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Synthesis of Linkages to Trace Plane Curves

Yang Liu and J. Michael McCarthy

Abstract Kempe’s universality theorem introduced in 1876 has recently been
proven to ensure that given any algebraic curve a mechanism exists that traces the
curve. In this paper, we present two methods to simplify Kempe’s linkages. One
method uses gear trains, differentials and belt drives to replace his multiplicator,
additor and translator linkages. A second method uses the Scotch yoke mechanism
and a summing belt drive to generate a mechanical Fourier series that traces the
curve. Examples are provided that demonstrate the two approaches.

1 Introduction

This paper considers the design of a mechanical device that guides a point along a
specified curve. The goal is to find amiddle ground between the synthesis of linkages
using Kempe’s construction and the synthesis of linkages using a set of points that
approximate the desired curve, called path generation or path synthesis.

Kempe’s construction [7] uses a set of standard linkages termed the Reversor,
Additor, Multiplicator, and Translator that he combines to constrain the two joint
angles of an RR planar chain so its end-point traces a specified algebraic curve.
Artobolevskii [2] presents a synthesis theory that yields simpler linkages that trace
curves up to degree four.

The approach presented in this paper increases the set of standard linkages used
for the synthesis of curve-tracing mechanisms to include gear trains to add and
multiply, and pulley and belt drives to translate values. In addition, the desired curve
is approximated by its Fourier series representation. The result is physically realizable
mechanical devices that trace complex plane curves.
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2 Literature Review

Interest in the mechanical generation of plane curves is traced by Nolle [13, 14] and
Koetsier [11, 12] to Watt’s 1784 patent that describes his approximate straight-line
linkage, and the associated parallel motion linkage, which he used in his design of a
double acting steam engine; also see Hartenberg and Denavit [4]. In his 1877 book,
Kempe [8] summarized the design theory for linkages that generate a straight line,
and about the same time presented a construction that yields a linkage to trace a given
algebraic curve, see [7].

Kempe’s construction introduces a correspondence between linkages and alge-
braic curves, which has been formalized by Jordan and Steiner [5] and Kapovich
and Millson [6], and termed Kempe’s Universality Theorem. Saxena [17] provides
a step-by-step description of this construction to obtain a linkage consisting of 48
links and 70 joints that traces a quadratic curve (Fig. 1). Gao et al. [3] showed that
the number of bars in Kempe’s construction is of order O(n4), where n is the degree
of algebraic curve. Abbott [1] tightened this bound to O(n2). However, using the
dynamic geometry software Cinderella, Kobel [10] provides a number of examples
that illustrate the complexity of the resulting linkages.

Artobolevskii [2] states that the direct application ofKempe’s construction “would
lead ... to such complicated mechanisms that in practice they would be impossible to
achieve.” He then proceeds to provide a wide range of practical designs for linkages
that generate algebraic curves through degree four and higher. For example, the
eight-bar conograph linkage shown in Fig. 2 can be adjusted to trace any quadratic
curve.

Fig. 1 The linkage that
traces the quadratic curve
presented in Saxena [17]
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Fig. 2 Artobolevskii [2]
shows that this conograph
linkage can be adjusted to
trace any quadratic plane
curve

Roth and Freudenstein [16] introduced a different approach to linkage design for
curve tracing. They used the loop equations of a four-bar linkage and nine accuracy
points along a desired curve to obtain a system of equations that defined the dimen-
sions of a linkage that guides a coupler point through the given points. Wampler
et al. [18] obtained a complete solution for these synthesis equations using polyno-
mial homotopy and showed that there are as many as 4326 distinct four-bar linkages
that pass a curve though nine accuracy points. Kim et al. [9] obtained a similar set
of synthesis equations for a six-bar linkage and showed that solutions can guide a
coupler point though 15 accuracy points. Recent research by Plecnik [15] shows that
the equations for 15-point six-bar path generation has a Bezout over 1046, and, while
individual solutions can be obtained, it is beyond our ability to compute a complete
set of solutions for a given set of 15 accuracy points.

3 Kempe’s Linkage with Gears and Pulleys

In this section, we introduce Kempe’s method to design planar linkages to trace an
algebraic curve. Then we modify his approach to simplify the resulting design.

Let f (x, y) = 0 be an algebraic curve. Kempe introduced planar serial chain
formed from two revolute joints with link lengths L1 and L2 to trace this curve.
Thus, the goal is to coordinate the angles θ and φ for this RR chain, so that x and y
are given by,

P =
{
x(θ, φ)

y(θ, φ)

}
=

{
L1 cos θ + L2 cosφ

L1 sin θ + L2 sin φ

}
, (1)
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such that
f (x(θ, φ), y(θ, φ)) = 0. (2)

Kempe shows that this equation can always be reduced to the form,

f (θ, φ) = �n
i Ai cos(riφ + siθ + α) − C = 0, (3)

where α = 0 or π/2, where the Ai and C are constants.
Rather than follow Kempe and introduce his multiplicator, additor, and translator

linkages, we use gears, differentials and pulleys to perform these operations. For each
ri and si we perform the multiplication using a set of meshing gears, which means
for n terms there are at most g = 2n gear pairs. The addition of the terms riφ + siθ
are each performed by a gear differential, thus for n terms, we have at most d = n
differentials. Finally, we assemble Kempe’s serial chain consisting of bars of lengths
Ai . We constrain this serial chain to move along the line x = C by a prismatic joint.

In order to obtain the constraint on θ and φ to trace the curve f , we connect the
gears, differentials and joints of Kempe’s serial chain using belts and pulleys. Each
pair of gears requires one belt, differential requires two belts, and the n joints of the
serial chain requires n(n + 1)/2 belts. Finally, three belts are required to drive the
RR chain. Thus, the number of belts can be estimated to be,

b = g + 2d + n(n + 1)/2 + 3. (4)

In order to demonstrate this procedure, we obtain the mechanism that traces the
cubic curve,

f (x, y) = x3 − y − 1 = 0. (5)

Let L1 = L2 = 1 be the length of theRRchain that is to trace the curve, and substitute
the resulting x(θ, φ) and y(θ, φ) into to f (x, y) to obtain,

f (θ, φ) = cos3 θ + cos3 φ + 3 cos2 θ cosφ + 3 cos2 φ cos θ − sin θ − sin φ − 1 = 0.
(6)

The powers of cosine are reduced to first degree using the identities,

cos2 θ = 1 + cos(2θ)

2
, cos3 θ = 3 cos θ + cos(3θ)

4
. (7)

Similarly, the trigonometric sum and difference identities can be used to obtain

f (θ, φ) = 9

4
cos θ + 9

4
cosφ + 1

4
cos 3θ + 1

4
cos 3φ + 3

4
cos(2θ − φ) + 3

4
cos(2θ + φ)

+3

4
cos(2φ − θ) + 3

4
cos(2φ + θ) + cos(

π

2
+ θ) + cos(

π

2
+ φ) = 1,

(8)

which has n = 10 terms.
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Table 1 Serial chain configuration

Link number Link length Phase offset (Degree) Angular velocity

A1 2.25 −60 θ

A2 2.25 60 φ

A3 0.25 −180 3θ

A4 0.25 180 3φ

A5 0.75 −180 2θ − φ

A6 0.75 −60 2θ + φ

A7 0.75 180 2φ − θ

A8 0.75 60 2φ + θ

A9 1 30 θ

A10 1 150 φ

Examining (8) we see that Kempe’s serial chain that constrains θ and φ has 10
links, which are listed in Table1. This equation requires six gear pairs and four
differentials. The number of belts are computed to be 72.

The initial configuration of the links in Kempe’s serial chain can be determined
by setting the initial position of P = (1, 0), so we have

{
1
0

}
=

{
cos θ + cosφ

sin θ + sin φ

}
. (9)

Solve this equation to obtain

θ = − 60◦, φ = 60◦,
θ = 60◦, φ = −60◦. (10)

Both solutions work, so we pick the first solution. This defines each of the angles of
the links in the Kempe’s serial chain, see Table1. This mechanical system traces the
algebraic curve when the end of Kempe’s serial chain is constrained to move along
the line x = 1 by a prismatic joint, Fig. 3.

In order to compare our linkage toKempe’s construction,we count the components
of elementary versions of Kempe’s additor, multiplicator and translator linkages.
The additor has six bars and is required for each addition including the constants.
A multiplication by k requires a multiplicator with at least m(k) = 2(k − 2) + 6
bars. We model the translator as a parallelogram linkage that requires three bars for
each belt used in our design, which means t = 3b. Therefore, in order to estimate
Kempe’s linkage, we note that (8), requires a = 6 additors, m(2) = 4 multiplicators
with k = 2, and m(3) = 2 with k = 3, thus

p = 6a + m(2)6 + m(3)8 + 3b = 36 + 24 + 16 + 216 = 292. (11)
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A1 A2

A9

A10
A3A4A5

A8

A7

A6

Fig. 3 Gear pairs, differentials and belt drives are used to provide the multiplications, additions
and transmission necessary to constrain the RR chain to trace this curve

Thus, we can estimate Kempe’s construction to require at least 292 parts for this
example.

If we count the individual parts for our method, we have two gears per multi-
plication and four gears per addition, and two pulleys for each belt. Thus, the part
count is

p = 2g + 4d + 2b + b = 12 + 15 + 144 + 72 = 244. (12)

This comparison shows that the primary difference arises from the complexity of the
multiplicator linkage. Our method simplifies this further by using the sizes of pulleys
to perform the multiplication. This also shows the dominant role that the translator
linkages play in the part count of Kempe’s designs. It is our expectation that effective
use of gears, differentials, belts and pulleys can simplify the application of Kempe’s
results to a wide range of algebraic curves.

4 Fourier Series Method

In this section, we provide another approach to the design of a mechanism to trace
a plane curve. We assume the curve can be parameterized, then we compute its
Fourier decomposition for each component function. We use an array of Scotch
yoke mechanisms to generate individual terms and use a belt to add the terms of the
Fourier series.
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Fig. 4 The parameterized
heart curve has a finite
Fourier expansion for each
coordinate function
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In order to demonstrate this procedure, we obtain a mechanism that traces the
heart curve (Fig. 4),

{
x
y

}
=

{
16 sin3 t

13 cos t − 5 cos 2t − 2 cos 3t − cos 4t

}
. (13)

Now reduce powers of sine to first degree using the identity,

sin3 θ = 3 sin θ − sin 3θ

4
(14)

The result is the equation,

{
x
y

}
=

{
12 sin t − 4 sin 3t

13 cos t − 5 cos 2t − 2 cos 3t − cos 4t

}
. (15)

Reduceminus sign using shift angle properties of trigonometric function, and convert
sine terms into cosine terms to obtain

{
x
y

}
=

{
12 cos(−π

2 + t) + 4 cos(−3π
2 + 3t)

13 cos t + 5 cos(π + 2t) + 2 cos(π + 3t) + cos(π + 4t)

}
. (16)

Themechanical system that traces this heart curve is obtained by using two Scotch
yokemechanisms for the two terms of the x coordinate, and four of thesemechanisms
for the y coordinate. These terms are summed using belts. See Fig. 5.

This mechanism provides another approach to the design of mechanisms to trace
a plane curve. We have also used this Fourier series approach to design a curve that
fits an image generated by an array of points.
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Fig. 5 Each Scotch yoke mechanism computes a term in the Fourier expansion of the x and y
coordinate functions for the heart curve. There are two terms for x component and four terms for
the y component

5 Conclusion

In this paper, we present two ways to assemble a mechanical system to trace plane
curves. The first method uses Kempe’s universality theorem that guarantees a mech-
anism exists for any algebraic plane curve. We use gear pairs, differentials and belt
drives to simplify the resulting device. The secondmethod uses a mechanical Fourier
series constructed from Scotch yoke mechanisms to generate a parametrized plane
curve. Kempe’s formulation provides an exact representation of algebraic curves,
while the Fourier formulation is exact for certain parameterized curves. These are
early results in the formulation of a design methodology for mechanical systems that
trace arbitrary plane curves.
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Subject-Specific Model of Knee Natural
Motion: A Non-invasive Approach

Michele Conconi, Nicola Sancisi and Vincenzo Parenti-Castelli

Abstract The capability tomodel human joint motion is a fundamental step towards
the definition of effective treatments and medical devices, with an increasing request
to adapt the devised models to the specificity of each subject. We present a new
approach for the definition of subject-specific models of the knee natural motion.
The approach is the result of a combination of two different techniques and exploits
the advantages of both. It relays upon non invasive measurements based on which
a kinematic model of the natural motion is built, suitable to be extended to the
definition of static and dynamic models. Comparison of the model outcomes with in
vitro measurements performed on one specimen shows promising results supporting
the proposed approach.

1 Introduction

The natural motion of the knee is the motion of the joint in unloaded conditions.
It is the joint starting condition before loads are applied, thus contributing in the
determination of the tibio-femoral relative position in loaded conditions. For this
reason, the knowledge of the natural motion is useful for all applications which
aim at replicating or restoring the natural behaviour of the knee, such as lower-limb
modelling, surgical planning and prosthesis design.

The modelling of the joint natural motion can be based on mean data taken from
the literature, thus providing a representation of an average joint [3, 17, 24].However,
there is an increasing request of subject-specific models that would allow personal-
ization of treatments and prosthesis geometry to the patient needs. In these cases, the
subject-specific motion would be required.
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An accurate estimation of the joint motion is difficult to obtain in vivo [16]:
non-invasive techniques could be inaccurate (skin-markers) or too complicated (flu-
oroscopy) for standard practice, while more invasive techniques (bone-pins) are not
acceptable in most cases. Thus, new solutions are needed to predict the joint motion
with a good accuracy, based on non-invasive measurements.

In this study a new approach is presented which exploits two techniques with
complementary advantages for the modelling of the knee natural motion. The first
technique (T1), was originally developed and validated for the ankle joint [4] and
is here tested on the knee. T1 predicts the joint motion by optimizing the articular
load distribution, assuming this condition as representative of the joint behaviour
in physiological working conditions. T1 only requires a 3D representation of the
articular surfaces that canbeobtained fromstandard in vivo images of the articulation.
It is however not suitable for the characterization of the joint behaviour under generic
working conditions.

The second technique (T2) models the knee as a one-degree-of-freedom (1-Dof)
spatial mechanism, featuring the two articular contacts and the three isometric fibres
of the anterior cruciate (ACL), posterior cruciate (PCL) and medial collateral (MCL)
ligaments [17, 18]. T2 was very accurate to replicate the natural motion of specimens
over the full flexion arc and can be easily extended to define more complex static and
dynamic models that can take into account different loading conditions [22, 23], but
a reference motion is needed to adjust the model parameters.

In this study we want to exploit the advantages of both techniques by combining
them into a new approach (T1+T2) which allows the definition of subject-specific
models of the knee (as T2 does) from non invasive observations of its natural motion
(via T1).

The aim of this work is twofold: first, to evaluate the application of T1 to the knee
articulation and, second, to test the applicability of T1+T2 on the same joint. To
this purpose, a leg specimen is analyzed and the knee joint motion is obtained by T1
starting from magnetic resonance imaging (MRI) data. The motion resulting from
T1, together with additional information about the anatomy of the joint specimen
also taken from MRI, is used as an input for the definition of T2. Finally, the results
of both T1 and T1+T2 are validated against in vitro experimental measurements of
the joint natural motion.

2 Materials and Methods

2.1 T1 Technique

Biologic tissues are able to modify their structure in response to the mechanical
environment to which they are exposed [2, 6, 12, 19]. Experimental evidence from
the literature suggests that the aimof this process is themechanical optimization of the
tissues (functional adaptation). In particular, this process produces articular surfaces
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that, in physiological working conditions, optimize the contact load distribution or,
equivalently, maximize the joint congruence [8, 13].

It is thus possible to identify the adapted motion as the envelope of the maximum
congruence configurations (i.e., positions and orientations of all bones constituting
the joint). In [5] a measure of joint congruence was proposed, based on the Winkler
elastic foundation contact model [14]. This measure makes it possible to estimate the
peak-pressure to resultant-force ratio from the geometry of the articulating surfaces at
a given configuration, i.e., from a purely geometrical perspective. As a consequence,
the adapted motion can be obtained starting solely from the knowledge of the shape
of the articular surfaces.

As discussed in [4], the adapted motion should also keep the isometry of the
joint main ligaments. This condition is verified during the natural motion, which for
this reason can be taken as a good approximation of the adapted one. In the same
study, T1 was used to determine the adapted motion of ten human ankles, providing
good agreement with experimental measurements of the natural motion of the same
specimens. Based on these results, T1 is here applied to determine the knee natural
motion.

2.2 T2 Technique

Many studies showed that the natural motion of the tibia with respect to the femur is
represented by a complex 1-Dof spatial path, i.e. the relative position and orientation
of the tibia and femur is a function of a single motion parameter, for instance the
flexion angle [17, 24]. Moreover, some fibres of the ACL, PCL and MCL proved to
be almost isometric during this motion. From a mechanical point of view, this means
that the natural motion can be reproduced by an appropriate 1-Dof mechanism.
Three-dimensional parallel mechanisms were thus defined based on this concept.
One of them [17, 18] featured three rigid links representing the ACL, PCL and
MCL, while the contacts between tibial and femoral condyles were replaced by the
contacts between two pairs of spheres, or, equivalently, by two rigid links connecting
the sphere centres at each pair. The result was a 1-Dof 5-5 spatial parallel mechanism,
which features two rigid bodies (the femur and tibia) interconnected by 5 binary links.

In previous studies, the initial geometry of the mechanism, namely the attaching
points and lengths of the five rigid links was determined from knee specimens. This
initial geometry was then optimized in order to best-fit the experimental natural
motion of the corresponding specimens [22]. This approach has been extensively
validated with very good agreement between model outcomes and corresponding
experimental natural motion [17]. The same approach is applied here, but the motion
obtained by T1 is used as a reference for the model definition instead of the subject
experimental motion.
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2.3 Data Acquisition and Processing

A single fresh-frozen lower-limb specimen from a donor (female, 63 years old,
weight 68kg, height 158cm) was analyzed. The study was approved by the donor
organization, which provided written consent. A surgeon declared the leg free from
anatomical defects and removed the forefoot and the soft tissues external to the joint,
leaving the knee joint capsule and ligaments intact.

A stereophotogrammetric system (Vicon Motion Systems Ltd) was used to mea-
sure the tibia and femur relative motion by means of two trackers directly fixed to the
bones, thus introducing no soft tissue artefacts (Fig. 1a). The specimen was mounted
on a test rig for in vitro analysis of the knee joint behaviour [7] which also allows
measurement of the femur-tibia relative motion when no external forces are applied.
In this condition, the joint is guided only by the knee passive structures, namely liga-
ments and contacts, and thus the natural motion can be registered. This experimental
natural motion was used only for validation purposes, but it was not used for model
definition.

A MRI of the knee was acquired using an isotropic three-dimensional fast spin-
echo pulse sequence T2-weighted (3D-FSE-CUBE-T2)within a 1.5T scanner. Artic-
ular surfaces and ligament insertions were then manually segmented using the free
open-source software Medical Imaging Interaction Toolkit (MITK), obtaining 3D
models of the femur and tibia including bone, cartilage and ligaments (Fig. 1b). In
the same way, anatomical reperi were determined on the femur and tibia models,
and were used to build anatomical reference systems [22] on both bones (Fig. 2).

Fig. 1 a Stereophotogrammetric system for the measure of the bone relative motion. bReconstruc-
tion of knee anatomy from MRI
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Fig. 2 Anatomical reference systems for the femur a and the tibia b. The tibia anatomical frame
has origin in the tibia centre, i.e., the deepest point in the sulcus between the medial and lateral
tibial intercondylar tubercles; x-axis orthogonal to the plane defined by the two malleoli and the
tibia centre, anteriorly directed; y-axis directed from the midpoint between the malleoli to the tibia
centre; z-axis as a consequence, according to the right hand rule. The femur anatomical frame has
origin in the midpoint between the lateral and medial epicondyles; x-axis orthogonal to the plane
defined by the two epicondyles and the hip joint centre, anteriorly directed; y-axis directed from
the origin to the hip joint centre; z-axis as a consequence, according to the right hand rule

The relative motion of these reference systems was then expressed by means of a
standard convention [10], both for the computed and experimental motions.

The anatomical 3D models of the femur and tibia, comprehensive of both bone
and articular cartilage, were used within T1 for the evaluation of the knee joint
congruence. Flexion angle was imposed and the other five motion components were
obtained by maximizing the congruence; the procedure was repeated over the full
flexion arc [4].

T2 definition was then performed based on the T1 motion and on the 3D femur
and tibia models. The articular surfaces at the femur condyles and tibia plateaus
used for congruence evaluation in T1 were approximated by best-fitting spheres
in T2, and were then substituted by equivalent rigid links connecting the sphere
centres. The most isometric fascicles of the ACL, PCL, MCL (i.e., the anteromedial,
posteromedial, anterior fascicle respectively) were identified within the segmented
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ligament insertion areas [11]. The ligament isometric fibres were obtained as the
pair of points (one on the femur, the other on the tibia insertion areas of isometric
fascicles) that showed the minimum change in distance during the motion obtained
by T1. The so-determined isometric fibres were then substituted by three rigid links.
Finally, these preliminary mechanism parameters were adjusted by an optimization
procedure [22] to best-fit the T1 motion. The final mechanism parameters were
constrained to remain inside the experimental insertion areas and to have amaximum
distance of 2mm with respect to the preliminary parameters.

3 Results

The relative motion of the tibia and femur identified by T1 was consistent with the
joint constraints. All ligaments indeed showed very small length changes during T1
motion: isometric fibre length excursions were smaller than 4% of the relevant fibre
maximum length for the ACL, PCL, MCL and the lateral collateral ligament (LCL),
in agreement with what reported in the literature [1]. The subsequent application of
T2 made the ACL, PCL, MCL perfectly isometric, while the LCL showed a length
change smaller than 2%. Figure3 shows the add-abduction (AA), the in-external
rotation (IE) and the antero-posterior (AP), proximo-distal (PD) and medio-lateral
(ML) translation of the tibia, plotted versus the knee flexion angle as experimentally
measured and computed by T1 and T1+T2.

In Table1, the mean absolute errors (MAE) between T1 and experimental natural
motions, between T1+T2 and T1 motions and between T1+T2 and experimental
natural motions are presented.

4 Discussion

The tibio-femoral motion predicted by the combination of the two techniques T1 and
T2 well replicates the experimental data. There are however some differences in the
IE rotation andAP translation, forwhich theMAEsbetween themodel and the natural
motion are about 12 and 4.5mm, respectively. Despite these quantitative differences,
computed and experimental curves show a very similar trend, in particular for the
IE rotations which differ essentially by a constant offset. The typical screw-home
motion of the knee is therefore correctly predicted by the model, but at each flexion
angle the configuration of the tibia results less internally rotated than in the natural
motion.

It is worth mentioning that, despite ligaments and contacts do guide the knee nat-
ural motion on a 1-Dof spatial path, the IE rotation is less constrained than the other
motion components. As a result, the knee shows the smallest stiffness about the IE
axis [9, 15], which is thus the most sensitive among the knee motion components
both for experimental measure and for numerical models. For what concern the AP
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Fig. 3 Tibio-femoral relative motion as resulting from T1 (red dashed), T1+T2 (blue continue)
and experimental natural motion (black dotted)

Table 1 MAE for each motion component between T1 and experimental motion, between T1+T2
and T1 motion and between T1+T2 and experimental motion

AA [◦] IE [◦] AP [mm] PD [mm] ML [mm]

T1 versus exp. 0.90 12.24 4.55 0.32 1.22

T1+T2 versus T1 0.54 0.64 0.34 0.28 0.26

T1+T2 versus exp. 0.79 12.43 4.55 0.33 1.19

translations, variations in the IE rotation of the tibia are associated with AP displace-
ments of the same bone. In fact, the tibiofemoral motion is close to a spherical one
[21], whose centre does not coincidewith the centre of the tibial anatomical reference
system. As a result, an IE rotation of the tibia is associated with a translation of the
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origin of its reference system,mainly along theAP direction. It is thus reasonable that
differences in the IE rotation are associated with differences in the AP translation.

Despite the abovementioned differences, both themotion computed by T1 and the
experimental natural one respects the ligament isometry, producing length changes
smaller than 4 and 5% respectively for the ACL, PCL, MCL and LCL. This result
supports the analogy between adapted and natural motion, as validated for the ankle
[4] and here hypothesized for the knee. It should also be stressed that only the
ligament isometry during the T1 motion made it possible the subsequent application
of T2. In fact, in general it is not possible to define a 5-5 mechanism that both follows
a generic prescribed path and respects the joint anatomical constraints at the same
time. A wider validation of T1 is therefore necessary in order to fully understand the
relation between the natural and adapted motion of the knee joint, in terms of both
the differences and analogies in terms of motion and ligament isometric behaviour
shown in this study.

A similar combination of T1 and T2was investigated in [20]. In that case however,
only CT images of the knee were available, thus providing poor accuracy in the
reconstruction of soft tissues that introduced some noise in the motion computed by
T1. These limitations were overcome in this study by means of MRI of the articular
surfaces. Moreover, the use of MRI makes the proposed approach less invasive with
respect to CT images, not exposing the patient to ionizing radiation, and therefore
more suitable for the in vivo clinical application.

5 Conclusion

The aim of this studywas to test a new approach for the generation of subject-specific
model of the natural motion of the knee joint based on non invasive measurements.
This approach relays on two techniques defined as T1 and T2 that contribute to
determine the final model. The advantages of both techniques are exploited: T1
provides an evaluation of the knee natural motion by non invasive measurements of
the articular surfaces; then, based on this motion, T2 provides a mechanism which
complies with the constraints imposed by the ligaments and articular contacts, and
that can be easily extended to define more complex static and dynamic models.

The motion resulting from T1 fulfils the ligament isometry typical of the knee
natural motion, thus making it possible the subsequent application of T2. The results
of the combination of T1 and T2 are in good agreement with experimental data,
although some differences were found.

Future work is therefore in progress on other specimens in order to further vali-
date the proposed approach and to investigate whether the observed differences are
common to all the knee joints, and in case to give a solid explanation of them.
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