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ABSTRACT OF THE DISSERTATION 
 
 

Heat Transport and Spin Accumulation in Nanoscale Magnetic Multilayers 
 
 

by 
 
 

Michael Joseph Gomez 
 

Doctor of Philosophy, Graduate Program in Materials Science and Engineering 
University of California, Riverside, June 2019 

Dr. Richard B. Wilson, Chairperson 
 

Understanding heat transport in metal multilayers on nanometer length scales and picosecond 

time scales after femto-second laser heating is important for a wide variety of scientific fields, 

including ultrafast magnetism, spin caloritronics, photocatalysis, and many more. Understanding 

spin-transport in magnetic systems following laser excitation is important for the burgeoning field 

of THz spintronics. Currently, the mechanisms are not well understood for how heat and spin are 

transported in nanoscale magnetic systems on ultrafast time-scales.  

The goal of my thesis research is to develop new experimental methods for studying heat-

transfer and spin-transfer in nanoscale magnetic multilayers. My research can be divided into five 

categories.  First, I designed and built a TDTR and TR-MOKE pump/probe system capable of 

wavelength dependent scans.  Second, I characterized interfacial spin-currents between Au layers 

and adjacent iron-garnet insulators with magnetic order.  Third, I showed that wavelength 

dependent thermoreflectance experiments on Au allow for independent measurements of electron 

vs. phonon temperatures. Fourth, I characterized heat-transfer in Au/Co multilayer systems.  

Finally, fifth, I characterized spin-transport across Au/Co multilayer systems. 
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I also investigate spin-transport in Au/magnetic insulator bilayer systems. Typically, these 

systems are investigated indirectly via transverse charge currents and then the coefficient of 

interest, such as the spin dependent Seebeck coefficient, is related back to the charge current via 

secondary effects, such as the inverse spin Hall effect. In order to describe this Au/magnetic 

insulator system more completely, I utilize a variety of time-domain thermoreflectance and time-

resolved magneto optic Kerr effect measurements to more completely investigate the processes.  

Thermoreflectance measurements and predictions typically rely on the assumption that 

electrons and phonons in the metal are in thermal equilibrium. I conduct wavelength dependent 

TDTR measurements of a thin Au film.  These measurements show that electron and phonon 

contributions to the thermoreflectance are wavelength dependent.  Therefore, wavelength-

dependent TDTR allows for phonon specific or electron specific thermometry of Au systems.  

 Through a combination of wavelength dependent time domain-thermoreflectance (TDTR) and 

time-resolved magneto optic Kerr effect (TR-MOKE) measurements, I provide insight into the 

complicated heat transport behavior in nanoscale metal systems. An important result of my work 

is the development of new experimental methods for studying how photoexcited electrons transport 

energy with respect to penetration depth into the sample as well as the nonequilibrium between 

electrons and phonons in nanoscale Au multilayer systems. As it stands, the transport behavior of 

hot electrons after femtosecond laser heating is still debated. Specifically, it is not currently possible 

to predict whether hot electrons transport energy ballistically (travel near the Fermi velocity), or 

transport energy diffusively (related to the materials diffusivity) diffusive transport. Electron-

electron, electron-phonon, and phonon-phonon interactions produce a complicated set of scattering 

events. By using several TDTR and TR-MOKE experiments and by fitting the experimental results 

with a thermal model, I am able to describe the distance hot electrons travel in the first few 

picoseconds after photoexcitation as neither ballistic nor diffusive, but rather superdiffusive.  
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Spin accumulation in metals is not yet completely described. Typical methods for measuring 

spin accumulation are indirect, in that they measure secondary electrical effects and then relate 

them back to the phenomena of interest, e.g. the inverse spin hall effect. I use TR-MOKE 

measurements to directly measure spin injections into Au films due to demagnetization of adjacent 

magnetic metal or magnetic insulator materials. Finally, I report measurements of  the Kerr angle 

of Au as a function of wavelength.  My experimental measurements of the Kerr angle vs. 

wavelength are in reasonable agreement with theory.  
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Introduction 

 

Hot electron dynamics in metals after femtosecond laser excitation have been of great interest 

for several years, with technological developments in ultra-fast pulsed lasers in the late 1980s 

spawning an era of ultra-fast pump-probe spectroscopy research. One focus of these pump-probe 

experiments was the thermal relaxation of the hot electrons in a metal system. In these pump-

probe experiments, an ultra-fast laser pulses excite the metal’s electrons into a non-equilibrium 

distribution. These hot electrons scatter with electrons and phonons until the electrons are in 

thermal equilibrium with the phonons, after which the excess energy deposited by the ultra-fast 

laser pulse diffuses into the substrate. With the goal being to describe the thermal relaxation of 

the hot electrons separate from other effects, in 1987 Phil Allen [1] derived a microscopic model 

for describing the thermal relaxation coupling constant, epg , used in the heat diffusion eq. 1.  The 

electron-phonon energy transfer coefficient epg  describes the transfer of energy between the hot 

electrons and the phonons  

( )e
e ep p e

dT
C g T T

dt
= − .             (1) 

This microscopic description of the coupling constant promoted experimental investigation 

into the coupling constant via pump-probe techniques in nm thick metal films[2-4]. In addition to 

several studies on how hot electrons relax in thin-metal films, experiments were carried out to 

investigate how hot electrons carried energy across thick Au metal layers. Brorson et al. 

performed pump probe experiments on Au layers of varied thickness and measured how long heat 

took to arrive on one side after laser excitation of the other. They concluded that heat transport in 

Au layers between 20nm and 300nm was ballistic because the hot electrons travelled near the 

Fermi velocity.  Furthermore, the time-scale for heat arriving on the opposite end of the Au film 

scaled linearly with increasing Au thickness [2].  
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Though the problem of transport in Au layers has been studying for decades, the behavior of 

heat transport in nm thick metals on ultra-fast time scales following photo-excitation remains 

unclear[5-6]. Complex electron-electron, electron-phonon, and phonon-phonon scattering proves 

to be a difficult task to describe following ultra-fast laser pulse heating leading to complications 

in heat transport descriptions.  

Recently there has been a resurgence of interest regarding describing heat transport in 

nanoscale metal multilayers due to several discoveries in the fields of ultrafast magnetism and 

spintronics [6-12]. Demagnetization of a nanoscale magnetic multilayer via an ultra-fast laser 

pulse was shown to inject a spin current into an adjacent non-magnetic metal with applications 

relating to non-volatile magnetic memory [7]. Optically driven spin currents have been shown to 

produce emission of previously elusive THz radiation ranging from 1-30THz due to ultra-fast 

heating of magnetic multilayers [8].  Ultra-fast optical switching in magnetic multilayers was 

shown following laser pulse heating in which a single femtosecond pulse was able to reverse the 

magnetization of a magnetic film on picosecond time-scales[9].  Understanding all of these 

phenomena requires knowledge of whether heat transfer in a metal multilayer is diffusive or 

ballistic.  However, no clear criteria currently exist for determining when and why heat transfer is 

diffusive vs. ballistic in a metal after laser excitation.  

In parallel with the discoveries described above, several recent experiments have provided 

new insight into heat transfer in bilayer and multilayer systems, e.g. Au/Pt bilayers 100ps [13-15] 

.  These studies discovered that heat-transfer is more complex and interesting in multilayer 

samples than single thin-film samples.  For example, while the time-scales needed for electrons to 

thermalize with phonons is less than 1 ps in most single element thin-films, it may be as long as 

100ps [13-15] in metal multilayers. The ability of electrons with different spin further 

complicates transport in magnetic materials.  Up and down electrons have different mobilities and 
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thermal transport properties [16-17]. Disagreement between transport behavior persists as the 

debate as to whether heat is transported ballistically, diffusively, or super-diffusively and the 

degree to which hot electron transport is responsible for the ultra-fast magnetization dynamics 

following ultra-fast laser pulse heating is unknown [2, 5-6, 18-21].  

In order to better understand the heat transport behavior in these nanoscale magnetic 

multilayer systems, new experimental methods are needed to measure how far hot electrons 

transport energy.  Additionally, new methods for optically detecting spin currents will improve 

understanding of spin transport in nanoscale systems on ultrafast time-scales. My PhD work 

focuses on the development of such experimental methods.  I also present the experimental 

studies that advance the state of the art in the four areas listed below. 

My PhD work aims to resolve four gaps in understanding related to ultra-fast heat transport: 

1. How far can photo-excited hot electrons transport energy following femtosecond laser 

excitation in nanoscale magnetic multilayers?  

2. Can we use wavelength dependent thermoreflectance measurements to distinguish 

between electron vs. phonon temperature rises in Au systems? 

3. What are the microscopic origins of the spin Seebeck effect, i.e. the generation of spin-

current due to temperature gradients in nanoscale metal/magnetic-insulator 

heterostructures? 

4.  What are the magneto-optic properties of Au in the presence of spin-accumulation and 

how do they depend on wavelength? 

In order to resolve these gaps, I built a time-domain thermoreflectance (TDTR) and time-

resolved magneto optic Kerr effect (TR-MOKE) pump/probe apparatus.  The apparatus can 

perform measurements as a function of position, probe energy, and thickness of metal layer.  In 
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short, I designed a series of experiments that can measure how heat and spin evolve in space and 

time on nm length and ps time scales.  

The first experiments I performed with the pump/probe system focused on the origins of 

thermoreflectance in Au. After a femtosecond laser pulse is absorbed by the metal’s electrons, the 

temperature of the Au electrons and phonons increase. Changes in the reflectance of the metal after 

ultra-fast heating are proportional to the change in temperature. In chapter 3, I show that  time-

domain thermoreflectance measurements of a thin Au film as a function of probe wavelength allows 

for independent measurements of the electron temperature and the phonon temperature.  

I used time-resolved magneto optic Kerr effect measurements in my other three experimental 

studies. MOKE stands for the magneto-optic Kerr effect. MOKE describes a small rotation of the 

polarization that occurs when light reflects from a magnetic material. The amount of polarization 

rotation is proportional to the magnetic moment of the material.  In a non-magnetic material, such 

as Au, MOKE is a sensitive probe of spin-accumulation that occurs due to spin injection from 

adjacent layers.   

The first TR-MOKE experiments I performed focused on using MOKE as a thermometer. I 

studied heat transfer in Au-Co multialyers that consisted of 4 alternating layers of Au and Co ~ 

1nm thick, followed by an optically thick layer of Au between 90 and 300 nm thick. I optically 

excited the Au surface with a pump laser pulse.  I monitored the temperature of the Co as a function 

of time via MOKE measurements.  The magnetic moment of the Co is temperature dependent.  

Therefore, by measuring the change in magnetization of Co, I can monitor how much energy arrives 

at the Au/Co multilayer from the opposite Au surface. I conducted experiments as a function of Au 

thickness, varying the Au from 90 to 230 nm thick.  We also explored how changing the Au 

transport layer to Cu effected results.  I found that in Au the hot electrons travel ~60 nm further 

than diffusive theory predicts, which may be a signature of superdiffusive transport. In Cu, hot 



  

5 
 

electron transport is significantly different than in Au despite similar thermal properties.  The 

differences between Au and Cu demonstrate the necessity of using microscopic transport models 

for describing energy transfer in nanoscale metal systems. 

I studied spin-injection from two types of systems: Au/iron-garnet bilayers and Au-Co 

multilayers. First, I describe our experiments on Au-Co multilayers.  The Au-Co multialyers 

consisted of 4 alternating layers of Au and Co ~ 1nm thick, followed by an optically thick layer of 

Au between 90 and 300 nm thick. The primary goal of these experiments was to measure how the 

Kerr angle of Au depends on wavelength. A secondary goal was to measure the distance spin can 

diffuse across Au layers. In these experiments, we heat the Co layers with our pump laser.  This 

ultrafast heat generates a spin-current.  Spin diffuses across the Au layer.  We detect the spin 

accumulation at the Au surface (opposite end of the sample to the Co layer). By repeating these 

experiments as a function of probe energy, we measure the Kerr angle of Au vs. wavelength. My 

work on optical detection of spin accumulation in Au provides insights to spin transport on nm 

length scales and ps time scales, as well as corroborating theory predictions. 

I also used MOKE to study the microscopic origins of the spin Seebeck effect. These 

experiments focused on 60 nm Au / iron-garnet bilayers.  Similar to the AuCo experiments, ultrafast 

heating results in a spin-current.  However, changing the spin source from a magnetic metal 

multilayer to a magnetic insulator layer, such as a rare earth doped iron garnet, results in a different 

spin injection mechanism.  Spin-current between Au and a magnetic insulator is governed by 

temperature gradients. At equilibrium, constant annihilation and creation of magnons across the 

Au/iron garnet interface is taking place due to metal electron and magnetic insulator magnon 

coupling. Electrons in the metal colliding with the interface can either create or absorb a magnon 

from the magnetic insulator.  This interaction flips electron spins. At equilibrium, the creation and 

annihilation of magnons results in no net spin accumulation in the Au. After laser absorption, a 
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temperature difference between the Au/iron garnet interface removes the system from equilibrium, 

increases the rate of magnon emission, and causes spin to accumulate in the Au layer on ps time 

scales. The generation of a spin current due to a temperature gradient is called the spin-dependent 

Seebeck effect (SSE).  Typically the SSE is measured via secondary effects, such as the inverse 

spin Hall effect (ISHE), and a charge current is then related to a spin current. Ideally the SSE would 

be investigated directly, and described fully. I use TDTR to measure the temperature gradients and 

thermal transport properties.  I use TR-MOKE to measure the spin accumulation into the Au that 

results from these temperature gradients. The Spin Seebeck coefficient varies by a factor of three 

for Au/TmIG, Au/TbIG, Au/EuIG, and Au/YIG systems.  It is largest in Au/TmIG.  My 

experiments suggest that the magnitude of the SSE is dominated by interfacial properties, and not 

the magnetic properties of the garnets themselves. 
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CHAPTER 1 

 
 

Experimental Methods 

 
High Sensitivity Pump-Probe Measurements of Magnetic, Thermal,  

and Acoustic Phenomena with a Spectrally Tunable Oscillator 
 
 

We describe an optical pump/probe system for sensitive measurements of time-resolved optical 

measurements of material dynamics. The instrument design is optimized for time-resolved 

magneto-optic Kerr effect (TR-MOKE) measurements of dynamics in magnetic materials. The 

system also allows for time-domain thermoreflectance (TDTR) measurements of thermal transport 

properties, and picosecond acoustic measurements of film thickness and/or elastic constants. The 

system has several advantages over the conventional design for TR-MOKE and/or TDTR systems. 

Measurements of pump-induced changes to the probe beam intensity are shot-noise limited, 

corresponding to a nanoradian noise floor in MOKE experiments. Furthermore, the wavelengths of 

the probe beam are straightforward to tune between 350-530 and 690-1060 nm. A tunable 

wavelength allows for optical resonances in a wide array of materials to be excited and/or probed. 

The setup is calibrated to allow for the real and imaginary components of Kerr signals to be 

separately quantified. Finally, the system’s design allows for MOKE and/or thermoreflectance 

measurements of both sides of a sample. Pumping and probing the sample on opposite sides allows 

time-of-flight measurements of transport phenomena in nanoscale films.   
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I. Introduction. — Pump/probe instruments are common tools for characterizing dynamics of 

materials. In a typical pump-probe experiment, an optical pump pulse excites the sample. The time-

evolution of the excitation is recorded by measuring changes in optical properties with a time-

delayed probe pulse. In a time-resolved magneto optic Kerr effect measurement, the probe pulse 

indirectly detects changes in magnetization of a magnetic material via changes in the polarization 

of the reflected probe pulse. In a time-domain thermoreflectance experiment, the probe pulse 

measures temperature induced changes in the reflectance of a thin-metal film.  Pump-probe 

apparatuses are often designed to operate in a narrow spectral region, e.g. near 800 nm where 

emission from Ti:Sapphire lasers is a maximum [1-10].     

An ability to tune the wavelength of the probe and/or pump laser is desirable for several reasons.  

A tunable probe wavelength can allow additional information to be extracted from pump/probe 

experiments that is not otherwise possible. Hot carrier energy distributions in Au can be extracted 

from wavelength dependent TDTR measurements [11]. Wavelength dependent TR-MOKE 

measurements of ferrimagnetic TbFeCo thin metal films allow for an independent determination of 

the magnetization dynamics of the rare-earth vs. transition-metal magnetic sublattices [12]. 

Another advantage of laser wavelength tunability is signal strength. In both TDTR and TR-MOKE 

experiments, probe signal levels are typically small. For example, consider a time-resolved 

magneto optic Kerr effect measurement of a thin film of magnetic metal.  The Kerr angle, i.e. the 

difference in polarization between reflected and incident light, is on the order of 1 mrad.  If the 

pump beam induces a 1% change in magnetization, the probe signal of interest will be ~ 10-5 of the 

total. Probe signal levels are comparable in time-domain thermoreflectance experiments [2]. Pump 

induced temperature changes in metal films are typically on the order of 1 K, and the 

thermoreflectance of most metals is on the order of 10-5 K-1 [2].  
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Tuning the probe wavelength to optical resonances of the sample can significantly increase the 

signal strength in a pump/probe experiment. The Kerr angle in Au/Co multilayers varies by as much 

as a factor of 15 between  1.5 and 5 eV [13]. Many magnetic insulators have negligible Kerr angles 

at infrared wavelengths, but large magneto-optical responses at energies above their band gap, e.g. 

above 2.5 eV in yttrium iron garnet [14].  

An ability to tune laser wavelength in a pump-probe experiment is helpful for picosecond 

acoustic measurements. TDTR and TR-MOKE experiments often rely on picosecond acoustic 

measurements of the metal film thickness to analyze the data [3]. Picosecond acoustic 

measurements use strain-induced changes in reflectivity of a metal film to measure the time for a 

pump-induced sound wave to traverse the film [15]. Since the speed-of-sound in metals is typically 

known, this allows an accurate determination of the film thickness. Unfortunately, the reflectance 

of many metals is not sensitive to strain at all wavelengths. For example, picosecond acoustic 

signals are negligible in Au and Cu in the near infrared, but large at interband transitions near 2 eV 

[16]. 

Here, we provide details of a pump/probe instrument design that takes advantage of the 

wavelength tunability of commercially available Ti:Sapphire oscillators. The rest of the paper is 

organized as follows. In section II, we provide the details of our experimental setup and provide a 

Jones matrix analysis of the MOKE signals we detect in our apparatus. In section III we provide 

examples of TDTR, picosecond acoustic, and TR-MOKE data acquired with the instrument.  

II. Experimental Setup. — The pump/probe system is shown in Fig. 1.1. The setup is built around 

a Mai-Tai Ti:Sapphire oscillator.  The laser wavelength is tunable between 690 and 1060 nm.  The 

average output of the oscillator power is 1.8 W at 690 nm, 2.88 W at 800 nm, and 0.9W at 1060 

nm. The setup is designed for experiments with both red (690-1060 nm) or blue (350-530 nm) 

pump and probe beams, i.e. red-pump/red-probe, red-pump/blue-probe, blue-pump/blue-probe, or 
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blue-pump/blue-probe. Two of these four possible configurations are shown in Fig. 1.1: red-

pump/red-probe and red-pump/blue-probe. 

The laser passes through two collimating lenses  to increase the beam size to ~ 4 mm and reduce 

divergence. A 4 mm beam size is small enough to simplify alignment down-stream through the 

Faraday isolator and Electro-Optic-Modulator. After the lenses, we use two mirrors to change the 

height of the beam from  3 inches to 5.5 inches above the optical table.  The beam height remains 

at 5.5 inches throughout the rest of the setup.  Next, the beam passes through a broadband half 

wave-plate and a broad-band Farady isolator. The half-wave plate, together with the polarizing 

beam splitter on the input of the Faraday isolator, allows us to reduce the laser beam power. The 

isolator also prevents back reflections from destabilizing the oscillator. We use a half wave-plate  

and polarizing beam splitter  pair to divide the laser into pump and probe beams.  

Pump Beam Path. The pump beam is modulated with a 50% duty cycle at frequency modf  with 

an electro-optical modulator (Conoptics 350-160 with model 25D driver). After the electro-optic 

modulator, we use a 3x beam expander  to increase the diameter of the pump beam to 7 mm before 

the delay stage. This is necessary because the beam divergence of a gaussian laser is inversely 

related to the beam waist. The delay stage changes the path length of the pump beam. Without 

reducing the divergence, the change in path length would result in the pump beam spot-size that 

changes with delay-time, which is undesirable for stroboscopic experiments. After the beam 

expander, the pump beam bounces of two retroreflectors that are mounted on a 1 m long mechanical 

delay stage.  This allows a change in pump path length of 4 m, corresponding to a change in delay 

time of 13.34 ns. A delay time that spans the full 12.5 ns delay between laser pulses allows for 

analysis of the   

After the delay stage, the pump beam takes one of two paths, depending on the wavelength 

desired.  If the experiment requires a pump wavelength between 350 and 530 nm, a mirror on a 



  

13 
 

kinematic mount diverts the pump beam through a home-built second harmonic module. The 

module consists of two lenses and a BBO crystal.  After the module, the pump passes through a 

low-pass optical filter and is directed towards the piezo mirror.  For experiments that require a 

pump wavelength between 690 and 1060 nm, the pump beam is directed directly towards the piezo 

mirror after the delay stage without passing through the SHG module. 

The piezo-mirror that allows for computer control of the angular displacements. The piezo-

mirror works together with two lenses and an objective lens.  The objective lens focuses the pump 

onto the sample surface.  The location on the sample where the beam is focused onto depends on 

the angle the pump beam impinges on the objective lens.  Therefore, the piezo-mirror and two 

lenses allow the position of pump beam to be rapidly scanned on the sample surface without optical 

aberrations changing the size and/or shape of the focused beam. 

Probe Beam Path. After being separated from the pump beam by the polarizing beam splitter 

after the Faraday isolator, the probe beam passes through two lenses that expand the beam to 7mm 

to prevent divergence. Then, the probe beam passes through a second-harmonic generation module.  

The second harmonic module converts doubles the frequency, i.e. converts the 690 – 1060 nm beam 

into 345 – 530 nm beam. The second harmonic module consists of a half-wave-plate, a focusing 

lens, a 2mm lithium triborate crystal on a rotation stage, a collimating lens, and a dichroic mirror 

to separate the fundamental from the frequency doubled light. When the probe beam passes through 

the lithium triborate crystal at normal incidence, the conversion efficiency is a maximum when the 

probe wavelength is  865 nm. For higher (lower) probe wavelengths we rotate the lithium triborate 

crystal clock-wise (counter clockwise) about it’s z-axis until the second harmonic power is a 

maximized. The conversion efficiency at 690, 800, and 1060 nm for an input power of 0.5 W is 10, 

15, and 12%. After the SHG module, we include two lenses to remove divergence from the module.  

After the lenses, the probe beam is between 4 and 5 mm for 350 to 530 nm light.   
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If the desired probe wavelength is in the infrared, we insert two mirrors mounted on kinematic 

mounts so that the probe beam bypasses the second harmonic module, shown in Fig. 1.1.  In this 

case, the probe spot-size is 4 to 5 mm for 690 to 1060 nm light. 

The probe beam is directed towards the sample and objective lens with a non-polarizing beam 

splitter. The probe beam is focused on the sample with the objective lens. We use the piezo-mirror 

to move the pump beam across the sample surface until the pump and probe beam are overlapped, 

for confocal microscopy setup see Fig. 1.2. While Fig.1.2b shows our beam-offset experimental 

results and gaussian fit for the x and y directions of the beam overlap, in which the 0w  radius at 

2

1

e
 of the maximum signal.  

The probe path length is ~3.75 meters shorter than the pump path length, corresponding to a 

phase shift of 12.5 ns. This has no effect on the measurement since the rep-rate of the probe pulses 

is 80 MHz and the laser’s phase jitter is much less than the pulse duration.  

Signal Detection. Fig.1.1  shows the detection path for red vs. blue probe light. On the detection 

line, an optical filter blocks the pump light.  After passing through a Soleil-Babinet Compensator 

(Thorlabs SBC-VIS) and broadband half-wave plate, the probe beam is split into orthogonal 

polarizations of light via a half-wave plate and Woolaston prism combination. After reflecting from 

a knife-edge right-angle prism mirror, each polarization is focused onto one of two inputs of a 

balanced amplified Si photodetector (Thorlabs 450A-AC). The photodetector outputs three 

voltages. 1V , 2V , and RFV . The monitor outputs  1V  and 2V  are proportional the optical powers 

on each of the two inputs.  The monitor output RFV is proportional to the difference in two optical 

outputs.  The RFV output has a bandwidth is 100 Hz to 150 MHz, and therefore excludes the 

unmodulated CW component of the optical signal.  
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For TDTR experiments, the half-wave plate is rotated so that the full reflected probe beam 

intensity is focused on only one input. The balanced detector output RFV  is proportional to the 

reflectance of the sample. The RF-output is sent to a radio-frequency lock-in (SRS 844), which 

detects pump-induced changes in the reflectance at pump modulation frequency modf . 

For TR-MOKE experiments, the signal of interest is related to the polarization of the reflected 

probe beam.  The interaction of the probe beam with the sample, optical elements in the detection 

line, and half-wave-plate is described by the vector equation  

[ ][ ][ ]
( )
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0 exp0 sin cos 0
HWP C S

p psx
o

y sp s

r rE E E
T iT
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,   

(1) 

where [ ]S  and [ ]HWP  are the Jones matrix for the sample and half-wave plate, and θ  is the 

angle between the half-wave plate’s fast axis and the horizontal direction x .  oT  accounts for the 

transmission of the optical components between the sample and detector that do not affect the 

relative phase of the x  and y  components of the electric field. In our setup oT ≈  0.9. Finally, 

[ ]C  is a Jones matrix to account for the phase retardation caused by the reflection from optical 

components between the sample and the half-wave plate. This matrix includes the effect of the 

compensator, as well as the phase change from 45° reflections from optical elements with 

multilayer dielectric coatings, such as broad-band beam splitters and mirrors, is significant and 

depends strongly on wavelength.   

During MOKE measurements, the half-wave plate is rotated to θ π≈ / 4  so that the horizontal 

and vertical components are roughly equal. The Woolaston prism divides x  and y  components 

and diverts them towards the two inputs balanced photodiode. The monitor outputs generate a 

voltage of  



  

16 
 

( ) ( )

( ) ( )

* * * *
1 M

* * * *2

exp exp

2 exp exp

pp pp pp sp sp pp sp spo i

pp pp pp sp sp pp sp sp

r r r r i r r i r rV T I

V r r r r i r r i r r

γ γ

γ γ

 + + − +  ℜ  =     − − − + 

 ,  (2) 

where  iI  is the intensity of the probe power incident on the sample surface, and Mℜ  is the 

responsivity of the monitor outputs. The output of the RF photodiode is proportional to the 

difference in the optical power on each input, 

( ) ( )( )exp expRF RF o i pp sp pp spV T I r r i r r iγ γ∗ ∗= ℜ + − ,                       (3) 

where RFℜ  is the responsivity of the RF output, which is roughly a factor of 2 lower than Mℜ in 

our detector.  Next, we rewrite Eq. (2) and Eq. (3) with the Fresnel reflection coefficients in polar 

form, ( )exppp pp ppr r iφ=  and ( )expsp sp spr r iφ= , and assume sp ppr r� .  This yields 

2
1 2 / 2Mo p iV V T r I≈ ≈ ℜ ,  (4) 

and 

( ) ( ) ( ) ( )2 cos cos sin sinRF RF i pp sp sp pp sp ppV I r r φ φ γ φ φ γ = ℜ − + −
  . (5) 

The quantity of interest in a MOKE measurement is the complex Kerr angle,  

( ) ( )( )cos sinK k k sp p sp p sp pp sp ppi r r r r iθ ε φ φ φ φΘ = + = = − + − .  (6) 

In a polar MOKE geometry (probe incident at normal incidence), both  kθ  and kε  are 

proportional to the magnetic moment in out-of-plane direction. Comparing Eqs. (4-6), we see that 

the RF monitor outputs a signal equal to  

( ) ( )14 cos sinM
RF k k

RF

V V γ θ γ ε
ℜ

≈ +  ℜ
. (7) 
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Inspection of Eq. (7) indicates that our signal measures the real part of the Kerr angle for γ = 0  

and the imaginary part for γ π= / 2 .  The MOKE signal measured by the balanced detector will 

be maximized when  ( )1tan /k kγ ε θ−= .   

The phase change from 45° reflections from optical elements with multilayer dielectric coatings 

is significant and depends strongly on wavelength. We measured the value of γ  from the optical 

elements on the detection path prior to the compensator and half-wave plate with a rotating quarter 

wave plate polarimeter.   

The inclusion of the compensator on the detection line allows us to control the value of γ . 

Control of γ  provides several advantages. It allows us to independently determine kθ  and kε  vs. 

wavelength of our samples. For samples with multiple magnetic layers, adjusting γ  allows us to 

isolate the magneto-optic signal from distinct layers, as outlined in Refs. [17] and [18]. 

The final step of signal detection is lock-in amplification. The RF-output of the balanced detector 

is sent to a radio-frequency lock-in (SRS 844), which detects pump-induced changes in the MOKE 

signal at the pump modulation frequency modf . We use low pass electric filters to remove 

unwanted frequency components that arise due to the square wave modulation of the pump beam. 

The in-phase and out-of-phase signals measured by the RF-lockin are outputted to two computer-

based audio frequency lock-in amplifiers (NI model number of DAQ card). The audio frequency 

lock-ins are synchronized to the 200 Hz frequency of the mechanical chopper in the path of the 

probe beam. This removes background signals created by coherent rf pickup. The in-phase and out-

of-phase signals are reported to a LabVIEW interface that also controls the delay line.  The signals 

are recorded as a function of delay time between the pump and probe beams. 

III. Experimental Results. — To test the effect of changing the probe wavelength in our 

measurements, we performed three sets of experiments on three types of samples. We performed 
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wavelength-dependent TDTR measurements of a thin 60 nm Au film on sapphire, wavelength-

dependent MOKE measurements of a Au/Co multilayer on sapphire, and picosecond acoustic 

measurements of Au and Cu multilayer samples.   

All samples were prepared via dc magnetron sputter deposition on c-cut sapphire substrates with 

an AJA Orion sputter system. The base pressure of the sputtering chamber is less than 5 x 10-8 torr. 

During sputtering, a mass flow controller connected to high purity argon raises the chamber 

pressure to ~3.5·10-3 torr.  

A nice advantage of a tunable probe wavelength is the ability to use optical resonances of the 

transducer to amplify signal amplitude. To test how optical resonances can enhance 

thermoreflectance signal, we performed wavelength dependent TDTR measurements on a 60 nm 

Au film. The d-bands in Au are ~2.5 eV below the Fermi level. In Fig. 1.3, we show TDTR 

measurements with pump and probe energies of 1.58 and 2.61 eV, where at 2.61eV the 

thermoreflectance signal is maximized.  A probe energy of 2.61 eV results in a thermoreflectance 

signal ~4x larger than at 1.58 eV. The 2.61 eV probe results in Fig. 1.3 are scaled to account for 

decreased absorption of the pump energy at 1.58 eV, and the reduced modulation amplitude of 

our EOM at 1.58 vs. 2.61 eV. Both data sets are in good agreement with heat-diffusion equation 

predictions with a sapphire thermal conductivity of Λ ≈ 38  W m-1 K-1 and an Au/sapphire 

interface conductance of G ≈  50 MW m-2 K-1.  

Interestingly, while the shape of the TDTR signal for probe wavelengths at both 1.58 and 2.61 

eV are nearly identical at delay times longer than 10 ps, the shape of the curves differ significantly 

at picosecond time-delays. We credit this difference to increased sensitivity of the 

thermoreflectance to the electron temperature distribution because the electrons are hundreds of 

Kelvin hotter than the phonons for 1-2 picoseconds after pump excitation. Prior studies have 
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suggested that the thermoreflectance of noble metals is primarily sensitive to the electron 

temperature near interband transitions [19, 20].  

To explore the effect of the Au interband transitions on the MOKE signal from Au/Co 

multilayers, we performed a series of TR-MOKE with varied probe wavelengths.  In Fig.1.4 we 

show the results from TR-MOKE scans with pump and probe energies of 1.58 and 2.36 eV. We 

chose 2.36 eV probe for comparison to our 1.58 eV data because the signal was a maximum at 2.36 

eV.  After accounting for differences in absorption and EOM modulation amplitude, we observe 

that the MOKE signal from Au/Co increases by ~2x at 2.36 vs. 1.58 eV. 

IV. Summary. — We have presented the instrumentation for a high sensitivity pump/probe 

system whose pump and probe wavelengths are broadly tunable. The system uses takes advantage 

of both the wavelength tunability, and ultra-low-noise of Ti:sapphire oscillators to sensitively detect 

changes in temperature, magnetic moment, and strain in optically excited samples. We have 

analyzed the effect of optical elements with broad band dielectric coatings on our MOKE 

experiments.  Finally, we have shown the utility of tuning the probe energy to coincide with 

interband transitions of the metal for increasing thermoreflectance, magneto-optic, and picosecond-

acoustic signals. 
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V. Figures. — 

 

 

Figure 1.1 Ti:Sapphire laser and pump-probe laser system. A tunable Ti:Sapphire laser (690-
1050nm, 345-530nm) with a repetition rate of 80MHz and pulse duration of 700fs is modulated 
with an Electro-Optic-Modulator, and mechanical chopper. A radio-frequency lock-in (SRS 844) 
and computer-based audio frequency lock-in amplifier (NI-DAQ PCI-4474) are used to detect  
pump induced changes in reflection and polarization. 
 
 
 



  

21 
 

 

Figure 1.2 Confocal pump lens configuration. After the pump beam exits the delay stage mirrors, 
a mirror mounted with x and y piezo electric motors is used to adjust the position of the pump 
beam on the sample. Two lenses whose separation length depends on the respective focal lengths 
are used to provide a consistent entry point into the objective lens, while also allowing for x and y 
displacement on the sample surface. This consistent entry point into the objective while retaining 
movement of the beam on the sample surfaces removes aberrations due changes in entry 
positions, as well as beam-offset measurements for characterizing the beam spot size.  
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Figure 1.2b. Beam offset measurements with Gaussian fits in the x and y directions. By using a 
mirror mounted with x and y piezo-electric motors the spot size of the pump and probe overlap 
was determined on micron length scales. Calibration of the rad/step of the piezo-electric motors 
was conducted using a beam profiler and by knowing the focal length of the objective lens used, 

the 
2

1

e
 beam radius was experimentally measured for the x and y direction.  
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Figure 1.3. Thermoreflectance measurements and model predictions of 60nmAu on sapphire. In 
phase (green cirlces) and out of phase (blue triangles) thermoreflectance data and model 
predictions were conducted as a function of probe energy (1.58eV and 2.61eV). Change in 
reflectance and model predictions indicate that our system is in agreement with previous Au 
thermoreflectance measurements.  
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Figure 1.4. TR-MOKE measurements as of a 5nm/AuCoML/sapphire sample as a function of 
probe energy (1.58eV 2.36eV). In phase (green circles) and out of phase (blue triangles) 
experimental results and model predictions show a change in Kerr angle after ultra-fast laser 
heating.  
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CHAPTER 2 

 
 

Spin-Dependent Seebeck Effect 

 

 

Ultrafast Measurements of the Longitudinal Spin Seebeck Effect in Nanoscale 

Metal-Iron Garnet Bilayers 

 
 
 

We investigate picosecond spin-currents across Au/iron-garnet interfaces in response to 

ultrafast laser heating of the electrons in the Au film. In the picoseconds after optical heating, large 

interfacial spin currents occur due to an interfacial temperature imbalance between electrons in the 

metal and magnons in the insulator. We use time-resolved magneto-optic Kerr effect (TR-MOKE) 

and time domain thermoreflectance (TDTR) measurements to measure the magnitude of the spin-

current due to interfacial temperature gradients between Au and  �����	
�, where � is Tm, Y, Eu, 

Tb.  We observe a spin-current between Au/TmIG that is three times larger than Au/YIG.  The 

factor of three difference is comparable to changes we observe by changing the interface quality of 

Au/TbIG and Au/EuIG layer via different sample preparations.    
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I. Introduction. — The longitudinal spin Seebeck effect (LSSE) describes the injection of spin 

currents into a nonmagnetic metal because of a temperature gradient across a nonmagnetic-

metal/magnetic-insulator heterostructure [1]. Understanding spin currents emanating from 

magnetic insulators is of fundamental interest to the magnetic community.  The SSE may have 

applications for spintronic information technologies and heat waste scavenging [2].  

Spin current across the metal/insulator interface relies on magnon emission and absorption at 

the interface by flipping the spin of an itinerant electron in the metal [2]. A temperature difference 

across the interface between electrons and magnons creates an imbalance in the number of magnons 

emitted vs. absorbed.  The resulting heat-current is often approximated as 

Q e m e mj G T− −= ∆  ,       (1) 

where e mG −  is the electron-magnon interfacial thermal conductance and e mT −∆  is the 

temperature drop across the interface between electrons and magnons.  Since this heat-current is 

due to the absorption/emission of magnons, it is accompanied by a spin-current. The spin current 

is hypothesized to equal the product of the heat-current and the ratio of angular momentum per unit 

of thermal energy,  

( )2 /s Q Bj j e k T= .       (2) 

Spin injection across the interface is of central importance to the SSE [2]. However, relatively 

little data exists regarding the magnitude of e mG −  and how it depends on microscopic properties 

of the metal and magnetic-insulator.  The reason for this is that , typically, the LSSE is not measured 

directly, but rather inferred from a transvers electrical current measurement via the inverse spin 

Hall effect (ISHE)[3]. The LSSE is a complex phenomenon and depends on the electron-phonon 

coupling in the metal layer, the electron-magnon coupling at the metal-magnetic insulator interface, 

and the magnon-phonon coupling in the magnetic insulator. If the spin Hall effect is used to 
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determine the LSSE, the spin Hall angle of the metal must also be known. Ideally when a 

phenomenon is so complex, each of the dependent variables would be measured with independent 

experiments. Furthermore, systematic effects in transverse thermopower measurements introduce 

reproducibility problems.  A recent round robin measurement of the same device by five research 

groups resulted in values of S  that varied by a factor of ten [4]. 

 Here, we follow Ref. [5] and use a combination of time-resolved magneto optic Kerr effect 

(TR-MOKE) and time-domain thermo-reflectance (TDTR) measurements to quantify e mG −  in 

Au/iron-garnet insulator bilayers. TDTR is a well-established method for measuring thermal 

transport properties and characterizing temperature fields due to laser heating [6]. TR-MOKE 

measurements allow us to directly measure spin accumulation in the non-magnetic layer. In TDTR 

and TR-MOKE experiments, an ultrafast pump laser heats electron in a non-magnetic layer. A time-

delayed probe pulse monitors the temperature evolution via changes in reflectance.  Spin 

accumulation in the metal that results from electron-magnon scattering is detected via changes in 

the polarization of the reflected probe laser (MOKE). 

We characterize the LSSE in nanoscale systems comprised of a non-magnetic metal (Au) and 

an iron garnet magnetic insulator (�����	
�, �:Tm, Y, Eu, Tb) layer. For Tm, Eu, and Tb, the 

rare-earth ion replaces Y3+ ion. The magnetic moment of the rare-earth is antiparallel to the 

tetrahedral Fe ions, parallel to the octahedral ions. As a result, moving from Y to Tm to Eu to Tb 

systematically decreases the total magnetization of the iron-garnet. 

II. Sample preparation. —The iron garnets were grown via laser ablation deposition in a high 

vacuum environment. The iron-garnet samples were deposited on single crystal Gallium 

Gadolinium Garnet 
��
��	
� (GGG) or Neodynium doped Gallium Gadolinium Garnet 

��: 
��
��	
� (NGGG) substrates. The magnetic insulator layers are ~20nm thick.  The magnetic 

insulator samples then went through a rapid thermal annealing procedure in a cleanroom 
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environment. The samples were then loaded into a high vacuum sputtering chamber (AJA Orion) 

to deposit the Au film.  Prior to Au film deposition, the samples were annealed at 200 C for 1 hr in 

in a mixture of UHP Oxygen and Argon. After the iron garnet samples cooled in high vacuum to 

room temperature, Au was sputtered via DC magnetron sputtering at 3.5 mTorr at a power of 10 

W. The target sample distance was ~10cm.  The majority of the Au layers sputtered were ~60nm 

thick. We also performed measurements on samples with 5 nm and 40 nm Au films and prepared 

one  20nmPt/TmIG/NGGG sample, though little to no signal was present due to the high spin-flip 

behavior of Pt. Film thicknesses were characterized via a combination of probe beam deflection 

measurements, and/or TDTR measurements on films sputtered reference substrates with known 

thermal properties, e.g. sapphire or BK7 glass.  

To understand the importance of interface quality, we also varied how the garnet-sample 

surface was cleaned prior to the deposition of the Au film. Different interface preparation methods 

were used, e.g. solvent cleaning, plasma cleaning, chemical etching, annealing, etc. A more in-

depth discussion of how interface quality effects our results is in section V. 

III. Experimental methods. — Our pump-probe laser system detects changes in reflectance 

(TDTR) and polarization of reflected light (TR-MOKE) to monitor pump induced changes in 

temperature and magnetic moment of the non-magnetic film. Our pump-probe system uses a 

variable wavelength (690-1060nm) Ti:sapphire laser with a repetition rate of 80MHz and pulse 

width of 700 femto seconds. An electro-optic modulator (EOM) modulates the pump laser at a 

frequency of 10.7MHz where the laser intensity noise of Ti:sapphire oscillator is shot-noise limited. 

A delay stage varies the arrival time of the pump laser pulses to the sample relative to the probe 

pulses. For TDTR measurements and probe beam deflection measurements, the reflected probe 

laser is focused on a single photo-diode to monitor pump-induced changes in reflectance. For TR-

MOKE measurements, the reflected probe beam is split into orthogonal polarizations and focused 
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onto one of two photodiodes in a balanced photodetector. The RF signal from the photo detector 

was is measured with a RF lock-in (SRS 844) and computer lock in (NI-DAQ PCI-4474). 

IV. Results. — Time-domain thermoreflectance results.  We fit the TDTR data on time-scales 

shorter than 10 ps with a two-temperature model. The only fit parameter was the electron-phonon 

coupling constant.  The two-temperature model is in good agreement with our data with 

16 3 12 10  W m  Kepg
− −≈ ⋅ , see Fig. 2.1.  After 10 picoseconds, the electrons and phonons in the 

Au layer are in thermal equilibrium and a two-temperature model is not necessary. We fit the long-

time delay data with a multilayered solution to the heat-diffusion equation [6]. We include further 

discussion of TDTR below as a method for probing interfacial quality.  

 To investigate electron-phonon coupling in the Au, we needed to understand the temperature 

evolution of the electrons and the phonons, respectively, in the Au layer. We accomplished this by 

conducting wavelength dependent TDTR measurements of a 60 nm Au layer, as shown in chapter 

3 of this work. Wavelength dependent TDTR measurements are advantageous for our first area of 

interest due to the electron distribution of Au [8]. Hohlfeld et al. showed that the thermoreflectance 

of Au for photon energies near 2.5 eV possess more sensitivity to electron temperature than photon 

energies in the near-infrared, e.g. 1 eV.  Wilson et al. report that in the infrared, the experimental 

values for Au thermoreflectance are consistent with simple models that assume the 

thermoreflectance in the near-infrared is dominated by the phonon temperature. At lower energies 

the s/p electrons in the Au are the predominant oscillators responsible for the reflection of the 

incident probe light, while increasing energies allows for transitions from electrons in the d bands 

to partake in the probe light reflection. We assume the thermoreflectance is a combination of the 

change in electron and phonon temperature, 

∆� = �∆�� + �∆���,                (3) 



 .  
 

32 
 

where � and � are sensitivity scalars for the electron and phonon contribution for the 

thermoreflectance that depend on wavelength. Thus, by varying the probe energy incident on the 

Au layer, we vary our sensitivity to the electron and phonon temperature response, which gives us 

vital information regarding the electron-phonon coupling in the Au layer.  

 
We perform TR-MOKE measurements to measure the magnitude of spin accumulation in the 

60nm Au film following laser heating.  The amount of spin-accumulation in the Au following laser 

heating depends on the Au thickness, the spin-flip scattering time of Au electrons, the electron-

magnon interface conductance e mG − , and the magnitude of the temperature difference between 

the Au electrons and iron-garnet magnons.  The only uknown is e mG − , therefore we can deduce 

e mG −  from TR-MOKE measurements of spin-accumulation. 

 We use polar MOKE to detect spin-accumulation in the Au with a probe beam energy of 1.58 

eV.  The polarization of the spin-current is determined by the orientation of the iron-garnet 

magnetic moment. Therefore, our experiment requires the magnetic moment of the iron-garnet 

point in the out-of-plane direction.  We control the orientation of the iron-garnet field with an 0.3T 

external magnetic field from a nearby NdFeB permanent magnet. Each measurement consists of 

two scans with the external magnetic field in opposite directions.  The final MOKE signal we report 

is the difference in signal measured with positive vs. negative magnetic field.  

We show the results of TR-MOKE measurements of four iron-garnet samples in Fig.2.2. After 

the pump laser irradiates the Au  at a time delay of 0 ps, spin starts to accumulate in the Au film. 

The peak in accumulation occurs at the end of the pump laser pulse duration. After the pump laser 

is no longer present, the hot electrons cool, the spin accumulation dissipates due to spin-flip 

scattering, and the  signal decays towards zero.  
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The data in Fig. 2.2 is normalized for pump fluence.  Therefore, the differences in signal 

heights are a result of differences in e mG −  between the Au and various iron-garnets. The value 

of e mG −  for TmIG is a factor of 3 higher than YIG.  We see no correlation in the strength of 

signal and the magnetic moment of the iron-garnet.  Yttrium-iron-garnet has the highest magnetic 

moment, but weakest signal. The Au/TmIG sample produces higher spin-accumulation signals 

than the Au/TbIG sample, despite Tb  moment being larger. We conclude other effects, e.g. 

interfacial structure or iron-garnet stoichiometry govern the signal strength.  Further 

characterization of the iron garnets would be helpful in corroborating or dismissing this.  

To test how interface properties effect e mG − , we performed several experiments to study 

interfacial quality.  We performed TDTR measurements of the total thermal resistance arising from 

the metal/garnet-insulator interface, the garnet-film, and the garnet-film/substrate interface.  We 

also performed probe beam deflection measurements of the lifetime of acoustic waves in the Au 

film, which depends on interface quality.   

TDTR is a sensitive probe of interfacial properties because the time-evolution of the 

temperature of the Au film is primarily determined by the phonon interface conductance of the 

Au/iron-garnet layer.  The time-evolution is also governed by the thermal conductivity of the iron-

garnet layer, and the thermal effusivity of the substrate. TDTR measurements of the temperature 

evolution of the Au surface of a 60 nm Au/TmIG/NGGG sample are shown in Fig. 2.3. This data 

is representative of similar scans we conducted on all samples. To analyze the TDTR data, we fixed 

the thermal conductivity of the iron-garnet layer to 5 W m-1 K-1, and the substrate effusivity to 

literature values.  We treat the interface conductance between the metal film and iron-garnet layer 

as a fit parameter in our model.  
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Table 1.1 summarizes the interfacial conductivities for all samples we performed TR-MOKE 

samples on. The samples labeled in table 1.1 were prepared in a variety of ways, specifically 

regarding their individual surface treatment before DC magnetron sputtering of the Au film.  

TmIG1a was deposited onto NGGG followed by rapid thermal annealing in oxygen. The 

sample was taken immediately from the rapid thermal anneal chamber and placed into our AJA 

Orion sputter chamber. Once in the sputter chamber, the sample was annealed to 200C for 1 hour 

in a gas mixture of 10mTorr Argon and 1mTorr UHP Oxygen. The sample was allowed to cool to 

room 28C and then Au was sputtered onto the TmIG1a.  

TmIG1a was then submerged in an Au etchant (Sigma Aldrich Standard Gold Etchant) for 10 

minutes followed by Piranha etching for 1 hour. TmIG1a was then immediately placed into our 

AJA Orion sputter chamber and was subsequently annealed to 200C for 1 hour in a gas mixture of 

10mTorr argon and 1mTorr UHP oxygen. The sample was allowed to cool to room 28C and then 

Au was sputtered onto the TmIG1a, now to be called TmIG1b. 

YIG1 and was deposited onto GGG followed by rapid thermal annealing in oxygen. The sample 

was taken immediately from the rapid thermal anneal chamber and placed into our AJA Orion 

sputter chamber. Once in the sputter chamber, the sample was annealed to 200C for 1 hour in a gas 

mixture of 10mTorr argon and 1mTorr UHP oxygen. The sample was allowed to cool to room 28C 

and then Au was sputtered onto the YIG1. YIG2 followed a similar process as YIG1 with the only 

difference being the thickness of Au sputtered.  

TbIG1a was deposited onto GGG followed by rapid thermal annealing in oxygen. The sample 

was not taken immediately from the rapid thermal anneal chamber, but rather left in ambient 

conditions for several weeks. TbIG1a was then Piranha etched for 1 hour and then immediately 

placed into our AJA Orion sputter chamber. Once in the sputter chamber, the sample was annealed 
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to 200C for 1 hour in a gas mixture of 10mTorr Argon and 1mTorr UHP Oxygen. The sample was 

allowed to cool to room 28C and then Au was sputtered onto TbIG1a.  

TbIG1a was then submerged in an Au etchant (Sigma Aldrich Standard Gold Etchant) for 2 

minutes followed by submersion in acetone for 1 hour and then ethanol for 15 minutes. TbIG1a 

was then immediately placed into our AJA Orion sputter chamber and was subsequently annealed 

to 200C for 1 hour in a gas mixture of 10mTorr argon and 1mTorr UHP oxygen. The sample was 

allowed to cool to room 28C and then Au was sputtered onto the TbIG1a, now to be called TbIG1b. 

TbIG1b was then submerged in an Au etchant (Sigma Aldrich Standard Gold Etchant) for 2 

minutes followed by Piranha etch for 1 hour. TbIG1b was then immediately placed into our AJA 

Orion sputter chamber and was subsequently annealed to 200C for 1 hour in a gas mixture of 

10mTorr argon and 1mTorr UHP oxygen. The sample was allowed to cool to room 28C and then 

Au was sputtered onto the TbIG1b, now to be called TbIG1c. 

TbIG2a was deposited onto GGG followed by rapid thermal annealing in oxygen. The sample 

was taken immediately from the rapid thermal anneal chamber and placed into our AJA Orion 

sputter chamber. Once in the sputter chamber, the sample was annealed to 200C for 1 hour in a gas 

mixture of 10mTorr Argon and 1mTorr UHP Oxygen. The sample was allowed to cool to room 

28C and then Au was sputtered onto the TbIG2a.  

TbIG2a was then submerged in an Au etchant (Sigma Aldrich Standard Gold Etchant) for 2 

minutes followed by Piranha etch for 1 hour. TbIG2b was then immediately placed into our AJA 

Orion sputter chamber and was subsequently annealed to 200C for 1 hour in a gas mixture of 

10mTorr argon and 1mTorr UHP oxygen. The sample was allowed to cool to room 28C and then 

Au was sputtered onto the TbIG2a, now to be called TbIG2b. 

EuIG1 was deposited onto GGG followed by rapid thermal annealing in oxygen. The sample 

was not taken immediately from the rapid thermal anneal chamber, but rather left in ambient 
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conditions for several weeks. EuIG1 was submerged in acetone for 1 hour followed by 15 minutes 

in ethanol. EuIG1 was then immediately placed into our AJA Orion sputter chamber. Once in the 

sputter chamber, the sample was annealed to 200C for 1 hour in a gas mixture of 10mTorr Argon 

and 1mTorr UHP Oxygen. The sample was allowed to cool to room 28C and then Au was sputtered 

onto EuIG1.  

EuIG2 was deposited onto GGG followed by rapid thermal annealing in oxygen. The sample 

was taken immediately from the rapid thermal anneal chamber and placed into our AJA Orion 

sputter chamber. Once in the sputter chamber, the sample was annealed to 200C for 1 hour in a gas 

mixture of 10mTorr Argon and 1mTorr UHP Oxygen. The sample was allowed to cool to room 

28C and then Au was sputtered onto the EuIG2.  

EuIG3 was deposited onto GGG followed by rapid thermal annealing in oxygen. The sample 

was not taken immediately from the rapid thermal anneal chamber, but rather left in ambient 

conditions for several weeks. EuIG3 was Piranha etched for 1 hour. EuIG3 was then immediately 

placed into our AJA Orion sputter chamber. Once in the sputter chamber, the sample was annealed 

to 200C for 1 hour in a gas mixture of 10mTorr Argon and 1mTorr UHP Oxygen. The sample was 

allowed to cool to room 28C and then Au was sputtered onto EuIG3. EuIG4 followed the same 

process as EuIG3.  

EuIG5 was deposited onto GGG followed by rapid thermal annealing in oxygen. The 

sample was not taken immediately from the rapid thermal anneal chamber, but rather left in ambient 

conditions for several weeks. EuIG5 was submerged in acetone for 1 hour followed by 15 minutes 

in ethanol. EuIG1 was then immediately placed into our AJA Orion sputter chamber. Once in the 

sputter chamber, the sample was annealed to 200C for 1 hour in a gas mixture of 10mTorr Argon 

and 1mTorr UHP Oxygen. The sample was allowed to cool to room 28C and then Au was sputtered 

onto EuIG5.   
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Interfacial thermal conductance is sensitive to interfacial atomic bonding strength, interfacial 

roughness and disorder [7]. The interface conductances of the samples in Fig. 2.2 showing high 

interfacial thermal conductivities on the order of 0.1 W m-1 K-1. Since the phonon interfacial 

thermal conductance does not vary appreciably between these samples, we can assume that the 

adhesion between the metal and iron-garnet films, the interfacial roughness, and interfacial disorder 

are not appreciably different between samples. 

As a further test of interface quality, we used time-domain probe-beam deflection as an 

additional probe of interfacial quality [9]. The time-scale that the acoustic oscillations persist over 

provides another measure of interfacial quality.  We show typical results for the probe-beam-

deflection experiments in Fig. 2.4.  

We find that treatments of the iron-garnet surface have a significant effect on the magnitude of 

the interfacial spin Seebeck effect, i.e the amount of spin-accumulation we observe for a fixed 

amount of pump fluence.  In Fig. 2.5, we show three separate TR-MOKE measurements of the 

same TbIG film.  For the first measurement, we piranha cleaned the TbIG before loading in the Au 

sputter The initial 60nmAu layer was etched using a chemical Au etchant and the Tb sample was 

then cleaned with acetone and ethanol and the sample preparation procedures from section II were 

carried out, although with a slightly thinner Au thickness of 40nm due to changes in sputter rate. 

TR-MOKE measurements were conducted and the Au film was etched away again, though on this 

occasion the surface was cleaned with a 1 hour soak in Piranha solution. As can be seen from Table 

2.1 and from Fig. 2.5, the signal decreased dramatically after treating the surface with acetone and 

ethanol and the signal was then able to be partially restored to its original value after cleaning with 

Piranha. This corroborates the importance of a pristine surface in these SSE measurements.  

To measure the thickness of the Au layer, beam deflection measurements were carried out on 

several samples, in which the period of oscillation in the TDTR signal is related to the thickness of 
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Au via the longitudinal speed of sound in Au, as shown in Fig. 2.4. Table 2.2 shows the period of 

oscillation, as well as the damping coefficient, in which the dampened harmonic equation similar 

to [5] was used.  

V. Summary.— By using a medley of pump-probe experiments, we were able to gain 

experimental results pertaining to the dependent variables of the LSSE in Au/IG bilayer systems 

on sub-picosecond timescales. Typically the SSE is measured via secondary effects, such as the 

inverse spin Hall effect (ISHE), and a charge current is then related to a spin current. Ideally the 

SSE would be investigated directly, and described fully. By using a series of TDTR and TR-MOKE 

measurements I was able to describe the spin accumulation in Au/iron garnet layers as a function 

of wavelength and various iron  garnet spin sources. We are able to experimentally determine the 

electron-phonon coupling a 2 ∙ 10
!"/#�$ � in order to understand the temperature evolution 

throughout the Au film We also obtain SSE coefficient of  1 ∙ 10%&/#�$ for AuTmIG1a which is 

in good agreement with other works. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 .  
 

39 
 

VI. Figures and Tables.—  
 
 

 
FIG. 2.1 Thermoreflectance data and model predictions of 60nmAu/Sapphire. TDTR 
measurements were performed on the Au layer of a 60nmAu/Sapphire as a function of probe energy 
(1.3 and 1.8eV). Thermoreflectance data with model prediction (black squares and line) at 1.8eV 
provide information regarding the temperature of electrons in the Au. Data and model prediction 
(blue circle and line) at 1.3eV provide information regarding the temperature of phonons on the 
Au.  
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Figure 2.2. TR-MOKE of 60nmAu as a function of iron garnet spin source. 60nmAu sputtered 
onto thulium (blue squares), terbium (purple circles), europium (light blue triangles), and yttrium 
(green diamonds). The amount of spin accumulation after femto-second laser absorption in the 
Au layer depends strongly on the type of-iron garnet.  
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FIG.2.3 Thermoreflectance data and model prediction. A TDTR measurement was performed on 
60nmAu/TmIG/NGGG sample at 1.58eV probe energy. The experimental ratio of the in-phase and 
out-of-phase data (navy blue circles) were fit with a thermal model (green line) in order to obtain 

the interfacial thermal conductivity (0.107
�

��
). The interface quality effects spin injection into the 

Au. Similar experiments and modeling were performed an all our bilayer systems. 
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FIG.2.4 Beam deflection data and model prediction. A beam deflection TDTR measurement was 
performed on the Au layer of a 60nmAu/TmIG/NGGG sample. Periodic oscillations in the 
experimental data (navy blue circles) pertain to the thickness of the Au layer via dampened 
harmonic oscillation. Our experimental data was fit with a least squares model prediction (green 
line) governed by dampened harmonic oscillation. Similar experiments and modeling were 
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FIG. 2.5 TR-MOKE data of Au on TbIG. The 60nm Au was chemically etched away from the 
Au/TbIG sample. Following the Au etch, the sample was cleaned with acetone and ethanol and 
approx. 40nm was sputtered onto the TbIG (due to changes in sputter rate). A thinner Au layer 
should increase the temperature gradient between Au and TbIG because the electron temperature 
will be higher for the same absorbed fluence.  However, the TR-MOKE signal decreased 
dramatically.  We credit the decrease to poor interface quality. After etching the Au layer once 
more, Piranha solution was used to clean the surface and the signal then was able to somewhat 
recover in strength suggesting that the acetone and ethanol cleaning method severely hindered the 
spin injection into the Au layer.  
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Table. 2.1 Thermal conductivity fits for Au/IG samples. TDTR measurements were fit using a 
thermal model and with the Au, iron-garnet, and substrate material properties known, the interface 
was used as the fitting parameter. The interfacial conductivity changed depending on sample 
treatment, as discussed above. 

 

 

 
Table. 2.2 Beam deflection table containing period of oscillation, the corresponding thickness of 
Au, and the dampening coefficient. TDTR/beam deflection measurements were carried out several 
Au/IG samples and were then fit with a dampened harmonic function as shown in Fig 2.4.  

 

 

 

 

 

 

 
 

 

Sample Au (nm)  Λ (W/m•K) 

TmIG1a     62.5 .107 

TmIG1b     41.5 .095 

YIG1     61.5 .103 

YIG2     45.5 .086 

TbIG1a     59.8 .099 

TbIG1b     42.5 .081 

TbIG1c     38.3 .094 

TbIG2a     61.3 .091 

TbIG2b     40.5 .100 

EuIG1     67 .070 

EuIG2     60 .072 

EuIG3     55.5 .110 

EuIG4     63 .080 

EuIG5     58 .077 

 

Sample Au (nm) Г (GHz Ta(ps) δ 

TmIG     60 30.3 33.0 1.0 

YIG     60 38.9 30.4 1.6 

TbIG     60 36.4 28.9 2.0 

EuIG     60 34.1 29.2 1.7 

EuIG     60 33.3 30.9 1.6 

YIG     43 42.6 20.6 2.0 



 .  
 

45 
 

References 

1.  Xiao, J., et al. (2010). "Theory of magnon-driven spin Seebeck effect." Physical Review 
B 81(21): 214418. 
 
2. Uchida, K., et al. (2014). "Longitudinal spin Seebeck effect: from fundamentals to 
applications." Journal of Physics: Condensed Matter 26(34): 343202. 
 

3.  Uchida, K., et al. (2008). "Observation of the spin Seebeck effect." Nature 455(7214): 778. 
 
4.  Sola, A., et al. (2018). "Spincaloritronic measurements: a round robin comparison of the 
longitudinal spin Seebeck effect." IEEE Transactions on Instrumentation and Measurement. 
 
5.  Kimling, J., et al. (2017). "Picosecond spin Seebeck effect." Physical review letters 118(5): 
057201. 
 
6.  Cahill, D.G., Analysis of heat flow in layered structures for time-domain 
thermoreflectance. Review of Scientific Instruments, 2004. 75(12): p. 5119-5122 
7.  Shen, M., et al. (2011). "Bonding and pressure-tunable interfacial thermal conductance." 
Physical Review B 84(19): 195432. 
  
8.  Hohlfeld, J., S.-S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, Electron 
and lattice dynamics following optical excitation of metals. Chemical Physics, 2000. 251(1-3): p. 
237-258 
 
9.  Hohensee, G.T., W.-P. Hsieh, M.D. Losego, and D.G. Cahill, Interpreting picosecond 

acoustics in the case of low interface stiffness. Review of Scientific Instruments, 2012. 83(11): p. 
114902 



 .  
 

46 
 

 

 
CHAPTER 3 

Thermoreflectance of Au 

 

 

Electron and Phonon Contribution to Thermoreflectance in Au as a function of Probe Energy 

 
 
 

In the femto- to pico-seconds after laser excitation of a metal, electrons and phonons are not in 

thermal equilibrium. Conventional optical and electrical thermometry techniques assume local 

thermal equilibrium exists in the material, i.e. that electrons and phonons are the same temperature.  

In this study we revaluate this assumption for thermoreflectance experiments, a common type of 

optical thermometry. We use wavelength dependent time domain thermoreflectance (TDTR) to 

study whether electron and phonon temperatures can be determined independently of one another. 

We show that the sensitivity of Au thermoreflectance to phonon vs. electron temperature is a strong 

function of wavelength.  We show that the commonly used two temperature model is not in 

agreement with our experimental data when the probe wavelength is in the visible.  We credit this 

disagreement to nonthermal hot electron effects that are neglected by the two-temperature model. 

Our results will be useful for experimental studies of nonequilibrium heat transfer in metal 

multilayers.    
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I. Introduction.— The dielectric function of a metal describes the response of charge to light.  

The response is due to transitions between electronic states.  The transitions can be between states 

in the same electronic band (intraband) or between states in different electronic bands (interband).  

Both types of transitions are sensitive to changes in the temperature of electrons and phonons. 

These transitions are sensitive to temperature for the following reasons [1]. 

 

i. Volume thermal expansion decreases the plasma frequency and causes shifts and warping in the 

electron energy bands through changes in the one-electron potential.  Changes in the bands cause 

the Fermi level to shift. 

ii. If the metal is a thin-film constrained by the substrate, thermal expansion also causes shear strains.  

Shear strains can split degenerate energy bands and cause shifting and warping as well. Warping 

can affect the Fermi level. 

iii. The phonon population increases. This decreases electron relaxation times and shifts and warps the 

energy bands through the electron-phonon interaction. 

iv. The Fermi distribution broadens with increasing temperature.  This affects all interband transitions 

that originate or terminate on states near the Fermi level. 

v. The electron-electron scattering rates increase with increasing temperature. This is a small effect, 

but may not be negligible.  The role of electron-electron scattering is analyzed carefully in: 

“Electron-electron scattering in the intraband optical conductivity of Cu, Ag, and Au” by Beach 

and Christy, Physical Review B, 1977[2].  It is also discussed in a more recent paper by Pat 

Hopkins, “Influence of electron-boundary scattering on thermoreflectance calculations after intra- 

and interband transitions induced by short-pulsed laser absorption.”[3]. 

vi. The Fermi level increases even for a free electron gas, but this is a small effect. 
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vii. If the temperature change is brought about by a current flow through the sample, the current flow 

displaces the distribution function in k-space. This change in distribution will affect interband 

transitions that originate or terminate on states near the Fermi level. 

These seven origins of the thermoreflectance imply that the thermoreflectance will not be equally 

sensitive to changes in electron vs. phonon temperature.  For example, volume thermal expansion 

(i) occurs primarily because of increases in phonon temperature [4]. Reasons (iii) and (iv) are 

describe direct effects of phonon vs. electron temperature increases, respectively. Furthermore, the 

strength of these various effects can be expected to depend strongly on wavelength. For example, 

changes in the Fermi-distribution due to electron temperature changes will matter most for 

wavelengths the excite transitions that originate / terminate at the Fermi level.  Therefore, we expect 

the thermoreflectance sensitivity to phonon vs. electron temperature to be a strong function of 

wavelength.  

The goal of this work is to measure how the thermoreflectance depends on the temperature of 

phonons vs. electrons in a simple metal.  To do this, I perform wavelength dependent TDTR 

experiments of a thin 60 nm Au film. We choose Au as a model system to study because the d-

band is located ~2.4 eV below the Fermi level, see Fig. 3.1.  As a result, we expect the 

thermoreflectance to be very sensitive to the electron temperature near 2.4 eV (reason iv).   

Alternatively, in the infrared, Au behaves like a free electron metal and we expect 

thermoreflectance to be dominated by the phonon temperature (reason (iii)). 

II. Experimental Methods.— In a TDTR experiment, the Au film is irradiated with a pump pulse.  

Then a time-delayed probe pulse measures pump induced changes in the reflectance.  Details of 

our TDTR setup can be found in Chapter 1.  In the first few picoseconds after laser excitation, the 

electrons and phonons have different temperatures.  We hypothesis that the resulting time-evolution 

of the electron and phonon temperatures will cause a time evolution of the reflectance given by, 
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( ) ( ) ( ) ( ) ( )e p e p

e p

R R
R t T t T t T t T t

T T
λ λα β

∂ ∂
∆ = ∆ + ∆ = ∆ + ∆

∂ ∂
.  (3-1) 

 Here, R  is reflectance, t  is time after pump excitation, pT  is the phonon temperature, and 
eT  is 

the electron temperature.  To determine λα  and λβ , we compare our data for ( )R t  to the 

predictions of a two-temperature model for pT∆  and 
eT∆  while treating λα  and λβ  as fitting 

parameters.  

We prepared an 60 nm thick Au film via DC magnetron sputtering on a c-cut sapphire substrate. 

Prior to deposition, the sapphire substrate was heated in high vacuum to 650 C to clean the substrate 

surface.  The substrate was then allowed to cool to room temperature in high vacuum and the Au 

was sputtered at 3.5mTorr pressure of Argon. To predict the time evolution of the electron and 

phonon temperatures in our Au film after laser excitation, we follow Ref. [5] and use the well-

known two temperature model.  

( ) ( )
2

2
,e e

e e ep p e

T T
C g T T P t z

t z

∂ ∂
= Λ + − +

∂ ∂
 , (3-2) 

( )
2

2
p p

p p ep e p

T T
C g T T

t z

∂ ∂
= Λ + −

∂ ∂
. (3-3) 

We set the phonon heat capacity of Au to pC =  2.45 MJ m-3 K-1 based on literature values [8].  

We set the phonon thermal conductivity of Au to pΛ ≈  3 W m-1 K-1 based on the Leibfreid 

Schlomann equation [7].  We set the electronic heat-capacity to 
e eTγ  with 

eγ ≈  68 J m-3 K-2 [6]. 

We set the thermal conductivity of the Au electrons to 
eΛ ≈  100 W m-1 K-1 based on four-point 

resistivity measurements and the Wiedemann-Franz law.  We calculate ( ),P t z  for Au using a 
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multilayer optical calculation and the literature values for the index of refraction of Au and 

sapphire.  The only unknown parameter is epg .  We then use Eq. (3-1) to compare the predictions 

of Eqs. (3-2) and (3-3) for 
eT  and pT  to our experimental data.  We treat epg , λα  and λβ  as fit 

parameters, with the constraint that epg  be independent of wavelength.  We show the predicted 

electron and phonon temperatures in Fig. 3.2 for an absorbed pump laser fluence of 1 J m-2 and 

16 3 12 10  W m  Kepg − −≈ ⋅ . 

III. Experimental Results.— We performed TDTR measurements with varied probe photon 

energy between 1.28-1.77 and 2.41-3.1 eV. During these experiments, the pump photon energy 

also varied between 1.28 and 1.77 eV.  In the infrared, the pump photon energy is always equal to 

the probe photon energy.  Alternatively, for probe energies between 2.41-3.1 eV, the pump energy 

is half the probe energy.  

The results of these measurements are shown in figures 3.3-3.5, along with the best fit to our 

model described above. Table 3.1 compiles the resulting contributions from α  and β vs probe 

energy in eV. In our study, we are not interested in the absolute magnitude of /dR dT  vs. λ , 

which is determined by magnitude of λα  of λβ . Instead, we are interested in finding a method to 

independently measure the electron vs. phonon temperature, i.e. we are interested in /λ λα β .  To 

simplify comparisons between data at various wavelengths, we normalized all data so that the 

( )10 ps 1R t∆ = = . This normalization imposes the constraint that 1λ λα β+ = . 

In the infrared, we find that β α� , i.e. the thermoreflectance is primarily determined by the 

phonon temperature. This is consistent with the dominant contribution to thermoreflectance being 

decreases in electron relaxation times and shifts. As the probe energy increases, sensitivity to the 

electron temperature increases. β α   decreases by a factor of ten between 1.2 and 1.8 eV. 
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For probe energies between 2.4 and 3.1 eV, the situation is more complicated.  Unlike in the 

infrared, β  is not always much larger thanα .  Furthermore, for some probe energies it is not 

possible to  achieve good agreement between the model predictions and data, regardless of how λα  

and λβ  are adjusted. We credit this to the assumption inherent in the two-temperature model that 

the distribution of excited electrons is well described by a single temperature, 
eT .  More accurate 

modelling predicts the distribution will be nonthermal [9].  Recent work by Heilpern et al. suggest 

that ( )R tλ∆  measurements near the interband transition of Au can be used to directly measure the 

hot electron distribution. While nonthermal modelling and inversion of ( )R tλ∆   is beyond the 

scope of the current work, our results to date demonstrate that wavelength dependent TDTR can be 

a powerful tool for studying nonequilibrium heat transfer in nanoscale metal multilayers. 

IV. Summary.— I have presented my experimental results and thermal models in order to 

deconvolute the contribution of electron and phonon changes in temperature to the 

thermoreflectance. By conducting TDTR measurements on 60nmAu/sapphire as a function of 

probe energy, the measurements show changes in respective sensitivities of electron and phonon 

temperatures due accessibility of interband transitions arising from the position of the d band, as 

opposed to predominantly intraband driven thermoreflectance. By assembling the sensitivity 

scaling factors regarding the electron and phonon contribution as a function of wavelength, a more 

in depth look at thermoreflectance can serve as a resource for heat transfer experiments on ps time 

scales and ns length scales.  

 

 

 

V. Figures and Tables.— 
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Figure 3.1. S/p and d band occupied states of Au as a function of energy. As the energy of the 
reflected light (probe light) increases towards the Fermi energy, 2.49eV, the probability increases 
of causing a transition from the d band which would alter the contribution to the 
thermoreflectance. Below 2.49eV it is much more probable that the reflectance is dependent on 
the s/p intraband transitions pertaining to a predominantly phonon contribution to the 
thermorefltectance.  
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Figure 3.2. Thermoreflectance models of the electron temperature and phonon temperature in 
60nmAu/sapphire after femto-second laser pulse heating. These temperature profiles were used to 
generate the model predictions for wavelength dependent TDTR measurements, save for the 
sensitivity scaling factors that the experimental data illuminated.  
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Figure 3.3. Thermoreflectance data and models of a 60nmAu/Sapphire sample. TDTR 
measurements were carried out as a function of probe energy in order to fit the scaling factor for 
the themoreflectance dependence on the electron and phono temperature. Experimental data and 
fits ranging from 1.28 to 1.77eV allow for the deconvolution of the electron and phonon 
contributions in this range.  
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Figure 3.4. Thermoreflectance data and models of a 60nmAu/Sapphire sample. TDTR 
measurements were carried out as a function of probe energy in order to fit the scaling factor for 
the themoreflectance dependence on the electron and phono temperature. Experimental data and 
fits ranging from 2.71 to 3.1eV allow for the deconvolution of the electron and phonon 
contributions in this range.
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Figure 3.5. Thermoreflectance data and models of a 60nmAu/Sapphire sample. These  two 
experimental plots were carried out at 3.01 and 3.1eV with the  thermoreflectance  signal  dipping 
down into the negative regime of the y-axis, though near the thermal model prediction at 10ps.
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Table 3.1. Sensitivity scaling factors and the ratio of the two relating the  thermoreflectance 
contribution from electron and phonon temperatures in 60nmAu/sapphire. α  being the 
sensitivity scaling factor for the electron temperature contribution to the thermoreflectance, while 
β  relates to the phonon contribution.  
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CHAPTER 4 

Heat Transport Nanoscale Metal Multilayers 

 

Super-Diffusive Heat Transport in Nanoscale Metal Multilayers 
 
 

Thermal transport methods within nanoscale metal systems after ultra-fast laser pulses are not 

well understood. Specifically, it is not known how far heat travels away from a metal surface in the 

first few picoseconds after laser excitation. In the first picoseconds after laser excitation, electron-

electron, and electron-phonon scattering produces a highly complex cascade of energy transfer. 

The complexity of this ultra-fast scattering reduces the clarity of the subsequent energy transfer 

throughout the metal system. We investigated Au/AuCoML(Multilayer) and Au/Cu/AuCoML 

samples via time-dsomain thermoreflectance (TDTR) and time-resolved magneto optic Kerr effect 

(TR-MOKE) measurements. By conducting several pump-probe experiments, we are able to 

develop a more clear understanding of how energy absorbed at the surface disperses throughout the 

metal multilayer system on nm length, and ps time-scales. Our results suggest transport is not 

exclusively diffusive or ballistic.  Instead, some hot electrons carry energy ballistically, while 

others carry energy diffusively, i.e. transport is super-diffusive.  
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I. Introduction. — Understanding heat transport due to femto-second laser pulse heating in 

metal multilayer systems may allow for new types of information technologies. Ultrafast laser 

heating of magnetic multilayer systems produces radiation in elusive frequency domains, 1THz-

100THz.  Furthermore, Hot electron transport in metal systems can generate spin transfer torque 

(STT) between magnetic metal layers, providing opportunities for writing magnetic information. 

Ultrafast heating of magnetic metals can allow switching of the the magnetic moment of film on ps 

time scales.  While these results show great promise and point the way for further investigations, a 

fundamental description of how the energy deposited in these systems is transported on these ultra-

fast time scales has yet to be agreed upon by the scientific community.  

Ultrafast heating of metals causes enormous spatial gradients in energy density. Hot electrons 

will disperse rapidly to relax these gradients. The typical time-scale for electron-phonon relaxation 

is ~ 1 ps. If hot electrons carry heat ballistically for 1 ps with a Fermi velocity of fv ≈ 106 m/s, the 

distance heat travels is 1 mf epd v τ µ≈ ≈ . Alternatively, if hot electrons carry heat diffusively for 

1 ps with a thermal diffusivity of eD ≈  10-4 m2 s-1, then 0.1 me epd D τ µ≈ ≈ . A third option is 

that both ballistic and diffusive transport are important and the heat-transfer is superdiffusive [21-

24]. In a superdiffusive regime, the distance d  that heat travels in time t  is d t α∝ , where 

0.5 α< <1. α=1 represents the ballistic limit, 0.5α =  the diffusive limit. 

To date, experimental studies of how heat evolves in space after ultrafast optical excitation are 

inconclusive. Time of flight measurements suggests that at least some heat-transfer is ballistic on 

length-scales as large as 300 nm [25, 26]. Alternatively, several recent experimental studies 

conducted suggest that heat-transfer is sometimes well described by a diffusive two-temperature 

model [27, 28]. Another set of experimental studies explains observations with a superdiffusive 

transport model [25, 29]. Choi et al provide pump-probe experimental results and show that a 
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diffusive model describes heat transport in their Cu/PtCoML system, while Bergeard et al use 

similar experiments showing that a ballistic transport model is in gohod agreement with their 

experimental results. Currently, no clear criteria exist for when heat transfer will be diffusive, 

superdiffusive, or ballistic. 

By conducting a combination of Time-Domain Thermoreflectance measurements (TDTR) and 

Time-Resolved Magneto-Optic Kerr Effect Measurements (TR-MOKE) we quantify the distance 

energy is transported by hot electrons in a Au and Cu layer before thermalizing with the phonons.  

In Au, the hot electrons travel ~60 nm further than diffusive theory predicts, which may be a 

signature of superdiffusive transport. In Cu, hot electron transport is significantly different than in 

Au despite similar thermal properties.  The differences between Au and Cu demonstrate the 

necessity of using microscopic transport models for describing energy transfer in nanoscale metal 

systems. 

II. Sample preparation.—In our measurements, we use the ultrafast magnetic moment of nm 

thick Co layers as a thermometer.  In order to conduct our polar TR-MOKE experiments, the thin 

Co layers need to have perpendicular magnetic anisotropy (PMA).  This is because our polar 

MOKE measurements are only sensitive to the out of plane component of the magnetic moment.  

We prepared our sample in a high vacuum chamber via DC magnetron sputtering at 3.5 mTorr 

at a power of 10 W for Au layers, 20W for Co layers, and 200W for Cu layers. Samples were 

sputtered onto sapphire.  Simultaneously, we also sputtered dummy films on BK7 glass for use as 

a reference sample. Substrates were heated in vacuum to 200C for 1 hour to produce a clean 

substrate surface and the substrate was then allowed to cool in vacuum to room temperature. At 

room temperature, a Ta seed layer was sputtered onto the substrates, followed by the AuCoML, 

and finally with an Au or Au/Cu capping layer. The samples were then annealed at 145C for 30min 

in order to increase the mobilities of the respective metals and thus sharpen the AuCoML interfaces 
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which produces strong PMA due to interfacial contributions to the magnetic moment. Sample 

thicknesses were characterized via TDTR picosecond acoustic and beam deflection measurements.   

III. Experimental Methods. — TR-MOKE and TDTR measurements were conducted as a 

function of Au thickness and probe energy. Prior studies of similar systems with TDTR and/or TR-

MOKE measurements performed measurements at only a single wavelength . The goal of these 

prior experiments was to directly measure the time-of-flight for energy to traverse the film.  Our 

goal is different.  We want to use a combination of thermometry methods to determine the spatial 

distribution of energy after electron-phonon thermalization.  

After absorption of the femto-second laser pulse near the surface of the metal layer (approx. 

10nm penetration depth), a diffusive two temperature model predicts that hot electrons diffusive ~ 

80 nm  before thermalizing with phonons. Alternatively, if hot electron transport is purely  ballistic 

hot electrons should be able to traverse as far as ~1 mµ , and heat will be evenly distributed across 

the multilayer after 1 ps. If some electrons carry heat ballistically, while others transport heat 

diffusively, heat transfer is known as superdiffusive. For superdiffusive transport, we expect energy 

to be distributed across a greater length-scale than 80 nm, but a smaller length scale than 1 mµ . 

To determine the length-scale over which energy is deposited while electrons are hot, we 

measure the time-evolution of the Co film temperature in response to optical heating of the opposite 

side of the multilayer (Au surface).  We track the Co film temperature on time-scales from 3 ps to 

10 ns via TR-MOKE measurements of the change in magnetic moment, which is proportional to 

the change in temperature. The virtue of analyzing the data on time-scales longer than 3 ps is that, 

on these time-scales, we know heat is transported diffusively. All existing theories for hot electron 

dynamics agree that electron-electron and electron-phonon scattering drive the photoexcited 

electron distribution to a thermalized Fermi-Dirac distribution within the first few picoseconds after 

laser excitation.  While transport on time-scales from 3 ps to 10 ns is neither ballistic nor 
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superdiffusive, this approach still provides critical insight into how far heat is transported in the 

first few picoseconds after laser excitation.  The temperature evolution of the thin Co films depends 

strongly on how energy is distributed across the multilayer after hot electron thermalization.  

Therefore, the time-evolution of the Co film temperature allows us to uniquely determine the 

distance hot electrons travel in the Au layer in the first few picoseconds after laser excitation. 

In addition to TR-MOKE measurements of the Co temperature evolution, we also conduct 

TDTR measurements of the time-evolution of the Au surface on the opposite end of the multilayer. 

We peform TDTR experiments at both 1.3 eV and __ eV. This allows us to discern between the 

electron and phonon temperature in the Au due to changes from intraband to interband transitions.  

IV. Experimental Results. We investigate the possibility of super-diffusive transport by 

conducting several pump probe experiments, pumping Au in Au/AuCoML samples and either 

probing Au with TDTR or AuCoML with TR-MOKE to provide spatial resolution to our findings.  

We conducted three main measurements, with one supplemental measurement needed to remove 

any free parameters from our experiments. 

TR-MOKE measurements were also conducted in which the Au layer was pumped and the 

AuCoML was probed. The TR-MOKE measurement was then fit with a modified diffusive model 

described by equations 1 and 2.  

 , (1) 

. (2) 

The modification came by retaining the very well understood diffusive model, but making an 

assumption that the energy is deposited 60nm into the Au layer. This is physically incorrect as 

Maxwell’s equations describe very well that the absorption occurs at these wavelengths within the 
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first 10nm or so. What this assumption allows us to do is to retain the robustness of the diffusive 

model, while assuming that the hot electrons actually promoted in the first 10nm of the Au then 

behave ballistically for 60nm before the heat transport behaves diffusively. As shown in Fig. 4.1, 

change in temperature of the AuCoML via TR-MOKE at 1.58eV probe energy were measured as 

a function of Au film thickness. We then fit the experimental data with the modified diffusive 

model, shown in equation 1  and 2. We also fit the experimental data with both diffusive and 

ballistic models, though neither were in good agreement with the data. I also conducted the same 

TR-MOKE measurements with the same AuCoML magnetic multilayer, while changing the 

capping Au film to 30nmAu/220nmAu overlaying the AuCoML. Fig. 4.2 shows that while the 

230nmAu/AuCoML sample is very similar in thickess to the CuAu sample, a noticeable decrease 

in temperature rise vs time is present. This gives testament that although Cu and Au have very 

similar thermal properties, the heat transport in these two samples produce different transport 

behaviors, which is non-intuitive to the heat transport community. Futher similar experiments as a 

function of metal layer would help to understand dependent variables not currently described at a 

fundamental level, such as scattering effects in the different metals. 

To describe the thermoreflectance of Au we conducted TDTR measurements as a function of 

probe energy on 60nmAu/sapphire, more thoroughly discusses in chapter 3, where the 

thermoreflectance is related eq 3.  

∆� = �∆�� + �∆���,                  (3) 

Because of this supplemental experimentation, we were then able to perform TDTR 

measurements, pumping the Au and probing the Au as a function of wavelength and thickness of 

Au to describe the electron and phonon temperatures in the more complicated structure of 

Au/AuCoML shown in Fig.4.3 at 3.1eV probe energy and Fig. 4.4 at 1.28eV probe energy, 

corresponding to the electron and phonon temperatures in the Au, respectively. By then fitting the 
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experimental data with the same super-diffusive model used in the TR-MOKE experiment, save 

for the experimental findings of andα β  used to account for the thermoreflectance contributions 

as per equation 3. Our thermal mode fits well, as shown in Fig. 4.3 and 4.4, showing the 

robustness of out modified diffusive model (super-diffusive model), to changes in experiment, 

changes in probe energy, and changes in probe location (Au side of AuCoML side).  

V. Summary. — I have presented my experimental results and thermal models in order to 

illuminate the heat transport behavior in nanoscale metal multilayers on ps time scales after femto-

second laser absorption. By neither using a classical diffusive model, or ballistic mode, but rather 

modifying the well known diffusive model to account for hot electron transport of 60nm in Au, I 

was able to fit with good agreement 3 different sets of experiments with different probe energies, 

probe locations (Au vs AuCoML side) and experimental methods (TDTR vs TR-MOKE), also 

showing that materials with similar thermal properties (Au and Cu) do not necessarily perform 

similarly with regards to their heat transport behaviors. This work may serve as a resource for 

furthering the discussion between the highly complex nature of heat transport on these systems.  
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VI. Figures. —  

 

Figure 4.1. TR-MOKE data and model prediction related to change in temperature in 
Au/AuCoML as a function of Au capping layer thickness. Pumping the Au layer and probing the 
AuCoML side at 1.58eV probe energy shows the temperature change regarding increasing Au 
thickness. Modified diffusive model predictions show that a ballistic length of 60nm produces a 
fit in good agreement, while there are no other free parameters other than the ballistic length. 
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Figure 4.2. TDTR data and model prediction related to change in temperature in Au/AuCoML as 
a function of Au capping layer thickness. Pumping and probing the Au layer with a probe energy 
of 3.26eV shows the temperature change regarding increasing Au thickness. By studying the 
TDTR dependence on electron and phonon contributions we are able to have no free parameters 
in the model prediction, and accounting for the change in probe energy we use the same fit as 
figure 4.1 and our data is still in good agreement.  
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Figure 4.3. TDTR data and model prediction related to change in temperature in Au/AuCoML as 
a function of Au capping layer thickness. Pumping and probing the Au layer with a probe energy 
of 3.1eV shows the temperature change regarding increasing Au thickness. Again accounting for 
the change in thermorecflectance contributions for the change in probe energy we use the same fit 
as figure 4.1 and 4.2. Short time delays show some lack of agreement with the model and this 
may be due to unexpected electron contribution to the thermoreflectance. This being the case, out 
model prediction is still in fairly good agreement. 
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Figure 4.4. TR-MOKE data and model prediction from experimental data for 230nmAu/AuCoML 
shown in figure 4.1, with 30nmAu/220nmCu/AuCoML shown in purple diamonds. Given nearly 
identical capping layers of approximately 230nm, the temperature change between the two 
samples are drastic. Changes in capping layer from Au to Cu would not intuitively suggest such a 
temperature difference between the two samples. This suggests that even very similar metals can 
provide complexities in heat transport and that my experimental methods may be used in future 
works to conduct material dependent scans further illuminating the nature of heat transport in 
these systems.  
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CHAPTER 5 

Spin Accumulation in Au 

 

Spin Accumulation in Au due to Femto-Second Demagnetization of AuCo Multilayers  
 
 

Spin accumulation in Au following demagnetization of an adjacent nanoscale magnetic 

multilayer was studied as a function of probe energy and thickness of the Au spin sink. Time-

Resolved Magneto Optic Kerr Effect (TR-MOKE) measurements were conducted as a function of 

probe energy, ranging from 2.4 to 3.26eV, to understand the sensitivity and structure of the resulting 

change in Kerr signal on ps time-scales. A 700fs Ti:Sapphire laser absorbed by the PMA layer 

results in a reduction in magnetic order proportional to the absorbed fluence. Conservation of 

angular momentum results in a spin current being injected into the adjacent non-magnetic layer 

(Au). The spin accumulation in the Au layer causes a rotation in the polarization of reflected light 

Our results for the Kerr spectra of Au are in reasonable agreement with density functional theory 

predictions. 
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I. Introduction. — When an ultra-fast laser pulse is absorbed by a magnetic layer, the increase 

in temperature causes electron spins to flip due to spin degrees of freedom.  The magnetic layer’s 

magnetization decreases proportional to the absorbed laser energy[2]. The rapid decrease in 

magnetic moment  and spin disorder in the magnetic layer causes spin-current to be injected into 

any adjacent layers, e.g. non-magnetic metal (Au) due to a conservation of angular momentum. In 

Chapter 4, we report experimental measurements of heat-transfer in Au/AuCoML systems in order 

to better understand how excess energy provided by a femto-second laser is transported throughout 

nanoscale metal systems. Here, we focus on the same material system but perform experiments to 

quantify how spin is detected in the Au layer following spin-transport in these systems and do so 

via TR-MOKE.  

The magneto optic response of Au has been experimentally measured at a few isolated 

wavelengths, but no systematic comparison between experiment vs. wavelength and model 

predictions currently exists. Several recent studies have successfully used the small MOKE signals 

that arise from spin accumulation in Au as a probe of optically generated spin currents. Here, by 

conducting TR-MOKE measurements as a function of probe energy we measure the Kerr angle of 

Au in the presence of spin accumulation vs. wavelength.  We then compare our results to theory 

and find they are in reasonable agreement. 

We utilize the same experimental system, described in our previous work (Chapter 1), to now 

describe how the change in Kerr rotation as a function of probe energy displays a change in both 

sensitivity and sign of rotation. Utilizing TR-MOKE measurements to understand spin 

accumulation in Au can be highly advantageous due to its capabilities for extremely low noise 

levels (see chapter 1), its sub ps time scale resolution, as well as the variability of the experiments 

possible with TR-MOKE [4,6]. By understanding the TR-MOKE response of Au as a function of 
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probe energy, and Au thickness, a resource for future experiments as well as spintronic devices can 

be obtained. 

II. Sample preparation.—Our Au/AuCoML samples, as shown in Fig. 5.6, were prepared via 

DC magnetron sputtering in a high vacuum chamber (AJA Orion) with the aid of a sample shutter. 

First the sapphire substrate was annealed in high vacuum at 850C for 5 minutes in order to remove 

any adsorbents from the sapphire surface. After letting the sapphire substrate cool to 28C, a Ta seed 

layer was sputtered onto the sapphire followed by the AuCoML. Then, a sample shutter was rotated 

over the sample so as to cover approximately 40% of the sample surface. Au was then sputtered 

onto the sample, where the Au sputter gun is angled at approximately 45 degrees to the sample 

surface. The combination of the Au sputter gun angle, and the sample shutter produced a gradient 

effect regarding the Au coverage. Au was thickest (approximately 400nm) where the sample was 

uncovered by the shutter, and the Au thickness decreased underneath the shutter, as fewer amounts 

of Au could cover the surface.  

III. Experimental Methods. —As light is reflected off of a metal surface, in our case Au, it is 

reflected with some polarization. As the femtosecond laser causes disorder in the AuCoML spins, 

a spin current is injected into the Au. After a net magnetic moment is present in the the Au, due to 

the spin injection from the AuCoML, a torque is applied to the reflected light, causing a change in 

its polarization. This change in polarization is proportional to the change in magnetic moment in 

the Au, but the sensitivity of this change in magnetic moment in Au is not constant at all 

wavelengths. We utilize TR-MOKE measurements as a function of probe energy using our laser 

system (described in chapter 1) in order to investigate the sensitivity and sign of the magneto optic 

response to heating.  

 The Ti:Sapphire laser emits a wavelength tunable from 690-1060nm and using a second 

harmonic generator, we are able to probe the Au layer at higher energies ranging from 2.4 to 
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3.26eV. As shown in Fig 5.6, the pump laser supplies the heat to the AuCoML magnetic layer and 

the spin current is injected into the Au layer where the probe reflects off of the Au and is torque 

due to the spin accumulation in the Au. Since our system is only sensitive to the polar MOKE 

response, that is the change in polarization is sensitive only to the change in magnetic moment out 

of plane, we set the magnetic moment of the AuCoML, which exhibits strong perpendicular 

magnetic anisotropy, using a 0.4T NdFeB magnet in between scans (magnet not present during 

scans). After probe light is reflected off of the Au sample, the collected light is split into orthogonal 

polarizations using a wollaston prism. The probe now split into two beams is focused onto a 

detector with two photodetectors. The signal is balanced between detectors using a half wave plate 

so that photodetector one and two are detecting identical intensities of light. The photodetectors are 

subtracted from one another and when no change in magnetic moment is present in the Au layer, 

the photodetectors remain balanced. After femtosecond heating creates a spin accumulation in the 

Au, the change in magnetic moment rotates the polarization of the probe light. Now the detectors 

will no longer be balanced as the light has been rotated more towards p or s polarization, and thus 

one photodetector will increase in signal and the other will decrease. This change is signal detected 

is relayed to a SRS lock-in and in which our system is able to detect rotations of light on the order 

of nanoradians (see chapter 1).  By conducting these TR-MOKE measurements as a function of 

probe energy, we uncover the sensitivity and sign of the magneto optic Kerr response in Au 

 To investigate the TR-MOKE response Au after ultra-fast laser heating, we needed to first 

characterize the behavior of the reflected light with regards to any ensuing ellipticity since the 

MOKE is actually a combination of the ellipticity and polarization as shown in equation 1.  

.  (1) ( ) ( )( )cos sinK k k sp p sp p sp pp sp ppi r r r r iθ ε φ φ φ φΘ = + = = − + −
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We were able to isolate the change in ellipticity and polarization by accounting for the Jones 

matrix representing our optical detection components. To do this we began having our laser setup 

in the Front-Back orientation as shown in Fig 5.6. This setup allows for the pump (heating laser) 

and probe (detection laser) to be incident on opposite sides of the sample, similar to Ref [6]. After 

the probe passes through the second harmonic generator, it is then passed through optical filters to 

remove any unwanted wavelengths, and then through a polarizer so that the probe light incident on 

the Au surface is p polarized so as to remove any ellipticity before the light has reached the Au 

surface. After the probe beam is reflected from the Au surface it is collected via a non-polarizing 

beam-splitter and a broadband dielectric mirror which are both angled at 45 degrees, so as to direct 

the light to our photodetector. In order to remove the ellipticity due to our optical components, the 

ellipticity induced via these two optical components needs to be accounted for and removed.  

We made sure our experimental signal was only a measure of the real part of the Kerr angle 

via the use of a set of a birefringent crystal on a translation stage (Thorlabs Soleil-Babinot 

Compensator).  This compensator fixes any ellipticity introduced by our detection path non-

polarizing beam splitter and mirror. By moving the respective crystal positions in our compensator, 

we confirmed via a polarimeter (Thorlabs) that we were able to describe and remove the ellipticity 

introduced from our optical components. We obtained the respective crystal positions via a digital 

micrometer for the energy range of interest (2.4 to 3.26eV) and then conducted out TR-MOKE 

measurements to obtain the change in Kerr rotation component of the MOKE effect as a function 

of probe energy and Au thickness.  

IV. Experimental Results.— By pumping the AuCoML and probing the Au, and varying the Au 

thickness as shown in Fig.5.6 we can see how much spin is diffused as a function of film thickness, 

in which this TR-MOKE experiment was carried out with a probe energy of 1.58eV. We do not see 

a linear decrease in the detected signal, but rather an exponential one due to the volumetric dispersal 
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of the spin current throughout the Au film and spin-flip scattering of the spin current. We also note 

a slight change in shape after a few ps as the thickness of the Au layer is decreased. In Fig.5.2 we 

see TR-MOKE scans of 170nmAu/AuCoML/sapphire, as a function of probe energy, with the 

pump incident on the AuCoML and the probe incident on the Au. Fig.5.3 we present the normalized 

maximum Kerr signal as a function of the entire scanned energy level. By comparing to model 

predictions of Au’s behavior to change in Kerr signal, we see that out shape, change of sign, and 

relative magnitudes are in good agreement.  

V. Summary.— I have presented my experimental results describing the method for obtaining 

the TR-MOKE response of Au due to spin accumulation as a function Au thickness and probe eV. 

I described the issues regarding ellipticity and how we were able to remove them from our system 

and obtain a highly structured TR-MOKE signal, showing changes of several orders in magnitude 

while also changing signs from positive to negative as the probe energy is increased. Model 

predictions of the structure of Au’s magneto optic response are in good agreement with my results 

as is elusive in other works. This understanding of the detected signal may help to tailor spintronic 

devices and future experiments, by serving as a resource for where the TR-MOKE signal may be 

suppressed or maximized.  
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VI. Figures.—  

 
Figure 5.1. TR-MOKE results for Au/AuCoML as a function of capping Au layer thickness. 
Pumping the AuCoML side and probing the Au side of the sample, the spin current diffused 
through the Au is shown to be highly dependent on thickness at 90nm, 150nm, and 250nm of Au. 
Measurements for this experiment were conducted at 1.58eV and the data is normalized for 
absorbed fluence to discount changes in pump power.  
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Figure 5.2. TR-MOKE results for Au/AuCoML as a function of capping probe eV layer. Pumping 
the AuCoML side and probing the Au side of the sample for 170nmAu/AuCoML, shows an 
interesting structure in the time evolution of spin accumulation. As can be seen, the sign and 
magnitude of the Kerr signal are highly dependent on probe energy.   
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Figure 5.3. TR-MOKE data of Au/AuCoML showing change in Kerr angle as a function of probe 
energy, after femto-second demagnetization of the AuCoML spin source with the Au spin sink 
being 170nm thick. Experimental results show a highly structured signal with changes in 
magnitude as well as a switching of sign.   
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Figure 5.4. Model prediction of the sensitivity to the change in Kerr angle vs probe energy. By 
accounting for the material properties of Au, model prediction from 0.5 to 3.5eV were shown to 
predict a highly structured change in Kerr angle in Au. The model prediction showed large 
changes in magnitude of sensitivity to the signal, as well as changes in sign of the polarization 
rotation.  
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Figure 5.5. Model prediction of change in Kerr angle with experimental data scaled to fit. As can 
be seen, experimental results are in fairly good agreement with the model prediction as both 
exhibit a change in magnitude and sign at nearly identical probe energies.  
 
 
 
 
 
 

                             
 
Figure 5.6. Geometry of the Au/AuCoML sample investigated with TR-MOKE. Here we see the 
pump laser incident on the AuCoML side of the sample causing demagnetization of the AuCoML 
due to spin degrees of freedom thus leading to a spin injection into the Au layer. The probe beam, 
wavelength varying from 1.58eV to 2.41-3.26eV, was incident on the Au layer and detected the 
spin accumulation via a change in polarization of the reflected probe. 
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CHAPTER 6 

Conclusion 

 
 

In this work I have presented the pump-probe instrumentation system, which I installed for 

highly sensitive time domain thermoreflectance (TDTR) and time-resolved magneto optic Kerr 

effect (TR-MOKE) measurements. By modulating the Ti:Sapphire’s innate 80MHz repetition 

rate with an overlaying 10.7MHz frequency, via an electro optic modulator (EOM) I was able 

to lock in to the AC response of the pump laser heating via an SRS lock-in and a computer 

lock-in. Using a variety of laser setups (Front Front, Front Back, red red and red blue), I was 

able to conduct a medley of experiments as a function of position and wavelength with noise 

near the Shot noise level.  

I then investigated the longitudinal spin dependent Seebeck effect (LSSE) in Au/Iron Garnet 

bilayer systems using the aforementioned pump-probe laser system. Using TDTR and TR-MOKE 

as a function of wavelength and iron garnet, I was able to obtain the electron and phonon 

coupling in the 60nmAu layer as well detect the spin accumulation in the Au due to a spin current 

emanating from the magnetic insulator interface. With these experiments I obtained an electron-

phonon coupling of 2 ∙ 10
!"/#�$ �'� � SSE coefficient for Au/TmIG on the order of  1 ∙

10%&/#�$. 

To serve as a resource describing the electron and phonon contributions to Au’s 

thermoreflectance I took advantage of the band structure of Au in being able to access 

intraband or interband transitions by varying the probe energy used in TDTR measurements on 

60nmAu/Sapphire. By doing so I obtained the andα β  sensitivity scaling factors for the 

electron and phonon contributions to the thermoreflectance. This allowed me to conduct heat 

transfer measurements on more complex AuCoML systems as well as serve as a resource for 

future works.   
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Next we studied heat transfer in Au/AuCo multilayer samples.  By taking advantage of the 

wavelength dependent TDTR measurements on 60nmAu/Sapphire, I was able to apply the 

temperature evolution of electrons and phonons into a hybridized transport model describing heat 

transport in Au/AuCoML nanoscale metal systems. Using several TDTR and TR-MOKE 

measurements as a function of position and probe energy, I was able to fit my experimental data 

with no free parameters, other than the ballistic length of 60nm. This modified diffusive model 

(so called super-diffusive) is in good agreement with all 3 of my experimental results regardless 

of experimental type (TDTR vs TR-MOKE), position, (probe Au or probe AuCoML), or probe 

energy.  

I also used the pump-probe system to condcut wavelength dependent and thickness dependent 

spin accumulation measurements in Au due to demagnetization of a Au Co multilayer.  I 

performed as a function of Au thickness as well as probe energy via TR-MOKE measurements. 

These measurements serve to describe the Kerr signal while serving as a resource to future works 

regarding maximizing signal or in characterizing obtained results as my results a show a high 

dependence of magnitude of Kerr signal and sign of signal with respect to probe energy.   

I accomplished these tasks using robust experimental techniques that I developed. 

Specifically, I present methods for investigating unknown material properties that are extremely 

challenging to measure.  

 




