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Abstract

On Building Generalizable Learning Agents

by

Yi Wu

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Stuart Russell, Chair

It has been a long-standing goal in Artificial Intelligence (AI) to build machines that can
solve tasks that humans can. Thanks to the recent rapid progress in data-driven methods,
which train agents to solve tasks by learning from massive training data, there have been
many successes in applying such learning approaches to handle and even solve a number
of extremely challenging tasks, including image classification, language generation, robotics
control, and several complex multi-player games. The key factor for all these data-driven
successes is that the trained agents can generalize to test scenarios that are unseen during
training. This generalization capability is the foundation for building any practical AI system.

This thesis studies generalization, the fundamental challenge in AI, and proposes solutions
to improve the generalization performances of learning agents in a variety of domains. We
start by providing a formal formulation of the generalization problem in the context of
reinforcement learning and proposing 4 principles within this formulation to guide the
design of training techniques for improved generalization. We validate the effectiveness of
our proposed principles by considering 4 different domains, from simple to complex, and
developing domain-specific techniques following these principles. Particularly, we begin with
the simplest domain, i.e., path-finding on graphs (Part I), and then consider visual navigation
in a 3D world (Part II) and competition in complex multi-agent games (Part III), and lastly
tackle some natural language processing tasks (Part IV). Empirical evidences demonstrate
that the proposed principles can generally lead to much improved generalization performances
in a wide range of problems.
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Chapter 1

Introduction

1.1 Generalization in Artificial Intelligence

Since the term “Artificial Intelligence” was invented at the Dartmouth conference in 1956,
tremendous efforts have been constantly devoted to the mission of building artificial agents
capable of solving tasks that human beings can. Despite that the original proposal stated a
2-month estimate for a success [McCarthy et al., 2006], it turns out that achieving Artificial
General Intelligence, a.k.a. AGI, still remains an open challenge for the whole research
community till the current moment. Nevertheless, in the recent decade, there are convincing
evidences that we are indeed approaching our ultimate goal of AGI, largely thanks to the
remarkable applications of data-driven methods, where agents directly learn to solve tasks
from massive data. Particularly, with the advances in deep learning techniques [LeCun
et al., 2015], we have successfully trained agents to tackle (and even solve) a lot of real-world
challenging tasks from a variety of domains: for example, we can build practical visual systems
for image classification [Krizhevsky et al., 2012,He et al., 2016b], segmentation [Long et al.,
2015,He et al., 2017] and editing [Goodfellow et al., 2014a,Zhu et al., 2017a,Brock et al., 2019];
we can train AI to generate extremely fluent natural languages [Devlin et al., 2019,Radford
et al., 2019] and build high-quality machine translation systems [Wu et al., 2016b]; we can
even combine deep learning and reinforcement learning (a.k.a. deep reinforcement learning)
to achieve super-human performances in video games [Mnih et al., 2015, Schulman et al.,
2015, OpenAI et al., 2019b], Go [Silver et al., 2016], Poker [Brown and Sandholm, 2019]
and build real-world robotic systems for navigation [Gupta et al., 2017b, Mirowski et al.,
2018], object manipulation [Levine et al., 2016] or solving a Rubik’s cube [OpenAI et al.,
2019a]. Hence, today’s frontier of AI with all these achievements has greatly consolidated our
optimism about future success in AGI.

The key ingredient leading to the successes of those recent deep learning applications is
that the agents that learn strategies from training data can generalize to unseen scenarios
surprisingly well: image classifier trained on ImageNet dataset [Deng et al., 2009] can correctly
classify unseen test images [He et al., 2016b]; Google’s machine translation product can
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handle massive unseen online queries [Wu et al., 2016b]; AIs only trained by self-competition
can beat human world champions in Go [Silver et al., 2018] and Dota2 [OpenAI et al.,
2019b]. Such generalization ability to bridge the gap between training and testing is a
fundamental requirement for building any practical AI system. Although we do have some
positive examples as mentioned, generalization is still one of the biggest challenges in AI with
countless failure examples for even cutting-edge AI systems: neural networks can produce
completely wrong outputs when just a single pixel is modified in the input image [Goodfellow
et al., 2014b] or a single word is replaced in the input natural language sentence [Zhang et al.,
2019]; in multi-agent physical games, the performance of trained agents can significantly
degenerate when competing against an opponent with behavior completely different from its
training partners [Al-Shedivat et al., 2018,Gleave et al., 2019]; many robotics systems that are
trained in simulators can be brittle when deployed to the real world [Tobin et al., 2017,Peng
et al., 2018a,OpenAI et al., 2019a]; DeepMind’s StarCraft II AI system, AlphaStar, is still
much weaker than the best human professional players [Vinyals et al., 2019]; although Uber’s
autonomous driving system has passed rigorous tests, it still caused a fatality event in March,
20181; in Chapter 2, we will show that even in an extremely simple grid world task, applying
deep learning methods in a straightforward way does not necessarily imply generalization.

Generalization is a fundamental yet extremely challenging problem in AI. This thesis
focuses on this challenge in several concrete domains, including path-finding on graphs,
embodied agents in 3D world, complex multi-agent games, and natural language processing.
We will provide systematic solutions to improve the generalization abilities of learned agents
for solving a variety of tasks in these domains. I hope this thesis can serve as a solid step
towards practical AGI in the future.

1.2 Problem Formulation

In this section, we will describe the focused generalization problem more precisely. At a high
level, let’s assume there is a distribution of task scenarios and we want the learning agents
to successfully solve the task in all different scenarios. For example, in video games, the
scenarios can be different game states and opponent strategies; in robotics manipulation, the
scenarios can be different object configurations; in self-driving systems, the scenarios can be
different urban and road conditions. Suppose the scenario distribution is denoted by C, the
learning agents parameterized by parameter θ is denoted by µ(θ) and there is a performance
measure on how well the agent solves the task in a particular scenario c ∈ C denoted by
M(µ(θ); c). Then the mathematical objective for building a generalizable learning agent is to
find an optimal parameter θ? such that

θ? = arg max
θ

Ec∈C [M(µ(θ); c)] . (1.1)

In practice, the standard data-driven paradigm is to generate two separate scenario sets,
i.e., a training set Ctrain and a testing set Ctest, then search for the optimal parameter θ? only

1https://en.wikipedia.org/wiki/List_of_self-driving_car_fatalities

https://en.wikipedia.org/wiki/List_of_self-driving_car_fatalities
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on Ctrain, and aim for the best performance on Ctest. In this case, our true objective becomes

maxEc∈Ctest
[
M(µ(θ̂?); c)

]
, where θ̂? = arg max

θ
Ec∈Ctrain [M ′(µ(θ); c)] , (1.2)

where M ′(·) denotes the performance measure used at training time: it can be the same as
the true measure M(·) or slightly different for the purpose of better generalization.

There are a number of ways to optimize Equation 1.2: we can improve the agent repre-
sentation µ(θ); we can adjust the training measure function M ′(·) or use different approaches
to search for the best parameter θ̂?; we can also augment the training set Ctrain. The tech-
niques proposed in this thesis all fall into these categories. More methodology details will be
presented in Section 1.3.

Key Assumptions

Equation 1.2 provides a very general formulation of generalization. To be more specific, in this
thesis, we primarily focus on the setting of reinforcement learning: a scenario c corresponds
to a particular Markov Decision Process (MDP) (S,A, P (s′|s, a), r(s, a)) where s ∈ S denotes
state space, a ∈ A denotes the action space, P (s′|s, a) denotes the transition probability
from state s to s′ after action a is taken, and r(s, a) denotes the reward to the agent in state
s after action a. µ(θ) here is called the policy, which takes in the agent’s observation o(s)
in state s and produces an action µ(o(s); θ) ∈ A. The performance measure becomes the

accumulative reward within the horizon H, namely Est
[∑H

t=0 r(st, at)|at=µ(o(st);θ)

]
. For more

rigorous definitions, please refer to [Sutton and Barto, 1998]. In each following chapter, these
definitions will be recalled and slightly adjusted according to different domain specifications.
Note that in the reinforcement learning setting, supervised learning tasks (e.g., image
classification) can be viewed as a special case where the agent only needs to make a single
action and the reward is simply an indicator function of correctness.

In this thesis, there are two important assumptions:

• MDPs in C share the same observation space S and action space A. This simply implies
that the input and output space of the policy are consistent across all the scenarios.
For example, when building a game AI, no matter which scenario the agent is in, the
input is always a game state; for a robotics system, the input can be the sensor signals
and the action can be the control, which is always unchanged for a particular robot.
Even if some actions become infeasible in some states, we can simply set the associated
reward to be negative infinity.

• Ctrain and Ctest are both uniformly drawn from C. This critical assumption follows the
standard assumption in statistical machine learning [James et al., 2013]. It implies
that the training scenarios and testing scenarios are sharing some essential common
structures. Equivalently, it states that the testing scenarios are never too different from
training ones. For example, for autonomous driving systems, a valid setting is that we
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train the self-driving car in a lot of cities in the U.S. and particularly test the trained
agent in San Francisco. In contrast, if we train the self-driving agent on Earth, testing
it on Mars will be beyond our focus in this thesis since the physics on Mars is too
different from Earth to follow the same distribution assumption.

Position in Existing Literature

Generalization is the fundamental problem in machine learning, which has been compre-
hensively studied for decades [James et al., 2013]. For reinforcement learning, although the
majority of works in the domain primarily focus on the classical formulation, i.e., learning
the optimal policy in a particular MDP, which is essentially training rather than generaliza-
tion, how to learn policies that can produce good actions on states not covered in training
experiences has been also considered since 1980s [Kaelbling et al., 1996]. In the very early
stage of studying generalization in reinforcement learning, efforts are put on generalizing over
the large state space within an MDP, which is now typically handled by using a function
approximator to represent a policy. Herein, we consider generalization over a distribution of
scenarios (MDPs). Such a notion was originally proposed in [Caruana, 1997], called multitask
learning. In this thesis, the problem we tackle is conceptually very similar to the multitask
setting but I personally prefer to use a much more general terminology scenario instead of
task since it is often non-trivial to distinguish the exact boundary of reinforcement learning
tasks in high-dimensional complex environments. For example, in video games, we want a
learned agent to generalize to different game stages/configurations but the “task” itself is
still to win the game; autonomous driving systems always aim to transport passengers safely
while its generalization focus is on different surrounding situations.

At a high level, the generalization problem falls into the scope of transfer learning [Pratt,
1993,Pan and Yang, 2009], which aims to utilize a learned model for one problem to solve
another different but related problem. It is sometimes called domain adaptation when the
goal is specifically to transfer a learned model trained on one data distribution to another
testing data distribution [Patel et al., 2015]. Transfer learning has also been widely studied
in the reinforcement learning setting [Taylor and Stone, 2009]. As a very general paradigm,
transfer learning does not assume the training and test scenarios are drawn from the same
distribution (our second assumption). Instead, it primarily considers the problem of how to
bridge the gap between distribution shifts between training and testing data.

Another related field is learning to learn [Schmidhuber, 1995, Thrun and Pratt, 2012],
which aims to build an agent that learns how to learn and adapt in new situations. It is also
called meta-learning [Schaul and Schmidhuber, 2010,Vilalta and Drissi, 2002,Finn, 2018].
The goal of learning to learn is essentially the same as our focus, namely building agents that
can perform well on unseen testing scenarios. The difference is that in the learning to learn
setting, when the learned agent is deployed at test time, the agent will be typically given a
short period of “free time” to further learn or adapt in the testing environment. While in the
aforementioned generalization formulation, we want the learned agent to immediately work in
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test cases without an explicit adaptation procedure. From this perspective, the formulation
here is also related to zero-shot learning [Larochelle et al., 2008,Palatucci et al., 2009].

Additionally, in multi-agent games, an agent should not only behave well on different
game configurations but also respond optimally to other agents’ strategies in the game.
Learning optimal strategies in multi-agent games has a long history within the scope of
algorithmic game theory [Nisan et al., 2007]. In Part III of this thesis, we will leverage
several fundamental ideas from algorithmic game theory and design computationally efficient
approximate algorithms to build agents that can generalize across different opponent strategies
in complex multi-agent games.

1.3 Contributions

This thesis studies the generalization challenge following the aforementioned formulation in
Equation 1.2. I propose that improved generalization can be achieved via applying specially
designed training techniques under the following 4 design principles:

(1) Incorporate inductive bias into policy representation µ(θ) to better capture the underlying
problem structure in C;

(2) Augment the training scenarios Ctrain to better represent the underlying distribution C;

(3) Utilize a better designed training performance measure M ′(·) that encourages the agent
to learn to generalize;

(4) Develop better algorithms or training paradigms such that in practice, a better policy
parameter θ̂? can be obtained for the problem to solve.

We empirically validate our proposed principles by considering a wide range of specific yet
important domains, from simple to hard, and applying solutions in these domains following
the above design principles. Experimental results show that these principles can lead to
significantly better generalization performances in a wide range of problems. Note that
in each specific domain, particular techniques are developed under the guidance of these
principles. It is yet to be explored if there exists a unified solution to improve generalization
in all kinds of problems, but I believe this thesis is a starting point towards this ultimate
goal for eventually solving the generalization challenge.

The following content of this thesis is organized as follows:

• In Part I starts from the simplest domain, i.e., the grid world and graphs. Chapter 2
explores principle (1) in a standard navigation task where the agent needs to find a path
towards some target location. A standard deep learning paradigm is utilized for training.
It can be demonstrated that policies represented by standard feed-forward networks do
not generalize well in solving tasks in unseen scenarios. We argue that this is because
the policy representation lacks the capability of performing long-term planning when
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producing decisions. Therefore, Chapter 2 proposes a new policy representation, called
value iteration network, which enables the agents to learn a planning computation
for long-term consequences, and shows that the proposed representation leads to
significantly better generalization performances. Chapter 2 was originally published as
a part of [Tamar et al., 2016], which won the best paper award at NeurIPS 2016.

• Part II considers a more realistic setting, i.e., visual navigation, where an agent takes
in visual signals and needs to navigate in a 3D interactive world condition on some
instruction. Chapter 3 explores principle (2) by proposing a new environment, House3D,
which contains thousands of human-designed indoor scenes. House3D is particularly
designed for building generalizable visual embodied agents. We further proposed
a benchmark task called RoomNav and systematically evaluated a variety of data
augmentation and policy representation techniques for the RoomNav task in House3D.
Chapter 4 further explores principle (1) by proposing a new memory architecture for
policy representation, called Bayesian Relational Memory (BRM). BRM allows the
agents to effectively plan for the optimal path towards the target based on its past
experiences and therefore significantly improves the generalization performances in
the RoomNav task. Chapter 3 was originally published at ICLR 2018 workshop track
as [Wu et al., 2018]. Chapter 4 was published at ICCV 2019 as [Wu et al., 2019].

• Part III considers mixed cooperative-competitive multi-agent games where an agent
should generalize to not only game configurations but also other agents’ strategies.
Learning good policies in the multi-agent setting is fundamentally more challenging
than the single-agent case. Chapter 5 explores principle (4) by proposing a new
actor-critic multi-agent reinforcement learning algorithm, MADDPG. It also provides
preliminary examinations of the generalization performances of learned policies by
testing with unseen competitors and suggests an ensemble learning technique to improve
generalization. Chapter 6 further explores principle (3), (4) by incorporating the
minimax concept from game theory into the MADDPG algorithm and developing a
computationally efficient minimax learning algorithm, M3DDPG, which can significantly
improve the generalization performances of learned policies in a variety of complex
multi-agent games. Chapter 5 was originally published at NeurIPS 2017 as [Lowe et al.,
2017]. Chapter 6 was published at AAAI 2019 as [Li et al., 2019].

• Part IV considers the natural language processing domain. Chapter 7 explores principle
(3) in task of relation extraction and proposes an adversarial training objective that
generally improves the testing performances on a number of neural network models.
Chapter 8 explores principle (2), (4) in the task of named entity recognition (NER). A
classical pipeline for this task is to first learn a probabilistic model of text sequences
during training and then perform probabilistic inference on the learned model to
produce test predictions. Inspired by the core idea of meta-learning, Chapter 8 proposes
a meta-learning paradigm for MCMC inference, which can be directly applied to a
trained NER model at test time and significantly boosts its test performances with
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little additional computational cost. Chapter 7 was published at EMNLP 2017 as [Wu
et al., 2017b]. Chapter 8 was published at NeurIPS 2018 as [Wang et al., 2018a].
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Part I

Decision Making on Graphs
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Chapter 2

Value Iteration Network

In this chapter, we introduce a novel policy representation, the value iteration network (VIN):
a fully differentiable neural network with a ‘planning module’ embedded within. VINs can
learn to plan, and are suitable for predicting outcomes that involve planning-based reasoning.
Key to our approach is a novel differentiable approximation of the value-iteration algorithm,
which can be represented as a convolutional neural network, and trained end-to-end using
standard backpropagation. We evaluate VIN based policies on discrete path-planning domains,
including a 2D grid world and a natural language based web search task. We show that by
learning an explicit planning computation, VIN policies generalize better to new, unseen
domains.

2.1 Motivation

Over the last decade, deep convolutional neural networks (CNNs) have revolutionized su-
pervised learning for tasks such as object recognition, action recognition, and semantic
segmentation [Ciresan et al., 2012,Krizhevsky et al., 2012,Farabet et al., 2013,Long et al.,
2015]. Recently, CNNs have been applied to reinforcement learning (RL) tasks with visual
observations such as Atari games [Mnih et al., 2015], robotic manipulation [Levine et al.,
2016], and imitation learning (IL) [Giusti et al., 2016]. In these tasks, a neural network (NN)
is trained to represent a policy – a mapping from an observation of the system’s state to an
action, with the goal of representing a control strategy that has good long-term behavior,
typically quantified as the minimization of a sequence of time-dependent costs.

The sequential nature of decision making in RL is inherently different than the one-step
decisions in supervised learning, and in general requires some form of planning [Bertsekas,
2012]. However, most recent deep RL works [Mnih et al., 2015,Schulman et al., 2015,Levine
et al., 2016,Giusti et al., 2016] employed NN architectures that are very similar to the standard
networks used in supervised learning tasks, which typically consist of CNNs for feature
extraction, and fully connected layers that map the features to a probability distribution
over actions. Such networks are inherently reactive, and in particular, lack explicit planning



CHAPTER 2. VALUE ITERATION NETWORK 10

computation. The success of reactive policies in sequential problems is due to the learning
algorithm, which essentially trains a reactive policy to select actions that have good long-term
consequences in its training domain.

To understand why planning can nevertheless be an important ingredient in a policy,
consider the grid-world navigation task depicted in Figure 2.1 (left), in which the agent can
observe a map of its domain, and is required to navigate between some obstacles to a target
position. One hopes that after training a policy to solve several instances of this problem
with different obstacle configurations, the policy would generalize to solve a different, unseen
domain, as in Figure 2.1 (right). However, as we show in our experiments, while standard
CNN-based networks can be easily trained to solve a set of such maps, they do not generalize
well to new tasks outside this set, because they do not understand the goal-directed nature
of the behavior. This observation suggests that the computation learned by reactive policies
is different from planning, which is required to solve a new task1.

Figure 2.1: Two instances of a grid-world do-
main. Task is to move to the goal between the
obstacles.

In this chapter, we propose a NN-based
policy that can effectively learn to plan.
Our model, termed a value-iteration network
(VIN), has a differentiable ‘planning program’
embedded within the NN structure.

The key to our approach is an observation
that the classic value-iteration (VI) planning
algorithm [Bellman, 1957, Bertsekas, 2012]
may be represented by a specific type of CNN.
By embedding such a VI network module
inside a standard feed-forward classification
network, we obtain a NN model that can
learn the parameters of a planning computation that yields useful predictions. The VI block
is differentiable, and the whole network can be trained using standard backpropagation. This
makes our policy simple to train using standard RL and IL algorithms, and straightforward
to integrate with NNs for perception and control.

Connections between planning algorithms and recurrent NNs were previously explored
by Ilin et al. [Ilin et al., 2007]. Our work builds on related ideas, but results in a more
broadly applicable policy representation. Our approach is different from model-based RL
[Schmidhuber, 1990,Deisenroth and Rasmussen, 2011], which requires system identification
to map the observations to a dynamics model, which is then solved for a policy. In many
applications, including robotic manipulation and locomotion, accurate system identification is
difficult, and modelling errors can severely degrade the policy performance. In such domains,
a model-free approach is often preferred [Levine et al., 2016]. Since a VIN is just a NN policy,
it can be trained model free, without requiring explicit system identification. In addition,

1In principle, with enough training data that covers all possible task configurations, and a rich enough
policy representation, a reactive policy can learn to map each task to its optimal policy. In practice, this
is often too expensive, and we offer a more data-efficient approach by exploiting a flexible prior about the
planning computation underlying the behavior.
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the effects of modelling errors in VINs can be mitigated by training the network end-to-end,
similarly to the methods in [Joseph et al., 2013,Guo et al., 2016].

We demonstrate the effectiveness of VINs in various problems, from gridworld path-finding
to natural language based decision making in the WebNav challenge [Nogueira and Cho,
2016]. After training, the policy learns to map an observation to a planning computation
relevant for the task, and generate action predictions based on the resulting plan. As we
demonstrate, this leads to policies that generalize better to new, unseen, task instances.

2.2 Background

In this section we provide background on planning, value iteration, CNNs, and policy
representations for RL and IL. In the sequel, we shall show that CNNs can implement a
particular form of planning computation similar to the value iteration algorithm, which can
then be used as a policy for RL or IL.

Value Iteration: A standard model for sequential decision making and planning is the
Markov decision process (MDP) [Bellman, 1957,Bertsekas, 2012]. An MDP M consists of
states s ∈ S, actions a ∈ A, a reward function R(s, a), and a transition kernel P (s′|s, a) that
encodes the probability of the next state given the current state and action. A policy π(a|s)
prescribes an action distribution for each state. The goal in an MDP is to find a policy that
obtains high rewards in the long term. Formally, the value V π(s) of a state under policy π is
the expected discounted sum of rewards when starting from that state and executing policy
π, V π(s)

.
= Eπ [

∑∞
t=0 γ

tr(st, at)| s0 = s], where γ ∈ (0, 1) is a discount factor, and Eπ denotes
an expectation over trajectories of states and actions (s0, a0, s1, a1 . . . ), in which actions are
selected according to π, and states evolve according to the transition kernel P (s′|s, a). The
optimal value function V ∗(s)

.
= maxπ V

π(s) is the maximal long-term return possible from
a state. A policy π∗ is said to be optimal if V π∗(s) = V ∗(s) ∀s. A popular algorithm for
calculating V ∗ and π∗ is value iteration (VI):

Vn+1(s) = maxaQn(s, a) ∀s, where Qn(s, a) = R(s, a) + γ
∑

s′ P (s′|s, a)Vn(s′). (2.1)

It is well known that the value function Vn in VI converges as n→∞ to V ∗, from which an
optimal policy may be derived as π∗(s) = arg maxaQ∞(s, a).

Convolutional Neural Networks (CNNs) are NNs with a particular architecture
that has proved useful for computer vision, among other domains [Fukushima, 1979, Le-
Cun et al., 1998, Ciresan et al., 2012, Krizhevsky et al., 2012]. A CNN is comprised of
stacked convolution and max-pooling layers. The input to each convolution layer is a 3-
dimensional signal X, typically, an image with l channels, m horizontal pixels, and n vertical
pixels, and its output h is a l′-channel convolution of the image with kernels W 1, . . . ,W l′ ,

hl′,i′,j′ = σ
(∑

l,i,jW
l′

l,i,jXl,i′−i,j′−j

)
, where σ is some scalar activation function. A max-pooling

layer selects, for each channel l and pixel i, j in h, the maximum value among its neighbors
N(i, j), hmaxpooll,i,j = maxi′,j′∈N(i,j) hl,i′,j′ . Typically, the neighbors N(i, j) are chosen as a k × k
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image patch around pixel i, j. After max-pooling, the image is down-sampled by a constant
factor d, commonly 2 or 4, resulting in an output signal with l′ channels, m/d horizontal
pixels, and n/d vertical pixels. CNNs are typically trained using stochastic gradient descent
(SGD), with backpropagation for computing gradients.

Reinforcement Learning and Imitation Learning: In MDPs where the state space
is very large or continuous, or when the MDP transitions or rewards are not known in advance,
planning algorithms cannot be applied. In these cases, a policy can be learned from either
expert supervision – IL, or by trial and error – RL. While the learning algorithms in both
cases are different, the policy representations – which are the focus of this chapter – are
similar. Additionally, most state-of-the-art algorithms such as [Ross et al., 2011a,Mnih et al.,
2015,Schulman et al., 2015,Levine et al., 2016] are agnostic to the policy representation, and
only require it to be differentiable, for performing gradient descent on some algorithm-specific
loss function. Therefore, in this chapter we do not commit to a specific learning algorithm,
and only consider the policy.

Let φ(s) denote an observation for state s. The policy is specified as a parametrized
function πθ(a|φ(s)) mapping observations to a probability over actions, where θ are the
policy parameters. For example, the policy could be represented as a neural network, with
θ denoting the network weights. The goal is to tune the parameters such that the policy
behaves well in the sense that πθ(a|φ(s)) ≈ π∗(a|φ(s)), where π∗ is the optimal policy for the
MDP, as defined in Section 2.2.

In IL, a dataset ofN state observations and corresponding optimal actions {φ(si), ai ∼ π∗(φ(si))}i=1,...,N

is generated by an expert. Learning a policy then becomes an instance of supervised learn-
ing [Ross et al., 2011a,Giusti et al., 2016]. In RL, the optimal action is not available, but
instead, the agent can act in the world and observe the rewards and state transitions its
actions effect. RL algorithms such as in [Sutton and Barto, 1998,Mnih et al., 2015,Schulman
et al., 2015,Levine et al., 2016] use these observations to improve the value of the policy.

2.3 The Value Iteration Network Model

In this section we introduce a general policy representation that embeds an explicit planning
module. As stated earlier, the motivation for such a representation is that a natural solution
to many tasks, such as the path planning described above, involves planning on some model
of the domain.

Let M denote the MDP of the domain for which we design our policy π. We assume that
there is some unknown MDP M̄ such that the optimal plan in M̄ contains useful information
about the optimal policy in the original task M . However, we emphasize that we do not
assume to know M̄ in advance. Our idea is to equip the policy with the ability to learn and
solve M̄ , and to add the solution of M̄ as an element in the policy π. We hypothesize that
this will lead to a policy that automatically learns a useful M̄ to plan on. We denote by
s̄ ∈ S̄, ā ∈ Ā, R̄(s̄, ā), and P̄ (s̄′|s̄, ā) the states, actions, rewards, and transitions in M̄ . To
facilitate a connection between M and M̄ , we let R̄ and P̄ depend on the observation in M ,
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namely, R̄ = fR(φ(s)) and P̄ = fP (φ(s)), and we will later learn the functions fR and fP as
a part of the policy learning process.

For example, in the grid-world domain described above, we can let M̄ have the same state
and action spaces as the true grid-world M . The reward function fR can map an image of
the domain to a high reward at the goal, and negative reward near an obstacle, while fP can
encode deterministic movements in the grid-world that do not depend on the observation.
While these rewards and transitions are not necessarily the true rewards and transitions in
the task, an optimal plan in M̄ will still follow a trajectory that avoids obstacles and reaches
the goal, similarly to the optimal plan in M .

Once an MDP M̄ has been specified, any standard planning algorithm can be used to
obtain the value function V̄ ∗. In the next section, we shall show that using a particular
implementation of VI for planning has the advantage of being differentiable, and simple
to implement within a NN framework. In this section however, we focus on how to use
the planning result V̄ ∗ within the NN policy π. Our approach is based on two important
observations. The first is that the vector of values V̄ ∗(s) ∀s encodes all the information
about the optimal plan in M̄ . Thus, adding the vector V̄ ∗ as additional features to the policy
π is sufficient for extracting information about the optimal plan in M̄ .

However, an additional property of V̄ ∗ is that the optimal decision π̄∗(s̄) at a state
s̄ can depend only on a subset of the values of V̄ ∗, since π̄∗(s̄) = arg maxā R̄(s̄, ā) +
γ
∑

s̄′ P̄ (s̄′|s̄, ā)V̄ ∗(s̄′). Therefore, if the MDP has a local connectivity structure, such as in
the grid-world example above, the states for which P̄ (s̄′|s̄, ā) > 0 is a small subset of S̄.

In NN terminology, this is a form of attention [Xu et al., 2015], in the sense that for a
given label prediction (action), only a subset of the input features (value function) is relevant.
Attention is known to improve learning performance by reducing the effective number of
network parameters during learning. Therefore, the second element in our network is an
attention module that outputs a vector of (attention modulated) values ψ(s). Finally, the
vector ψ(s) is added as additional features to a reactive policy πre(a|φ(s), ψ(s)). The full
network architecture is depicted in Figure 2.2 (left).

Returning to our grid-world example, at a particular state s, the reactive policy only
needs to query the values of the states neighboring s in order to select the correct action.
Thus, the attention module in this case could return a ψ(s) vector with a subset of V̄ ∗ for
these neighboring states.

Let θ denote all the parameters of the policy, namely, the parameters of fR, fP , and πre,
and note that ψ(s) is in fact a function of φ(s). Therefore, the policy can be written in the
form πθ(a|φ(s)), similarly to the standard policy form (cf. Section 2.2). If we could back-
propagate through this function, then potentially we could train the policy using standard
RL and IL algorithms, just like any other standard policy representation. While it is easy to
design functions fR and fP that are differentiable (and we provide several examples in our
experiments), back-propagating the gradient through the planning algorithm is not trivial.
In the following, we propose a novel interpretation of an approximate VI algorithm as a
particular form of a CNN. This allows us to conveniently treat the planning module as just
another NN, and by back-propagating through it, we can train the whole policy end-to-end.
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Figure 2.2: Planning-based NN models. Left: a general policy representation that adds
value function features from a planner to a reactive policy. Right: VI module – a CNN
representation of VI algorithm.

The VI Module

We now introduce the VI module – a NN that encodes a differentiable planning computation.
Our starting point is the VI algorithm (2.1). Our main observation is that each iteration

of VI may be seen as passing the previous value function Vn and reward function R through a
convolution layer and max-pooling layer. In this analogy, each channel in the convolution layer
corresponds to the Q-function for a specific action, and convolution kernel weights correspond
to the discounted transition probabilities. Thus by recurrently applying a convolution layer
K times, K iterations of VI are effectively performed.

Following this idea, we propose the VI network module, as depicted in Figure 2.2B. The
inputs to the VI module is a ‘reward image’ R̄ of dimensions l,m, n, where here, for the
purpose of clarity, we follow the CNN formulation and explicitly assume that the state space
S̄ maps to a 2-dimensional grid. However, our approach can be extended to general discrete
state spaces, for example, a graph, as we report in the WikiNav experiment in Section
2.4. The reward is fed into a convolutional layer Q̄ with Ā channels and a linear activation
function, Q̄ā,i′,j′ =

∑
l,i,jW

ā
l,i,jR̄l,i′−i,j′−j. Each channel in this layer corresponds to Q̄(s̄, ā) for

a particular action ā. This layer is then max-pooled along the actions channel to produce the
next-iteration value function layer V̄ , V̄i,j = maxā Q̄(ā, i, j). The next-iteration value function
layer V̄ is then stacked with the reward R̄, and fed back into the convolutional layer and
max-pooling layer K times, to perform K iterations of value iteration.

The VI module is simply a NN architecture that has the capability of performing an
approximate VI computation. Nevertheless, representing VI in this form makes learning the
MDP parameters and reward function natural – by backpropagating through the network,
similarly to a standard CNN. VI modules can also be composed hierarchically, by treating
the value of one VI module as additional input to another VI module. We further report on
this idea in the supplementary material.
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Value Iteration Networks

We now have all the ingredients for a differentiable planning-based policy, which we term
a value iteration network (VIN). The VIN is based on the general planning-based policy
defined above, with the VI module as the planning algorithm. In order to implement a VIN,
one has to specify the state and action spaces for the planning module S̄ and Ā, the reward
and transition functions fR and fP , and the attention function; we refer to this as the VIN
design. For some tasks, as we show in our experiments, it is relatively straightforward to
select a suitable design, while other tasks may require more thought. However, we emphasize
an important point: the reward, transitions, and attention can be defined by parametric
functions, and trained with the whole policy2. Thus, a rough design can be specified, and
then fine-tuned by end-to-end training.

Once a VIN design is chosen, implementing the VIN is straightforward, as it is simply a
form of a CNN. The networks in our experiments all required only several lines of Theano [Al-
Rfou et al., 2016] code. In the next section, we evaluate VIN policies on various domains,
showing that by learning to plan, they achieve a better generalization capability.

2.4 Experiments

In this section we evaluate VINs as policy representations on various domains. Additional
experiments investigating RL and hierarchical VINs, as well as technical implementation
details are discussed in the supplementary material. Source code is available at https:

//github.com/avivt/VIN.
Our goal in these experiments is to investigate the following questions:

1. Can VINs effectively learn a planning computation using standard RL and IL algorithms?

2. Does the planning computation learned by VINs make them better than reactive policies
at generalizing to new domains?

An additional goal is to point out several ideas for designing VINs for various tasks. While
this is not an exhaustive list that fits all domains, we hope that it will motivate creative
designs in future work.

Grid-World Domain

Our first experiment domain is a synthetic grid-world with randomly placed obstacles, in
which the observation includes the position of the agent, and also an image of the map of
obstacles and goal position. Figure 2.3 shows two random instances of such a grid-world of
size 16× 16. We conjecture that by learning the optimal policy for several instances of this

2VINs are fundamentally different than inverse RL methods [Neu and Szepesvári, 2007], where transitions
are required to be known.

https://github.com/avivt/VIN
https://github.com/avivt/VIN
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Figure 2.3: Two random instances of the 28× 28 synthetic gridworld, with the VIN-predicted
trajectories and ground-truth shortest paths between random start and goal positions. In A,
the trajectories mostly overlap. Note that the shortest-path trajectory is not unique, and in
the left domain the trajectory predicted by the VIN is different than the ground-truth, but
of the same length.

domain, a VIN policy would learn the planning computation required to solve a new, unseen,
task.

In such a simple domain, an optimal policy can easily be calculated using exact VI. Note,
however, that here we are interested in evaluating whether a NN policy, trained using RL or
IL, can learn to plan. In the following results, policies were trained using IL, by standard
supervised learning from demonstrations of the optimal policy. In the supplementary material,
we report additional RL experiments that show similar findings.

We design a VIN for this task following the guidelines described above, where the planning
MDP M̄ is a grid-world, similar to the true MDP. The reward mapping fR is a CNN mapping
the image input to a reward map in the grid-world. Thus, fR should potentially learn to
discriminate between obstacles, non-obstacles and the goal, and assign a suitable reward to
each. The transitions P̄ were defined as 3× 3 convolution kernels in the VI block, exploiting
the fact that transitions in the grid-world are local3. The recurrence K was chosen in
proportion to the grid-world size, to ensure that information can flow from the goal state to
any other state. For the attention module, we chose a trivial approach that selects the Q̄
values in the VI block for the current state, i.e., ψ(s) = Q̄(s, ·). The final reactive policy is a
fully connected network that maps ψ(s) to a probability over actions.

We compare VINs to the following NN reactive policies:

CNN network: We devised a CNN-based reactive policy inspired by the recent impressive
results of DQN [Mnih et al., 2015], with 5 convolution layers, and a fully connected output.
While the network in [Mnih et al., 2015] was trained to predict Q values, our network
outputs a probability over actions. These terms are related, since π∗(s) = arg maxaQ(s, a).
Fully Convolutional Network (FCN): The problem setting for this domain is similar to
semantic segmentation [Long et al., 2015], in which each pixel in the image is assigned a
semantic label (the action in our case). We therefore devised an FCN inspired by a state-of-
the-art semantic segmentation algorithm [Long et al., 2015], with 3 convolution layers, where

3Note that the transitions defined this way do not depend on the state s̄. Interestingly, we shall see that
the network learned to plan successful trajectories nevertheless, by appropriately shaping the reward.
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Domain
VIN CNN FCN

Prediction Success Traj. Pred. Succ. Traj. Pred. Succ. Traj.
loss rate diff. loss rate diff. loss rate diff.

8× 8 0.004 99.6% 0.001 0.02 97.9% 0.006 0.01 97.3% 0.004
16× 16 0.05 99.3% 0.089 0.10 87.6% 0.06 0.07 88.3% 0.05
28× 28 0.11 97% 0.086 0.13 74.2% 0.078 0.09 76.6% 0.08

Table 2.1: Performance on grid-world domain. Top: comparison with reactive policies. For
all domain sizes, VIN networks significantly outperform standard reactive networks. Note
that the performance gap increases dramatically with problem size.

the first layer has a filter that spans the whole image, to properly convey information from
the goal to every other state.

In Table 2.1 we present the average 0 − 1 prediction loss of each model, evaluated on
a held-out test-set of maps with random obstacles, goals, and initial states, for different
problem sizes. In addition, for each map, a full trajectory from the initial state was predicted,
by iteratively rolling-out the next-states predicted by the network. A trajectory was said to
succeed if it reached the goal without hitting obstacles. For each trajectory that succeeded,
we also measured its difference in length from the optimal trajectory. The average difference
and the average success rate are reported in Table 2.1.

Clearly, VIN policies generalize to domains outside the training set. A visualization of
the reward mapping fR (see supplementary material) shows that it is negative at obstacles,
positive at the goal, and a small negative constant otherwise. The resulting value function has
a gradient pointing towards a direction to the goal around obstacles, thus a useful planning
computation was learned. VINs also significantly outperform the reactive networks, and the
performance gap increases dramatically with the problem size. Importantly, note that the
prediction loss for the reactive policies is comparable to the VINs, although their success rate
is significantly worse. This shows that this is not a standard case of overfitting/underfitting
of the reactive policies. Rather, VIN policies, by their VI structure, focus prediction errors
on less important parts of the trajectory, while reactive policies do not make this distinction,
and learn the easily predictable parts of the trajectory yet fail on the complete task.

The VINs have an effective depth of K, which is larger than the depth of the reactive
policies. One may wonder, whether any deep enough network would learn to plan. In principle,
a CNN or FCN of depth K has the potential to perform the same computation as a VIN.
However, it has much more parameters, requiring much more training data. We evaluate
this by untying the weights in the K recurrent layers in the VIN. Our results, reported in
the supplementary material, show that untying the weights degrades performance, with a
stronger effect for smaller sizes of training data.
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WebNav Challenge

In the previous experiments, the planning aspect of the task corresponded to 2D navigation.
We now consider a more general domain: WebNav [Nogueira and Cho, 2016] – a language
based search task on a graph.

In WebNav [Nogueira and Cho, 2016], the agent needs to navigate the links of a website
towards a goal web-page, specified by a short 4-sentence query. At each state s (web-page),
the agent can observe average word-embedding features of the state φ(s) and possible next
states φ(s′) (linked pages), and the features of the query φ(q), and based on that has to
select which link to follow. In [Nogueira and Cho, 2016], the search was performed on the
Wikipedia website. Here, we report experiments on the ‘Wikipedia for Schools’ website, a
simplified Wikipedia designed for children, with over 6000 pages and at most 292 links per
page.

In [Nogueira and Cho, 2016], a NN-based policy was proposed, which first learns a NN
mapping from (φ(s), φ(q)) to a hidden state vector h. The action is then selected according
to π(s′|φ(s), φ(q)) ∝ exp

(
h>φ(s′)

)
. In essence, this policy is reactive, and relies on the word

embedding features at each state to contain meaningful information about the path to the
goal. Indeed, this property naturally holds for an encyclopedic website that is structured as
a tree of categories, sub-categories, sub-sub-categories, etc.

We sought to explore whether planning, based on a VIN, can lead to better performance
in this task, with the intuition that a plan on a simplified model of the website can help
guide the reactive policy in difficult queries. Therefore, we designed a VIN that plans on a
small subset of the graph that contains only the 1st and 2nd level categories (< 3% of the
graph), and their word-embedding features.

Designing this VIN requires a different approach from the grid-world VINs described
earlier, where the most challenging aspect is to define a meaningful mapping between nodes
in the true graph and nodes in the smaller VIN graph. For the reward mapping fR, we chose
a weighted similarity measure between the query features φ(q), and the features of nodes in
the small graph φ(s̄). Thus, intuitively, nodes that are similar to the query should have high
reward. The transitions were fixed based on the graph connectivity of the smaller VIN graph,
which is known, though different from the true graph. The attention module was also based
on a weighted similarity measure between the features of the possible next states φ(s′) and
the features of each node in the simplified graph φ(s̄). The reactive policy part of the VIN
was similar to the policy of [Nogueira and Cho, 2016] described above. Note that by training
such a VIN end-to-end, we are effectively learning how to exploit the small graph for doing
better planning on the true, large graph.

Both the VIN policy and the baseline reactive policy were trained by supervised learning,
on random trajectories that start from the root node of the graph. Similarly to [Nogueira
and Cho, 2016], a policy is said to succeed a query if all the correct predictions along the
path are within its top-4 predictions.

After training, the VIN policy performed mildly better than the baseline on 2000 held-out
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test queries when starting from the root node, achieving 1030 successful runs vs. 1025 for the
baseline. However, when we tested the policies on a harder task of starting from a random
position in the graph, VINs significantly outperformed the baseline, achieving 346 successful
runs vs. 304 for the baseline, out of 4000 test queries. These results confirm that indeed, when
navigating a tree of categories from the root up, the features at each state contain meaningful
information about the path to the goal, making a reactive policy sufficient. However, when
starting the navigation from a different state, a reactive policy may fail to understand that it
needs to first go back to the root and switch to a different branch in the tree. Our results
indicate such a strategy can be better represented by a VIN.

We remark that there is still room for further improvements of the WebNav results, e.g., by
better models for reward and attention functions, and better word-embedding representations
of text.

2.5 Additional Details

Visualization of Learned Reward and Value

In Figure 2.4 we plot the learned reward and value function for the gridworld task. The
learned reward is very negative at obstacles, very positive at goal, and a slightly negative
constant otherwise. The resulting value function has a peak at the goal, and a gradient
pointing towards a direction to the goal around obstacles. This plot clearly shows that the
VI block learned a useful planning computation.

Figure 2.4: Visualization of learned reward and value function. Left: a sample domain.
Center: learned reward fR for this domain. Right: resulting value function (in VI block) for
this domain.

Weight Sharing

The VINs have an effective depth of K, which is larger than the depth of the reactive policies.
One may wonder, whether any deep enough network would learn to plan. In principle, a CNN
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or FCN of depth K has the potential to perform the same computation as a VIN. However, it
has much more parameters, requiring much more training data. We evaluate this by untying
the weights in the K recurrent layers in the VIN. Our results, in Table 2.2 show that untying
the weights degrades performance, with a stronger effect for smaller sizes of training data.

Training data
VIN VIN Untied Weights

Pred. Succ. Traj. Pred. Succ. Traj.
loss rate diff. loss rate diff.

20% 0.06 98.2% 0.106 0.09 91.9% 0.094
50% 0.05 99.4% 0.018 0.07 95.2% 0.078
100% 0.05 99.3% 0.089 0.05 95.6% 0.068

Table 2.2: Performance on 16× 16 grid-world domain. Evaluation of the effect of VI module
shared weights relative to data size.

Technical Details for Experiments

We report the full technical details used for training our networks.

Grid-world Domain

Our training set consists of Ni = 5000 random grid-world instances, with Nt = 7 shortest-path
trajectories (calculated using an optimal planning algorithm) from a random start-state
to a random goal-state for each instance; a total of Ni × Nt trajectories. For each state
s = (i, j) in each trajectory, we produce a (2×m× n)-sized observation image simage. The
first channel of simage encodes the obstacle presence (1 for obstacle, 0 otherwise), while the
second channel encodes the goal position (1 at the goal, 0 otherwise). The full observation
vector is φ(s) = [s, simage]. In addition, for each state we produce a label a that encodes the
action (one of 8 directions) that an optimal shortest-path policy would take in that state.

We design a VIN for this task as follows. The state space S̄ was chosen to be a m× n
grid-world, similar to the true state space S.4 The reward R̄ in this space can be represented
by an m× n map, and we chose the reward mapping fR to be a CNN with simage as its input,
one layer with 150 kernels of size 3× 3, and a second layer with one 3× 3 filter to output R̄.
Thus, fR maps the image of obstacles and goal to a ‘reward image’. The transitions P̄ were
defined as 3 × 3 convolution kernels in the VI block, and exploit the fact that transitions
in the grid-world are local. Note that the transitions defined this way do not depend on

4For a particular configuration of obstacles, the true grid-world domain can be captured by a m × n
state space with the obstacles encoded in the MDP transitions, as in our notation. For a general obstacle
configuration, the obstacle positions have to also be encoded in the state. The VIN was able to learn a
policy for a general obstacle configuration by planning in a m× n state space by also taking into account the
observation of the map.
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the state s̄. Interestingly, we shall see that the network learned rewards and transitions
that nevertheless enable it to successfully plan in this task. For the attention module, since
there is a one-to-one mapping between the agent position in S and in S̄, we chose a trivial
approach that selects the Q̄ values in the VI block for the state in the real MDP s, i.e.,
ψ(s) = Q̄(s, ·). The final reactive policy is a fully connected softmax output layer with
weights W , πre(·|ψ(s)) ∝ exp

(
W>ψ(s)

)
.

We trained several neural-network policies based on a multi-class logistic regression loss
function using stochastic gradient descent, with an RMSProp step size [Tieleman and Hinton,
2012], implemented in the Theano [Al-Rfou et al., 2016] library.

We compare the policies:

VIN network We used the VIN model of Section 2.3 as described above, with 10 channels
for the q layer in the VI block. The recurrence K was set relative to the problem size: K = 10
for 8 × 8 domains, K = 20 for 16 × 16 domains, and K = 36 for 28 × 28 domains. The
guideline for choosing these values was to keep the network small while guaranteeing that
goal information can flow to every state in the map.

CNN network: We devised a CNN-based reactive policy inspired by the recent impressive
results of DQN [Mnih et al., 2015], with 5 convolution layers with [50, 50, 100, 100, 100] kernels
of size 3× 3, and 2× 2 max-pooling after the first and third layers. The final layer is fully
connected, and maps to a softmax over actions. To represent the current state, we added to
simage a channel that encodes the current position (1 at the current state, 0 otherwise).

Fully Convolutional Network (FCN): The problem setting for this domain is similar
to semantic segmentation [Long et al., 2015], in which each pixel in the image is assigned a
semantic label (the action in our case). We therefore devised an FCN inspired by a state-of-
the-art semantic segmentation algorithm [Long et al., 2015], with 3 convolution layers, where
the first layer has a filter that spans the whole image, to properly convey information from the
goal to every other state. The first convolution layer has 150 filters of size (2m−1)× (2n−1),
which span the whole image and can convey information about the goal to every pixel. The
second layer has 150 filters of size 1× 1, and the third layer has 10 filters of size 1× 1, to
produce an output sized 10×m× n, similarly to the Q̄ layer in our VIN. Similarly to the
attention mechanism in the VIN, the values that correspond to the current state (pixel) are
passed to a fully connected softmax output layer.

WebNav

“WebNav” [Nogueira and Cho, 2016] is a recently proposed goal-driven web navigation
benchmark. In WebNav, web pages and links from some website form a directed graph
G(S,E). The agent is presented with a query text, which consists of Nq sentences from
a target page at most Nh hops away from the starting page. The goal for the agent is
to navigate to that target page from the starting page via clicking at most Nn links per
page. Here, we choose Nh = Nq = Nn = 4. In [Nogueira and Cho, 2016], the agent receives
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a reward of 1 when reaching the target page via any path no longer than 10 hops. For
evaluation convenience, in our experiment, the agent can receive a reward only if it reaches
the destination via the shortest path, which makes the task much harder. We measure the
top-1 and top-4 prediction accuracy as well as the average reward for the baseline [Nogueira
and Cho, 2016] and our VIN model.

For every page s, the valid transitions are As = {s′ : (s, s′) ∈ E}.
For every web page s and every query text q, we utilize the bag-of-words model with

pretrained word embedding provided by [Nogueira and Cho, 2016] to produce feature vectors
φ(s) and φ(q). The agent should choose at most Nn valid actions from As = {s′ : (s, s′) ∈ E}
based on the current s and q.

The baseline method of [Nogueira and Cho, 2016] uses a single tanh-layer neural net

parametrized by W to compute a hidden vector h: h(s, q) = tanh

(
W

[
φ(s)
φ(q)

])
. The final

baseline policy is computed via πbsl(s
′|s, q) ∝ exp

(
h(s, q)>φ(s′)

)
for s′ ∈ As.

We design a VIN for this task as follows. We firstly selected a smaller website as
the approximate graph Ḡ(S̄, Ē), and choose S̄ as the states in VI. For query q and a

page s̄ in S̄, we compute the reward R̄(s̄) by fR(s̄|q) = tanh
(

(WRφ(q) + bR)> φ(s̄)
)

with

parameters WR (diagonal matrix) and bR (vector). For transition, since the graph remains
unchanged, P̄ is fixed. For the attention module Π(V̄ ?, s), we compute it by Π(V̄ ?, s) =∑

s̄∈S̄ sigmoid
(

(WΠφ(s) + bΠ)> φ(s̄)
)
V̄ ?(s̄), where WΠ and bΠ are parameters and WΠ is

diagonal. Moreover, we compute the coefficient γ based on the query q and the state s using

a tanh-layer neural net parametrized by Wγ: γ(s, q) = tanh

(
Wγ

[
φ(s)
φ(q)

])
. Finally, we

combine the VI module and the baseline method as our VIN model by simply adding the
outputs from these two networks together.

In addition to the experiments reported in the main text, we performed experiments on
the full wikipedia, using ’wikipedia for schools’ as the graph for VIN planning. We report
our preliminary results here.

Full wikipedia website: The full wikipedia dataset consists 779169 training queries (3
million training samples) and 20004 testing queries (76664 testing samples) over 4.8 million
pages with maximum 300 links per page.

We use the whole WikiSchool website as our approximate graph and set K = 4. In VIN,
to accelerate training, we firstly only train the VI module with K = 0. Then, we fix R̄
obtained in the K = 0 case and jointly train the whole model with K = 4. The results are
shown in Tab. 2.3

VIN achieves 1.5% better prediction accuracy than the baseline. Interestingly, with only
1.5% prediction accuracy enhancement, VIN achieves 2.5% better success rate than the
baseline: note that the agent can only success when making 4 consecutive correct predictions.
This indicates the VI does provide useful high-level planning information.
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Network Top-1 Test Err. Top-4 Test Err. Avg. Reward
BSL 52.019% 24.424% 0.27779
VIN 50.562% 26.055% 0.30389

Table 2.3: Performance on the full wikipedia dataset.

2.6 Summary

The introduction of powerful and scalable RL methods has opened up a range of new
problems for deep learning. However, few recent works investigate policy architectures
that are specifically tailored for planning under uncertainty, and current RL theory and
benchmarks rarely investigate the generalization properties of a trained policy [Sutton and
Barto, 1998,Mnih et al., 2015,Duan et al., 2016a]. This chapter takes a step in this direction,
by exploring better generalizing policy representations.

Our VIN policies learn an approximate planning computation relevant for solving the task,
and we have shown that such a computation leads to better generalization in different tasks
from simple gridworlds to navigation of Wikipedia links. For future work, it is plausible to
learn different planning computations, e.g., based on simulation [Guo et al., 2014], or optimal
linear control [Watter et al., 2015], and combine them with reactive policies, to potentially
develop RL solutions for a wider range of domains.
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Part II

Visual Semantic Generalization for
Embodied Agents
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Chapter 3

House3D: an Environment for
Building Generalizable Agents

Teaching an agent to navigate in an unseen 3D environment is a challenging task, even in
the event of simulated environments. To generalize to unseen environments, an agent needs
to be robust to low-level variations (e.g. color, texture, object changes), and also high-level
variations (e.g. layout changes of the environment). To improve overall generalization, all
types of variations in the environment have to be taken under consideration via different
level of data augmentation steps. To this end, we propose House3D, a rich, extensible and
efficient environment that contains 45,622 human-designed 3D scenes of visually realistic
houses, ranging from single-room studios to multi-storied houses, equipped with a diverse set
of fully labeled 3D objects, textures and scene layouts, based on the SUNCG dataset [Song
et al., 2017b]. The diversity in House3D opens the door towards scene-level augmentation,
while the label-rich nature of House3D enables us to inject pixel- & task-level augmentations
such as domain randomization [Tobin et al., 2017] and multi-task training. Using a subset of
houses in House3D, we show that reinforcement learning agents trained with an enhancement
of different levels of augmentations perform much better in unseen environments than our
baselines with raw RGB input by over 8% in terms of navigation success rate. House3D is
publicly available at http://github.com/facebookresearch/House3D.

3.1 Motivation

Recently, deep reinforcement learning has shown its strength on multiple games, such as
Atari [Mnih et al., 2015] and Go [Silver et al., 2016], vastly overpowering human performance.
Via the various reinforcement learning frameworks, different aspects of intelligence can be
learned, including 3D understanding (DeepMind Lab [Beattie et al., 2016] and Malmo [Johnson
et al., 2016]), real-time strategy decision (TorchCraft [Synnaeve et al., 2016] and ELF [Tian
et al., 2017]), fast reaction (Atari [Bellemare et al., 2013]), long-term planning (Go, Chess),
language and communications (ParlAI [Miller et al., 2017] and [Das et al., 2017]).

http://github.com/facebookresearch/House3D
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A prominent issue in reinforcement learning is generalizability. Commonly, agents trained
on a specific environment and for a specific task become highly specialized and fail to perform
well on new environments. In the past, there have been efforts to address this issue. In
particular, pixel-level variations are applied to the observation signals in order to increase the
agent’s robustness to unseen environments [Beattie et al., 2016,Higgins et al., 2017,Tobin
et al., 2017]. Parametrized environments with varying levels of difficulty are used to yield
scene variations but with similar visual observations [Pathak et al., 2017]. Transfer learning
is applied to similar tasks but with different rewards [Finn et al., 2017b].

Nevertheless, the aforementioned techniques study the problem in simplified environments
which lack the diversity, richness and perception challenges of the real world. To this end, we
propose a substantially more diverse environment, House3D, to train and test our agents.
House3D is a virtual 3D environment consisting of thousands of indoor scenes equipped
with a diverse set of scene types, layouts and objects. An overview of House3D is shown
in Figure 3.1a. House3D leverages the SUNCG dataset [Song et al., 2017b] which contains
45K human-designed real-world 3D house models, ranging from single studios to houses with
gardens, in which objects are fully labeled with categories. We convert the SUNCG dataset
to an environment, House3D, which is efficient and extensible for various tasks. In House3D,
an agent can freely explore the space while perceiving a large number of objects under various
visual appearances.

Based on House3D, we design a task called RoomNav : an agent starts at a random
location in a house and is asked to navigate to a destination specified by a high-level semantic
concept (e.g. kitchen), following simple rules (e.g. no object penetration), as shown in
Figure 3.1b. We use gated-CNN and gated-LSTM policies trained with standard deep
reinforcement learning methods, i.e. A3C [Mnih et al., 2016] and DDPG [Lillicrap et al.,
2015], and report success rate on unseen environments over 5 concepts. We show that in
order to achieve strong generalization capability, all-levels of augmentations are needed:
pixel-level augmentation by domain randomization [Tobin et al., 2017] enhances the agent’s
robustness to color variations; object-level augmentation forces the agent to learn multiple
concepts (20 in number) simultaneously, and scene-level augmentation, where a diverse set of
environments is used, enforce generalizability across diverse scenes, mitigating overfitting to
particular scenes. Our final gated-LSTM agent achieves a success rate of 35.8% on 50 unseen
environments, 10% better than the baseline method (25.7%).

The remaining of the chapter is structured as follows. Section 3.1 summarizes relevant
work. Section 3.2 describes our environment, House3D, in detail and section 3.3 describes the
task, RoomNav. Section 3.4 describes our gated models and the applied algorithms to tackle
RoomNav. Finally, experimental results are shown in Section 3.5 with additional details in
Section 3.6.

Related Work

Environments: Table 3.1 shows the comparison between House3D and most relevant prior
works. There are other simulated environments which focus on different domains, such as
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Figure 3.1: An overview of House3D environment and RoomNav task. (a) We build an
efficient and interactive environment upon the SUNCG dataset [Song et al., 2017b] that
contains 45K diverse indoor scenes, ranging from studios to two-storied houses with swimming
pools and fitness rooms. All 3D objects are fully labeled into over 80 categories. Observations
of agents in the environment have multiple modalities, including RGB images, Depth,
Segmentation masks (from object category), top-down 2D view, etc. (b) We focus on the
task of targeted navigation. Given a high-level description of a room concept, the agent
explores the environment to reach the target room.

Environment 3D Realistic Large-scale Fast Customizable

Atari [Bellemare et al., 2013] •
OpenAI Universe [Shi et al., 2017] • • •

Malmo [Johnson et al., 2016] • • • •
DeepMind Lab [Beattie et al., 2016] • • •

VizDoom [Kempka et al., 2016] • • •
AI2-THOR [Zhu et al., 2017b] • • •

Stanford2D-3D [Armeni et al., 2016] • • •
Matterport3D [Chang et al., 2017] • • • •

House3D • • • • •

Table 3.1: A summary of popular environments. The attributes include 3D: 3D nature of
the rendered objects, Realistic: resemblance to the real-world, Large-scale: a large set of
environments, Fast: fast rendering speed and Customizable: flexibility to be customized
to other applications.
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OpenAI Gym [Brockman et al., 2016], ParlAI [Miller et al., 2017] for language communication
as well as some strategic game environments [Synnaeve et al., 2016,Tian et al., 2017,Vinyals
et al., 2017], etc. Most of these environments are pertinent to one particular aspect of
intelligence, such as dialogue or a single type of game, which makes it hard to facilitate the
study of more comprehensive problems. On the contrary, we focus on building a platform
that intersects with multiple research directions, such as object and scene understanding,
3D navigation, embodied question answering [Das et al., 2018a], while allowing users to
customize the level of complexity to their needs.

We build on SUNCG [Song et al., 2017b], a dataset that consists of thousands of diverse
synthetic indoor scenes equipped with a variety of objects and layouts. Its visual diversity
and rich content opens the path to the study of semantic generalization for reinforcement
learning agents. Our platform decouples high-performance rendering from data I/O, and thus
can use other publicly available 3D scene datasets as well. This includes Al2-THOR [Zhu
et al., 2017b], SceneNet RGB-D [McCormac et al., 2017], Stanford 3D [Armeni et al., 2016],
Matterport 3D [Chang et al., 2017] and so on.

Concurrent works [Brodeur et al., 2017,Savva et al., 2017] also introduce similar platforms
as House3D, indicating the interest for large-scale interactive and realistic 3D environments.

3D Navigation: There has been a prominent line of work on the task of navigation in
real 3D scenes [Leonard and Durrant-Whyte, 1992]. Classical approaches decompose the
task into two subtasks by building a 3D map of the scene using SLAM and then planning in
this map [Fox et al., 2005]. More recently, end-to-end learning methods were introduced to
predict robotic actions from raw pixel data [Levine et al., 2016]. Some of the most recent
works on navigation show the effectiveness of end-to-end learning. [Gupta et al., 2017b] learn
to navigate via mapping and planning using shortest path supervision. [Sadeghi and Levine,
2017] teach an agent to fly using solely simulated data and deploy it in the real world. [Gandhi
et al., 2017] collect a dataset of drones crashing into objects and train self-supervised agents
on this data to avoid obstacles.

A number of recent works also use deep reinforcement learning for navigation in simulated
3D scenes. [Mirowski et al., 2017,Jaderberg et al., 2017] improve an agent’s navigation ability
in mazes by introducing auxiliary tasks. [Parisotto and Salakhutdinov, 2018] propose a new
architecture which stores information of the environment on a 2D map. [Karl Moritz Hermann
and PhilBlunsom, 2017] focus on the task of language grounding by navigating simple 3D
scenes. However, these works only evaluate the agent’s generalization ability on pixel-level
variations or small mazes. We argue that a much richer environment is crucial for evaluating
semantic-level generalization.

Gated Modules: In our work, we focus on the task of RoomNav, where the goal is
communicated to the agent as a high-level instruction selected from a set of predefined
concepts. To modulate the behavior of the agent in RoomNav, we encode the instruction as
an embedding vector which gates the visual signal. The idea of gated attention has been used
in the past for language grounding [Chaplot et al., 2018], and transfer learning by language
grounding [Narasimhan et al., 2018]. Similar to those works, we use concept grounding as
an attention mechanism. We believe that our gated reinforcement learning models serve as
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a strong baseline for the task of semantic based navigation in House3D. Furthermore, our
empirical results allow us to draw conclusions on the models’ efficacy when training agents in
a large-scale, diverse dataset with an emphasis on generalization.

Generalization: There is a recent trend in reinforcement learning focusing on the problem
of generalization, ranging from learning to plan [Tamar et al., 2016], meta-learning [Duan
et al., 2016b, Finn et al., 2017a] to zero-shot learning [Andreas et al., 2017, Oh et al.,
2017, Higgins et al., 2017]. However, these works either focus on over-simplified tasks or
test on environments which are only slightly varied from the training ones. In contrast, we
use a more diverse set of environments, each containing visually and structurally different
observations, and show that the agent can work well in unseen scenes.

In this work, we show improved generalization performance in complex 3D scenes when
using depth and segmentation masks on top of the raw visual input. This observation is
similar to other works which use a diverse set of input modalities [Mirowski et al., 2017,Tai
and Liu, 2016]. Our result suggests that it can be possible to decouple real-world robotics
from recognition via a vision API provided by an object detection or semantic segmentation
system trained on the targeted real scenes. This opens the door towards bridging the gap
between simulated environment and real-world [Tobin et al., 2017,Rusu et al., 2017,Christiano
et al., 2016].

3.2 House3D: An Extensible Environment of 45K 3D

Houses

We propose House3D, an environment which closely resembles the real world and is rich
in content and structure. An overview of House3D is shown in Figure 3.1a. House3D is
developed to provide an efficient and flexible environment of thousands of indoor scenes
and facilitates a variety of tasks, e.g. navigation, visual understanding, language grounding,
concept learning etc. The environment along with a python API for easy use is available at
http://github.com/facebookresearch/House3D.

Dataset

The 3D scenes in House3D are sourced from the SUNCG dataset [Song et al., 2017b], which
consists of 45,622 human-designed 3D scenes ranging from single-room studios to multi-floor
houses. The SUNCG dataset was designed to encourage research on large-scale 3D object
recognition problems and thus carries a variety of objects, scene layouts and structures. On
average, there are 8.9 rooms and 1.3 floors per scene There is a diverse set of room and object
types in each scene. In total, there are over 20 different room types, such as bedroom, living
room, kitchen, bathroom etc., with over 80 different object categories. In total, the SUNCG
dataset contains 404,508 different rooms and 5,697,217 object instances drawn from 2644
unique object meshes.

http://github.com/facebookresearch/House3D
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Annotations

Each scene in SUNCG is fully annotated with 3D coordinates and its room and object types
(e.g. bedroom, shoe cabinet, etc). This allows for a detailed mapping from each 3D location
to an object instance (or None at free space) and the room type.

At every time step an agent has access to the following signals: a) the visual RGB signal
of its current first person view, b) semantic/instance segmentation masks for all the objects
visible in its current view, and c) depth information. For different tasks, these signals might
serve for different purposes, e.g., as a feature plane or an auxiliary target. Based on the
existing annotations, House3D offers more information, e.g., top-down 2D occupancy maps,
connectivity analysis and shortest paths between two points.

Renderer

To build a realistic 3D environment, we develop a renderer for the SUNCG scenes. The
renderer is based on OpenGL, it can run on both Linux and MacOS, and provides RGB
images, semantic segmentation masks, instance segmentation masks and depth maps.

As highlighted above, the environment needs to be efficient in order to be used for
large-scale reinforcement learning. On a NVIDIA Tesla M40 GPU, our implementation can
render 120×90-sized frames at over 600 fps, while multiple renderers can run in parallel on
one or more GPUs. When rendering multiple houses simultaneously, one M40 GPU can
be fully utilized to render at a total of 1800 fps. The default simple physics adds a small
overhead to the rendering. The high throughput of our implementation enables efficient
learning for a variety of interactive tasks, such as on-policy reinforcement learning.

Interaction

In House3D, an agent can live in any location within a 3D scene, as long as it does not
collide with object instances (including walls) within a small range, i.e. robot’s radius. Doors,
gates and arches are considered passage ways, meaning that an agent can walk through those
structures freely. These default design choices add negligible run-time overhead. Note that
more complex interaction rules can be incorporated (e.g. manipulation) within House3D
using our flexible API, which we leave for future work.

3.3 RoomNav: A Benchmark Task for

Concept-Driven Navigation

Consider the task of concept-driven navigation as shown in Figure 3.1b. A human may give
a high level instruction to the robot, for example, “Go to the kitchen”, so that one can later
ask the robot to turn on the oven. The robot needs to behave appropriately conditioned on
the house it is located in and the goal, e.g. the semantic concept “kitchen”. In addition, we
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want the agent to generalize, i.e. to perform well in unseen environments, that is new houses
with different layouts and furniture locations.

To study the aforementioned abilities of an agent, we develop a benchmark task, Concept-
Driven Navigation (RoomNav), based on House3D. We define the goal to be of the form “go
to X”, where X denotes a pre-defined room type or object type, which is a semantic concept
that an agent needs to interpret from a variety of scenes of distinct visual appearances. To
ensure fast experimentation cycles, we perform experiments on a subset of House3D. We
manually select 270 houses suitable for a navigation task and split them into a small set (20
houses), a large set (200 houses) and a test set (50 houses), where the test set is used to
evaluate the generalization of the trained agents.

Task Formulation: Suppose we have a set of episodic environments E = {E1, .., En}
and a set of semantic concepts I = {I1, .., Im}. During each episode, the agent is interacting
with one environment E ∈ E and is given a concept I ∈ I. In the beginning of an episode,
the agent is randomly placed somewhere in E. At each time step t, the agent receives a
visual signal Xt from E via its first person view sensor. Let st = {X1, .., Xt, I} denote the
state of the agent at time t. The agent needs to propose an action at to navigate and rotate
its sensor given st. The environment returns a reward signal rt and terminates when the
agent succeeds in finding the destination, or reaches a maximum number of steps.

The objective of this task is to learn an optimal policy π(at|st, I) that leads to the target
defined by I. We train the agent on a set Etrain. We evaluate the policy on a disjoint set of
environments Etest ( Etest ∩ Etrain = ∅). For more details see Section 3.6.

Environment Statistics: The selected 270 houses are manually verified for navigation;
they are well connected, contain desired concepts, and are large enough for exploration.
We split them into 3 disjoint sets, denoted by Esmall, Elarge and Etest respectively. For the
semantic concepts, we select the five most common room types: kitchen, living room, dining
room, bedroom and bathroom. Note that this set can be extended to include objects or even
subareas within rooms.

Observations: We utilize three different kinds of visual input signals for Xt, including
(1) raw pixel values; (2) semantic segmentation mask of the pixel input; and (3) depth
information, and experiment with different combinations of them. We encode each concept I
as a one-hot vector representation.

Action Space: Similar to existing navigation works, we define a fixed set of actions, here
12 in number including different scales of rotations and movements. Due to the complexity of
the indoor scenes, we also explore a continuous action space similar to [Lowe et al., 2017],
which in effect allows the agent to move with different velocities. For more details see
Section 3.6. In all cases, if the agent hits an obstacle it remains still.

Success Measure and Reward Function: To declare success, we want to ensure that
the agent identifies the target room by its unique properties (e.g. presence of appropriate
objects in the room such as pan and knives for kitchen and bed for bedroom) instead of
merely reaching there by luck. An episode is considered successful if both of the following
two criteria are satisfied: (1) the agent is located inside the target room; (2) the agent
consecutively sees a designated object category associated with that target room type for at



CHAPTER 3. HOUSE3D: AN ENVIRONMENT FOR BUILDING GENERALIZABLE
AGENTS 32

least 2 time steps. We assume that an agent sees an object if there are at least 4% of pixels
in Xt belonging to that object.

For the reward function, ideally two signals suffice to reflect the task requirement: (1) a
collision penalty when hitting obstacles; and (2) a success reward when completing the task.
However, these basic signals make it too difficult for an RL agent to learn, as the positive
reward is too sparse. To provide additional supervision during training, we resort to an
informative reward shaping: we compute the approximate shortest distance from the target
room to each location in the house and adopt the difference of shortest distances between the
agent’s movement as an additional reward signal. Note that our ultimate goal is to learn
a policy that could generalize to unseen houses. Our strong reward shaping supervises the
agent at training and is not available to the agent at test time. We empirically observe that
stronger reward shaping leads to better performances on both training and testing.

3.4 Gated-Attention Networks for Multi-Target

Learning

The RoomNav task can be considered as a multi-target learning problem: the policy needs
to condition on both the input st and the target concept I. For policy representations
which incorporate the target I, we propose two baseline models with a gated-attention
architecture, similar to [Dhingra et al., 2017] and [Chaplot et al., 2018]: a gated-CNN
network for continuous actions and a gated-LSTM network for discrete actions. We train
the gated-CNN policy using the deep deterministic policy gradient (DDPG) [Lillicrap et al.,
2015], while the gated-LSTM policy is trained using the asynchronous advantage actor-critic
algorithm (A3C) [Mnih et al., 2016].

DDPG with gated-CNN policy

Deep deterministic policy gradient

Suppose we have a deterministic policy µ(st|θ) (actor) and the Q-function Q(st, a|θ) (critic)
both parametrized by θ. DDPG optimizes the policy µ(st|θ) by maximizing Lµ(θ) =
Est [Q(st, µ(st|θ)|θ)] , and updates the Q-function by minimizing LQ(θ) = E

[
(Q(st, at|θ)− γQ(st+1, µ(st+1|θ)|θ)− rt)2] .

Here, we use a shared network for both actor and critic with the final loss function
LDDPG(θ) = −Lµ(θ) + αDDPGLQ(θ), where αDDPG is a constant balancing the two objectives.

Gated-CNN for continuous policy

State Encoding: Given state st, we first stack the most recent k framesX = [Xt, Xt−1, . . . , Xt−k+1]
channel-wise and apply a convolutional neural network to derive an image representation
x = fcnn(X|θ) ∈ RdX . We convert the target I into an embedding vector y = fembed(I|θ) ∈ RdI .
Subsequently, we apply a fusion module M(x, y|θ) to derive the final encoding hs = M(x, y|θ).
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Figure 3.2: Overview of our proposed models. Bottom part demonstrates the gated-LSTM
model for discrete action while the top part shows the gated-CNN model for continuous
action. The “Gated Fusion” module denotes the gated-attention architecture.The input
shows the modalities in SUNCG [Song et al., 2017b].

Gated-Attention for Feature Fusion: For the fusion module M(x, y|θ), the straight-
forward version is concatenation, namely Mcat(x, y|·) = [x, y]. In our case, x is always a
high-dimensional feature vector (i.e., image feature) while y is a simple low-dimensional
conditioning vector (e.g., instruction). Thus, simple concatenation may result in optimiza-
tion difficulties. For this reason, we propose to use a gated-attention mechanism. Suppose
x ∈ Rdx and y ∈ Rdy where dy < dx. First, we transform y to y′ ∈ RdX via an MLP, namely
y′ = fmlp(y|θ), and then perform a Hadamard (pointwise) product between x and sigmoid(y′),
which leads to our final gated fusion module M(x, y|θ) = x� sigmoid(fmlp(y|θ)). This gated
fusion module could also be interpreted as an attention mechanism over the feature vector
which could help better shape the feature representation.

Policy Representation: For the policy, we apply a MLP layer on the state represen-
tation hs, followed by a softmax operator (for bounded velocity) to produce the continuous
action. Moreover, in order to produce a stochastic policy for both better exploration and
higher robustness, we apply the Gumbel-Softmax trick [Jang et al., 2017], resulting in the
final policy µ(st|θ) = Gumbel-Softmax(fmlp(hs|θ)). Note that since we add randomness to
µ(st|θ), our DDPG formulation can also be interpreted as the SVG(0) algorithm [Heess et al.,
2015].

Q-function: The Q-function Q(s, a) conditions on both state s and action a. We again
apply a gated fusion module to the feature vector x and the action vector a to derive a hidden
representation hQ = M(x, a|θ). We eventually apply another MLP to hQ to produce the final
value Q(s, a).

A model demonstration is shown in the top part of Fig. 3.2, where each block has its own
parameters.
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A3C with gated-LSTM policy

Asynchronous advantage actor-critic

Suppose we have a discrete policy π(a; s|θ) and a value function v(s|θ). A3C optimizes the

policy by minimizing the loss function Lpg(θ) = −Est,at,rt
[∑T

t=1(Rt − v(st)) log π(at; st|θ)
]
,

where Rt is the discounted accumulative reward defined by Rt =
∑T−t

i=0 γ
irt+i + v(sT+1). The

value function is updated by minimizing the loss Lv(θ) = Est,rt [(Rt − v(st))
2].

Finally the overall loss function for A3C is LA3C(θ) = Lpg(θ) + αA3CLv(θ) where αA3C is
a constant coefficient.

Gated-LSTM network for discrete policy

State Encoding: Given state st, we first apply a CNN module to extract image feature xt
for each input frame Xt. For the target, we apply a gated fusion module to derive a state
representation ht = M(xt, I|θ) at each time step t. Then, we concatenate ht with the target
I and the result is fed into the LSTM module [Hochreiter and Schmidhuber, 1997] to obtain
a sequence of LSTM outputs {ot}t, so that the LSTM module has direct access to the target
other than the attended visual feature.

Policy and Value Function: For each time step t, we concatenate the state vector
ht with the output of the LSTM ot to obtain a joint hidden vector hjoint = [ht, ot]. Then
we apply two MLPs to hjoint to obtain the policy distribution π(a; st|θ) as well as the value
function v(st|θ).

A visualization of the model is in the bottom part of Fig. 3.2. The parameters of CNN
modules are shared across time.

3.5 Experiments

We report experimental results for our models on the task of RoomNav. We first compare
models with discrete and continuous action spaces with different input modalities. Then we
explain our observations and show that techniques targeting different levels of augmentation
improve the success rate of navigation in the test set. Moreover, these techniques are
complementary to each other.

Setup. We train our baseline models on multiple experimental settings. We use two
training datasets. The small set Esmall contains 20 houses and the large set Elarge contains 200
houses. A held-out dataset Etest is used for test, which contains 50 houses.

We mainly focus on success rate on the test set, i.e, how the agent generalizes. For
reference, we also report the training performance. The agent fails if it failed to find the
concept within 100 steps1. All success rate evaluations use a fixed random seed for a fair

1This is enough for success evaluation. The average number of steps for success runs in every setting is
less than 45, which is much smaller than 100. Refer to Section 3.6 for details.
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comparison. For each model, we run 2000 evaluation episodes on Esmall and Etest, and 5000
evaluation episodes on Elarge to measure overall success rates.

We use gated-CNN and gated-LSTM to denote the networks with gated-attention, and
concat-CNN and concat-LSTM for models with simple concatenation. We also experiment
with different visual signals to the agents, including RGB image (RGB Only), RGB image with
depth information (RGB+Depth) and semantics mask with depth information (Mask+Depth).
The input image resolution is 120× 90 to preserve image details.

During each simulated episode, we randomly select a house from the environment set and
randomly pick an applicable target from the house to instruct the agent. During training, we
add an entropy bonus term for both models2 in addition to the original loss function. For
evaluation, we keep the final model for DDPG due to its stable learning curve, while for A3C,
we take the model with the highest training success rate. We use Pytorch [Paszke et al.,
2019] and Adam [Kingma and Ba, 2014]. See Section 3.6 for more experiment details.

Baselines: Models with RGB Signals on Esmall

As shown in the bottom part of Fig. 3.3a, on Esmall, the test success rate for models trained on
RGB features is unsatisfactory. We observe obvious overfitting behavior: the test performance
is drastically worse than training. In particular, the gated-LSTM models achieve even lower
success rate than concat-LSTM models, despite the fact that they have much better training
performance. In this case, the learning algorithm picks up spurious color patterns in the
environments as the guidance towards the goal, which is inapplicable to unseen environments.

In both training and test, we find that depth information improves the performance thus
we use it in the following experiments and omit Depth for conciseness.

Techniques for Different Levels of Augmentation

Augmentation is a standard technique to improve generalization. However, for complicated
tasks, augmentation needs to be taken care at different levels. In this section, we categorize
augmentation techniques into 3 levels: (1) pixel-level augmentation: changing the colors
and textures; (2) task-level augmentation: joint learning for multiple tasks; (3) scene-level
augmentation: training on more environments. We analyze the generalization performance
with all techniques and conclude that these techniques are complementary and that the best
test performance is obtained by combining these techniques together.

Pixel-level Augmentation: We use domain randomization [Tobin et al., 2017], by
reassigning each object in the scene a random color but keeping the textures. This breaks
the spurious color correlations and pushes the agent to learn a better representation.

We explore domain randomization by generating an additional 180 houses with random
object coloring from Esmall, which leads to a total of 200 houses. We evaluate the test
success rate of various models under different training settings, e.g., RGB, RGB with domain

2For DDPG, we simply use the entropy of the softmax output.
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Figure 3.3: Overall performance of various models trained on (a) Esmall (20 houses) with
different input signals: RGB Only, RGB+Depth and Mask+Depth; (b) Elarge (200 houses)
with input signals: RGB+Depth and Mask+Depth. In each group, the bars from left to
right correspond to gated-LSTM, concat-LSTM, gated-CNN, concat-CNN and random policy
respectively.

randomization (D.R.) or mask signal. The results are shown in Fig. 3.4. Interestingly, we
noticed that domain randomization yields very similar performance as mask signal on Esmall.

One shortcoming of domain randomization is that it requires substantially more training
samples and thus suffers from high sample complexity. Thanks to the rich labels in House3D,
we instead could use segmentation mask as an input feature plane, which encodes semantic
information and is independent of the object color. This helps train generalizable agent with
much fewer training samples. On the other hand, an agent trained with domain randomization
can operate with RGB input only, without segmentation mask output from a vision subsystem.
In the current context, we simply assume adopting segmentation mask input as the technique
for pixel-level augmentation.

Task-level Augmentation: We explore task-level augmentation by adding related
auxiliary targets during training (Fig. 3.5). Specifically, in addition to the 5 room types as
auxiliary targets, we selected 15 object concepts (e.g., chair, table, cabinet, etc. See a full list
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gated-LSTM, concat-LSTM, gated-CNN and concat-CNN from left to right.

21.1

31

25.7

33.9

23.1

26.4 25.7

30.229.4 29.7

35.8

31.6
29.1 27.9

32.7
30.9

0

5

10

15

20

25

30

35

40

small set + 5 targets small set + 20 targets large set + 5 targets large set + 20 targets

Test Performances w./w.o. Auxiliary Targets

gated-LSTM + RGB concat-LSTM + RGB gated-LSTM + Mask concat-LSTM + Mask
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of object concepts in Section 3.6.). We train A3C agents with different input signals on Esmall

and evaluate their test performances.
We found that auxiliary targets significantly reduce overfitting and increases the general-

izability of models with RGB inputs. Because of this effect, gated attention model, which has
high model capacity, becomes much more effective on RGB signal when trained with more
targets. On the other hand, with mask input, the agent does not need to learn to differentiate
the objects, therefore auxiliary targets do not help that much for more complicated models
like gated attention models.

Scene-level Augmentation: We could further boost the generalization performance
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by augmenting the training set with more diverse set of houses, i.e, Elarge that contain 200
different houses. This is also a benefit from House3D.

For visual signals, we focus on feature combinations like “RGB + Depth” and “Mask
+ Depth”. Note that for training efficiency, segmentation mask is a surrogate feature to
approximate “RGB + domain randomization” as it shows similar results in the small set.
Both train and test results are summarized in Fig. 3.3b.

On a semantically diverse dataset Elarge, the overfitting issue is largely resolved. We see
drops in the training performance and improve on the generalization. After training on a
large number of environments, every model now has a much smaller gap between its training
and test performance. This is in particularly true for the models using RGB signal, which
suffers from overfitting issues on Esmall. Notably, on large dataset, LSTM models generally
perform better than CNN models due to its high model capacity.

In addition, similar behavior was also observed during our experiments with techniques
for pixel-level augmentation (Fig. 3.4) and task-level augmentation (Fig. 3.5). In all the
experiments, all the models consistently achieves better generalization performances when
trained on Elarge, which again emphasizes the benefits of House3D.

The overall best success rate is achieved by gated-attention architecture with semantic
signals. It is better than both RGB channels by over 8% and the counterpart trained on Esmall

in terms of generalization metric. This means that pixel-level augmentation (e.g., domain
randomization and/or segmentation mask) and scene-level augmentation (e.g., using diverse
dataset) can improve the performance. Moreover, their effects are complementary.

A diverse environment like Elarge also enables the model of larger capacity to work better.
For example, LSTMs considerably outperform the simpler reactive models, i.e., CNNs with
recent 5 frames as state input. We believe this is due to the larger scale and the high complexity
of the training set, which makes it almost impossible for an agent to “remember” the optimal
actions for every scenario. Instead, an agent needs to develop high-level abstractions (e.g.,
high-level exploration strategy, memory, etc). These are helpful induction biases that could
lead to a more generalizable model.

Lastly, we also analyze the detailed success rate with respect to each target room in
Section 3.6.

3.6 Additional Details

RoomNav Task Details

Statistics of Selected House Sets

We show the statistics of the selected three set of houses in Table 3.2.
In addition to these 5 houses, we also pick another 15 object concepts in our mid-level

generalization experiment as auxiliary targets. The object concepts are: shower, sofa,
toilet, bed, plant, television, table-and-chair, chair, table, kitchen-set, bathtub, vehicle, pool,
kitchen-cabinet, curtain.
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|E| avg. #targets kitchen% dining room % living room% bedroom% bathroom%

Esmall 20 3.9 0.95 0.60 0.60 0.95 0.80
Elarge 200 3.7 1.00 0.35 0.63 0.94 0.80
Etest 50 3.7 1.00 0.48 0.58 0.94 0.70

Table 3.2: Statistics of the selected environment sets for RoomNav. RoomType% denotes the
percentage of houses containing at least one target room of type RoomType.

test succ. kitchen% dining room % living room% bedroom% bathroom%

gated-LSTM 35.8 37.9 50.4 48.0 33.5 21.2
gated-CNN 29.7 31.6 42.5 54.3 27.6 17.4

Table 3.3: Detailed test success rates for gated-CNN model and gated-LSTM model with
“Mask+Depth” as input signal across different instruction concepts.

Detailed Specifications: The location information of an agent can be represented by
4 real numbers: the 3D location (x, y, z) and the rotation degree ρ of its first person view
sensor, which indicates the front direction of the agent. Note that in RoomNav, the agent is
not allowed to change its height z, hence the overall degree of freedom is 3.

An action can be in the form of a triple a = (δx, δy, δρ). After taking the action a, the
agent will move to a new 3D location (x + δx, y + δy, z) with a new rotation ρ + δρ. The
physics in House3D will detect collisions with objects under action a and in RoomNav, the
agent will remain still in case of a collision. We also restrict the velocity of the agent such
that |δx|, |δy| ≤ 0.5 and |δρ| ≤ 30 to ensure a smooth movement.

Continuous Action: A continuous action a consists of two parts a = [m, r] where
m = (m1, . . . ,m4) is for movement and r = (r1, r2) is for rotation. Since the velocity of the
agent should be bounded, we require m, r to be a valid probability distribution. Suppose the
original location of robot is (x, y, z) and the angle of camera is ρ, then after executing a, the
new 3D location will be (x+ (m1 −m2) ∗ 0.5, y + (m3 −m4) ∗ 0.5, z) and the new angle is
ρ+ (r1 − r2) ∗ 30.

Discrete Action: We define 12 different action triples in the form of ai = (δx, δy, δρ)
satisfying the velocity constraints. There are 8 actions for movement: left, forward, right with
two scales and two diagonal directions; and 4 actions for rotation: clockwise and counter-
clockwise with two scales. In the discrete action setting, we do not allow the agent to move
and rotate simultaneously.

Reward Details: In addition to the reward shaping of difference of shortest distances,
we have the following rewards. When hitting an obstacle, the agent receives a penalty of
0.3. In the case of success, the winning reward is +10. In order to encourage exploration (or
to prevent eternal rotation), we add a time penalty of 0.1 to the agent for each time step
outside the target room. Note that since we restrict the velocity of the agent, the difference
of shortest path after an action will be no more than 0.5×

√
2 ≈ 0.7.
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Additional Experiment Details

Network architectures

We apply a batch normalization layer after each layer in the CNN module. The activation
function used is ReLU. The embedding dimension of concept instruction is 25.

Gated-CNN: In the CNN part, we have 4 convolution layers of 64, 64, 128, 128 channels
perspective and with kernel size 5 and stride 2, as well as a fully-connected layer of 512 units.
We use a linear layer to transform the concept embedding to a 512-dimension vector for gated
fusion. The MLP for policy has two hidden layers of 128 and 64 units, and the MLP for
Q-function has a single hidden layer of 64 units.

Gated-LSTM: In the CNN module, we have 4 convolution layers of 64, 64, 128, 128
channels each and with kernel size 5 and stride 2, as well as a fully-connected layer of 256
units. We use a linear layer to convert the concept embedding to a 256-dimension vector.
The LSTM module has 256 hidden dimensions. The MLP module for policy contains two
layers of 128 and 64 hidden units, and the MLP for value function has two hidden layers of
64 and 32 units.

Training parameters

We normalize each channel of the input frame to [0, 1] before feeding it into the neural
network. Each of the training procedures includes a weight decay of 10−5 and a discounted
factor γ = 0.95.

DDPG: We stack k = 5 recent frames and use learning rate 104 with batch size 128. We
choose αDDPG = 100 for all the settings except for the case with input signal of “RGB+Depth”
on Elarge, where we choose αDDPG = 10. We use an entropy bonus term with coefficient 0.001
on Esmall and 0.01 on Elarge. We use exponential average to update the target network with
rate 0.001. A training update is performed every 10 time steps. The replay buffer size is
7× 105. We run training for 80000 episodes in all. We use a linear exploration strategy in
the first 30000 episodes.

A3C: We clip the reward to the range [−1, 1] and use a learning rate 1e− 3 with batch
size 64. We launch 120 processes on Esmall and 200 on Elarge. During training we estimate the
discounted accumulative rewards and back-propagate through time for every 30 time steps
unrolled. We perform a gradient clipping of 1.0 and decay the learning rate by a factor of 1.5
when the difference of KL-divergence becomes larger than 0.01. For training on Esmall, we use
a entropy bonus term with coefficient 0.1; while on Elarge, the coefficient is 0.05. αA3C is 1.0.
We perform 105 training updates and keep the best model with the highest training success
rate.

Generalization over different concepts

We illustrate in Table 3.3 the detailed test success rates of our models trained on Etrain with
respect to each of the 5 concepts. Note that both models have similar behaviour across
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concepts. In particular, “dining room” and “living room” are the easiest while “bathroom”
is the hardest. We suspect that this is because dining room and living room are often with
large room space and have the best connectivity to other places. By contrast, bathroom is
often very small and harder to find in big houses.

Lastly, we also experiment with adding auxiliary tasks of predicting the current room
type during training. We found this does not help the training performance nor the test
performance. We believe it is because our reward shaping has already provided strong
supervision signals.

Average steps towards success

We also measure the number of steps required for an agent in RoomNav. For all the successful
episodes, we evaluate the averaged number of steps towards the final target. The numbers
are shown in Table 3.4. A random agent can only succeed when it’s initially spawned very
close to the target, and therefore have very small number of steps towards target. Our
trained agents, on the other hand, can explore in the environment and reach the target after
resonable number of steps. Generally, our DDPG models takes fewer steps than our A3C
models thanks to their continuous action space. But in all the settings, the number of steps
required for a success is still far less than 100, namely the horizon length.

random concat-LSTM gated-LSTM concat-CNN gated-CNN

Avg. #steps towards targets on Esmall with different input signals
RGB+Depth (train) 14.2 35.9 41.0 31.7 33.8
RGB+Depth (test) 13.3 27.1 29.8 26.1 25.3

Mask+Depth (train) 14.2 38.4 40.9 34.9 36.6
Mask+Depth (test) 13.3 31.9 34.3 26.2 30.4

Avg. #steps towards targets on Elarge with different input signals
RGB+Depth (train) 16.0 36.4 35.6 31.0 32.4
RGB+Depth (test) 13.3 34.0 33.8 24.4 25.7

Mask+Depth (train) 16.0 40.1 38.8 34.6 36.2
Mask+Depth (test) 13.3 34.8 34.3 30.6 30.9

Table 3.4: Averaged number of steps towards the target in all success trials for all the
evaluated models with various input signals and different environments.

3.7 Summary

In this chapter, we introduce a new environment, House3D, which contains 45K houses with
a diverse set of objects and natural layouts resembling the real-world.

In House3D, we teach an agent to accomplish semantic goals. We define RoomNav, in which
an agent needs to understand a given semantic concept, interpret the comprehensive visual
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signal, navigate to the target, and most importantly, succeed in a new unseen environment.
We note that generalization to unseen environments was rarely studied in previous works.

To this end, we quantify the effect of various levels of augmentations, all facilitated by
House3D by the means of domain randomization, multi-target training and the diversity
of the environment. We resort to well established RL techniques equipped with gating to
encode the task at hand. The final performance on unseen environments is much higher
than baseline methods by over 8%. We hope House3D as well as our training techniques can
benefit the whole RL community for building generalizable agents.
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Chapter 4

Bayesian Relational Memory for
Semantic Visual Navigation

In this chapter, we introduce a new memory architecture, Bayesian Relational Memory
(BRM), to improve the generalization ability for semantic visual navigation agents in unseen
environments, where an agent is given a semantic target to navigate towards. BRM takes the
form of a probabilistic relation graph over semantic entities (e.g., room types), which allows
(1) capturing the layout prior from training environments, i.e., prior knowledge, (2) estimating
posterior layout at test time, i.e., memory update, and (3) efficient planning for navigation,
altogether. We develop a BRM agent consisting of a BRM module for producing sub-goals
and a goal-conditioned locomotion module for control. When testing in unseen environments,
the BRM agent outperforms baselines that do not explicitly utilize the probabilistic relational
memory structure.

4.1 Motivation

Memory is a crucial component for intelligent agents to gain extensive reasoning abilities
over a long horizon. One such challenge is visual navigation, where an agent is placed to an
environment with unknown layouts and room connectivity, acts on visual signal perceived
from its surrounding, explores and reaches a goal position efficiently.

Due to partial observability, the agent must memorize its past experiences and react accord-
ingly. Hence, deep learning (DL) models for visual navigation often encodes memory structures
in its design. LSTM is initially used to as general-purpose implicit memory [Mirowski et al.,
2017,Mirowski et al., 2018,Das et al., 2018a]. Recently, to improve the performance, explicit
and navigation-specific structural memory are used [Parisotto and Salakhutdinov, 2018,Gupta
et al., 2017b,Savinov et al., 2018,Gupta et al., 2017c].

Two categories exist for navigation-specific memory: the spatial memory [Parisotto and
Salakhutdinov, 2018,Gupta et al., 2017b] and topological memory [Gupta et al., 2017c,Savinov
et al., 2018]. The core idea of spatial memory is to extend the 1-dimensional memory in
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Figure 4.1: A demonstration of our task and method. The agent perceives visual signals
and needs to find the kitchen, which cannot be seen from outside (leftmost). So the agent
plans in its memory and conclude that it may first find a likely intermediate waypoint, i.e.,
living room. Then the agent repeatedly updates its belief of the environment layout, re-plans
accordingly and reaches the kitchen in the end.

LSTM to a 2-dimensional matrix that represents the spatial structure of the environment,
where a particular entry in the matrix corresponds to a 2D location/region in the environment.
Due to its regular structure, value iteration [Tamar et al., 2016] can be applied directly for
effective planning over the memory matrix.

However, planning on such spatial memory can be computationally expensive for environ-
ments with large rooms. To navigate, precise localization of an agent is often not unnecessary.
Extensive psychological evidences [Savinov et al., 2018] also show that animals do not rely
strongly on metric representations [Wang and Spelke, 2002,Foo et al., 2005]. Instead, humans
primarily depend on a landmark-based navigation strategy, which can be supported by
qualitative topological knowledge of the environment [Foo et al., 2005]. Therefore, it is
reasonable to represent the memory as a topological graph where the vertices are landmarks
in the environment and edges denote short-term reachability between landmarks. During
navigation, a localization network is trained to identify the position of the agent and the goal
w.r.t. the landmarks in the memory and an efficient graph search can be used for long-term
planning.

Nevertheless, still human navigation shows superior generalization performance which
cannot be explained by either spatial or topological memory. For example, first-time home
visitors naturally move towards the kitchen (rather than outdoor or toilet) to get a plate; from
kitchen to bedroom, they know that living room may be an intermediate waypoint. Although
visually different, such semantic knowledge, i.e., the “close-by” relations over semantic entities,
are naturally shared across environments and can be learned from previous experience
to guide future navigation. In comparison, existing approaches of topological memory
assume pre-exploration experiences of the environment before navigation starts [Gupta et al.,
2017c,Savinov et al., 2018], provide no memory updating operations, and cannot incorporate
the prior knowledge of scene layouts and configurations from previously seen environments.

In this chapter, we propose a new memory design for visual navigation, Bayesian Relational
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Memory (BRM), which (1) captures the prior knowledge of scene layouts from training
environments and (2) allows both efficient planning and updating during test-time exploration.
BRM can be viewed as a probabilistic version of a topological memory with semantic
abstractions: each node in BRM denotes a semantic concept (e.g., object category, room
type, etc), which can be detected via a neural detector, and each edge denotes the relation
between two concepts. In each environment, a single relation may be present or not. For
each relation (edge), we can average its existences over all training environments and learn an
existence probability to denote the prior knowledge between two semantic concepts. During
exploration at test time, we can incrementally observe the existences of relations within that
particular test environment. Therefore, we can use these environment specific observations
to update the probability of those relations in the memory via the Bayes rule to derive the
posterior knowledge. Additionally, we train a semantic-goal-conditioned LSTM locomotion
policy for control via deep reinforcement learning (DRL), and by planning on the relation
graph with posterior probabilities, the agent picks the next semantic sub-goal to navigate
towards.

We evaluate our BRM method in a semantic visual navigation task on top of the House3D
environment [Wu et al., 2018, Das et al., 2018a], which provides a diverse set of objects,
textures and human-designed indoor scenes. The semantic scenes and entities in House3D
are fully labeled (with noise), which are natural for our BRM model. In the navigation task,
the agent observes first-person visual signals and needs to navigate towards a particular
room type. We utilize the room types as the semantic concepts (nodes) in BRM and the
”close-by” relations as the edges. We evaluate on unseen environments with random initial
locations and compare our learned model against other DRL-based approaches without the
BRM representation. Experimental results show that the agent equipped with BRM can
achieve the semantic goal with higher success rates and fewer navigation steps.

Our contributions are as follows: (1) we proposed a new memory representation, Bayesian
Relational Memory (BRM), in the form of probabilistic relation graphs over semantic concepts;
(2) BRM is capable of encoding prior knowledge over training environments as well as efficient
planning and updating at test time; (3) by integrating BRM into a DRL locomotion policy,
we show that the generalization performances can be significantly improved.

Related Work

Navigation is one of the most fundamental problems in mobile robotics. Traditional ap-
proaches (like SLAM) build metric maps via sensory signals, which is subsequently used
for planning [Elfes, 1987, Bonin-Font et al., 2008, Thrun et al., 2005, Durrant-Whyte and
Bailey, 2006]. More recently, thanks to the advances of deep learning, end-to-end approaches
have been applied to tackle navigation in various domains, such as mazes [Mirowski et al.,
2017,Jaderberg et al., 2017], indoor scenes [Zhu et al., 2017b,Chang et al., 2017,Savva et al.,
2017,Mishkin et al., 2019,Kolve et al., 2017], autonomous driving [Chen et al., 2015,Xu et al.,
2017,Dosovitskiy et al., 2017], and Google street view [Mirowski et al., 2018]. There are also
nice summaries of recent progresses [Anderson et al., 2018a,Mishkin et al., 2019]. We focus
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Figure 4.2: The architecture overview of our proposed navigation agent equipped with the
Bayesian Relational Memory (BRM).

on indoor navigation scenario with House3D environment [Wu et al., 2018] which contains
real-world-consistent relations between semantic entities and provides ground-truth labels of
objects and scenes.

There are also works studying visual navigation under natural language guidance, including
instruction following [Chaplot et al., 2018,Misra et al., 2017,Fried et al., 2018,Wang et al.,
2018b,Anderson et al., 2018b] and question answering [Das et al., 2018b,Das et al., 2018a,
Anand et al., 2018]. These tasks require the agent to understand the natural language and
reason accordingly in an interactive environment. In our semantic navigation task, the goal
instruction is simplified to a single semantic concept and hence we focus more on the reasoning
ability of navigation agents.

In our work, the reasoning is performed on the relations over semantic concepts from visual
signals. Similar ideas of using semantic knowledge to enhance reasoning have been applied to
image classification [Marino et al., 2017,Wang et al., 2018c], segmentation [Torralba et al.,
2003,Zhu et al., 2015], situation recognition [Li et al., 2017a], visual question answering [Wu
et al., 2016a,Chen et al., 2018,Vedantam et al., 2019,Johnson et al., 2017,Hu et al., 2017],
image retrieval [Johnson et al., 2015] and relation detection [Zhang et al., 2017]. Savinov et
al. [Savinov et al., 2019] and Kuang et al. [Fang et al., 2019] also consider extracting visual
concepts dynamically by treating every received input frame as an individual concept and
storing them in the memory. The most related work to ours is a concurrent one by Wei et
al. [Yang et al., 2019], which considers visual navigation towards an object category and
utilizes a knowledge graph as the prior knowledge. Wei et al. [Yang et al., 2019] use a fixed
graph to extract features for the target as an extra input to the locomotion without graph
updating or planning. While in our work, the relation graph is used in a Bayesian manner as
a representation for the memory, which unites use of prior knowledge, updating and planning
altogether.

From a reinforcement learning perspective, our work is related to the model-based
approaches [Doya et al., 2002,Ross and Pineau, 2008,Zhang et al., 2018,Riedmiller et al.,
2018,Kurutach et al., 2018], in the sense that we model the environment layout via a relation



CHAPTER 4. BAYESIAN RELATIONAL MEMORY FOR SEMANTIC VISUAL
NAVIGATION 47

graph and plan on it. Our work is also related to hierarchical reinforcement learning [Sutton
et al., 1999, Dayan and Hinton, 1993a, Kulkarni et al., 2016], where the controller (BRM)
produces a high-level sub-goal for the sub-policy (locomotion) to pursue. Furthermore, BRM
learns from multi-task training and its update operation fast adapts the prior relations to
the test environment, which can be also viewed as a form of meta-learning [Finn et al.,
2017a,Duan et al., 2016b,Mishra et al., 2018].

4.2 Methods

Task Setup

We consider the semantic visual navigation problem where an agent interacts with an
environment with discrete time steps and navigates towards a semantic goal. In House3D, the
semantic entities of interest are room types and we assume a fixed number of K categories.
In the beginning of an episode, the agent is given a semantic target T ∈ T = {T1, . . . , TK} to
navigate towards for a success. At each time step t, the agent receives a visual observation st
and produces an action at ∈ A conditioning on st and T .

We aim to learn a neural agent that can generalize to unseen environments. Hence, we
train the agent on a training set Etrain, where the ground-truth labels are assumed, and
validate on Evalid. Evaluation is performed on another separate set of environments Etest. At
test time, the agent only access to the visual signal st without any pre-exploration experiences
of the test environment.

Method Overview

The overall architecture of a BRM agent is shown in Fig. 4.2, which has two modules,
the Bayesian Relational Memory (BRM) as well as an LSTM locomotor policy for control
(Fig. 4.2 left). Particularly, the key component of a BRM agent is a probabilistic relation
graph (Fig. 4.2 right), where each node corresponds to a particular semantic target Ti. For
semantic target Ti and Tj, the edge between them denotes the “close-by” relation and the
probability of that edge implies how likely Ti and Tj are close to each other in the current
environment.

At a high level, the locomotion is a semantic-goal-conditioned policy which takes in both
the visual input st and the sub-goal g ∈ T produced by the BRM module to produce actions
towards g. The BRM module takes in the visual observation st at each time step, extracts the
semantic information via a CNN detector and store them in a replay buffer. We periodically
update the posterior probability of each edge in the relation graph and re-plan to produce a
new sub-goal. In our work, the graph is updated every fixed number of N steps. Notably,
we do not assume existences of all concepts — in case of a missing concept in particular
environment, the posterior of its associated edges will approach zero as more experiences
gained in an episode.
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Figure 4.3: Overview of the planning (Left) and the update operation (Right) with BRM.

Bayesian Relational Memory

The BRM module consists of two parts, a semantic classifier and the most important
component, a probabilistic relation graph over semantic concepts, in the form of a probabilistic
graphical model allowing efficient planning and posterior updates.

Intuitively, at each time step, the agent detects the surrounding room type and maintains
the probability of whether two room types Ti and Tj are “nearby” in the current environment.
If the agent starts from room Ti and reaches another room Tj within a few steps, the
probability of “nearby” relation between Ti and Tj should be increased1; otherwise the
probability should be decreased. Periodically, the graph is updated and the agent finds the
most likely path from the current room towards the target as a navigation guidance.

We introduce these two components in details as well as how to update and plan with
BRM as follows.
Semantic classifier: The semantic classifier detects the room type label ct for the agent’s
surrounding region. It can be trained by supervised learning on Etrain. Note that for robust
room type classification, only using the first-person view image may not be enough. For
example, the agent in a bedroom may face towards a wall, where the first-person image is not
informative at all for the classifier, but a bed might be just behind. So we take the panoramic
view as the classifier input, which consists of 4 images, s1

t , . . . , s
4
t with different view angles.

We use a 10-layer CNN with batch normalization to extract features f(sit) for each sit and
compute the attention weights over these visual features by li = f(sio)W

T
1 W2 [f(s1

o), . . . , f(s4
o)]

ai = softmax(li) with parameters W1,W2. Then the weighted average of these four features∑
i aif(sit) is used for the final sigmoid predictions for each semantic concept Ti

2. This
results in a K-dimensional binary vector ct ∈ {0, 1}K at time t.
Probabilistic relation graph: We represent the probabilistic graph in the form of a
graphical model P (z, y;ψ) with latent variable z, observation variable y and parameter ψ.

Since we have K semantic concepts, there are K3 nodes and K(K − 1)/2 relations
(edges) in the graph. Each relation is probabilistic (i.e., it may exist or not with probability)

1In perfect noiseless setting, the relation should with probability 1.
2It is a multi-label classification setting. Imagine an open kitchen with both cooking facilities and dining

tables could have two labels.
3In fact we have K + 1 nodes. For clarity purpose, we use K here and explain the details of the extra

node later in Sec. 4.2.
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Figure 4.4: Learning the prior probability of a particular relation by analyzing the existence
of that relation in each training environment and then summarizing the overall statistics.

and before entering a particular environment, we only hold a prior belief of that relation.
Formally, for the relation between Ti and Tj, we adopt a Bernoulli variable zi,j defined by
zi,j ∼ Bernoulli(ψprior

i,j ), where parameter ψprior
i,j denotes the prior belief of zi,j existing. During

exploration, the agent can noisily observe zi,j and use the noisy observations to estimate the
true value of zi,j. We define the noisy observation model P (yi,j|zi,j) by

yi,j ∼
{

Bernoulli(ψobs
i,j,0) if zi,j = 0

Bernoulli(1− ψobs
i,j,1) if zi,j = 1

, (4.1)

where ψobs is another parameter to learn. At each time step, the agent holds an overall
posterior belief P (z|Y) of relation existences within the current environment, based on its
experiences Y , namely the samples of variable y.
Posterior update and planning: A visualization of the procedures is shown in Fig. 4.3.
We assume the agent explores the current environment for a short horizon of N steps and
stores the recent semantic signals ct, . . . , ct+N in the replay buffer. Then we compute the bit-
OR operation over these binary vectors B = ct OR . . . OR ct+N . B represents all the visited
regions within a short (N -step) exploration period. When two targets appear concurrently in
a short trajectory, they are assumed to be “close-by”. For Ti and Tj with B(Ti) = B(Tj) = 1,
Ti and Tj should be nearby in the current environment, namely a sample of yi,j = 1; otherwise
for B(Ti) 6= B(Tj), we get a sample of yi,j = 0. With all the history samples of y as Y, we
can perform posterior inference, i.e., compute posterior Bernoulli distribution P (zi,j|Yi,j), for
each zi,j by the Bayes rule.

Let ẑi,j = P (zi,j|Yi,j) denote the posterior probability of relation over Ti and Tj. Given
the current beliefs ẑ, the semantic signal ct and the target T , we search for an optimal plan
τ ∗ = {τ0, τ1, . . . , τm−1, τm} over the graph, where τi ∈ {1 . . . K} denotes an index of concepts,
so that the joint belief along the path from some current position to the goal is maximized:

τ ? = arg max
τ

ct(Tτ0)
m∏
i=1

ẑτi−1,τi . (4.2)

After obtaining τ ?, we execute the locomotion policy for sub-goal gt = Tτ?1 , and then
periodically update the graph, clear the replay buffer and re-plan every N steps.
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Figure 4.5: The learned prior of the relations, including the most (red) and least (blue) likely
nearby rooms for dining room (Left), bedroom (Mid.) and outdoor (Right), with numbers
denoting ψprior, i.e., the prior probability of two room types are nearby.

Learning the probabilistic graph: The parameter ψ has two parts: ψprior for the prior
of z and ψobs for the noisy observation y.

For the prior parameter ψprior, we learn from Etrain with the ground truth labels. A
visualization is shown in Fig. 4.4. For each pair of room types Ti and Tj, we enumerate all
training environments and run random explorations from some location of room type Ti. If
eventually the agent reaches somewhere of room type Tj, we consider Ti and Tj are nearby
and therefore a positive sample zi,j = 1; otherwise a negative sample zi,j = 0. Suppose Z
denotes all the samples we obtained for z. We run maximum likelihood estimate for ψprior

by maximizing LMLE(ψprior) = P (Z|ψprior). We can choose any exploration strategy such
that for any “close-by” targets, they appear together in a short exploration trajectory more
frequently. Random exploration is the most lightweight option among all.

The noisy observation parameter ψobs is related to the performance of the locomotion
policy µ(θ): if µ(θ) has a higher navigation success rate, ψobs should be smaller (i.e., low
noise level); when µ(θ) is poor, ψobs should be larger (cf. Eq. (4.1)). Unfortunately, there
is no direct learning supervision for ψobs. However, we can evaluate the “goodness” of a
particular value of ψobs by evaluating the success rate of the overall BRM agent on Evalid.
Therefore, we can simply run grid search to derive the best parameter.

The Goal Conditioned Policy

We learn an LSTM locomotion policy µ(st, g; θ) parameterized by θ, which conditions on
observation st and navigates towards goal g. Following Wu et al. [Wu et al., 2018], we learn
µ(st, g; θ) by formulating the task as a reinforcement learning problem with shaped reward:
when the agent moves towards target room g, it receives a positive reward proportional to
the distance decrements; if the agent moves apart or hits an obstacle, a penalty is presented.
A success reward of 10 and a time penalty of 0.1 are also assigned. We optimize the policy
on Etrain via the actor-critic method [Mnih et al., 2016] with a curriculum learning paradigm
by periodically increasing the maximum spawn distance to the target g. Additionally, thanks
to a limited set of K targets, we adopt a behavior approach [Chen et al., 2019] for improved
performances: we train a separate policy µi(st; θi) for each semantic target Ti and when given
the sub-goal g from the BRM module, we directly execute its corresponding behavior network.
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We empirically observe it performs better than the original gated-attention policy in Wu et
al. [Wu et al., 2018]. Such an architecture is also common technique in other domains such
as RL [Oh et al., 2015,Finn et al., 2016] and robotics [Finn and Levine, 2017].

Implementation Details

We introduce those crucial details below and defer the remaining to Section 4.4.
Nodes in the relation graph: In the previous content, we assume K pre-selected
semantic concepts as graph nodes. However, it is not rare to reach some situation that
cannot be categorized into any existing semantic category. In practice, we treat ct = 0 as a
special “unknown” concept. Hence, the BRM module actually contains K + 1 nodes. This
is conceptually similar to natural language processing: a semantic concept is a word; the
set of all concepts can be viewed as the dictionary; and ct = 0 corresponds to the special
“out-of-vocabulary” token.
Smooth temporal classification: Although the semantic classifier achieves high accuracy
on validation data, the predictions may not be temporally consistent, which brings extra
noise to the BRM module. For temporally smooth prediction at test time, we set a restricted
threshold over the sigmoid output and apply a filtering process on top of that: the actual
prediction label for room type Ti will be 1 only if the sigmoid output remains at least 0.9
confidence score for consecutively 3 time steps.
Graph learning: For learning ψprior, we run a random exploration of 300 steps and collect
50 samples for each zi,j per training environment. Also, learning ψprior does not depend on
the locomotion µ(st, g; θ) and can be reused even with different control policies. ψobs depends
on the locomotion so it must be learned after µ(st, g; θ?) is obtained.

4.3 Experiments

We experiment on the House3D environment and proceed to answer the following two
questions: (1) Does the BRM agent captures the underlying semantic relations and behave
as we expected? (2) Does the BRM agent generalize better in test environments than the
baseline methods?

We first introduce evaluation preliminaries and baseline methods in Sec. 4.3, 4.3. Then
we answer the first question qualitatively in Sec. 4.3. In Sec. 4.3, 4.3, we quantitatively show
that our BRM agents generally achieve higher test success rates (i.e., better generalization)
and spend fewer steps to reach the targets (i.e., more efficient) than all the baselines. We
choose a fixed N = 10 for all the BRM agents. Ablation study on the design choices of BRM
is presented in Sec. 4.3. More details can be found in Section 4.4.
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Figure 4.6: Qualitative comparison between BRM (purple), basic DRL policy (pure µ(θ),
blue) and random policy (red) with horizon H = 1000 (Sec. 4.3). Y-axis is the test success
rate and x-axis is the distance in meters to the target. When targets become farther way
from the starting point, the success rate of BRM stays high while the basic DRL policy
quickly degenerates to random.

Preliminaries

We consider the RoomNav task on the House3D environment [Wu et al., 2018] where K = 8
room types are selected as the semantic goals, including “kitchen”, “living room”, “dining
room”, “bedroom”, “bathroom”, “office”, “garage” and “outdoor”. The House3D environment
provides a success check for whether the agent has reached a specific room target or not while
we also experimented on the setting of the agent predicting termination on its own (Sec. 4.3).
House3D provides a training set of 200 houses, a test set of 50 houses and a validation set
of 20 houses. At training time, all the approaches adopt the ground-truth semantic labels
regardless of the semantic classifier.

We evaluate the generalization performances of different approaches with two metrics,
success rate and Success weighted by Path Length (SPL), under different horizons. SPL,
proposed by Anderson et al. [Anderson et al., 2018a], is a function of both success rate and
episode length defined by 1

C

∑
i Si

Li
max(Li,Pi)

, where C is total episodes evaluated, Si indicates
whether the episode is success or not, Li is the ground truth shortest path distance in the
episode, Pi is the number of steps the agent actually took. SPL is upper-bounded by success
rate and assigns more credits to agents accomplishing their tasks faster.

Baseline Methods

Random policy: The agent samples a random action per step, denoted by “random”.
Pure DRL agent: This LSTM agent does not have the BRM module and directly executes
the policy µ(st, T ; θ) throughout the entire episode, denoted by “pure µ(θ)”. This is in fact
the pure locomotion module. As discussed in Sec. 4.2, this is also an improved version of the
original policy proposed by Wu et al. [Wu et al., 2018].
Semantic augmented agent: Comparing to the pure DRL agent, our BRM agents utilizes
an extra semantic signals ct provided by the semantic classifier in addition to the visual input
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Figure 4.7: Example of a successful trajectory. The agent is spawned inside the house,
targeting “outdoor”. Left: the 2D top-down map with goal-conditioned trajectories (“outdoor”
– orange; “garage” – blue; “living room” – green); Right, 1st row: RGB visual image; Right,
2nd row: the posterior of the semantic graph and the proposed sub-goals (red arrow). Initially,
the agent starts by executing the locomotion for ”outdoor” and then ”garage” according
to the prior knowledge (1st graph), but both fail (top orange and blue trajectories in the
map). After updating its belief that garage and outdoor are not nearby (grey edges in the
2nd graph), it then executes locomotion for ”living room” with success (red arrow in the
2nd graph, green trajectory). Finally, it executes sub-policy for“outdoor” again, explores
the living room and reaches the goal (3rd graph, bottom orange trajectory).

st. Hence, we consider a semantic-aware locomotion baseline µS(θs), which is another LSTM
DRL agent that takes both st and ct as input (denoted by “aug.µS(θs)”).
HRL agent with an RNN controller: From a DRL perspective, our BRM agent is
a hierarchical reinforcement learning (HRL) agent with the BRM module as a high-level
controller producing sub-goals and the locomotion module as a low-level policy for control.
Note that update and planning on BRM only depend on (1) the current semantic signal ct,
(2) the target T , and (3) the accumulative bit-OR feature B (see Sec. 4.2). Hence, we adopt
the same locomotion µ(st, g; θ) used by our BRM agent, and train an LSTM controller with
50 hidden units on Etrain that takes all the necessary semantic information and produces a
sub-target every N steps as well. The only difference between our BRM agent and this HRL
agent is the representation of the controller (memory) module. The LSTM controller has
access to exactly the same semantic information as BRM and uses a much more complex and
generic neural model instead of a relation graph. Thus, we expect it to be a strong baseline
and perform competitively to our BRM agent.

Qualitative Analysis and Case Study

In this section, we qualitatively illustrate that our BRM agent is able to learn reasonable
semantic relations and behave in an interpretable manner.
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Prior knowledge: Fig. 4.5 visualizes P (z|ψprior), the learned prior probability of relations,
for 3 room types with their most and least likely nearby (connected) rooms. Darker red
means more likely while darker blue implies less likely. The captured knowledge is indeed
reasonable: bathroom is likely to connect to a bedroom; kitchen is often near a dining room
while garage is typically outdoor.
Effectiveness of planning: The BRM agent can effectively decompose a long-term goal
into a sequence of easier sub-goals via graph planning. Fig. 4.6 visualizes the test success
rates of the BRM agent (BRM), random policy (“random”) and the pure locomotion policy
(“pure µ(θ)”) for increasingly further targets over a fixed set of 5689 randomly generated test
tasks. The x-axis is the shortest distance to the target in meters4 As expected, when the
target becomes more distant, all methods have lower success rates. However, as opposed to
the pure locomotion policy, which quickly degenerates to random as the distance increases,
the BRM agent remains a much higher success rate in general.
Case study: Fig. 4.7 shows a successful trajectory by the BRM agent, where the final target
is to get out of the house. We visualize the progression of the episode, describe the plans and
show the updated graph during exploration. Note that the final goal is invisible to the agent
initially (frame 1○) but the agent is able to plan, effectively explore the house (e.g., without
ever entering the bottom-right dining room region), and eventually reach the target.

Quantitative Generalization Performances

We evaluate the generalization performances of different approaches on Etest with horizons
H = 300 and H = 1000. We set N = 10, i.e., memory updated every 10 steps. Tab. 4.1
reports both success rates (%, percent) and SPL values (‰, per mile) over 5689 fixed test
tasks. In addition to the overall performances, we also report the results under different
planning distances, i.e., the shortest sequence of sub-goals on the ground-truth relation graph.
For an accurate measurement, we ensure that there are at least 500 test tasks for each
planning distance.

Our BRM agent has the highest average success rates as well as the best SPL values in all
the cases. Notably, the margin in SPL is much more significant than that in pure success rate.
More importantly, as the horizon increases, i.e., the larger number of planning computations
H/N allowed, the overall performance margin (rightmost column) of BRM over the best
remaining baseline strictly increases, thanks to the effectiveness of planning.

Ablation Study

In this section, we show the necessity of all the BRM components and the direction for future
improvement.
Benefits of Learned Prior: In BRM, the prior P (z|ψprior) is learned from training houses.
Tab. 4.2 evaluates BRM with an uninformative prior (“unif.”), i.e. ψprior

i,j = 0.5. Generally,

4Typically one meter in shortest distance requires 3 to 4 actions.
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opt.
plan-steps

1 2 3 4 5 overall

avg.
oracle steps

12.27 42.53 61.09 72.47 63.74 46.86

Horizon H = 300

random 20.5 / 15.9 6.9 / 16.7 3.8 / 10.7 1.6 / 4.2 3.0 / 8.8 7.2 / 13.6
pure µ(θ) 49.4 / 47.6 11.8 / 27.6 2.0 / 4.8 2.6 / 10.8 4.2 / 13.2 13.1 / 22.9
aug.µS(θ) 47.8 / 45.3 11.4 / 23.1 3.0 / 7.8 3.4 / 8.1 4.4 / 11.2 13.0 / 20.5

RNN control. 55.0 / 49.8 20.0 / 40.8 8.0 / 20.1 5.2 / 15.2 11.0 / 25.2 19.9 / 34.2
BRM 57.8 / 65.4 24.4 / 54.3 10.5 / 28.3 5.8 / 18.6 11.2 / 29.8 23.1 / 45.3

Horizon H = 1000

plan-dist 1 2 3 4 5 avg.

random 24.3 / 17.6 13.5 / 20.3 9.1 / 14.3 8.0 / 9.3 7.0 / 11.5 13.0 / 17.0
pure µ(θ) 60.8 / 47.6 23.3 / 27.6 7.6 / 4.8 8.2 / 10.8 11.0 / 13.2 22.5 / 22.9
aug.µS(θ) 61.3 / 50.1 23.0 / 26.2 9.4 / 12.0 5.8 / 9.6 9.0 / 13.6 22.4 / 23.8

RNN control. 71.0 / 58.0 39.6 / 51.3 24.1 / 32.7 16.6 / 25.6 23.2 / 39.6 37.0 / 45.2
BRM 73.7 / 74.9 43.6 / 66.0 29.2 / 44.9 20.4 / 27.1 28.4 / 42.5 41.1 / 57.5

Table 4.1: Metrics of Success Rate(%) / SPL(‰, per mile) evaluating the general-
ization performances of BRM and all the baseline approaches (Sec. 4.3). Here N = 10.
“plan-steps” denotes the shortest planning distance in the ground truth relation graph. “oracle
steps” denotes the reference shortest steps required to reach the goal. Our BRM agents have
the highest success rates and the best SPL values in all the cases. More importantly, as the
horizon increases, which allows more planning, BRM outperforms the baselines more.

BRM (H=300) unif. (H=300) BRM (H=1k) unif. (H=1k)

23.1 / 45.3 20.9 / 39.4 41.1 / 57.5 40.4 / 56.6

Table 4.2: Success Rate(%) / SPL(‰): performances of BRM with learned and unin-
formative prior. N = 10, H = 300, 1000 (“1k”).

the learned prior leads to better success rates and SPL values. Notably, when horizon becomes
longer, the gap becomes much smaller, since the graph will converge to the true posterior
with more memory updates.
Source of Error: Our approach has two modules, a BRM module for planning and a
locomotion module for control. We study the errors caused by each of these components
by introducing (1) a hand-designed (imperfect) oracle locomotion, which automatically gets
closer to nearby targets, and (2) an optimal planner using House3D labels. The evaluation
results are show in Tab. 4.3, where the oracle locomotion drastically boosts the results while
the BRM performance is close to the optimal planner. This indicates that the error is
mainly from locomotion – it is extremely challenging to learn a single neural navigator, which
motivates our work to decompose a long-term task into sub-tasks.
Choice of N : The oracle steps for reaching a nearby, i.e., 1-plan-step, target is around
12.27 (top in Tab. 4.1), so we choose a slightly smaller value N = 10 as the re-planning step
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Src. of Err. LSTM locomotion oracle locomotion
BRM 41.1 / 57.5 88.6 / N.A.

opt. plan 46.3 / 62.5 96.7 / N.A.

Table 4.3: Success Rate(%) / SPL(‰): performances with an optimal planner and a
hand-designed locomotion. H=1000, N=10.

Choice of N N = 10 N = 30 N = 50
BRM 41.1 / 57.5 29.7 / 35.2 27.4 / 32.2

RNN control. 37.0 / 45.2 28.2 / 27.7 26.5 / 26.7

Table 4.4: Success Rate(%) / SPL(‰): performances with different choices of N under
horizon H = 1000.

Horizon H = 1000 with Terminate Action

random pureµ(θ) aug.µS(θs) RNN cont. BRM

1.8/1.2 8.6/9.0 8.2/8.8 14.5/16.3 17.3/23.0

Table 4.5: Success Rate(%) / SPL(‰) with terminate action evaluating the general-
ization performances of BRM and baseline agents with horizon H = 1000 and N = 10. Our
BRM agent achieves the best performances under both metrics.

size. We investigate other choices of N in Tab. 4.4. Larger N results in more significant
performance drops. Notably, our BRM agent consistently outperforms RNN controller under
different parameter choices.

Evaluation with Terminate Action

In the previous studies, the success of an episode is determined by the House3D environment
automatically. It is suggested by Anderson et al. [Anderson et al., 2018a] that a real-world
agent should be aware of its goal and determine whether to stop by itself. In this section,
we evaluate the BRM agent and all previous baselines under this setting: a success will be
counted only if the agent terminates the episode correctly in a target room on its own.

There are two ways to include the terminate action: (1) expand the action space with an
extra stop action; (2) train a separate termination checker. We observe (2) leads to much
better practical performances, which is also reported by Pathak et al. [Pathak et al., 2018].
In our experiments, we simply use the semantic classifier as our termination checker.

The results are summarized in Tab. 4.5, where we use a long horizon H = 1000 to allow the
agents to have enough time to self-terminate. Similarly, BRM achieves the best performance
in both success rate and SPL metric.
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Discussions

Success rate and SPL: In Tab. 4.1, the SPL values are typically much smaller than the
success rates, namely BRM uses much more steps than the reference shortest path. This is
not surprising due to the strong partial observability in the RoomNav task. As a concrete
example in Fig. 4.7, the optimal path from birthplace (near 1○) to the outdoor (near 3○) is
extremely short if we know the top-down view in advance. However, the outdoor region is
out of the agent’s sight (frame 1○) and the agent has to explore the nearby regions before it
sees the door towards the outside (frame 3○). Planning and updates on BRM helps guide the
agent to explore the unknown house more effectively, which helps lead to higher SPL values.
But overall the agent still suffers from the fundamental challenge of partial observability.
Pre-selected concepts: In this work, we focus on the memory representation and simply
assume we know all the semantic concepts in advance. It is also possible to generalize to unseen
concepts by leveraging the word embedding and knowledge graph from NLP community [Yang
et al., 2019]. It is also feasible to directly discover general semantic concepts from Etrain via
unsupervised learning by leveraging the rich semantic information (e.g., object categories,
room types, etc) within the visual input. We leave this to our future work.

4.4 Additional Details

Video Demo

A video demo visualizing a successful navigation trajectory by BRM can be found at the
following url:

https://drive.google.com/file/d/1vCFQZfFK1X6WJacrQID2kMQVzRD4WeTs/view?usp=sharing.

Environment Details

In RoomNav the 8 targets are: kitchen, living room, dining room, bedroom, bathroom, office,
garage and outdoor. We inherit the success measure of “see” from [Wu et al., 2018]: the
agent needs to see some corresponding object for at least 450 pixels in the input frame and
stay in the target area for at least 3 time steps.

Originally the House3D environment supports a set of 13 discrete actions. Here we reduce
it to 9 actions: large forward, forward, left-forward, right-forward, large left rotate, large
right rotate, left rotate, right rotate and stay still. More environment details can be found in
Section 3.6 from the previous Chapter. We also implemented a faster and customized variant of
the House3D environment, which is available at https://github.com/jxwuyi/House3D/tree/C++.

Evaluation Details

We measure the success rate on Etest over 5689 test episodes, which consists of 5000 randomly
generated configurations and 689 specialized for faraway targets to increase the confidence of

https://drive.google.com/file/d/1vCFQZfFK1X6WJacrQID2kMQVzRD4WeTs/view?usp=sharing
https://github.com/jxwuyi/House3D/tree/C++
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Figure 4.8: Comparing BRM with baselines in success rate with confidence interval. Ap-
proaches of interest include random policy (red), pure LSTM policy (blue), the semantic-aware
LSTM policy (purple), the hierarchical policy (grey) and BRM (yellow). In all plots, the
y-axis is success rate while the x-axis is the optimal planning distance. BRM outperforms all
baselines and the gap becomes more significant when horizon increase, namely, more planning
computations.

measured success rates. These 689 episodes are generated such that for each plan-distance,
there are at least 500 evaluation episodes. Each test episode has a fixed configuration for
a fair comparison between different approaches, i.e., the agent will always start from the
same location with the same target in that episode. Note that we always ensure that (1) the
target is connected to the birthplace of the agent, and (2) the the birthplace of the agent is
never within the target room. In addition to the detailed numbers in Table 1,we visualize the
success rates with confidence intervals for BRM and baseline methods in Figure 4.8. The
confidence interval is obtained by fitting a binomial distribution.

Ablation Study: the Semantic Detector

In BRM, we use a CNN detector to extract the semantic signals at test time. Here we also
evaluate the performances of all the approaches using the oracle signals from the House3D
environment. The results are in Table 4.6, where we also include the BRM agent using CNN
detector as a reference. Generally, using both the ground truth signal and using the CNN
detector yield comparable overall performances in both metrics of success rate and SPL. They
all consistently outperform all the baseline methods, which indicates that the probabilistic
relational graph is robust over the noise on semantic signals (the robustness if controlled by
ψobs). One interesting observation is that there are many cases, using CNN detector produces
better results than using the ground truth signals. We hypothesis that this is because the
semantic labels in House3D is noisy and therefore a well-trained CNN detector will not be
influenced by the noisy labels at test time.
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plan-dist 1 2 3 4 5 overall

Horizon H = 300

plan-dist 1 2 3 4 5 avg.

random 20.5 / 15.9 6.9 / 16.7 3.8 / 10.7 1.6 / 4.2 3.0 / 8.8 7.2 / 13.6
pure µ(θ) 49.4 / 47.6 11.8 / 27.6 2.0 / 4.8 2.6 / 10.8 4.2 / 13.2 13.1 / 22.9

aug.µS(θ) (true) 51.9 / 66.4 11.1 / 24.2 3.3 / 7.8 2.4 / 6.0 3.0 / 8.7 13.2 / 23.3
RNN ctrl. (true) 54.9 / 48.1 20.2 / 37.7 8.2 / 22.5 5.6 / 13.8 9.8 / 22.7 20.0 / 32.6

BRM (true) 58.8 / 60.7 25.3 / 55.6 10.4 / 26.9 7.6 / 22.2 9.2 / 23.4 23.6 / 44.9
BRM (CNN) 57.8 / 65.4 24.4 / 54.3 10.5 / 28.3 5.8 / 18.6 11.2 / 29.8 23.1 / 45.3

Horizon H = 1000

plan-dist 1 2 3 4 5 avg.

random 24.3 / 17.6 13.5 / 20.3 9.1 / 14.3 8.0 / 9.3 7.0 / 11.5 13.0 / 17.0
pure µ(θ) 60.8 / 47.6 23.3 / 27.6 7.6 / 4.8 8.2 / 10.8 11.0 / 13.2 22.5 / 22.9

aug.µS(θ) (true) 62.4 / 61.3 22.9 / 30.7 8.9 / 14.3 7.2 / 12.8 9.0 / 11.4 22.5 / 28.1
RNN ctrl. (true) 70.2 / 51.3 40.8 / 48.6 22.8 / 32.2 16.4 / 23.4 24.2 / 41.0 37.4 / 42.9

BRM (true) 70.3 / 61.8 44.9 / 70.5 31.7 / 50.8 19.0 / 33.3 28.0 / 42.2 41.7 / 59.8
BRM (CNN) 73.7 / 74.9 43.6 / 66.0 29.2 / 44.9 20.4 / 27.1 28.4 / 42.5 41.1 / 57.5

Table 4.6: Success Rate(%) / SPL(‰): we evaluate the performances of BRM and
baselines agents using the ground truth oracle semantic signals provided by the environments.
We also include the performance of the original BRM agent using CNN detector as a reference.
The performance of BRM-CNN agents is comparable to BRM-true agents and sometimes
even better. More discussions are in Sec. 4.4.

Additional Results on Episode Length

We illustrate the ground truth shortest distance information as well as the average episode
length of success episodes for all the approaches. The results are shown in Table 4.7. The
average ground truth shortest path is around 46.86 steps. Note that the agent has 9 actions
per step and suffers from strong partial observability, which indicates the difficulty of the
task.

Additional Implementation Details

The source code is available at https://github.com/jxwuyi/HouseNavAgent.

Learning the LSTM Locomotion

Policy Architecture: We utilize the same policy architecture and settings as [Wu et al.,
2018]: we have 4 convolution layers of 64, 64, 128, 128 channels each and with kernel size 5
and stride 2, an MLP layer of 256 units, an LSTM cell of 256 units, two MLP layers of 126
and 64 units for policy head and another 2 MLP layers of 64 and 32 units for value head.
Batch normalization is applied to all the layers before LSTM. Activation is ReLU. The a only

https://github.com/jxwuyi/HouseNavAgent
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Average Ground Truth Shortest Path Length

plan-dist 1 2 3 4 5 overall

Oracle 12.27 42.53 61.09 72.47 63.74 46.86

Average Successful Episode Length

plan-dist 1 2 3 4 5 overall

Horizon H = 300

random 34.0 112.7 143.8 148.0 149.7 89.8
pure µ(θ) 55.2 107.0 127.9 140.8 139.4 84.7
aug.µS(θ) 49.7 112.5 159.9 179.1 176.8 89.2

RNN control. 65.0 132.3 157.2 142.7 144.1 111.8
BRM 56.5 124.4 167.8 150.7 127.6 107.7

Horizon H = 1000

random 121.7 354.7 426.6 532.8 409.5 322.1
pure µ(θ) 55.2 107.0 127.9 140.8 139.4 84.7
aug.µS(θ) 163.1 360.9 471.9 460.7 432.5 307.1

RNN control. 174.0 368.4 465.3 466.6 397.6 339.5
BRM 172.9 350.5 460.0 512.3 418.1 337.0

Table 4.7: Average successful episode length for different approaches. The length of shortest
path reflects the strong difficulty of this task.

difference is that the original policy uses a gated attention mechanism for target conditioning
while we use a behavior approach by training a separate sub-policy for each semantic target.

For the semantic augmented policy, we feed the semantic information to the MLP layer
before LSTM.

Hyperparameters: We run a parallel version of A2C [Mnih et al., 2016] with 1
optimizer and 200 parallel rollout workers, each of which simulates a particular training
house. We collect a training batch of 64 trajectories with 30 continuous time steps in each
iteration. We set γ = 0.97, batch size 64, learning rate 0.001 with Adam, weight decay 10−5

and entropy bonus 0.1. We also add the squared l2 norm of policy logits to the total loss
with a coefficient of 0.01. We normalize the advantage to mean 0 and standard deviation 1.
We totally run 60000 training iterations and use the final model as our learned policy.

Reward shaping: The reward at each time step is computed by the difference of
shortest paths in meters from the agent’s location to the goal after taking a action. We also
add a time penalty of 0.1 and a collision penalty of 0.3. When the agent reaches the goal,
the success reward is 10.

Curriculum learning: We run a curriculum learning by increasing the maximum of
distance between agent’s birth meters and target by 3 meters every 10000 iterations. We
totally run 60000 training iterations and use the final model as our learned policy µ(θ).
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Building the Relational Graph

We run random exploration for 300 steps to collect a sample of z. For a particular environment,
we collect totally 50 samples for each zi,j . For all i 6= j, we set ψobs

i,j,0 = 0.001 and ψobs
i,j,1 = 0.15.

Training the CNN Semantic Extractor

We take the panoramic view as input, which consists of 4 images, s1
o, . . . , s

4
o with different

first person view angles. The only exception is that for target “outdoor”, we notice that
instead of using a panoramic view, simply keeping the recent 4 frames in the trajectory
leads to the best prediction accuracy. We use an CNN feature extractor to extract features
f(sio) by applying CNN layers with kernel size 3, strides [1, 1, 1, 2, 1, 2, 1, 2, 1, 2] and channels
[4, 8, 16, 16, 32, 32, 64, 64, 128, 256]. We also use relu activation and batch norm. Then we com-
pute the attention weights over these 4 visual features by li = f(sio)W

T
1 W2 [f(s1

o), . . . , f(s4
o)]

and ai = softmax(li). Then we compute the weighted average of these four frames g =∑
i aif(sio) and feed it to a single layer perceptron with 32 hidden units. For each semantic

signal, we generate 15k positive and 15k negative training data from Etrain and use Adam
optimizer with learning rate 5e-4, weight decay 1e-5, batch size 256 and gradient clip of 5.
We keep the model that has the best prediction accuracy on Evalid.

For a smooth prediction during testing, we also have a hard threshold and filtering process
on the CNN outputs: ss(Ti) will be 1 only if the output of CNN remains a confidence for Ti
over 0.9 for consecutively 3 steps.

4.5 Summary

In this chapter, we proposed a novel design of memory architecture, Bayesian Relation Memory
(BRM), for the semantic navigation task. BRM uses a semantic classifier to extract semantic
labels from visual input and builds a probabilistic relation graph over the semantic concepts,
which allows representing prior reachability knowledge via the edge priors, fast test-time
adaptation via edge posteriors and efficient planning via graph search. Our BRM navigation
agent uses BRM to produce a sub-goal for the locomotion policy to reach. Experiment results
show that the BRM representation is effective and crucial for a visual navigation agent to
generalize better in unseen environments.

At a high-level, our approach is general and can be applied to other tasks with semantic
context information or state abstractions available to build a graph over, such as robotics
manipulations where semantic concepts can be abstract states of robot arms and object
locations, or video games where we can plan on semantic signals such as the game status or
current resources. In future work, it is also worthwhile to investigate how to extract relations
and concepts directly from training environments automatically.
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Part III

Generalization in Complex
Multi-Agent Games
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Chapter 5

Multi-Agent Actor-Critic for Mixed
Cooperative-Competitive Games

In this chapter, we explore deep reinforcement learning methods for multi-agent domains. We
begin by analyzing the difficulty of traditional algorithms in the multi-agent case: Q-learning
is challenged by an inherent non-stationarity of the environment, while policy gradient suffers
from a variance that increases as the number of agents grows. We then present an adaptation
of actor-critic methods that considers action policies of other agents and is able to successfully
learn policies that require complex multi-agent coordination. Additionally, we introduce a
training regimen utilizing an ensemble of policies for each agent that leads to more robust
multi-agent policies. We show the strength of our approach compared to existing methods in
cooperative as well as competitive scenarios, where agent populations are able to discover
various physical and informational coordination strategies.

5.1 Motivation

Reinforcement learning (RL) has recently been applied to solve challenging problems, from
game playing [Mnih et al., 2015, Silver et al., 2016] to robotics [Levine et al., 2016]. In
industrial applications, RL is emerging as a practical component in large scale systems such as
data center cooling [DeepMind, 2016]. Most of the successes of RL have been in single agent
domains, where modelling or predicting the behaviour of other actors in the environment is
largely unnecessary.

However, there are a number of important applications that involve interaction between
multiple agents, where emergent behavior and complexity arise from agents co-evolving
together. For example, multi-robot control [Matignon et al., 2012a], the discovery of commu-
nication and language [Sukhbaatar et al., 2016,Foerster et al., 2016,Mordatch and Abbeel,
2018], multiplayer games [Peng et al., 2017], and the analysis of social dilemmas [Leibo et al.,
2017] all operate in a multi-agent domain. Related problems, such as variants of hierar-
chical reinforcement learning [Dayan and Hinton, 1993b] can also be seen as a multi-agent
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system, with multiple levels of hierarchy being equivalent to multiple agents. Additionally,
multi-agent self-play has recently been shown to be a useful training paradigm [Silver et al.,
2016,Sukhbaatar et al., 2018]. Successfully scaling RL to environments with multiple agents is
crucial to building artificially intelligent systems that can productively interact with humans
and each other.

Unfortunately, traditional reinforcement learning approaches such as Q-Learning or policy
gradient are poorly suited to multi-agent environments. One issue is that each agent’s policy
is changing as training progresses, and the environment becomes non-stationary from the
perspective of any individual agent (in a way that is not explainable by changes in the agent’s
own policy). This presents learning stability challenges and prevents the straightforward use
of past experience replay, which is crucial for stabilizing deep Q-learning. Policy gradient
methods, on the other hand, usually exhibit very high variance when coordination of multiple
agents is required. Alternatively, one can use model-based policy optimization which can
learn optimal policies via back-propagation, but this requires a (differentiable) model of the
world dynamics and assumptions about the interactions between agents. Applying these
methods to competitive environments is also challenging from an optimization perspective,
as evidenced by the notorious instability of adversarial training methods [Goodfellow et al.,
2014a].

In this chapter, we propose a general-purpose multi-agent learning algorithm that: (1)
leads to learned policies that only use local information (i.e. their own observations) at
execution time, (2) does not assume a differentiable model of the environment dynamics or
any particular structure on the communication method between agents, and (3) is applicable
not only to cooperative interaction but to competitive or mixed interaction involving both
physical and communicative behavior. The ability to act in mixed cooperative-competitive
environments may be critical for intelligent agents; while competitive training provides a
natural curriculum for learning [Sukhbaatar et al., 2018], agents must also exhibit cooperative
behavior (e.g. with humans) at execution time.

We adopt the framework of centralized training with decentralized execution, allowing the
policies to use extra information to ease training, so long as this information is not used at
test time. It is unnatural to do this with Q-learning without making additional assumptions
about the structure of the environment, as the Q function generally cannot contain different
information at training and test time. Thus, we propose a simple extension of actor-critic
policy gradient methods where the critic is augmented with extra information about the
policies of other agents, while the actor only has access to local information. After training
is completed, only the local actors are used at execution phase, acting in a decentralized
manner and equally applicable in cooperative and competitive settings.

Since the centralized critic function explicitly uses the decision-making policies of other
agents, we additionally show that agents can learn approximate models of other agents online
and effectively use them in their own policy learning procedure. We also introduce a method
to improve the stability of multi-agent policies by training agents with an ensemble of policies,
thus requiring robust interaction with a variety of collaborator and competitor policies. We
empirically show the success of our approach compared to existing methods in cooperative as
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well as competitive scenarios, where agent populations are able to discover complex physical
and communicative coordination strategies.

Related Work

The simplest approach to learning in multi-agent settings is to use independently learning
agents. This was attempted with Q-learning in [Tan, 1993], but does not perform well in
practice [Matignon et al., 2012b]. As we will show, independently-learning policy gradient
methods also perform poorly. One issue is that each agent’s policy changes during training,
resulting in a non-stationary environment and preventing the näıve application of experience
replay. Previous work has attempted to address this by inputting other agent’s policy
parameters to the Q function [Tesauro, 2004], explicitly adding the iteration index to the
replay buffer, or using importance sampling [Foerster et al., 2017]. Deep Q-learning approaches
have previously been investigated in [Tampuu et al., 2017] to train competing Pong agents.

The nature of interaction between agents can either be cooperative, competitive, or
both and many algorithms are designed only for a particular nature of interaction. Most
studied are cooperative settings, with strategies such as optimistic and hysteretic Q function
updates [Lauer and Riedmiller, 2000,Matignon et al., 2007,Omidshafiei et al., 2017], which
assume that the actions of other agents are made to improve collective reward. Another
approach is to indirectly arrive at cooperation via sharing of policy parameters [Gupta et al.,
2017a], but this requires homogeneous agent capabilities. These algorithms are generally not
applicable in competitive or mixed settings. See [Panait and Luke, 2005,Busoniu et al., 2008]
for surveys of multi-agent learning approaches and applications.

Concurrently to our work, [Foerster et al., 2018b] proposed a similar idea of using
policy gradient methods with a centralized critic, and test their approach on a StarCraft
micromanagement task. Their approach differs from ours in the following ways: (1) they
learn a single centralized critic for all agents, whereas we learn a centralized critic for each
agent, allowing for agents with differing reward functions including competitive scenarios,
(2) we consider environments with explicit communication between agents, (3) they combine
recurrent policies with feed-forward critics, whereas our experiments use feed-forward policies
(although our methods are applicable to recurrent policies), (4) we learn continuous policies
whereas they learn discrete policies.

Recent work has focused on learning grounded cooperative communication protocols be-
tween agents to solve various tasks [Sukhbaatar et al., 2016,Foerster et al., 2016,Mordatch and
Abbeel, 2018]. However, these methods are usually only applicable when the communication
between agents is carried out over a dedicated, differentiable communication channel.

Our method requires explicitly modeling decision-making process of other agents. The
importance of such modeling has been recognized by both reinforcement learning [Boutilier,
1996,Chalkiadakis and Boutilier, 2003] and cognitive science communities [Frank and Good-
man, 2012]. [Hu and Wellman, 1998b] stressed the importance of being robust to the decision
making process of other agents, as do others by building Bayesian models of decision making.
We incorporate such robustness considerations by requiring that agents interact successfully
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with an ensemble of any possible policies of other agents, improving training stability and
robustness of agents after training.

Preliminary

Markov Games In this work, we consider a multi-agent extension of Markov decision
processes (MDPs) called partially observable Markov games [Littman, 1994]. A Markov game
for N agents is defined by a set of states S describing the possible configurations of all agents,
a set of actions A1, ...,AN and a set of observations O1, ...,ON for each agent. To choose
actions, each agent i uses a stochastic policy πππθi : Oi ×Ai 7→ [0, 1], which produces the next
state according to the state transition function T : S × A1 × ...×AN 7→ S.1 Each agent i
obtains rewards as a function of the state and agent’s action ri : S ×Ai 7→ R, and receives a
private observation correlated with the state oi : S 7→ Oi. The initial states are determined
by a distribution ρ : S 7→ [0, 1]. Each agent i aims to maximize its own total expected return
Ri =

∑T
t=0 γ

trti where γ is a discount factor and T is the time horizon.

Q-Learning and Deep Q-Networks (DQN). Q-Learning and DQN [Mnih et al., 2015]
are popular methods in reinforcement learning and have been previously applied to multi-
agent settings [Foerster et al., 2016,Tesauro, 2004]. Q-Learning makes use of an action-value
function for policy πππ as Qπππ(s, a) = E[R|st = s, at = a]. This Q function can be recursively
rewritten as Qπππ(s, a) = Es′ [r(s, a) + γEa′∼πππ[Qπππ(s′, a′)]]. DQN learns the action-value function
Q∗ corresponding to the optimal policy by minimizing the loss:

L(θ) = Es,a,r,s′ [(Q∗(s, a|θ)− y)2], where y = r + γmax
a′

Q̄∗(s′, a′), (5.1)

where Q̄ is a target Q function whose parameters are periodically updated with the most
recent θ, which helps stabilize learning. Another crucial component of stabilizing DQN is the
use of an experience replay buffer D containing tuples (s, a, r, s′).

Q-Learning can be directly applied to multi-agent settings by having each agent i learn an
independently optimal function Qi [Tan, 1993]. However, because agents are independently
updating their policies as learning progresses, the environment appears non-stationary from the
view of any one agent, violating Markov assumptions required for convergence of Q-learning.
Another difficulty observed in [Foerster et al., 2017] is that the experience replay buffer
cannot be used in such a setting since in general, P (s′|s, a,πππ1, ...,πππN) 6= P (s′|s, a,πππ′1, ...,πππ′N)
when any πππi 6= πππ′i.

Policy Gradient (PG) Algorithms. Policy gradient methods are another popular choice
for a variety of RL tasks. The main idea is to directly adjust the parameters θ of the policy
in order to maximize the objective J(θ) = Es∼pπππ ,a∼πππθ [R] by taking steps in the direction of

1To minimize notation we will often omit θ from the subscript of πππ.
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∇θJ(θ). Using the Q function defined previously, the gradient of the policy can be written
as [Sutton et al., 2000]:

∇θJ(θ) = Es∼pπππ ,a∼πππθ [∇θ logπππθ(a|s)Qπππ(s, a)], (5.2)

where pπππ is the state distribution. The policy gradient theorem has given rise to several
practical algorithms, which often differ in how they estimate Qπππ. For example, one can simply
use a sample return Rt =

∑T
i=t γ

i−tri, which leads to the REINFORCE algorithm [Williams,
1992]. Alternatively, one could learn an approximation of the true action-value function
Qπππ(s, a) by e.g. temporal-difference learning [Sutton and Barto, 1998]; this Qπππ(s, a) is called
the critic and leads to a variety of actor-critic algorithms [Sutton and Barto, 1998].

Policy gradient methods are known to exhibit high variance gradient estimates. This is
exacerbated in multi-agent settings; since an agent’s reward usually depends on the actions
of many agents, the reward conditioned only on the agent’s own actions (when the actions
of other agents are not considered in the agent’s optimization process) exhibits much more
variability, thereby increasing the variance of its gradients. Below, we show a simple setting
where the probability of taking a gradient step in the correct direction decreases exponentially
with the number of agents.

Proposition 1. Consider N agents with binary actions: P (ai = 1) = θi, where R(a1, . . . , aN ) =
1a1=···=aN . We assume an uninformed scenario, in which agents are initialized to θi = 0.5 ∀i.
Then, if we are estimating the gradient of the cost J with policy gradient, we have:

P (〈∇̂J,∇J〉 > 0) ∝ (0.5)N

where ∇̂J is the policy gradient estimator from a single sample, and ∇J is the true
gradient.

Proof. See Section 5.4.

The use of baselines, such as value function baselines typically used to ameliorate high
variance, is problematic in multi-agent settings due to the non-stationarity issues mentioned
previously.

Deterministic Policy Gradient (DPG) Algorithms. It is also possible to extend the
policy gradient framework to deterministic policies µµµθ : S 7→ A [Silver et al., 2014]. In
particular, under certain conditions we can write the gradient of the objective J(θ) =
Es∼pµµµ [R(s, a)] as:

∇θJ(θ) = Es∼D[∇θµµµθ(a|s)∇aQ
µµµ(s, a)|a=µµµθ(s)] (5.3)

Since this theorem relies on ∇aQ
µµµ(s, a), it requires that the action space A (and thus the

policy µµµ) be continuous.
Deep deterministic policy gradient (DDPG) [Lillicrap et al., 2015] is a variant of DPG

where the policy µµµ and critic Qµµµ are approximated with deep neural networks. DDPG is an
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off-policy algorithm, and samples trajectories from a replay buffer of experiences that are
stored throughout training. DDPG also makes use of a target network, as in DQN [Mnih
et al., 2015]. Deep deterministic policy gradient (DDPG) [Lillicrap et al., 2015] is a variant of
DPG where the policy µµµ and critic Qµµµ are approximated with deep neural networks. DDPG
is an off-policy algorithm, and samples trajectories from a replay buffer of experiences that
are stored throughout training. DDPG also makes use of a target network, as in DQN [Mnih
et al., 2015].

5.2 Methods

Multi-Agent Actor Critic

 ..
 ..

 ..
 ..

  m  
1

  m  
N

  c   
1

  c   
N

  l  
1

   l   
M

     
c
  

     
l
  

       a

  

      C
  

      a
  

       b

  

       
pool

  

       
pool

  

FC

FC

FC

FC

FC

π

o a

agent 1

. . .

Q

π

o a

agent N

Q

execution

training

. . .

. . .    
1

    
N

   
N

   
1

1 N

Figure 5.1: Overview of our multi-agent
decentralized actor, centralized critic ap-
proach.

We have argued in the previous section that näıve
policy gradient methods perform poorly in sim-
ple multi-agent settings, and this is supported
in our experiments in Section 5.3. Our goal in
this section is to derive an algorithm that works
well in such settings. However, we would like to
operate under the following constraints: (1) the
learned policies can only use local information
(i.e. their own observations) at execution time,
(2) we do not assume a differentiable model of
the environment dynamics, unlike in [Mordatch
and Abbeel, 2018], and (3) we do not assume
any particular structure on the communication
method between agents (that is, we don’t assume
a differentiable communication channel). Fulfill-
ing the above desiderata would provide a general-purpose multi-agent learning algorithm
that could be applied not just to cooperative games with explicit communication channels,
but competitive games and games involving only physical interactions between agents.

Similarly to [Foerster et al., 2016], we accomplish our goal by adopting the framework
of centralized training with decentralized execution. Thus, we allow the policies to use
extra information to ease training, so long as this information is not used at test time. It is
unnatural to do this with Q-learning, as the Q function generally cannot contain different
information at training and test time. Thus, we propose a simple extension of actor-critic
policy gradient methods where the critic is augmented with extra information about the
policies of other agents.

More concretely, consider a game with N agents with policies parameterized by θθθ =
{θ1, ..., θN}, and let πππ = {πππ1, ...,πππN} be the set of all agent policies. Then we can write the
gradient of the expected return for agent i, J(θi) = E[Ri] as:

∇θiJ(θi) = Es∼pµµµ,ai∼πππi [∇θi logπππi(ai|oi)Qπππ
i (x, a1, ..., aN)]. (5.4)
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Here Qπππ
i (x, a1, ..., aN ) is a centralized action-value function that takes as input the actions

of all agents, a1, . . . , aN , in addition to some state information x, and outputs the Q-value for
agent i. In the simplest case, x could consist of the observations of all agents, x = (o1, ..., oN ),
however we could also include additional state information if available. Since each Qπππ

i is
learned separately, agents can have arbitrary reward structures, including conflicting rewards
in a competitive setting.

We can extend the above idea to work with deterministic policies. If we now consider N
continuous policies µµµθi w.r.t. parameters θi (abbreviated as µµµi), the gradient can be written
as:

∇θiJ(µµµi) = Ex,a∼D[∇θiµµµi(ai|oi)∇aiQ
µµµ
i (x, a1, ..., aN)|ai=µµµi(oi)], (5.5)

Here the experience replay buffer D contains the tuples (x,x′, a1, . . . , aN , r1, . . . , rN ), recording
experiences of all agents. The centralized action-value function Qµµµ

i is updated as:

L(θi) = Ex,a,r,x′ [(Q
µµµ
i (x, a1, . . . , aN)− y)2], y = ri + γ Qµµµ′

i (x′, a′1, . . . , a
′
N)
∣∣
a′j=µµµ

′
j(oj)

, (5.6)

where µµµ′ = {µµµθ′1 , ...,µµµθ′N} is the set of target policies with delayed parameters θ′i. As shown
in Section 5.3, we find the centralized critic with deterministic policies works very well in
practice, and refer to it as multi-agent deep deterministic policy gradient (MADDPG). We
provide the description of the full algorithm in the Section 5.4.

A primary motivation behind MADDPG is that, if we know the actions taken by all
agents, the environment is stationary even as the policies change, since

P (s′|s, a1, ..., aN ,πππ1, ...,πππN) = P (s′|s, a1, ..., aN) = P (s′|s, a1, ..., aN ,πππ
′
1, ...,πππ

′
N)

for any πππi 6= πππ′i. This is not the case if we do not explicitly condition on the actions of other
agents, as done for most traditional RL methods.

Note that we require the policies of other agents to apply an update in Eq. 5.6. Knowing
the observations and policies of other agents is not a particularly restrictive assumption;
if our goal is to train agents to exhibit complex communicative behaviour in simulation,
this information is often available to all agents. However, we can relax this assumption if
necessary by learning the policies of other agents from observations — we describe a method
of doing this in Section 5.2.

Inferring Policies of Other Agents

To remove the assumption of knowing other agents’ policies, as required in Eq. 5.6, each
agent i can additionally maintain an approximation µ̂µµφji

(where φ are the parameters of the

approximation; henceforth µ̂µµji ) to the true policy of agent j, µµµj. This approximate policy is
learned by maximizing the log probability of agent j’s actions, with an entropy regularizer:

L(φji ) = −Eoj ,aj
[
log µ̂µµji (aj|oj) + λH(µ̂µµji )

]
, (5.7)
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where H is the entropy of the policy distribution. With the approximate policies, y in Eq. 5.6
can be replaced by an approximate value ŷ calculated as follows:

ŷ = ri + γQµµµ′

i (x′, µ̂µµ′1i (o1), . . . ,µµµ′i(oi), . . . , µ̂µµ
′N
i (oN)), (5.8)

where µ̂µµ′ji denotes the target network for the approximate policy µ̂µµji . Note that Eq. 5.7 can
be optimized in a completely online fashion: before updating Qµµµ

i , the centralized Q function,
we take the latest samples of each agent j from the replay buffer to perform a single gradient
step to update φji . Note also that, in the above equation, we input the action log probabilities
of each agent directly into Q, rather than sampling.

Agents with Policy Ensembles

As previously mentioned, a recurring problem in multi-agent reinforcement learning is the
environment non-stationarity due to the agents’ changing policies. This is particularly true
in competitive settings, where agents can derive a strong policy by overfitting to the behavior
of their competitors. Such policies are undesirable as they are brittle and may fail when the
competitors alter strategies.

To obtain multi-agent policies that are more robust to changes in the policy of competing
agents, we propose to train a collection of K different sub-policies. At each episode, we
randomly select one particular sub-policy for each agent to execute. Suppose that policy µµµi is
an ensemble of K different sub-policies with sub-policy k denoted by µµµ

θ
(k)
i

(denoted as µµµ
(k)
i ).

For agent i, we are then maximizing the ensemble objective:

Je(µµµi) = E
k∼unif(1,K),s∼pµµµ,a∼µµµ(k)i

[Ri(s, a)] . (5.9)

Since different sub-policies will be executed in different episodes, we maintain a replay
buffer D(k)

i for each sub-policy µµµ
(k)
i of agent i. Accordingly, we can derive the gradient of the

ensemble objective with respect to θ
(k)
i as follows:

∇
θ
(k)
i
Je(µµµi) =

1

K
E

x,a∼D(k)
i

[
∇
θ
(k)
i
µµµ

(k)
i (ai|oi)∇aiQ

µµµi (x, a1, . . . , aN)
∣∣∣
ai=µµµ

(k)
i (oi)

]
. (5.10)

5.3 Experiments

Videos of our experiments can be viewed at https://sites.google.com/site/multiagentac/.

Environments

To perform our experiments, we adopt the grounded communication environment proposed
in [Mordatch and Abbeel, 2018]2, which consists of N agents and L landmarks inhabiting a

2Code can be found here at https://github.com/openai/multiagent-particle-envs

https://sites.google.com/site/multiagentac/
https://github.com/openai/multiagent-particle-envs
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two-dimensional world with continuous space and discrete time. Agents may take physical
actions in the environment and communication actions that get broadcasted to other agents.
Unlike [Mordatch and Abbeel, 2018], we do not assume that all agents have identical action
and observation spaces, or act according to the same policy πππ. We also consider games that
are both cooperative (all agents must maximize a shared return) and competitive (agents
have conflicting goals). Some environments require explicit communication between agents
in order to achieve the best reward, while in other environments agents can only perform
physical actions. We provide details for each environment below.

speaker
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Figure 5.2: Illustrations of the experimental environment and some tasks we consider,
including a) Cooperative Communication b) Predator-Prey c) Cooperative Navigation d)
Physical Deception. See webpage for videos of all experimental results.

Cooperative communication. This task consists of two cooperative agents, a speaker
and a listener, who are placed in an environment with three landmarks of differing colors.
At each episode, the listener must navigate to a landmark of a particular color, and obtains
reward based on its distance to the correct landmark. However, while the listener can observe
the relative position and color of the landmarks, it does not know which landmark it must
navigate to. Conversely, the speaker’s observation consists of the correct landmark color, and
it can produce a communication output at each time step which is observed by the listener.
Thus, the speaker must learn to output the landmark colour based on the motions of the
listener. Although this problem is relatively simple, as we show in Section 5.3 it poses a
significant challenge to traditional RL algorithms.

Cooperative navigation. In this environment, agents must cooperate through physical
actions to reach a set of L landmarks. Agents observe the relative positions of other agents
and landmarks, and are collectively rewarded based on the proximity of any agent to each
landmark. In other words, the agents have to ‘cover’ all of the landmarks. Further, the
agents occupy significant physical space and are penalized when colliding with each other.
Our agents learn to infer the landmark they must cover, and move there while avoiding other
agents.

Keep-away. This scenario consists of L landmarks including a target landmark, N
cooperating agents who know the target landmark and are rewarded based on their distance
to the target, and M adversarial agents who must prevent the cooperating agents from
reaching the target. Adversaries accomplish this by physically pushing the agents away from
the landmark, temporarily occupying it. While the adversaries are also rewarded based on
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Figure 5.3: Comparison between MADDPG and DDPG (left), and between single policy
MADDPG and ensemble MADDPG (right) on the competitive environments. Each bar
cluster shows the 0-1 normalized score for a set of competing policies (agent v adversary),
where a higher score is better for the agent. In all cases, MADDPG outperforms DDPG
when directly pitted against it, and similarly for the ensemble against the single MADDPG
policies. Full results are given in Section 5.4.

their distance to the target landmark, they do not know the correct target; this must be
inferred from the movements of the agents.

Physical deception. Here, N agents cooperate to reach a single target landmark from
a total of N landmarks. They are rewarded based on the minimum distance of any agent to
the target (so only one agent needs to reach the target landmark). However, a lone adversary
also desires to reach the target landmark; the catch is that the adversary does not know
which of the landmarks is the correct one. Thus the cooperating agents, who are penalized
based on the adversary distance to the target, learn to spread out and cover all landmarks so
as to deceive the adversary.

Predator-prey. In this variant of the classic predator-prey game, N slower cooperating
agents must chase the faster adversary around a randomly generated environment with L large
landmarks impeding the way. Each time the cooperative agents collide with an adversary, the
agents are rewarded while the adversary is penalized. Agents observe the relative positions
and velocities of the agents, and the positions of the landmarks.

Covert communication. This is an adversarial communication environment, where a
speaker agent (‘Alice’) must communicate a message to a listener agent (‘Bob’), who must
reconstruct the message at the other end. However, an adversarial agent (‘Eve’) is also
observing the channel, and wants to reconstruct the message — Alice and Bob are penalized
based on Eve’s reconstruction, and thus Alice must encode her message using a randomly
generated key, known only to Alice and Bob. This is similar to the cryptography environment
considered in [Abadi and Andersen, 2016].
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(a) Agent reward (b) Success rate

Figure 5.4: Evaluation on cooperative communication after 25000 episodes.

Comparison to Decentralized Reinforcement Learning Methods

We implement our MADDPG algorithm and evaluate it on the environments presented in
Section 5.3. Unless otherwise specified, our policies are parameterized by a two-layer ReLU
MLP with 64 units per layer. To support discrete communication messages, we use the
Gumbel-Softmax estimator [Jang et al., 2017]. To evaluate the quality of policies learned
in competitive settings, we pitch MADDPG agents against DDPG agents, and compare the
resulting success of the agents and adversaries in the environment. We train our models until
convergence, and then evaluate them by averaging various metrics for 1000 further iterations.
We provide the tables and details of our results on all environments in the Section 5.4, and
summarize them here.

We first examine the cooperative communication scenario. Despite the simplicity of the
task (the speaker only needs to learn to output its observation), traditional RL methods
such as DQN, Actor-Critic, a first-order implementation of TRPO, and DDPG all fail to
learn the correct behaviour (measured by whether the listener is within a short distance from
the target landmark). In practice we observed that the listener learns to ignore the speaker
and simply moves to the middle of all observed landmarks. We plot the learning curves over
25000 episodes for various approaches in Figure 5.4a.

We hypothesize that a primary reason for the failure of traditional RL methods in this
(and other) multi-agent settings is the lack of a consistent gradient signal. For example,
if the speaker utters the correct symbol while the listener moves in the wrong direction,
the speaker is penalized. This problem is exacerbated as the number of time steps grows:
we observed that traditional policy gradient methods can learn when the objective of the
listener is simply to reconstruct the observation of the speaker in a single time step, or if the
initial positions of agents and landmarks are fixed and evenly distributed. This indicates that
many of the multi-agent methods previously proposed for scenarios with short time horizons
(e.g. [Lazaridou et al., 2017]) may not generalize to more complex tasks.

Conversely, MADDPG agents can learn coordinated behaviour more easily via the cen-
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Figure 5.5: Comparison between MADDPG (left) and DDPG (right) on the cooperative
communication (CC) and physical deception (PD) environments at t = 0, 5, and 25. Small
dark circles indicate landmarks. In CC, the grey agent is the speaker, and the color of the
listener indicates the target landmark. In PD, the blue agents are trying to deceive the
red adversary, while covering the target landmark (in green). MADDPG learns the correct
behavior in both cases: in CC the speaker learns to output the target landmark color to
direct the listener, while in PD the agents learn to cover both landmarks to confuse the
adversary. DDPG (and other RL algorithms) struggles in these settings: in CC the speaker
always repeats the same utterance and the listener moves to the middle of the landmarks,
and in PP one agent greedily pursues the green landmark (and is followed by the adversary)
while the othe agent scatters. See video for full trajectories.

tralized critic. In the cooperative communication environment, MADDPG is able to reliably
learn the correct listener and speaker policies, and the listener is often (84.0% of the time)
able to navigate to the target.

A similar situation arises for the physical deception task: when the cooperating agents
are trained with MADDPG, they are able to successfully deceive the adversary by covering
all of the landmarks around 94% of the time when L = 2 (Figure 5). Furthermore, the
adversary success is quite low, especially when the adversary is trained with DDPG (16.4%
when L = 2). This contrasts sharply with the behaviour learned by the cooperating DDPG
agents, who are unable to deceive MADDPG adversaries in any scenario, and do not even
deceive other DDPG agents when L = 4.

While the cooperative navigation and predator-prey tasks have a less stark divide between
success and failure, in both cases the MADDPG agents outperform the DDPG agents. In
cooperative navigation, MADDPG agents have a slightly smaller average distance to each
landmark, but have almost half the average number of collisions per episode (when N = 2)
compared to DDPG agents due to the ease of coordination. Similarly, MADDPG predators
are far more successful at chasing DDPG prey (16.1 collisions/episode) than the converse
(10.3 collisions/episode).

In the covert communication environment, we found that Bob trained with both MADDPG
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Figure 5.6: Effectiveness of learning by approximating policies of other agents in the coopera-
tive communication scenario. Left: plot of the reward over number of iterations; MADDPG
agents quickly learn to solve the task when approximating the policies of others. Right: KL
divergence between the approximate policies and the true policies.

and DDPG out-performs Eve in terms of reconstructing Alice’s message. However, Bob
trained with MADDPG achieves a larger relative success rate compared with DDPG (52.4%
to 25.1%). Further, only Alice trained with MADDPG can encode her message such that Eve
achieves near-random reconstruction accuracy. The learning curve (a sample plot is shown
in Section 5.4) shows that the oscillation due to the competitive nature of the environment
often cannot be overcome with common decentralized RL methods. We emphasize that we
do not use any of the tricks required for the cryptography environment from [Abadi and
Andersen, 2016], including modifying Eve’s loss function, alternating agent and adversary
training, and using a hybrid ‘mix & transform’ feed-forward and convolutional architecture.

Effect of Learning Polices of Other Agents

We evaluate the effectiveness of learning the policies of other agents in the cooperative
communication environment, following the same hyperparameters as the previous experiments
and setting λ = 0.001 in Eq. 5.7. The results are shown in Figure 5.6. We observe that
despite not fitting the policies of other agents perfectly (in particular, the approximate listener
policy learned by the speaker has a fairly large KL divergence to the true policy), learning
with approximated policies is able to achieve the same success rate as using the true policy,
without a significant slowdown in convergence.

Effect of Training with Policy Ensembles

We focus on the effectiveness of policy ensembles in competitive environments, including
keep-away, cooperative navigation, and predator-prey. We choose K = 3 sub-policies for
the keep-away and cooperative navigation environments, and K = 2 for predator-prey. To
improve convergence speed, we enforce that the cooperative agents should have the same
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policies at each episode, and similarly for the adversaries. To evaluate the approach, we
measure the performance of ensemble policies and single policies in the roles of both agent
and adversary. The results are shown on the right side of Figure 5.3. We observe that agents
with policy ensembles are stronger than those with a single policy. In particular, when pitting
ensemble agents against single policy adversaries (second to left bar cluster), the ensemble
agents outperform the adversaries by a large margin compared to when the roles are reversed
(third to left bar cluster).

5.4 Additional Details

Multi-Agent Deep Deterministic Policy Gradient Algorithm

For completeness, we provide the MADDPG algorithm below.

Algorithm 1: Multi-Agent Deep Deterministic Policy Gradient for N agents

for episode = 1 to M do
Initialize a random process N for action exploration
Receive initial state x
for t = 1 to max-episode-length do

for each agent i, select action ai = µµµθi(oi) +Nt w.r.t. the current policy and
exploration
Execute actions a = (a1, . . . , aN) and observe reward r and new state x′

Store (x, a, r,x′) in replay buffer D
x← x′

for agent i = 1 to N do
Sample a random minibatch of S samples (xj, aj, rj,x′j) from D
Set yj = rji + γ Qµµµ′

i (x′j, a′1, . . . , a
′
N)|a′k=µµµ′k(ojk)

Update critic by minimizing the loss L(θi) = 1
S

∑
j

(
yj −Qµµµ

i (xj, aj1, . . . , a
j
N)
)2

Update actor using the sampled policy gradient:

∇θiJ ≈
1

S

∑
j

∇θiµµµi(o
j
i )∇aiQ

µµµ
i (xj, aj1, . . . , ai, . . . , a

j
N)
∣∣
ai=µµµi(o

j
i )

end for
Update target network parameters for each agent i:

θ′i ← τθi + (1− τ)θ′i

end for
end for
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Additional Experimental Details

In all of our experiments, we use the Adam optimizer with a learning rate of 0.01 and τ = 0.01
for updating the target networks. γ is set to be 0.95. The size of the replay buffer is 106

and we update the network parameters after every 100 samples added to the replay buffer.
We use a batch size of 1024 episodes before making an update, except for TRPO where
we found a batch size of 50 lead to better performance (allowing it more updates relative
to MADDPG). We train with 10 random seeds for environments with stark success/ fail
conditions (cooperative communication, physical deception, and covert communication) and
3 random seeds for the other environments.

The details of the experimental results are shown in the following tables.

Agent πππ Target reach % Average distance

MADDPG 84.0% 0.133
DDPG 32.0% 0.456
DQN 24.8% 0.754
Actor-Critic 17.2% 2.071
TRPO 20.6% 1.573
REINFORCE 13.6% 3.333

Table 5.1: Percentage of episodes where the agent reached the target landmark and average
distance from the target in the cooperative communication environment, after 25000 episodes.
Note that the percentage of targets reached is different than the policy learning success rate
in Figure 5.4b, which indicates the percentage of runs in which the correct policy was learned
(consistently reaching the target landmark). Even when the correct behavior is learned, agents
occasionally hover slightly outside the target landmark on some episodes, and conversely
agents who learn to go to the middle of the landmarks occasionally stumble upon the correct
landmark.

N = 3 N = 6
Agent πππ Average dist. # collisions Average dist. # collisions

MADDPG 1.767 0.209 3.345 1.366
DDPG 1.858 0.375 3.350 1.585

Table 5.2: Average # of collisions per episode and average agent distance from a landmark
in the cooperative navigation task, using 2-layer 128 unit MLP policies.

Variance of Policy Gradient Algorithms in a Simple Multi-Agent
Setting

To analyze the variance of policy gradient methods in multi-agent settings, we consider a
simple cooperative scenario with N agents and binary actions: P (ai = 1) = θi. We define
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Agent πππ Adversary πππ # touches (pp1) # touches (pp2)

MADDPG MADDPG 11.0 0.202
MADDPG DDPG 16.1 0.405
DDPG MADDPG 10.3 0.298
DDPG DDPG 9.4 0.321

Table 5.3: Average number of prey touches by predator per episode on two predator-prey
environments with N = L = 3, one where the prey (adversaries) are slightly (30%) faster
(pp1), and one where they are significantly (100%) faster (pp2). All policies in this experiment
are 2-layer 128 unit MLPs.

N = 2 N = 4
Agent πππ Adversary πππ AG succ % ADV succ % ∆ succ % AG succ % ADV succ % ∆ succ %
MADDPG MADDPG 94.4% 39.2% 55.2% 81.5% 28.3% 53.2%
MADDPG DDPG 92.2% 16.4% 75.8% 69.6% 19.8% 49.4%
DDPG MADDPG 68.9% 59.0% 9.9% 35.7% 32.1% 3.6%
DDPG DDPG 74.7% 38.6% 36.1% 18.4% 35.8% -17.4%

Table 5.4: Results on the physical deception task, with N = 2 and 4 cooperative
agents/landmarks. Success (succ % ) for agents (AG) and adversaries (ADV) is if they
are within a small distance from the target landmark.

Alice, Bob πππ Eve πππ Bob succ % Eve succ % ∆ succ %

MADDPG MADDPG 96.5% 52.1% 44.4%
MADDPG DDPG 96.8% 44.4% 52.4%
DDPG MADDPG 65.3% 64.3% 1.0%
DDPG DDPG 92.7% 67.6% 25.1%

Table 5.5: Agent (Bob) and adversary (Eve) success rate (succ %, i.e. correctly reconstructing
the speaker’s message) in the covert communication environment. The input message is
drawn from a set of two 4-dimensional one-hot vectors.

S. AG. E. AG.

S. Adv. 7.94 7.74
E. Adv. 8.35 8.11

(a) KA: average frames that
the adversary reaches the goal.
Adv: the larger the better.

S. AG. E. AG.

S. Adv. 4.25 4.10
E. Adv. 5.55 4.44

(b) PD: average frames that
the adversary stays at the goal.
Adv.: the larger the better.

S. AG. E. AG.

S. Adv. 0.201 0.211
E. Adv. 0.125 0.17

(c) PP: average number of col-
lisions. For Adv., the smaller
the better.

Table 5.6: Evaluations of the adversary agent w./w.o. policy ensembles over 1000 trials on
different scenarios including (a) keep-away (KA) with N = M = 1, (b) physical deception
(PD) with N = 2 and (c) predator-prey (PP) with N = 4 and L = 1. S. denotes agents with
a single policy. E. denotes agents with policy ensembles.
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Figure 5.7: In competitive environments such as ‘covert communication’, the reward can
oscillate significantly as agents adapt to each other. DDPG is often unable to overcome this,
whereas our MADDPG algorithm has much greater success.

the reward to be 1 if all actions are the same a1 = a2 = . . . = aN , and 0 otherwise. This is
a simple scenario with no temporal component: agents must simply learn to either always
output 1 or always output 0 at each time step. Despite this, we can show that the probability
of taking a gradient step in the correct direction decreases exponentially with the number of
agents N .

Proposition 1. Consider N agents with binary actions: P (ai = 1) = θi, where
R(a1, . . . , aN) = 1a1=···=aN . We assume an uninformed scenario, in which agents are initial-
ized to θi = 0.5 ∀i. Then, if we are estimating the gradient of the cost J with policy gradient,
we have:

P (〈∇̂J,∇J〉 > 0) ∝ (0.5)N ,

where ∇̂J is the policy gradient estimator from a single sample, and ∇J is the true gradient.

Proof. We can write P (ai) = θi
ai(1− θi)1−ai , and logP (ai) = ai log θi + (1− ai) log(1− θi).
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The policy gradient estimator (from a single sample) is:

∂̂

∂θi
J = R(a1, . . . , aN)

∂

∂θi
logP (a1, . . . , aN)

= R(a1, . . . , aN)
∂

∂θi

∑
i

ai log θi + (1− ai) log(1− θi)

= R(a1, . . . , aN)
∂

∂θi
(ai log θi + (1− ai) log(1− θi))

= R(a1, . . . , aN)

(
ai
θi
− 1− ai

1− θi

)
(5.11)

For θi = 0.5 we have:
∂̂

∂θi
J = R(a1, . . . , aN) (2ai − 1)

And the expected reward can be calculated as:

E(R) =
∑

a1,...,aN

R(a1, . . . , aN)(0.5)N

Consider the case where R(a1, . . . , aN) = 1a1=···=aN=1. Then

E(R) = (0.5)N

and

E(
∂̂

∂θi
J) =

∂

∂θi
J = (0.5)N

The variance of a single sample of the gradient is then:

V(
∂̂

∂θi
J) = E(

∂̂

∂θi
J2)− E(

∂̂

∂θi
J)2 = (0.5)N − (0.5)2N

What is the probability of taking a step in the right direction? We can look at P (〈∇̂J,∇J〉 >
0). We have:

〈∇̂J,∇J〉 =
∑
i

∂̂

∂θi
J × (0.5)N = (0.5)N

∑
i

∂̂

∂θi
J,

so P (〈∇̂J,∇J〉 > 0) = (0.5)N . Thus, as the number of agents increases, the probability of
taking a gradient step in the right direction decreases exponentially.

While this is a somewhat artificial example, it serves to illustrate that there are simple
environments that become progressively more difficult (in terms of the probability of taking a
gradient step in a direction that increases reward) for policy gradient methods as the number
of agents grows. This is particularly true in environments with sparse rewards, such as the



CHAPTER 5. MULTI-AGENT ACTOR-CRITIC FOR MIXED
COOPERATIVE-COMPETITIVE GAMES 81

one described above. Note that in this example, the policy gradient variance V( ∂̂
∂θi
J) actually

decreases as N grows. However, the expectation of the policy gradient decreases as well,

and the signal to noise ratio E( ∂̂
∂θi
J)/(V( ∂̂

∂θi
J))1/2 decreases with N , corresponding to the

decreasing probability of a correct gradient direction. The intuitive reason a centralized
critic helps reduce the variance of the gradients is that we remove a source of uncertainty;
conditioned only on the agent’s own actions, there is significant variability associated with
the actions of other agents, which is largely removed when using these actions as input to
the critic.

5.5 Summary

We have proposed a multi-agent policy gradient algorithm where agents learn a centralized
critic based on the observations and actions of all agents. Empirically, our method outper-
forms traditional RL algorithms on a variety of cooperative and competitive multi-agent
environments. We can further improve the performance of our method by training agents with
an ensemble of policies, an approach we believe to be generally applicable to any multi-agent
algorithm.

One downside to our approach is that the input space of Q grows linearly (depending on
what information is contained in x) with the number of agents N . This could be remedied in
practice by, for example, having a modular Q function that only considers agents in a certain
neighborhood of a given agent. We leave this investigation to future work.
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Chapter 6

Robust Multi-Agent Reinforcement
Learning via Minimax Optimization

Agents trained by DRL tend to be brittle and sensitive to the training environment, especially
in the multi-agent scenarios. In the multi-agent setting, a DRL agent’s policy can easily get
stuck in a poor local optima w.r.t. its training partners – the learned policy may be only locally
optimal to other agents’ current policies. In this chapter, we focus on the problem of training
robust DRL agents with continuous actions in the multi-agent learning setting so that the
trained agents can still generalize when its opponents’ policies alter. To tackle this problem,
we proposed a new algorithm, MiniMax Multi-agent Deep Deterministic Policy Gradient
(M3DDPG) with the following contributions: (1) we introduce a minimax extension of the
popular multi-agent deep deterministic policy gradient algorithm (MADDPG), for robust
policy learning; (2) since the continuous action space leads to computational intractability in
our minimax learning objective, we propose Multi-Agent Adversarial Learning (MAAL) to
efficiently solve our proposed formulation. We empirically evaluate our M3DDPG algorithm
in four mixed cooperative and competitive multi-agent environments and the agents trained
by our method significantly outperforms existing baselines.

6.1 Motivation

Most real-world problems involve interactions between multiple agents and the complexity
of problem increases significantly when the agents co-evolve together. Thanks to the recent
advances of deep reinforcement learing (DRL) on single agent scenarios, which led to successes
in playing Atari game [Mnih et al., 2015], playing go [Silver et al., 2016] and robotics
control [Levine et al., 2016], it has been a rising trend to adapt single agent DRL algorithms
to multi-agent learning scenarios and many works have shown great successes on a variety of
problems, including automatic discovery of communication and language [Sukhbaatar et al.,
2016,Mordatch and Abbeel, 2018], multiplayer games [Peng et al., 2017,OpenAI et al., 2019b],
traffic control [Wu et al., 2017a] and the analysis of social dilemmas [Leibo et al., 2017].
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The critical challenge when adapting classical single agent DRL algorithms to multi-agent
setting is the training instability issue: as training progresses, each agent’s policy is changing
and therefore the environment becomes non-stationary from the perspective of any individual
agent (in a way that is not explainable by changes in the agent’s own policy). This non-
stationary problem can cause significant problems when directly applying the single agent
DRL algorithms, for example, the variance of the policy gradient can be exponentially large
when the number of agents increases [Lowe et al., 2017]. To handle this instability issue,
recent works, such as the counterfactual multi-agent policy gradients [Foerster et al., 2018b]
and the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) [Lowe et al., 2017],
proposed to utilized a centralized critic within the actor-critic learning framework to reduce
the variance of policy gradient.

Despite the fact that using a centralized critic stabilizes training, the learned policies can
still be brittle and sensitive to its training partners and converge to a poor local mode. This
is particularly severe for competitive environments: when the opponents alter their policies
during testing, the performance of the learned policies can be drastically worse [Lazaridou
et al., 2017]. Hence, a robust policy becomes desirable in multi-agent setting: a well-trained
agent should be able behave well in testing when competing against opponents even with
strategies different from its training partners.

In this work, we focus on robust multi-agent reinforcement learning with continuous
action spaces and propose a novel algorithm, MiniMax Multi-agent Deep Deterministic
Policy Gradient (M3DDPG). M3DDPG is a minimax extension1 of the classical MADDPG
algorithm [Lowe et al., 2017]. Its core idea is that during training, we force each agent to
behave well even when its training opponents response in the worst way.

Our major contributions are summarized as follow:

• We introduce the minimax approach to robust multi-agent DRL and propose a novel
minimax learning objective based on the MADDPG algorithm;

• In order to efficiently optimize the minimax learning objective, we propose an end-to-end
learning approach, Multi-agent Adversarial Learning (MAAL), which is inspired by the
adversarial training [Goodfellow et al., 2014b] technique2.

• We empirically evaluate our proposed M3DDPG algorithm on four mixed cooperative
and competitive environments and the agents trained by M3DDPG outperform baseline
policies on all these environments.

In the rest of the chapter, we will firstly present related works in section 2. Notations and
standard algorithms are described in section 3. Our main algorithm, M3DDPG, is introduced
in section 4. Experimental results are in section 5.

1In fact, we are dealing with gains, i.e., maximizing each agent’s accumulative reward, so the “minimax”
here is essentially “maximin”. We keep the term “minimax” to be consistent with literature.

2The connection between MAAL and adversarial training will be discussed in details at the end of section
4.
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Related Work

Multi-agent reinforcement learning [Littman, 1994] has been a long-standing field in AI [Hu
and Wellman, 1998a,Busoniu et al., 2008]. Recent works in DRL use deep neural networks
to approximately represent policy and value functions. Inspired by the success of DRL in
single-agent settings, many DRL-based multi-agent learning algorithms have been proposed.
Forester et al. [Foerster et al., 2016] and He et al. [He et al., 2016a] extended the deep
Q-learning to multi-agent setting; Peng et al. [Peng et al., 2017] proposed a centralized policy
learning algorithm based on actor-critic policy gradient; Forester et al. [Foerster et al., 2018b]
developed a decentralized multi-agent policy gradient algorithm with centralized baseline;
Lowe et al. [Lowe et al., 2017] extended DDPG to multi-agent setting with a centralized Q
function; Wei et al. [Wei et al., 2018] and Grau-Moya [Grau-Moya et al., 2018] proposed
multi-agent variants of the soft-Q-learning algorithm [Haarnoja et al., 2017]; Yang et al. [Yang
et al., 2018] focused on multi-agent reinforcement learning on a very large population of
agents. Our M3DDPG algorithm is built on top of MADDPG and inherits the decentralized
policy and centralized critic framework.

Minimax is a fundamental concept in game theory and can be applied to general decision-
making under uncertainty, prescribing a strategy that minimizes the possible loss for a worst
case scenario [Osborne, 2004]. Minimax was firstly introduced to multi-agent reinforcement
learning as minimax Q-learning by Littman [Littman, 1994]. More recently, some works
combine the minimax framework and the DRL techniques to find Nash equilibrium in two
player zero-sum games [Foerster et al., 2018a,Perolat et al., 2017,Grau-Moya et al., 2018]. In
our work, we utilize the minimax idea for the purpose of robust policy learning.

Robust reinforcement learning was originally introduced by Morimoto et al. [Morimoto
and Doya, 2005] considering the generalization ability of the learned policy in the single-agent
setting. This problem is also studied recently with deep neural networks, such as adding
random noise to input [Tobin et al., 2017] or dynamics [Peng et al., 2018b] during training.
Besides adding random noise, some other works implicitly adopt the minimax idea by utilizing
the “worst noise” [Pinto et al., 2017,Mandlekar et al., 2017]. These works force the learned
policy to work well even under the worst case perturbations and are typically under the
name of “adversarial reinforcement learning”, despite the fact that the original adversarial
reinforcement learning problem was introduced in the setting of multi-agent learning [Uther
and Veloso, 1997]. In our M3DDPG algorithm, we focus on the problem of learning polices
that is robust to opponents with different strategies.

Within the minimax framework, finding the worst case scenario is a critical component.
Lanctot et al. [Lanctot et al., 2017] proposed an iterative approach that alternatively computes
the best response policy while fixes the other. Gao et al. [Gao et al., 2018] replace “mean” in
the temporal difference learning rule with “minimum”. In our work, we proposed MAAL,
which is a general, efficient and fully end-to-end learning approach. MAAL is motivated by
adversarial training [Goodfellow et al., 2014b] and suitable for arbitrary number of agents.
The core idea of MAAL is approximating the minimization in our min-max objective by a
single gradient descent step. The idea of one-step-gradient approximation was also explored
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in meta-learning [Finn et al., 2017a].

6.2 Preliminary

In this section, we describe our problem setting and the standard algorithms. Most of the
definitions and notations follow the original MADDPG work [Lowe et al., 2017], as described
in Chapter 5.

Markov Games

We consider a multi-agent extension of Markov decision processes (MDPs) called partially
observable Markov games [Littman, 1994]. A Markov game for N agents is defined by a set
of states S describing the possible configurations of all agents, a set of actions A1, ...,AN
and a set of observations O1, ...,ON for each agent. To choose actions, each agent i uses a
stochastic policy πππθi : Oi ×Ai 7→ [0, 1] parameterized by θi, which produces the next state
according to the state transition function T : S ×A1 × ...×AN 7→ S. Each agent i obtains
rewards as a function of the state and agent’s action ri : S ×Ai 7→ R, and receives a private
observation correlated with the state oi : S 7→ Oi. The initial states are determined by a
distribution ρ : S 7→ [0, 1]. Each agent i aims to maximize its own total expected return
Ri =

∑T
t=0 γ

trti where γ is a discount factor and T is the time horizon.
To minimize notation, in the following discussion we will often omit θ from the subscript

of πππ.

Q-Learning and Deep Q-Networks (DQN)

Q-Learning and DQN [Mnih et al., 2015] are popular methods in reinforcement learning and
have been previously applied to multi-agent settings [Foerster et al., 2016,Tesauro, 2004]. Q-
Learning makes use of an action-value function for policy πππ as Qπππ(s, a) = E[R|st = s, at = a].
This Q function can be recursively rewritten as Qπππ(s, a) = Es′ [r(s, a) + γEa′∼πππ[Qπππ(s′, a′)]].
DQN learns the action-value function Q∗ corresponding to the optimal policy by minimizing
the loss:

L(θ) = Es,a,r,s′ [(Q∗(s, a|θ)− y)2], where y = r + γmax
a′

Q̄∗(s′, a′). (6.1)

Q̄ is a target Q function whose parameters are periodically updated with the most recent
θ, which helps stabilize learning. Another crucial component of stabilizing DQN is the use
of an experience replay buffer D containing tuples (s, a, r, s′). Q-learning algorithm is most
suitable for DRL agents with discrete action spaces.
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Policy Gradient (PG) Algorithms

Policy gradient methods is another popular choice for a variety of RL tasks. Let ρπ denote
discounted state visitation distribution for a policy π. The main idea of PG is to directly
adjust the parameters θ of the policy in order to maximize the objective J(θ) = Es∼ρπππ ,a∼πππθ [R]
by taking steps in the direction of ∇θJ(θ). Using the Q function defined previously, the
gradient of the policy can be written as [Sutton et al., 2000]:

∇θJ(θ) = Es∼ρπππ ,a∼πππθ [∇θ logπππθ(a|s)Qπππ(s, a)], (6.2)

where pπππ is the state distribution. The policy gradient theorem has given rise to several
practical algorithms, which often differ in how they estimate Qπππ. For example, one can simply
use a sample return Rt =

∑T
i=t γ

i−tri, which leads to the REINFORCE algorithm [Williams,
1992]. Alternatively, one could learn an approximation of the true action-value function
Qπππ(s, a) called the critic and leads to a variety of actor-critic algorithms [Sutton and Barto,
1998].

Deterministic Policy Gradient (DPG) Algorithms

DPG algorithms extends the policy gradient algorithm to deterministic policies µµµθ : S 7→ A
[Silver et al., 2014]. In particular, under certain conditions we can write the gradient of the
objective J(θ) = Es∼ρµµµ [R(s, a)] as:

∇θJ(θ) = Es∼D[∇θµµµθ(s)∇aQ
µµµ(s, a)|a=µµµθ(s)], (6.3)

where D is the replay buffer. Since this theorem relies on ∇aQ
µµµ(s, a), it requires the action

space A (and thus the policy µµµ) be continuous.
Deep deterministic policy gradient (DDPG) [Lillicrap et al., 2015] is a variant of DPG

where the policy µµµ and critic Qµµµ are approximated with deep neural networks. DDPG is an
off-policy algorithm, and samples trajectories from a replay buffer of experiences that are
stored throughout training. DDPG also makes use of a target network, as in DQN [Mnih
et al., 2015].

Multi-Agent Deep Deterministic Policy Gradient

Directly applying single-agent RL algorithms to the multi-agent setting by treating other
agents as part of the environment is problematic as the environment appears non-stationary
from the view of any one agent, violating Markov assumptions required for convergence.
Particularly, this non-stationary issue is more severe in the case of DRL with neural networks
as function approximators. The core idea of the MADDPG algorithm [Lowe et al., 2017] is
learning a centralized Q function for each agent which conditions on global information to
alleviate the non-stationary problem and stabilize training.
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More concretely, consider a game with N agents with policies parameterized by θθθ =
{θ1, ..., θN}, and let µµµ = {µµµ1, ...,µµµN} be the set of all agents’ policies. Then we can write the
gradient of the expected return for agent i with policy µµµi, J(θi) = E[Ri] as:

∇θiJ(θi) = Ex,a∼D[∇θiµµµi(oi)∇aiQ
µµµ
i (x, a1, ..., aN)|ai=µµµi(oi)], (6.4)

Here Qπππ
i (x, a1, ..., aN ) is a centralized action-value function that takes as input the actions of

all agents, a1, . . . , aN , in addition to some state information x (i.e., x = (o1, ..., oN)) , and
outputs the Q-value for agent i. Let x′ denote the next state from x after taking actions
a1, . . . , aN . The experience replay buffer D contains the tuples (x,x′, a1, . . . , aN , r1, . . . , rN),
recording experiences of all agents. The centralized action-value function Qµµµ

i is updated as:

L(θi) = Ex,a,r,x′ [(Q
µµµ
i (x, a1, . . . , aN)− y)2], (6.5)

y = ri + γ Qµµµ′

i (x′, a′1, . . . , a
′
N)
∣∣
a′j=µµµ

′
j(oj)

,

where µµµ′ = {µµµθ′1 , ...,µµµθ′N} is the set of target policies with delayed parameters θ′i.
Note that the centralized Q function is only used during training. During decentralized

execution, each policy µµµθi only takes local information oi to produce an action.

6.3 Methods

In this section, we introduce our proposed new algorithm, Minimax Multi-agent Deep Deter-
ministic Policy Gradient (M3DDPG), which is built on top of the MADDPG algorithm and
particularly designed to improve the robustness of learned policies. Our M3DDPG algorithm
contains two major novel components:

Minimax Optimization Motivated by the minimax concept in game theory, we introduce
minimax optimization into the learning objective;

Multi-Agent Adversarial Learning The continuous action space results in computational
intractability issue when optimizing our proposed minimax objective. Hence, we propose
Multi-Agent Adversarial Learning (MAAL) to solve this optimization problem.

Minimax Optimization

In multi-agent RL, the agents’ policies can be very sensitive to their learning partner’s
policy. Particularly in competitive environments, the learned policies can be brittle when the
opponents alter their strategies. For the purpose of learning robust policies, we propose to
update policies considering the worst situation: during training, we optimize the accumulative
reward for each agent i under the assumption that all other agents acts adversarially. This
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yields the minimax learning objective maxθi JM(θi) where

JM(θi) = Es∼ρµµµ [Ri]

= min
atj 6=i

Es∼ρµµµ
[

T∑
t=0

γt ri(s
t, at1, . . . , a

t
N)
∣∣
ati=µµµ(oti)

]
(6.6)

= Es0∼ρ

[
min
a0j 6=i

Qµµµ
M,i(s

0, a0
1, . . . , a

0
N)
∣∣
a0i=µµµ(o0i )

]
. (6.7)

Critically, in Eq. 6.6, state st+1 at time t+ 1 depends not only on the dynamics ρµµµ and the
action µµµi(o

t
i) but also on all the previous adversarial actions at

′

j 6=i with t′ ≤ t. In Eq. 6.7, we
derive the modified Q function Qµµµ

M(s, a1, . . . , aN), which is naturally centralized and can be
rewritten in a recursive form

Qµµµ
M,i (s, a1, . . . , aN) = ri(s, a1, . . . , aN) + γEs′

[
min
a′j 6=i

Qµµµ
M,i (s

′, a′1, . . . , a
′
N)
∣∣
a′i=µµµi(s

′)

]
. (6.8)

Importantly, Qµµµ
M(s, a1, . . . , aN) conditions on the current state s as well as the current

actions a1, . . . , aN and represents the current reward plus the discounted worst case future
return starting from the next state, s′. This definition brings the benefits that we can naturally
apply off-policy temporal difference learning later to derive the update rule for Qµµµ

M.
Note that for each agent i, none of the adversarial actions depend on its parameter θi, so

we can directly apply the deterministic policy gradient theorem to compute ∇θiJM(θi) and use
off-policy temporal difference to update the Q function. Thanks to the centralized Q function
in MADDPG (Eq. 6.4), which takes in the actions from all the agents, our derivation naturally
applies and is perfectly aligned with the MADDPG formulation (Eq. 6.4) by injecting a
minimization over other agents’ actions as follows:

∇θiJM(θi) = Ex∼D

 ∇θiµµµi(oi)∇aiQ
µµµ
M,i(x, a

?
1, . . . , ai, . . . a

?
N)
∣∣∣

ai = µµµi(oi)
a?j 6=i = arg minaj 6=i Q

µµµ
M,i(x, a1, . . . , aN)

 , (6.9)

where D denotes the replay buffer and x denotes the state information.
Correspondingly, we obtain the new Q function update rule by adding another minimization

to Eq. 6.5 when computing the target Q value:

L(θi) = Ex,a,r,x′∼D[(Qµµµ
M,i(x, a1, . . . , aN)− y)2], (6.10)

y = ri + γ Qµµµ′

M,i(x
′, a′?1, . . . , a

′
i, . . . , a

′?
N)

a′i = µµµ′i(oi),

a′?j 6=i = arg min
a′j 6=i

Qµµµ′

M,i(x
′, a′1, . . . , a

′
N),
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where µµµ′i denotes the target policy of agent i with delayed parameters θ′i, and Qµµµ′

M,i denotes the
target Q network for agent i. Combining Eq. 6.9 and Eq. 6.10 yields our proposed minimax
learning framework.

Algorithm 2: Minimax Multi-Agent Deep Deterministic Policy Gradient (M3DDPG)
for N agents

for episode = 1 to M do
Initialize a random process N for action exploration, and receive initial state
information x
for t = 1 to max-episode-length do

for each agent i, select action ai = µµµθi(oi) +Nt w.r.t. the current policy and
exploration
Execute actions a = (a1, . . . , aN) and observe reward r and new state information x′

Store (x, a, r,x′) in replay buffer D, and set x← x′

for agent i = 1 to N do
Sample a random minibatch of S samples (xk, ak, rk,x′k) from D
Set yk = rki + γ Qµµµ′

M,i(x
′k, a′1, . . . , a

′
N)|a′i=µµµ′i(oki ),a′j 6=i=µµµ

′
j(o

k
j )+ε̂′j

with ε̂′j defined in

Eq. 6.14

Update critic by minimizing the loss L(θi) = 1
S

∑
k

(
yk −Qµµµ

M,i(x
k, ak1, . . . , a

k
N)
)2

Update actor using the sampled policy gradient with ε̂j defined in Eq. 6.13:

∇θiJ ≈
1

S

∑
k

∇θiµµµi(o
k
i )∇aiQ

µµµ
M,i(x

k, a?1, . . . , ai, . . . , a
?
N)
∣∣
ai=µµµi(oki ),a?j 6=i=a

k
j+ε̂j

end for
Update target network parameters for each agent i: θ′i ← τθi + (1− τ)θ′i

end for
end for

Multi-Agent Adversarial Learning

The critical challenge in our proposed minimax learning framework is how to handle the
embedded minimization in Eq. 6.9 and Eq. 6.10. Due to the continuous action space as
well as the non-linearity of Q function, directly optimizing the minimization problem is
computationally intractable. A naive approximate solution can be performing an inner-loop
gradient descent whenever performing an update step of Eq. 6.9 or Eq. 6.10, but this is
too computationally expensive for practical use. Here we introduce an efficient and end-
to-end solution, multi-agent adversarial learning (MAAL). The main ideas of MAAL can
be summarized in two steps: (1) approximate the non-linear Q function by a locally linear
function; (2) replace the inner-loop minimization with a 1-step gradient descent. Note the
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core idea of MAAL, locally linearizing the Q function, is adapted from the recent adversarial
training technique originally developed for supervised learning. We will discuss the connection
between adversarial training and MAAL in the end of this section.

For conciseness, we first consider Eq. 6.10 and rewrite it into the following form with
auxiliary variables ε:

y = ri + γ Qµµµ′

M,i(x
′, a′?1, . . . , a

′
i, . . . , a

′?
N) (6.11)

a′k = µµµ′k(ok), ∀1 ≤ k ≤ N

a′?j = a′j + εj, ∀j 6= i

εj 6=i = arg min
εj 6=i

Qµµµ′

M,i(x
′, a′1 + ε1, . . . , a

′
i, . . . , a

′
N + εN).

Eq. 6.11 can be interpreted as we are now seeking for a set of perturbations ε such
that the perturbed actions a′? decrease Q value the most. By linearizing the Q function at
Qµµµ

M,i(x, a
′
1, . . . , a

′
N), the desired perturbation εj can be locally approximated by the gradient

direction at Qµµµ
M,i(x, a

′
1, . . . , a

′
N) w.r.t. a′j. Then we use this local to derive an approximation

ε̂j to the worst case perturbation by taking a small gradient step:

∀j 6= i, ε̂j = −α∇ajQ
µµµ′

M,i(x
′, a′1, . . . , aj, . . . , a

′
N), (6.12)

where α is a tunable coefficient representing the perturbation rate. It can be also interpreted
as the step size of the gradient descent step: when α is too small, the local approximation error
will be small but due to the small perturbation, the learned policy can be far from the optimal
solution of the minimax objective we proposed; when α is too large, the approximation error
may incur too much trouble for the overall learning process and the agents may fail to learn
good policies.

We can apply this technique to Eq. 6.9 as well and eventually derive the following
formulation:

∇θiJ(θi) = Ex,a∼D


∇θiµµµi(oi)∇aiQ

µµµ
M,i(x, a

?
1, . . . , ai, . . . a

?
N)
∣∣∣

ai = µµµi(oi)
a?j = aj + ε̂j, ∀j 6= i
ε̂j = −αj∇ajQ

µµµ
M,i(x, a1, . . . , aN)

 , (6.13)

and

L(θi) = Ex,a,r,x′ [(Q
µµµ
M,i(x, a1, . . . , aN)− y)2], (6.14)

y = ri + γ Qµµµ′

M,i(x
′, a′?1, . . . , a

′
i, . . . , a

′?
N)

a′k = µµµ′k(ok), ∀1 ≤ k ≤ N

a′?j = a′j + ε̂′j, ∀j 6= i

ε̂′j = −αj∇a′j
Qµµµ′

M,i(x, a
′
1, . . . , a

′
N),

where α1, . . . , αN are additional parameters. MAAL only requires one additional gradient
computation, and can be executed in a fully end-to-end fashion. Finally, combining Eq. 6.13
and Eq. 6.14 completes MAAL. The overall algorithm, M3DDPG, is summarized as Algo. 2.
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Discussion

Connection to Adversarial Training

Adversarial training is a robust training approach for deep neural networks on supervised
learning [Goodfellow et al., 2014a]. The core idea is to force the classifier to predict correctly
even when given adversarial examples, which are obtained by adding a small adversarial
perturbation to the original input data such that the classification loss can be decreased
the most. Formally, suppose the classification loss function is L(θ) = Ex,y [fθ(x; y)] with
input data x and label y. Adversarial training aims to optimize the following adversarial loss
instead

Ladv(θ) = Ex,y [fθ(x+ ε?; y)] (6.15)

ε? = arg max
‖ε‖≤α

fθ(x+ ε; y).

The core technique to efficiently optimize Ladv(θ) is to locally linearize the loss function at
fθ(x; y) and approximate ε? by the scaled gradient.

Thanks to the centralized Q function, which takes the actions from all the agents as part
of the input, we are able to easily inject the minimax optimization (Eq. 6.11) and represent it
in a similar way to adversarial training (Eq. 6.15) so that we can adopt the similar technique
to effectively solve our minimax optimization in a fully end-to-end fashion.

Connection to Single Agent Robust RL

M3DDPG with MAAL can be also viewed as the special case of robust reinforcement learning
(RRL) [Morimoto and Doya, 2005] in the single agent setting, which aims to bridge the
gap between training in simulation and testing in the real world by adding adversarial
perturbations to the transition dynamics during training. Here, we consider the multi-agent
setting and add worst case perturbations to actions of opponent agents during training. Note
that in the perspective of a single agent, perturbations on opponents’ actions can be also
considered as a special adversarial noise on the dynamics.

Choice of α

In the extreme case of α = 0, M3DDPG degenerates to the original MADDPG algorithm
while as α increases, the policy learning tends to be more robust but the optimization
becomes harder. In practice, using a fixed α throughout training can lead to very unstable
learning behavior due to the changing scale of the gradients. The original adversarial
training paper [Goodfellow et al., 2014b] suggests to compute ε with a fixed norm, namely
g = ∇xfθ(x; y), ε̂ = α g

‖g‖ , where x denotes the input data to the classifier and y denotes the
label. Accordingly, in our M3DDPG algorithm, we can adaptively compute the perturbation
ε̂j by

g = ∇ajQ
µµµ
M,i(x, a1, . . . , aN), ε̂j = −αj

g

‖g‖
. (6.16)
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Eq. 6.16 generally works fine in practice but in some hard multi-agent learning environ-
ments, unstable training behavior can be still observed. We suspect that it is because the
changing norm of actions in these situations. Different from the supervised learning setting
where the norm of the input data x is typically stable, in reinforcement learning the norm
of actions can drastically change even in a single episode. Therefore, it is possible to see
cases that even a perturbation with a small fixed norm overwhelms the action aj , which may
potentially lead to computational stability issue. Therefore, we also introduce the following
alternative for adaptive perturbation computation:

g = ∇ajQ
µµµ
M,i(x, a1, . . . , aN), ε̂j = −αj‖aj‖

g

‖g‖
. (6.17)

Lastly, note that in a mixed cooperative and competitive environment, ideally we only
need to add adversarial perturbations to competitors. But empirically we observe that also
adding (smaller) perturbations to collaborators can further improve the quality of learned
policies.

6.4 Experiments

We adopt the same particle-world environments as the MADDPG work [Lowe et al., 2017]
(Chapter 5) as well as the training configurations. α is selected from a grid search over 0.1,
0.01 and 0.001. For testing, we generate a fixed set of 2500 environment configurations (i.e.,
landmarks and birthplaces) and evaluate on this fixed set for a fair comparison.

The source code is publicly available at: https://github.com/dadadidodi/m3ddpg

speaker

listener“green”

agent 1

agent 3

landmark

landmark

landmark

  p 

v

c

agent 2

predator 1

prey

predator 2

predator 3

agent 1
agent 2

agent 3

agent 1 agent 2

adversary

?

speaker

listener“green”

agent 1

agent 3

landmark

landmark

landmark

  p 

v

c

agent 2

predator 1

prey

predator 2

predator 3

agent 1
agent 2

agent 3

agent 1 agent 2

adversary

?

Figure 6.1: Illustrations of some environments we consider, including Physical Deception
(left) and Predator-Prey (right).

Environments

The particle world environment consists of N cooperative agents, M adversarial agents and
L landmarks in a two-dimensional world with continuous space. We focus on the four mixed
cooperative and competitive scenarios to best examine the effectiveness of our minimax
formulation.

https://github.com/dadadidodi/m3ddpg
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Covert communication

This is an adversarial communication environment, where a speaker agent (‘Alice’) must
communicate a message to a listener agent (‘Bob’) (N = 2), who must reconstruct the
message at the other end. However, an adversarial agent (‘Eve’) (M = 1) is also observing
the channel, and wants to reconstruct the message — Alice and Bob are penalized based on
Eve’s reconstruction, and thus Alice must encode her message using a randomly generated
key, known only to Alice and Bob.

Keep-away

This scenario consists of L = 1 target landmark, N = 2 cooperative agents and M = 1
adversarial agent. Cooperating agents need to reach the landmark and keep the adversarial
agent away from the landmark by pushing it while the adversarial agent must stay at the
landmark to occupy it.

Physical deception

Here, N = 2 agents cooperate to reach a single target landmark from a total of L = 2
landmarks. They are rewarded based on the minimum distance of any agent to the target (so
only one agent needs to reach the target landmark). However, a lone adversary (M = 1) also
desires to reach the target landmark; the catch is that the adversary does not know which of
the landmarks is the correct one. Thus the cooperating agents, who are penalized based on
the adversary distance to the target, learn to spread out and cover all landmarks so as to
deceive the adversary.

Predator-prey

In this variant of the classic predator-prey game, N = 3 slower cooperating agents must chase
the faster adversary (M = 1) around a randomly generated environment with L = 2 large
landmarks impeding the way. Each time the cooperative agents collide with an adversary,
the agents are rewarded while the adversary is penalized.

Comparison to MADDPG

To evaluate the quality of learned policies trained by different algorithms in competitive
scenarios, we measure the performance of agents trained by our M3DDPG and agents by
classical MADDPG in the roles of both normal agent and adversary in each environment.

The results are demonstrated in Figure 6.2, where we measure the rewards of the normal
agents in different scenarios and normalize them to 0-1. We notice that in all the environments,
the highest score is achieved when the M3DDPG agents play as the normal agents against the
MADDPG adversary (Minimax vs MA); while the lowest score is when the MADDPG agents
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Figure 6.2: Comparison between M3DDPG (Minimax) and classical MADDPG (MA) on the
four mixed competitive environments. Each bar cluster shows the 0-1 normalized score for a
set of competing policies in different roles (agent vs adversary), where a higher score is better
for the agent. In all cases, M3DDPG outperforms MADDPG when directly pitted against it.

Figure 6.3: Performances of M3DDPG (Minimax, red) and MADDPG (MA, blue) under the
worst situation, i.e., against the disruptive adversaries, on convert communication, keep-away,
physical deception and predator-pray from left to right. The y-axis denotes the reward of
normal agents (fixed) and x-axis denotes the training episodes performed of the disruptive
adversaries. Higher reward implies a more robust policy. Agents trained by M3DDPG
(Minimax) perform better on all the scenarios.

act as normal agents against the M3DDPG adversary (MA vs Minimax). This indicates that
policies trained by M3DDPG have much higher quality than original MADDPG.

Evaluation with Disruptive Adversaries

Instead of M3DDPG and MADDPG directly competing against each other, now we consider
their performances in the worst possible situations through their individual competitions
against disruptive adversaries. We construct disruptive adversaries by (1) fixing the trained
normal agents (M3DDPG or MADDPG); (2) setting the reward of the disruptive adversary
as the negative value of normal agents’ reward (so that the problem becomes zero-sum); and
then (3) using DDPG to train the disruptive adversary from scratch under the zero-sum
reward setting.

In the particle world environment, the competitive scenarios are generally not zero-sum,
which implies that according to the default reward function, the adversaries may have different
purposes rather than directly disrupting the normal agents. So, in order to evaluate the
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effectiveness our minimax optimization in the worst situation, we convert every problems
into a zero-sum form and compare the performances of our M3DDPG agents as well as the
MADDPG agents against this artificially constructed adversaries. Moreover, since each of our
four environments has only 1 adversary, after fixing the normal agents, the learning problem
degenerates to the single agent setting and classical DDPG is sufficient to stably train a
disruptive adversary.

The results are shown in Figure 6.3, where we plot the reward of the fixed normal agents of
different algorithms as the training of the disruptive adversaries progresses until convergence.
Note that due to the different environment designs, the difficulty for the disruptive agents to
break the strategy of normal agents varies: for example, in convert communication, since the
private key is not accessible to the adversary agent, breaking the encrypted communication
will be very hard; while in physical deception, since we do not allow communication and fix the
normal agents, a smart enough adversary may easily infer the target landmark by observing
the initial behavior of the two cooperative agents. Nevertheless, despite these intrinsic
properties, the M3DDPG agents (Minimax) achieves higher reward in all the scenarios, which
implies better robustness even in the worst situation.

6.5 Summary

In this chapter, we propose a novel algorithm, minimax mulit-agent deep deterministic policy
gradient (M3DDPG), for robust multi-agent reinforcement learning, which leverages the
minimax concept and introduces a minimax learning objective. To efficiently optimize the
minimax objective, we propose MAAL, which approximates the inner-loop minimization by
a single gradient descent step. Empirically, M3DDPG outperforms the benchmark methods
on four mixed cooperative and competitive scenarios.

Nevertheless, due to the single step gradient approximation in MAAL, which is efficient in
computation, an M3DDPG agent can only explore locally worst situation during the evolving
process at training, which can still lead to unsatisfying behavior when testing opponents
have drastically different strategies. It will be an interesting direction to re-examine the
robustness-efficiency trade-off in MAAL and further improve policy learning by placing more
computations on the minimax optimization. We leave this as our future work.
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Part IV

Applications in Natural Language
Processing
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Chapter 7

Robust Neural Relation Extraction

Relation extraction is one of the core tasks in natural language processing, which aims to
extract ‘(entity, entity, relation)’ triplets from texts1. In this chapter, we introduce the
adversarial optimization technique from Chapter 6 to the relation extraction problem, which
we previously applied in multi-agent to improve the policy generalization capability. We
empirically show that by applying adversarial training to a neural relation extractor in
the supervised learning setting, the generalization capability, i.e., test performance, can be
significantly boosted.

7.1 Motivation

Despite the recent successes of deep neural networks on various applications, neural net-
work models tend to be overconfident about the noise in input signals. Adversarial ex-
amples [Szegedy et al., 2013] are examples generated by adding noise in the form of small
perturbations to the original data, which are often indistinguishable for humans but drastically
increase the loss incurred in a deep model. Adversarial training [Goodfellow et al., 2014b]
is a technique for regularizing deep models by encouraging the neural network to correctly
classify both unmodified examples and perturbed ones, which in practice not only enhances
the robustness of the neural network but also improves its generalizability. Previous work has
largely applied adversarial training on straightforward classification tasks, including image
classification [Goodfellow et al., 2014b] and text classification [Miyato et al., 2017], where the
goal is simply predicting a single label for every example and the training examples are able
to provide strong supervision. It remains unclear whether adversarial training could be still
effective for tasks with much weaker supervision, e.g., distant supervision [Mintz et al., 2009],
or a different evaluation metric other than prediction accuracy (e.g., F1 score).

This chapter focuses on the task of relation extraction, where the goal is to predict
the relation that exists between a particular entity pair given several text mentions. One
popular way to handle this problem is the multi-instance multi-label learning framework

1For further explanations, readers can refer to [Russell and Norvig, 2016].
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(MIML) [Hoffmann et al., 2011,Surdeanu et al., 2012] with distant supervision [Mintz et al.,
2009], where the mentions for an entity pair are aligned with the relations in Freebase [Bollacker
et al., 2008]. In this setting, relation extraction is much harder than the canonical classification
problem in two respects: (1) although distant supervision can provide a large amount of data,
the training labels are very noisy, and due to the multi-instance framework, the supervision
is much weaker; (2) the evaluation metric of relation extraction is often the precision-recall
curve or F1 score, which cannot be represented (and thereby optimized) directly in the loss
function.

In order to evaluate the effectiveness of adversarial training for relation extraction, we
apply it to two different architectures (a convoluational neural network and a recurrent neural
network) on two different datasets. Experimental results show that even on this harder task
with much weaker supervision, adversarial training can still improve the performance on all
of the cases we studied.

Related Work

Neural Relation Extraction: In recent years, neural network models have shown superior
performance over approaches using hand-crafted features in various tasks. Convolutional
neural networks (CNN) are among the first deep models that have been applied to relation
extraction [dos Santos et al., 2015,Nguyen and Grishman, 2015]. Variants of convolutional
networks include piecewise-CNN (PCNN) [Zeng et al., 2014], split CNN [Adel et al., 2016],
CNN with sentence-wise pooling [Jiang et al., 2016] and attention CNN [Wang et al., 2016].
Recurrent neural networks (RNN) are another popular choice, and have been used in recent
work in the form of recurrent CNNs [Cai et al., 2016] and attention RNNs [Zhou et al., 2016].
An instance-level selective attention mechanism was introduced for MIML by [Lin et al.,
2016], and has significantly improved the prediction accuracy for several of these base deep
models.

Adversarial Training: Adversarial training (AT) [Goodfellow et al., 2014b] was
originally introduced in the context of image classification tasks where the input data is
continuous. [Miyato et al., 2015, Miyato et al., 2017] adapts AT to text classification by
adding perturbations on word embeddings and also extends AT to a semi-supervised setting
by minimizing the entropy of the predicted label distributions on unlabeled data.

AT introduces an end-to-end and deterministic way of data perturbation by utilizing the
gradient information. There are also other works for regularizing classifiers by adding random
noise to the data, such as dropout [Srivastava et al., 2014] and its variant for NLP tasks,
word dropout [Iyyer et al., 2015]. [Xie et al., 2017] discusses various data noising techniques
for language models. [Søgaard, 2013] and [Li et al., 2017b] focus on linguistic adversaries.
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Figure 7.1: The computation graph of encoding a sentence xi with adversarial training.
ei denotes the adversarial perturbation w.r.t. xi. Dropout is placed on the output of the
variables in the double-lined rectangles.

7.2 Methodology

We first introduce MIML and then describe the base neural network models we consider:2

piecewise CNN [Zeng et al., 2015] (PCNN) and bidirectional GRU [Cho et al., 2014] (RNN).
We also utilize the selective attention mechanism in [Lin et al., 2016] for both PCNN and
RNN models. Adversarial training is presented at the end of this section.

Preliminaries

In MIML, we consider the set of text sentences X = {x1, x2, . . . , xn} for each entity pair.
Supposing we have R predefined relations (including NA) to extract, we want to predict the
probability of each of the R relations given the mentions. Formally, for each relation r, we
want to predict P (r | x1, . . . , xn).

Note that since an entity pair may have no relations, we introduce a special relation NA
to the label set. Hence, we simply assume there will be at least one relation existing for every
entity pair. During evaluation, we ignore the probability predicted for the NA relation.

Neural Architectures

Input Representation: For each sentence xi, we use pretrained word embeddings to
project each word token into dw-dimensional space. Note that we also need to include the
entity position information in xi. Here we introduce an extra feature vector p

(w)
i for each word

w to encode the entities’ positions. One choice is the position embedding [Zeng et al., 2014]:
for each word w, we compute the relative distances to the two entities and embed the distances
in two dp-dimensional vectors, which are then concatenated as p

(w)
i . Position embedding

introduces extra variables in the model and slows down the training time. We also investigate
a simpler choice, indicator encoding : when a word w is exactly an entity, we generate a

2We primarily focus on effectiveness of AT. Other techniques in Sec. 7.1 are complementary to our focus.
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dp-dimensional ~1 vector and a ~0 vector otherwise. In our experiments, position embedding is
crucial for PCNN due to the spatial invariance of CNN. For RNN, position embedding helps
little (likely because an RNN has the capacity of exploiting temporal dependencies) so we
adopt indicator encoding instead.

Sentence Encoder: For a sentence xi, we want to apply a non-linear transformation to
the vector representation of xi to derive a feature vector si = f(xi; θ) given a set of parameters
θ. We consider both PCNN and RNN as f(xi; θ).

For PCNN, inheriting the settings from [Zeng et al., 2014], we adopt a convolution kernel
with window size 3 and ds output channels and then apply piecewise pooling and ReLU [Nair
and Hinton, 2010] as an activation function to eventually obtain a 3 · ds-dimensional feature
vector si.

For RNN, we adopt bidirectional GRU with ds hidden units and concatenate the hidden
states of the last timesteps from both the forward and the backward RNN as a 2·ds-dimensional
feature vector si.

Selective Attention: Following [Lin et al., 2016], for each relation r, we aim to
softly select an attended sentence sr by taking a weighted average of s1, s2, . . . , sn, namely
sr =

∑
i α

r
i si. Here αr denotes the attention weights w.r.t. relation r. For computing the

weights, we define a query vector qr for each relation r and compute αr = softmax(ur) where
uri = tanh(si)

>qr. The query vector qr can be considered as the embedding vector for the
relation r, which is jointly learned with other model parameters.

Loss Function: For an entity pair, we compute the probability of relation r by
P (r | X; θ) = softmax(Asr + b), where A is the projection matrix and b is the bias. For the
multi-label setting, suppose K relations r1, . . . , rK exist for X. Simply taking the summation
over the log probabilities of all those labels yields the final loss function

L(X; θ) = −
K∑
i=1

logP (ri | X; θ). (7.1)

Dropout: For regularizing the parameters, we apply dropout [Srivastava et al., 2014] to
both the word embedding and the sentence feature vector si. Note that we do not perform
dropout on the position embedding pi.

Adversarial Training

Adversarial training (AT) is a way of regularizing the classifier to improve robustness to small
worst-case perturbations by computing the gradient direction of a loss function w.r.t. the
data. AT generates continuous perturbations, so we add the adversarial noise at the level of
the word embeddings, similar to [Miyato et al., 2017]. Formally, consider the input data X
and suppose the word embedding of all the words in X is V . AT adds a small adversarial
perturbation eadv to V and optimizes the following objective instead of Eq.(7.1).

Ladv(X; θ) = L(X + eadv; θ), where (7.2)

eadv = arg max
‖e‖≤ε

L(X + e; θ̂) (7.3)
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Dataset #Rel #Ent-Pair #Mention Sent-Len

NYT-Train 58 290429 577434 145

UW-Train 5 132419 546731 120

Table 7.1: Dataset statistics (#Rel includes NA).

Here θ̂ denotes a fixed copy of the current value of θ. Since Eq.(7.3) is computationally
intractable for neural nets, [Goodfellow et al., 2014b] proposes to approximate Eq.(7.3) by
linearizing L(X; θ̂) near X:

eadv = εg/‖g‖, where g = ∇VL(X; θ̂). (7.4)

Here V denotes the word embedding of all the words in X. Accordingly, in Eq. 7.4, ‖g‖
denotes the norm of gradients over all the words from all the sentences in X. In addition,
we do not perturb the feature vector p for entity positions. A visualization of the process is
demonstrated in Fig. 7.1.

7.3 Experiments

To measure the effectiveness of adversarial training on relation extraction, we evaluate
both the CNN (PCNN) and RNN (bi-GRU) models on two different datasets, the NYT
dataset (NYT) developed by [Riedel et al., 2010] and the UW dataset (UW) by [Liu
et al., 2016]. All code is implemented in Tensorflow [Abadi et al., 2016] and available
at https://github.com/jxwuyi/AtNRE. We adopt Adam optimizer [Kingma and Ba, 2014] with
learning rate 0.001, batch size 50 and dropout rate 0.5. For adversarial training, the only
parameter is ε. In each of the following experiments, we fixed all the hyper-parameters of the
base model, performed a binary search solely on ε and showed the most effective value of ε.

Datasets

The statistics of the two datasets are summarized in Table 7.1. We exclude sentences
longer than Sent-Len during training and randomly split data for entity pairs with more
than 500 mentions. Note that the number of target relations in these two datasets are
significantly different, which helps demonstrate the applicability of adversarial training on
various evaluation settings.

Since the test set of the UW dataset only contains 200 sentences, we adopt a subset of
the test set from the NYT dataset: all the entity pairs with the corresponding 4 relations in
UW and another 1500 randomly selected NA pairs.

https://github.com/jxwuyi/AtNRE


CHAPTER 7. ROBUST NEURAL RELATION EXTRACTION 102

Recall 0.1 0.2 0.3 0.4 AUC

PCNN 0.667 0.572 0.476 0.392 0.329

PCNN-Adv 0.717 0.589 0.511 0.407 0.356

RNN 0.668 0.586 0.524 0.442 0.351

RNN-Adv 0.728 0.646 0.553 0.481 0.382

Table 7.2: Precisions of various models for different recalls on the NYT dataset, with best
values in bold.

Figure 7.2: PR curves for PCNN (left) and RNN (right) on the NYT dataset with (blue) and
without (green) adversarial training.

Practical Performances

The NYT dataset:

We utilize the word embeddings released by [Lin et al., 2016], which has dw = 50 dimensions.
For model parameters, we set de = 5 (dimension of the entity position feature vector) and
ds = 230 (dimension of sentence feature vector) for PCNN and de = 3 and ds = 150 for RNN.
For adversarial training, we choose ε = 0.01 for PCNN and ε = 0.02 for RNN. We empirically
observed that when adding dropout to the word embeddings, PCNN performs significantly
worse. Hence we only apply dropout to si for PCNN. However, even with a dropout rate of
0.5, RNN still performs well. We conjecture that it is due to PCNN being more sensitive to
input signals and the dimensionality of the word embedding (dw = 50) being very small.

The precision-recall curves for different models on the test set are shown in Fig. 7.2.
Since the precision drops significantly with large recalls on the NYT dataset, we emphasize
a part of the curve with recall number smaller than 0.5 in the figure. Adversarial training
significantly improves the precision for both PCNN and RNN models. We also show the
precision numbers for some particular recalls as well as the AUC (for the whole PR curve) in
Table 7.2, where RNN generally leads to better precision.

The UW dataset:

We train a word embedding of dw = 200 dimensions using Glove [Pennington et al., 2014] on
the New York Times Corpus in this experiment. For model parameters, we set the entity
feature dimension de = 5 and sentence feature dimension ds = 250 for PCNN and de = 3 and
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Recall 0.1 0.2 0.3 0.4 AUC

PCNN 0.765 0.717 0.713 0.677 0.576

PCNN-Adv 0.844 0.750 0.738 0.707 0.619

RNN 0.823 0.822 0.791 0.752 0.631

RNN-Adv 0.929 0.878 0.850 0.779 0.671

Table 7.3: Precisions of various models for different recalls on the UW dataset, with best
values in bold.

Figure 7.3: PR curves for PCNN (left) and RNN (right) on the UW dataset with (blue) and
without (green) adversarial training.

ds = 200 for RNN. For adversarial training, we choose ε = 0.05 for PCNN and ε = 0.5 for
RNN. Since here word embedding dimension dw is larger than that used for the NYT dataset,
which implies that we now have word embeddings with larger norms, accordingly the optimal
value of ε increases. The precision-recall curves on the test data are shown in Fig. 7.3, where
adversarial training again significantly improves the precision for both models. The precision
numbers for some particular recall values as well as the AUC numbers are demonstrated in
Table 7.3. Similarly RNN yields superior performances on the UW dataset.

Discussion

CNN vs RNN: In the experiments, RNN generally produces more precise predictions than
CNN due to its rich model capacity and also has high robustness to input embeddings. The
CNN, in contrast, has far fewer parameters which leads to much faster training and testing,
which suggests a practical trade-off.

Notably, although the improvement under AUC by adversarial training are roughly the
same for both RNN and CNN, the optimal ε value for RNN is always much larger than CNN.
This implies that empirically RNN is more robust under adversarial attacks than CNN, which
also helps RNN maintain higher precision as recall increases.
Choice of ε: When ε = 0, the AT loss (Eq.(7.2)) degenerates to the original loss (Eq.(7.1));
when ε becomes too large, the noise can change the semantics of a sentence3 and make the

3When ε is large enough, e.g., comparable to the norm of input embeddings, and if we add the perturbation
to word w and consider its nearest unperturbed word embedding in the embedding space, the nearest word
will be different from the original word w. This implicitly changes the content of a sentence.
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model extremely hard to correctly classify the adversarial examples.
Notably, the optimal value of ε is much smaller than the norm of the word embedding, which

implies adversarial training works most effectively when only producing tiny perturbations
on word features while keeping the semantics of sentences unchanged4.
Connection to other approaches: [Li et al., 2017b,Xie et al., 2017] proposes linguistic
adversaries techniques to enhance the robustness of the model by randomly changing the
word tokens in a sentence. This explicitly modifies the semantics of a sentence. By contrast,
adversarial training focuses on smaller and continuous perturbations in the embedding space
while preserving the semantics of sentences. Hence, adversarial training is complementary to
linguistic adversaries.

7.4 Summary

In this chapter, we apply the adversarial training technique, which is a regularization technique
for training robust agents, to neural relation extraction. We experiment on a variety of
architecture and datasets and demonstrate that our proposed framework generally improves
the test accuracy of the trained neural extractor. This indicates a convincing direction to
potentially improve test performances on an even wider range of NLP tasks almost for free
by simply leveraging the techniques for training robust agents.

4The nearest neighbor of word w remains unchanged after w being perturbed with the optimal ε.
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Chapter 8

Meta-Learning MCMC Proposals for
Named Entity Recognition

In natural language processing (NLP), there is an important family of methods which first
learns a probabilistic model for test sequences from training data and then performs sampling-
based probabilistic inference on test texts to accomplish a desired NLP task. For high quality
probabilistic inference, manually constructed, model-specific proposals are often required.
Inspired by recent progresses in meta-learning for training learning agents that can generalize
to unseen environments, we propose a meta-learning approach to building effective and
generalizable MCMC proposals. We parametrize the proposal as a neural network to provide
fast approximations to block Gibbs conditionals. The learned neural proposals generalize to
occurrences of common structural motifs across different models, allowing for the construction
of a library of learned inference primitives that can accelerate inference on unseen models
with no model-specific training required. We first evaluate our approach on several small
scale models, in which our learned proposals outperform a hand-tuned sampler. Finally, we
apply our method on a real-world NLP task, named entity recognition, in which our sampler
yields higher final F1 scores than classical single-site Gibbs sampling.

8.1 Motivation

Model-based probabilistic inference is a highly successful paradigm for machine learning, with
applications to tasks as diverse as movie recommendation [Stern et al., 2009], visual scene
perception [Kulkarni et al., 2015], music transcription [Berg-Kirkpatrick et al., 2014], etc.
. People learn and plan using mental models, and indeed the entire enterprise of modern
science can be viewed as constructing a sophisticated hierarchy of models of physical, mental,
and social phenomena. Probabilistic programming provides a formal representation of models
as sample-generating programs, promising the ability to explore a even richer range of models.
Probabilistic programming language based approaches have been successfully applied to
complex real-world tasks such as seismic monitoring [Moore and Russell, 2017], concept
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learning [Lake et al., 2015] and design generation [Ritchie et al., 2015].
However, most of these applications require manually designed proposal distributions for

efficient MCMC inference. Commonly used “black-box” MCMC algorithms are often far from
satisfactory when handling complex models. Hamiltonian Monte Carlo [Neal, 2011] takes
global steps but is only applicable to continuous latent variables with differentiable likelihoods.
Single-site Gibbs sampling [Spiegelhalter et al., 1996,Andrieu et al., 2003] can be applied
to many model but suffers from slow mixing when variables are coupled in the posterior.
Effective real-world inference often requires block proposals that update multiple variables
together to overcome near-deterministic and long-range dependence structures. However,
computing exact Gibbs proposals for large blocks quickly becomes intractable (approaching
the difficulty of posterior inference), and in practice it is common to invest significant effort
in hand-engineering computational tricks for a particular model.

Can we build tractable MCMC proposals that are (1) effective for fast mixing and (2)
ready to be reused across different models?

Recent advances in meta-learning demonstrate promising results in learning to build
reinforcement learning agents that can generalize to unseen environments [Duan et al.,
2016b,Tobin et al., 2017,Finn et al., 2017a,Wu et al., 2018]. The core idea of meta-learning
is to generate a large number of related training environments under the same objective and
then train a learning agent to succeed in all of them. Inspired by those meta-learning works,
we can adopt a similar approach to build generalizable MCMC proposals.

We propose to learn approximate block-Gibbs proposals that can be reused within a
given model, and even across models containing similar structural motifs (i.e. , common
structural patterns). Recent work recognized that a wide range of models can be represented
as compositions of simple components [Grosse et al., 2012], and that domain-specific models
may still reuse general structural motifs such as chains, grids, rings, or trees [Kemp and
Tenenbaum, 2008]. We exploit this by training a meta-proposal to approximate block-Gibbs
conditionals for models containing a given motif, with the model parameters provided as
an additional input. At a high level, approach first (1) generates different instantiations of
a particular motif by randomizing its model parameters, and then (2) meta-train a neural
proposal “close to” the true Gibbs conditionals for all the instantiations (see Fig. 8.1). By
learning such flexible samplers, we can improve inference not only within a specific model but
even on unseen models containing similar structures, with no additional training required. In
contrast to techniques that compile inference procedures specific to a given model [Stuhlmüller
et al., 2013, Le et al., 2017, Song et al., 2017a], learning inference artifacts that generalize
to novel models is valuable in allowing model builders to quickly explore a wide range of
possible models.

We explore the application of our approach to a wide range of models. On grid-structured
models from a UAI inference competition, our learned proposal significantly outperforms
Gibbs sampling. For open-universe Gaussian mixture models, we show that a simple learned
block proposal yields performance comparable to a model-specific hand-tuned sampler, and
generalizes to models more than those it was trained on. We additionally apply our method to
a named entity recognition (NER) task, showing that not only do our learned block proposals
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on both models due to these dependencies.
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(b) To design a single proposal that
works on both models in Fig. 8.1a,
we consider this general model with
variable parameters α and β (shown
in blue).

(c) Our neural proposal takes model parameters α and β as
input, and is trained to output good proposal distributions
on randomly generated parameters. Therefore, it performs
well for any given α and β. (For simplicity, inputs in diagram
omit possible other nodes that the proposed nodes may
depend on.)

(d) The neural proposal can be ap-
plied anywhere this structural pat-
tern is present (or instantiated).
The grey regions show example in-
stantiations in this large model.
(There are more.)

Figure 8.1: Toy example: Naive MCMC algorithms (e.g. , single-site Gibbs) fail when
variables are tightly coupled, requiring custom proposals even for models with similar structure
but different dependency relations (Fig. 8.1a). Our goal is to design a single proposal that
works on any model with similar local structure. We consider the general model where the
dependency relations among nodes are represented by variable model parameters (Fig. 8.1b),
and then train proposals parametrized by neural networks on models with randomly generated
parameters (Fig. 8.1c). The trained proposal thus work on anywhere the structure is found
(Fig. 8.1d). With proposals trained for many common motifs , we can automatically speed up
inference on unseen models.

mix effectively, the ability to escape local modes yields higher-quality solutions than the
standard Gibbs sampling approach.
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Related Work

There has been great interest in using learned, feedforward inference networks to generate
approximate posteriors. Variational autoencoders (VAE) train an inference network jointly
with the parameters of the forward model to maximize a variational lower bound [Kingma
and Welling, 2013, Burda et al., 2015, Gu et al., 2015]. However, the use of a parametric
variational distribution means they typically have limited capacity to represent complex,
potentially multimodal posteriors, such as those incorporating discrete variables or structural
uncertainty.

A related line of work has developed data-driven proposals for importance samplers [Paige
and Wood, 2016,Le et al., 2017,Ritchie et al., 2016], training an inference network from prior
samples which is then used as a proposal given observed evidence. In particular, [Le et al.,
2017] generalize the framework to probabilistic programming, and is able to automatically
generate and train a neural proposal network given an arbitrary model described in a
probabilistic program. Our approach differs in that we focus on MCMC inference, allowing
modular proposals for subsets of model variables that may depend on latent quantities, and
exploit recurring structural motifs to generalize to new models with no additional training.

Several approaches have been proposed for adaptive block sampling, in which sets of
variables exhibiting strong correlations are identified dynamically during inference, so that
costly joint sampling is used only for blocks where it is likely to be beneficial [Venugopal and
Gogate, 2013, Turek et al., 2016]. This is largely complementary to our current approach,
which assumes the set of blocks (structural motifs) is given and attempts to learn fast
approximate proposals.

Perhaps most related to our approach is recent work that trains model-specific MCMC
proposals with machine learning techniques. In [Song et al., 2017a], adversarial training
directly optimizes the similarity between posterior values and proposed values from a sym-
metric MCMC proposal. Stochastic inverses of graphical models [Stuhlmüller et al., 2013]
train density estimators to speed up inference. However, both approaches have limitations
on applicable models and require model-specific training using global information (samples
containing all variables). Our approach is simpler and more scalable, requiring only local
information and generating local proposals that can be reused both within and across different
models.

At a high level, our approach of learning an approximate local update scheme can be
seen as related to approximate message passing [Ross et al., 2011b,Heess et al., 2013] and
learning to optimize continuous objectives [Andrychowicz et al., 2016,Li and Malik, 2017].

8.2 Meta-Learning MCMC Proposals

We propose a meta-learning approach, using a neural network to approximate the Gibbs
proposal for a recurring structural motif in graphical models, and to speed up inference
on unseen models without extra tuning. Crucially our proposals do not fix the model
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parameters, which are instead provided as network input. After training with random model
parametrizations, the same trained proposal can be reused to perform inference on novel
models with parametrizations not previously observed.

Our inference networks are parametrized as mixture density networks [Bishop, 1994],
and trained to minimize the Kullback-Leibler (KL) divergence between the true posterior
conditional and the proposal by sampling instantiations of the motif. The proposals are then
accepted or rejected following the Metropolis-Hastings (MH) rule [Andrieu et al., 2003], so
we maintain the correct stationary distribution even though the proposals are approximate.
The following sections describe our work in greater depth.

Background

Although our approach applies to arbitrary probabilistic programs, for simplicity we focus on
models represented as factor graphs. A model consists of a set of variables V as the nodes of a
graph G = (V,E), along with a set of factors specifying a joint probability distribution pΨ(V )
described by parameters Ψ. In particular, this chapter focuses primarily on directed models,
in which the factors Ψ specify the conditional probability distributions of each variable given
its parents. In undirected models, such as the Conditional Random Fields (CRFs) in Sec. 8.3,
the factors are arbitrary functions associated with cliques in the graph [Koller and Friedman,
2009].

Given a set of observed evidence variables, inference attempts to sample from the condi-
tional distribution on the remaining variables. In order to construct good MCMC proposals
that generalize well across a variety of inference tasks, we take the advantage of recurring
structural motifs in graphical models, such as grids, rings, and chains [Kemp and Tenenbaum,
2008].

In this work, our goal is to train a neural network as an efficient expert proposal for a
structural motif, with its inputs containing the local parameters, so that the trained proposal
can be applied to different models. Within a motif, the variables are divided into a proposed
set of variables that will be resampled, and a conditioning set corresponding to an approximate
Markov blanket. The proposal network essentially maps the values of conditional variables
and local parameters to a distribution over the proposed variables.

MCMC Proposals on Structural Motifs in Graphical Models

We associate each learned proposal with a structural motif that determines the shape of the
network inputs and outputs. In general, structural motifs can be arbitrary subgraphs, but we
are more interested in motifs that represent interesting conditional structure between two
sets of variables, the block proposed variables B and the conditioning variables C. A given
motif can have multiple instantiations with a model, or even across models. As a concrete
example, Fig. 8.2 shows two instantiations of a structural motif of six consecutive variables
in a chain model. In each instantiation, we want to approximate the conditional distribution
of two middle variables given neighboring four.
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(a) One instantiation. (b) Another instantiation.

Figure 8.2: Two instantiations of a structural motif in a directed chain of length seven. The
motif consists of two consecutive variables and their Markov blanket of four neighboring
variables. Each instantiation is separated into block proposed variables Bi (white) and
conditioning variables Ci (shaded).

Definition 1. A structural motif (B,C) (or motif in short) is an (abstract) graph with nodes
partitioned into two sets, B and C, and a parametrized joint distribution p(B,C) whose
factorization is consistent with the graph structure. This specifies the functional form of the
conditional p(B|C), but not the specific parameters.

A motif usually have many instantiations across many different graphical models.

Definition 2. For a graphical model (G = (V,E),Ψ), an instantiation (Bi, Ci,Ψi) of a motif
(B,C) includes

1. a subset of the model variables (Bi, Ci) ⊆ V such that the induced subgraph on (Bi, Ci)
is isomorphic to the motif (B,C) with the partition preserved by the isomorphism (so
nodes in B are mapped to Bi, and C to Ci), and

2. a subset of model parameters Ψi ⊆ Ψ required to specify the conditional distribution
pΨi(B|C).

We would typically define a structural motif by first picking out a block of variables B to
jointly sample, and then selecting a conditioning set C. Intuitively, the natural choice for a
conditioning set is the Markov blanket, C = MB(B). However, this is not a fixed requirement,
and C could be either a subset or superset of it (or neither). We might deliberately choose
to use some alternate conditioning set C, e.g. , a subset of the Markov blanket to gain a
more computationally efficient proposal (with a smaller proposal network), or a superset with
the idea of learning longer-range structure. More fundamentally, however, Markov blankets
depend on the larger graph structure might not be consistent across instantiations of a given
motif (e.g. , if one instantiation has additional edges connecting Bi to other model variables
not in Ci). Allowing C to represent a generic conditioning set leaves us with greater flexibility
in instantiating motifs.

Formally, our goal is to learn a Gibbs-like block proposal q(Bi|Ci; Ψi) for all possible
instantiations (Bi, Ci,Ψi) of a structural motif that is close to the true conditional in the
sense that

∀(Bi, Ci,Ψi), ∀ci ∈ supp(Ci), q(Bi; ci,Ψi) ≈ pΨi(Bi|Ci = ci). (8.1)

This provides another view of this approximation problem. If we choose the motif to have
complex structures in each instantiation, the conditionals pΨi(Bi|Ci = ci) can often be quite
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different for different instantiations, and thus difficult to approximate. Therefore, choosing
what is a structural motif represents a trade-off between generality of the proposal and
easiness to approximate. While our approach works for any structural motif complying with
the above definition, we suggest using common structures as motifs, such as chain of certain
length as in Fig. 8.2. In principle, recurring motifs could be automatically detected, but in
this work, we focus on hand-identified common structures.

Parametrizing Neural Block Proposals

We choose mixture density networks (MDN) [Bishop, 1994] as our proposal network parametriza-
tion. An MDN is a form of neural network whose outputs parametrize a mixture distribution,
where in each mixture component the variables are uncorrelated.

In our case, a neural block proposal is a function qθ parametrized by a MDN with weights
θ. The function qθ represents proposals for a structural motif (B,C) by taking in current
values of Ci and local parameters Ψi, and outputting a distribution over Bi. The goal is to
optimize θ so that qθ is close to the true conditional.

In the network output, mixture weights are represented explicitly. Within each mixture
component, distributions of bounded discrete variables are directly represented as independent
categorical probabilities, and distributions of continuous variables are represented as isotropic
Gaussians with mean and variance. To avoid degenerate proposals, we threshold the variance
of each Gaussian component to be at least 10−5.

Training Neural Block Proposals

Loss function for a specific instantiation: Given a particular motif instantiation, we
use the KL divergence D(pΨi(Bi|Ci) ‖ qθ(Bi;Ci,Ψi)) as the measure of closeness between
our proposal and the true conditional in Eq. 8.1. Taking into account all possible values
ci ∈ supp(Ci), we consider the expected divergence over Ci’s prior:

ECi [D(pΨi(Bi|Ci) ‖ qθ(Bi;Ci,Ψi))] = −EBi,Ci [log qθ(Bi;Ci,Ψi)] + constant. (8.2)

The second term is independent of θ. So we define the loss function on (Bi, Ci,Ψi) as

L̃(θ;Bi, Ci,Ψi) = −EBi,Ci [log qθ(Bi;Ci,Ψi)].

Meta-training over many instantiations: To train a generalizable neural block
proposal, we generate a set of random instantiations and optimize the loss function over all of
them. Assuming a distribution over instantiations P , our goal is to minimize the overall loss

L(θ) = E(Bi,Ci,Ψi)∼P [L̃(θ;Bi, Ci,Ψi)] = −E(Bi,Ci,Ψi)∼P [EBi,Ci [log qθ(Bi;Ci,Ψi)]] , (8.3)

which is optimized with minibatch SGD in our experiments.
There are different ways to design the motif instantiation distribution P . One approach is

to find a distribution over model parameter space, and attach the random parametrizations
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Algorithm 3: Neural Block Sampling

Input: Graphical model (G,Ψ), observations y, motifs {(B(m), C(m))}m, and their

instantiations {(B(m)
i , C

(m)
i ,Ψ

(m)
i )}i,m detected in (G,Ψ).

1: for each motif B(m), C(m) do
2: if proposal trained for this motif exists then
3: q(m) ←− trained neural block proposal
4: else
5: Train neural block proposal q

(m)
θ using SGD by Eq. 8.3 on its instantiations

{(B(m)
i , C

(m)
i ,Ψ

(m)
i )}i

6: end if
7: end for
8: x←− initialize state
9: for timestep in 1 . . . T do

10: Propose x′ ← proposal q
(m)
θ on some instantiation (B

(m)
i , C

(m)
i ,Ψ

(m)
i )

11: Accept or reject according to MH rule
12: end for
13: return MCMC samples

Ψi to (Bi, Ci). Practically, it is also viable to find a training dataset of models that contains
a large number of instantiations. Both approaches are discussed in detail and experimented
in the experiment section.

Neural block sampling: The overall MCMC sampling procedure with meta-proposals
is outlined in Algorithm 3, which supports building a library of neural block proposals trained
on common motifs to speed up inference on previously unseen models.

8.3 Experiments

In this section, we evaluate our method of learning neural block proposals against single-site
Gibbs sampler as well as several model-specific MCMC methods. We focus on three most
common structural motifs: grids, mixtures and chains. In all experiments, we use the following
guideline to design the proposal: (1) using small underlying MDNs (we pick networks with
two hidden layers and elu activation [Clevert et al., 2015]), and (2) choosing an appropriate
distribution to generate parameters of the motif such that the generated parameters could
cover the whole space as much as possible. More experiments details and an additional
experiment are available in the supplementary materials.

Grid Models

We start with a common structural motif in graphical models, grids. In this section, we
focus on binary-valued grid models of all sorts for their relative easiness to directly compute
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posteriors. To evaluate MCMC algorithms, we compare the estimated posterior marginals P̂
against true posterior marginals P computed using IJGP [Mateescu et al., 2010]. For each

inference task with N variables, we calculated the error 1
N

∑N
i=1

∣∣∣P̂ (Xi = 1)− P (Xi = 1)
∣∣∣ as

the mean absolute deviation of marginal probabilities.

General Binary-Valued Grid Models

We consider the motif in Fig. 8.3, which is instantiated in every binary-valued grid Bayesian
networks (BN). Our proposal takes in the conditional probability tables (CPTs) of all 23
variables as well as the current values of 14 conditioning variables, and outputs a distribution
over the 9 proposed variables.

To sample over all possible binary-valued grid instantiations, we generate random grids
by sampling each CPT entry i.i.d. from a mixed distribution of this following form:

[0, 1] w.p. pdeterm
2

[1, 0] w.p. pdeterm
2

Dirichlet(α) w.p. 1− pdeterm,

(8.4)

where pdeterm ∈ [0, 1] is the probability of the CPT entry being deterministic. Our proposal is
trained with pdeterm = 0.05 and α = (0.5, 0.5).

To test the generalizability of our trained proposal, we generate random binary grid
instantiations using distributions with various pdeterm and α values, and compute the KL
divergences between the true conditionals and our proposal outputs on 1000 sampled instanti-
ations from each distribution. Fig. 8.5 shows the histograms of divergence values from 4 very
different distributions, including the one used for training (top left). The resulting histograms
show mostly small divergence values, and are nearly indistinguishable, even though one
distribution has pdeterm = 0.8 and the proposal is only trained with pdeterm = 0.05. This shows
that our approach is able to generally and accurately approximate true conditionals, despite
only being trained with an arbitrary distribution.

We evaluate the performance of the trained neural block proposal on all 180 grid BNs up
to 500 nodes from UAI 2008 inference competition. In each epoch, for each latent variable,
we try to identify and propose the block as in Fig. 8.3 with the variable located at center. If
this is not possible, e.g. , the variable is at boundaries or close to evidence, single-site Gibbs
resampling is used instead.

Fig. 8.6 shows the performance of both our method and single-site Gibbs in terms of error
integrated over time for all 180 models. The models are divided into three classes, grid-50,
grid-75 and grid-90, according to the percentage of deterministic relations. Our neural block
sampler significantly outperforms Gibbs sampler in nearly every model. We notice that the
improvement is less significant as the percentage of deterministic relations increases. This is
largely due to that the above proposal structure in Fig. 8.3 can only easily handle dependency
among the 9 proposed nodes. We expect an increased block size to yield stronger performance
on models with many deterministic relations.
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Figure 8.3: Motif for general
grid models. Conditioning
variables (shaded) form the
Markov blanket of proposed
variables (white). Dashed
gray arrows show possible
but irrelevant dependencies.

Figure 8.4: Sample runs comparing single-site Gibbs, Neural
Block Sampling, and block Gibbs with true conditionals. For
each model, we compute 10 random initializations and run
three algorithms for 1500s on each. Epochs plots are cut off at
500 epochs to better show the comparison because true block
Gibbs finishes far less epochs within given time. 50-20-5 and
90-21-10 are identifiers of these two models in the competition.

Figure 8.5: KL divergences between the true
conditionals and our proposal outputs on 1000
sampled instantiations from 4 distributions
with different pdeterm and α. Top left is the
distribution used in training. Our trained pro-
posal is able to generalize on arbitrary binary
grid models.

Figure 8.6: Performance comparison on 180
grid models from UAI 2008 inference compe-
tition. Each mark represents error integrals
for both single-site Gibbs and our method in
a single run over 1200s inference.

Furthermore, we compare our proposal against single-site Gibbs, and exact block Gibbs
with identical proposal block, on grid models with different percentages of deterministic
relations in Fig. 8.4. Single-site Gibbs performs worst on both models due to quickly getting
stuck in local modes. Between the two block proposals, neural block sampling performs
better in error w.r.t. time due to shorter computational time. However, because the neural
block proposal is only an approximate of the true block Gibbs proposal, it is worse in terms
of error w.r.t. epochs, as expected. Detailed comparisons on more models are available in the
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Figure 8.7: All except bottom right: Average log likelihoods of MCMC runs over 200
tasks for total 600s in various GMMs. Bottom right: Trace plots of M over 12 runs from
initialization with different M values on a GMM with m = 12, n = 90. Our approach explores
sample space much faster than Gibbs with SDDS.

supplementary material.
Additionally, our approach can be used model-specifically by training only on instantiations

within a particular model. In supplementary materials, we demonstrate that our method
achieves comparable performance with a more advanced task-specific MCMC method, Inverse
MCMC [Stuhlmüller et al., 2013].

Gaussian Mixture Model with Unknown Number of Components

We next consider open-universe Gaussian mixture models (GMMs), in which the number of
mixture components is unknown, subject to a prior. Similarly to Dirichlet process GMMs,
these are typically treated with hand-designed model-specific split-merge MCMC algorithms.

Consider the following GMM. n points x = {xi}i=1,...,n are observed, and come uniformly
randomly from one of M (unknown) active mixtures, with M ∼ Unif{1, 2, . . . ,m}. Our
task is to infer the posterior of mixture means µ = {µj}j=1,...,M , their activity indicators
v = {vj}j=1,...,M , and the labels z = {zi}i=1,...,n, where zi is the mixture index xi comes from.
Since M is determined by v, in this experiment, we always calculate M =

∑
j vj instead of

sampling M .
Such GMMs have many nearly-deterministic relations, e.g. , p(vj = 0, zi = j) = 0,

causing vanilla single-site Gibbs failing to jump across different M values. Split-merge
MCMC algorithms, e.g. , Restricted Gibbs split-merge (RGSM) [Jain and Neal, 2004] and
Smart-Dumb/Dumb-Smart (SDDS) [Wang and Russell, 2015], use hand-designed MCMC
moves to solve such issues. In our framework, it’s possible to deal with such relations with a
proposal block including all of z, µ and v. However, doing so requires significant training and
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Figure 8.8: Average F1 scores and average log likelihoods over entire test dataset. In each
epoch, all variables in every test MRF is proposed roughly once for all algorithms. F1 scores
are measured using states with highest likelihood seen over Markov chain traces. To better
show comparison, epoch plots are cut off at 500 epochs and time plots at 12850s. Log
likelihoods shown don’t include normalization constant.

inference time (due to larger proposal network and larger proposal block), and the resulting
proposal can not generalize to GMMs of different sizes.

In order to apply the trained proposal to differently sized GMMs, we choose the motif to
propose qθ for two arbitrary mixtures (µi, vi) and (µj, vj) conditioned on all other variables
excluding z, and instead consider the model with z variables collapsed. The inference task is
then equivalent to first sampling µ,v from the collapsed model p(µ,v|x), and then z from
p(z|µ,v,x). We modify the algorithm such that the proposal from qθ is accepted or rejected
by the MH rule on the collapsed model. Then z is resampled from p(z|µ,v,x). This approach
is less sensitive to different n values and performs well in variously sized GMMs. More details
are available in the supplementary material.

We train with a small GMM with m = 8 and n = 60 as the motif, and apply the
trained proposal on GMMs with larger m and n by randomly selecting 8 mixtures and 60
points for each proposal. Fig. 8.7 shows how the our sampler performs on GMM of various
sizes, compared against split-merge Gibbs with SDDS. We notice that as model gets larger,
Gibbs with SDDS mixes more slowly, while neural block sampling still mixes fairly fast and
outperforms Gibbs with SDDS. Bottom right of Fig. 8.7 shows the trace plots of M for both
algorithms over multiple runs on the same observations. Gibbs with SDDS takes a long time
to find a high likelihood explanation and fails to explore other possible ones efficiently. Our
proposal, on the other hand, mixes quickly among the possible explanations.

Named Entity Recognition (NER) Tagging

Named entity recognition (NER) is the task of inferring named entity tags for words in
natural language sentences. One way to tackle NER is to train a conditional random field
(CRF) model representing the joint distribution of tags and word features [Liang et al., 2008].
In test time, we use the CRF build a chain Markov random field (MRF) containing only tags
variables, and apply MCMC methods to sample the NER tags. We use a dataset of 17494
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sentences from CoNLL-2003 Shared Task1. The CRF model is trained with AdaGrad [Duchi
et al., 2011] through 10 sweeps over the training dataset.

Our goal is to train good neural block proposals for the chain MRFs built for test sentences.
Experimenting with different chain lengths, we train three proposals, each for a motif of two,
three, or four consecutive proposed tag variables and their Markov blanket. These proposals
are trained on instantiations within MRFs built from the training dataset for the CRF model.

We then evaluate the learned neural block proposals on the previously unseen test dataset
of 3453 sentences. Fig. 8.8 plots the performance of neural block sampling and single-site Gibbs
w.r.t. both time and epochs on the entire test dataset. As block size grows larger, learned
proposal takes more time to mix. But eventually, block proposals generally achieve better
performance than single-site Gibbs in terms of both F1 scores and log likelihoods. Therefore,
as shown in the figure, a mixed proposal of single-site Gibbs and neural block proposals can
achieve better mixing without slowing down much. As an interesting observation, neural
block sampling sometimes achieves higher F1 scores even before surpassing single-site Gibbs
in log likelihood, implying that log likelihood is at best an imperfect proxy for performance
on this task.

8.4 Additional Details

Experiment Details

As mentioned in Sec. 8.3, parametrizing MDNs in all experiments have elu activation and
two hidden layers each of size λmax {input size, output size}, where 4 ≤ λ ≤ 5 depending
on the task, and output the proposal distribution as a mixture of 4 ≤ m ≤ 16 components.

General Binary-Valued Grid Models

For directed binary-valued grid models, we use higher amount of MDN mixtures than other
experiments because more variables are proposed and general discrete BNs can have highly
multi-modal conditionals.

Architecture The underlying MDN has 106-480-480-120 network structure, mapping the
CPTs of all 23 motif variables and 14 conditioning variable values to the proposal distribution
of 9 proposed variables as a mixture of 12 components.

Additional Sample Runs We provide additional sample runs on four grid models with
various percentages of deterministic relations in Fig. 8.9.

1https://www.clips.uantwerpen.be/conll2003/ner/

https://www.clips.uantwerpen.be/conll2003/ner/
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Figure 8.9: Additional sample runs with single-site Gibbs, neural block MCMC, and block
Gibbs with true conditionals on UAI 2008 grid models. These results are obtained in same
setting as Fig. 8.4 of main paper. For each model, we compute 10 random initializations
and run three algorithms for 1500s on each one. Plots show average error for each algorithm.
Epochs plots are cut off at 500 epochs to better show the comparison. “grid-k” represents
that the model has k% deterministic relations.
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Gaussian Mixture Model with Unknown Number of Components

Formal Model Formally, the model can be written as

M ∼ Unif{1, 2, . . . ,m}
µj ∼ N (0, σ2

µI) j = 1, . . . ,m

v|M ∼ Unif{a ∈ {0, 1}m :
∑
j

aj = M}

zi|v ∼ Unif{j : vj = 1} i = 1, . . . , n

xi|zi,µ ∼ N (µzi , σ
2I) i = 1, . . . , n,

where m and n are model parameters, and σ2
µ = 4 and σ2 = 0.1 are fixed constants.

Architecture Our neural block proposal is trained using the GMM with m = 8 max
mixtures and n = 60 data points. It proposes two mixture components (µj, vj)s through
underlying MDN of 156-624-624-36 network structure. The MDN’s inputs include 60 observed
points x = {xi}i, 8 component means µ = {µj}j and component active indicators v = {vj}j
with values for the two proposed mixtures replaced by zeros. Orders for x, µ and v are such
that they are sorted along the first principle component of x to break symmetry. In addition,
the inputs also contain the principle component and the indicators of which components
are being proposed. The MDN outputs a proposal distribution over the two (µj, vj)s as a
mixture of 4 MDN components.

Breaking the Symmetry In training, such mixture models have symmetries that must be
broken before being used as input to the neural network [Nishihara et al., 2013]. In particular,
the mixtures {(vj, µj)}j can be permuted in m! ways and the points {(zi, xi)}i in n! ways.
Following a similar procedure by [Le et al., 2017], we sort these values according the first
principal component of x, and also feed the first principal component vector into the MDN.

Proposal and Inference with z Collapsed In order to avoid nearly-deterministic re-
lations, e.g. , p(vj = 0, zi = j) = 0, and still train a general proposal unconstrained by n,
we choose to consider the collapsed model without z. We first experiment on the intuitive
approach which adds a resampling step for z in the proposal. At each proposal step, trained
proposal qθ is first used to propose new mixtures µ′ and v′, and then z is proposed from
p(z|µ′,v′,x). The MH rule is applied lastly to either accept or reject all proposed values.
While this method gives good performance in small models, it suffers greatly from low
acceptance ratio as n, the number of observed points z, grows large. Therefore, we eventually
choose the approach described in Sec. 8.3, i.e. , applying the MH rule on the collapsed model
with z resampled from p(z|µ,v,x) afterwards. Since the acceptance ratio no longer depends
on n, this approach behaves much more scalable than the first one in our experiments. It
outperforms SDDS split-merge MCMC in GMMs of various sizes, as shown in Fig. 8.7 of
main paper.
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Figure 8.10: Small ver-
sion of the triangle grid
model in experiment
Sec. 8.4. Evidence nodes
(shaded) are at bottom
layer. The actual network
has 15 layers and 120
nodes.

Figure 8.11: Motif for the
model in Fig. 8.10. Condi-
tioning variables (shaded)
form the Markov blanket of
proposed variables (white).
Dashed gray arrows are
possible irrelevant depen-
dencies.

Figure 8.12: Error w.r.t. epochs on
the triangle model in Fig. 8.10. Semi-
transparent lines show individual
MCMC runs. Opaque lines show av-
erage error over 10 MCMC runs for
each algorithm. Numbers in paren-
theses are the amounts of training
data.

NER Tagging

Architecture The underlying MDN has two hidden layers each of size 4×max {input size, output size},
with output size varying according to the number of proposed variables. It maps local CRF
parameters of all motif variables and conditioning variable values to the NER tag proposal
for consecutive proposed variables as a mixture of 4 components.

Additional Experiment

Comparison with Inverse MCMC

Neural block proposals can also be used model-specifically by training only on instanti-
ations within a particular model. In this subsection, we demonstrate that our method
achieves comparable performance with a more complex task-specific MCMC method, Inverse
MCMC [Stuhlmüller et al., 2013].

Figure 8.10 illustrates the triangle grid network used in this experiment, which is identical
to what [Stuhlmüller et al., 2013] used to evaluate Inverse MCMC. For our method, we chose
the motif shown in Fig. 8.11. The proposal is trained on all instantiations in this triangle
model.

Inverse MCMC is an algorithm that builds auxiliary data structures offline to speed up
inference. Given an inference task, it trains an inverse graph for each latent variable where
the latent variable is at bottom and evidence variables are at top. These graphs are then
used as MCMC proposals.

It is difficult to compare these two methods w.r.t. time. While both methods require
offline training, Inverse MCMC needs to train from scratch if the set of evidence nodes
changes, yet neural block sampling only needs one-time training for different inference tasks
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on this model. In this experiment, for each inference epoch, both methods propose about
10.5 values on average per latent variable. Figure 8.12 shows a more meaningful comparison
of error w.r.t. epochs. Our learned neural block proposal, trained using 104 samples, achieves
comparable performance with Inverse MCMC, which is trained using 105 samples and builds
model-specific data structures (inverse graphs).

Architecture The underlying MDN has 161-1120-1120-224 network structure, mapping the
CPTs of all 29 motif variables and 16 conditioning variable values to the proposal distribution
of 13 proposed variables as a mixture of 16 components.

Inverse MCMC Setting In this experiment, we run Inverse MCMC with frequency
density estimator trained with posterior samples, proposal block size up to 20 and Gibbs
proposals precomputed, following the original approach of [Stuhlmüller et al., 2013].

8.5 Summary

This chapter explores the idea of meta-learning generalizable approximate block Gibbs
proposals and applies it to an challenging NLP task, named entity recognition. Our meta-
proposals are trained offline and can be applied directly to novel models given only a
common set of structural motifs. Experiments show that the neural block sampling approach
outperforms standard single-site Gibbs in both convergence speed and sample quality and
achieve comparable performance against model-specialized methods. In will be an interesting
system design problem to investigate, when given a library of trained block proposals, how
an inference system in a probabilistic programming language can automatically detect the
common structural motifs and (adaptively) apply appropriate samplers to help convergence
for more general real-world applications.

Additionally, from the meta-learning perspective, our method is based on meta-training,
i.e. , training over a variety of motif instantiations. At test time, the learned proposal
does not adapt to new scenarios after meta-training. While in many meta-learning works
in reinforcement learning [Finn et al., 2017a,Duan et al., 2016b], a meta-trained agent can
further adapt the learned policy to unseen environments via a few learning steps under the
assumption that a reward signal is accessible at test time. In our setting, we can similarly
adopt such fast adaptation scheme at test time to further improve the quality of proposed
samples by treating the acceptance rate as a test time reward signal. We leave this as a
future work.
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Chapter 9

Conclusion

This thesis studies a fundamental challenge in Artificial Intelligence, i.e., how to build
learning agents that can generalize from training scenarios to unseen test cases, which is
the key prerequisite to bring any AI application to our daily life. Chapter 1 introduces a
mathematical formulation of this generalization problem (Eq. 1.1, 1.2) and further proposes
4 solution-design principles focusing on 4 different aspects of the generalization challenge
respectively (Sec. 1.3), namely (1) policy representation, (2) diverse training, (3) effective
learning objective, and (4) improved training paradigm. The remaining chapters examine
these 4 principles comprehensively by considering 4 concrete domains, i.e., discrete graph
(Part I), 3D visual navigation (Part II), complex multi-agent games (Part III) and natural
language processing applications (Part IV).

In Part I, Chapter 2 follows principle (1) by proposing a novel policy representation,
value iteration network, which allows an agent to learn a generic planning computation for
path finding on graph structures, including simple gridworlds and real-world webgraphs. In
Part II, Chapter 3 follows principle (2) by developing a new large-scale environment, House3D,
and analyzing the effectiveness of a variety of data augmentation techniques. Chapter 4
follows principle (1) by designing a memory architecture, Bayesian Relational Memory, for
visual semantic planning. In Part III, Chapter 5 firstly studies the intrinsic challenge in
multi-agent games due to simultaneous learning agents and then introduces an effective
and general learning algorithm for multi-agent games, MADDPG, according to principle
(4). Chapter 6 follows principle (3) by introducing the minimax concept into the learning
objective of the MADDPG algorithm. In Part IV, Chapter 7 considers the relation extraction
task and improves the robustness of learned models via an adversarial training objective
under principle (3). Chapter 8 considers the named entity recognition task and proposes a
novel meta-learning paradigm to effectively improve the inference performance of a learned
model on testing texts under principle (4).

The works presented in this thesis empirically demonstrate that by designing algorithmic
techniques under the proposed principles, we can improve the generalization ability of learning
agents in a wide range of challenging domains. In addition, this thesis also suggests some
open questions for future research. Some of the most critical questions from my perspective
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are described below.

(1) What is the necessary inductive bias in the learning paradigm for generalization?

In classical AI, which typically utilizes model-based approaches over symbolic abstractions,
generalization is naturally guaranteed. For example, any standard search algorithm
can successfully solve any gridworld navigation task while it takes efforts for deep
learning approaches to perform reasonably well (see Chapter 2). It is a recent trend in
the community to utilize concepts from classical AI, such as objects [Kulkarni et al.,
2016,Devin et al., 2018], relations [Zambaldi et al., 2019] and planning [Kansky et al.,
2017,Finn and Levine, 2017], when building deep learning agents. In this thesis, Chapter 2
and Chapter 4 also inherit similar ideas. However, since most real-world problems are
high-dimensional, it remains non-trivial and often requires strong domain priors to
extract meaningful low-dimensional abstractions in general. Moreover, some recent
evidences, such as MuZero from DeepMind [Schrittwieser et al., 2019], show that with a
large amount of training data, neural agents can automatically learn specialized latent
representations without any explicit task prior introduced at training and outperform
existing methods with strong domain knowledge. So, which direction should we preferred?
Explicitly introducing more human insights or simply forcing the agents to discover its
own representations from data and tasks? It is not yet clear which specific inductive bias
would become the most necessary and the most critical ingredient for building intelligent
agents.

(2) What is the limit of success through diverse training?

This question follows the previous one. Some recent works, including Chapter 3, show that
by simply combining more training data and massive compute power, we can significantly
improve the generalization performances of learning agents without big algorithmic
changes. For example, visual models trained with more images have substantially higher
recognition accuracy [Mahajan et al., 2018]; language models pretrained with massive
corpus can generate extremely fluent English paragraphs [Devlin et al., 2019,Radford
et al., 2019]; deep RL agents trained via self-play and massive compute can defeat
professional players in Dota 2 [OpenAI et al., 2019b] and StarCraft II [Vinyals et al.,
2019]; by performing domain randomization in the simulator, a trained dexterous hand
can solve a Rubik’s cube in the real world [OpenAI et al., 2019a]. To some extent, these
empirical results seemingly indicate that AGI could be potentially achieved by collecting
more data and training larger models — although most of use are not convinced by such
simple roadmap. So, what is the limit of intelligence we can achieve through massive data
and compute? Which problems are fundamentally hard while which problems can be
simply solved by simply increasing the amount of compute? This question also suggests
that the compute should be another important factor of inductive bias to consider for
building generalizable agents.

(3) How can we efficiently search for effective diverse policies?
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This challenge is particularly severe for multi-agent scenarios (Part III): when the
number of agent increases, the problem complexity grows exponentially and therefore it
is considerably harder to discover good policies. Notably, due to the fact that self-play
is the most widely used training paradigm for multi-agent games, how strong a learned
agent is directly depends on the quality of its training partners. Hence, how to efficiently
and effectively discover diverse (counter-)strategies during self-play training is a necessity
for building any agents that can generalize in multi-agent scenarios.

At the moment, there are no certain answers to these questions, but I hope this thesis
can provide useful insights to the community and serve as a solid step towards our ultimate
goal of AGI, with my optimism.

* * *

“Our Conquest is the Sea of Stars!”
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D., Shabanian, S., Simon, É., Spieckermann, S., Subramanyam, S. R., Sygnowski, J.,
Tanguay, J., van Tulder, G., Turian, J. P., Urban, S., Vincent, P., Visin, F., de Vries, H.,
Warde-Farley, D., Webb, D. J., Willson, M., Xu, K., Xue, L., Yao, L., Zhang, S., and
Zhang, Y. (2016). Theano: A Python framework for fast computation of mathematical
expressions. CoRR, abs/1605.02688.



BIBLIOGRAPHY 126

[Al-Shedivat et al., 2018] Al-Shedivat, M., Bansal, T., Burda, Y., Sutskever, I., Mordatch,
I., and Abbeel, P. (2018). Continuous adaptation via meta-learning in nonstationary and
competitive environments. In International Conference on Learning Representations.

[Anand et al., 2018] Anand, A., Belilovsky, E., Kastner, K., Larochelle, H., and Courville, A.
(2018). Blindfold baselines for embodied QA. CoRR, abs/1811.05013.

[Anderson et al., 2018a] Anderson, P., Chang, A. X., Chaplot, D. S., Dosovitskiy, A., Gupta,
S., Koltun, V., Kosecka, J., Malik, J., Mottaghi, R., Savva, M., and Zamir, A. R. (2018a).
On evaluation of embodied navigation agents. CoRR, abs/1807.06757.

[Anderson et al., 2018b] Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M., Sünderhauf,
N., Reid, I., Gould, S., and van den Hengel, A. (2018b). Vision-and-language navigation:
Interpreting visually-grounded navigation instructions in real environments. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 3674–3683.

[Andreas et al., 2017] Andreas, J., Klein, D., and Levine, S. (2017). Modular multitask
reinforcement learning with policy sketches. In Proceedings of the 34th International
Conference on Machine Learning, pages 166–175. JMLR. org.

[Andrieu et al., 2003] Andrieu, C., De Freitas, N., Doucet, A., and Jordan, M. I. (2003). An
introduction to MCMC for machine learning. Machine learning, 50(1):5–43.

[Andrychowicz et al., 2016] Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau,
D., Schaul, T., Shillingford, B., and De Freitas, N. (2016). Learning to learn by gradient
descent by gradient descent. In Advances in Neural Information Processing Systems, pages
3981–3989.

[Armeni et al., 2016] Armeni, I., Sener, O., Zamir, A. R., Jiang, H., Brilakis, I., Fischer, M.,
and Savarese, S. (2016). 3D semantic parsing of large-scale indoor spaces. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1534–1543.

[Beattie et al., 2016] Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wainwright, M.,
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