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ABSTRACT

This 18 the first of two papers In which the low-temperature
properties of liquid He3 sre to be calculated in the thermodynamically
consistent "T.matrix" approximation. The set of coupled integral
equations which are to be solved is exhibited in Part A of thls paper.
Part B of this paper 1s devoted to a preliminary, zero-temperature
caleculation which employs the additional approximations of using
separable potentials and & noninteracting spectral function to define
the interaction of two particles in the medium: the (T}O epproximation.
In this approximation we obtain & spectral function for the quasi
particles which we expect to dilsplay general features in common with
those of the actval spectral function. Using this spectral function,
we calculate the thermodynamic properties of the system and find that

they compare favorably to those obtained in other ealculations.
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type of system has bheen the "T-matrix" approximation,i’ 9 which==in

general terms--is an approximation that Includes only effects arising

s
. s . 10 11 .
from the explicit correlation of two particles. Baym — has derlved a

mation must satisfy 1f it 1s to give sell-

o}
~
}‘—l.

criterion which any appr

consistent thermodynamics; he has shown that the "T-matrix" approximation

<

satisfies the criterion,

the firgt of two papers concerning the solution of the

n

This 1

41}
I
b

coupled integrel equations of the thermodynamically consistent T-matrix
(TCTM) approximation. In the sccond paper of this series our progran
of obtaining the low-temperature properties of liquild He3 within the
framevork of this approximation is accomplished,

Part A of this paper is devoted to exhibiting the coupled-integral
equations of the TCTM approximation; here a brief discussion of the
temperature~dependent Green's function formallsm 1s also gilven. In
Part B of thils paper we make further approximations reguisite for the
preliminary calculation, which forms the main body of the paper. The
coupled integral equations, defined in Part A, are simplified and

decoupled by replacing the spectral functions in the T matrix by non-

[N
4
.

Interacting spectral funct The resulting TO ratrix retains the

egsential Interaction features exhibited by a zero-temperature system

.
i}

of interacting fermions; however, becauce of this decoupling our
approximation is not thermodynemically conslstent. This undesirable

feature 1s a property shared by wost other calculations to date (see

has the interesting property
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(not shared by the other approximations) of ylelding a spectral function
with a width.
An additional approximation we make to obtaln a manageable set

of equations 1s that we use a finite sum of separable potentials to

3

represent the interaction between two He” atoms. Thils approximation

.does not affect the thermodynamic consistency, but it may be a poor
representation of the actual two-body interaction.

Section IV 1s devoted to developing the two-body interaction
for particles in the medium; the TO matrix. In Section V we calculate
the spectral function using this interaction and, since the modificatlon
of the two-body interaction due to statistics of the medium is well
represented, we expect that our spectral function displays general
features 1in common with that of the actual spectral function.‘

Because of the approximations for the interaction we would not
expect the properties of liquid He5 to be predicted with great accuracy.
Nevertheless, in Section VI we calculate the ground-state properties
and compare them both with experiment and with other calculations.

The results of this comparison are summarized in Table I; the quantil-
tative agreement with experiﬁent 1s not 1mpressive,lo but as good as
that of other approximations, and we may expect improvement in this

comparison from the complete calculation.
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Part A. T-Matrix (Twe-Body Correlation) Approximation

II. GREEN'S TFPUNCTION FORMALISM
In this section it {s shown that the thermodynamic properties
of a system of interacting fermions may be evaluated in terms of the
average energy, B, and number, N . The formalism of Martin and

2)9 i

Y

Schwinger 8 summarized so as to clearly defline the notation, and
the formulae for E and N are presented in terms of calculable

microscopic quantities.

1. Definitlon of the Problem; Thermodynamics

One assumes that the interaction in this system can be described

+% qu,w ¥, t) vl - 2') vzt t) vz, t)dr ar'
(1)

where vf(g,t) and  ¢(r,t) are the particle creation and annihilation

"
P
operators in the second-quantization Heisenberg representation; in this

and subsequent expressions the coordinate r contailns the internal
ne

spin variables. In the same representation

b

the numnber operator 1s

N(t) = ]41"”(1;,1;) W, tlar . (2)

o

The creatlon and annihitlation operators satisfy the antlcommutation

relations

(759

{ L



UCRL-16524

{W(EJT‘)) \V(£'Jt) } = 0,
(3)
r -~ r') .

~

(wlz,t), vz, t) )

Puff9 employs a modified Helsenberg representation where the time

development of.an operator X{(t) 1is given by

eth He ‘ (%)

X(0) e~d ,

X(t)
with

H(t)

and where pu 1s the chemical potential,

H(t) - p N(t) B (_5)

In order to describe the macroscopic behavior of the system,
one evaluates the expectation value of operators over the grand-canonical

ensemble.13 Thus for an operator X , MS defines

(x)“’B =zt tr [e'BMx] . » (6)

vhere 1tr denotes the trace of the matrix is to be teken, and Z 1s

the grand-canonical partition function,

2 - trle ), ' (7)

The thermodynamic state of the system is defined by p and B ,
the inverse temperature measured in energy units; i.e., B = 1/k T ,
where « is Boltzman's constant. It is well knownlh that all the
equilibrium thermodynamic properties can be obtalned from the grand

partition function.

N

)
AN
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6=
For a given p and B one can compute this functionl5 if he
knows ‘
B o= (mP (8)
and
No= (P (9)

as can be seen by the following argument: At zero temperature the

pressure P 1is, according to i1ts definition,

OE

P - - (S5 (g) a(?/><> (10)

-
0o 7/

where // 1s the volume of the system. For a normal system of fermions

at zero temperature the Hugenholtz-Van Hove theorem16 states

%Q/ = H ' (ll)

which has the consequence, for a large system, that

u%%—:——(@—@—) | (12)

The grand-canonical partition function 1s related to the pressure byll'L

Z“’B - eﬁP?/ . | (13)

Differentiating the logarithm of Z with respect to pu at fixed 8

3p /3 Sk, B 15

and 2/ , one obtains a relation between dJP/op and (N/Z , and,

similarly, differentiating the logarithm with respect to B at fixed

u and 2/3 one obtains a relation between oP/3 and (H/2/>H’B

PH’B , and hence one can

These relations can be integrated to give
compute all the properties of the system, if he has E and N

(Eqs. 8 and 9).
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2. Microscopic Theory

Equations (8) and (9) may be evaluated from a microscopic theory
7

by using Green's functions. The one-particle Green's functions 1s™
o(11r) = -1 ((u(1) TP, (14)
and the two-particle function 1s given by
G (12;1'2') = (0% (u(1) w(2) ¥T(2r) vi)NP

in these functions T 1is the Wick time-ordering operator,

Using (4) to define G for complex values of its time arguments,

in the interval

0 L1+t £ B,

and defining the time ordering in this interval by

(y(1) vi(1r)) w(1) vT(an) for 1t

1l

L]
1> 1%,

n

) w1)  for 1 6 <1t

one can use the cyclic property of the trace to obtain the boundary

condition

a(111) = ~G(11') . (15)
t,=0

t,=-18
The Heamiltonian, Eq. (1), is translationally invariant in space and time

(we assume an infinite system so there are no boundary effects); and

consequently
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G(ll') = G(,{)t) )

where r=r, - gl{, t = tl - tl' ,
Introducing & "spectral function," A(p,w), for G , and
performing Fourier integral transforms with respect to the space

components of G , and a Fourier serles analysis with respect to the

where z, = nv/(-18) . Define the analytic function

" A(p,w)
6(p,2) = f%ﬁ- =~ (16)

2 - W

for all nonreal 2z , by analytically continuing from the points zv .
The unique continuation has been shown by Baym and Mermin18 to be that
which has no essential singularity at |z] = . Thus G(E’Z) is a
function which is analytic in the whole complex z plane with the
exception of the real axis, while A(g,m) --8 realvpositive function--~

is gliven by the discontinuity of G across the real axis,
A(p,@) = 1ilc(p,w + 1e) - o(p,w - 1€)] . (27)

Using the anticommutation relation, (3), one can easily obtain

[m o A(p,w) = 1. R (18)

the sum rule:
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For a given approximatlon the anticommutation relation may not exist or
may not be in a convenlent form to obtain this sum rule for A(g,w) .
In this case we need to know the properties that must be satisfied by G
to ensure the sum rule. The Herglotz theorem19 (of the theory of analytic
functions) gives the necessary and sufficient conditions on G(g,z):
If G(E’Z) 1s analytic in the upper half plane, Im z > O , and if in
this half plane Im G £ 0 and lim z G(z) = 1, thén the sum rule, (18),

z |-00
holds, ’ .

In Section YI.1 1t was shown that one needs the two quantities
E and N ,‘(Eqs.v8 and 9), in order to obtain the equilibrium thermo-
dynamice properties of the system. These‘qpantities can be expressed
in terms of the spectral function A(g,m). The number density operator

for the system is , (2),

n(r,t) = ¥l(x,t) ¥(r,t) ,

so that, from (15) and (16),

( n(r,t) ) [ [ 2 (pyo) £(w)
n(r, = = CAlp,w) £lw) ,
where

tlw) = (™ 4+ 1772

1s the usual fermion statistical factor. Since the system 1s isotropic,

(n(g,t)) 1s independent of r and t and it follows that

ﬂ;ﬁ ap
<§1}> = f%‘nﬁ f?;:)-; Alp,0) £(w) ; | (19)

L

N
EAN
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«10w~

- /
for our system N and Q/ go to infinity in a manner such that the

ratio (N/?/) remains finite. Similarly, the energy density is given

by

2
D

" u,B f & dg w + Sm " M
<37> T J(a& ;- Mpeltle) . (20)

The equation of motion for G is
2
a vl § SR 1
(1 S tEe t p) a(11r) + 1 dr,, v(gluge)%(lz,l o+) = B5(1 - 1'),
1 ' . t2=t]
; o

(21)

ny

+) = t o+ O+)e One sees that this equation involves GE’

r; t
~27 2

and the equation of motion for G_  would involve G and G .
n n-1 n+l

where

Therefore, one has to solve an infinite set of coupled differentisal-
integral equations in order to obtain G .

It 1s useful to introduce-~following MS--the "self-energy"
operator, L, which is defined so that

v 2 iB
(1%{-+&L +owe(11) - T 2(1T) o(T1') = (1 -1") .
1

0
(22)

One can showl5 that 3 satisfies the same boundary conditions as (G .

One defines a "spectral function" for I ,

N(pw) = 1] 2(3, w + i€) - X(p, w - 1€)] , (23)

and consequently
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o I(p,w)
Z(E’z) - /[n gf 7 ? o ZO(E) !

where Zo(p) is a real valued function of p only. Here allowance is

made for the possibilifyeo that

lim  x(z) = Ty
lz —+Q0
Ly, .
When a Fourier integral transform is performed on the coordinate
: |
variables and a Fourier series analysis of the time variable, (22)

becomes

2

[2- & +u-s(pa)lo(pz) = 1, (24)

which, combined with (17) and (23), yields
-1

2 2 r(p,0)°
A(p,2) = T(p,0) [(m - By tu-Re Xpe) ¢ —=— | . (25)
t
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IITI. 7THE THERMODYNAMICALLY CONSISTENT T-MATRIX APPROXIMATION

1. Motivation and Specification of the Approximation

In Section II we discussed the infinite set of coupled integro-
| differential equations [the first of which is given by (21)], thch need
to be solved to obtain G . One cannot hope to solve this set of coupled
equations exactly; some approximations must be made.

For short-~range forces with strong repulsion a ugeful approxima-~
tion which has been widely employed is the T-matrix approximation.5’8’9

This is an approximation for G5 which neglects the correlation of a

Q9
single particle with a highly correlated pair. Formally, one takes”
65(123; 1'2'3") = o(13") G,(23; 1'2") + a(11') o (23; 2'3")

- G(12") 6,(23; 1'3') ,
which gives

ay(12; 1'2') = [6(11') c(22') -~ g(12') g(21')]
--1PB
aT az {6°(1T) o(22) - o(1T) ¢°(2B)]

+
helEas

x T -32)cy(T%; 1'2') (26)
where G° 1s the solution of (21) without the interaction term, and

V(- 2) = v(p - x

17289
w(//‘ﬂ me
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An important further consideration in making approximations is
thermodynamic consistency. If the approximations do not satisfy certain
consistency requirements, one has no guarantee that the thermodynamic
quantities obtained are consistent. At zero temperature 1f the resulis
are such that the Hugenholtz-Van Hove theorem, (11), is not satisfied
then one does not know how to determine the pressure uniqguely. The
situation is Just as serious at s temperature because the pressure,

P“% obtained by two different integration paths--using the relations
between OP/du and (N/?/)“B, and OP/38 and (H/Z/)H’B ~-discussed
at the end of Section II.l--may not be unique. Still a thifd result

for the pressure might be found by integrating the expectation value

of the potential energy with respect to the coupling constant.l5

As might be expected, the demand that an approximation lead to
a single-particle Green's function such that the thermodynamic results
- are consistent places strong restrictions on the possible class of
appr&xim&tionsw anmll has used functional derivative techniques ﬁo
derive a criterion for approximating the single-particle Green's
function and has proven that approximations which satisfy this criterion
produce a consistent picture. His criterion is that there must exist

a "closed" functional 55 of G and the potential, V, such that

Bt - —2d | (27)

- >

& a(11')
where the self-energy, I, is to be considered as a functional of G

and V ., Here a "closed" functional means one in which all internal

N,
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1w

variables are integrated, or, in terms of diagrams, no particle lines
enter or leave the diagram. In terms of diagrams, the differentiation
of Eq. {27), means plucking out one of the particle lines, as is detailed
in Fig. 1.

The approximation (26) does not satisfy Baym's criterion; however,

Baymll has shown that the approximation

Gy(12; 1'2") = [o(11') o(e2") - o(12') ofe1’)]
=16
+ i dl a2 ¢(11) ¢(23) V(T - 2) 6. (T 3; 12)
c.
} _
° (28)

does satisfy his criterion.

2. Formal Development of the TCTM Approximation -

We take Eq. (28) as the basic equation of our thermodynamically
consistent T-matrix (TCTM) approximation. If we define the T matrix

by the integral equation

(12 ]7]212") = v(r-2)8(1-1") 8(2-~2")
-18
+ 1 ataZ (12 [T |1I2)c6(M') a(z2') va' - 2"),
© (29)

the approximation, (28), becomes

[-19
V(1 - 2) Gg(li—_’; 12ty = j atdz (1w |12

o

b 4
——
o
~~
-1
®
~—
roi
}._!
-—
>
.
e
n
-
Cmed
~~
\,
3
N
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and from (21) and (22) we have

1P
s(a1') = -1 [

-

pas [ (12 |t] 1'3)

[

- (a2 || Bt ) ) oo(zeY) .
(31)

Examining the structure of (lTl) ; one sgees that it satlsfies

the same boundary conditilon as G(t1 - tl,)G(t1 - tl,):

™t, - t

1= tg) = 2ty - ty,) .

t,=0 tlzwiﬁ

One can express T(tl - tl,) as a Féurier serles with coefficlents
T(zv) , Where gz, = wv/(~18) and v runs over all even integers.
Analytically continuing to all 2 , and performing Fourier integral
transformations with respect to the center of mass and relative

coordinates (see Chapter 1% of Kadanoff and Bayml5), one obtains

(plee,z)l p' ) = wp-p')
& | i o

v [ === (p [2(2,2)] p )AE,B,2)v(E - '),

(32)
where
- P p
, A(Z + po) A(S - pot)
1 2 s 2
/&5’ o’ 2= 221 - 2w) - fo'))

7 - W oW

(33)
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and - P 1s the center-of-mass momentum.
T(z) 1is analytic in the upper and lower halves of the complex

7z plane, and
¥* *,
T(z) = T(z ) .

Watson-® has shown that 1if v(r) is finite everywhere, T(z) is bounded |
by a constant as z - oo. After performing the time integrations in
(31)--by means of the B functions-~and transforming with respect to

the coordinate veriables, one can use the analytic properties of G(z) -

and T(z) +to determine the Fourier coefficients of the self-energy,

E(Zv) . Analytically continulng these coefficients, one hass’9
dp’ [
%p,z) = 7/2* Alp,w ) flo )
(QK)J.} 2 |
L] ]
« (BB , Il S
‘ - 'T(p+p,ﬂ) rz)l———-—-—-—- “'G(P ,w-z)f‘(a,)’)
>; B"B' 1 ‘ ' 'I‘J'-E'
= [T(p + p',0 + ie) = T(B +p',0-1€)] ——E———
‘ - [exchange terms] , (34)
where
-1
fban) = [e&m'm 1]

is the boson statistical factor. For a homogeneous, 1sotropic, unbounded
system A(p,m) depends only on the magnitude of the momentum, p = [pl 5

and furthermore o(p, z) does not depend on the corientation of p .

-
N

EANY
E

LR
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Equations (25), (32), and (34) are, explicitly, the set of coupled
integral equations which must be solved in the TCTM approximation.

The theory could have been developed for a nonlocal potential
by using a potential9 of the form <£1 - £2|v|£5 - £h>’ corresponding
to the local potential 5([£l - Egl - |£5 - Eu') v(lzl - £2|) . If
one had carrled out the development for this potential, the v(g - B')
in T would be replaced by (Elvlp') ; Wwe assume that the potential in
(32) has this form.

Because of the complexity of this set of equat%ons we must make
a further approximation to facilitate their solution. We wish to make
a partial-wave expansion of T , hence we perform a Brueckner-GammelB’5

type of averaging rather than actually performing the angular integrations

in (32). This means we set

, /2
P + 2 P°_ p e
|2 2 p] » p = [pPeixPR (35)
2 ~ b V3 .

in A(E,B,z), vhich decouples the partial waves. This approximation

can cause our solution to violate Baym's criterion, but we hope this

violation is minor enough so that it does not affect the thermodynamic

results. (A point to be confirmed at the completion of the calculation.)
A partial-wave expansion of T and v 1is made, and the partial-

wvave components, Tz , of T are given by

V=
(&
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=18

...2 ———
pdp
(ex)?

?|E

(plr,(2,2)[p") = (plv,lp") + L.

< (plr,(r,2)]5 ) MBI - o) - o)) g1y |y
fene (36)

For liquid He3 we need to consider a system of parficles with
spin % , interacting via a spln-independent interaction. The only
complication introduced by spin is that the momentum and coordinate
-integrations contain an implicit sum over spin states. IThe direct .
part of Z 1is multiplied by 2 as a result of this summation, and,
in-flip mechanism in our interaction, the exchange
part is unaffected. Making the partial-wave expansion and using the
summation relation for the spherical harmonics, we have, for the direct

and exchange contributions to Z ,

2(p|2(p,2)|p') - (plo(P,2)| -p")
€ . .
- ) B ()ypln,(e,n) )
=0 ‘ .

The spin sum contributes a factor of 2 to the expression for
N H
{ ;.-l-/) and 77) (Egs. (19) and (20)]. One can perform the angular
integrations in the expressions for these quantities to obtain, finally,

. T o 4 @ 2,
<~ i} o / 222 Alp,0) flw) (37)
0 bid

v oo

S
N
&)
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"\2 . .
E - u) A(P)‘D) f(w) .

(38)

-

AW,
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Part B. The"ﬁT)O__Approximation with a Separable Potential (Zero

Temperature )

The remainder of this paper is devoted to a zero-temperature
calculation of the propertles of liguid He5 in an approximation to the
TCTM approximation of Part A, This approximation, which we call the
('I')O approximation, retains the essential features of the TCTM
approximation and should be considered as a first step toward the
complete calculation,

We have also chosen to use a separable potentia& to describe .
the interaction of‘two free helium atoms. This results in a closed
expression for the interaction of two atoms in the medium, with
consequent simplification of the calculation.

The calculation was performed on the Lawrence Radiation
Laboratory's IBM 7094 computer and the University of California at

San Diego's CDC 3600 computer.
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IV. TWO-BODY INTERACTION IN THE MEDIUM

We obtain the (T)O approximation by replacing the spectral

function in the equation for (T) , (33), by
2 2
p° - b,
Ao(p,w) = 21 B = ———) .
2m

Our approximation now is no longer thermodynasmically consistent. The
o integrations in the equation for (T) are trivial, and we have the

equation for (T) in the (T)O approximation
(p lx(2,2)I p")y = (p Iv] ")

% (p Inp,2)| By 8(B55E vl pt)

+
2 2 2 ’
(2r)° .. P 4, Py _ P
m T Im
(39)
where
pb2 2 p~2
+ - T rp s
s(pbp) = 1 - X ) - 1 ) .
om 2m
In the zero-temperature limit,
/ . .
-1 for p,p <pp (hole-~hole),
+ - - .+ .
s{p,p ) = < 0 for P <p,<p (particle-hole),
1 for np > P, (particle-particle).
\

(40)
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This approximation for (T) retains the essentlal features of
the fermion system (1t involves no approximations with regards to
statistics) in contrast with the approximations which have been used to
date. The Brueckner«Gammel3 calculation neglects the hole-hole term;
the calculations of Mills5 and Pufmearting are formulated so that they
have none of the features present in (40) (this is discussed in more
detail in Section VI); Sungh makes a correction for the statisties, but
his correction is a very poor approximation to the result obtained by

\ AN

solving with the statistical factors included.

It 5 well known22 that sz can always be expressed in a separable
form;
m ) -
ny o 1 (1) , (1), (1)
' i=1

We assume that we can represent v by only a few terms of the series.

.
For ¢ =0, 1, 2, 3 we retain two terms of the series, for ¢ = L4, 5, 6
only the first term; TL(P,Z) is negligible for larger ¢ . This
particular approximation does not affect Baym's criterion for thermo-
 dynamic consistency, but the (TL> we obtain may not represent the
liquid He3 system sccurately, We have of course lost self-consistency
by our first approximation--as incorporated in (3%9).

We choose a form for the vﬁ(1>’s and solve the scattering
matrix for two free He’j atoms. The coupling constants and parameters

in our potentisgls are adjusted to match the phase shift calculated

from poteniials in ccordinate space for Hej. The coordinate space



UCRL- 16524
~03.
potentials are local potentials whose parameters are adjusted by means
of the viriasl expansion to fit the experimental data for gaseous Hea. 6’7
The forms we choose for our separable potential and the determination of
the parameters are discussed in Appendix A.

The separable potential sllows us to write <TL>0 in closed

form:

{p ]TL(P,Z)I P')o =

, vc(l)(P) VL(l)(P') |
= i?é)_ M,(P,z) [det ML(P,z)]-l ,
v, B (o) - \v, @)
) (41)
where
g, - 1,°%(p,2) 1, (p,)
ML(P,Z) =
1, 2(p, 2) g -I, (R
1 2n >
Bt T f\‘&'}
A
and . :
® (1), y . (3) + -
r,"(p,2) = 2 o?ap (p; i 2(p) 2(P 2
o p°  p.- P
2%t Th T

(42)

N
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We need <TL(Z)>O ‘only for 2z = + ie and deféne the integrals (42)

2. p
» ' P f
by introducing a physical cut from O = Im T T to +o00 .
If p, 1is defined by '
2 2
p 2 p
0 p f
T T Im o (43)

and the I,(w + ie)'s examined for po2 < 0, we see that the I,'s

are real, and consequently (T)O is real. We have in this case

(1) (3 1 )
1
IciJ(P,w'+ 1e) = p2 dp vf ;p) e 5 (p)
0 pol= + p
@ v (i)( ) (J)( )
- p? dp 'l' lep h 2, ()

vhere 'pl and p, are solutions of

+
-and

'P~(P9P2)

1
el
- H

If we had a potential which cdnsisted of a single repulsive term,

then (41) would become

(20)> Vc(l)(p) v&(l)(pﬁ

m 1 11 2
(gt - I& (P)Zﬂ

(45)

(p |TL(P;Z)I p')

B

X DEY
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where gzl 1s positive; for I, glven by (44) it would be possible

for the aenominator of (45) to be zero, and hence we would get a pole

in (T)O . For the potentials we employ and when ¢ = 0 , we get this
type of pole in (T)O when P < p; and when p02 is negative and
very small (e.g., Figs. 2 aqg %, where the small imaginary part at the
pole in Fig. 3 is due to the engular integration which has been performed).
‘We know that F(p?w) should not be zero in tﬁis reglion, and if 1t is
nonzero the imaginary part of (T) will not be zero in this region, and
hence we would not have a pole. The integration of the! real part of
(T)o through the pole will behave like a principal-value integral,

and consequently we have simply removed the singularity by smoothing
the real part of (T)O ; as depicted-by the dotted lines for negative

w 1in Fig. 2. .

For poe >>'0 the form of our potentials is such that if we

neglect gtl we obtain

(1)

2
,( =4
{p ’TL(P’ w +1i€)| p) ~ -lv, 7 (p)] pyltan(pyr - E(; + 1)) + 1),

c

vhich c¢learly has the property that the real part ofy <T)O‘ is highly
singular for large Py - Our numerical procedures do not adequately
handle these singularities and we have had to smooth (T}b for large
values of Py - The procedure we employ is motivated by the following

reasoning: The angular integrations
1 B~ D  ,p+p p - p'
aleos 8,) ¢ |22 | Jr, (Bl o v 1d)| 15520 )
-1 :
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must be performed, or, considering only the real part,

e s )| [V -2 h))°
- [ deos & ,) T, 7, [tar(po r, - §(§ + 1))_ v, — ;

where
t
2 2 pp' cos QP' 5

. Changing variasbles--and ignoring constants-~-we obtain terms like

M, = -2’/,ds 82 tan[s - rrLn ],

n

where 8 = PoTe * For ¢ odd ve integrate from nx - x/2 to nrn + /2 ’

and for ¢ even from nn to (n + 1l)x . Consequently

M, = bnx>[0.693] for todd ,
M& = 4n + %)x2 [0.693] for ¢ even,

or ‘ |
My(nx) = nn"[0.693) ;

hence we make the replacement
- X z
r.p, tan [porc 2(& + 1)} -» 1.286

when po is large. The effect of this smoothing 1s discussed, élong

with the mimerical results, in Section IV.

e |

L 72
(g

Vg
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The separable potentlals, fitted to the de Boer7 phase-shift
data (see Appendix A), are numerically integrated by using a Gaussian
3 to obtain the Iz13
integration in (34) is independent of both G and A , so we find 1t

)
quadrature formula“” integrals. The angular
useful to evaluate

1

6
R{p,p', o + i€) = 2x ‘d(cos ep,) S (2 - (~1))°
1 1=0

1 ]
(2¢ + 1) 2-2 ( ‘ >-2
e e L v ptlo+te)l 5= ),

(16)

which is symmetric in p and p' . R 18 the complex two-body interaction,

defined so that
R(P)plf o + ie) = Re R(P;P': (D) -1 Im R(p; p's U))

‘which is used to compute (p,w) . In Figs. 2 and 3 we have plotted the
real and imaginary parts of R, respectively, for a typlcal value of

Pp and several values of p .
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V. THE SPECTRAL FUNCTION (SELF-ENERGY)

Inserting this complex two-body interaction (46), into (34) and

writing
o(p, ® + 1€) = 3 [B(p,0) - 1 A(p,0)]
and
(p, ® + 1€) = Re I(p,w) - 5 T(p,0) ,
we obtain |
/03 o 0]
Re Z(p,w) = }3_'__@_%' / %‘f (A(p',»') Re R(p,p', o' + o)
Jo (2007 ] _
+ B(P') w' - (D) Im R(PJP'J“)')]
(47a)
and '
5 ¢]
P(p,(.l)) = 2 ‘E""d'%"‘ / ’CZD“LA(P'fw') Im R(P)P': '’ +(D) )
(2r) an
0 -0

(47v)

‘where the zero-temperature forms of f(w') and fb(m') have been used

to define the limits for the w' integrations. Thesé equations, and

(24).
6(p, ® + 1) = [w- e(p,) + % D(pw)]™" (18)
where
2
€(p,9) =. g—_gg - u + Re I(p,w) , . (49)
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form the set of equations which we need to solve self-consistently.
The spectral function A(p,»), Eq. (25), is sharply peaked at

the single-particle energy, which we define as the solution of

e(p) - e(p, e(p)) = 0 ~ (50)
the ® 1integrations involving A(p,w) in the interval

a = (e(p) - [o.075¢(p) |, e(p) + [0.075e(p)] ]

are performed by replacing A(p,o) by a & function,
!

Alp,w) = w(p) 8(w - €(p)) ,

in this interval. A(p,») 1s well behaved outside the interval 4 , and
the integrations outside this interval are performed by Gaussian

quadrature. The sum rule, (18), can be employed to determine w{p):
d
r ('e(P)“ 5 0

W(p) = 1 - {l + . L A(p,o) .
N R (51)

The integration of B(p,w) over the interval d 1s obtailned
by letting
p(p)lw - €(p)]

[0 - e(p))® + [7(p))°

B(p)w) = 2

and expanding the imsginary part of R 1n a Taylor's series about
o = €(p) . Retaining only the first two terms in this expansion, we

have

v
[#e
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l} dw' B(p',w') Im R(p,p', ® + ')

t 1
oty IRl

w'=w + ¢(p')

-1 _0.075]e(p")] ]
7(p")

0.075 le(pt)| =~ 7(p*) tan

‘The Fermi momentumn, Pe s is defined as the solution of

(53)

However, the behavior of the statistical factors and the form of the
interaction make it easier to carry out the calculation for a fixed
p, &nd use (53) to determine u .

The calculation thus proceeds as follows: for a given Pp
we calculate R(p,p', o + i€), (46); we then chooée a trial solution
Gt(p, o + 1€) for (48) and use this trial solution in (47) to generate
a new trial solution. This process is repeated until the trial solution
reproduces itself; when the solution has converged we use the resulting
spectral function, (2%5), in (%7) and (38) to calculate (N/Z/s and
/Yy

The convergence of this procedure 1s rapid, as may be seen in

Fig, b, where e(p) 1s plotted for a number of iterations in which

e
‘.C"ﬂ 2
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the initial choice of a spectral function was

2 2
‘ , R
Ao(p,w) = 2n 8(w - — ) .

For p >> Pe the convergence is even more rapid, since the single-particle

energy 1s dominated by the kinetic term.

Tn Fig, 5 we have plotted e(p,w), (49), for a typical value
of Po and some values of p near Pp - We have also drawn the line
€ = w whose intersection with ¢(p,0) gives €(p), (50). In Fig. 6
we have plotted the valﬁes of €(p) versus p for the!same value of
Ps . One sees that because of the behavior of €(p,w), when ® 1is
near zero and p i1s 1in the nelghborhood of Pp » there is a sharp
break in €(p) near p, . Since there is only a single intersection
of the line € = w with e&(p,») , there is no gaprin e(p) and we
have a "normal" fermion system.

The peculiar behavior of e(p,w) near the Fermi surface comes
about owing to the presence of the second integral on the right-hand
side of Eq. (47a). This integral involves Im R(w) for w <O ,
which is precisely the region where we have the least confidence in
our interaction because of the presence of the pole--which is treated
only approximately. Also, there is essentially & principal-value
integral which has to be evaluated when p is near Pe 5 with
consequent difficulty in obtaining reliable results from the numerical

evaluations: This integral was evaluated in a number of ways to deter-

mine if thié behavior was due to the numerical methods used; we found
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that the behavior was real and not a result of the numerical integration.
The approximations involved in obtaining the interaction preclude any
prediction that this behavior is a characteristic of the real physical
system, and possibly it will not be present in the TCTM approximation
discussed 1n Part A of this paper. Indeed, we see in Fig. 7, where we
have plotted e(p,w) for a larger range of ® and p values--and not
amplified the region near w = O --that ¢(p,w) 1is a reasonably well-
behaved function of w and p .

|

If one examines the behavior of (T)o near the pole (see Fig. 2),

it has the form ' -

( Mw + 1€) )O ~ + tlw) ,

s
W+ w. + 1le
O

where @y and s are negative and t(w) is a smooth function.
Consequently, inclusion of the pole would give an additional negative
contribution to Im R(w) for o <O . However, most of the coﬁtribution
to e(p,w) from Im R is proportional to O Im R/dw , (52), and this
analysis gives no information concerning the resulting effect on €(p,w).
For Pe less than 0.80 R' the intersection of the line
€ =w with e(p,w) occurs in a reglon where e(p,w) has a positive
slope (e.g., Fig. 4) for momentum points near P, . When this happens

the iteration procedure becomes unstable and we are not able to obtain

a solution to the equations.
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In Fig. 8 ve plot TI'(p,w) for the same value of P, &8 employed

in the above mentioned grephs. Luttingergo has prcven that to arbitrary

order in perturbation theory, at zero temperature,

—';’CU.)Q,
w -+ 0

NMw)

where ¢ 1s & positive constant. It can be seen that the solution
satisfies this criterion. The behavior of TI(p,w) for w >0 is
determined by the behavior of Im (T(w))o for w >0 . For small
relative momentum, and @ > 0 , Im (T(w))o is dominatéd by the hard
shell. Consequently, for p < Pp » and o > 0 , this aspect of the
two-body potential dominates the behavior of I'(p,w) ..

This effect of the hard sheli is clearly séen in the momentum-

density distribution functlon,
~{)

n(p) = L Alpe) (54)
-00

which 1s plotted in Fig. 9. For an ideal Fermi gas the momentum
density is unﬁty for p < Pp and zero for p > pf ; Por this calculation
n(p) <1 for p< Py since T'(p,w) >0 for w >0 .

In Section IV 1t was asserted that a pole in (T) would not be
present 1f a more reasonable A(p,w) were employed than the one used
to obtain (T)O . In Fig. 8a one can see that I'(p,w) has a value
comparable to €(p) for small values of p and w < O , and from the

analysis above and Eq. (47b) one sees that the inclusion of the pole

in the interaction would make I(p,w) larger for o <O . A step

v
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toward obtaining the TCIM approximation would be to use the output
spectral function in (T) to obtain a new interaction, and in that
approximation . (T) would be a smooth function for o <0 . A larger
P(p,) would tend to further smooth (T) ; hence the approximation of
eliminating the pole is reasonable.

Thé error that results from the smoothing of Re(T)O for large
values of p, , (48), reflects in the behavior of e(p,o) for values
of ®>> e¢(p) . Since A(p,») 1is sharély peakea near €(p) , an error
in this region should not affect its shape, but such an error can
clearly alter the value of w(p) , (51). .Because A(p,®) 1is such a
peaked function it is not very 1nstruct1ve to plot it; we have thus
plotted w(p) , which is a measure of the amount of A(p,w) contained

in the peak in Fig. 10.

el
(Ame
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VI. THERMODYNAMIC QUANTITIES AND COMPARISON
WITH OTHER THEORIES

The spectral functions celculated in the (T)O approximation
and the two-body interaction cannot be expected to glve accurate
quantitative agreement with the experimentally determined thermodynamic
properties of liquid Hej. However, the spectral functions have s
reasonable form, and so we are stimulated to go ahead and evaluate
the thermodynamic properties, which we then compére both with experi-
ment and with other calculations. !

The experimental curves in the figures are obtained by extra-
polating the P-V-T data of Sherman and Edeskutyeu to zero degrees
and Integrating to obtain (E/N) . We determine pu by substituting
(10) into (12).

The ground-state properties, for various calculations now to

be discussed, are compared with the experimental values in Table I.

1. Mills Approximation

Mills5 has used separable potentials very similar to those in
Appendix A, fitted to the de Boer data, and a simple extension of the

15 which consists of replacing the potential

Hartree-Fock approximation
by the two-body scattering matrix,A
dp (p Is(2)]| pXp Iv] p"

(20> a-F

(p Is@) [p) = (plvlp)+

o
where § = (Pe/h) + p = 2u , and he has used the stationary boundary

condition to obtain a real S . For the self-energy, he has

(7e
L9
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2 ‘ dp*
5(p, - ) = ] (;)3[&&2 A(p',0) £(w)

with
A(p,w) = 2 B(w -~ €(p))
and

ep) = & - » o+ 2, B ).

Baymll has shown that the Hartree-Fock approximation is a thermodynamically
consistent approximation (see Fig. 1) and Mills's results satisfy the
Hugenholtz-Van Hove theorem, (11). However, Mills has described a

physically unrealizable system with negative‘pressure.

2. Sung's Approximation

Another calculation of ground-state properties, starting from
a two-body interasctlon, was performed by Sung.u He calculated the
phase shift from Schrddinger's equation for the Yntema-Schnelder and
6-12 potentials with an effective mass, m*, and replaced (T) in =X

by the real part of the free-particle scattering matrix,

2 2 16 (p)
}
(p 'S&( «E; + 1e)] p) = - iiﬁl— sin 6L(P) e * ,
2m mp

i
}._l
4]
Q
o>

less B term to partially sccount for the statistical factors;

is taken fb be
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Alp,o) = 2n 8w -

The effective mass i8 adjusted until the output value

' a(p
m p-+p. 9(p7)

*
1s the same as the input value, and this value of m 18 used to calculate
the ground~state energy. He performed calculations only for pf5/3w2

equal tc the experimental density, and made no attempt to find the

minimowm in the encrgy-versus~density curve.
3. Puff-Martin Approximation
Flgure 11 shows (E/N) and p  versus density, for liquild He3 ,

Y

calculated using the Puff-Martin approximatlon. This calculation was

performedl with the potentlals in Appendix A. It involves using

2
3 = [z . .. -
(JO(P; z) = [z o + )

1

with p < 0 in the T matrix, (32). The resulting

(p I=(p,2)| p1) = (p lvlp")

(IR, 2) ] Ry (B IvI g

B RTYE <5
AR ™ " m +  2u

is real for z - w + le , where ® < 0 . From Eqs. (47) one sees that

v
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%(p,0) is real for o < 0, and, examining (50) and (53), one sees that

for p<p, and ® <0 the spectral function, (25), is

A(p,0) = 2x p(p) dw -~ e(p)) ,

where

-1
plp) = [1 . 2lpe) } .
) .

an | (btt”-l(p

Using this spectral function in (37) and (38), one sees clearly that

only e€(p) is needed for p < Pp hence one need only solve

2
e(p) = & - » + ReZ{p,e(p))
ang D,
dnp?
R
Re Z(p,w) = 5 Alp')
o (&n)

- {(F—-;z-—g—» IT(w + e(p') + 15)[.;;):._;_2__> - | 2 2" .13,>}

and the expression for o(p) self-consistently for e{p) <0 . In the
9

nuclear-matter calculation, Puff” determined the ground-state Fermi
momentum, P by the criterién that the Hugenholtz-Van Hove theorem,
(11), was satisfied. Falk and Wilet25 pointed out that Puff's ground—-
state solution did not have zero pressure as determined by Eq. (10);

they used this last eriterion to determine the ground-state solution.

The curve for this approximation in Fig, 11 was obtained by

these parameters just managed to produce a solution which satisfies -

yiE s
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wjgz-
e (2 = 0, (55)
SER i :
of =)
l{/

but was not able to produce & moluticn thet satisfies (11) with the
constraint u <0 . The calculation was also performed with the
potential parameters adjusted to reproduce the phase shift from the

Yntema-Schnelder potential; no solution was found ln this case.

4,  Brueckner-Gammel Approximetion

Z,

The Brueckner-Gammel” calculation was not formulated by use of
thermodynamic Green's functions; 1t 1s difficult to describe ia these

termz. ‘The esgsential festures are included 1f we take

~5

Blw - e(p))

ty

A(p,) for P <P

and

tlp.w) = 2w 8w ~ e(p,0)) for p > D

f"'-

in {T), (32), and % , (34). Here & is to be determined from a
supplementacry condition. DBrueckner and Gammel argue that the "hole~hole"
term can be neglected &nd hence the integration in () for the
momentur 1z restricted to p+ and p“ > Pp e Also the interaction
matrix is real for all &(p,R), since they calculate (T) off the

i iop w200
“energy shell" for these values. Thelr results”™ do not satisfy the

Hugenhollz-Van Move theorew, as was polnted out in the original paper,
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5. (T)O Approximation

The spectral functions, which are calculated for different
pf's, when used in Eq. (37) and (33) allow us to calculate (N/Z/)“’OO.

Subgtituting (54) into (37) ylelds, for the density,

SRS 7 .

F “)CO l [fm 'D2 d t
e = {: — } = — [ &-—.._..42
N n j nQ
‘0
0 2
dw 1 P
x —_ = ) -
/m
* - (57)

In Fig. 12 we display e and p  versus n, The results for u
are not as accurate as those for e , since p is obtained using
Eq. (53), which, as we see in Fg. 4, involves the intersection of two
curves with comparable slope, while e 1is obtalned by integration of
Eq. (57). In Fig. 13 we plot n versus pf , and for comparison we
also plot pfg/ﬁﬁg, which is the density of an ideal Fermi gas
corresponding to the momentum Pp - From Fige, 12 and 13 we see that
the dengity at which (59} is satisfied corresponds to a Fermi momentum
less than 0.80 A" . as was explained in Section V, the iteration

procedure becomes unstable for values of Pp below this value.

S
Vi
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the minimum appears to be close to Dp = 0.80 gsl, and we have
extrapolated the calculated values to determine the minimum.

One can see, in Flg. 12, that the Hugenholtz-Van Hove theorem,
Eq. (11), is not satisfied for this approximation (as we would expect,
since this is not a thermodynamically consistent approximation), but
the discrepancy is smaller in this calculation than in the other
theoretical studie526 (except that of Mills). In Fig. 14 P 1s plotted
versus n , from the experimental data and alsc from Eqs. (10) and {12).
These two expressions give different values for the pressure because
our approximetion is not thermodynamically consistent.

In view of the behavior of the single-pgrticle energy, for p
near p, , We cannot obtaln a meaningful value of m from the (T)O
calculation.

The use of the single-particle energy in (T) 1s sn important
feature of the Brueckner-Gammel calculation and presumably would be &
desirable improvement in the calculation reported here. We have not
performed this improved calculation {which would involve extensive
computational time), but have moved directly to the more extensi
computation reported in paper II of this series (where only the approxima-

tions described in Part A are made).

-
N
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APPENDIX A: A SEPARABLE POTENTIAL FOR H83

In Chapter IV we introduced separable potentials which were
employed to evaluate the TO ‘matrix; this appendix is devoted to
explaining our choice of potentials, and the method employed to deter-
mine the potential parameters so that these potentials can be considered

5 two-body Interaction.

to approximate the He
The cholce of functional form for the potentials is rather
arbitrary. The primary criterion is convenience; namely, a form
which allows a maximum eamount of analytic computation. The parameters
are adjusted so that the phase shift resulting from the potentials
approximates the phase shifts computéd using the Lennard-Jones 6-12

and the Yntema-Schneider potentials.

with

r 1s in angstroms, and k is Boltzman's constant. This potential was
fitted by de Boer et al.{ to the low-temperature virial coefficlents.

The ¥Yntems-Schneider potentia16 is

-r/0.212
_ 1.24 1.89

[
with (eo/n) = 1250 K; it was fitted by these authors to the virial

coefficients up to lOOOoK. The phase shifts were computed by de Boer

1750
(7
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et al.7 for the Lennard-Jones potential and by Sunge9’ for the Yntema-
Schneider potential.

Puff has developed the expression for the phase shift in terms
of the two-body scattering matrix for a separable potential; we quote
the relevant formulae here. The scattering matrix is given by

ap (pls(a) X vl p")
G @] 2 = (p Il g+ |2y EORE 2

J (2ﬁ}5

|
-

Q -

glw

(A.1)
end 1is related to the scattering amplitude by
2

Y
£(p) = - = (pls( = + 1e)]

e

o )
FYo L
Using the well-known relation3

connecting the scattering amplitude
and the phase shift ylelds

2
on (2 IsdE +1e)] )
8x°

tan BL

5 ,  (A.2)
2 - éfg (p Is,( &+ 1¢)] p)

where (S) has been expanded in partial waves.

Choosing the potential,
(v), in (A.1) to be a sum of separable potentials,

2

(o v, o) = 2 ) 8y By v By
i=1

one obtains a closed form for (Sz> identical to Eg. (41) with P = 0,
and the integrals I&i‘j replaced by
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® (1) (3)
(p) v, (p)
7, (@) =f p® dp p (A.3)
0

'P

One needs to evaluate (A.2) for Q :(pe/m )+ 1€ ; this value

of Q allows one to write (A.3), when the symboiic identity

1 .
= PS> 3 in 8(w)
is employed, in the form

v e o)

p - p'

2
JiJ( PnT + 1€)

I
g
3

M)
o
o]

- 12 p v (p) 1 (p)
(A.L)

2
e IS TR RO

Substituting for (S) in (A.2), we have the explicit formula

(J)(p) 2 Vl’(l)(pg)
tan 8L(p) = - % \ M ( ) (det ML]-l ’

\\Ve(g)(p')
. | 1 (a.5)
where - 2 2 ]
2 =22 p = 12
5 g, - I, (%) Iy %T )
o) ) ‘
W) 2 2 ’

= 12, p- 1 =11, p

L Jl ( m ) g@ “ J& ( o )

Ve
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and

i 2n 5

- L

The ILennard-Jones 6—12 and the Yntema~Schneider potentials are

both strongly repulsive for small interparticle separations. To
replicate this we choose a two-term potentisl for ¢ =0, 1, 2, 3, with
one term giving the short-range repulsion and the other term gilving
the long-range attraction. For ¢ = 4, 5, 6 we use only an attractive
term, since the "angular momentum barrier" shields the éhort—range

repulsion.

The repulsive>part of the potential is taken to be a "hard

shell,"

8(r -~ rc) 5(r' - rc)

2
ha r e by » 2
¢ ¢

| {z |v,| #) = vz(l)(r)‘vc(l)(r')

wvhich yields, after a spherical Hankel transform has been performed,51

v&(l)(p) = 3,00,

29

where p = pr and the J&'s are spherical Bessel functions. For

c

t =0, 1, 2 we use

8(r -
vt(g)(r) = --f——llf—)- it hz(l)(icrr) s

b ¢
c
where 6(r) 1is the Heaviside unit function (defined as zero for

negative drgument and unity for positive argument), and thl) is a
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spherical Hankel function of the first kind.jo Transforming this

potential, one obtains

, |
v B - St L8 3,00 n{ (1) - on,M(ap) 5, (o) T,
P+

where B = ar, and r, are two parameters yet to be determined., For
L =3 we use

" 6(r - r ) r A\t
v&(Q)(r) - ¢ ( ) )

_£
g r 5 r
c

whose transform is

v, B =
The attractive potentials employed for ¢ = 4, 5, 6 have no simple

coordinate space representation; in momentum space they are

2

(2)
vy (p) = [D2p+ 2z

Evaluating the integrals JL’ one obtains tan 8& , and then

adjusts the various parameters to reproduce the phase shifts computed
from the 6-12 and Yntema-Schneider potentials. The parameters which
give the best fit to the phase-shift data are tabulated in Table IT.

The phase shift for the 6-12 potential7 was avalilable for 20 equally

1

o-
spaced momentum values between 0.086 and 1.564 A and for the Yntemaw

. 21,1 °n]
Schneider potential for 25 momentum values between 0.86 and 1.954 A™ ™,
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The separahle potentials vere fitted to these values, and the deviation

gquoted in Table II was computed by using

H

N o 1/2
oo [ ) Lo v o)

n=1

(A.6)

where N = 20 or 25 . The coupling constanta for the repulsive core

are taken as large, but finite, numbers,

L (1)

~ L 5, (2)
f ~ ~-(10" - 10 )x& .

=3
N

&}
3

] )»'x
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Table I. Primary guantities, present calculation, other calculations, experiment (T = O). The

calculated values of the chemical potential are the solution of Eq. (53). The common

temperature units with «

= 1 for energy are used; the conversion factor for the units

©
used in the figures is 1 p7% - 16.36 degrees.
Source (and Average energy Chemical Interparticle Effective
reference per particle, potential, separation, mass,
° ° *
number) (E/N) ( K) b (CK) r, (4) m /m
' a
Experimental -2.53 © -2.53 ° 2.43 © 2.15
Mills, 5 0.0 0.0 5.60
Sung, 4 -2.0 - - ~ 2.7
Puff-Martin
approximation, 1 -0.04% -0.811 3.25 1.0
Brueckner and b
Gammel, 3 -0.96 -3.61 2.60 1.84
(T), Calewlation -1.16 -1.39 2.47
a. Ref. 24
b. Ref. 26
c. Ref. 27

d. Ref. 28

_gg-

7269T~TH0N
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Table II. Parameters and deviations, Eq. {A.6), for separable potentials

fitted to the Lennard-Jones and ¥Yntema-Schneider potentials.

=
Potential ) r, B gt(g) ; (Dev),

0 1.872 - 1.505  -0.00805 0.019

1 1.908 1.635 -0.00818 '0.050

. 2 1.857 1.h21 ~0.0713 0.0k2

}% 3 1.73 0.0 -0.475 0.103

g L 1.0 0.8285 -1.347 ! 0.057

§ 5 1.0 0.:9575 -1.038 0.058

6 1.0 0.897 -1.686 0.03k

0 2.048 1.023 ~0.000947 0.014

1 2.050 0.977 -0.00218 0.031

§ 2 2.085 0.855 -0.0161 0.039

:g 3 1.997 0.0 -0.0518 0.221

% 4 1.0 0.621 -4.76 0.790

§ 5 1.0 0.781 -2.25 0.185

~ 6 1.0 1.014 -1.29 0.0%3

a gz(l) ~ -107% 35(2)

Vi

el
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FIGURE CAPTIONS
Diagrams for ¢ end X . The solld lines represent G and the
dotted lines V.
(a) .?r in the Hartree~Fock approximation;
(b) £ in the HarfreeuFock approximation;
(c) a term in ¢ for the TCTM approximation;
(d) the term in £ corresponding to the term illustrated in (c).
The real part of R (Eq. U46) for representative values of momentum
((T)o approximation). Dashed lines are at poles in: (T)O and
dbtted iines are smooth values of R wused in calculation.
The imaginary part of R (Eq. Uu6) for representative values of
momentum ((T)O approximation). | |
Iterations of the single-particle energy'(Eq. 50) for (T)O
approximation. The zeroth approximation is the kinetic energy
minus pfe/ém , and the dotted line is the ninth iteration.
e(p,w) (Eq. 49) for a representative value of P, and p near p. .
The dotted line is € = w, vhose Intersection with e(p,w) glves
e(p) (Eq. 50).
The single-particle energy, €(p). The solid line is the (T)O
approximation and the dotted line is e(p) = (p2 - pf2)/2m .
e(p,v) (Eq. 49) for representative values of momentum.
M(p,o) (Eq. 47b), the imaginary part of the self-energy for
representative values of momentum. (a) o near zero [I'(p,w) - o

as o -+ -00), (b) w>0,
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Momentum density distribution function (Eq. 54%); (a) p < J
(b) p> D, - (Note change in scales.)
The width function (Eq. 51) (the curve approaches unity for large

momentum) .

’Average energy per particle and chemical potential versus density

for the Puff-Martin approximation (Ref. 1).

versus density (Eq. 56). Here e and u, are obtained from
0 0
the (T)O approximation, and en and g from the experimental

_values obtained by extrapolating the data of Ref. 24 to zero degrees,

Density versus Fermi momentum; solid line is the (T)O approximation
and dotted line the ideal Fermi gas density.

Presure versus density ((T)O approximation)., Curve 1 is obtained
by using Eq. (10), and curve 2 by using Eq. (12). The experimental

curve (dotted) is an extrapolation of the data of Ref. 2k,
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