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ABS 'I'RA.CT

This is the firBt of two papers in "rhleh the low-temperature

properties of liquid He 3 are to be calculated in the thermodynamically

consistent "T-matrix" approxi:mation. 1'11e set of coupled integral

equations ...rhieh are to be solved is exh:f.bited in Part A of this paper.

Part B of this paper is devoted to 11 preliminary) zero-temperature

calculation whtch employs the addl tional approxima:tions of using

separable potentIals and 11 nonlnterac"ting spectral. i'unction to define

the lnteraction of two particles in the med.ium: the (T)O approx:Lmatlon.

In this approximation we obtain a spectral function for the quasi

particles which 'Ile expect to display general features in. common with

those of the actv~l spectraJ function. Using this spectral function)

we calculate the thermodynamlc properties of the system and find that

t~ compare f'avorably to tho~3e obtained in other calculations.
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type of system has been the "T-matrix" approximation) 3)8)9 which--in

general terms--is an approxlmation that includes only effects arisillg

f h 1 i t . ~ t t· 1 10 11 h' ~.rom t e exp_ ci corrc2a'cion 0-,- va par 1C es. Baym as Goriveu a

criterion vrhich 2ny 1.1pproximation must satisfy if' it is to g1ve self-

consistent thermod;ynarLLcs; he has shown tl1at the "T-matrix" approximation

satisfies the criterion.

This is the first of two papers concernins the solution of the

coup.led integral equations of the the:nnodynamically consistent 'l'-matrix

(TCTN) approxtmation. In the [:ccond paper of thi G series our proc;ram

of obtaining the low-temperature p~'operties of liquid He 3 ,'1thin the

frarnevork of this approximation is accon:plished.

Part f\. of this paper is devoted to exhibiting the coupled-integral

equations of the TCTM approximation; here a brief discussion of the

temperature-dependent Green's function fonnali.sm is also given. In

Part B of this paper we make f1..1!'ther approximations Tcquisi te for the

preliminary calculation) which forms the main body of the paper. The

coupled integral equations J defined i.n Part A} are simplified and

decoupled by replacing the spectral functions in the T matrix by non-

inteyoact111fCT s~Pc··tl'nl ~llnc+; ~""~ '1'\1'0> rc,c'1..,i+inf7 T r['n",~4'r y"C'+"1"'''' t".li'~ - . 'e, jJ. U_., -, V.LUL •.,. ._, ~ _0 .~v C> '0 ..C'V~ J.,.......u .".0 --.

essential interaction features exhibited by a zero-temperature systcln

of' interacting fcrmlon~3; hm·:ever" ':Jeu:use of this decoup.ling our

approxirnatJ.on is nott;2!C~I·;;·(Y:ynI..U:11cuJ.lycons is tent. '1'11is undes irabIe

feature is IJ. p:::'ollerty Glla~"cd by !['ost oth:r calculations to date (see

Section VI.l); ~owever! this approxll~tion has the interesting property

r .-
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(not shared by the other approximations) of yielding a spectral function

with a width.

An additional approximation ve make to obtain a manageable set

of equations is that we use a finite sum of separable potentials to

3represent the interaction between two He atoms. This approximation

does not affect the thermodynamic consistency, but it may be a poor

representation of the actual two-body interaction.

Section IV is devoted to developing the two-body interaction

for particles in the medium; the TO matrix. In Section V we calculate

the spectral function using this interaction and, since the modification

of the two-body interaction due to statistics of the medium is well

represented, we expect that our spectral function displays general

features in common with that of the actual spectral function.

Because of the approximations for the interaction we would not

expect the properties of liqUid He S to be predicted with great accuracy.

Nevertheless, in Section VI we calculate the ground-state properties

and compare them both with experiment and with other calculations.

The results of this comparison are summarized in Table I; the quanti-

10tative agreement with experiment is not impressive, but as good as

that of other approximations) and we may expect improvement in this

comparison from the complete calculation.

"",:-
f,~ ..-



II. GREEN t S FUNCrrION }"OHl\lALISM

In this section it Is shmm that the thermodynamic properties

of a system of interacting fermions may be evaluated in terms of the

average energy, .E) a~1d numb.:r J N. The fOI1Ilali sm of Martin und

2 9SclNinger ,- is summarized so as to clearly define the notation, and

the formulae for E and N (1l'e presented in terms of calculable

microscopic quanti,ties.

One assumes that t,he interaction in this system can be descrj.bed

irlstantanCQUS

H(t)

+; I v,JCr> t) 'if" c~:: I } t) v (;s - £ I) \jI (£ I J t) \jI (t J t )d£ d£'

(1)

and, '!r()' t)., ::"').'. are the partide creation und annihi,lation

operators in the second-quanttzation He:Lsenberg representatiODj in this

and subsequent expressions the c(.)ordina.-te contains the internal

spin variables,

N(t)

In the S8.me reprf?sentatLort} the number operator Is

J' ,I, -1-(" t) ~I (r .;- ') ii'" ( 2)
" :"'i') .;...,.".; '-' / ",~ ..

The creation and armih:LLatiO!1 OpCl:T:,t()J':J ~)a-u.~!·y the ani;icomrnutt1tlon

relations

I'';.~:-:-;'
(~~~ ,--"
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( w(r,t), wt(rl,t) }
'" '"

B( r - r I) •
rv '"

Pufi9 employs a modified Heisenberg representation where the time

development of an operator X(t) is given by

with

X(t) - iJ:ite (4 )

J:i(t) = H(t) - I-l N(t) ,

and where I-l is the chemical potential.

In order to describe the macroscopic behavior of the system,

one evaluates the expectation value of operators over the grand-canonical

ensemble. 13 Thus for an operator X, MS defines

( ) Jl t3 -1 [-t?J:! JX ' = Z tr e X (6)

where tr denotes the tr~ce of the ~trix 18 to be taken, and Z is

the grand-canonical partition function,

The thermodynamic state of the system is defined by Jl and t3,

the inverse temperature measured in energy unitsj i.e., t3

where K is Bolt~~n's constant. 14
It is well known that all the

equilibrium thermodynamic properties can be obtained from the grand

partition function.
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knows

and

For a given ~ and ~

E = (H)~'~

15one can compute this function if he

(8)

N (N)~'~ ,

as can be seen by the following argument: At zero temperature the

pressure P is, according to its definition,

p " - (~ ( 10)

where t!' is the volume of the system. For a normal system of fermions

16at zero temperature the Hugenholtz-Van Hove theorem states

( 11)

which has the consequence, for a large system, that

The grand-canonical

~ = E
- +
N ('v) :@) ~j

partition function

( 12)

14is related to the pressure by

Differentiating the logarithm of Z with respect to

and,and ~ , one obtains a relation between ~n I~
ur/u~ and

J.l at fixed !3
15'N'CI/\J..!.!3\{t/)'

similarly, differentiating the logarithm with respect to ~ at fixed

~ and ?I, one obtains a relation between dP/'O;; and (H/2/)J..!'~.

These relations can be integrated to give pJ.l,!3, and hence one can

compute all the properties of the system, if he has E and N

(Eqs. 8 and 9).
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2. MicroscopIc Theory

ECluations (8) and (9) may be evaluated from a microscopic theory

by using Green's functions. The one-particle Green's functions i817

and the two-particle function is given by

in these functions T is the Wick time-ordering operatpr.

( 14)

Using (4) to define G for complex values of its time arguments,

in the interval

o ~ i t ~ ,

and defining the time ordering in this interval by

:::

for

for

,
i t 1 > i t 1 '

,
i t l < i t 1

one can use the cyclic property of the trace to obtain the boundary

condition

-G( 11' )
t ::: .. it3

1

The Hamiltonian, Eq. (1), 1s translationally invariant in space and time

(we assume an infinite system so there are no boundary effects), and

conseCluently
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where

G(ll' ) == G(r,t),..,

Introducing a "spectral function,lI A(p,ill), for
N

G , and

performing Fourier integral transforms with respect to the space

components of G, and a Fourier series analysis with respect to the

time component, ~S obtain

,

G(p,Z) ==,..,

where Zv == ~V/(-i~) • Define the analytic function

J-clD A(E,ill)

21! Z-ill (16)

for all nonreal z, by analytically continuing from the points Zv
18The unique continuation has been shown by Baym and Mermin to be that

which has no essential singularity at Izi == aD. Thus G(p,z) is a

function which is analytic in the whole complex z plane with the

exception of the real axis, while A(p,ill) --a real positive function--,..,

is given by the discontinuity or G across the real axis,

A(p,ill) == i[G(p,ill + iE) - G(p,ill - iE)] •
,.., ,.., ""

Using the anticommutation relation, (3), one can easily obtain

the sum rule:

( 18)
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For a given approximation the anticommutation relation may not exist or

may not be in a convenient form to obtain this sum rule for A(p,LO) •
'"

In this case we need to know the properties that must be satisfied by G

to ensure the sum rule. The Herglotz theorem19 (of the theory of analytic

functions) gives the necessary and sufficient conditions on G(p,z):
'"

If G(p,z) is analytic in the upper half plane, 1m z > 0 , and if in....,
this half plane

holds.

Im G ~ 0 and lim Z G(z) =: 1 , then the sum rule, (18),
Iz 1-+00

In Section II.l it was shown that one needs the two quantities

E and N, (Eqs. 8 and 9), in order to obtain the eqUilibrium thermo-

dynamic properties of the system. These quantities can be expressed

in terms of the spectral function A(p,w). The number density operator.....

for the system is ) (2),

n(r,t)
'"

=:

( n( r, t) ),...

so that, from (15) and (16),

(..:l.. ( dp
J ;: J (;:;)3 A(,€J LO

) f(m) ,

where

1s the usual fermion statistical factor. Since the system is isotropic,

(n( r, t) ) is 1ndependen't of rand t and it follows that..... .....
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for our system N and V go to infinJty in a manner such that the

ratio (N/?!) remains finite. Similarly, the energy density is given

by

- 11
A( p,(1)) f(ro)

.....
(20)

The equa.tion of motion for G 1s

'il
2

d 1
(:l. dt:" +"2rr1 + 1-1) 0(11') +

1

(21)

and the equation of motion for G would involve Gland G 1.n n- n+

Therefore" one has to solve an infinite set of coupled differential-

integral equations in order to obtain G •

It is useful to introduce--following MS--the "self-energy"

operator, E, which is defined so that

(1 ~tl + ~2 + ~)a(ll') _[1~ al J;{il) aCll') = B( 1 - 1')

(22)

One can show15 that E satisfies the same boundary conditions as G.

One defines a "spectral function" for L:,

I'( p,ro)

and consequently

i [ Z(p, ill + iE) - L:(p, ill - 1e))
'"

,
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where 1:
0

{£) 1s a real valued. function of £ only. Here allowance 1s

. 20
made for the possibility that

(

vThen a Fourier integral transform is performed on the coordinate

I '
variables and a Fourier series analysis of the time variable, (22)

becomes

2
[ z - ~ + ~ - L:(£,z)]G(£,z) :: 1,

which, combined with ( 17) and ( 23), yields

2 r[ (ill -
2 2 r(p,ill)

A(p,z) r(p,ill) 'D
- Re E( £,ill))

....
= A.- + ~ +.... ...., 2m

l~

(24)
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III. THE THE.RMODYNAMICALLY CONSISTENT T-MATRIX APPROXIMATION

1. Motivation and Specification of the Approximation

In Section II we discussed the infinite set of coupled integro-

differential equations [the first of which is given by (21)], which need

to be solved to obtain 0. One cannot hope to solve this set of coupled

equations exactly; some approximations must be made.

For short-range forces with strong repulsion a useful approxima-
. 8

tion which has been widely employed is the T-matrix approximation.)' ,9

This is an approximation for 03 which neglects the correlation of a

q
single particle with a highly correlated pair. Formally, one takes~

°3(123; 1'2'3') = 0(13') 02(23; 1'2') + 0(11') 02(23; 2'3')

- 0(12') 02(23; 1'3') ,

which gives

O2(12; 1'2') = [0(11') 0(22') - 0(12') 0(21'))

+ ~ L-l~ aI a2 [Go( 11) G( 22) - G( 11) GO(22) ]

(26)

o
where 0 1s the solution of (21) without the interaction term, and
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An important further considera'cion in rn.aking approximations is

thermodynamic consistency. If the approximations do not sa.tisfy certain

consistency requirements, one has no guarantee that the thermodynamic

quantities obtained are consistent. At zero temperature if the results

are such that the Hugenholtz-Van Hove theorem, (11), is not satisfied

then one does not know how to determine the pressure uniquely. The

situation is just as serious at a temperature because the pressure,

pJ.ll3, obtained by t'WD dj.fferent integration paths--using the relations

between dP/~ and (N/V) JJ.f3 , and dP /"d13 and (H/V>J.l,f3 --discussed

at the end of Section II.l--may not be unique. Still a third result

for the pressure migh-t be found by integrating the expectation value

of the potential energy .,ith respect to the coupling constant. l5

As might be expected, the demand that an approximation lead to

a single-particle Greenls function such that the thermodynamic results

are consistent places strong restrictions on the possible class of

11
approximations. Baym - has used functi.onal derivative techniques to

derive a criterion for approximating the single-particle Green's

function and has proven that approximations which satisfy this criterion

produce a consistent pictu.re. His criterion is that there must exist

a "closed fl functional !l of G and the potential, V, such that

2::( 11' );= 5 i
5 C( 11' )

( 27)

'Where the self-energy) ~,1s to be considered a8 a functional of G

and V. IIere a "closed" functional means one in which all internal
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variables are integrated) or) in terms of diagrams) no particle lines

enter or leave the diagram. In terms of diagrams} the differentiation

of Eq. (27L means plucking out one of the particle lines, as is detailed

in Fig. 1.

'l'he approximation (26) does not satisfy Baym's criterion; however,

11Baym has shovffi that the approximation

G {12' l! 2 I }'2' )

+ dl d2 G(lI) G(22) Vel - 2) G~(I 2; 12)
c.

does satisfy his criterion.

2. ]i'ormal Development of the TCTM Approxi_mati~

We take Eq. (28) as the basic equation of our thermodynamically

consistent T-watrix (TCTI4) approxirr~tion. If we define the T matrix

by the integral equation

( 12 I T I 1'2' ) = Vel - 2) 5(1 - 1') 5(2 - 2')

+ dl d2 ( 12 I T I 12) G(Il') G(22') Vel' - 2') ,

( 29)

the approximaUon] (28), becomes

(-i(3

J
dl d2 ( 12 I T I I 2)

·0

"f-2' 1\ rof"'r) 1\ 1
'-'\ .J.. / U\.J..<:. I J )
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and from (21) and (22) we have

L( 11' )

r~j~

~·i J
o

0.2 0.2

( 31)

Examining the strueture of (ITI)) one sees that it satisfies

the same bounclary condltion as G( t 1 .. t
l

i )G( t
1

- tIl):

t :.::0
1

One can express T(t
l

.. tIl) as a Fourier series with coefficients

T( Zv) ,where zv:':: 1fV/ ( -i~ ) and V runs over all even integers.

Analyticall:,>' continuing to all z, and performJng Fourier integral

transformations ..,ith respect to the center of mass and relative

coordinates (see Chapter 13 of Kadanoff and Baym15), one obtains

( p !T(P, z)! pi}
'"

v( p - pi)
'" .....

where

A(P,p,z.)
rvr./

r~J 21r

elm I

21f

p P
A(~ + p,w) A(~2 - p,w f

)

~ '" ", [1 .. r(w) .. f(w l »)
Iz-m··w
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and· P 1s the center-of-mass momentum.
'"

T(z) is analytic in the upper and lower halves of the complex

z plane) and

*T (z) ( *T z )

watson21 has shmm that if v(r) is finite everywhere, T(z) is bounded

by a constant as z -+ 00. After performing the time integrat:!.ons in

(.31) --by means of the 0 functioi1s-·-and transforming with respect to

the coordinate va.riables, one can use the analytic properties of G( z)

and T(z) to determine the Fourier coefficients of the self-energy,

1:( z,,) • AnaJ..:rtically continuing these eoefficients, one 11.8.8
5, 9

E(p,z)

2

X (£ £_'
\

IT(p + p', (l)

'" '"
-p--_£_\ -

+ z)1 "'2 .)
/

where

(

p - p'
x '" '" IT(p I )+ P ,(.0 + i E

2 '" ""

- [exchange terms) ,

P 2- £') JT( P + P I ,(I) - i€:) I -"'--
'" ""

is the boson sta:tistice.l factor. .For a homogeneous) isotropic, unbounded

system A(p)m) depends only on the magnitude of the momentwn, p::: Ipl ,
'" '"

and furthermore r.(~> z) does not depend on the orientation of p •
,."
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Equations (25), (32), and (34) are, explicitly, the set of coupled

integral equations which must be solved in the TC'l.'H approximation.

The theory could have been developed for a nonlocal potential

by using a potentia19 of the form (~l - £)v 1~3 - !:l~)' corresponding

to the local potential 5( 1£1 - £21 L~:3 - £41) v( 1£1 - £2 1) • If

one had carried out the development for this potential, the v(e - £')

in T would be replaced by (plvlp') ; we assume that the potential in

(32) has this form.

Because of the complexity of this set of equations we must make
I

a further approximation to facilitate their solution. We wish to make

a partial-wave expansion of' T , hence we perform a Brueclmer-Garmne13,5

type of averaging rather than actually performing the angular integrations

in (32). This means we set

p
<v

± P
2

±
-+ P ::::

in A(P,p,z), which decouples the parti.al waves. This approximation
"" ,.,.

can cause our solution to violate Baym's criterion, but we hope this

violation is minor enough so that 1t does not affect the thermodyna~ic

results. (A point to be confirmed at the completion of the calculation.)

A partial-wave expansion of T and v is made, and the partial-

"rave components J 'l',e' of' Tare given by
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For liquid He) we need to consider a sy'stem of particles with

1spin r; , interacting v:l.a a spin-independent interaction. The only
c

complication introduced by spin is that the momentum and coordinate

integrations contain an implicit sum over spin states. The direct
I

part of E is multiplied by 2 as a result of this sununation, and,

since we have no spin-flip mechanism in our interaction, the exchange

part is unaffected. Making the partial-wave expansion and using the

summation relation for the spherical harmonics, we have, for the direct

and exchange contributions to E,

2t+ ] t .
~--..;' (2 - (-1) ](pIT.(P,z)lp')

4,.{ "

( N )
V

The spin sum contributes a factor of 2 to the expression for

and (~) (Eqs. (19) and (20)]. One can perform the angular

integrations in the expressions for these quantities to obtain, finally,
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(

\fJI3
~ \
1//

2 2
p dp (ill + E.. - 1-1) A(p,ill) f(ill) •

2r(2 2m

(38 )
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Part B. The' JT}0--Appro~ima.tion.:!-ith a Separable Potential (Zero_

Temper!lturel

The remainder of this paper is devoted to a zero-temperature

calculation of the properties of liquid He' in an approximation to the

TCTM approximation of Part A. This approximation, which we call the

{T}O approximati.on, retains the essential features of the TCTM

approximation and should be considered as a first step toward the

complete calcula.tion.
I

We have also chosen to use a separable potential to describe

the interaction of two free helium atoms. This results in a closed

expression for the interaction of two atoms in the medium, with

consequent simplification of the calculation.

The calculation was performed on the Ibwrence Radiation

Laboratory's Iill~ 7094 computer and the University of California at

San Diego's CDC 3600 computer.
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rv. 'IWO-BODY INTERACTION IN THE MEDIUM

We obtaln the ('1')0 approximation by replaclng the spectral

function in the equation for ('1,) j (33).; by

2 2
p - Pf

) .

Our approximation now is no longer thermodynamically consistent. The

ill integrations in the equation for ('1') are trivial, and we have the

equation for ('1') in the ('1')0 approximation

(p Ivl pi>
N N

,
2

p

Tilli

2
+ Pf

m

2
_Lz m

where

( + -)S p,p = 1 -

+2
P

2
- Pf

2m
) - r(

-2
p - P__--=-1' ) •

2m

In the zero-temperature limit}

-1 for + -P ,P < P
f

(hole-hole),

o for - +P < P
f

< p (particle-hole),

1 for + -r}p > Pf (particle-particle).

( 40)
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This approximation for (T) retains the essential features of

the fermion system (it involves no approximations with regards to

statistics) in contrast with the approxinations which have been used to

date. 'l'he Brueclmer-Gamme13 calculation neglects the hole-hole term;

'5 9the calculations of Mills' and Puff-Martin are formulated so that they

have none of the features present in (40) (this is discussed in more

) hdetail in Sec·tion VI ; Sung makes a correction for the statistics, but

his correction is a very poor approximation to the result obtained by

solving with ·the statistical factors included.

It~ well known22 that v can always be expressed in a separable
t

form:

(p !vtl p')

co

;~
1=1

vie assume that. we can represent v
t

by only a few terms of the series.

For t = 0, 1, 2, .3 we retain two terms of the series, for t = 4, 5, 6

only ,the first term; T. t (p, z) is negligible for larger t. This

particular approximation does not affect Baym's criterion for thermo-

dynamic consistency, but the (Tt ) we obtain may not represent the

liquid He3 system e.ccurately. We have of course lost self-consistency

by our first approx:lmation--as incorporated in (39).

He choose a form for the and solve the scattering

:?matrix for t'/O free He atoms. The coupling constanta 111m parameters

in our potentials are adjusted to match the phase shift calculated

from potentials in c.oordinate space for He3. The coordinate space
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potentials are local potentials whose parameters are adjusted by means

3 6,7
of the virial expansion to fit the experimental data for gaseous He •

The forms we choose for our separable potential and the determination of

"the parameters are discussed in Appendix A.

The separable potential allows us to write (Tt)O in closed

form:

12
It (p,z)

where

and

== (2lt )3
m

(1)
v t (p)

r

2 22
gt - It (p,z)

1~
II. (p,z)
'- <- ~

1
g,
"

(
-1

[det Mt p,z)] ,

( 41)

l
11 II, (p,z)

" -

1j
It (p,z) 2

P dp

( 42)
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We need (Tt(Z»O only for Z = w + i€ and def~ne the integrals (42)
p2. Pf

by introducing a physical cut from wo = 4m - -m- to ~oo.

If Po is defined by

-=
m w -

and the I,(w + ie)'s
"

examined for 2
PO < 0 , we see that the It'S

are real, and consequently (T)O is real. We have in this case

'12 2IPO + P

L
CO v (i)(p) v (j)(p)

2 t t
P dp 2 2 'Ipol + p

2

where . PI and P2 are solutions of

-and

(44)

If we had a potential which consisted of a single repul~ive term,

then (41) would become

fJ 1 11·]'19t - It (p,z)
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1
where gt is positivej for It given by (44) it would be possible

for the denominator of (45) to be zero, and hence we would get a pole

in (T)O' For the potentials we employ and when t = 0 , we get this

2
type of pole in (T)O when P < Pf and when PO is negative and

very small (e.g.) Figs. 2 and 3, where the small imaginary part at the

pole in Fig. 3 is due to the angular integration which has been performed).

We know that r(p,ru) should not be zero in this region} and if it is

nonzero the imaginary part of (T) will not be zero in this region, and

hence we would not have a pole. The integration of the! real part of

(T)O through the pole will behave like a principal-value integral,

and consequently we have simply removed the singularity by smoothing

the real part of (T)O' as depicted by the dotted lines for negative

ru in Fig. 2.

2
For PO »0 the form of our potentials is such that if we

neglect we obtain

which clearly has the property that the real part of {T)O is highly

singular for large PO. Our numerical procedures do not adequately

handle these singularities and we have had to smooth (T)O for large

values of Po . The procedure we employ is motivated by the following

reasoning: The angular integrations

11 d(cos

-1

p - p'
'" '"

2 I )
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must be performed, or, considering only the real part,

where
2 2

P + p'
;:: ill - 4

pp' cos e ,
p

2

. Changing variables--and ignoring constants--we obtain terms like
!

M. -2 rds 2 tan[s - t + 1 J= s -,...- 1!.,
) c.

where B = par • For t odd we integrate from ll1C - 1!/2 to ll1C + 1!/2 ,c .

and for .f, even from M to (n + 1)1!. Consequently

for todd ,

1 24(n + 2)1! [0.693J for t even,

'or

hence we make the replacement

when Po is large. The effect of this smoothing is discussed, along

with the DWmerical results, in Section IV.
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~rhe separable potentials) fitted to the de Boer7 phase-shift

dat.a (see Appendix AL are numerically integrated by using a Gaussian

03 ij
quadrature f'ormula'- to obtain the It integrnls. The angular

integration in (3)j.) is independent of both G and A, so we find it

useful to evaluate

1

2n 1d(COE

6

I
,(,=0

t(2 - (-1)

y.. (2.(. -'°.1) (

41t'

p - pi
'" '"---

2
I ITt (1£ + .£' 1)00 + 1€ .) I I £ ~ £ I I )0 '

( 1~6)

which 1s symmetric in p and pi •

defined 60 that

R 1s the complex two-body interaction)

,,,hich 1s used to compute ,E(pJoo) • In Figs. 2 and 3 we have plotted the

real and irnagina~{ parts of R, respectively) for a typical value of

Pf and several values of p
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V. THE SPECTRAL FUNCTION (SElF-ENERGY)

Inserting this complex two-body interaction (46), into (34) and

writing

G(p, ill + iE) = ~ [B(p,ill) - i A(p,ill)]

and

we obtain

.E( p, ill + i €) i= Re .E(p,ill) - 2 P(p,ill) ,

Re E(p,ill)

and

f. 0 ~ (A( p' ,m') Re R( up' ",' + ,,,)
t::.J\ UI I'" J ,UI UI

-00

+ B(p', ill' - ill) 1m R(p,p' ,ill')]

( 47a)

p( p ,m) &.0'- A(p' ..m') 1m R(p,p', m' + m)
21(

( 47b)

where the zero-temperature forms of f(m') and fb(m') have been used

to define the limits for the m' integrations. These equations, and

( 24):

G(p, ill + iE) = [ill - €(p,ill)

where

( 48)

2
€(p,m) ::> ~ - I-l + Re E(p,ill) ,
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form the set of equations ~lhich we need to solve self-consistently.

The spectral function A(p,ru), Eq. (25), is sharply peaked at

the single-particle energy, which we define as the solution of

€(p) €(p, €(p» :0 0 j

the ru integrations involving A(p,ru) in the interval

d ::; (€(p) - IO.075€(p) I, €(p) + IO.075€(p) I

are performed by replacing A(p,ru) by a 5 function,

A(p,(1) ::; w(p) 5«(1) - €(p» 1

in this interval. A(p,ru) is well behaved outside the interval d, and

the integrations outside this interval are performed by Gaussian

w(p) :

Leo d]: A(p,m)
€(p)+ "2

employed to determine

+

sum l~le, (IS), can be
dr ("€(p)-"2

lL1

The

w(p)

quadrature.

The integration of _I \
.Jj~ P,(1)) over the inter.val d is obtained

by letting

2
p( p)[ru - €( p) ]

2 2[ru .. €( p) ) + (-;.( p) J

and expanding the imaginary part of R in a Taylor's aeries about

m ::; €(p) Retaining only the first nro terms in this expansion, we

have
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r1an' B( p' ,(I)') Im R( p, p', (I) + (I)' )

=
(1)':::(1) + e(p')

x r I I • \ ILO•075 l€lP') I
~ I • \. -1

- 7,P') "Lan

o .==
,..{", ()\
""-\J:'f''"'J+ ·Rep.

The F'ermi momentum, P
f

, is defined as the solution of

2
Pf
2m

However, the behavior of the statistical factors and the form of the

interaction make it easier to carry out the calculation for a fixed

Pf and use (53) to deter.mine ~.

The calculation thus proceeds as follows: for a given Pf

we caloulate R(p,p', (I) + i€), (46); we then choose a trial solution

Gt (p, (I) + 1€) . for (If.8) and use -th:l, s trial solution in (47) to generate

a new trial solution. This process is repeated until the trial solution

reproduces itself; when the solution has converged we use the resulting

spectral function, (25), l.n (37) and (:Y3) to calculate (N/7/) and
i

O!j (J) .

The convergence of this procedure is rapid, as may be seen in

Fig. 4, ...,here €(p) is plotted for a number of iterations in which

·~·7.~

(~ll:1"
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the initial choice.of a spectral function was

2n B(m

2 2
P - Pf- -----

2m
) .

For p» P
f

the convergence is even more rapid, since the single-particle

energy is dominated by the kinetic term.

In Fig. 5 we have plotted e( p,m), (49), for a typical value

of Pf and some values of p near Pf' We have also drawn the line

e = m whose intersection with e(p,m) gives e(p), (50). In Fig. 6
1

we have plotted the values of e(p) versus p for the same value of

Pf' One sees that because of the behavior of e(p,m), when m is

near zero and p is in the neighborhood of Pf , there is a sharp

".

break in e(p) near Since there is only a single intersection

of the line e = m with e(p,m), there is no gap in e(p) and we

have a "normal" fermion system.

The peculiar behavior of €(p,m) near the Fermi surface comes

about owing to the presence of the second integral on the right-hand

side of Eq. (41a). This integral involves Im R(m) for m < 0 ,

which is precisely the region where we have the least confidence in

our interaction because of the presence of the pole--which 'is treated

only approximately. Also, there is essentially a principal-value

integral which tms to be evaluated when p is near Pf' with

consequent difficulty in obtaining reliable results from the numerical

evaluationsk This integral was evaluated in a number of ways to deter-

mine if this behavior was due to the numerical methods used; we found
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that the behavior was real and not a result of the numerical integration.

The approximations involved in obtaining the interaction preclude any

prediction that this behavior is a characteristic of the real physical

system, and possibly it will not be present in the TCTM approximation

discussed in Part A of this paper. Indeed, we see in Fig. 7, where we

have plotted €(p,m) for a larger range of 00 and p values--and not

amplified the region near 00 0 --that €(p,m) is a reasonably well-

behaved function of 00 and p.

If one examines the behavior of (T)O near the pole (see Fig. 2),

it has the form

( T( 00 + i € ) :::::
o

s
+ t(m) ,

where 000 and s are negative and t(m) is a smooth function.

Consequently, inclusion of the pole would give an additional negative

contribution to Im R(m) for 00 < O. However, most of the contribution,

to €(p,m) fron! Im R 1s proportional to d Im R/ctn , (52), and this

analysis gives no information concerning the resulting effect on €(p,m).
o 1

For Pf less than 0.80 A- the intersection of the line

€ = m with €(p,m) occurs in a region where €(p,m) has a positive

slope (e.g., Fig. 4) for momentum points near Pf' When this happens

the iteration procedure becomes unstable and we are not able to obtain

a solution to the equations.

\ ,
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In Fig. 8 we plot r(p,m) for the same value of Pf as employed

in the above mentioned graphs.
20

Luttinger has proven that to arbitrary

order in perturbation theory, at zero temperature,

r( (J)
2----;;... c m

m -+ 0
,

where c is a positive constant. It can be seen that the solution

satisfies this criterion. The behavior of r(p,m) for m > 0 is

determined by the behavior of Im (T(m)}o for m > O. For small

relative momentum, and m> 0, Im (T(m)}o is dominated by the hard

shell. Consequently, for p < Pf ' and m > 0, this aspect of the

two-body potential dominates the behavior of r(p,m) '.

This effect of the hard shell is clearly seen in the momentum-

density distribution function,

n(p) =:
dill
2Jr A(p,m) ,

which is plotted in Fig. 9. For an ideal Fermi gas the momentum

density is unity for p < P:f and zero for p > Pf j for this calculation

n(p) < I for p < Pf ' since r(p,m) > 0 for m>O.

In Section IV it was asserted that a pole in (T) would not be

present if a more reasonable A( p ,m) were employed than the one used

to obtain (T)O' In Fig. 8a one can see that r{p,m) has a value

comparable to e:(p) for small values of p and ill < 0 , and from the

analysis above and Eq. (47b) one sees that the inclusion of the pole

in the interaction would make r(pJm) larger for (l) < O. A step
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toward obtaining the TCTM approximation would be to use the output

spectral f~nction in (T) to obtain a new interaction, and in that

approximation (T) would be a smooth function for ru < O. A larger

r(p,ro) would tend to further smooth (T) ; hence the approximation of

eliminating the pole 1.6 reasonable.

The error that results from the smoothing of Re{T)O for large

values of PO' (llB L reflects in the behavior of €( p ,(1)) for values

of ro» E(p) • Since A(p,m) is sharply pewced near €(p) , an error

in this region should not affect its shape, but such an error can

clearly alter the value of 'w(p) , (51). ·Because A(p,ru) is such a

peaked function it is not very instructive to plot it; we have thus

plotted w(p) , which is a measure of the amount of A(p,m) contained

in the peak in Fig. 10.
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VI • THEHMODYNAMIC QUANTITIES AND COMPARISON

WITH OTHER THEORIES

The spectral functions calculated in the (T) approximationo
and the two-body interaction cannot be eA~ected to give accurate

quantitative agreement with the experimentally determined thermodynamic

properties of liquid He 3. However, the spectral functions have a

reasonable form, and so we are stimulated to go ahead and evaluate

the thermodynamic properties, which we then compare both with experi-

ment and with other calculations.

The experimental curves in the figures are obtained by extra­

24polating the P-V-T data of Sherman and Edeskuty to zero degrees

and integrating to obtain (E/N) . We determine Il by substituting

(10) into (12).

The ground-state properties, for various cal.culations now to

be discussed, are compared with the experimental values in Table I.

1. Mills Approximation

Mills5 has used separable potentials very similar to those in

Appendix A, fitted to the de Boer data, and a simple extension of the

Hartree-Fock approximation15 which consists of replacing the potential

by the two-body scattering matrix,

(e I s(n) I pI),...., <z Ivl £') + f
h n __ (p2/4) + p2 2were '6 - J.l, and he has used the stationary boundary

condition to obtain a real s. For the self-energy, he has
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2
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with

[
p - p' 2 2

:x <~~_ ls(.£ -I- :2'
2 2

p- p')
211) I '" 2 "'. -

A(p,rn)

and

21l oCru - E(p»

€( p)
2

p
- 2m -

p2
+ z( p, 2 - 11) •

Baymll has shown that the Hartree-Fock approximation is a thermodynamically

consistent approximatlon (see Fig. 1) and Mills's results satisfy the

Hugenholtz-Van Hove theorem, (11). However, Mills haa described a

physically unrealizable system with negative pressure.

2. ~ung'6 Approxi~mation

Another calculation of ground-state properties, starting from

a two-body interaction} ~as performed by sung. 4 He calculated the

phase shift from Schrodinger's equation for the Yntema-Schneider and

*6-12 potentials with an effective mass, TIl , and replaced (T) in .E

by the real part of the free·-partlcle scattering matrix,

+ i€) I p)
2

()~n )

*ill P

less a term to par·tially account·

is taken to be

for the statistical also .A.
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The effective mass is adjusted untIl the output value

1

*m
=

d2:( p)

(j(p2)

'lI-
is the same as the input value, and this value of m is used to calculate

the ground-state energ,y. He performed caleulatj.ons only for P
f

3/3rt 2

equal to the experimental density, and made no attempt to find the

mirrim'Jm in the encrgy-vE:1:"sus-density curve.

Figure 11 shows {E/N} and versus densit.y, for liquid Re3 ,

calculated using the Puff-Martin app:cox.tmat:lon. 9 This calculation ,vas

Iperformed vith the potential.s :!n Appendi.x A. It invo].ves using

G~,( p, z)
1.1

[z ..
2

p.. -1+- !1] ,
2m

wittl ~l < 0 in tl1e 1.' matrix, (32). The resul"t1ng

(p lvl pI)
'" N

is real for z -+ ill +- IE J ",here (t) < 0 • F'roro Eqs. (h7) one aees that
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l:(p,m) i.s real for (l} < 0, and, examining (50) and (53), one sees that

for p < P
f

and m < 0 the spectral function, (25), is

where

2-rc p(p) D(w .- €(p») ,

p(p) _ ~_€( P1m)
Gl1 m=E( p)

Uslng this spectral function in (37) and (38), one sees clearly that

only €(p) is needed for p < Pf ; hence one need o~ly solve

€(p)
2

L
2m ",..

and

p(pl)

[(
O_p 2- £ '. .p - P I \ pi - £ )Jl

x - - IT(w + e(p') + it) I Il.. 2 ~ / - I -~-=2-

and the expre!38ion for p(p) self-consistently for €(p) < o. In the

nuclear-matter calculation, Puff9 determined the ground-state Fermi

momentum, Pf , by the criterion that. the Hugenllo1tz-Van Hove theorem,

2'5
(11), was satisfied. It'alk and Hilet - po1onted out that Puff's ground-

state solution did not have zero pressure as determined by Eq. (10);

they used this last criterion to determine the ground-state solution.

The curve for this approximation in Fig. 11 \oTaS obtained by

using the potentlal fitted to the de Boer data.

these parameters just managed to produce a solution ,,,hieh satisfies
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o

but \!ElS not able to produce a 801utJoI1 that sl:l:ttsf1elJ (,n) wit1'1 the

constraint p;~ (). The cHlculatj.on "!liS also per.t"o:cIned \rith the

potential parameters Hd;jui3ted to reproduce the phase shift from the

Yntema-Sehneidel' potentil:l.l; no solut1on \oIUS found In thlf,; case.

';(

The Brueckner-Gammel.) calculatIon 'vIas not i'o:rmulated by use of'

thermod.ynamic Greenls functlonsj it 1.8 d:lfficult to describe in these

terms. The essential features are included if' ve tuke

and

A( p,m) 2n B(m •. €( p) ) for

£'01'

P < Pr }

P > D ..- ~ r

:Ln Here r'•• 18 to be determIned f'l'om a

supplementary COJlcU'tton. Brueckner and Gammel 11:t'gue that t.he "hole-hole"

term can be neglected End hence T,be i.ntegration In (T) for the

momentum 1s restricted to +p and Jl > p" •
I

Also the irrteractlon

matrix is real for all E(p;Q») since they calculate (T) off the
(),...

"ene:cgy shel1 li for these vHlucs. 'l'heir results",b do not sattsf'y the

Hugenholtz-Van Ibve theorem; as 'W~~~, pointed out in the original paper. 16
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5. (T)o Approximation

~rhe spectral functions) which are calculated for different

Pf's, when 11sed in ECJ.. (3'7) and (}5) allow us to calculate (N/V>'tl,CO.

SubstHutlng (51,) into (37) yields, for the denslty,

p.,CO
( OJ 2

1'1 L l~ ( )n ( 'i/) - . n p ;
2

l/ n:

\.Ising (5) and (;8) yields, for the average energy per particle,

E~
I,i, co 1

(CO 2 dp(
, I D

e - ) ::; I ...
N n 2

)0 1(

dill J 2
- .....:(m + .E._ + J.l)A(p,m) •
2Jr 2 2m

In F:tg. 12 we display e and IJ.' versus n. 'l'he results for IJ.

are not as accurate as those for e, since IJ. 1s obtained using

Eq. (53)} which, as we see in Fig. 4} involves the intersection of two

curves \o11th comparable Hlope, while e 1s obtained by integration of

Eq. (57). In Fig. 13 we plot n versus Pf } and for comparison we

also plot P
f

2/3rr 2
, .rhieh is the densIty of an ideal Fermi gas

correspond:i.ng to the momentum Pf' From Figs. 12 and 13 'ole se'e that

the denoity at v.Jbich (')5) Is satisfi.ed corresponds to a Fermi momenttUI1
(; J

less than 0.80 ;\,.'. As viaS explained jn Section V, the iteratlon

procedure becomes unstable for values of P
f

below this value.
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However, the m:tnlmwn appears to be close to Pf =: 0.80 A-..J.., and we have

extrapolated the calculated values to detennine the minimum.

One can see, in Fig. 12; that the nugenholtz-Van Hove theorem;

Eq. (II), is not satisfied for this approximation (as we would expect,

since this is not a thermodyllamically consistent approximation), but

the discrepancy is smaller in this calculation than in the other

theoretical studies26 (except that of Mills). In Fig. ll~ P is plotted

versus n, from the experimental data and also from Eqs. (10) and (12).

These two expressions give different values for the pressure because

our approximation is not thermodynamically consistent.

In view of the behavior of the single-particle energy, for p

*near Pf' we caru10t obtain a meaningful value of' m from the {T)o

calculation.

The use of the single-particle energy in (T) is an important

feature of the Brueckner-Gammel calculation and presumably would be a

desirable improvement in the calculatIon reported here. We have not

performed this lmproved calculation (which would involve extensive

computational time), bu·t have moved directly to the more extensive

computation reported in paper II of this series (where only the approxima-

tions described in Part A are made).
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APPENDIX A: A SEPARABLE POTENTIAL FOR He 3

In Chapter rv we introduced separable potentials which were

employed to evaluate the TO matrix; this appendix is devoted to

explaining our choice of potentials) and the method employed to deter-

mine the potential parameters so that these potentials can be considered

to approximate the He3 two-body interaction.

The choice or functional form for the potentials is rather

arbitrary. The primary criterion is convenience; namely} a form

'fhich allows a maximum amount of analytic computation. The parameters

are adjusted so tlmt the phase shift resulting from the potentials

approximates the phase shifts computed using the Lennard-Jones 6-12

and the Yntema-Schneider potentials.

with
o

(1 == 2.56 A

r is in angstroms) and It is Boltzman1s constant. This potential was

The Yntems-Schneider

fitted by de Boer et

vCr)

7a1. to the 10vT-temperature

6potential is

[

-1'/0.212
€O 1200 e

vlrial coefficients.

~J
l'

G

7250 K; it was fitted by these authors to the virial

o
coefficients up to 1000 K. 1~e phase shifts were computed by de Boer
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et al. 7 for the Lennard-Jones potential and by Sung29,l for the Yntema-

Schneider potential.

Puff has developed the exprepsion for the phase shift in terms

of the two-body scattering matrix for a separable potentialj we quote

the relevant formulae here. The scattering matrix is given by

(p Is(n) I pI}
..... .....

(p Ivl pI)
..... ....

(£ls(n)I~)(£ Ivl f}
-2

n _ .P....
m

(A.l)

f(p) =

and is related to the scattering amplitude by

2
m PO

- r- (u tS( --- + i~\1 n \
4:11: •'" •. , m . - - / I m I

Using the well-known relation30 connecting the scattering amplitude

and the phase shift yields

tan 8t

2
(p Isjlln + i€) I p)

(A.2)

m
1

where (S) has been expanded in partial waves. Choosing the potential,

(v), in (A.l) to be a sum of separable potentials,

2I A.t(i) v
t
(1)(p) v/i)(pl) ,

1=1

one obtains a closed form for (St) identical to Eq. (41) with P 0,

and the integrals I ij
t replaced by

_ ..• J

Vp,~~
(/~-':'M~
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2p dp
2

mQ - P

2
One needs to evaluate (A.2) for n =(p 1m) + i€ ; this value

of 11 allows one to wl'ite (A.:?), when the symbolic identlty

1
(J) ± 1€

1= p - :t­
(J)

in: o( (J)

is employed, in the form

co

= j
o

-Jj . j ( Jl ) i 1( (1) ( ) ( j) ( )= m - '2 pv p v p.

substituting for <S) in (A.2), we have the explicit formula

(A.4)

= _ l2!!.
2

-1[detM
t

] ,

(A.S)

where
2 - 2:2(

2 2
gt - J t

.L ) J l2( L. )
:2 m t m

M
t
( 12..... ) -m ,

2 2
- l2( L ) 1 _ J ll( 12..... )J

t m gt t m
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and

- .(();
~ 1

t

The I£nnard-Jones 6-12 and the Yntema-Schneider potentials are

both strongly repulsive for small interparticle separations. To

replicate this we choose a two-term potential for t;:: 0, 1, 2, ), with

one term giving the short-range repulsion and the other term giving

the long-range attraction. For t;:: 4, 5, 6 we use only an attractive

I 'term, since the "angular momentum barrier" shields the short-range

repulsion.

The repulsive part of the potential is taken to be a "hard

shell, "

;:: ;::

B(r - r )c

41f r 2
c

B(r' - r )c
241f r c

,

which yields, after a spherical Hankel transform has been performed,)l

;::

are spherical Bessel functions. 29 Forj 'st
and thep ;:: pr

c

t ;:: 0, 1, 2 we use

where

e(r - r )
c

41f r 3
c

where e(r} is the Heaviside unit function (defined as zero for

negative drgument and unity for positive argument), and h (1)
t is a
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spherical Hankel function of the first kind. 30 Transforming this

potential, one obtains

=

where ~ = or and r are two parameters yet to be determined. For
c c

t = 3 we use

=
e(r - r )c

41t' r 3
c

(rrCfl
whose transform is

=

The attractive potentials employed for t = i~J 5, 6 have no simple

coordinate space representationj in momentum space they are

=
tp

[ 2 ~2, {t+l)!2
P + l:5 J

Evaluating the integrals J
t

, one obtains tan Bt J and then

adjusts the various parameters "to reproduce the phase shifts computed

from the 6-12 and Yntema-Schnelder potentials. The parameters which

give the best fit to the phase-shift data are tabulated in Table II.

The phase shift for the 6-12 potentia17 was available for 20 equally

°_1
spaced momentum values between 0.086 and 1.564 A and for the Yntema-

21 1 °_1
Schneider potential -, for 25 momentum values between 0.86 and 1.954 A •
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The Bt?pl3.ra ble potentials ....ere fitted to these values, and the deviation

quoted in Table II was computed by using

- [
-Nl ~(Dev) t L

n=l
(A.6)

where N = 20 or 25. The coupling constants for the repulsive core

are taken as large, but finite, numbers,

I

'v;::.;..-.J
l~~';;
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Table I. fTimary quantities, present calculation, other calculations, experiment (T = 0). The

calculated values of the chemical potential are the solution of Eg. (53). The common

temperature units .rith K = 1 for energy are used; the conversion factor for the units

used in the figures is 1 ~-2 = 16.36 degrees.

Source (and

reference

nlliJlber)

E;.,:perimental

1,li11s, 5

Sung, 4

Puff-Hartin
approximation, 1

Brueckner and
Gammel, 3

(T) 0 Ca,lculation

Average energy

per particle,
o

(E/N) (K)

-2.:>3 a

0.0

-2.a

-0.04;

-0.96

-1.16

'""~:l\'\

a. Ref. 24

b. Ref. 26

c. Ref. 27

d. Ref. 28

c::::
g
t-l
I
I-'
0\
\J1
f\)
f="'
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Table II. Parameters ana deviations, Eq. (A.6), for separable potentials

fitted to the Lennard-Jones and Yntema-Schneider potentials.

Iiiii

Potential r f3
(2) a

(Dev)tc gt

0 1.872 1.505 -0.00805 0.019

1 1.908 1.635 -0.00818 0.030

,....
1.857 1.421 -0.0713 o .O}.j.2c.

[J)
(1)

~ 3 1.73 0.0 -0.1~75 0.1030
~

J
ro 4 1.0 0.8285 -1.347 0.057H

§
.5 1.0 0~9573 -1.038 0.058S
6 1.0 0.897 -1.686 0.034

0 2.048 1.023 -0.000947 0.014

1 2.050 0.977 -0.00218 0.031

H 2 2.085 0.855 -0.0161 0.039(1)

ro
orl
(])

3 1.997 0.0 -0.0518 0.22113
CJ

(J) 4 1.0 0.621 -4.76 0.790I

g
(1)

5 1.0 0.781 -2.25 0.185+'
~

>-t
6 1.0 1.014 -1.29 0.033

a. ( 1)
"" _10-4 g (2)

gt t
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FIGURE CAPTIONS

1. Diagrams for ~ and E. The solid lines represent G and the

dotted lines V.

(a) !I in the Hartree-Fock approximation;

(b) ~ in the Hartree-Fock approximation;

(c) a term in .!l for the TCTN approximationj

(d) the term in E corresponding to the term illustrated in (c).

2. The real part of R (Eq. 46) for representative values of momentum

«'1')0 approximation). Dasped lines are at poles in j ('1')0 and

dotted lines are smooth values of R used in calculation.

3. The imaginary part of R (Eq. 46) for representative values of

momentum «'1')0 approximation).

4. Iterations of the single-particle energy (Eq. 50) for ('1')0

approximation. The zeroth approximation is the kinetic energy

minus 2Pf 12m , and the dotted line is the ninth iteration.

5. €(p,w) (Eq. 49) for a representative value of Pf and p near

The dotted line is € == w, \-Those intersection with €(p,w) gives

€(p) (Eq. 50).

6. The single-particle energy, €(p). The solid line is the ('1')0

approximation and the dotted line is 2 2
€(p) == (p - P

f
)/2m .

7. €(p,w) (Eq. 49) for representative values of momentum.

8. r(p,w) (Eq. 1~7b), the imaginary part of the self-energy for

representative values of momentum. (a) w near zero [r(p,w) - 00

as w - -00], (b) w > 0 •
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9. Momentum density distribution function (Eq. 54); (a) p < Pf }

(b) P > Pf' (Note change in scales.)

10. The width function (Eq. 51) (the curve approaches unity for large

momentum) •

11. Average energy per particle and chemical potential versus density

for the Puff-Martin approximation (Ref. 1).

12. Average energy per particle (Eq. 57) and chemical potential (Eq. 53)

versus density (Eq. 56). Here eT and ~T are obtained from
o 0

the (T)O approximation) and eE and ~ from the experimental

. values obtained by extrapolating the data of Ref. 24 to zero degrees.

13. Density versus Fermi momentum; solid line is the

and dotted line the ideal Fermi gas density.

(T) approximationo

14. Presure versus density (T)O approximation). Curve 1 is obtained

by using Eq. (10)} and curve 2 by using Eq. (12). The experimental

curve (dotted) is an extrapolation of the data of Ref. 21i-.
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