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ABSTRACT

The role of baroclinic eddies in transferring thermal gradients laterally, and thus determining the stratification
of the ocean, is examined. The hypothesis is that the density differences imposed at the surface by differential
heating are a source of available potential energy that can be partially released by mesocale eddies with horizontal
scales on the order of 100 km. Eddy fluxes balance the diapycnal mixing of heat and thus determine the vertical
scale of penetration of horizontal thermal gradients (i.e., the depth of the thermocline). This conjecture is in
contrast with the current thinking that the deep stratification is determined by a balance between diapycnal
mixing and the large-scale thermohaline circulation. Eddy processes are analyzed in the context of a rapidly
rotating primitive equation flow driven by specified surface temperature, with isotropic diffusion and viscosity.
The barotropic component of the eddies is found to be responsible for most of the heat flux, and so the eddy
transport is horizontal rather than isopycnal. This eddy transport takes place in the shallow surface layer where
eddies, as well as the mean temperature, undergo diabatic, irreversible mixing. Scaling laws for the depth of
the thermocline as a function of the external parameters are proposed. In the classical thermocline theory, the
depth of the thermocline depends on the diffusivity, the rotation rate, and the imposed temperature gradient. In
this study the authors find an additional dependence on the viscosity and on the domain width.

1. Introduction

In this study, we examine the role of baroclinic eddies
in the heat balance of the deep ocean, in the region
below the directly wind-driven thermocline. Unlike the
atmosphere, which is heated ‘‘internally’’ by radiative
processes, the ocean is differentially heated only at the
top boundary and weakly by geothermal heating at the
bottom. Thus, in statistical steady state, the total heat
flux across every horizontal level satisfies (cf. Paparella
and Young 2002)

(z2H)/dr C ^wT 2 k T & 5 ^Q e 1 Q &.0 p T z rad geo (1)

The angle brackets indicate a horizontal average over
the domain. The first term on the right-hand side is the
radiative heating, which decays away from the surface,
z 5 H, on a depth scale d of about 4 m. The last term
on the right-hand side is the geothermal heat flux. The
balance of fluxes (1) is obtained by integrating the hor-
izontally averaged heat equation vertically from the bot-
tom to any level z. If the geothermal and molecular
(proportional to kT) heat fluxes are neglected, the gov-
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erning heat balance at all levels below the optical thick-
ness d, is simply

r C ^wT& 5 0.0 p (2)

At the same time, for an incompressible, hydrostatic
fluid the vertical heat flux is related to the conversion
C between potential energy (PE) and kinetic energy
(KE) by the relation

21 ˜ ˜C [ r ^u · =p& 5 ga^wT&,0 (3)

where u indicates the horizontal velocity, and the tilde
indicates an average over all depths. Thus, the require-
ment that to a first approximation the horizontally av-
eraged vertical heat flux vanishes at every level cor-
responds to a law of vanishing energy conversion. This
constraint implies that the conversion C is a residual of
much larger terms with different signs:

C 5 C 1 C 1 C 1 C 1 · · · .BW EP MO BI
| | | | (4)| |

2 1

Term CBW , 0 is the transfer from KE to PE that occurs
when internal gravity waves break and overturn a stable
stratification, thus raising the center of mass of the fluid.
This contribution to C is often parameterized as down-
gradient diffusion with a diffusivity k much larger than
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the molecular value kT. Term CEP , 0 is the transfer
from KE to PE that occurs when Ekman flux raises the
center of gravity of the ocean by pushing down light
fluid in the subtropical region and pulling up dense fluid
in the subpolar region (e.g., Gill et al. 1974). Term CMO

. 0 is the transfer from PE to KE due to large-scale
meridional overturning: the center of gravity is lowered
as dense water sinks in high latitudes and light water
upwells elsewhere. Term CBI . 0 is the transfer from
PE to KE due to baroclinic instability, which is the
process analyzed in the present study. The ellipses in
(4) indicate other transfers occurring at any of the scales
intermediate between internal gravity wave overturns
(10 cm) and mesoscale eddies (105 m).

Munk (1966) posits that diapycnal diffusion balances
the large-scale upwelling associated with the production
of deep water and high-latitude convection. In terms of
(4) this corresponds to a two-term dominant balance
CBW 1 CMO ø 0, that is, a balance between processes
at the two extremes of the spatial scales. An alternative
view, at the origin of the process model formulated and
analyzed here, is that CBW is mainly balanced by CBI.
This hypothesis does not imply that mean meridional
circulation does not exist, just that its role in the con-
versions between KE and PE is subdominant.

The abyssal-recipe balance (Munk 1966) leads to a
specific scaling for the stratification that is obtained by
assuming that the time-mean meridional overturning cir-
culation is characterized by a large-scale velocity , ,u y
and , which obeys the steady balancew

uT 1 yT 1 wT ø kT ,x y z zz (5)

where the overbar indicates a large scale and time av-
erage. Here temperature alone determines density. The
transfer of KE to PE by breaking waves is parameterized
as diapycnal diffusion, with diffusivity k, and the iso-
thermal surfaces are considered quasi horizontal so that
diapycnal is synonymous with vertical.

With forcing confined to the surface and diffusion as
the only means to transmit temperature gradients down-
ward, the circulation is confined to a thermocline of
thickness h, which according to (5) scales as

k
h 5 O . (6)1 2w

Welander (1971) refined Munk’s scaling by estimating
the broad upwelling driven by differential surface heat-
ing. His scaling considers the meridional circulation y
driven by the large-scale upwelling . The amplitudew
of is set by the continuity equation,w

y 1 y 1 w 5 0,x y z (7)

so that

hy
w 5 O . (8)1 2Ly

Continents block the ocean flow to the east and west so

that a large-scale east–west pressure gradient can be
maintained. Thus we can assume that is geostrophicy
and hydrostatic:

f y DT
f y ø gaT or ; ga . (9)x h Lx

Eliminating we arrive at Welander’s estimate for they
depth of the thermocline:

1/3
k fL Lyxh 5 O . (10)1 2gaDT

For fixed surface density, DT is independent of k, and
therefore the depth of the thermocline and the meridi-
onal overturning are controlled by diffusion:

1/3 2/3h ; k and hy ; k . (11)

In Welander’s scaling, all density gradients, both ver-
tical and horizontal, are confined to a thin diffusive
surface boundary layer, and the zonally averaged me-
ridional transport hy decreases with k.

Despite many dubious assumptions (chiefly that the
longitudinal density differences are of the same order
as the latitudinal density differences), these scalings of
Welander have been confirmed by non-eddy-resolving
numerical solutions of the primitive equations (Vallis
2000).

Essential to the scaling in (11) is the existence of an
east–west pressure gradient that maintains a geostroph-
ically balanced meridional flow. It is thus not obvious
what happens when this balance fails in the circumpolar
ocean because there are no boundaries at the east and
west to support a pressure difference. It is also unclear
how the balance is affected by time dependence.

In the following we show that without meridional
boundaries the laminar (but unstable) flow obtained by
differential surface heating is completely different: the
horizontal density gradients penetrate all the way to the
bottom so that there is no thermocline, the vertical strat-
ification is everywhere weak, and a large zonal shear
in thermal-wind balance results. However, this steady
state is unstable to time-dependent perturbations, very
similar to the classical Eady mode of baroclinic insta-
bility.

The ensuing baroclinic instability leads to a statisti-
cally steady thermal distribution that is qualitatively dif-
ferent from the laminar solution. In the equilibrium
time-dependent state, the transport of heat, both merid-
ional and vertical, is effected by the eddy fluxes, while
the contribution of the mean meridional circulation is
negligible.

The point of view that in a periodic geometry eddies
must be important in setting up the stratification is not
new: idealized simulations have found that indeed this
is the case (Marshall et al. 2002; Karsten et al. 2002;
Henning and Vallis 2004). Our study considers the ex-
treme case where eddies alone, without a mean circu-
lation, mantain the stratification against breaking gravity
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TABLE 1. Parameter values used for the linear stability problem.
Large values of k and n are chosen so that the boundary layers are
well resolved.

Coriolis parameter
Mean density
Basin width
Basin depth
Gravity
Vertical diffusivity
Prandtl number
Surface temperature difference
Surface temperature shape
Coefficient of thermal expansion

f 5
r0 5
L 5
H 5
g 5
k 5

n /k 5
DT 5

Q(y ) 5
a 5

1 3 1024 s21

1 3 103 kg m23

1 3 106 m
2000 m
10 m s22

4 3 1023 m2 s21

10
2 K
2cos(2py /L)
2 3 1024 K21

waves. Our process model enables us to investigate the
hypothesis, complementary to that of Munk (1966) and
Welander (1971), that mesoscale eddies, rather than the
mean flow, balance small-scale vertical mixing.

2. The model

If haline effects are ignored, the buoyancy-driven cir-
culation is described by the primitive equations:

u 1 uu 1 yu 1 wu 2 f yt x y z

2 65 2p /r 1 nu 1 n¹ u 1 n ¹ u,x 0 zz 6

y 1 uy 1 yy 1 wy 1 fut x y z

2 65 2p /r 1 ny 1 n¹ y 1 n ¹ y ,y 0 zz 6

p 5 gr aT,z 0

u 1 y 1 w 5 0, andx y z

T 1 uT 1 yT 1 wTt x y z

2 65 kT 1 k¹ T 1 n ¹ T. (12)zz 6

Hereinafter, ¹2 denotes the two-dimensional, horizontal
Laplacian. Sixth-order hyperdiffusion and hyperviscos-
ity with the same coefficient, n6, are included to limit
the noise at the smallest resolved scale. The boundary
conditions (b.c.) are

w 5 u 5 y 5 0 at z 5 H,z z

w 5 u 5 y 5 0 at z 5 0,

T 5 DTQ(y) at z 5 H, and

T 5 0 at z 5 0. (13)z

The shape of the temperature distribution, Q(y), is given
in Table 1. Our choice of a prescribed temperature dis-
tribution at the surface, rather than a fixed flux, is close
to the oceanic situation where the mixed layer temper-
ature is rapidly relaxed to an apparent atmospheric tem-
perature.

For the sake of simplicity, we assume the Coriolis
parameter f to be constant. Moreover we take all var-
iables to be periodic in x and y so that lateral friction
and diffusion can be made small without having to re-

solve thin side boundary layers, for example T(x, y, z, t)
5 T(x 1 L, y, z, t) 5 T(x, y 1 L, z, t). Here, n and k
are viscosity and diffusivity due to unresolved small-
scale processes, such as internal gravity waves.

There are four nondimensional parameters controlling
the system: the thermal Rossby number Ro, the Prandtl
number Pr, the Ekman number Ek, and the aspect ratio
H/L. The definitions are

gaDTH n 1 n
Ro [ , Pr [ , and Ek [ . (14)

2 2 !f L k H f

In order to understand how mesoscale eddies and dia-
pycnal mixing interact, we purposefully exclude several
processes that are of importance in ocean. Specifically,
we ignore the mechanical forcing and Ekman pumping
imparted by the wind stress. In the subtropical oceans,
the downward Ekman pumping is the primary process
that pushes the surface density gradients into the upper
ocean (Luyten et al. 1983): this is the term CEP in (4).
Diapycnal mixing plays an important role below the
‘‘ventilated thermocline’’ (Stommel and Webster 1962;
Young and Ierley 1986; Salmon 1990; Samelson and
Vallis 1997), and our process study is relevant to this
deep region.

In the subpolar regions, where the Ekman pumping
is upward, ventilation cannot occur and diapycnal mix-
ing is essential for deepening the density gradient below
the surface. In this case, eddy processes such as those
described in our study are an important participant in
the ensuing balance.

Without lateral boundaries wind-driven gyres are not
possible, but the wind stress still generates Ekman flow,
whose mean meridional heat transport is largely can-
celled by the eddy heat transport (Doos and Webb 1994;
Karsten et al. 2002). This scenario is appropriate for the
Antarctic Circumpolar Current. In this case, the ‘‘resid-
ual circulation,’’ equal to the sum of the mean and eddy-
induced heat transport, balances the diabatic terms in
the heat equation. The process model formulated here
deliberately eliminates the mean meridional circulation
by ignoring the wind stress and the lateral boundaries
so that the eddy heat transport directly balances the
diabatic sources.

The problem formulated in (12) and (13) is the sim-
plest process model that enables us to study the role of
eddies in the formation of the thermocline.

3. The symmetric steady state

In this section we show that a laminar thermocline
cannot be supported by the model formulated in (12).

In a periodic geometry, for x-independent buoyancy
forcing and excluding for the moment the spontaneous
generation of x-dependent instabilities, we can solve
(12) and (13) by taking ]x 5 0. Thus the longitudinal
pressure gradient vanishes so that the meridional flow
is frictionally, rather than geostrophically, balanced. In
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the following we show that this restriction leads to a
weak meridional transport.

Since ux 5 0, it is useful to describe the meridional
and vertical flow by a streamfunction c such that

y 5 2c and w 5 c .z y (15)

The symmetric steady momentum equations then be-
come (neglecting hyperviscosity and horizontal viscos-
ity, both small when H K L)

J(c, fy 2 u) 5 nu andzz

py
2J(c, c ) 1 fu 5 2 1 ny ,z zzr 0

where J(A, B) [ AyBz 2 ByAz.

a. Scaling

Because Ro K 1, the zonal flow u is essentially in
thermal wind balance and the angular momentum, fy 2
u, is dominated by the planetary term. Specifically, we
have

2 f y 5 nu 1 O(Ro) and (16)zz

pyfu 5 2 1 ny 1 O(Ro). (17)zzr 0

Using the values in Table 1, Ro 5 8 3 1024.
Using the definition of the streamfunction, (16) can

be integrated once to give

fc 5 nu .z (18)

This relation shows that, in order for c to vanish at both
the top and bottom boundaries, we must require uz 5
0 at z 5 0 (‘‘no stress’’), as well as imposing the no-
slip condition. With the aid of the hydrostatic relation
and of (17) we obtain a single equation for c:

2 2f c 1 n c 5 2nagT .zzzz y (19)

We are now in a position to estimate that the order of
magnitude of c is

gaDTn
c 5 O . (20)

21 2f L

Because c is proportional to the small viscosity n, it is
not surprising that the steady symmetric temperature,
governed by

J(c, T) 5 kT 1 kT ,zz yy (21)

is dominated by vertical diffusion rather than advection.
Specifically we have

c Ty z 5 O(RoPr) K 1. (22)
kTzz

Because of the small aspect ratio, H K L, and of iso-
tropic diffusion, the horizontal diffusion is also negli-
gible at leading order in (21). We thus define a small

parameter, e [ RoPr, and expand the temperature in
powers of e:

2T 5 DT(u 1 eu ) 1 O(e ).0 1 (23)

b. The leading-order temperature

The leading-order temperature satisfies

u 5 0 and u 5 0 at z 5 0, and0zz 0z

u 5 Q(y) at z 5 H. (24)0

The solution is simply

u (y, z) 5 Q(y)0 (25)

so that the leading-order temperature is vertically ho-
mogenous and equal to the imposed surface distribution.
This result should be compared with the numerical cal-
culations of Vallis (2000 cf. his Fig. 9), which show
vertically homogeneous temperature in the zonally re-
entrant portion of the computational domain. Thus, there
is no thermocline in the laminar solution, and Welan-
der’s scaling (10) does not apply in a reentrant geometry.

c. The leading-order velocity

The leading-order pressure p0 that drives the velocity
field is given by

p 5 r gaDTQ(y)[z 2 P(y)],0 0 (26)

where P(y) is proportional to the barotropic component
of the pressure. The unknown P(y) is determined below
by imposing the no-stress constraint at the bottom
boundary, as required by mass conservation.

We introduce a complex function, x [ u 1 iy, which
is governed by

fx 5 2gaDTQ (z 2 P) 2 inx .y zz (27)

The solution that satisfies no-stress (xz 5 0) at z 5 H
and no-slip (x 5 0) at z 5 0 is

gaDT
1 2x 5 Q (P 2 z 1 dF 2 PF ). (28)yf

We have defined the depth of the Ekman layer, d [
, and the boundary layer correctionsÏ2n/ f

1 21 (11i)(z2H )/dF (z/d) [ (1 1 i) e and
2 2(11i)z /dF (z/d) [ e . (29)

The additional boundary condition uz 5 0 at z 5 0
determines the barotropic pressure:

P(y) 5 d. (30)

We can now calculate c using (18) and find

gaDTn
1 2c 5 2 Q Re[1 2 (1 1 i)(F 1 F )]. (31)y2f

The meridional overturning thus calculated is shown in
Fig. 1.
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FIG. 1. The leading-order streamfunction in the ( y, z) plane. The
parameter values are given in Table 1. Positive contours are solid,
and negative contours are dashed. The contour interval is 0.01 m2 s21.

FIG. 2. The first two terms in the Ro expansion of the temperature
in the y, z plane. The parameter values are given in Table 1. Positive
contours are solid, and negative contours are dashed. The contour
interval is 0.28C.

The zonal velocity is given by the real part of (28)
and it is much larger than the meridional velocity (the
maximum of is 0.5 m s21). The zonal velocity isu
characterized by a large interior vertical shear, the sta-
bility of which is examined in the next section.

d. The stratification

The leading-order temperature is vertically homoge-
neous, and yet the weak meridional circulation provides
for a weak vertical stratification, determined by the O(e)
correction to the temperature u1, which satisfies

2c u 5 ku and u 5 0 at z 5 0, andz 0y 1zz 1z

u 5 0 at z 5 H, (32)1

with c given by (31). We can immediately integrate
(32) vertically using the bottom b.c. to find the strati-
fication

ku 5 2cu .1z 0y (33)

Integrating once more in the vertical and using the top
b.c. we find

gaDT
2 1 2u 5 Pr Q [z 2 H 1 dRe(F 2 F 2 1)]. (34)1 y2f

Thus, we can write the dimensional temperature
field as

2T(y, z) 5 DTQ(y) 1 DTu (y, z) 1 O(e ).1 (35)

The Richardson number, Ri [ N 2/ with N 2 [ gaTz,2uz

is simply

Ri 5 Pr. (36)

Figure 2 shows the temperature in (35) using the pa-
rameter values of Table 1.

Notice that, although the Rossby number is small, we
are far from the quasigeostrophic limit, which is recov-

ered when the Richardson number, and thus the Prandtl
number, are O(Ro22). For a Prandtl number O(1), the
stratified part of the temperature, contained in u1, is
much smaller than the horizontally varying part of the
temperature in u0. Thus the laminar flow does not have
a thermocline.

In summary, the rapidly rotating symmetric flow is
weakly stratified in the vertical (Fig. 2): essentially, the
weak dissipation leads to a meridional overturning, in-
dependent of k but proportional to n (cf. Fig. 1). The
meridional circulation turns the horizontal temperature
gradients into vertical gradients through the balance in
(32) and thus establishes a weak stratification. Remark-
ably the Richardson number is equal to the Prandtl num-
ber.

Neglecting the thin Ekman layers at the top and bot-
tom, the steady, symmetric state is given by

ag
2T ø DTQ(y) 1 Pr (DTQ ) (z 2 H ),y2f

gaDT gaDTn
u ø Q (d 2 z), and c ø 2 Q .y y2f f

While unrealistic, Fig. 2 describes the weakly strat-
ified density structure found in the Antarctic Circum-
polar Current regions of non-eddy-resolving ocean mod-
els (e.g., Vallis 2000).

Because of the strongly vertically sheared zonal flow,
and nearly vertical isopycnals, this symmetric state must
be prone to baroclinic instabilities that break the zonal
homogeneity, release available potential energy, and de-
celerate the mean zonal velocity.

4. Linear stability analysis

To illustrate the instability of the basic state discussed
in the previous section, we now examine the case where
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FIG. 3. The growth rate as a function of kRd (solid line), and the
quasigeostrophic prediction using the interior inviscid basic state
(dashed line). The parameter values are in Table 1, giving Rd ø 2.5
km.

Qy is constant; that is, y 5 2DT/L. We regard this asT
a local approximation of the latitudinally varying basic
state (35) valid when the scale of the unstable waves is
much smaller than L.

With this uniform thermal gradient the approximate
solution (35) becomes an exact steady state of the non-
linear primitive equations (12). (Higher-order terms in
the expansion, involving Qyy, are all zero.) Thus we
write

(u, y , w, p, T ) 5 (u, y , w, p, T )

1 (u9, y9, w9, p9, T9), (37)

where the overbar indicates the steady, x-independent
basic state and the primes are time- and x-dependent
perturbations. The basic state is given by

2
y N

1 2T 5 2DT 1 [z 2 H 2 dRe(F 2 F 2 1)],
L ga

gaDT
1 2u 1 iy 5 2 [d 2 z 1 d(F 2 F )], and

fL

w 5 0. (38)

We have defined the interior constant stratification
2

asN
22 (gaDT )

N [ Pr . (39)
2 2f L

Except for corrections confined to thin Ekman layers,
(38) is the basic state for the Eady problem, with every
quantity related to the imposed surface gradient, DT/L.

For simplicity, we restrict all fields of the linear per-
turbations to be independent of y so that 1 5 0.u9 w9x z

(In the classic Eady problem, the most unstable distur-
bances have this structure.) With this choice we can
introduce a streamfunction f, such that

u9 5 f and w9 5 2f .z x (40)

It is then possible to eliminate the pressure in favor of
the temperature by taking the z derivative of the zonal
momentum equation so that the perturbation fields are
governed by the following linearized system:

f 1 uf 2 u f 2 f y9 5 2agT9 1 nf , (41)zzt xzz zz x z x zzzz

y9 1 uy9 2 y f 1 f f 5 ny9 , andt x z x z zz

T9 1 uT9 1 y9T 2 f T 5 kT9 . (42)t x y x z zz

The boundary conditions are

f 5 f 5 y9 5 0 at z 5 0,z

f 5 f 5 y9 5 0 at z 5 H,zz z

T9 5 0 at z 5 H, and

T9 5 0 at z 5 0.z

Except for the top and bottom boundary layers in the
basic state and for the temperature and velocity bound-
ary conditions, the stability problem is rather similar to
the classical Eady model (Eady 1949; Stone 1966).

We seek solutions of the modal form

ikx1(s1iv)t(f, y9, T9) 5 [F(z), V(z), T(z)]e . (43)

This ansatz results in an eigenproblem where [F(z),
V(z), T(z)] is the eigenfunction and s 1 iv is the ei-
genvalue. We solve the eigenproblem numerically using
the package developed by Weideman and Reddy (2000).

Figure 3 shows the growth rate s as a function of the
wavenumber multiplied by the deformation radius kRd

(solid line). We have denoted the deformation radius
with

R [ NH/ f,d (44)

where is defined in (39). Also shown is the growthN
rate sQG predicted by the inviscid, nondiffusive quasi-
geostrophic approximation with the same basic state.
From Gill (1982),

2f kR kRd d22s 5 u tanh 2 1QG 2 z 1 2[ ]2 2N

kR kRd d3 coth 2 1 . (45)1 2[ ]2 2

Despite the weak stratification and the boundary layers,
the quasigeostrophic prediction is rather good.

Figure 4 shows a snapshot of the perturbation tem-
perature T9 of the fastest-growing mode. The familiar
pattern of eastward tilt with height is only changed in
a thin diffusive boundary layer at the top. Thus small
diffusion and viscosity do not alter the qualitative mech-
anism of baroclinic instability.
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FIG. 4. A snapshot of the temperature perturbation for the fastest-
growing mode.

5. Nonlinear equilibration and the statistical
steady state

We now numerically simulate the process model for-
mulated in (12) and (13) using the surface condition
T 5 2DT cos(2py/L). We expect the eddies to transport
heat latitudinally, to release the available potential en-
ergy, and to rearrange the zonally and time-averaged
density field by establishing a zonally averaged ther-
mocline whose properties depend on the statististics of
the eddy field. Our approach is to perform eddy-re-
solving numerical simulations of the primitive equations
(12) described in section 2. We employ a variable-grid,
finite-difference model with N 3 N grid points in the
horizontal plane (N is either 128 or 256) and enough
vertical points to resolve the top and bottom Ekman
layers (the details are in appendix A).

The f -plane domain has horizontal dimensions
L 5 1000 km in both directions and all variables are
periodic in x and y. At the rigid surface, z 5 H, we
specify the temperature and require no stress. At the
rigid bottom, z 5 0, we impose no flux of heat and no
slip. The diffusivity k and the viscosity n are isotropic
in all three dimensions. Our choice of isotropic diffu-
sivity is unconventional, but it ensures that no hidden
diapycnal fluxes occur except at the very small scales
where hyperdiffusion is active. Furthermore, when eddy
processes are directly resolved, there is no need for an
augmented diffusivity in the isopycnal direction. With
isotropic viscosity, lateral friction is generally negligi-
ble, and dissipation occurs through the vertical com-
ponent of viscosity and the hyperviscosity (more details
are given in appendix A).

No convective adjustment is applied because this
choice is the only one that guarantees an unambiguous
dependence of the results on the diffusivity. However,
unstable stratification develops below the regions where
the coldest temperatures are prescribed. In general, an

unstable mean stratification below the cooled regions is
not surprising since convective plumes entrain warmer
surrounding fluid as they descend. When convective
plumes are well resolved, the entrainment occurs over
localized regions and the time-averaged bottom tem-
perature is close to the minimum surface temperature.
With the limited resolution used in the model the un-
stably stratified regions are substantial, but we feel this
is a small price to pay in exchange for knowing the
value of the vertical diffusivity everywhere and for hav-
ing a well-defined energy balance. Also, as discussed
in section 9, the bottom temperature decreases as hor-
izontal resolution is increased, reassuring us that hy-
drostatic convection is occurring, albeit limited by the
discretization.

The goal of the simulations is to establish the de-
pendence on the external parameters of various quan-
tities characterizing the statistically steady fields. Spe-
cifically, we wish to examine the depth of penetration
of the surface temperature gradients as a function of the
diffusivity k, of the viscosity n, of the temperature dif-
ference DT, and of the oceanic depth H or, alternatively,
in terms of the four nondimensional parameters, Ro, Pr,
Ek, and H/L.

A typical snapshot (Fig. 5) of the instantaneous tem-
perature below the thermocline reveals that at depth
the stirring by the eddy field alters qualitatively the
structure imposed at the surface. Although the surface
temperature gradients are concentrated near the lati-
tudes y 5 250 km and y 5 750 km, the fluctuations
are approximately uniformly distributed throughout the
domain.

Hereinafter, we indicate with an overbar the zonal
average, for example,

L

21T(y, z, t) [ L T(x, y, z, t) dx, (46)E
0

and with angle brackets the horizontal average, for ex-
ample,

L L

22^T& [ L T dx dy. (47)E E
0 0

The hallmark of the statistically steady state estab-
lished by the eddy fluxes is a zonally averaged tem-
perature , with a shallow thermocline as illustrated inT
Fig. 6. The parameter values are as in Table 1 except
that Pr 5 50 and k 5 8 3 1024. The zonally averaged
temperature field differs qualitatively from that of the
steady symmetric solution described in section 3 and
shown in Fig. 2: here the horizontal temperature gra-
dients are confined to a distinctive thermocline region,
much shallower than the depth of the domain.

The zonally averaged temperature is maintained by a
balance between vertical diffusion and convergence of
eddy heat transport:

(y9T9) 1 (w9T9) ø kT . (48)y z zz
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FIG. 5. A snapshot of the temperature T at z 5 1314 m for k 5 8 3 1024 m2 s21 and Pr 5
50. At this depth the eddy field dominates over the zonal mean. The contour interval is 0.0188C
and the range is from 21.118 to 21.488C. All the other parameters are as in Table 1.

FIG. 6. The zonally averaged temperature for k 5 8 3 1024 m2 s21T
and Pr 5 50 as a function of y and z. The contour interval is 0.28C
and negative values are dashed. All other parameters are as in
Table 1.

FIG. 7. The eddy ^w9T 9& (solid) and zonal mean ^ & (dashed)w T
contributions to the area-averaged vertical flux of temperature as a
function of depth (only the top half of the domain is shown). All
parameters are as in Fig. 6.

The contribution to the heat transport by the zonally
averaged circulation, ( )y 1 ( )z, is nonzero buty T w T
much smaller than the eddy counterpart. Thus, (48) is
a very good approximation.

There are two separate components of the mean tem-

perature field: the horizontally averaged temperature ^T&(z)
and the meridionally varying mean temperature u(y, z) 5

2 ^T&; ^T& and u obey different dynamics:T

(y9T9) ø ku and (49)y zz

^wT& 5 k^T& . (50)z

In steady state, (50) is the exact result (2), stating that
at every depth the horizontally averaged vertical heat
flux vanishes, a consequence of imposing no flux at
the bottom. As shown in Fig. 7, the vertical flux due
to advection is dominated by the eddy component,
^wT & ø ^w9T 9&, while the heat transport by the zonally



2650 VOLUME 34J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

FIG. 8. The solid line shows ^T &(z) 2 ^T &(0) and the dashed line
is ^u Q& as a function of z for the parameters of Fig. 6. The shape
of the surface temperature is Q 5 2cos(2py/L). Only the top half
of the domain is shown.

FIG. 9. (top) Temperature u as a function of y and z for the pa-
rameters of Fig. 6. (bottom) The zonally averaged passive scalar, ( y,S
z), advected by the barotropic component of the velocity. Only the
top half of the domain is shown. The contour interval is 0.28C, and
negative values are dashed.

FIG. 10. A snapshot of y for a section along y 5 L/4 illustrates
that the velocity does not change sign in the vertical direction and
thus has a pronounced barotropic component.

averaged meridional circulation is negligible. More-
over, according to (50), the vertical eddy flux is up the
mean gradient.

Our principal focus is on u(y, z) since the vertical
structure of ^T& depends on secondary circulation of the
eddies and on the resolved convection, whose depen-
dence on external parameters is very indirect. The bal-
ance (49) neglects the vertical eddy flux convergence,
which is found to be much smaller than the lateral com-
ponent as detailed in section 6. Figures 8 and 9 show
the two components of the zonally averaged temperature
for the calculation of Fig. 6. Remarkably, u is almost a
separable function of y and z so that the surface tem-
perature distribution Q is reproduced at depth with de-
creasing amplitude:

u(y, z) 5 DTQ(y)q(z), (51)

where Q [ 2cos(2py/L). Figure 8 compares ^T& (solid
line) with the projection of u on the surface temperature
(dashed line) showing that the two profiles roughly fol-
low each other. Given the simple structure of u it is
natural to define the depth of the thermocline as

1/2H H

2 2h [ ^u & dz ^u & dz . (52)E E z1 @ 2
0 0

For the field in Fig. 6 h 5 189 m. A number of alter-
native definitions, which would be equivalent for a sin-
gle-scale exponential, are possible, but they do not mod-
ify the following discussion. The depth of the mean
thermocline, h defined in (52), is determined by the heat
flux produced by the eddies, whose statistics must be
established.

The partition of (y, z) between u(y, z) and ^T&(z)T
also reveals that the mean state obtained here is far from
the quasigeostrophic limit because the horizontal tem-
perature differences are larger than the vertical ones.

A snapshot of the meridional eddy flow, shown in
Fig. 10, reveals that, although the mean temperature
gradients are confined to a surface layer, the perturbation
velocity reaches all the way to the oceanic bottom. It
is well established that in the quasigeostrophic, two-
layer case, the eddy heat flux is completely carried by
the barotropic component of the velocity (Salmon 1980;
Larichev and Held 1995). The heat flux produced by
the baroclinic component is small because the temper-

ature gradient and the baroclinic velocity are approxi-
mately orthogonal by thermal wind balance. Thus, in
the two-layer case, the temperature is advected as a
passive scalar by the barotropic flow. This motivates us
to examine whether the same property holds in our con-
tinuously stratified case. We thus partition the flow in
a barotropic component, defined as the vertical average,
and a baroclinic part, defined as the residual from the
vertical average and advect a passive scalar with the
barotropic component of the velocity.

6. A scalar advected by the barotropic flow

The field u( y, z) compares very well to that ob-
tained by evolving a passive scalar identically forced
at the surface and subject to the same diffusivity but
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FIG. 11. The spectra of T (dashed) and S (solid) for the simulation
shown in Fig. 9 at z 5 1895 m. This is a representative depth, and
the spectra at other levels exhibit a similar agreement.

advected only by the vertically averaged velocities,
(U, V ) [ H 21 (u, y) dz. The zonal average of theH# 0

passive scalar, ( y, z), is shown in the bottom panelS
of Fig. 9 and compared with ( y, z) (top panel). Theu
two fields are almost identical. This result suggests
that the baroclinic eddy velocity is well represented
by a single vertical structure. Consequently, from
thermal wind balance, the baroclinic velocities are
largely orthogonal to the temperature gradient and
transport no heat.

To examine the fluctuations we define spectra T and
S, so that

`

2^(T 2 ^T&) (x, y, z, t)& 5 T (k, z, t) dk and (53)E
0

`

2^S (x, y, z, t)& 5 S (k, z, t) dk. (54)E
0

Figure 11 shows that S is almost identical to T. Thus
T and S also exhibit the same variance at all scales and
all depths. Evidently, temperature fluctuations are large-
ly independent of ^T& since the latter does not enter
either the evolution of the scalar or of the horizontal
momentum. This result justifies our focus on the hori-
zontally varying part of the temperature.

The scalar model shows that the barotropic eddy ve-
locities determine both u(y, z) and the temperature fluc-
tuations. We thus proceed with a deeper study of the
scalar model, using variance budgets.

With the Reynolds decomposition, S 5 1 S9, theS
scalar fluctuations satisfy

2O(S9/t ) O(VS9/l) O(V9S /L) O(kS9/h )eddy
| | | |

| | | | | | | |
S9 1 US9 1 V9S 5 kS9 1 O(V9S9), (55)t x y zz

while the mean field is governed by

(V9S9) 5 kS . (56)y zz

In (55) we have assumed that the fluctuations, S9, are
well described by linear dynamics. We have denoted
with teddy and l the time and length scales of the scalar
fluctuations. The scalar variance equation obtained from
(55) then reads

V9S9 S 5 kS9S9 . (57)y zz

Vertical integration of (57) gives
H H

2V9S9 S dz 5 2k S9 dz. (58)E y E z

0 0

The scalar variance integral in (58) indicates that the
sense of the eddy flux is generally down the mean gra-
dient, although not necessarily so at every depth.

A scaling relation between S9 and can be found byS
eliminating the eddy transport between (56) and (57):

S9S9zz 5 S . (59)zz1 2Sy y

The balance (59) shows that (and therefore ) is ofS9 T9z z

the same order as z (and therefore uz). In this surfaceS
layer S9 (but not its vertical derivatives) is especially
small, since it must vanish at the surface, so that the
dominant balance in (55) is

V9S ø kS9 .y zz (60)

This balance indicates that the vertical scale of the fluc-
tuations, S9 (and therefore of T9), is of the same order
as the vertical scale of the zonal average, (and there-S
fore of u), a result confirmed by the numerical simu-
lations. Because of (59), it follows that the amplitude
of the fluctuations is of the same order as the amplitude
of the zonal average, a result in contrast with the tra-
ditional mixing length arguments of turbulence, where
the horizontal gradients of the eddy and of the mean
have the same amplitude.

Because of (60) and (59) the vertical scale h is de-
termined by

1/2h ; (kL/V9) . (61)

Thus, to complete the scaling of the thermocline depth
we must provide a scaling for the amplitude of the bar-
otropic eddies, V9 in (61), which is done in the next
section.

The success of the scalar model and the importance
of the barotropic component of the eddies indicate that
within the diffusive thermocline the eddy heat flux is
predominantly horizontal, rather than isopycnal. The
quantitative agreement between the spectra of the scalar
and temperature perturbation demonstrates that the ver-
tical eddy fluxes proportional to z (absent in thew9T9 T
scalar computations) are much smaller than the hori-
zontal fluxes y so that the eddy fluxes are not alongy9T9 T
the mean isopycnal slopes. Instead, the horizontal eddy
fluxes within the thermocline experience diffusion,



2652 VOLUME 34J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

which tends to reduce their variance. Thus, the eddies
are not adiabatic. A ‘‘surface layer’’ where the eddies
are diabatic is necessary to close the mass transport
circulation, even in more general contexts that include
regions of adiabatic eddies, for example, the atmospher-
ic boundary layer–troposphere system (Held and
Schneider 1999). In our system, the thermocline and the
surface layer coincide.

7. Energetics and scaling

In order to determine the dependence of the amplitude
of the eddies on the external parameters, we examine the
global energy balance in the statistical equilibrium. Ac-
cording to Paparella and Young (2002), when the only
energy source is provided by the specification of the tem-
perature at the top, the global energy balance is

H H

2 2 2n ^\=u\ & dz 1 n ^\¹ =u\ & dzE 6 E
0 0

5 kga^T | 2 T | &, (62)z5H z50

where \=u\ 2 [ =u · =u 1 =y · =y is the deformation
(u denotes the horizontal velocity). The left-hand side
of (62) is the dissipation of KE and the right-hand side
is the source of PE: in steady state these two terms must
balance. As explained in Paparella and Young (2002),
the energy balance (62) implies that the energy dissi-
pation vanishes in the limit of zero viscosity (holding
Pr fixed) so that the boundary-forced system that we
are studying is not strictly turbulent.1 This contrasts with
systems with energy input rate independent of n and k
for which the usual arguments leading to the Kolmo-
gorov spectrum apply.

For a shallow system with isotropic viscosity the de-
formation, \=u\ 2 is dominated by the vertical deriva-
tives. For our specific choice of forcing the area-aver-
aged surface temperature vanishes so that (62) is very
well approximated by

H H

2 2 2 2n ^u 1 y & dz 1 n ^\¹ =u\ & dzE z z 6 E
0 0

5 2 kga^T | &. (63)z50

The dominant contribution to the first integral on the
left-hand side of (63) may come from one of two re-
gions: either the bottom Ekman layer or the thermocline.
We find that the relative importance of the two regions
depends on the Prandtl number. The contribution to the
energy dissipation by the hyperviscosity comes from
the scales at the grid size and, although not negligible,
is always smaller than the viscous term: hyperviscosity
is hereinafter omitted from the discussion.

1 One definition of turbulence is that the energy dissipation is non-
zero in the limit of vanishing n and k.

a. Ekman-layer regime

When the Prandtl number is not too large, the energy
dissipation, defined as

H

2 2« [ n ^u 1 y & dz, (64)E z z

0

is dominated by the contribution of the bottom Ekman
layer, so that (64) is approximately

TBL

2 2« ø « [ n ^u 1 y & dz, (65)BL E z z

0

where the upper limit of integration is the top of the
boundary layer. The bottom Ekman layer velocities are
determined by the barotropic component of the eddy
flow.

In this regime bottom drag is the essential equili-
bration mechanism for the baroclinic eddies: energy
is transferred from the baroclinic to the barotropic
eddies and the latter are dissipated in the bottom Ek-
man layer. Because the thickness of the Ekman layer
is d 5 , the dissipation scales asÏ2n/ f

2« ; Ïn f V9 . (66)BL

Using the scaling (66) in (63) and assuming that the
abyssal temperature is the minimum surface tempera-
ture, we find

1/4
k

1/2V9 ; (gaDT ) . (67)1 2Pr f

The relations in (61) and (67) therefore imply that the
depth of the thermocline scales as

3 1/8 21/4h ; ÏL(k Pr f ) (gaDT) . (68)

Although in this regime we do not have a quantitative
prediction for the KE of the baroclinic flow, our scaling
of the dissipation (66) implies that most of the eddy KE
is in the barotropic mode.

b. Thermocline regime

For larger Pr dissipation occurs within the thermo-
cline itself so that

H

2 2« ø « [ n ^u 1 y & dz, (69)TH E z z

TBL

where the integral is performed over all depths above
the bottom boundary layer.2

Because the vertical scale of the eddies coincides with
the thermocline depth h, the dissipation scales as

2« ; ny9 /h,TH (70)

2 The thermocline and the bottom boundary layer are always well
separated so that there is no ambiguity in the definitions of «BL and
«TH.
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FIG. 12. The ratio of energy dissipation in the bottom boundary
layer and in the thermocline, «BL/«TH, as a function of k, for two
values of Pr and H. All other parameters are as in Table 1.

where y9 is the typical amplitude of the baroclinic eddy
velocity.

To determine h from (61) we must relate the baro-
clinic velocity y9 to the barotropic velocity V9. To do
this we invoke the vertically averaged vorticity equa-
tion, whose derivation is given in appendix B:

2 2O[V9/(lt )] O[y9 h /(Hl )]eddy

| |
| | | |

1
2 2 2 2z 5 [(] 2 ] )uy 1 ] ] (u 2 y )] dzt E y x x yH

Ïn f
22 z 1 n¹ z. (71)

2H

Above, z [ Vx 2 Uy is the vorticity of the barotropic
flow. In this regime, the bottom drag is negligible, and
the nonlinear interactions among baroclinic contribu-
tions to the first term on the right hand side of (71) are
the source of barotropic vorticity (Salmon 1980). As-
suming that the time scale is the eddy-turnover time,
teddy 5 l/V9, and that the length scales of baroclinic and
barotropic eddies coincide, we find

2 2 2V9 ; y9 h/H ; gaDTh /(HPr). (72)

In this regime the KE of the baroclinic and barotropic
eddies are of the same order, a prediction that can be
tested with the numerical calculations.

Using the relation (72) in (61) leads to

1/6HPr
1/3h ; (kL) . (73)1 2gaDT

In (68) and (73) we have two different predictions
for the dependence of the thermocline depth h on ex-
ternal parameters.

The scaling (73) is valid as long as the dissipation
effected by the baroclinic flow in the thermocline dom-
inates the bottom-boundary layer dissipation; that is, as
long as

f
2 2y k hV9 . (74)!n

Using (72) and (73) this constraint demands that
4H Pr

2k K (gaDT ) . (75)
31 2L f

This corresponds to the following ordering of the non-
dimensional parameters:

Ek K RoPr. (76)

Thus deep domains, with large Prandtl number, and
large thermal gradients, should follow the thermocline-
dissipation scaling (73).

c. The numerical results

An a posteriori attribution of each numerical com-
putation to either regime follows from the evaluation of

the relative magnitude of «BL and «TH. Figure 12 shows
the ratio «TH/«BL for all numerical computations per-
formed to date. In the experiments with Pr 5 10 the
dissipation is dominated by the bottom boundary layer
contribution. In the runs with Pr 5 50 and H 5 2000
m the dissipation is approximately equipartioned be-
tween the thermocline and the bottom boundary layer
while, when H 5 4000 m, the dissipation occurs pre-
dominantly in the thermocline as predicted by (76).

To illustrate the validity of the proposed scalings we
show in Fig. 13 the barotropic and baroclinic KE as a
function of k for two values of Pr and two values of H.
The prediction that the barotropic KE increases as

is satisfied for the series at Pr 5 10, H 5 2000 m,Ïk
and in this regime the baroclinic KE (asterisks) is less
than the barotropic KE (squares). The ordering (76) sug-
gests that the dependence k2/3 for both the barotropic
and baroclinic KE should be obtained for the two series
at Pr 5 50 and especially for the deeper domain. Indeed,
the scaling (72) with (73) is well satisfied by the two
series at Pr 5 50.

Figure 14 shows the dependence of h on k, Pr, and
H. Both scalings are consistent with our numerical re-
sults, although the dependence (68) does a better job at
collapsing all the data onto one line.

Last, we note that in the ‘‘thermocline regime’’ the
Richardson number, Ri [ N 2/ , is of order2yz

gaDTh
Ri ; , (77)

2y9

and thus scales as the Prandtl number as in the sym-
metric steady state [cf. (36)], (we have assumed that the
relevant vertical stratification is gauz).

The proposed scalings are summarized in Table 2,
and we find that they are in reasonable agreement with
the computations performed to date.
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FIG. 13. The total barotropic (BTKE) and baroclinic (BCKE) KE
per unit area (m3 s22) as a function of k, for two values of Pr and
H. The barotropic velocity is defined as the vertically averaged ve-
locity, and the baroclinic one is the difference between the total and
the barotropic velocity. The KE are divided by the actual abyssal
temperature, 2T | z50, since the latter depends weakly on k. The solid
line shows a k1/2 slope and the dashed line a k2/3 slope. All other
parameters are as in Table 1.

FIG. 14. The depth of the thermocline in meters, defined in (52),
(top) weighted by Pr21/8 and (bottom) weighted by (PrH/H0)21/6 as a
function of the diffusivity k. The values of Pr and H are given in the
legend, and H0 5 2000.

TABLE 2. Summary of the scaling laws obtained in this work, compared with those of the laminar regime; h is the thermocline depth, and
H is the full depth of the ocean. The question mark indicates that the scaling provides no prediction.

Laminar balance
(Welander 1971)

1/2kL
h ; 1 2y

Eddy balance (this work)
1/2kL

h ; 1 2V9

« k «BL TH « K «BL TH

gaDTH
y ;

fL
1/32k fL

h ; 1 2gaDT

1/4k
1/2V9 ; (gaDT )1 2Pr f

1/8(Pr f )
1/2 3/8h ; L k

1/4(gaDT )
1/2k

BTKE ; gaDTH1 2Pr f

BCKE ; ?

1/2 1/2h gaDT
V9 ; y 9 ; h1 2 1 2H HPr

1/6HPr
1/3h ; (Lk) 1 2gaDT

2/3LkgaDT
1/3BTKE ; H1 2Pr

BCKE ; BTKE

The assumption of equal length scales for the baro-
clinic and barotropic eddies, made just before (72), is
perhaps the weakest link in our chain of hypotheses.
Figure 15 shows the normalized spectra of the baro-
tropic and baroclinic KE for three calculations at dif-
ferent values of k, all with Pr 5 50 and H 5 2000 m.
We define the energy spectra as

`

2 2^U9 1 V9 & 5 E (k, t) dk and (78)E BT

0

`

2 2^u9 1 y9 & 5 E (k, z, t) dk. (79)E BC

0

Each spectrum is normalized so that the total area is

unity and it is plotted against the scale k* [ k/kB, where
kB is the wavenumber at the peak of the spectrum, de-
fined as

`

k 5 kE dk. (80)B E
0

Although all spectra collapse almost to a single curve,
the insert shows that the peak wavenumber of the bar-
otropic KE spectrum (the star markers in Fig. 15) does
not coincide with the peak wavenumber of the baroclinic
KE spectrum (the circle markers in Fig. 15). Therefore,
the assumption that the scale of the barotropic and the
baroclinic eddies coincide is not well verified by our
direct simulations. However, an alternative scaling
based on the commonly used argument stating that the
barotropic eddies undergo an inverse cascade governed
by the Kolomogorov spectrum, which is arrested at large
scales by bottom friction (Smith et al. 2002), does not
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FIG. 15. The normalized spectra of barotropic KE, EBT, (solid) and baroclinic KE at z 5 1895
m, EBC, (dashed) for three simulations all at Pr 5 50 and H 5 2000 m. The abscissa is the
wavenumber scaled by the peak wavenumber of each spectrum, k* 5 k/kbc or k* 5 k/kbt. The
black lines are at k 5 8 3 1025, the red lines are at k 5 8 3 1024, and the green lines are at
k 5 8 3 1023. The inset shows the peak wavenumbers of each spectrum in units of 2p/L for the
three values of k: the stars are for the barotropic energy, kbt, and the circles are for the baroclinic
energy, kbc.

fit with the data at all. This is because diffusion (and
thus viscosity at fixed Pr) is important in the cascade;
the usual inviscid arguments leading to the Kolmogorov
spectrum are inapplicable here. The spectra clearly show
injection of baroclinic energy at high wavenumbers
characterized by a narrow peak near the deformation
radius.3 Thus, an inverse cascade indeed transfers energy
upward from the linearly unstable wavenumber toward
larger scales.

In conclusion we regard the dependence on the
Prandtl number as the most convincing evidence that in
the eddying regime the scaling differs substantially from
Welander’s laminar scaling [cf. (68) and (73) with (11)].
However, the scalings proposed here might be revised
and improved by better understanding the factors that
determine the length scales of the eddies.

8. The horizontally averaged temperature

The considerations in sections 6 and 7 apply only to
the vertical scale h defined in (52), which characterizes
u(y, z). We turn now to the vertical structure of the
horizontally averaged temperature, ^T&(z).

3 The two-dimensional spectrum, not shown here, illustrates that
the high-wavenumber peak is near the lowest wavenumbers in the y
direction but at high wavenumbers in the x directions.

Obviously, the scalar model of section 6 cannot de-
termine the horizontally averaged stratification because
^T&(z) is balanced by the small vertical eddy fluxes,
associated with the horizontal divergence of the ageo-
strophic velocity [as in (1)]. Several terms contribute to
the time-dependent ageostrophic vertical velocity, in-
cluding friction, diffusion, and the (poorly) resolved hy-
drostatic convection, which strongly depends on the hor-
izontal resolution, because it preferentially operates at
horizontal scales much smaller than our grid size (Mar-
shall and Schott 1999).4 Thus, it is difficult to single
out a dominant mechanism for the vertical eddy heat
flux and provide a scaling argument.

The numerical results, shown in Fig. 16, suggest
that the vertical scale of the mean stratification h 0 ,
defined as

1/2H H

2 2h [ ^T(z) 2 T(0)& dz ^T & dz , (81)0 E E z@[ ]
0 0

decreases as k1/3 and, unlike the vertical scale of the
zonally varying stratification, h, it is approximately in-
dependent of the Prandtl number. Because the numerical

4 Specifically, we find that without convective adjustment, the bot-
tom temperature decreases toward the minimum surface value as the
horizontal resolution increases.
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FIG. 16. The vertical scale of the mean stratification in meters, h0

defined in (81), as a function of the diffusivity k. The solid line shows
the slope k1/3.

results do not support a clear dependence on the depth
of the domain H, dimensional analysis suggests that
Welander’s scaling (10) might apply for the horizontally
averaged stratification, although for entirely different
reasons than those originally advanced.

9. Summary and discussion

Our study focuses on the role of baroclinic eddies in
effecting heat fluxes that balance diapycnal mixing, and
thus establishing a thermocline, that is, a region con-
taining the temperature gradients imparted to the ocean
surface by the atmosphere. In order to study this ther-
mocline formation in its simplest setting, we have ex-
cluded the processes that would generate a mean me-
ridional circulation, such as wind stress and lateral
boundaries.

We find that the eddy fluxes of heat that balance the
diabatic fluxes are mainly due to the barotropic com-
ponent of the eddies, rather than to the baroclinic eddy
velocities. This is a well-known result in the context of
the two-layer, quasigeostrophic model (Salmon 1980,
Larichev and Held 1995), and we find that it applies
even in the continuously stratified limit studied here,
where the mean stratification, associated with the hor-
izontally averaged temperature ^T&(z), is smaller than
the latitudinally varying stratification, related to the zon-
ally averaged temperature u(y, z). Unlike the quasigeo-
strophic systems analyzed by Salmon (1980); and Lar-
ichev and Held (1995), we do not have a traditional
turbulent cascade: here diffusion and viscosity deter-
mine the energy generation rate. As a result, the prop-
erties of the statistically steady state depend on viscosity
and the Kolmogorovian arguments based on inertial cas-
cades are inapplicable.

The accuracy of the scalar model of section 6 confirms
the predominance of the barotropic eddies, that is, the

vertically averaged and horizontally nondivergent flow,
in transporting heat. Thus eddy transport is horizontal
rather than along isopycnals. Because the vertical eddy
fluxes are small compared to the horizontal eddy fluxes,
the eddies are diabatic, and in our eddy-driven ther-
mocline diapycnal diffusion enters the dominant balance
for both the time-dependent fluctuations and the zonal
average. The scalar model confirms a peculiar picture
of a time-dependent temperature field that is advected
horizontally and diffused vertically.

Because the equilibrium amplitude of the eddies de-
creases with increasing viscosity, the depth of the ther-
mocline depends both on k and n. The viscosity param-
eter does not appear in the laminar theory of Welander
(1971). It is also noteworthy that in both of our scalings
the dependence on the temperature difference DT and
on the horizontal domain size L does not occur solely
in the combination DT/L as in Welander’s theory. This
is because the total potential energy of the system de-
pends on the difference between the top and the bottom
temperature, which enters the scaling through the energy
constraint. However, the dependences on the tempera-
ture difference and on the horizontal domain size have
not been tested in our series of calculations.

Our results indicate that baroclinic eddies with scales
from 50 to 100 km can maintain a thermocline against
diapycnal diffusion, which is of the same order of mag-
nitude as what would be obtained in a closed basin using
Welander’s laminar theory. In both cases, using ob-
served midocean values of diapycnal diffusivity, the
thermocline is too shallow: stratification is observed
throughout the deep and abyssal ocean, while our ther-
mocline is only 100 m deep for our smallest diffusivity.
Thus, it is likely that the interaction of eddies and the
mechanical forcing imparted by the wind allows the
surface gradients to penetrate much deeper than with
buoyancy forcing alone.
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APPENDIX A

The Numerics

The hydrostatic Boussinesq equations (12) are written
in finite-difference form on the Arakawa C grid. The
vertical differencing, on nz levels, is Lorenz type; that
is, u, y, p, and T are on the same levels zpk, while w is
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TABLE A1. Summary table of the physical and numerical parameters
used in the computations. The symbols are defined in the text.

Pr
H

(m)
k

(m2 s21) nz A
y6

(m6 s21) N

50
50
50
50
50

2000
2000
2000
2000
4000

8.0 3 1025

7.9 3 1024

2.5 3 1023

7.9 3 1023

7.9 3 1024

75
30
30
29
27

6.75
6.8
6.8
7.0
7.0

9 3 1015

3 3 1017

3 3 1017

3 3 1017

3 3 1017

256
128
128
128
128

50
50
10
10
10

4000
4000
2000
2000
2000

2.5 3 1023

7.9 3 1023

7.9 3 1024

2.5 3 1023

7.9 3 1023

80
27
82
50
40

6.8
6.8
8.0
8.0
8.0

3 3 1017

3 3 1017

9 3 1015

3 3 1017

3 3 1017

128
128
256
128
128

on the levels zwk intermediate between zpk21 and zpk

(Arakawa and Moorthi 1988).
The vertical grid spacing is uniform in a transformed

variable s defined by

H z
s [ z 2 sin 2p . (A1)1 2A H

With the constraint, A . 2p, the physical grid interval
can be stretched near the center of the domain, where
little resolution is needed, and reduced near the top and
bottom boundaries where the Ekman layers are located.
This formulation maintains second-order accuracy of the
vertical differentiation (Marti et al. 1992).

We use a second-order, three time-levels stepping
scheme (leapfrog–trapezoidal), with the advective terms
calculated at the central time, the horizontal diffusion,
and viscosity terms at the previous time and the vertical
diffusion and viscosity terms treated with a Crank–Nich-
olson implicit scheme (one-half at the forward time and
one-half at the previous time). The time step is Dt 5
900 s for all runs at 1282 grid points and Dt 5 450 s
for the computations at 2562 grid points.

The rigid-lid top and bottom boundary conditions im-
ply an integral constraint on the horizontal divergence,
enforced by solving an elliptic equation for the vertically
averaged pressure. See Fantini (1999) for details.

Table A1 shows the physical and numerical param-
eters for all the experiments performed, and N denotes
the number of grid points in each horizontal direction.
Here we note the typical dissipation time scales asso-
ciated with the viscous parameters: the spindown time,
tEk [ dH/n, ranges from 5 to 100 days; the hypervis-
cosity damping time on the grid scale, tn6 [ (dx)6/n6,
ranges from 5 to 10 days; and the viscosity damping
time on the grid scale, tn [ (dx)2/n, ranges from 5 to
500 years.

APPENDIX B

The Vertically Averaged Vorticity Equation

Subtracting the y derivative of the x momentum equa-

tion from the x derivative of the y momentum equation
in (12) we obtain

2 2 2 2(y 2 u ) 1 (] 2 ] )uy 1 ] ] (u 2 y )x y t x y x y

1 ] [(wy) 2 (wu) ] 2 f (u 1 y )z x y x y

25 n(y 2 u ) 1 n¹ (y 2 u ). (B1)x y zz x y

Taking the vertical average, and using the incompress-
ibility condition to eliminate the horizontal divergence,
we arrive at

H

21 2 2 2 2z 1 H [(] 2 ] )uy 1 ] ] (y 2 u )] dzt E x y x y

0

2 215 n¹ z 2 H n(y 2 u ) | . (B2)x y z z50

Standard analysis of the bottom Ekman layer gives

f
(u 1 iy) | ø (1 1 i)(u 1 y )| , (B3)z z50 I I z50!2n

where (uI, yI) indicates the interior velocity above the
bottom boundary layer. Assuming that the interior ve-
locity at the bottom is dominated by the barotropic com-
ponent (U, V) we find

n f
n(y 2 u ) | ø (V 2 U ). (B4)x y z z50 x y! 2
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