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Abstract 

We propose a theoretical framework for understanding how 
everyday choice objects are represented and how decisions 
involving these objects are made. Our framework combines 
insights regarding object and concept representation in 
semantic memory research with multiattribute choice rules 
proposed by scholars of decision making. We also outline 
computational techniques for using our framework to 
quantitatively predict naturalistic multiattribute choices. We 
test our approach in two-object and three-object forced choice 
experiments involving common books, movies, and foods. 
Despite using complex naturalistic stimuli, we find that our 
approach achieves high predictive accuracy rates, and is also 
able to provide a good account of decision time distributions. 

Keywords: Multiattribute choice, Semantic memory, 
Naturalistic decision making, Judgment and decision making 

Introduction 

Most choices that people make on a day-to-day basis, from 

the books they read to the foods they eat, involve trading off 

attributes, so as to select the object whose attributes are 

overall the most desirable (Keeney & Raiffa, 1993). There 

is, however, a disconnect between the way in which 

multiattribute choices are currently studied, and the way in 

which these day-to-day choices are typically made. Most 

multiattribute choice experiments explicitly present choice 

objects and their attributes to participants in a matrix of 

numerical quantities (e.g. Figure 1a). Everyday decisions, in 

contrast, are not usually composed of objects with a small 

set of explicitly presented and quantified attributes. Rather 

the objects in these decisions are much richer and complex 

(e.g. Figure 1b). Decision makers do have knowledge about 

these objects and their attributes, but this knowledge is 

represented in the decision makers’ minds after having been 

learnt through prior experience with the choice domain.   

 

 
Figure 1a and b. Stimuli presentation in standard multiattribute 

choice experiments (left) and in Study 1 (right). 

 

The divergence between the stylized stimuli used in 

current research and the complex multiattribute choices 

made in real-world settings is problematic. Choice processes 

and resulting behaviors depend greatly on the ways in which 

attributes and objects are presented (e.g. Kleinmuntz & 

Schkade, 1993) suggesting that real-world decisions, which 

seldom involve actual attribute-by-object matrices, may be 

different to the types of decisions observed in current 

experimental work. More importantly, by using artificial 

designs in which the attributes of objects are directly 

presented to decision makers, existing theoretical work has 

largely ignored the role of object representation. Storing, 

retrieving, and processing attribute information about the 

objects in a given choice problem is a pivotal part of the 

decision process, and a complete account of choice requires 

an approach that is able to specify the mechanisms involved 

at this stage in the decision, well as the relationship between 

these mechanisms and the final outcomes of the decision 

(see Bhatia, 2013 for a discussion).  

This paper provides a theoretical framework capable of 

addressing these issues. It relies on insights in semantic 

memory research which suggest that low-dimensional 

attribute spaces are used to represent objects and concepts.  

For example, multi-dimensional scaling (Shepard, 1962) 

passes similarity ratings through a matrix decomposition 

algorithm, resulting in the recovery of a small number of 

latent attributes that best describe the structure of similarity 

for a given domain. Likewise, distributional models of 

semantic memory typically learn low-dimensional word 

representations through natural language. Some approaches, 

like latent semantic analysis, use singular value 

decomposition to perform dimensionality reduction on 

word-context occurrence matrices (Landauer & Dumais, 

1997). Others use Bayesian statistics or convolution based 

associative memory, but also result in low-dimensional 

representations for words (see Jones et al., 2015).   

We suggest that these insights extend to everyday 

multiattribute choice, so that decision makers can be seen as 

using the distribution of observable features across choice 

objects in the environment to uncover low-dimensional 

latent attributes for representing the objects. Furthermore, 

we propose that it is these latent attributes that are evaluated 

and aggregated during the decision process. For simplicity 

we suggest that the recovery of latent attributes can be 

approximated using singular value decomposition on the 

observable feature space (as in e.g. Landauer & Dumais, 

1997), and that the evaluation of the latent attributes can be 

approximated with a linear model with decision weights for 

each latent attribute (as in e.g. Keeney & Raiffa, 1993).  

We also propose computational techniques for uncovering 

the latent attribute representations of common choice 
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objects. Particularly, keywords, tags, and other natural 

language descriptors for choice objects on internet websites, 

can be considered suitable proxies for the observable 

features of these objects. For a sufficiently rich online 

dataset, it is possible to train semantic models and learn the 

latent attribute representations for the objects in a choice 

environment, and subsequently examine peoples’ choices 

between these objects.  

Framework 

Let us consider a choice domain with N total objects. 

Each of these objects has a set of observable features, and 

can be written as a vector of these features. If there are M 

total unique features in the environment, then each for 

object i we have xi = (xi1, xi2, … xiM), with xij = 1 or xij = 0 

based on whether or not feature j is present in object i. 

Singular value decomposition involves processing the 

matrix X = [x1, x2, … xN] to obtain L << M latent attributes, 

corresponding to the L largest singular values of X. Using 

these singular values, we can represent an object i as zi = 

(zi1, zi2, … ziL), with zij corresponding to the association 

between the object and the jth
 latent attribute. Note that M 

can be very large in many naturalistic choice domains, 

whereas L is typically much smaller.  

The use of latent attributes for representing objects 

implies that our approach retains the multiattribute structure 

assumed by theoretical decision making research. Thus we 

can take common multiattribute decision rules and apply 

them very easily to latent attributes. We use a simple linear 

rule, which specifies a decision weight for each attribute and 

aggregates weighted attributes into a measure of utility for 

an object (Keeney & Raiffa, 1993). The object with the 

higher utility is the one that is most frequently chosen. In 

the context of the latent attribute structure outlined here, this 

involves specifying an L dimensional vector of weights w = 

(w1, w2, … wL), and multiplying the latent attributes for an 

object i by these weights, so as to obtain the utility for the 

object Ui = w ∙ zi. In order to permit random noise in the 

choice process we embed our utilities in the logit choice rule 

(Luce, 1959). In a two-object choice this specifies the 

probability of choosing an object i over another object i' as 

Pr[i chosen] = eUi)/(eUi + eUi’) = ew ∙ zi/(ew ∙ zi + ew ∙ zi’). For the 

general case with N’ choice objects we have Pr[i chosen] = 

eUi/(Σn = 1 .. N’ eUn).  

In order to test our approach and illustrate its applicability 

we first need to uncover the actual attribute representations 

that characterize common choice objects. In related 

domains, such representations are usually obtained by 

asking experimental participants to generate features that 

describe the meaning of a given word (e.g. McRae et al., 

2005). However common choice domains are so vast 

(involving thousands of features for thousands of objects) 

that the experimental elicitation of these feature norms may 

not practical. Thus we suggest that user-generated 

keywords, tags, and other descriptors for common choice 

objects on online datasets can be seen capturing the 

observable features that best describe the various objects. 

In this paper, we use three large online datasets: 

www.GoodReads.com, which contains user-generated 

bookshelves for thousands of books; www.IMDB.com, 

which contains user-generated keywords for thousands of 

popular movies; and www.AllRecipes.com which contains 

user-specified ingredients for thousands of dishes. We 

scrapped these websites in 2014, and for each website we 

attempted to obtain as much information (as many objects 

and associated features) as was technically feasible. We 

obtained a total of 372,186 unique shelves for 15,737 books 

for the www.GoodReads.com dataset, a total of 160,322 

unique keywords for 44,971 movies for the 

www.IMDB.com dataset, and a total of 24,688 unique 

ingredients for 39,979 recipes for the www.AllRecipes.com 

dataset. Using these user-generated descriptors as our 

observable features, each of the N objects in each of the 

three datasets can be written as an M-dimensional feature 

vector xi = (xi1, xi2, … xiM), with xij = 1 if object i (a book, a 

movie, or a food dish) has observable feature j (a keyword, a 

shelf, or an ingredient).  A singular value decomposition on 

X = [x1, x2, … xN] can be subsequently performed to obtain L 

<< M latent attributes for the datasets.  

Study 1 

In Study 1 we tested whether our theoretical framework 

and the computational techniques for applying this 

framework, actually predict peoples’ everyday 

multiattribute choices. This is the primary experiment in this 

paper: It involves incentivized choices in the laboratory with 

reaction time measures. In later studies we examine variants 

of this design using non-incentivized online samples.  

Method. In this study, 73 participant made binary choices 

between pairs of popular books. Participants were recruited 

from a university subject pool, and performed the study in a 

behavioral laboratory on computer screens. Participants 

were also incentivized, and one of their chosen books was 

selected at random and given to them at the end of the study. 

Unlike most existing multiattribute choice experiments, 

the choice objects were not presented alongside a set of 

quantifiable attributes (as in e.g. Figure 1a). Rather they 

were shown to participants using just the covers of the 

books and the accompanying titles (as in e.g. Figure 1b). 

Overall, each of the 73 participants made 220 choices 

involving 150 unique books. The books used in this study 

were obtained from 30 different popular genres on 

www.GoodReads.com.  

Model Fitting. We fit participant choices using the latent 

attributes recovered from a singular value decomposition 

(SVD) on the www.GoodReads.com data.  We allowed the 

number of underlying latent attributes, L, to vary across 

participants. For a given value of L, we used the L latent 

attributes with the highest singular values from the SVD on 

the www.GoodReads.com dataset. In order to ensure 

sufficient degrees of freedom for estimating decision 

weights, we restricted L to a maximum of L = 100 (and a 

minimum of L = 2). In essence this leads to a total of 99 

unique models for each participant, corresponding to L = 2, 
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L = 3, … L = 100. with a separate set of best fitting 

participant-level attribute weights for each model. The 

values of the 150 books in our study on the two latent 

attributes with the largest singular values are shown in 

Figure 2. Figure 2 also shows the ten shelves with the 

largest absolute weights for these two latent attributes.  

 

 
 

Figure 2. The values of the 150 books in Study 1 on the two latent 

attributes with the largest singular values, alongside the ten shelves 

with the largest absolute weights for these two latent attributes. 

 

In order to avoid overfitting, we used ten-fold cross-

validation to test predictive accuracy and find the best 

performing model (i.e. best performing value of L) for 

describing each participant’s choices. For model training, 

we recovered the weighting vector w that provided the best 

fit to the training data, with the assumption of a linear 

choice rule embedded in a logistic link function. This vector 

(whose dimensionality depended on the dimensionality of 

the model (value of L) in consideration), was recovered 

using maximum likelihood estimation. For model testing we 

calculated the proportion of choices in the test data 

predicted accurately by the recovered w for each model. A 

choice is considered to be predicted accurately if the utility 

assigned to the chosen option by the model in consideration 

is higher than the utility assigned to its competitor. 

Ultimately, the value of L and corresponding weight vector 

w with the highest accuracy on the test data was considered 

to be the overall best fitting model.  

Results.  The mean accuracy of our approach for 

predicting the test data is 83% (SD = 0.08), significantly 

above a baseline accuracy of 50% (p < 0.01). Additionally, 

the average best fitting value of L across our participants is 

39.67 (SD = 27.95. Table 1 summarizes statistics regarding 

model accuracy. 

 

 
 

Table 1. Summary of model fits. Mean”, “Std. Dev.” and 

“Median” indicate the distribution of best-fitting model accuracy 

rates on test data across participants.  “Best Fit” describes the 

proportion of participants for which the model has the highest 

accuracy (these proportions sum to greater than one as models are 

sometimes tied) and “Significant” indicates the proportion of 

participants that outperform the baseline model with p < 0.05. 

 

One possibility is that our technique achieves its high 

accuracy rates by allowing flexible weights across a large 

number of dimensions. In order to control for this, we 

attempted the above model-fits with randomly generated 

attribute vectors. Particularly, for each participant and each 

object offered to the participant, we artificially created a 

100-dimensional vector with each dimension randomly and 

uniformly distributed in the range [0,1]. We then performed 

a 10-fold cross validation procedure that examined the fits 

of linear models with flexible weights for L dimensions of 

the random vectors. With this approach we found the mean 

accuracy to be 69% (SD = 0.08) Additionally, 84% of 
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participants achieved a higher accuracy rate using the 

recovered latent attributes from www.GoodReads.com, 

compared to the randomly generated vectors (and 8% of 

participants had equal accuracy with both approaches). A 

participant-level paired t-test indicates shows that this 

difference is significant (p < 0.01). Table 1 provides further 

statistics involving the random vectors approach. 

Another alternative to our SVD-based attributes involves 

the use of the raw observable features for the books. Of 

course it is impossible to actually recover separate decision 

weights for each of these observable features. However, we 

can use well-known decision heuristics applied to these 

observable features. For example, using the lexicographic 

heuristic (Tversky, 1969) would involve considering only a 

single feature, and choosing the object that is the most 

desirable on this feature. Likewise, applying the tallying 

heuristic (Russo & Dosher, 1983) would involve counting 

up the positive and negative features of each choice object, 

and choosing the object with highest number of positive 

features relative to negative features. We applied these two 

heuristics to participant-level choice using 10-fold cross 

validation. For the lexicographic heuristic we used the 

training sample to determine which of the object’s features 

has the highest absolute correlation with choice. We then 

used this single feature to predict the choices on our test 

sample. For the tallying heuristic, we used the training 

sample to determine whether each of the features were 

positively or negatively correlated with choice. If they were 

positively correlated with choice, they received a weight of 

+1, and if they were negatively correlated with choice they 

received a weight of -1. These weights were then applied to 

the observable features in the test data to predict choices 

according to the tallying heuristic.  

We found that the lexicographic heuristic achieved a 

mean accuracy rate of exactly 50% (SD = 0.03), indicating 

that it is not a suitable way of making multiattribute choices 

with such large features spaces. In contrast, the tallying 

heuristic achieved a mean accuracy rate of 72% (SD = 0.09). 

When comparing these heuristics with our latent attribute 

approach, we found that all participants were better fit by 

our approach compared to the lexicographic heuristic, and 

that 78% of participants were better fit by our approach 

relative to the tallying heuristic (with another 16% tied). 

The differences in accuracy rates shown here are 

statistically significant when evaluated with a paired t-test 

(p < 0.01 for both heuristics). Table 1 provides further 

statistics involving the lexicographic and tallying heuristics. 

How well do our model fits predict decision time? We can 

perform this test by embedding our best fitting utilities into 

a drift diffusion model (Ratcliff & Rouder, 1978). Our 

utilities are a measure of the desirability of the objects and, 

within the drift diffusion framework, are likely to determine 

the drift rate. We can formalize this by allowing the mean 

drift rate in the drift diffusion model to be a linear function 

of the best fitting utility difference. Thus, for trial a for 

participant b, we can write this mean drift rate as vab = β0 + 

β1∙(Uab
L – Uab

R). Here Uab
L is the predicted utility for the left 

option in the trial for the participant, based on the best 

fitting model for the participant. Likewise, Uab
R is the 

predicted utility for the right option. β1 is a multiplier 

mapping this utility difference on to a drift rate, and β0 is an 

intercept term capturing an absolute bias in drift for the left 

option. In this model, hitting the upper boundary leads to the 

left option being selected, whereas hitting the lower 

boundary leads to the right option being selected.  

We fit this modified drift diffusion model permitting trial-

to-trial variability in starting points and trial-to-trial 

variability drift rates. For this purpose, we adopted a 

hierarchical model fitting approach, as implemented by the 

HDDM toolbox (Wiecki et al., 2013). This approach 

recovers group mean parameters for the decision threshold, 

non-decision time, drift rates, trial-to-trial variability in 

starting points, trial-to-trial variability, and trial-to-trial 

variability drift rates, while also permitting individual 

differences in these parameters. Importantly this toolbox 

makes it easy to fit linear functions for drift rates as we wish 

to do in this paper. The best fitting group mean parameters 

from our specification, as recovered by the diffusion 

analysis, are presented in Table 2. Again β1 represents the 

weight on utility difference in the drift term. As can be seen, 

the bulk of the distribution of this parameter lies above 0, 

indicating that the best fitting utility difference has a strong 

positive relationship with mean drift in the model. Table 2 

also displays the deviance information criterion (DIC) value 

for this fits.  

 

 
 

Table 2. Summary of best fitting group mean parameters for the 

drift diffusion model fits in Study 1.  Here β1 represents the weight 

on utility difference in the drift term, in the full model. The 

restricted model sets this to 0. DIC indicates the deviance 

information criterion value for the fits.  

 

In a related analysis, we fitted a simplified version of this 

model in which β1 = 0, and drift is independent of the 

predicted utility difference. As shown in Table 2, the fits for 

this model, measured through the deviance information 

criterion (DIC), are much lower than those for the extended 

model, suggesting that the utility differences specified by 

our approach do improve reaction time predictions in 

naturalistic multiattribute choice tasks. 
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Studies 2-5 

As a secondary demonstration we applied our approach to 

two other domains: food choice and movie choice. We 

conducted a series of online studies offering participants 

two-object and three-object choices between various food 

dishes and between various movies, and we predicted these 

choices using latent attributes obtained from user-generated 

ingredients on www.AllRecipes.com and user-generated 

keywords on www.IMDB.com. 

Method. In Study 2, 90 participants recruited from 

Amazon Mechanical Turk made 200 binary choices between 

various food dishes. The food dishes were obtained from 

www.AllRecipes.com, and there were a total of 100 unique 

food dishes used in the study (which were the most popular 

dishes on www.AllRecipies.com). Choices in this study 

were presented on the screen using just the names of the 

dishes. Participants had to click on the names in order to 

indicate their choices. In Study 3, 88 participants recruited 

from Amazon Mechanical Turk made 200 three-object 

choices between various food dishes. The dishes used were 

the same as those in Study 2, and their presentation was 

identical to that in Study 2 (except that each screen offered 

three different choices, instead of two). Participants in both 

Studies 2 and 3 were compensated with money.  

In Study 4, 75 participants recruited from an 

undergraduate student participant pool made 200 three-

object choices between different movies. There were a total 

of 100 unique movies used. These were the 100 most 

popular movies on www.IMDB.com (Internet Movie Data 

Base). The choices were presented on the computer screen 

using just the names of the movies and their IMDB movie 

posters. Participants had to click on the movie name or 

poster in order to indicate their choices. Participants were 

compensated with course credit. Study 5 was identical to 

Study 4, except that participants were recruited from 

Amazon Mechanical Turk. There were 223 total participants 

in this study, and they were compensated with a monetary 

payment.  

Model Fitting. The model fitting in Study 2 was identical 

to Study 1, except that the latent attributes were recovered 

from a singular value decomposition on the 

www.AllRecipes.com data. Study 3 used a very similar 

model fitting technique, except that instead of a binary logit 

choice rule, there was a three-object (multinomial) logit 

choice rule. Studies 4 and 5 also used this choice rule, 

applied using latent attributes recovered from a singular 

value decomposition on the www.IMDB.com data.  

Results. The accuracy rates from our analysis for the 

Studies 2-5 are displayed in Table 1.  The mean accuracy 

for Study 2 is 78% (SD = 0.10), the mean accuracy for 

Study 3 is 74% (SD = 0.13), the mean accuracy for Study 4 

is 79% (SD = 0.14) and the mean accuracy for Study 5 is 

80% (SD = 0.12). All of these are significantly (p < 0.01) 

higher than the baseline accuracy of 50% (for Study 2) and 

33% (for Studies 3-5).  

We also found that the best fitting latent attribute models 

have a relatively low dimensionality, for most participants. 

Overall, the average best fitting value of L (i.e. number of 

dimensions) across our participants is 31.95 (SD = 28.55) 

for Study 2, 56.02 (SD = 27.18) for Study 3, 50.05 (SD = 

28.12) for Study 4, and 52.64 (SD = 25.93) for Study 5. 

Table 1 also displays the results of a random vector model 

for these studies. Again it shows that the majority of 

participants are better described by our approach relative to 

the random vector approach. Finally, Table 1 shows the fits 

of the lexicographic and tallying heuristics. For Study 2, 

these fits are performed similarly to Study 1. However, 

Studies 3-5 involve three object choice. Thus the weights 

for the individual features necessary for fitting these 

heuristics cannot be obtained through a simple correlation 

analysis between the relative presence or absence of a 

feature and the choice in a trial. Instead we calculated, for 

each feature in each trial, Relative Presence = C – 0.5[UC1 

+ UC2]. Here C = 1 if the feature is present in the chosen 

option and 0 otherwise. Likewise, UC1 = 1 if the feature is 

present in the first unchosen option and 0 otherwise, and 

UC2 = 1 if the feature is present in the second unchosen 

option and 0 otherwise. For each feature, we summed 

Relative Presence over all the observations in the training 

data for the participant in consideration. This gave us a 

measure of the Total Relative Presence of the feature in the 

chosen options for the participant. For the lexicographic 

heuristic, we then selected the single feature with the 

highest absolute Total Relative Presence for the participant 

in the training data, and used this feature to predict the 

participant’s choices in the test data. For the tallying 

heuristic we recoded the Total Relative Presence for a 

feature to generate a weight of +1 if Total Relative Presence 

was positive and -1 if it was negative. These binary weights 

were then used to predict the participant’s choices according 

to the tallying heuristic. Using this approach, we again 

found that the lexicographic and tallying heuristics were out 

performed by the latent attribute approach, as shown in 

Table 1.  

Discussion 

In this paper we have proposed that decision makers use 

low-dimensional latent attributes in order to make decisions 

in naturalistic multiattribute choice settings. We have 

obtained latent attribute representations for various 

everyday choice objects using user-generated object 

descriptors in large online datasets, and in five experiments, 

have predicted participant choices between these objects by 

fitting linear models with our latent attributes. Our fits 

reveal that our approach provides high accuracy rates, which 

significantly outperform accuracy rates obtained through 

other sophisticated methods (such as linear models with 

random attribute vectors, and lexicographic and tallying 

heuristics). The best fitting models in our analysis often 

have small or moderate number of dimensions. 

Additionally, these models are able to quantitatively predict 

decision times, when their estimated utilities are embedded 

within a drift diffusion process.  

1639



Our primary theoretical contribution involves the formal 

characterization of the processes involved in choosing 

between everyday choice objects.  In doing so we extend 

insights from semantic memory research to the field of 

multiattribute decision making. The resulting framework 

attempts to describe all key aspects of the decision process, 

from the learning of object representations for common 

choice objects, to the use of these representations for 

evaluation and decision making. This is in contrast to most 

theories of multiattribute choice, which specify the 

mechanisms involved in aggregating decision attributes but 

seldom attempt to describe what these attributes actually are 

(see Bhatia, 2013 for a discussion). 

Our results suggest that dimensionality reduction is not 

only at play in representing words, concepts, and various 

non-choice objects (as in e.g. Landauer & Dumais, 1997; 

Shepard, 1962) but is also a critical feature of multiattribute 

choice object representation in preferential decision making. 

There are many reasons why this would be the case. Firstly, 

common multiattribute choice objects involve a large 

number of observable features, as well as systematic 

relationships between the features. Good decision making 

involves understanding these feature relationships, and 

using these relationships to make inferences about the 

objects. Even though the inferences in preferential choice 

are primarily evaluative, knowledge is used in a very similar 

manner as in categorization, language comprehension, 

object recognition, and other related tasks. Additionally, the 

use of latent attributes also offers a number of distinct 

advantages relative to the use of raw observable features. 

There are fewer latent attributes than there are observable 

features, and for this reason, latent attributes simplify the 

decision process. These attributes also reduce redundancy in 

object representation, and do so in the most efficient manner 

possible. In fact, our approach is not unlike principle 

components regression, which possesses a very similar set 

of statistical benefits (see Draper & Smith, 1981). 

That said, the approach presented in this paper is fairly 

simplistic: It involves a linear technique for dimensionality 

reduction combined with a linear multiattribute utility 

model. Both of these assumptions should be tested, it 

wouldn’t be surprising if more sophisticated and more 

realistic approaches to building semantic representations ( 

Jones et al., 2015) and  making choices (Oppenheimer & 

Kelso, 2015) outperform the current approach. It may also 

be the case that the representations of choice objects depend 

not only on feature co-occurrence, but also on the reward 

structure of the domain in consideration. Individuals may, 

for example, learn object representations that best predict 

rewards, rather those that best predict feature occurrence.  If 

this is the case then it would be necessary to train models of 

object representation alongside models of evaluation and 

choice (rather than training the former separately, as is done 

in this paper). This could be accomplished using neural 

networks with backpropagation from a preference (reward) 

layer to an object representation layer. Supervised topic 

models may also facilitate the learning of such 

representations.  

Despite the need to test more sophisticated representation 

and choice models, the success of our current approach 

nonetheless opens up a new avenue for studying naturalistic 

multiattribute choice. It can be applied to examine whether 

existing multiattribute choice effects also emerge in more 

realistic choice settings, where attribute information is not 

presented numerically (as in Figure 1a). It can also be used 

to extend the psychological analysis of multiattribute choice 

beyond the laboratory and predict real world choice data. 

Ultimately, by combining existing theories of semantic 

representation and multiattribute choice with rigorous 

analysis of large-scale data, this paper has proposed tools to 

capture the large number of important decisions made in the 

real-world, that are not currently within the scope of 

decision making research. This has the potential to 

significantly expand the theoretical, descriptive, and 

practical scope of this area of study.  
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