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Abstract

In the multimodal neuroimaging framework, data on a single subject are collected from inherently 

different sources such as functional MRI, structural MRI, behavioral and/or phenotypic 

information. The information each source provides is not independent; a subset of features from 

each modality maps to one or more common latent dimensions, which can be interpreted using 

generative models. These latent dimensions, or “topics,” provide a sparse summary of the 

generative process behind the features for each individual. Topic modeling, an unsupervised 
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generative model, has been used to map seemingly disparate features to a common domain. We 

use Non-Negative Matrix Factorization (NMF) to infer the latent structure of multimodal ADHD 

data containing fMRI, MRI, phenotypic and behavioral measurements. We compare four different 

NMF algorithms and find the sparsest decomposition is also the most differentiating between 

ADHD and healthy patients. We identify dimensions that map to interpretable, recognizable 

dimensions such as motion, default mode network activity, and other such features of the input 

data. For example, structural and functional graph theory features related to default mode 

subnetworks clustered with the ADHD inattentive diagnosis. Structural measurements of the 

default mode network (DMN) regions such as the posterior cingulate, precuneus, and 

parahippocampal regions were all related to the ADHD-Inattentive diagnosis. Ventral DMN 

subnetworks may have more functional connections in ADHD-I, while dorsal DMN may have 

less. We also find that ADHD topics may be dependent upon diagnostic site, raising the possibility 

of the diagnostic differences across geographic locations. We assess our findings in light of the 

ADHD-200 classification competition, and contrast our unsupervised, nominated topics with 

previously published supervised learning methods. Finally, we demonstrate the validity of these 

latent variables as biomarkers by using them for classification of ADHD in 730 patients. 

Cumulatively, this manuscript addresses how multi-modal data in ADHD can be interpreted by 

latent dimensions.

Keywords

fMRI; Multimodal Data; NMF; ADHD; Phenotype; MRI; Latent Variables; Biomarkers; Sparsity; 
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1. Introduction

Structural MRI, functional MRI (fMRI), phenotypic and behavioral information all are 

examples of multimodal data that can be used to measure different aspects of a patient. A 

challenging problem in multimodal imaging is the integration of EEG and fMRI data, both 

measures of neuronal activation. Finding a mapping between the observed and latent feature 

spaces is not a trivial process. These features are on very different spatial and temporal 

domains, and are subject to different sources of artifacts. Despite this, advances have been 

made in this mapping with methods such as multiway partial least squares [42], ICA-based 

methods [16][6][37][41], canonical correlation analysis [60], and Bayesian-ICA hybrid 

approaches [35].

When combining other data sources that are not measures of neuronal activity, such as 

structural imaging, phenotypic information, or behavioral data, this problem becomes even 

more difficult. Although these information sources are distinct in the general case, they 

likely all share some common information. Because of this, investigating the latent 

dimensions of multimodal data allows observations from different modalities to be linked 

together. When contrasting healthy and diseased patient groups, identifying the latent 

dimensions could suggest a generative model of the disease itself.

Generative models such as Hidden Markov Models [52], Restricted Boltzmann Machines 

[58], and Latent Dirichlet Allocation [3] (LDA) can be used to infer the underlying joint 
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probability distribution by which the observations are generated. Non-negative matrix 

factorization (NMF) is a related technique that can be mapped directly to LDA when 

applying non-informative priors with maximum-likelihood estimation [25] [24]. NMF can 

also be viewed as a positively-constrained version of independent component analysis (ICA) 

[29] [30].

NMF and ICA are both matrix decomposition methods; NMF is a parts-based representation 

where the basis images, W, are constrained to be positive, while ICA is a holistic 

decomposition that instead constrains each basis to be statistically independent, thus 

permitting negative basis values and encoding values. When applying these tools to imaging 

data, the results are drastically different. For example, running ICA on images of faces 

produces ghostly-appearing faces for the basis functions, while performing NMF on the 

same sets of images would yield identifiable body parts, such as a pair of eyes or a mustache 

[34].

In the NMF framework a matrix, V, is broken down into a product using multiplicative 

updates, given by V ≈ WH [34]. This technique has been applied widely elsewhere to 

genetics [14] [32] [49], document retrieval [46], document clustering [68] and image 

classification [27] [39]. We apply it here to our multimodal data, including the demographic 

variables in our model.

In this paper we use NMF to identify latent dimensions in multimodal data, finding “topics” 

across phenotypic, behavioral, structural and functional MRI onto which all the multimodal 

data map. Each dimension would contain a subset of the original features, providing both a 

sparse summary of a subject's information, as well as a mapping across modalities. We 

apply this technique to the ADHD-200 dataset [44] containing MRI, fMRI, behavioral and 

phenotypic information from Attention Deficit Hyperactivity Disorder (ADHD) youth and 

typically developing (TD) patients. We identify the latent dimensions behind this 

multimodal dataset, and demonstrate how these latent features additionally can be used for 

classification of ADHD. Although our results are specific to ADHD, the methods are 

applicable to multimodal data in general. These topics are directly interpretable, relating to 

specific domains such as the default mode network (DMN) which has been implicated 

previously in ADHD.

As opposed to supervised discriminative models where the features predict a diagnosis 

(ADHD vs. healthy controls), we use an unsupervised generative model to map multimodal 

features to a common space. We do not limit this mapping to exclusively imaging features, 

but include in our latent variable model the behavioral and demographic features. We 

hypothesize that topics which link the diagnosis to imaging and phenotypic variables may 

nominate biomarkers related specifically to the disease state, while topics not containing the 

diagnosis variable can still illuminate the relationship of features across modalities.

1.1. Default Mode Network

The default mode network (DMN), represents a collection of distributed brain regions that 

oscillate coherently at low frequency during passive resting state when an individual is not 

focusing on external stimuli [53]. The brain regions that comprise the DMN nodes are 
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intrinsically functionally correlated with one another [2], and are connected via direct and 

indirect anatomic projections [26]. DMN low frequency oscillations are typically attenuated 

during goal-oriented tasks, and activity strength in task related brain regions (e.g. dorsal 

anterior cingulate cortex (dACC)) tend to be anticorrelated with DMN. Changes in the DMN 

have become hallmark indicators of pathogenesis in a number of conditions including 

Alzheimer's disease [26], depression [55], and autism spectrum disorder (for review see [5]).

Recently, a number of studies have demonstrated both structural and functional changes in 

the DMN associated with ADHD (e.g. [69]). It has been speculated that ADHD individuals 

may have diminished ability to continuously sustain attention on a task due to interference 

by the DMN ([59]) ([20]). Fair et al. (2010) suggested that this may be due to different rates 

of maturation of the DMN [19].

1.2. ADHD

ADHD is a highly complex disorder marked behaviorally by problems with sustained 

attention and task prioritization. Its spectrum of clinical features typically is expressed along 

the domains of persistent inattention (ADHD-I), hyperactivity-impulsivity (ADHD-H) or a 

combination of both (ADHD-C) [1], often a ecting cognitive, emotional, and motor 

processes [10]. The clinical diagnosis in children is made after gathering information from 

parent and teacher surveys and ratings on ADHD-specific behavioral rating scales. In order 

for the diagnostic criteria to be met, the clinical features must be present in at least two 

settings and the core symptoms must actually interfere with daily life at school, home, 

and/or work [1].

Despite its high prevalence in children (~ 5%) [62], the precise neural, genetic and cognitive 

underpinnings of ADHD remain unclear. While the heritability of ADHD also is well 

established, a clear link between genes and the heterogeneous clinical features of ADHD 

remains elusive, and it is likely that multiple neural pathways and factors lead to the 

phenotypic expression of ADHD and its three subtypes. It is possible that identification of 

quantitative neuroimaging biomarkers would improve detection and diagnosis, thus 

providing the impetus for the machine learning (ML) contest. Further, an improved 

understanding of the interactions of both the neuroimaging and other biomarkers may offer 

clues of the physiological basis of the disease.

1.3. ADHD-200 Competition

Towards this aim, the ADHD 200 global ML competition (http://

fcon_1000.projects.nitrc.org/indi/adhd200/index.html) challenged the neuroimaging and 

data mining communities to develop a pattern classification method to predict ADHD 

diagnosis based on a combination of structural MRI, resting state functional MRI (rs-fMRI), 

and demographic metrics. To provide data for this competition, one of the largest multisite 

data consortiums was initiated to provide open access to data from nearly a thousand 

children and adolescents with ADHD as well as age-matched controls. This dataset has been 

much published on in a short time [64] [45] [65] [8] [12] [48], allowing a direct comparison 

of the methodology and the common problems they all faced.
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This competition was remarkable for many reasons, including the large sample size for the 

training set (491 TD, 285 ADHD), the number of contributing data centers (8), and the 

number of international teams competing (21). Even more remarkable, however, were the 

results of the competition. In general, it was much easier to classify TD than ADHD, with 

high specificity and low sensitivity from all the teams. The scoring system used within the 

competition was biased toward this, as it gave more ”points” for diagnosing correctly TD 

than ADHD-subtype. However, even when equal weightings were used, diagnostic accuracy 

was still much greater for TD children.

Surprisingly, the top placing team from University of Alberta was disqualified on the 

grounds of not using any neuroimaging data in a neuroimaging competition, predicting their 

results on the phenotypic variables alone [4]. After testing various fMRI measures 

(temporally-meaned fMRI Signal per voxel, voxel-projected timecourses into PCA space, 

low-frequency voxel Fourier components, voxel weightings on functional connectivity maps 

derived from ICA) in competition with phenotypic information (site, age, gender, 

handedness, IQ measures) with multiple machine-learning algorithms (linear SVM, cubic 

SVM, quadratic SVM, and Radial Basis Function(RBF) SVM classifiers, the Alberta team 

selected a logistic classifier that used only the diagnostic information to classify on the test-

set. This classifier obtained the highest prediction-accuracy within the competition of 

62.5%.

Following the disqualification, the official top-scoring team from Johns Hopkins University 

predicted using a voting scheme across four different algorithms [18]. They used as features 

functional connectivity data from the motor cortex, as well as seed-voxel correlation 

analysis. Structural features were not used. The most accurate of their four algorithms used a 

CUR matrix decomposition of the functional scans [40] along with gradient boosting 

method, which they suspected of capturing the residual motion that was not removed by the 

motion correction during preprocessing. Another of their algorithms used Latent Dirichlet 

Allocation to identify subsets of imaging features which were then used for classification. 

This team created in total four different algorithms which they combined to vote on the 

diagnosis for each subject. The most accurate algorithm in a hold-out set was used as a the 

tie-breaking vote.

Our group from UCLA/Yale used structural, functional, and phenotypic information within 

each site to predict ADHD, yielding a 55% accuracy with 33% sensitivity and 80% 

specificity [9]. We generated nearly 200,000 neuroimaging features from each subject's data 

- ranging from structural attributes such as cortical thickness, to functional connectivity and 

graph theoretic measures. In this analysis we ranked features, and found that caudate volume 

was one of the highest-ranked structural features. We used SVM based recursive feature 

elimination (SVM-RFE) as a wrapper method based on the multiple SVM-RFE (mSVM-

RFE) extension described by [15], which imposes a resampling layer on each recursion pass 

such that the weights used for feature ranking/dropping are stabilized by averaging across 

results for multiple subsamples. We generated accuracy curves that related the number of 

features and error using a 10 fold cross validation approach. Features that together resulted 

in minimum error were selected for our feature set. Further details can be found in Colby et 

al. 2012. Diagnostic functional features included graph theoretic measures related to changes 
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in default mode network (DMN) activity, consistent with the hypothesis that ADHD subjects 

are impaired in their ability to inhibit the DMN consistently for task execution [19]. Because 

of intra-site variability we selected features and trained classifiers within each site, instead 

of pooling observations together across sites.

In published studies of ADHD classification using imaging data not obtained from the 

ADHD-200 competition, the classification accuracies were an astonishing 85% [70], which 

made the classification results of the ADHD-200 competition seem rather lackluster by 

comparison. Brown et al. [4] posited that the ADHD-200 competition had produced inferior 

results compared to other neuroimaging studies for three possible reasons. 1.) Most 

neuroimaging classification studies focused on Binary classification, which is a 

computationally simpler task than trinary competition as in this study (TD, ADHD-

Combined, ADHD Inattentive). Because there is likely to be similarities between the two 

subtypes of ADHD, training a classifier to distinguish among such subtle conditions is likely 

to result in higher error rates than when distinguishing between a diseased population and 

healthy controls. In addition, the scoring system used in ADHD-200 placed a higher priority 

on classifying TD children than ADHD, which meant that the best ”classifier” might not 

have the greatest overall classification accuracy. 2.) The ADHD-200 competition used a 

hold-out dataset which was entirely independent and separate from the testing set. Although 

in most publications 10-fold cross-validation is used to separate the training and testing sets 

of data, these usually are not kept in a “lock-box during the model selection procedure. 

Models can still be trained, features can be selected, and parameters can be optimized across 

the cross-validation error, leading to the testing set being biased [31]. This means that a true, 

lock-box validation set is likely to produce lower classification accuracy than a hold-out set 

from a cross-validation set that likely has played a role in the model selection and training. 

3.) The ADHD-200 dataset was likely much more difficult to classify upon because of the 

heterogeneity and large sample size. For example, there were 8 sites used for the 

classification training and testing, each with different scanners used to acquire the data. In 

addition, two sites contributed only healthy controls and one site did not submit any training 

data (Brown), which undoubtedly a ected the way the algorithms treated Site during 

classification.

While the task of optimal feature subset selection is difficult for any dataset, it becomes 

even more complex when classification is performed on multimodal data, where the features 

themselves are represented in different subspaces and may vary in number over many orders 

of magnitude. In particular, it is highly likely that a better selection of features could lead to 

improved methods for isolating and excluding noise, which could have improved the overall 

predictive capability of classifiers that used neuroimaging features in addition to 

demographic data.

1.4. Generative vs. Discriminative Methods

As opposed to supervised classification algorithms where features are used to discriminate 

between certain states (ADHD vs. healthy controls) and redundant features are e ectively 

eliminated, generative models of multimodal data map features to each other even when 

they are unrelated to the diagnosis. These groupings are the latent dimensions onto which a 

Anderson et al. Page 6

Neuroimage. Author manuscript; available in PMC 2015 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



subset of the multi-modal features all map. This is shown in Figure 1. This is similar to 

saying that the observed features from all modalities are all created by common set of latent 

topics, where each topic is a subset of features from across modalities. In comparison, 

discriminative algorithms identify and combine the strongest information sources to predict 

a single outcome. Because their primary objective is to map features to a diagnosis, they are 

mute on the relationship of features to each other when the features themselves are unrelated 

to the disease.

Using the ADHD-200 competition dataset, we present our results from un-supervised topic-

modeling and discuss how they relate to previously-published supervised classification 

models. Although this application uses a generative model, we validate this construct by 

using latent features within a discriminative model to predict ADHD. If these topics were 

merely random subjective constructs, using them to summarize the raw multimodal 

observations would prove futile to “diagnose” ADHD. If, however, they were meaningful 

constructs, then patients’ latent feature scores would be a sparse summary of all observed 

multimodal features, which could then be used for classification. This would be analogous to 

the feature selection or dimension reductions step undertaken in most machine learning 

models.

2. Methods

2.1. Subject Demographic Profiles

We limited this study to the original training dataset, to allow direct comparison to the 

published studies. This left 7 total Sites. We use 748 subjects, of whom 472 had been 

diagnosed as healthy controls. The subjects ranged in age from 7.1 years of age to 21.8 

years, with a mean age of 12.4 years. The full demographic summary tables within Site are 

shown in Table 1. The diagnosis rate of ADHD varied across the 7 sites, of which 2 had 

only healthy controls. The diagnostic subtypes for ADHD and the medication status for the 

patients are shown in Table 2. The IQ information within each site is shown in Table 3. The 

ADHD information is shown in Table 4. Finally, we break down the demographic and 

behavioral information within diagnosis in Tables 6 and 7, which are listed supplementally 

in the Appendix.

2.2. Features

We used fMRI data that was preprocessed and made publicly available by the Neurobureau 

using tools from FSL (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) and AFNI (http://

afni.nimh.nih.gov/afni). The full details of the preprocessing pipleline are available at http://

www.nitrc.org/plugins/mwiki/index.php/neurobureau:AthenaPipeline. Briefly, fMRI data 

were slice time corrected (AFNI 3dTshift), motion corrected (AFNI 3dvolreg), registered to 

MNI-152 space with 4mm3 resolution (FSL FLIRT), denoised to statistically control for 

nuisance signals from the ventricles and white matter (AFNI 3dDeconvolve), and bandpass 

temporal filtered between .008-.09Hz (AFNI 3dFourier). For the functional data, we used 

the 12-dimensional motion parameters, the number of independent components intrinsically 

estimated for each subject by FSL Melodic, and a measure of functional connectivity based 

upon pairwise regional time-series correlation of 90 regions of interest defined by Grecius 
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and colleagues [56]. We derived 90x90 functional connectivity matrices and analyzed them 

with the Brain Connectivity Toolbox (https://sites.google.com/site/bctnet/), calculating four 

graph theory properties for each node: positive/negative strength and the positive/negative 

participation coefficient [54].

For the structural analysis Freesurfer [21] was used to parcellate and segment each subject's 

T1 MP-RAGE anatomical scan into 68 cortical regions (34 per hemisphere, based on the 

Desikan-Killiany atlas) and 40 subcortical regions. For each of the cortical regions, the 

curvature index, folding index, Gaussian curvature, gray matter volume, mean curvature, 

surface area, thickness average, and thickness standard deviation were used to describe the 

behavior and form of each region. For each of the subcortical regions, we characterized the 

volume, normalized mean intensity, and the normalized standard deviation of the intensity.

The phenotypic data contained: the diagnosis (TD, ADHD-Combined, ADHDHyperactive/ 

Impulsive, ADHD-Impulsive), handedness (left /right/ ambidextrous), gender, IQ scores and 

Instrument used to assess intelligence, ADHD Behavioral measures and the instrument, and 

the patients’ medication status. All categorical observations were coded as factors. For 

example, each site variable was coded as a binary variable where ‘1’ indicated a member of 

that site, and ‘0’ otherwise. Subjects with more than 12 missing structural measurements 

were excluded from the analysis. We variance-normalized all variables and removed those 

variables with excessive missing values. All remaining missing values were imputed using 

median imputation. This left 730 total patients with 1068 total features, detailed in Table 5.

2.3. Non-Negative Matrix Factorization

We applied the Non-Negative Matrix Factorization [34] (NMF) algorithm to this dataset 

instead of more commonly used methods such as ICA, because the NMF constraints yield 

qualitatively different, and arguably more meaningful, dimensions of the data. As its name 

suggests, NMF requires all values in the decomposition to be exclusively positive. This is 

similar to imposing a sparsity constraint on both the encodings and basis “images”; because 

the superposition of basis images must be linear, and because no values are allowed to be 

negative, many values are shrunk towards zero. This sparsity offers an additional 

interpretative benefit since, as there are no “negative” loadings. For categorical features 

where someone is either female or not (but not negatively female), this positive encoding 

offers a more intuitive explanation of the underlying structure being evaluated.

Furthermore, ICA is usually applied as a within-modality means of dimension reduction. For 

example, ICA is frequently applied either across a group of fMRI scans or within a single 

scan to extract plausible networks, which themselves form a within-modality basis set. 

These networks can be used to obtain estimates of functional connectivity. Instead of 

applying NMF within modality, we are applying it across modality where we provide 

normalized features and let the algorithm nominate a multimodal basis set.

The data matrix V has n feature rows and m observation columns. If V contained a collection 

of multimodal features (total features by patients), then NMF would decompose the data into 

a set of “basis images” and encodings, such that
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where the W matrix contains the basis set of multimodal features and is of dimension n × K, 

and the “encoding matrix” H is of dimensions K × m, for row i and column μ.

The topics are the individual basis images, which have been thresholded to remove those 

features with weightings ≈ 0. Because NMF indirectly encourages sparsity by its positive 

constraints, roughly 75% of all weights within the basis images are nearly null. This allows a 

clear distinction between multimodal features that contribute to a topic and features that 

drop out.

2.4. Implementation

We implemented NMF using the statistical programming environment R [51] using the 

package NMFN [38], and by a separate implementation within Matlab [36]. Because our 

goal was to maximize the sparsity of the latent features, we compared four different NMF 

algorithms and ultimately selected the algorithm providing the sparsest basis set. This was 

equivalent to selecting the NMF algorithm that produced the maximal amount of null (zero) 

values in the basis set. We compared the decompositions of four different NMF algorithms: 

NMF can be formulated as a minimization problem with linear constraints, which can be 

solved by alternating least squares (ALS), multinomial, multiplicative-update. These 

represent different functions measuring the distance between V and WH. We additionally 

implemented the projected-gradient to solve the alternating non-negative least squares 

problems to obtain NMF; this has faster convergence and stronger optimization properties 

than the multiplicative update approach. We implemented NMF by projected gradient using 

the Matlab code in [36].

We selected our final algorithm based upon the sparsity of the encodings within the 20 

estimated basis images. This is similar to making the assumption that only a subset of the 

entire set of multimodal features will be related to each other: by looking at each basis 

vector, we can effectively zero-out the features with weights that are close to zero, and 

interpret the rest as contributing to a given topic. This is shown in Figure 2. Based upon this, 

without knowledge of the actual features, we selected the ALS results for further analysis. 

We thresholded basis images, where each “dimension” corresponded to a multimodal 

feature, at the 25th percentile. This threshold was selected to eliminate all null-weight 

features of the W matrix, and left roughly 263 features (n) per topic k ∈ K.

We additionally tested how each algorithms’ encoding matrix differed between ADHD and 

TD patients using a 2-sample t-test on the associated encoding variable for each topic. This 

is answering the question of whether any topics were more likely to be expressed in the 

patients than the controls, and vise versa. This also was done to assess whether a sparse 

feature set was truly a more efficient representation of the disease. All algorithms gave 

encoding values with more than chance difference between patients and controls, but the 

selected ALS algorithm, which was the sparsest, also had the maximal differentiation 
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between ADHD and TD patients with 9 of the Topics showing statistically significant 

(uncorrected) encoding levels between groups.

2.5. Validation using Machine Learning

We next validated the latent features by rerunning NMF on a dataset that had been stripped 

of all diagnostic information and ADHD scale scores, leaving behind only the functional, 

structural, demographic, and IQ testing information. We set the number of topics to 20 

according to [57], although this is a parameter which could be investigated in future work. 

After running NMF with 20 dimensions, we extracted the encoding matrix, H, of dimension 

(20 × 730), or number of basis values by subjects. Each of the 20 values per subject 

represent the subject's score within that latent dimension. These were used as features to 

predict diagnosis (ADHD vs. TD).

Using leave-one-out cross-validation, we used Weka [28] to train a C4.5 decision tree using 

data from all but one patient to diagnose the left-out patient [50]. The identity of the 

validation patient was then permuted so that each patient was the validation patient once and 

only once. At each node, the tree was trained to split the training data into two daughter 

populations based on a threshold value for one of the 20 encoding bases vectors, such that 

the Kullbeck-Leibler divergence, or information gain, between the two daughter populations 

was maximized. The tree was pruned such that this information gain and number of training 

instances per daughter population was greater than 0.25 and 2, respectively. Due to the fact 

that only one of 730 patients was left out in each of the 730 trees trained on each training 

set, we expect this to closely resemble the actual decision tree used for each validation case.

The topics learned from the data not containing diagnostic information are subtly different 

than those learned on the full dataset. To illustrate the learned decision tree with respect to 

the topics discussed in this paper, we create a mapping from the “unbiased” features (learned 

without diagnostic information), to the biased features (learned with biased information) 

using the correlation of the basis vectors. This is shown in Figure 7. Between the “biased” 

dataset and the “unbiased” dataset, the mapping across topics learned was fairly consistent 

with a correlation of roughly 90% between pairs of Topics from each dataset's NMF. This 

was established by using the encoding matrix, and identifying topics from the different 

analyses which had highly correlated encoding values across patients. This shows a 

consistency of the NMF algorithm itself, where Topics across slightly changed datasets can 

be matched up.

3. Results

Among the 20 topics, 9 had statistically significant differences between ADHD and TD 

patients within the encoding values (uncorrected p-values) as shown in Figure 2. This 

significance was established across all Sites, even though some topics were site-specific; 

many topics contained “Site Y” variables indicating that being a member of that site was 

associated with that particular topic. If we had performed testing only within the sites 

identified within the topics, we likely would have seen more significant tests but, as this was 

not the primary objective of the paper, we didn't pursue this testing further. We use this Site-

wide significance level to help us identify topics that may be associated uniquely with the 
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disease, but also interpret non-significant topics as well. The full list of topics is available at 

http://ariana82.bol.ucla.edu/downloads-2/files/ALSNMFTopics.xlsx as well as a supplement 

to this article, showing the decomposition with NMF using ALS. We show 3 partial topics in 

Figure 3.

3.1. Topic Distributions

The most frequently selected phenotypic variables across topic was IQ (32%) followed by 

Site (27%), as shown in Figure 4. This was followed by diagnostic information, with 10% of 

the phenotypic variables selected being diagnosis related (TD, ADHD-HI, ADHD-I) as well 

as ADHD testing-related (13%).

The most commonly selected features were cortical structural information as shown in 

Figure 5, but this may have been because the largest feature set was cortical; the total 

number of features in each modality were: Cortical (545), Sub-cortical (124), Connectivity 

(363), Number of Independent Components (ICs) (1), Motion (12), and Phenotypic (23). 

When we normalized by the number of features in each modality, we were able to identity 

more striking patterns in the distributions where phenotypic observations, motion 

parameters, ICs and subcortical measurements were over-represented in their selection for 

topics, as shown in Figure 6.

3.2. Interpreting Topics in the DMN Context

In the context of the current work, we found a number of structural, functional connectivity, 

and graph theoretic metrics occurring with ADHD test score that are consistent with the 

DMN in Topic 12. Morphologic metrics related to the rostral ACC, for example, clustered 

with ADHD index score and ADHDI, perhaps related to decreased anticorrelation between 

posterior DMN nodes and rostral ACC that has been noted in both ADHD adults ([7]) and 

children ([61]). ADHD score also clustered with changes in caudate and putamen volume. 

Recent meta-analyses of structural differences have reported decreased volume in basal 

ganglia regions including the caudate, putamen, and globus pallidus [17], possibly related to 

observations that ADHD subjects have altered levels of dopamine (DA) transporter densities 

in striatal regions [43].

3.3. Motion: Topics 10 and 14

Topics 10 and 14 contained 10/12 and 9/12 possible motion parameters. These topics also 

identified a larger number of cortical than subcortical features identified, indicating that 

cortical measurements may be more susceptible to motion than subcortical. Topic 10 was 

statistically different between patients and controls, and did not have any Site markers. The 

encoding values for each topic indicate how strongly that topic is implicated in that subject; 

the ADHD patients had higher encoding values than the TD patients, indicating that ADHD 

patients were more likely to contain motion-related features from this topic (p-value = 1.0 

e-04). Topic 14 was not significant between patient groups, yet included the Site variables 

1,3, and 7, indicating that this was a unique pattern found in those locations. For both of 

these features, the number of ICs from the fMRI analysis was a selected feature.
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3.4. Validation

The cross-validation accuracy using our C4.5 decision tree was 66.8% (63.4-70.2%) with a 

specificity of 50.6% (44.6-56.6%) and sensitivity of 76.2% (72.3-80.1%). All intervals 

reflect 95% confidence intervals and were compared to a naïve classifier that classifies 

everything as the most common class (TD).

4. Discussion

4.1. Default Mode Network in ADHD

Topic 12 was statistically different between TD and ADHD and clustered with the ADHD-I 

diagnosis. A number of structural metrics related to DMN nodes were present in the topic 

including posterior cingulate, precuneus, and parahippocampal regions. Increasing evidence 

and meta-analysis suggests that the DMN actually consists of a series of subnetworks that 

communicate and coactivate through overlapping nodes [33]. For example, the medial 

temporal lobe is thought to provide episodic memory associations that are used while 

generating self-referential thought patterns. Although the exact number of subsystems is still 

debated, the pCC and precuneus are thought to be key DMN integration nodes. This 

clustering is interesting given that an overall decreased network homogeneity, particularly 

with respect to precuneus functional connectivity, has been reported in resting state data 

from ADHD children [66].

Nearly half the features in this topic were related to graph theoretic metrics. Negative 

strength in the dorsal DMN nodes including pCC and medial PFC and negative strength 

(number of connections) related to the precuneus network clustered with ADHD-I. Despite 

the low strength related to the precuneus network, a high participation coefficient also 

clustered in Topic 12 with ADHD-I. While this may be some form of compensation 

mechanism, the reason for this remains unclear. Positive strength in ventral DMN nodes, 

including the retrosplenial cortex and medial temporal lobe were also part of this cluster. In 

interpreting this topic, it appears as though ventral DMN subnetworks may have more 

connections in ADHD-I, while dorsal DMN may have less. Overall, this may be related to 

the fact that the latency of recovery of the DMN appears different across the DMN 

subnetworks [67]. Fair et al. (2010) also applied graph measures to DMN data in ADHD 

adolescents and found that DMN was a more strongly connected network in TD patients, 

though these results were below the threshold of significance [19].

4.2. Motion Topics

The identification of motion artifacts and the presence of higher motion topics in ADHD 

was an expected finding given the known relationship between ADHD and motion. In a 

study using infrared motion analysis, boys with ADHD were found to have 2.3 times greater 

head motion than healthy boys [63]. Motion is a known contaminant in fMRI and MRI [23], 

and many methods exist to mitigate this artifact [47]. Motion correction algorithms in fMRI 

may, however, induce artifacts of their own when high levels of motion aren't present [22]. 

This could be problematic in studies where one patient group is expected to move more than 

others. Uncorrected data would naturally have higher levels of noise in the ADHD group, 

while motion-corrected data may have artifacts introduced in the TD group. The motion 
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topics also contain both contain as a feature the NumberofICs. This is consistent with the 

finding that ICA can frequently identify and nominate motion artifacts, and has been used as 

a method of motion artifact correction [13]. Finally, the high presence of motion artifacts in 

two topics echoes the earlier findings of [18] who found that motion parameters were quite 

powerful for classification of ADHD in their winning algorithm.

4.3. Machine learning validation

Using latent features as variables for classification proved to be a valid means of dimension-

reduction prior to classification. The observed cross-validation accuracy within this 

(training) dataset is comparable to the testing accuracy in the ADHD-200 competition using 

individual neuroimaging features, but is still less than the accuracy of classifiers that used 

only the demographic information. Our objective in identifying topics was to map 

multimodal features to each other; their ability to map observational data to a diagnosis is a 

fringe benefit, and indicates the flexibility of generative models.

The tree split first on Topic 15, which was also the Topic with the most different p-values 

between ADHD and TD (p < 4e − 16). This Topic contained the variable Site 7, which 

contained only TD patients. It also contained several IQ measures. The second split, Topic 

1, contained only IQ-related phenotypic features, and was significant between patients and 

controls (p < 2.5e − 07). The third topic, Topic 10, contained many motion parameters and 

was statistically different between patients and controls.

5. Conclusion

We see several factors which may have contributed to the dismal classification accuracy of 

this ADHD-200 dataset relative to other studies. For this dataset, the demographics within 

each subpopulation were different, with OHSU females having substantially higher IQs than 

the rest of the population. Because many prior studies were on small samples with a median 

of 39 participants obtained from a single site, the samples were likely homogenous and thus 

easier to discriminate amongst. The classification accuracy accuracy was maximized when 

training each model within site, and that even pooling the data and adjusting for Site did not 

outperform training within each Site alone.

Pittsburg/Site 7, and Washington University/Site 8, contributed only normal controls. Site 8 

loaded on Topics 3 and 18; for neither of these topics did the model distinguish between 

ADHD and control subjects. Interestingly, Site 4 (NeuroImage) is implicated in these same 

topics and Site 5 (NYU) in Topic 3 and Site 6 (OHSU) in Topic 18. Site 4 ( NeuroImage) 

subjects were substantially older than the subjects in other sites as the mean age was almost 

17 years. Sites 5 and 6 had the highest proportion of Inattentive subtype patients. As people 

with ADHD age, hyperactive symptoms become more internalized and inattention becomes 

the more dominant expression of the disorder. Note that of all topics where the Inattentive 

subtype was included, Topics 5, 7, 12, and 17, Site 6 was also included. As Topic 12 

distinguished between ADHD and control subjects and included loadings for the Inattention 

scale and Site 5 and Site 6, this topic might be of special interest in characterizing subjects 

with primarily inattentive subtype of ADHD. According to Cortese [11], patterns of FMRI 

activation di er between adults and children. Therefore, it may be advantageous to repeat the 
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analysis in future work with this dataset only among younger participants who are not of 

inattentive subtype.

This frequent nomination of Site within NMF-derived topics raises important questions 

about diagnostic homogeneity and the possibility that either ADHD is not a distinct 

diagnosisf. There may be different diagnostic practices within each site. For example, in the 

Beijing site, females with low IQs were exclusively diagnosed with ADHD. This may 

indicate a subjectivity in the diagnosis, where two identically matched people may receive a 

different diagnosis depending on where they are evaluated.

There are certain limitations to this work; we set the number of topics based on previous 

imaging work [57], but did not investigate this parameter. We selected our NMF algorithm 

based upon our hypothesis that sparsity in the basis set would improve classification 

accuracy. Although we demonstrated that sparsity did coincide with the ability to separate 

patients and controls in a t-test, a set of thorough machine learning models was never 

constructed to validate this hypothesis. Although we had information on who was being 

medicated for most Sites, there was no information on dosages, specific medications, and 

compliance. This necessarily implies that topics on an unmedicated group, or on a 

homogeneously medicated group, could be quite different, as it is impossible to disentangle 

the disease from the medication status. Finally, our hypothesis of sparsity producing better 

topics was never fully tested, but could be in future work by seeing how the sparsity of 

topics a ected the classification accuracy of ADHD. Future research is needed in more 

homogeneous samples with respect to medication status, disease, behavioral measures as 

well as with more extensive behavioral and demographic measures to explore the utility of 

this model in classifying subjects.

This analysis began initially with modeling the features using traditional topic modeling, or 

Latent Dirichlet Allocation. This model produced null results, where neither Site nor ADHD 

Diagnosis were identified within any of the topics. We believe this finding to be an artifact 

of the model used possibly relating to the priors; since LDA learned the entire distribution 

uniformly even though the data originated from different Sites, it was unable to perceive 

hierarchical structures where the diagnosis of ADHD was contingent upon Site. Because of 

this, the model failed to identify site-specific e ects such as diagnosis. It is possible that 

extensions of LDA such as Author-Topic modeling would be able to correct for the 

diagnostic and patient inhomogeneity.

We believe that generative models offer a strong alternative to discriminative models in the 

analysis of multimodal data. Because generative models do not focus exclusively on a single 

feature or diagnosis, they are able to propose a more complete picture of how the modalities 

relate to each other. This framework allows an unconstrained mapping across features. 

Although we have investigated only two models for this dataset (LDA and NMF), both 

methods proposed plausible latent dimensions with the DMN topics present in both. Because 

of this, we expect future work on generative models to prove a promising approach for 

analysis of multimodal data.
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Highlights

We identify latent dimensions (topics) in multimodal ADHD (fMRI, MRI, phenotypic).

We compare four different Non-negative Matrix Factoriation (NMF) algorithms.

The sparsest NMF algorithms discriminates best between ADHD and healthy subjects.

“Site” nominated within “topics” suggests ADHD diagnosis may differ by location.

One topic suggests differential changes in the default-mode subnetwork for ADHD.
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Figure 1. 
Topic Modeling of Multimodal Features in ADHD: a conceptual illustration. The structural 

MRI, functional MRI, and phenotypic observations are all generated by latent topics, which 

in turn generate each subject's multimodal dataset. By learning the topics, we get a mapping 

across multimodal features and a generative model behind the observed data. The data 

matrix V has n feature rows and m observation columns. If V contained a collection of 

multimodal features (total features by patients), then NMF would decompose the data into a 

set of “basis images” and encodings, such that  where the W 

matrix contains the basis set of multimodal features (topics) and is of dimension n × k, and 

the “encoding matrix” H is of dimensions k × m, for row i and column μ.
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Figure 2. 
Basis Values resulting from NMF factorization of Feature Matrix using four different NMF 

algorithms: PG (Projected Gradiant), ALS (Alternating Least Squares), Multiplicative 

Update, and Multinomial Estimation. The number represents the total number of encoding 

dimensions which were different (statistically significant) between ADHD and TD, based 

upon a 2-sample t-test. There were 20 total dimensions extracted using NMF.
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Figure 3. 
Sample of features selected within topics 10, 12 and 14 . For each topic, there were 236 

features selected. All 20 topics, each containing 236 features, are available at http://

ariana82.bol.ucla.edu/downloads-2/files/ALSNMFTopics.xlsx for download.
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Figure 4. 
Phenotypic features selected by topics, across 20 topics. The most common phenotypic 

variables nominated across topics were IQ-related, describing either the IQ scores on a given 

test or the IQ test given.
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Figure 5. 
Total feature modality selected within topic. Cortical features were more likely to be present 

in the topics than others, due to them having a greater representation in the original dataset.
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Figure 6. 
Relative feature modality selected within topic, relative to the total number of features 

within that modality. After correcting for features which were over-represented in the 

dataset, we see that phenotypic observations, motion parameters, ICs, and subcortical were 

selected heavily within topics.
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Figure 7. 
Decision tree for discriminating between ADHD patients and healthy controls. The primary 

tree split (Topic 15) contained a marker for the Site Pittsburg, which contained only healthy 

controls. The second split, Topic 1, contained IQ phenotypic variables. The third split, Topic 

10, contained many motion parameters.
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Table 1

Summary Statistics by Site

Site Site ID N ADHD (%) RightHanded (%) Male (%) Age (SD)

Kennedy Krieger Institute Site 3 83 0.27 0.9 0.55 10.24 (1.35)

NeuroImage Sample Site 4 48 0.52 0.88 0.65 16.99 (2.74)

New York University Child Study Center Site 5 216 0.55 0.99 0.65 11.67 (2.92)

Oregon Health & Science University Site 6 79 0.47 1 0.54 8.84 (1.12)

Beijing University Site 1 194 0.4 0.98 0.74 11.98 (1.86)

University of Pittsburgh Site 7 89 - 0.96 0.52 15.11 (2.9)

Washington University in St. Louis Site 8 50 - 1 0.54 11.33 (3.57)
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Table 2

ADHD Statistics by Site

Typically Developing ADHD Combined ADHD Hyperactive ADHD Inattentive % Medicated Patients

Kennedy Krieger Institute 0.73 0.19 0.01 0.06 0.27

NeuroImage Sample 0.48 0.38 0.12 0.02 -

New York University 
Child Study Center

0.45 0.34 0.01 0.20 0.47

Oregon Health & Science 
University

0.53 0.29 0.03 0.15 0.29

Beijing University 0.60 0.15 - 0.25 0.33

University of Pittsburgh 1.00 - - - -

Washington University in 
St. Louis

1.00 - - - -
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Table 3

IQ Information within Site

Instrument Verbal (SD) Performance (SD) Full2 (SD) Full4 (SD)

Kennedy Krieger Institute WISC-IV 112.76 (14.52) 108.54 (11.99) - 109.89 (11.96)

NeuroImage Sample - - - - -

New York University Child Study Center WASI 108.57 (15.96) 105.44 (14.64) - 108.30 (14.36)

Oregon Health & Science University WASI - - - 113.76 (14.02)

Beijing University WISCC-R 116.03 (15.12) 106.66 (15.69) - 113.02 (14.66)

University of Pittsburgh WASI 108.68 (10.89) 112.47 (11.30) 111.83 (9.68) 109.81 (11.53)

Washington University in St. Louis WASI-2 subtest - - - 115.86 (14.30)
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Table 4

ADHD Information within Site

Instrument ADHD (SD) Inattentive (SD) Hyper Impulsive (SD)

Kennedy Krieger Institute CPRS-LV 52.99 (14.17) 53.30 (14.24) 53.79 (13.52)

NeuroImage Sample - - - -

New York University Child Study Center CPRS-LV 59.29 (5.49) 59.02 (14.79) 58.16 (14.45)

Oregon Health & Science University CRS-3E - 59.14 (14.76) 57.38 (15.87)

Beijing University ADHD-RS 37.60 (13.46) 20.52 (7.46) 17.08 (6.89)

University of Pittsburgh - - - -

Washington University in St. Louis - - - -
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Table 5

Multimodal Features Description

Modality n Description

Phenotypic 26 Demographic, Diagnostic, medication status.

Independent Components 1 Number of independent components found within subject

Motion 12 12-dimensional motion parameters from functional scans

Structural 667 Freesurfer cortical and subcortical measurements

Functional 362 Functional connectivity matrices based upon Grecius atlas
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Table 6

Summary Statistics by Site for Typically Developing Children

Site N RH (%) Male (%) Age (SD)

Kennedy Krieger Institute 61 0.9 0.56 10.25 (1.27)

NeuroImage Sample 23 0.91 0.48 17.33 (2.57)

New York University Child Study Center 98 0.98 0.47 12.22 (3.12)

Oregon Health & Science University 42 1 0.4 8.9 (1.2)

Beijing University 116 0.99 0.61 11.71 (1.74)

University of Pittsburgh 89 0.96 0.52 15.11 (2.9)

Washington University in St. Louis 50 1 0.54 11.33 (3.57)
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Table 7

IQ Information within Site for Typically Developing Children

Instrument Verbal (SD) Performance (SD) Full2 (SD) Full4 (SD)

Kennedy Krieger Institute WISC-IV 114.02 (13.21) 108.03 (12.64) - 110.55 (11.22)

NeuroImage Sample - - - - -

New York University Child Study Center WASI 111.61 (13.61) 107.22 (15.01) - 110.62 (14.34)

Oregon Health & Science University WASI - - - 118.40 (12.55)

Beijing University WISCC-R 119.74 (13.33) 112.40 (14.21) - 118.18 (13.34)

University of Pittsburgh WASI 108.68 (10.89) 112.47 (11.30) 111.83 (9.68) 109.81 (11.53)

Washington University in St. Louis WASI-2 subtest - - - 115.86 (14.30)
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Table 8

ADHD Diagnostic Information within Site for Typically Developing Children

Instrument ADHD (SD) Inattentive (SD) Hyper Impulsive (SD)

Kennedy Krieger Institute CPRS-LV 45.19 (4.27) 45.67 (4.95) 46.62 (4.52)

NeuroImage Sample - - - -

New York University Child Study Center CPRS-LV 45.28 (6.04) 45.32 (5.87) 46.31 (5.53)

Oregon Health & Science University CRS-3E - 47.02 (6.24) 45.93 (6.64)

Beijing University ADHD-RS 28.15 (5.98) 15.08 (3.66) 13.07 (3.46)

University of Pittsburgh - - - -

Washington University in St. Louis - - -
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Table 9

Summary Statistics by Site for ADHD Children

Site N RH (%) Male (%) Age (SD)

Kennedy Krieger Institute 22 0.91 0.55 10.22 (1.56)

NeuroImage Sample 25 0.84 0.8 16.69 (2.91)

New York University Child Study Center 119 0.99 0.79 11.26 (2.67)

Oregon Health & Science University 37 1 0.7 8.77 (1.04)

Beijing University 78 0.97 0.94 12.38 (1.98)

University of Pittsburgh - - - -

Washington University in St. Louis - - - -
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Table 10

IQ Information within Site for ADHD Children

Instrument Verbal (SD) Performance (SD) Full2 (SD) Full4 (SD)

Kennedy Krieger Institute WISC-IV 109.32 (17.48) 109.91 (10.16) - 108.09 (13.90)

NeuroImage Sample - - - - -

New York University Child Study Center WASI 107.12 (14.30) 103.99 (14.31) - 106.48 (14.18)

Oregon Health & Science University WASI - - - 108.49 (13.88)

Beijing University WISCC-R 110.56 (16.01) 98.21 (13.90) - 105.40 (13.17)

University of Pittsburgh - - - - -

Washington University in St. Louis - - - - -
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Table 11

ADHD Diagnostic Information within Site for ADHD Children

Instrument ADHD (SD) Inattentive (SD) Hyper Impulsive (SD)

Kennedy Krieger Institute CPRS-LV 73.55 (9.78) 73.41 (10.56) 72.68 (10.77)

NeuroImage Sample - - - -

New York University Child Study Center CPRS-LV 71.25 (8.69) 70.41 (9.17) 68.02 (11.89)

Oregon Health & Science University CRS-3E - 72.89 (7.86) 70.38 (12.99)

Beijing University ADHD-RS 51.04 (8.92) 28.27 (3.64) 22.77 (6.54)

University of Pittsburgh - - - -

Washington University in St. Louis - - - -
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