and findings that were peer-reviewed only. No study
design or language limits were imposed, although only studies in languages other than
English that could be translated using a machine translation service (Google translate)
were included. A date range of 1998 to 2016 was used to restrict the search in each
database from when smartwatches were first invented to when the literature review was
performed. The search strategies were developed with input from both reviewers, and
as relevant studies were identified, the reviewers checked for additional relevant cited
and citing articles.

2.6 Study Records, Data Items, and Feature Extraction

All studies were extracted from the resulting publication search for each database and
stored in a shared bibliography file (JabRef/BibTeX). The resulting studies were then
analyzed by two independent reviewers. Specifically, they first underwent a screening
process by reviewing the titles, followed by an abstract review and then a full-text
review given the inclusion and exclusion criteria. If there was disagreement among the
reviewers, these articles were discussed and the reasons for excluding studies were
recorded. Neither of the review authors was blind to the journal titles or to the study
authors or institutions. Furthermore, a systematic narrative synthesis was provided with
information presented in the text to summarize and explain the characteristics and
findings of the included studies.

To extract relevant features from the articles during the meta-analysis, each chosen
article was reviewed in terms of its healthcare application type, population type, setting
(clinic, laboratory, or community), number of participants, and study type (randomized
controlled trial or pilot study). The healthcare application type was defined as the
intended application type of the intervention and system described in the study, the
population type included the disease type or healthy volunteers in which the system
was tested on, and the setting and study type described the test conditions of the study.
If the study was a randomized controlled trial, the study outcomes were also extracted.
These features were extracted because they described the purpose and description of the
smartwatch system in relation to the healthcare application.

Finally, features relevant to the smartwatch technology itself were also extracted for
each study. These features included the operating system, type of smartwatch, battery
type, connectivity type (e.g., WiFi, Bluetooth, and data communication locations), and
its use in the health care-related study. In addition, we assessed the important sensors
utilized for the intervention, as well as the important features for classification and use
of the smartwatch sensors. These features determined which sensing mechanisms, data
communication methods, and feedback types are used in smartwatch-based healthcare
applications, as well as elucidated the desirable features of smartwatches.

2.7 Potential Biases

There were few potential biases associated with this review. First, since smartwatches
have only begun to rise in popularity since 2010, studies prior to this date are unlikely.
In addition, since the first iOS smartwatch, the Apple Watch (Apple Inc., Cupertino,
CA) was not released until April 24, 2015 [16], there are likely to be more Android
Wear and other operating systems (e.g., Tizen) used to develop smartwatch applications
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for health care. For pilot studies, it is likely that the sample sizes will be too small to
assess anything further than feasibility and usability and thus will be subject to small
sample bias. Finally, for randomized clinical trials, to determine whether reporting
biases were present, we determined whether the protocol of the RCT was published
before recruitment of patients of the study was started. The quality of evidence for all
extracted features was judged using the Grading of Recommendations Assessment,
Development and Evaluation working group methodology [17], and assessed across
the domains biases.

3 Results

One thousand and one hundred nineteen articles were returned in the search (see Fig. 1
for a PRISMA process flow diagram of the search results). Five hundred and eighty
unique articles remained after duplicates were removed. After reviewing the articles
given the inclusion criteria above, 156 articles were selected for further review based on
the above eligibility criteria. It was found during the screening process that out of the
122 articles that were excluded from further analysis, 21 articles were excluded because
a smartwatch was not used, 50 articles were excluded because the scope of the study
was not related to a healthcare application, 20 articles were excluded because they did
not include testing on human participants, and 31 articles were excluded because they
did not evaluate the delivery of an intervention. After performing an abstract review, 34
articles were chosen for full-text review, of which 27 were included in the final
analysis. None of these articles were found to be sufficiently homogeneous in design
to require a meta-analysis.

Fig. 1 PRISMA process flow diagram of the literature search results
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The seven articles that were removed from final review [18–24] were excluded
because they used a hybrid fitness band and smartwatch, such as the Microsoft
Band [18, 24], were unclear whether they tested using a smartwatch or used
another wearable sensor [20, 21], or only discussed the integration of the system
and did not clearly explain whether pilot data from human participants were
obtained [22]. Furthermore, some systems did not specify which type of technol-
ogy was utilized in the intervention [23] or allowed participants to use either a
fitness band such as a Fit Bit or a smartwatch [24]. Fitness bands were excluded
from review as they do not provide similar feedback and user interface features
such as different available software apps as smartwatches.

The chosen articles were published in 2011 [25] (n = 1), 2014 [26–28] (n = 3), 2015
[29–41] (n = 13), and 2016 [42–51] (n = 10). Included articles were closely split
between conferences [27, 28, 31–36, 38–42, 46, 47, 49–51] (n = 18) and journals
[25, 26, 29, 30, 37, 43–45, 48] (n = 9) for publication venue. Not surprisingly, there
were no articles that described a randomized clinical trial to assess safety and efficacy
as none were prospective studies that compared the effect of an intervention against a
control group [52]. In fact, only one study was defined as a prospective cohort study
[45], while all other studies [25–44, 46–51] were pilot studies to assess feasibility and
initial usability among a small number of participants.

3.1 Applications in Health care

Smartwatches have been tested in only a few aspects of healthcare research.
Specifically, of the 27 articles reviews, most studies focused on using
smartwatches for various types of activity monitoring [28, 30, 32, 33, 44, 47,
49] and chronic disease self-management applications [25–27, 29, 36, 37, 39–41,
43, 45, 46, 50, 51]. Other applications of smartwatch studies included those for
nursing or home-based care monitoring [31, 35, 38, 42, 48] and healthcare
education [34]. Note that activity monitoring included gait classification as well
as classification of daily activities. In addition, chronic disease self-management
studies were those that designed a smartwatch-based intervention to address a
particular disease population. Some of these articles included sub-studies on health
individuals that validated their activity recognition techniques if this variable was
important in their intervention [36, 40, 43].

An overview of the smartwatch articles and their applications in health care is seen
in Table 1. It can be seen from this table that several articles for chronic disease self-
management applications focused on Parkinson’s disease [26, 27, 39, 40] or epilepsy
[25, 45]. For the nursing or home-based care applications, the studies namely tested
their systems on geriatrics [35] or those who suffer from dementia [31, 48]. In the
activity classification studies, although most tested their systems on healthy individuals
[30, 32, 33, 44, 47, 49], one study tested and directed towards applications for those
with visual impairments [28]. Since majority of these studies were feasibility studies, it
is not surprising that most studies across applications tested their algorithm and system
design on healthy participants prior to future testing on targeted applications for health
care. Furthermore, as seen in the table, these studies tested on an average of 11.52 ±
9.98 individuals, where the mode indicated that most studies tested their algorithm on
only one participant.
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Table 1 Chosen studies and their features in relation to healthcare applications. Application type includes
activity or gait monitoring, chronic disease self-management, nursing or home-based care, and healthcare
education. Setting refers to testing the system in the laboratory, community, or hospital, while pilot study type
refers to usability, feasibility, or prospective cohort study

Article Application Population
type tested

Setting No.
participants

Pilot
study type

Lockman 2011
[25]

Chronic disease
self-management

Epilepsy Laboratory and
community

40 Usability

Lopez 2014
[26]

Chronic disease
self-management

Parkinson’s
disease

Laboratory 10 Feasibility

Sharma 2014
[27]

Chronic disease
self-management

Parkinson’s
disease

Laboratory 5 Feasibility

Chippen-dale
2014 [28]

Activity monitoring Visually
impaired

Community 1 Feasibility

Årsand 2015
[29]

Chronic disease
self-management

Diabetes Community 6 Usability

Mortazavi
2015 [30]

Activity monitoring Healthy Laboratory 20 Feasibility

Boletsis 2015
[31]

Nursing or
home-based care

Dementia Community
(nursing
home)

1 Usability

Faye 2015 [32] Activity monitoring Healthy Community 13 Feasibility

Haescher 2015
[33]

Activity monitoring Healthy Community 14 Feasibility

Jeong 2015
[34]

Healthcare
education

Healthy Laboratory 1 Feasibility

Panagop-oulos
2015 [35]

Nursing or
home-based care

Geriatrics Laboratory 26 Usability

Neto 2015 [36] Chronic disease
self-management

Healthy and
visually
impaired

Laboratory 15 healthy, 11
low vision

Feasibility

Kalantarian
2015 [37]

Chronic disease
self-management

Healthy Laboratory 10 Feasibility

Vilarinho 2015
[38]

Nursing or
home-based care

Healthy Laboratory 3 Feasibility

Dubey 2015
[39]

Chronic disease
self-management

Parkinson’s
disease

Laboratory 3 Feasibility

Dubey 2015
[40]

Chronic disease
self-management

Healthy and
Parkinson’s
disease

Laboratory 3 healthy, 3
Parkinson’s
disease

Feasibility

Thomaz 2015
[41]

Chronic disease
self-management

Healthy Laboratory and
community

20 Feasibility

Ali 2016 [42] Nursing or
home-based care

Nursing home
staff

Community 1 Usability

Banos 2016
[43]

Chronic disease
self-management

Healthy and
medical experts

Community 10 healthy,
6 medical
experts

Feasibility

Duclos 2016
[44]

Activity monitoring Healthy Laboratory and
community

16 Feasibility

Epilepsy Hospital 30
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3.1.1 Activity and Gait Recognition

The activity monitoring studies that utilized smartwatches for feasibility testing of
future healthcare applications [28, 30, 32, 33, 44, 47, 49] typically tested their systems
on healthy individuals in the laboratory and community. However, one study [28]
focused on activity classification for those with visual impairments. In Chippendale
et al. [28], a smartwatch-based navigation system that aided visually impaired individ-
uals by recognizing pose estimation of features in a scene to estimate the user’s location
and pose. This was then used to provide audio and haptic feedback to the user of the
current unfamiliar scene to aid them in performing daily activities such as shopping. To
test this system design, the smartwatch navigation system was tested in a case study of
one visually impaired individual while indoors and outdoors in a community-based
scenario.

The other studies that focused on activity recognition tested the feasibility of these
systems on healthy individuals [30, 32, 33, 44, 47, 49]. In these studies, feasibility
testing was done on more than one participant, ranging from 5 to 20 participants, and
these studies tested the system under both laboratory [30, 44, 49] and community [32,
33, 44, 47] conditions. Finally, the main goal of these studies was to test classification
algorithms and platforms for various types of activities, such as sitting, standing lying
down, running, jumping, cycling, and other daily activities such as working.

3.1.2 Self-Management of Chronic Diseases

Of the applications on chronic disease self-management interventions [25–27, 29, 36,
37, 39–41, 43, 45, 46, 50, 51], four studies focused on interventions for Parkinson’s
disease [26, 27, 39, 40], and two studies focused on systems for epilepsy [25, 45]. The
other studies focused on diabetes management [29], weight management and nutrition

Table 1 (continued)

Article Application Population
type tested

Setting No.
participants

Pilot
study type

Velez 2016
[45]

Chronic disease
self-management

Prospective
cohort
study

Hosseini 2016
[46]

Chronic disease
self-management

Asthma Community 1 Feasibility

Dobrican 2016
[47]

Activity monitoring Healthy Community 5 Feasibility

Thorpe 2016
[48]

Nursing or
home-based care

Dementia Laboratory and
community

5 Usability

Nair 2016 [49] Activity monitoring Healthy Laboratory 10 Feasibility

Micallef 2016
[50]

Chronic disease
self-management

Stroke Community 15 Usability

Ye 2016 [51] Chronic disease
self-management

Healthy Community 7 Usability
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[37, 41, 43, 51], and interventions for those with visual impairments [36]. Specifically,
in the studies that developed interventions for those with Parkinson’s disease [26, 27,
39, 40], Lopez et al. [26] attempted to use auditory signals to improve gait in patients
via the smartwatch. Sharma et al. [27] attempted to leverage the smartwatch to monitor
more multidimensional symptoms of Parkinson’s disease in addition to gait abnormal-
ities, including facial tremors, dysfunctional speech, and limb dyskinesia. The other
two articles [39, 40] used the smartwatch microphone to classify speech during vocal
exercise in those who suffer from dysarthria. All these studies assessed their interven-
tions in the laboratory in patients to assess the feasibility of detecting these symptoms
from the smartwatch for future interventions and clinical trials.

For the studies that developed systems for epilepsy [25, 45], Lockman et al.
[25] used smartwatches to detect tonic-clonic seizures in a hospital setting while
patients underwent continuous video and electroencephalogram (EEG) monitoring
in the hospital. Similarly, Velez et al. [45] also used smartwatches to detect tonic-
clonic seizures during video and EEG monitoring. However, Velez et al. [45]
studied 30 patients and measured these individuals over the course of several days
in a prospective cohort study, while Lockman et al. [25] studied 40 individuals
over the course of 24 h.

Banos et al. [43] focused on a general framework for all health and wellness
smartwatch applications. However, this study tested the framework in a weight man-
agement app that utilized a smartwatch to classify activities associated with weight
management, such as exercise and eating. Kalantarian and Sarrafzadeh [37] also
attempted to utilize smartwatches for weight management, specifically by using the
device’s built-in microphone to detect chews and swallows while eating. Their evalu-
ation was successful in detecting different types of food chewing, such as apples and
potato chips, in order to develop a heuristic estimation of caloric intake. Similar to this
concept, Thomaz et al. [41] utilized the device’s microphone to detect chews and
swallows; however, they also used inertial sensors and the built-in camera on the
smartwatch to detect chews and swallows while eating. On the other hand, Ye et al.
[51] did not detect chews and swallows; instead, they used inertial sensors to detect
whether an individual was eating and then relied on the smartphone’s use of the
Evernote app to take snapshots and self-report logs of their food.

For diabetes management, Årsand et al. [29] developed a diary application for a
smartwatch that provided easy entry of relevant diabetes management information.
Relevant information included carbohydrates, insulin, blood glucose, and physical
activity type. This data was combined with step counts and transferred to the
smartphone, which sent reminder notifications to the smartwatch every 90 min after
meals to take blood glucose measurements. This was tested in six individuals, where
two participants suffered from type 1 diabetes. However, although this application
created a unique application for smartwatches, it relied heavily on user input and did
not leverage sensor-based measures aside from step count.

The study conducted by Neto et al. [36] focused on a different need in the visually
impaired community: face recognition during navigation. In this study is a scenario in
which a visually impaired person needs to walk into a room in which he or she needs to
recognize faces while silence and discretion is required, such as during a work meeting.
To accomplish this task, the authors developed a smartwatch system in visually
impaired individuals who were provided with information about their surroundings
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and faces via audio feedback. This was then tested in 15 healthy individuals who were
blinded for feasibility, followed by usability testing in 11 low-vision individuals.

In Hosseini et al. [46], a smartwatch application was designed to provide pediatrics
who suffer from asthma with risk levels of having an asthma attack through the use of
various physiological and environmental sensors as well as sensors on the smartwatch.
The smartwatch sensors utilized included the heart rate sensor, accelerometer, gyro-
scope, and GPS to assess physical activity and location. The system was tested in one
adult individual who suffers from asthma for feasibility to assess the application’s
ability to assess asthma attack risk under different real-world conditions that can cause
asthma exacerbations such as exposure to smoke and exercise.

The study described in Micallef [50] focused on the usability of an exercise reminder
application to improve arm movement after stroke. A smartwatch, smartphone, and
tablet were evaluated in terms of usability to provide reminders, instructions, goals, and
self-reports through visual, audio, and tactile feedback. The application relied on the
LCD screen, speaker, and vibrator to provide the feedback and tested the usability of
these modalities in 15 stroke survivors. They also tested whether smartwatches were
more desirable to use over smartphones and tablets by stroke individuals. It was found
that many individuals preferred the use of a smartwatch as well as using all modalities
to provide reminders.

The above studies that focused on chronic disease self-management demonstrated
the ability to apply smartwatches for long-term use in self-management programs. In
addition, although these studies applied smartwatches to different chronic disease
conditions, there were significant similarities across each intervention. For instance,
many studies provided some forms of gait monitoring. This was evident in several
studies, such as in those that applied smartwatches to Parkinson’s disease self-
management [26, 27], visual impairments [28, 36], asthma [46], or diabetes [29]. They
also relied on sensors available on the smartwatch to assess gait throughout use of the
intervention and typically assessed feasibility and usability issues for long-term use.
These similarities are particularly important in smartwatch applications for health care,
as they can elucidate whether the smartwatch application will improve adherence and
continuous monitoring throughout a self-management and community-based
intervention.

3.1.3 Nursing or Home-Based Care

The smartwatch studies that focused on nursing or home-based care monitoring [31, 35,
38, 42, 48] utilized smartwatches to monitor patients in nursing facilities and their
homes for specific health events to improve quality of life. Specifically, the studies
described in Boletsis et al. [31] and Thorpe et al. [48] evaluated a smartwatch
intervention for those with dementia through small usability studies with one patient
[31] and five patients [48] who suffered from dementia, respectively. These studies
evaluated the smartwatch’s ability to provide tracking and interaction by measuring
sleep disturbances [31], frequent toilet visits [31], day time snoozing [31], mobility
[48], activity levels [48], and low sleep quality [31]. These systems, however, did not
provide fall detection like the smartwatch system described in Vilarinho et al. [38].
Instead, they provided emergency call interactions in case of a fall. In Ali et al. [42], a
similar small usability study to those described Boletsis et al. [31] and Thorpe et al. [48]
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was conducted but evaluated a smartwatch’s ability to integrate different call functions
typically seen in nursing homes. This includes call light systems, chair and bed alarms,
wander guards, and other informative alarms that allow nursing home staff to monitor
their patients. Finally, in Panagopoulos et al. [35], an integrated home care smartwatch-
based system that incorporates communication and health monitoring features, such as
biosignal monitoring and reminder notifications for treatments based on physician-
defined schedules, was studied. However, this study was much larger than the usability
studies conducted in Boletsis et al. [31], Thorpe et al. [48], and Ali et al. [42], as it
analyzed the system among 26 geriatrics in a laboratory-based setting.

3.1.4 Healthcare Education

The final application found for smartwatch-based healthcare studies focused on using
smartwatches for healthcare education [34]. In particular, Jeong et al. [34] utilized
smartwatches to evaluate and teach healthcare professionals how to perform cardio-
pulmonary resuscitation (CPR). Through the measurement of chest compression depth
from accelerometers on the smartwatch, the system was able to provide feedback to the
user of the level of chest compression being performed, as well as guide them through
the CPR process as defined by the American Heart Association guidelines. This study
evaluated the system’s feasibility in one individual and found that a smartwatch was
able to provide accurate estimates of chest compression. When compared to a
smartphone application, it was found to be more convenient to use, as the individual
did not need to grip the device and did not hand any visual interference with hands over
the screen. This demonstrates some of the ideal features smartwatches have over
smartphones for healthcare applications, which will be further evaluated below.

3.2 Ideal Smartwatch Features

Given the specific healthcare applications above, it is clear that smartwatches have
several important features that make them ideal for use in health care over the use of
smartphones. For instance, smartwatches are able to continuously collect physical
activity data, as well as other biosensor data such as heart rate, which makes them
ideal devices for interventions that focus on activity and gait recognition [28, 30, 32,
33, 44, 47, 49]. Furthermore, unlike smartphones which require individuals to carry the
devices in their pocket or hands, smartwatches can be worn during physical activity and
treatment interventions that may require exercise or a high level of exertion by the
participant [14].

In addition to continuous biosignal monitoring, smartwatches are also able to be
worn can smartwatches continuously in the community and home. However, studies
reported limited battery life in field settings [30]. Furthermore, smartwatches can
provide alarms and messages that are more easily seen by individuals during activities
such as exercise or interventions, as they can use vibrations, text, and sound to alert the
user and provide more immediate communication with healthcare professionals. Final-
ly, after the recent 5.1.1 Android Wear update, smartwatches now have improved
computation power and battery life, allowing them to be used throughout the day
and night time to continuously capture information in the community. These features
have allowed successful feasibility studies in the aforementioned research, and if
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battery life is improved, it can lead to useful applications that will be tested in clinical
trial research.

3.2.1 Operating System

Of the studies examined, most healthcare smartwatch applications utilized Android-
based smartwatches over iOS and Tizen-based smartwatches [27–30, 32–34, 36–40,
42, 44–48, 50, 51] (see Table 2). This is because the Android operating system is open
source and the smartwatches that run on Android are low cost. In addition, as
previously mentioned, Apple smartwatches that run on the iOS operating system did
not make their debut until April 2015, so most studies did not have an iOS smartwatch
available during time of publication [16]. Furthermore, the most common watch type
that was researched and available during these studies was the Samsung Gear Live
model [30, 32, 34, 36, 37, 42, 44, 46], which was used in 8 of 27 (30%) studies. This
watch, along with most commercially available smartwatches, requires a paired
smartphone or tablet for full functionality. However, this was before the 5.1.1 Android
Wear update, which now allows for WiFi support and thus smartwatches can now be
used as the sole device in large scale healthcare clinical trials.

3.2.2 Sensors

Of the different features available on the smartwatch, the ability to continuously
monitor individuals through various sensing mechanisms is the most important feature
for use in healthcare applications. Specifically, after reviewing the smartwatch features
utilized in the examined studies (Table 2), the use of accelerometers and other inertial
sensors was most important, as they elucidated individual physical activities [25–35,
38, 41, 43–46, 49, 51]. Particularly, several studies relied solely on accelerometer
sensors [25–27, 29, 34, 35, 44, 51] rather than other sensing mechanisms such as
gyroscopes to classify activities such as seizures [25], gait [26, 27], or other types of
physical activity [44]. Also, it was found that the use of the liquid crystal display (LCD)
screens and microphones [28, 29, 33–37, 39, 40, 42, 45, 46, 48, 50] were of great
importance in smartwatch research for healthcare applications, as these features were
typically used to provide feedback to the user or allow the user to provide information
and voice commands. However, some systems used the microphone feature to classify
activities such as eating [37] or speech [39, 40].

In addition to the above important sensors utilized across studies, the features
required for classification were typically in the time domain (Table 2). Several studies
relied on accelerometer intensity, duration, and direction [25, 26, 30, 31, 33, 38, 41, 44,
49] to classify activities. In addition, frequency domain features such as energy [27,
33], entropy [27, 39], dominant frequency [25, 30, 33, 40, 45, 49], and frequency
distribution [37] were sometimes utilized for classification. To improve the accuracy of
physical activity classification in some studies, heart rate was also included as a feature
[31, 32, 46]. Finally, some studies relied on built-in classifiers of commercially
available watches such as step counters to extract information related to their applica-
tions [29, 32]. This, however, can be problematic, as commercially driven classifiers are
designed using healthy populations and have been found to be inaccurate among target
health care-related populations such as the elderly [53, 54].
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As seen in Table 3, current commercially available smartwatches contain a wide
range of sensors. Available sensors include accelerometers, gyroscopes, proximity
sensors, magnetometers, pedometers, heart rate sensors (which relies on
photoplethysmography, PPG, sensors), barometers, altimeters, compasses, GPS, and
microphones. Furthermore, the BLOCKS Modular smartwatch described in Table 3, a
custom Android-based smartwatch that allows researchers to choose which sensing
mechanisms they would like available on the watch, allows for even more sensor types
important for health monitoring. These sensors include pulse oximeters, electrocardio-
gram (ECG), skin temperature, and perspiration sensors. This smartwatch may become
particularly useful in future healthcare applications, as it allows for physiological
sensors not typically seen in smartwatches to continuously monitor individuals in the
community and thus allow for more potential health conditions to be monitored and
interventions to be explored.

4 Discussion

It is evident from the findings of this study that most research on smartwatches has been
conducted as feasibility studies for chronic disease-self management [26, 27, 36, 37,
39–41, 43, 46] (see Sect. 3.1). Furthermore, most studies were conducted in 2015
[29–41]. This is expected, as smartwatches have not become popular until 2010, when
they have been improved to run mobile apps and function as wearable computers.
Furthermore, in June 2014, the Android Wear platform was introduced [55]. This year
was also when a number of commercial smartwatches became available [56], such as
the Samsung Gear Live, Moto 360, and Sony Smartwatch 3. In April 2015, the first
Apple Watch was released, which uses the iOS operating system [16].

The feasibility studies on chronic disease self-management applications of health
care [25–27, 29, 36, 37, 39–41, 43, 45, 46, 50, 51] utilized similar smartwatch features.
Specifically, these applications targeted various disease conditions that exhibited be-
haviors measurable by inertial sensors (e.g., accelerometers, gyroscopes), such as
seizures in those who suffer from epilepsy [25, 45] or gait disturbances in those who
suffer from Parkinson’s disease [26, 27]. Thus, it can be inferred from these previous
studies that smartwatches may have a future niche in healthcare applications as
continuous monitoring of physical activity when smartphones are unable to measure
the behavior or are not being worn (e.g., during exercise, walking, or sleep).

In addition to inertial sensing mechanisms, of the smartwatch features presented in
Sect. 3.2, only a few other types of sensing mechanisms were utilized in healthcare
applications (see Table 2 in Sect. 3.2). For example, several studies [28, 29, 34–37, 39,
40, 42, 46, 48, 50] took advantage of the LCD screen and microphone to provide
continuous feedback to individuals throughout their studies. Others utilized the
smartwatches’ ability to record heart rate [31, 32, 46, 47, 49], temperature [31], skin
impedance [31], or take images using the camera [36]. In addition, most applications
mainly used Android-based watches, such as the Samsung Gear Live [30, 32, 34, 36,
37, 42, 44, 46], as they are more affordable, have open-source code and documentation,
and allow for WiFi support. They also contain the same built-in sensing mechanisms as
iOS and custom-built watches, such as the above desirable inertial sensors and other
sensors utilized in the studies examined.
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Although many of the above features are available in smartphones,
smartwatches were utilized in these studies for several reasons. First, as previously
mentioned, the smartwatches utilized in the chronic disease self-management
studies [25–27, 29, 36, 37, 39–41, 43, 45, 46, 50, 51] were able to monitor
physical activities and behaviors from inertial sensors when smartphones would
not be worn, such as at the bedside during a hospital visit or during exercise. This
is particularly important in future applications of smartwatches, as it has been
found that certain populations such as children do not wear smartphones during
exercise [13] or those who are lying in a hospital bed [25, 45]. In addition, these
studies were able to capitalize on the use of the LCD screen and speaker to
provide feedback to individuals, or ask input from users. The more diverse sensors
such as microphones [36, 37, 39, 40, 45, 50], cameras [36], heart rate [46],
temperature [31], and skin impedance [31] sensors available in smartwatches
allowed these studies to classify more complex behaviors than just physical
activity, such as type of food being eaten [37, 39, 40] or face recognition during
navigation [36]. These sensors and complex classifications will be important in
future clinical trials that require more diverse behaviors to be monitored for
individualized interventions of multifaceted disease conditions.

In the future, further research is necessary to assess the efficacy of the healthcare
interventions described in these studies. Specifically, randomized controlled trials in
much larger populations are needed to determine the safety and efficacy of using
smartwatches in interventions among specific populations and disease conditions. This
is typically done through phase I, II, and III clinical trials, where a phase I trial is first
performed on healthy volunteers to assess safety, a phase II trial is next performed to
collect preliminary data on the effectiveness of the intervention, and a phase III trial is
performed to gather more information about the safety and effectiveness of the
intervention [57]. These typically range from 20 to 100 participants in a phase I trial,
100–300 participants in a phase II trial, and > 1000 participants in a phase III trial and
assess safety and efficacy over long periods of time. If successfully performed for any
of the aforementioned applications, it may lead to widespread adoption of smartwatch
use in health care for continuous monitoring and real-time feedback driven
interventions.

4.1 Limitations

There are several limitations to smartwatches that have prevented widespread adoption
in healthcare research. First, since smartwatches have only begun to rise in popularity
since 2010, and were not improved to run mobile apps and function as wearable
computers since 2014, very little time has passed for them to become popular in the
general market, let alone in the healthcare market. Also, there has been little to no
validation of using smartwatch sensors to collect physiological and environmental data
by comparing smartwatch sensors against clinical measures. In order to maintain Health
Insurance Portability and Accountability Act (HIPAA) compliance during such valida-
tion studies, security and privacy of smartwatch data must also be maintained through-
out the transmission process. This can be difficult, especially since many current
smartwatches are still tied to smartphones to allow for data transmission to a secure
server if they do not have the 5.1.1 Android Wear update.
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In addition to the above study design challenges, there are several technological
challenges in smartwatches that still exist. For example, although the battery life of
smartwatches has vastly improved in recent years, they still require to be charged after a
day or few days of use depending on the computation being performed and amount of
LCD screen feedback being provided. This may make compliance to use of the
smartwatch in interventions challenging, as individuals may prefer to wear the
smartwatches throughout the intervention without having to remember to charge the
device. Finally, due to the small LCD screen on a smartwatch, these devices have very
limited capabilities in terms of the amount of feedback and interaction with the individ-
ual. Thus, many future interventions should rely on other sensing mechanisms available
in smartwatches, such as microphones or video cameras that interface with the inter-
ventionist, caregiver, or clinician. Future advancements in how these feedback mecha-
nisms are provided in the context of human machine interfacing is required, however, to
improve compliance and adherence to the intervention and use of the smartwatch.

5 Conclusions

This paper found that in that of 1119 articles on the use of smartwatches, there were
only 27 studies that are directly related to health care. Furthermore, these studies had
limited applications, which included activity monitoring, chronic disease self-manage-
ment, nursing or home-based care, and healthcare education. All studies were consid-
ered feasibility or usability studies and thus had a very limited number of study subjects
tested. Since no randomized clinical trial research was found, it is suggested that
significant further research on much larger populations is needed. This will assess the
efficacy of using smartwatches in healthcare interventions and may eventually lead to
widespread adoption of the technology in this field.
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