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. THE ‘SUMMATION OF INFINITE SERTES

.10 Introductionr

- Varlous tests of convergence are given for ordinary and double
infinitelsegies, and operations on.convergent serles‘are discussed, Then,
with a view to numerical applications, methods of expressiong summations

in closed form and transformations of slowly convergent series are given,

2. Convergence

'>2 2.1 Dﬁﬁlnlilﬂn An infinite series is said to converge if and

only if the. sequence ‘of its par*ﬁal sums converges. (The i'th

partlal sum of the series E a, is 8; = tﬂam) In

N . o ' . n=l * ~ n=1l
particular E S : S

' . - an' = 1lim Si .

S n=1 . . i :

v

2.2 ConVergehce Tests There are many convergence tests which are

frequently more ea51ly applled than this deflnltion, but the three
given below have reaeonable scope and give results withr minimal
effort, 8 i

Supposeoﬁhet; for all. x gredter than somé fixed X, ,

f(x) is continuous and has.a contihious non-zero derivative,
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2,21 Ermakoff's Test:

If lim e* £(e* = k , then z £(n)
‘ - x-p00 . f(x ' ' n=1

- .converges when k £ 1 and diverges whenever

ex f%exz > 1
“f(x o

for all sufficiently large x.

2,22 Limit Test: - | oo | | |
R If lim =f(x) = k, then z f(n) converges
) L X=300 xfi(x) ' 'n;l '
when k < 1  and diverges if =f(x) > 1 for all sufficiently
xfi(x '

o large x.

" Both of these tests are Yndecisive when, respectively,

‘ ét‘ f’get[ 41  and -f(t) <« 1 for sufficieﬁfc.ly large t

£(t) - . tfi(t)
and k - lo

2,23 Leibniz's Theorem for Alternating Series:

If { Un} . is a non-increasing seqixence and 1lim U, _-'-'-'O,
o0 n , n=>ee
then Z (1) U, 1is a convergent series.
T ' .

2,24 Proofs for 1, 2, 3 can be constructed along the following

lines: , ' | X oo
1. Use the test conditions. to show £(t)dt & k_ £(t)dt,
| ' | x T . ‘

e © Xy

Hence f(t)dt 4is bounded and Maclaurin's integral test
can be épgliéd to finish the proof.
2, If o(t) = =£(t) , then P

Y »_S dt
- - T te(t)

: £(t) = e |
The conditions applied t.go this-‘integr.al give a comparisbn

.. series of the form - A 5 L
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3.. Every even partial sum is-greater than every odd one and

the limit property can,. be. ‘used,_,t_'o nrove' that the two. sequences

wit !

{Szn} and {S2n+°1} converge to the same h.mz..t,“

3, The Algebra of Converg'en‘t“Seriee“

Ahiy term by term operation on infinite series is permissiblé if ‘the
sum of the \resulting series is related to the sum of the original series
in a known way. Since every convergent subsequence of a convergent sequence

‘must converge to the same llmlt 5 any algebraic operation is perm1531ble if

i .
it carr:._es the sequence of partlal\ sums { Z an} onto one of 1ts
. n=1
_cmwmgmmSMEapam%.' "‘f; '
Theorem 1: (Rearrangement of Parentheses). If Z -a, converges and
: K+l ‘ ‘ . ' .
A = g a, 5 then z A = Z:_— ap if for each SJ(SJ- = 2 AK)
K‘t- ) k=1 n=1 , k=1

there exists exac¢tly one sy(sy = zn 'l‘ai) such that S5 = sy , where 111

denotes an increasing sequence of integers.

Theorem.2: Two convergent series may be added or ‘subtracted term by term.

Theorem 3: If ; then E (ka) = k'»S -

" S
- m=1 =) e . .
Definition A: If E a | converges, then E ___a, is
o =1 . m=1]
absolutely convergent | R
- Definition B: E an diverges and § a, is convergent,
<o m=1 ! o m= 1 :

then E a, ‘is.conditionally:convergent,

e

Theorem 4: If {-Jn } is any rearrangement of the integers, then
co . SOy : Lo N . " .

an =
=l -

7 ms

a.l) if and only if E an ~is absolutely convergent.



UCRL-2291

wlye

Theorem § If i is- condltlonally conv/ergent then for each: number

m=1]

' k there exists some rearrangement 7) } “off the integers, such that B

auﬁ - k:_o.

,M= 1 )'.‘

Theorems 1 2 and 3 follow from the introductory statement, am}cﬁ
proofs for 4 and 5 are given in Knopp's "Theory and Applications of Inflnite.
- Series', chapter IV, |
Theorem 6: (Cauchy' Double Series Theorem). Let —

53 & Z 8y » Iy ® Z Ei:\ani"'\ » and - Zp = Z %ni

- Nzl ‘ N=1l i-l

If for »every i, g3 exists and E .y converges, then E
- i-1 i=1

converges absolutely for each integer m and

Zsi ﬁ_z ’ Zi

i=1 n=1
This theorem is the basis for the theory of trah‘sformat_,ions-gf'_"
ini‘inité'ser_ies and is therefore fundamental to the study of numerical

methods., -

Proof: 1. Let k= n 4 (n#i - 1)(n+ i - 2) and consider 2 _
: : ) 2 : - o '

¥

k=l
‘where bk = oay e Every as isa term of th1§ serles;
éxactly once, f
2, -~ bk is absolutely gonverggnt since
S - 1o \:’: a a \+q,.-1~'£;_
k=1 ‘ K n=l | 0l n2%. : r%‘:l

where  j "is the largest integer such that ‘anj is a term .

" of the series 2 .'\bkl

k=1
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5=
- Hence E ‘ ‘ 1 ‘G'o' and the boundedness of the partial
sums J.mplles that § 'Ok\ convergeso -

3. For every n E , ani" {: : ‘bk l and since 2 by
: j-1 k=1 ' K.- 1

converges absolutely;, all rearrangements of this serles must

_ converge to the same 11m1t But z S an E Z are

" Just two such arrangements and hence
0

> sy z:z= - z;ania
L=1 n.-.-

i=]l

L, Methods of Expressing Summations in Closed Form

4.1 If lim x,- = A , the x  being terms of a convergent |
n-—339 ‘

sequence, then E (.A.n 1 - X ) converges to the limit x, - A,
n=1

Using this, series can be constructed with known sums.

Example 1i Let x, = L, then x4 =X, = 1 . Hence;
, n+ 1 n(n+ 1)
oo
° - 1 = 1 a
S nin+ 1
. n=1 .
Example 2: - Choose xn = __ 1 5 then x_ , ~ X  * %g_i 1.
4 , (a4 1) n"(n+ 1)
Thus, =92 2n4 1 = L.
, D N e
Covr,.ve'rsely,9 whenever the difference equation ’Agcn T - a, can be solved
in c¢losed form, the serieé v E a, = )co - 1lim xn . In his

m=1l . ‘n—so0
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numerical calculus, Milne has 1isted a number of \fﬁndamental difference

equations with their solutlons and has g1ven examples of this closed form v

technlque (cf PP. 329_331) ——

Example 3: Evaluate : S sinh n cosh (nS ¥ S )

m= 1 2 2
Now, ' '
% {sinh (n+l)S-sa.nhnS} = sinh n cosh (n S+ §)°
L 2 -2
Thus,
E sn_nhncosh (nS+S ) = %{snlh (m 4 l)S=Slnh S?
m=1 2
Of course, if’. Xy m',xn_i_‘g s an s then
a, = (xo‘j- X) ¥ eee kX, )-qnl_,n:\oxn ',_This}ls'
~evident from the partial sum —
s, = »(?.CO =X+ (g ~x, )+ ok (1 - ¥oq l) +—(x | 2q)
+ o0 + (Xn - xn+q)
= (x°+ x1+ -f‘-xq_l)ﬂ# (xn+l+ xn-"‘«'2 F ooo F xnf-q) .
4.2 ;Abelv's Limit Theorem. - o _ S
. . . . - n . o -
If S a converges and f(x) = E a, x , then
ms ' L. ‘m= : )
- E - ‘an x"  converges for all’ x -in -1<x % 41 , and hence -. .

m=0.

,' ) v ' . ) A N . o
ay = ' lim f(x). . -
£ % —1-0° | . , . = o
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‘ Examplie L3 . 2 §ml}n = 7%74 o

=0 21’1+ 1
‘ - : . n 2pn4+1
" Proof's Tan l(x) = SSﬁL“ (-1) x and
: - Nz 2n+4 1
-1 ‘ o ' |
lim  tan  (x) ‘= 7/, . :
t—1-0 - A :
- -] n ’
Example 53 (1) .
. =
Let  PF(x) = x - xA + x7 - xlo 1; e
L o7 10

F con?erges uniformly for all |x| & 1 , hence term by term differentiatim

is allowed, if the derived sseries converges uniformly.

] ' 2 6 9 o :
. F (x) = 1w§+x - X' see = 1 .
: B 14+x
Thus, X
_ 2
F(x) = \ _1 dx = 1 fg _(x+1)
3 [ 2 =
1+ x (x" -x +1)
+ L tan"'lzx-lw.,_ )
13 3 673
Thus, '
m F(x) = L g2 4 _#_ .
x=31-0 3 393
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4.3 Application of -Cauchy9s‘ Double Series Theorem.

: " | ' L1 oy
Example 6% 500 1 - (-1) - B2£ (27)
- o2& 2:(24)1

where By, is the 24 *th Bernoulli number.

"Proofs When x is small, the expansion of #x cot 7’x in Bernoulli.

number$ is

‘7fxcot7)/x = l+'2 (l 21(773{)
L=1
The Bemdulli 'numbe'ré are def_ined by the relation -
, , , o

(L4 x 4 X 4 .o0)(Bo+ BiX g Bax 4oy -1
2£+32f.‘° gttt -

A second expansion is given by
2 -

s cot 'x = 1+ 2x

Nl X2 - n2

If this expansion is written as a power series, the coefficients of the two
power series must agree.

The power series expansion of -2 x> is
n< - x

13“

.ﬂ/xcotﬂ"x - l+>n_,1 >= ( (_?)>

using'the'double series theorem
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7 x cot 7”x

| !
- -
R I +
o)
M
KN [\/lg .
~
—~ R
:,Nlp—a \\ <
R N
N’

and equating“ coefficients of xz'e s one gets

o A- _ 24
i 1 - »-(-1) ' Byg (27) .
=l 2k 2-(24)v

5, Transformations of Slowly Convergent Series.

5.1 Kummer's Transformation.

Let S = i 'an be a convergent series and suppose a
ma S

second series, s ¢, » with a known sum ., c¢ , is such that
mz] . S :

-

1im
n—yoo

¥ 0, then

5)k? .
1

S = ‘Kc-f-S (L-~%n)a,.
. : Thel 4n
 Example 7: 1.
. | il =

Cho.o_se

ep = 1 ,then c=1 and ¥ =1,
n(n-t-l) . : . .
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Therefore,

. ’ &0 V . .
5 = 14> ( - _n? 1 -
. nx : n(n+1)/ n? ' T

o 4
= 14 j; : 1 o
: ' 1 N (n4+ 1)
5.2 Markeff's Transformation. .
If Kummer's transformation is repeated indefinitely, the
original series is transformed into a series, each term of which is
the sum of an auxiliary series :; ch
‘ m=1
Theorem 7: If; : Zk is a.convergent:seriés and Zk = ‘/; 35y
. k-0 ' : i=0 '
: ad . . . SO == ‘ .4 : .
where E aji converges and 1im E E a5k = O , then
. k=0 m—><L - J .
D = l=mM . .
; Ze = > > B4k
k=0 1=0 k=0
Corollarys: Euler's Transformation. . , .
Every convergent series may be written in the form E (~1) ay
- e . | | . k=0 -
and has a sum equal to E A 3 | The validity of this statement
follows from Markoff's transformation theorem and is established in Knopo,
page 245-246. . '
e n '
»

Example 83 ' ~1 .
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A(ao) = ]__,12:- = é = l

¥ 1+ 1
- A,(a'l) =, % - 1/3 C = 1/6
2
A('&o) = % - 1/6 = 1
. 1+ 2
Ak(ao) =

1.
. 14k '
‘Hence, oo n o

S"lz : . l e °
m:=¥ nt 1 h=.; 1+ k2ktt
Examplé 9: Repeated Kummer Transformation.

i 1 o=s ,  |wlel .
_ 2 2 .

m=1 BtV

Define Aj(n)‘; 1 , then Aj(n) = 1 -
RICTEIE | EER

Thus,

m=1

By theqrém 7,

52 S A = il(g St wz(:;l)
S DA

91

w2 A

341

n

(n) ,

: o .. '2(k—l)< o0 ) :
] 5 = EE (-1) " w E 1 . S
kel . - nel n2K o
« Thus, | o o ' ; a
s Z (_l)kml w:z(k--J.) S’(Zk) .
el o

-

where X (x) 1is the Riemann Zeta function defined by x’(x) =

S0

n=1

1

n-

.-
¥
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