
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Anchor Toolkit - a secure mobile agent system

Permalink
https://escholarship.org/uc/item/2594j56c

Authors
Mudumbai, Srilekha S.
Johnston, William
Essiari, Abdelilah

Publication Date
2008-06-16

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2594j56c
https://escholarship.org
http://www.cdlib.org/

Anchor Toolkit
 (A Secure Mobile Agent System)

Srilekha Mudumbai, Abdeliah Essiari, William Johnston
Imaging and Computing Sciences Division

Ernest Orlando Lawrence Berkeley Laboratory
University of California

Abstract: Mobile agent technology facilitates intelligent operation in software systems
with less human interaction. Major challenge to deployment of mobile agents include
secure transmission of agents and preventing unauthorized access to resources between
interacting systems, as either hosts, or agents, or both can act maliciously. The Anchor
toolkit, designed by LBL, handles the transmission and secure management of mobile
agents in a heterogeneous distributed computing environment. It provides users with the
option of incorporating their security managers. This paper concentrates on the
architecture, features, access control and deployment of Anchor toolkit. Application of
this toolkit in a secure distributed CVS environment is discussed as a case study.

1.0 Introduction

A software agent is "a software entity that functions continuously and autonomously in a
particular environment, often inhabited by other agents and processes" (Shoham 1997)[1].
An agent can be imagined as an autonomous piece of code. This code can initiate actions,
construct plans of action, form its own goals, respond to appropriate events, plan its
itinerary, communicate with other agents, collect information etc. It can push (send) itself
to a remote host and can be pulled (withdrawn) from the remote host by the local host
where it originated. An agent can be deactivated to avoid consuming system resources
when idle, and can be reactivated later to resume its actions. An agent can be dispatched
to any other system by itself or by an agent system and can be retracted to its origin
whenever necessary. It can be cloned to execute an action in parallel in several systems.
Finally, it can be disposed off after terminating all of its tasks. An agent can be
categorized based on the tasks it is assigned. It can be mobile (able to migrate from one
system to another), collaborative (able to work with other agents in a system towards a
common goal), communicative (communicate with other agents to gather information), or
may exhibit several other behaviors.

2.0 Purpose and System Goals

Current computing environments often consist of distributed software running on
heterogeneous platforms. Some of the problems that emerge in such an environment
include maintaining consistent software, monitoring remote execution, load sharing,
asynchronous interaction of remote events, and using heterogeneous systems. Mobile
agents can be used to help solve these problems. They can provide a variety of services
including fault tolerance and recovery (when a resource server dies, an agent can
continue the service provided by that server or restart the server); distributed version
control (if the same application is distributed on different hosts, an agent can keep the

version of these applications consistent); distributed repository sharing (agents can share
databases/repositories distributed at different hosts through concurrent version control);
monitoring (e.g. of resources that are accessed in a system, in real time); and auditing
(agents can report a history of accesses made on a resource server for a particular time
period). An agent system should be capable of providing the essential features required
for mobile agents.

Security is one of the most challenging issues that arises when attempting to send
executable code to a remote system. The mobile agent infrastructure should identify any
entity, whether an agent or an agent system that acted maliciously. In order to
accomplish this, the Anchor toolkit has the following goals:
• The agent systems have to identify and trust each other and be able to communicate

in a secure fashion.
• The code must be transmitted in a manner such that the receiving host can verify its

integrity.
• The execution host must be able to restrict the actions of the mobile code (e.g.,

limiting access to local files or the amount of resources it may use).
• In case of the agent's failure, the execution host must securely notify the sending host.

An agent system must be authenticated before sending its agents and agent tasks should
be subject to access control. An agent's integrity, and possibly confidentiality, must be
ensured as a prerequisite to access control and subsequent operation on the remote
system. The Security Sockets Layer (SSL)[2] protocol provides basic authentication,
confidentiality, and integrity. Access control is exercised by setting policies for access to
the resources. LBL has implemented a distributed access control system, called
Akenti[3,4], that enables distributed management of access rights for resources that have
multiple, independent, and geographically dispersed stakeholders (resource owners).

Akenti is used by an agent system to provide access control. It is designed to use
currently available distributed security technologies. It is a module that can be hooked
into any application to provide access control. Akenti uses public/private key signed
certificates to express user identity, resource use conditions, and user attributes; Public
Key Infrastructure (PKI[5]) certificate authorities (CAs[6]) and Lightweight Directory
Access Protocol (LDAP[7]) servers manage the certificates. Once mutual authentication
between communicating systems is established over SSL, Akenti is called to exercise
access control on the resource accessed, to give out capabilities (actions allowed on that
resource) for the remote system [sec 4.2].

3.0 Anchor

3.1 Architecture

The architecture aims to provide:
• A user-friendly toolkit that supports minimal but essential features required for a

mobile agent framework.

• A monitoring capability that displays real-time access of resources by local and
remote agents.

• An agent transfer protocol that hides actual transport mechanisms.
• Effective security to support integrity and/or confidentiality between communicating

systems and access control to prevent unauthorized access to resources.
• A 100% pure Java implementation.
• Customizable security whereby users can incorporate security managers of their

choice.

Figure 1: Anchor Architecture

The architecture of the Anchor toolkit is displayed in Figure 1. It consists of an Agent
Viewer (GUI), Agent APIs, Anchor Server, Anchor Security Manager (ASM), Anchor
Class Loader (ACL), secure agent transfer protocol (satp) handler, Anchor Java Naming
and Directory Interface (AJNDI) and Anchor Java Native Interface (AJNI). ASM and
ACL are discussed in later sections.

3.2 Agent Model

This model as displayed in figure 2 follows IBM Aglets[8] model. In our model, agents
are serializable Java objects that are capable of migrating from one machine to another by
carrying code as well as their state. They resume their operation after reaching the other
machine. They are autonomous as they run as individual threads. They are created within
a context. A context is the namespace under which agents are grouped together. It is a
stationary object that is responsible for maintaining and managing active agents in a
uniform execution environment. Context and namespace are used interchangeably. The
namespace consists of host name, port and the name of the context itself. There can be
several such contexts in a server and there can be several agents created within the same
context.

TCP/IP

satp

Java

ASMACL AJNI

Anchor Server

Agent APIs

Agent Viewer

 ANCHOR
(pure Java)

satp
handler

Akenti
Access
Control

AJNDI

Figure 2: Agent Model

Agents can be accessed only through their proxies. A proxy represents an agent and
prevents other agents from directly accessing its public methods. In other words, any
message or action to be conveyed to an agent is forwarded through its proxy and the
agent may accept or deny such messages or actions. A proxy provides location
transparency for agents, meaning that it represents an agent in a machine even if the agent
has migrated to other machines, thereby hiding the agent's genuine location. Anchor
Toolkit supports open agent architecture. An agent remembers other agents that it comes
across irrespective of their location as long as the other agents are alive. A proxy created
for an agent in a location other than its origin does not become invalid even if the agent is
dispatched to other locations. Instead it virtually represents the agent so that its reference
held by the other agents remain valid. Of course, proxy becomes invalid when the agent
expires. At any time, all the proxies that exist in a context can be acquired. Agents can
communicate with other agents only if they are in the same namespace. This holds even if
they are dispatched to a remote host. In that case, they can communicate with the agents
in their remote namespace and the agents within the namespace from where they were
dispatched. Each agent has a unique identifier assigned to it during its creation and is
immutable throughout their lifetime.

3.3 Anchor Server and Agents

The Anchor Server is a run-time environment that serves as the backbone for the toolkit.
It runs on a host by listening to a specific port. It sets the security manager for the current
environment. It performs all system-related functions. It keeps track of all the agents that
are currently running on its machine and provides information on their status. It creates
an agent within a particular context. Once the agent gets initialized, it starts executing.
An agent can be cloned in which case an identical copy of the agent is created except for
the identifier. The clone then restarts execution in its own thread.
Agents can be dispatched by the server to a remote place. As a result the agent is
removed from the current context and is inserted into the destination context where it
restarts execution. This is a push model as the agent is pushed from one context to
another. Anchor Server handles the transport mechanism to migrate agents from one
machine to another through satp. Similarly agents can be retracted to their original
context from the destination context. This is a pull model as the agents are pulled back to

Context
1

Context
2

Anchor Server1

Stub

Agent

Prox y

Context
1

Context
5

 Anchor Server2Network

satp

their original context. Agents can be activated and deactivated. Deactivating an agent
removes it from the current context and puts it in secondary storage. Re-activating it
inserts it into the same context and resumes its action. Check-pointing an agent stores its
current state (assumed to be stable) into secondary storage, from which it can be used
later in case of any failures. Disposal of an agent halts its current execution and removes
it from the current context. Agents should be able to communicate effectively with the
other agents. This is achieved through message passing and is currently under
implementation. The server accepts each incoming agent, authenticates the identity of its
source [sec 4], and passes the authenticated agent to the appropriate context. When an
Anchor Server is shutting down, it notifies all the agents currently running in the server.
The agents can then decide to move to other Anchor Servers. Otherwise they are de-
activated, and re-activated when the server restarts.

Figure 3: Agent features

Agents implement a checkAccess() method through which they can restrict other entities
from executing sensitive operations pertaining to their mobility and existence. These
operations are not controlled by the agent context. Instead the agent implementor is
responsible for building its own policy which promotes its autonomous nature. Currently
each agent assumes a unique identity from where it was indited [ref sec 5.0].
Authentication occurs only between Anchor Servers and not agents. The agent's identity
is considered only at the resource access level.

3.4 Anchor Java Native Interface (AJNI)

A Java native interface is implemented to invoke Akenti access control module whenever
authorization is required for an identity. Akenti requires a client’s identity and the
identity of the resource it is trying to access in order to make access control decisions.
When an agent tries to perform any sensitive operation on a local resource, Akenti's
policy engine determines the agent's authorization for the current operation by marshaling
and verifying all the policies that are applicable for that resource and the appropriate
credentials. Akenti is a C/C++ implementation of a distributed access control mechanism.
In the future we are planning to implement Akenti entirely in Java.

3.5 Agent and Server APIs

secondar y stora ge

clone

dis patch

retract

deactivate activate

dis pose

Agent APIs currently support cloning, activation, deactivation, checkpointing,
dispatching, retracting, and disposal as discussed in section 3.3. Server APIs support
monitoring, information, console and shutdown.

3.6 Agent Viewer

The Agent Viewer reflects the features supported by the Anchor toolkit. One can create,
dispatch, retract, dispose, activate, deactivate and clone agents via the Agent Viewer. In
addition, it provides information about an agent (either local or remote) and a monitoring
capability to display in real time resources used/accessed by an agent in a server. It also
keeps track of the current status of the agent so that it carefully activates only those
features that are applicable to the current state of the agent.

Figure 4: Agent Viewer and Monitor

The Monitor is a separate entity by itself that can be plugged into different applications
and is shown in the right side of Figure 4. When an agent is chosen for monitoring, the
monitor keeps track of all the resources the agent attempts to access. It exhibits all these
resources and provides detailed information on the access control decisions made on
them. Agent Info provides details about an active agent. It consists of an agent's identity,
creation time, context name, origin, current location and its state. The console is used to
monitor the current actions performed by the agents within that server. Access to the
console is allowed for only one agent at a time in order to avoid confusion and aid
debugging. It follows the concept of Netscape's Java console. The server has a separate
console that monitors its actions.

3.7 Anchor Java Naming and Directory Interface (AJNDI)

Mobile Agents are autonomous. They can visit any host in the network. This leads to a
problem of trailing them. A registry mechanism needs to be in place to facilitate locating
agents. This mechanism consists of a naming service through which every agent can
register and publish its current information and a directory service to enable effective
searching of agents. The Anchor Server implements a directory service by itself through
its agent context. But if there were several agent systems within a local area network, a

unified directory service would be more appropriate. LDAP can be used to store agent
information. AJNDI uses Java’s naming and directory service to connect to LDAP for
fetching and storing objects and other related attributes. The term ‘registry’ would refer
to LDAP in future discussions. An entry for the agent in the registry appears as
• Common Name = “Resource Discovery Agent”
• Agent ID = <Java serialized Object>
• Agent Service = <Service available through this agent>
• Public Key = <Java Serialized Object>
• Codebase = satp://server.lbl.gov:1000/
• Java Factory = <Factory Name>
• Java Reference Address = <Reference address for object reconstruction>

The Common Name attribute refers to the unique identity of an agent in X.400 format.
An agent updates its entry in the registry through its creator whenever it sojourns a
different location. The service provided by an agent is available through its Agent
Service attribute. It is not essential for an agent to carry its public key to diverse locations
as it can be procured from the registry. The Codebase specifies the Anchor server from
where the agent originated. Optionally a reference to the Agent ID could be stored along
with its factory in lieu of the object itself. Registry supports the following operations:
• Lookup - querying the database for locating agents.
• Register - procedure through which an agent binds itself to the registry.
• UnRegister – operation for unbinding the agent from its registry.

4.0 Akenti

4.1 Access Control Model
Akenti is an access control system designed to address the issues raised in allowing
restricted access to distributed resources which are controlled by multiple stakeholders.
The stakeholders are the people with authority to grant access to resources and may be
both physically and organizationally remote from the resource. Akenti enables these
stakeholders to remotely and securely create and distribute instructions authorizing access
to their resources.

Figure 5: Access control model

Access control is a means for enforcing an authorization policy. In a client-server
architecture, the clients (on behalf of users) attempt to access resources that are controlled
by servers. Akenti makes the access control decisions based on a set of digitally signed
documents that represent the authorization conditions. Existing public-key infrastructure

CLIENT SERVER

User
Authentication

Certificate
Verification

Server
Authentication

Access control
based on

use-conditions

and security systems provide confidentiality, message integrity, and user identity, during
and after the access decision process (Figure 5).

4.2 Components of the Model

• An Identity (X.509[9]) Certificate mainly consists of user’s distinguished name, user’s
public key and the signature of a trusted CA.

• A Use-Condition Certificate consists of: a conditional expression of attributes and
values, name of the resource, scope of the resource in a hierarchical tree,
access/action information, issuers of the use condition and the attribute certificates,
trusted CA of the user and other issuers, and the signature of the use condition
certificate issuer.

• An Attribute Certificate consists of: an attribute, value, subject (User) and it’s trusted
CA, issuer and its trusted CA, and the signature of the attribute certificate issuer.

• A Policy at the resource level consists of information on: where to obtain a use
condition certificate, where to look for attribute certificates, list of allowable use
condition issuers, and where to look for identity certificates for user’s identity and
issuer’s identity. There is also a root policy that consists of all the above in addition to
trusted CAs and their public keys. It refers to the root authority of all the system
resources.

4.3 Authorization

The resources that Akenti controls may be information, processing or communication
capabilities, and physical systems, by accessing a network-based front-end. Access can
be the ability to obtain information from the resource (as in “read” access), to modify the
resource (as in “write” access), or cause that resource to perform certain functions (as in
changing instrument control set points). Authorization is required to check whether the
user is allowed to access a resource within the server that is owned by a stakeholder
(policy maker). The policy makers are responsible for designing policies at the resource
level. The use condition issuer, to whom the policy maker delegates authority, is
responsible for issuing use conditions on that resource. Attribute certificates are issued by
the attribute issuers as mentioned in the use condition certificate. During the
authorization phase, attribute certificates are searched for a list of attributes and values
the user has to satisfy according to the use-conditions set on that resource. If there are
attribute certificates available for the user for the above attribute, value list, then the
access information from the use condition is obtained which either allows access to the
user or forbids the user from accessing any information on the server side.

5.0 Anchor Security

5.1 Integration of Akenti and Anchor

We use the IAIK-SSL[10] toolkit along with Java Cryptography Extensions (JCE[10,11]) for
encrypted SSL communication between Anchor servers. A mutual authentication
between Anchor servers is involved. The identity of the server is presented as an X.509

certificate, which gives information about the Certificate Authority who signed the
certificate, and the identity for whom it is signed. If the Anchor server trusts the CA, it
may accept the other server's identity with or without further restrictions.

Figure 6: Akenti and Mobile Agents

Java architecture facilitates the implementation of Anchor Toolkit's own security
manager, by allowing Anchor to extend its security manager which controls access to
resources at runtime at a very low level. Java's use of the "sandbox" security model
provides the capability of separating agent servers from the agents that migrate into the
server by the use of Class Loaders. The architecture permits the toolkit to implement its
own class loader (ACL). A bytecode archive essential for agent’s creation and execution
is supplied after the agent is dispatched to reduce the network congestion. This loader is
dedicated for loading the bytecodes of the agent.

Theoretically, it is feasible for agents to carry their private key. Practically it is infeasible
and a tremendous exploratory work is being carried out in this area[12]. We realize the
difficulties involved in this area and are awaiting a good solution. Anchor Toolkit
provides a simplified and a secure access control model that defines five precepts for
accomplishing the same. These are
• Agents are similar to applets with code and behavior. They must be trusted to

communicate to their origin or go back to their origin without any issues.
• Mutual authentication among anchor servers,
• Agent authentication through signing of the bytecodes, and
• Authentication of agent hops or itineraries. Agents can carry the host’s signature or

communicate it back home for future reference. The host signs both the agent’s code
and behavior.

• Agents always come back to their origin for analyzing critical information.

Figure 7 explains the security model.

When trusted agent code has been allowed to enter the server, it is subjected to runtime
restrictions from accessing resources, as it is not authorized for any access yet. The
Anchor security manager enforces a particular security policy for each resource that can
be accessed. The security manager can distinguish if sensitive actions are performed by

Host-1

Anchor Server/
Sandbox

Anchor Server/
Sandbox

Akenti
Policy
Engine

ASM Interceptor

Access
Validation

Local Resources
Host-2

Policy
Identit y Attributes

SSL

the server or a foreign entity. If it is a foreign entity, it executes access control if the
mobile agent is not authorized. The Anchor security manager overrides the methods of
the Java security manager to invoke Akenti during runtime for \access control decisions.
An access control request to Akenti is of the form <agent's DN, resource, operation>
where agent's DN is its distinguished name and the operation is the action it tries to
perform. For example, <"/C=US/O=ABC/CN=XXX", "file:/tmp/x.txt", "write">.

Figure 7: Anchor Security Model

5.2 Eschewing Security Threats

The best case scenario provides with each party becoming liable for their acts.

Agent Protection –The encrypted channel between systems dispatching agents prevents
any untrusted third party intimidation to agents. As a part of the protocol, hosts are
required to sign the agent’s persistent state before they are dispatched. This aids during
analysis phase, to detect the location that lead to the abnormality of an agent’s state.
Host Protection - Private resources of the hosts are protected from corruption and
mishandling by Akenti. Akenti executes proper access control decisions for each trusted
agent in order to determine their capabilities. A host allows agent execution only after it
authenticates, the agent, the server that transmitted the agent and a list of hosts through
which the agent traveled to attain its current state.

5.3 Anchor Security Services

Authentication - Mutual authentication between agent systems is established through
SSL. The parties agree upon their identities before sharing any information between
them. Agents are authenticated by signing their bytecodes with their private keys.
Integrity and Confidentiality - These features are supported as part of SSL.

H1

H2

H3

H4

H2

H3

H2 H3 H4

Agent’s bytecode signed
by agent’s private key
Host’s signature of
agent’s persistent state

Agent’s state

SSL protocol

H2

Authorization - Access control is accomplished by the Akenti distributed access control
system. This provides each agent with a set of capabilities on varied resources owned by
the Anchor Server.
Non-repudiation - Anchor Servers and Agents are liable for their self-actions.
Auditing - Auditing service is available through Akenti. Akenti logs the resources being
accessed by an agent and the monitor displays the same.

6.0 Related Work

Agent systems akin to Anchor exists, such as IBM's Aglets, ObjectSpace's Voyager[13],
Mitsubishi’s Concordia[14] etc. All agent systems provide similar features (some
advanced) pertaining to mobility, messaging and transportation. Because of the diverse
security policies, security models differ across systems. Aglets provides its own security
manager and a policy tool for setting resource permissions. This restricts users from
implementing their own security model. Agent protection is not assured because of the
unencrypted communication channel. Anchor provides users with an option of
implementing their security managers and also provides plug-ins (currently IAIK-SSL)
for adding encrypted channel between anchor servers. Voyager and Concordia adopt a
uniform username/password based access control for accessing system resources. This
approach limits an agent system to a finite set of users. Anchor provides a fine-grained
access control based on PKI through Akenti and hence offers an open system based on
trust that is not limited to a finite set of users. Anchor supports a graphical tool in
addition to standalone applications. Voyager does not support graphical tools for
generating agents. Aglets invalidates an agent’s proxy when it is dispatched from a
location other than its origin. This baffles other agents in the system holding a reference
to it, in the middle of their execution, which is not the case in the Anchor Toolkit. Anchor
will support the naming and directory service using JNDI similar to Voyager. Anchor like
Concordia, allows an agent to checkpoint itself to maintain the integrity of the system and
provides a means to implement fault tolerance.

7.0 Future Work

A future version of this toolkit is likely to support an advanced message passing
mechanism. Agent messaging using XML is favorable which eliminates the need of
message objects to be available with every agent system and points the other agents to a
DTD for this message in order to communicate with a particular agent. Currently, the
toolkit is compatible with JDK 1.1.x. Future version is expected to be compatible with
Java 1.2. Satp is the only protocol supported by the toolkit. This protocol has to be made
transparent so that other distributed communication techniques available such as RMI
and ORB services can also be incorporated. Agents have to be programmed meticulously.
They can incapacitate the Anchor Server when an event queue is involved. A typical
scenario would be an agent put into an indeterminate mode by an event arising out of user
interaction. This can be avoided if agents are given independent event queues, which is
an ongoing effort. Currently no caching mechanism is involved for bytecodes. This leads
to the increased network traffic on transferring bytecodes every time an agent has to visit
another host. Versioning needs to be implemented, if caching has to take place. In future,

an efficient caching mechanism for caching bytecodes and a proficient versioning system
detecting only bytecodes that differ from their previous version are expected.

8.0 Applications

8.1 Secure Distributed Concurrent Version Control

Concurrent version control system (CVS[15]) supports software development by a group
of people working in a local or shared file system. It maintains a central repository shared
by all the users and each user is isolated from other users and their work area cannot be
interfered by others. It merges the work of each developer when it is done. It has built-in
features that allow users to manipulate project files stored in a repository. The only
constraint is that the user must be a part of the local network.

In a distributed environment, remote users may not be registered users of the local
network, where the repository is located. Further, the software development by such
users, if registered, has to be carried out locally. This imposes overhead on the system
administration in terms of maintaining a remote user database, in addition to reduced
performance due to sharing of computing resources.

In a collaborative computing environment, the need for a truly distributed CVS becomes
significant, to improve productivity. In order to extend the conventional CVS to a
distributed environment, the following issues need to be addressed:

• Remote system administration
• Synchronized operations between end systems
• Database (user/project) and application transparency
• Remote user authentication and access control for shared database
• Fault tolerance
• Load sharing to improve performance
• Efficient use of available resources

The ability of agents to co-exist and communicate seamlessly, collaborate and migrate, in
addition to their autonomous nature makes them an ideal tool for distributed
heterogeneous systems.

The agent system for CVS consists of a Master Agent (MA), Master Proxy Agent (MPA),
Resource Discovery Agent (RDA), several User (UA), User Proxy Agents (UPA), and
Representative Agents (RA). A brief description of the agents and their tasks is
summarized in Table 1.

Figure 8 describes a distributed CVS. Two situations are discussed one in which the user
requested resource is available locally and the other in which it is available remotely.
Here, u1 and u3 refer to the CVS users, and r1 and r3 refer to resources in the main CVS
repositories. When u1 requests a local resource, the request is interpreted by MPA. It
checks with the MA if the resource is available and if so, whether the user has access

permissions for that resource. If the MA authenticates the user and if the user has access
permissions for that resource, it registers the user in its registry and creates a UA for him.
The UA then becomes responsible for carrying out user requested tasks locally.
Otherwise user's request is rejected. If the UA already exists for a user, the MPA simply
forwards the user commands to that agent. This situation reflects a normal CVS with
access permissions.

Table 1: Agents and their tasks
Agents Tasks Mobility Cloning Description

Master Agent (MA) Maintains common repository
access permissions and
performs access control, creates
checkpoints, creates MPA.

No No

Safeguards CVS
Main/Central
repository

Master Proxy Agent
 (MPA)

Interprets agent requests,
monitors agents, creates UA,
and RDA, maintains user
access permissions and
performs access control,
Maintain both local and remote
user agents registry.

No No

Agents command
Request interpreter
and agent brokering
with local and
remote agents.

Viewer Agent (VA) Presents users with unique
views of the repository based
on their capabilities.

No No

Repository viewer
creating a unique
view for the user,
based on the access
permissions the user
contains to different
resources.

Resource Discovery
Agent (RDA)

Search for requested resource
in a list of hosts specified

Yes Yes

Resource discoverer
for shared CVS
repositories in
distributed systems.

User Agent (UA) Creates user proxy agent,
monitors user's activities,
synchronize actions with its
proxy, creates checkpoints,
memorize recent task executed,
activates on user events,
responsible for local task
execution.

No No

Represents users in a
distributed system.

User Proxy Agent
 (UPA)

Responsible for migrating
across hosts to carry out tasks,
communicates results back to
user agent about events
occurring in a remote host,
creates checkpoint.

Yes Yes

Proxy acts on behalf
of user agents
representing it
remotely.

Representative Agent
 (RA)

Re-broadcast messages from
MA to individual remote user
agents.

Yes No
Messenger for
broadcast messages
from MA.

In the second situation, u3 requests resource r2. The MPA interprets the request and
checks with the MA for the resource availability. If the resource is unavailable, the MA
passes referrals of those resources to the MPA. The MPA creates a RDA and provides the
itinerary of hosts referred. The RDA creates clones to be dispatched simultaneously to

locate the resource in different hosts. The RDA clones interact with the MA's of other
hosts to find out the resource availability. The clones report to the main RDA, which in
turn reports to the MPA about the host where the resource was found. The MA keeps
track of where the resource was found for future reference. The UA’s create proxies in
order to execute remote CVS commands. If the user request involves remote CVS
execution, the UA dispatches its proxy to the remote host to carry out the commands. The
UPA and UA synchronize their operations. As a result, data transmission is handled by
both at either host in order to make necessary updates to the user’s work area. A secure
transport layer can be used to authenticate remote users and maintain confidentiality and
integrity among hosts.

Figure 8: Distributed CVS

AGENT
SYSTEM

u1
..

Registry of
CVS users

Main
CVS

Repository

Access
control

permissions

MPA

Get Resource <r2>

Identity (u3)

MA

AGENT
SYSTEM

Registry of
CVS users

Main
CVS

Repository

Access
control

permissions

MPA

MA

AGENT
SYSTEM

Registry of
CVS users

MA

MPA

Resources
r1
referral:
host2,host3

Resources
r2
referral:
host1,host3

host 1 host 2

host 3

Main
CVS

Repository

Resources
r3
referral:
host1,host2

Get Resource <r1>

Identity (u1)

UA

Access
control

permissions

User
CVS

shadow

UA

u3
..

RDA

r2 ?
host1,
host2

RDA

r2,
host2

User
CVS

shadow

UA

UPA

u3
..

MA

MPA

RDA

UA

UPA

Master Agent

Master Proxy
Agent

Resource Discovery
Agent

User Agent

User Proxy Agent

All user agents are required to report to the MA on the completion of their tasks. There
are possibilities for data losses during agent transactions, incomplete or unattended agent
tasks. Fault tolerant activities have to be carried out in order to recover from such losses.
These activities include periodic check-pointing to recover agents, continuous monitoring
of agents to keep them alive, generating clones if task- accomplishing agents are at
remote places. The system is made robust by keeping the MA and MPA as lightweight
agents. These agents are primarily used for supervision and not for compute intensive
processing. The MA’s can have mirror agents as a backup for continuous availability of
their services in case of failure. These MA’s monitor each other. The MA is always event
triggered by other agents. It can be deactivated by the agent system and reactivated
whenever required. Since agent systems hide the complexities involved in managing
underlying remotely distributed systems, the repository and the application itself are
location transparent. The user’s host contributes towards load sharing by handling local
user operations and by storing the user’s work area.

As for additional features to the CVS itself, the UA can monitor the user’s activities and
remind the user of those activities when necessary. For example, the user may add or
delete files in the work area. Users may try to commit before informing the main
repository of those additions and deletions. The UA can remind the user of the changes
made in the work area. Another feature is to maintain and perform access permissions on
the user’s work area. If two users work on different modules and want to update each
other’s work area, it can be made possible with their access permissions. For example, if
one user works on a GUI front-end and another user works on implementing the backend
features and if both of their works are mutually exclusive, they can allow each other to
update their work area. MPA’s can create a viewer agent (VA) that when requested for a
view from a user, consults with the MA to obtain access rights for that user on the entire
repository and creates a view based on these resources. For geographically and physically
isolated networks, a repository dump can be duplicated in order to collaborate with
isolated networks. Finally, the MPA’s can create representative agents for each
registered user. Because the MA is aware of the initiation and completion of agent tasks,
it can broadcast messages to all the agents about any updates in the central repository.
The representative agents can carry the broadcast message to their respective users.
Agents can also handle sequencing of CVS operations for intelligent database
manipulations to restore dependencies.

9.0 Conclusion

This paper discussed using mobile agents with the Anchor toolkit. The architecture and
APIs that are currently supported by this toolkit were elaborated. The access control
model used for authorized access was explained. The secure transmission of agents and
access control using Java SSL and Akenti based on Public Key Infrastructure (PKI)
credentials was analyzed. The ability to retrofit security managers in Anchor was
compared to other existing agent systems. Currently the toolkit provides barebones for a
mobile agent framework. The applicability of this framework was envisioned in the
context of a secure distributed CVS, which can be extended to analogous applications.

Our future work aims at providing more features to this toolkit and make it user-friendly
and deployable by others.

References

[1] Software Agents
 Jeffrey M. Bradshaw
 AAAI Press/The MIT Press, Copyright 1997, American Association for Artificial
 Intelligence.
[2] Introduction to SSL
 http://developer.netscape.com/docs/manuals/security/sslin/
[3] Design and Implementation Issues of a Distributed Access Control System [to appear]
 Srilekha Mudumbai, William Johnston, Mary Thompson, Gary Hoo, Keith Jackson
 and Abdeliah Essiari
[4] "Authorization and Attribute Certificates for Widely Distributed Access Control"
 IEEE 7th International Workshops on Enabling Technologies:
Infrastructure for
 Collaborative Enterprises - WETICE ’98
 William Johnston, Srilekha Mudumbai and Mary Thompson.
[5] Applied Cryptography, Bruce Schneier, Second Ed. John Wiley & Sons,
 Inc.1996
[6] Netscape Certificate Server
 http://home.netscape.com/cms/v4.0/index.html
[7] LDAP - Programming Directory-Enabled Application with Lightweight
 Directory Access Protocol, Timothy A. Howes, Mark C. Smith, McMillian
 Technical Publishing, Indianapolis, In. 1997
[8] Programming and Deploying JAVA MOBILE AGENTS with Aglets
 Danny B. Lange, Mitsuru Oshima
 ADDISON-WESLEY, Copyright 1998.
[9] "Internet X.509 Public Key Infrastructure Certificate and CRL Profile".
 R. Housley, W. Ford, W. Polk,D. Solo
 http://www.ietf.org/internet-drafts/draft-ietf-pkix-ipki-part1-11.txt
[10] IAIK-SSL, IAIK-JCE
 http://jcewww.iaik.tu-graz.ac.at/JavaSecurity/index.htm
[11] Java Network Security
 Robert Macgregor, Dave Durbin, John Owlett, Andrew Yeomans
 Prentice Hall Publications, Copyright 1998, International Business Machines
 Corp.
[12] Towards Mobile Cryptography
 Tomas Sander and Christian F. Tschudin, ICSI
[13] ObjectSpace Voyager
 http://www.objectspace.com
[14] Mitsubishi’s Concordia
 http://www.metica.com/HSL/Projects/Concordia
[15] Version Management with CVS, Per Cederqvist et al

