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Abstract

Global Data Plane: A Widely Distributed Storage and Communication Infrastructure

by

Nitesh Mor

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor John D. Kubiatowicz, Chair

With the advancement of technology, richer computation devices are making their way into
everyday life. However, such smarter devices merely act as a source and sink of information; the
storage of information is highly centralized in data-centers in today’s world. Even though such
data-centers allow for amortization of cost per bit of information, the density and distribution of
such data-centers is not necessarily representative of human population density. This disparity of
where the information is produced and consumed vs where it is stored only slightly affects the
applications of today, but it will be the limiting factor for applications of tomorrow.

The computation resources at the edge are more powerful than ever, and present an opportunity
to address this disparity. We envision that a seamless combination of these edge-resources with the
data-center resources is the way forward. However, the resulting issues of trust and data-security
are not easy to solve in a world full of complexity. Toward this vision of a federated infrastructure
composed of resources at the edge as well as those in data-centers, we describe the architecture and
design of a widely distributed system for data storage and communication that attempts to alleviate
some of these data security challenges; we call this system the Global Data Plane (GDP).

The key abstraction in the GDP is a secure cohesive container of information called a DataCap-
sule, which provides a layer of uniformity on top of a heterogeneous infrastructure. A DataCapsule
represents a secure history of transactions in a persistent form that can be used for building other
applications on top. Existing applications can be refactored to use DataCapsules as the ground
truth of persistent state; such a refactoring enables cleaner application design that allows for better
security analysis of information flows. Not only cleaner design, the GDP also enables locality of
access for performance and data privacy—an ever growing concern in the information age.

The DataCapsules are enabled by an underlying routing fabric, called the GDP network, which
provides secure routing for datagrams in a flat namespace. The GDP network is a core component
of the GDP that enables various GDP components to interact with each other. In addition to the
DataCapsules, this underlying network is available to applications for native communication aswell.
Flat namespace networks are known to provide a number of desirable properties, such as location
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independence, built-in multicast, etc. However, existing architectures for such networks suffer from
routing security issues, typically because malicious entities can claim to possess arbitrary names
and thus, receive traffic intended for arbitrary destinations. GDP network takes a different approach
by defining an ownership of the name and the associated mechanisms for participants to delegate
routing for such names to others. By directly integrating with GDP network, applications can enjoy
the benefits of flat namespace networks without compromising routing security.

The Global Data Plane and DataCapsules together represent our vision for secure ubiquitous
storage. As opposed to the current approach of perimeter security for infrastructure, i.e. drawing
a perimeter around parts of infrastructure and trusting everything inside it, our vision is to use
cryptographic tools to enable intrinsic security for the information itself regardless of the context
in which such information lives. In this dissertation, we show how to make this vision a reality,
and how to adapt real world applications to reap the benefits of secure ubiquitous storage.
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Preface

We live in a world where computation is deeply embedded in everyday life and is bringing many
positive changes to the world; things once considered fantasy and science fiction are now possible.
On the flip side, such technological advancement comes at the cost of highly complex systems that
are difficult to analyze and reason about, and thus are prone to security issues. We are at a stage
where physical objects around us are controlled by potentially vulnerable systems, and extreme
attention to security is needed. Complexity is inevitable, but it is extremely important to manage
this complexity well in order to prevent IT security disasters.

While we are limited by the infrastructure and the technology of today, what would a world look
like if it were designed with a different outlook? Is there a viewpoint and design philosophy that
addresses the complexity, and thus safety and security of things around us? The book “Trillions:
Thriving in the Emerging Information Ecology” by Peter Lucas, Joe Ballay, and Mickey McManus
outlines such a vision to tame the complexity. Loosely inspired by this book, we imagine a world
around secure information in the form of DataCapsules that are analogous to a freight container.

Figure: A freight container as a standardized unit of shipping. Infrastructure, such as container
ships and cranes, can be designed to handle the standardized shipping container.

Freight containers revolutionized the shipping industry by bringing a form of standardization.
With a freight container as the standardized unit for movement of goods around the world, the
rest of the infrastructure can be designed around a relatively simple interface leading to an overall
efficient shipping industry. Similar to freight containers, a DataCapsule is a cohesive information
container that can be moved around in the digital world as necessary while providing verifiable
security guarantees such as confidentiality, integrity, and provenance of contained information. Just
like freight containers revolutionized the shipping industry, DataCapsules bring standardization to
the information landscape in the form of a simple yet sufficient interface; this standardization is
extremely valuable for addressing the complexity and heterogeneity while keeping information
secure.
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Can we accomplish this vision of DataCapsules through incremental changes to the existing
world? Or is this such a bold vision that it requires us to start afresh? We believe that it is
indeed possible to bridge the gap between the reality today and a brighter future tomorrow, and this
dissertation is an attempt at realizing this vision. Towards this goal, the dissertation delves deep
into the design of DataCapsules and the supporting infrastructure in the form of the Global Data
Plane (GDP)—the equivalent to the shipping infrastructure that handles the cargo containers. Our
agenda is standardization of information around security and trust, and the dissertation embarks
upon a journey toward this vision.

How to read the dissertation
The dissertation is divided into three parts:
Part 1 is intended for a general audience: it discusses the rationale for DataCapsules and a system
like the Global Data Plane. Without going into too much internal mechanistic details, this part
provides a gentle introduction of what DataCapsules and the GDP mean to various stake holders
such as end users, application developers, and infrastructure operators. It is divided into two
chapters:
Chap. 1 gives the background and general motivation for a system like the Global Data Plane. It

also outlines the research challenges that must be addressed for the vision to be realized.
Chap. 2 provides a more detailed, albeit interface-level, introduction to DataCapsules and the

Global Data Plane. It provides the operational details for infrastructure providers and
interface details for application developers.

Part 2 delves deeper into the research questions outlined in the first part, and goes into the
mechanisms for making the system a reality.
Chap. 3 summarizes the design of DataCapsules. The design discussion is at a level that even if

there were no network and DataCapsules were to be stored and moved around explicitly
by sneaker-net, it should still work.

Chap. 4 goes into the engineering of how to make the DataCapsule vision work for real applica-
tions on a network underneath with a small set of assumptions.

Chap. 5 discusses the design of a routing network underneath—called the GDP network—that
provides a secure routing fabric for DataCapsules as well as other native applications.

Chap. 6 details the engineering needed for a scalable GDP network that actually works in practice,
including some real world topologies.

Part 3 describes the implementation of the GDP and DataCapsules, and provides a quantitative
assessment of the design.
Chap. 7 provides an overview of our prototype implementation, and how the various components

perform in the real world.
Chap. 8 concludes the dissertation. While this dissertation is an exercise in design—and hence

just a beginning—this chapter lays the path that engineers and system builders must take
to convert the vision to a reality.
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Chapter 1

Introduction

1.1 Edge computing: An evolving computational landscape
The world is moving towards a ubiquitous computation model. In recent years, not only do we
see richer sensing and actuation capabilities making their ways into everyday objects, we also
see a significant amount of computational resources closer to end users. The cloud computing
model of data centers as the enormous pools of resources has its place, but many have argued that
exclusively relying on a cloud-centric model limits the evolution of richer services and applications.
A number of academics have analyzed rich applications enabled by the widespread sensing and
actuation capabilities and concluded that the resources at the edge are necessary to support such
new applications [1], [2]. According to Gartner, around 10% of enterprise-generated data is created
and processed outside a traditional centralized data center or cloud as of 2018, but this number is
expected to reach 75% by 2025 [3]. The cloud is certainly a part of the big picture, but cloud alone
is not enough [2].

In terms of terminology, this trend of computation moving closer to end-users has been called
by various names, such as ‘edge computing’ [4], ‘fog computing’ [1], etc. When it comes to details,
currently there is no single consensus on what the various terms exactly mean and if they are all
the same. However, the mere presence of the debate sufficiently acknowledges the existence of this
trend. Without necessarily claiming to provide an authoritative definition, we just use the term
‘edge computing’ as an umbrella term to refer to this trend.

As for physical manifestation of edge computing, we take a broader stance. In recent years,
hundreds of modestly sized data centers have started to show up near centers of human population
worldwide; the intent is to be able to deliver content quickly to end-users [5], [6].1 These data
centers are portrayed as the edge of the cloud that is closest to the users, and target the attention of
existing cloud practitioners by sharing many of the same characteristics of typical cloud computing.
However, there is another layer of mostly decentralized resources managed by individuals, smaller

1In contrast, the cloud is traditionally characterized by a handful of mega data centers in locations chosen to
minimize the cost. Typically, such cloud data centers are far away from end users in the places where land, electricity,
and other resources can be procured cheaply.
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corporations, municipalities and other organizations that are at the edge of the network. Many of
these resources are in homes, offices, public infrastructure and elsewhere; a large fraction of these
resources are behind firewalls or NATs and aren’t even reachable on the public Internet directly.
We consider the resources in this hidden layer as an essential part of the edge.
Adoption hurdles for edge computing in a cloud-centric world

The resources at the edge provide an opportunity for low-latency communication, higher band-
width and lower overall energy consumption from a networking viewpoint, and improved data
security, privacy and isolation by keeping the data within trusted domains from an administrative
viewpoint. Even with these advantages of using the resources at the edge, the current adoption
is relatively low [3]; there are very few applications that make use of such resources—most of
these applications are highly custom applications running in very specific environments such as a
factory floor. When it comes to running services and applications today, we still rely on primarily
a cloud-centric model.

We argue that the reason for a low adoption of edge computing paradigm is that an application
developer’s interface to the edge computing infrastructure asks for too much. In order to use
the resources closer to the edge, application developers need to perform quite a bit of system
administration of widely heterogeneous resources. The task of provisioning and maintaining
resources, which amounts to a relatively simple thing in cloud computing that requires just a few
clicks, ends up being extremely time consuming and expensive undertaking for edge computing
scenarios. The high level tasks of resource management to achieve the desired QoS requirements
for services/applications and adhering to the security/privacy concerns of the user data quickly
translate into low-level mundane jobs such as keeping the systems updated, ensuring correct
system configuration, maintaining firewalls, dealing with system/network failures, etc. The ease
of management has been acknowledged as a major factor in the growth of the cloud [7], and
the advantages of using edge computing resources must be justified against the additional cost of
managing complex systems that require understanding the many knobs and dials available to an
administrator.

The complexity of managing a wide range of disparate systems also makes it challenging to
secure the infrastructure and more specifically, the information. Traditionally, perimeter security
has been the de-facto mode for securing infrastructure. Perimeter security involves drawing a
boundary around the infrastructure, filtering everything that crosses the boundary, and treating
everything inside as trusted. Perimeter security is not a sufficient model of security anymore:
ensuring appropriate security requires covering every possible attack vector, whereas exploiting
a system needs only one unattended entry point. Even with homogeneous resources in the cloud
where it is relatively easy to use perimeter security approach, breaches are not uncommon. With
the complex edge computing landscape where resources are spread over a wider area both inside
and outside of traditional data centers, using a perimeter security approach clearly is a non-optimal
strategy. While the basics are the same, security challenges in edge computing are just more visible
because of the complexity, heterogeneity, and the geographical spread.
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Figure 1.1: A widely distributed system spread over heterogeneous infrastructure that provides a
uniform platform for applications (see section 1.2).

Summary: The large number of smaller and potentially untrusted administrative entities with het-
erogeneous resources makes the edge-computing ecosystem a much more challenging environment
to work with than the cloud-computing model, where a few service providers with homogeneous
resources dominate the market. The net result is that just to be able to use the infrastructure and
ensure the security of their computation/data, application developers need to be an expert in both
distributed systems and computer security. Maintaining information security in a heterogeneous
world remains a laborious task that requires careful planning and expertise.

1.2 Case for a ubiquitous storage platform
The additional burden of managing systems and infrastructure in edge-computing is somewhat
similar to the challenges of Infrastructure as a Service (IaaS) offerings in the cloud computing
paradigm [8]. Even for IaaS, some have argued that cloud IaaS has now achieved a point where
developers are burdened with managing a plethora of resources just like the pre-cloud days of
running andmanaging your own infrastructure; instead of managing physical serves, disks, network
cables, routers, and firewalls, developers now have to manage the virtual equivalent of these in
IaaS [9].

To enable application developers focus on writing applications instead of managing individual
resources, various cloud-based service providers also offer a Platform as a Service (PaaS) where an
application developer works with a higher level interface for individual resources (compute, storage,
etc) [10]. In more recent years, the proliferation of serverless computing in the form of Function as
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a Services (FaaS) has taken this platform approach to a completely new level [9].2 As opposed to
the IaaS approach of forcing application developers to configure and manage systems directly, the
platform provides application developers with a way to convey the desired performance/security
properties to the infrastructure [11], [12].

It is important to draw the platform abstractions at the right level. If the level of abstraction
is too low, for example in IaaS, it leaves much work for the users to do. On the other hand, too
high level of abstraction makes the platform extremely specific to only a limited set of users and
applications. We do believe that a platform with a narrow and well specified interface at the right
level of abstraction is not only possible, but is the right approach for addressing the complexity
introduced by the proliferation of resources in a somewhat manageable way.

In addition to addressing the complexity question, a platform enables decoupling of concerns.
A fundamental principle adopted by IaaS offerings but perfected by PaaS conceptualization is the
principle of separation of persistent state from compute. Such a separation is useful for at least
two reasons. First, a separation of computation from storage allows service providers to specialize
in either storage or computation, and not necessarily both. And second, the requirements and
mechanisms for computation and storage are quite different. Computation is transient which makes
it fungible, i.e. one can restart a failed/interrupted computation elsewhere to recreate the desired
results. On the other hand, data is persistent; one needs to proactively replicate data in order to
recover from corrupted storage and ensure its security at all times. Hence, it is desirable to replicate
data widely for durability, but such a mechanism isn’t necessarily needed for computation.

We ask the question whether these two core ideas—higher level platform like abstractions and a
separation of compute from state—can be applied to the edge-computing ecosystem? In particular,
in this dissertation we explore the idea of a storage and communication platform in the form of
a widely distributed system. Such a system provides a homogeneous interface to the application
developers, even though the system itself could be spread over a heterogeneous infrastructure
managed by a large number of administrative entities. We envision that such a system can provide
a seamless integration of resources at the edge with those in the cloud, if done right. While
computation is also a necessity in making our full vision a reality, we merely provide hints on how
to integrate computational elements in the picture considering computation as out of scope of this
dissertation.
Properties required of the platform

Other than the typical properties of a typical distributed storage system (scalability, fault-
tolerance, durability, etc.), let us take a look at the additional requirements that are needed to
support the edge-computing ecosystem:

• Homogeneous interface: First and foremost, such a system should provide a homoge-
neous interface even though the infrastructure underneath can be quite heterogeneous. This
requirement allows application developers to create portable applications and avoid stove-
piped solutions. It is also useful if the interface can support a wide variety of applications

2Even though the proponents of serverless computing may propose it to be a groundbreaking new abstraction, we
still consider it to be just another PaaS offering specialized for computation.
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natively, or allows for higher level interfaces to be created on the top. Even though many
distributed systems achieve this by default, we think it is important enough property to be
listed explicitly given the heterogeneous infrastructure underneath.

• Federated architecture: Such a system should not be restricted to a single (or a handful
of) administrative entities; instead, anyone should be able to contribute their resources and
be a part of the platform.3 A system designed with a fundamental assumption of a large
number of administrative entities naturally leads to a system architecture with minimal trust
in the administrative entities. Further, as opposed to the cloud ecosystem where only a few
large players dominate the market, the edge-computing ecosystem is, in fact, comprised of a
large number of administrative entities that vary quite a bit in the amount of resources they
control. For a truly federated architecture, reputation should not give an unfair advantage to
large service/infrastructure providers; we argue for a baseline of verifiable data security to
make it a fair playing field for smaller providers (see below).

• Locality: In addition to a federated infrastructure, it is also important to maintain locality for
two reasons. First, using local resources allows one to achieve the desired properties of low-
latency and real-time interactions that the proponents of edge-computing have advocated [1].
Second, for privacy of highly sensitive data, it might be desirable to either limit the access to
only local clients or use local resources that may bemore trusted to not engage in sophisticated
side-channel attacks. Finding such local resources relative to a client usually requires a global
knowledge of the routing topology, thus such functionality is best achieved when assisted by
the network itself (e.g. network assisted anycast) which hints towards an overlay network of
some kind. However, such global routing state, if not managed properly, can be corrupted by
adversaries (see ‘secure routing’ below).

• Secure storage on untrusted infrastructure: The infrastructure should provide a baseline
verifiable data security (data confidentiality and data integrity) even in the face of potentially
untrusted infrastructure. In the cloud ecosystem, there are few if any commercial storage
offerings that provide any verifiable security guarantees. As a result, the cloud ecosystem is
powered by trust based on reputation—amodel that is favorable to large service providers and
provides a significant barrier to entry for smaller, local service providers. Enabling secure
interfaces allows for a utility model of storage where smaller but local service providers can
compete with larger service providers.

• Administrative boundaries: Even though a homogeneous interface is desired from such
a system, the system should provide some visibility of administrative boundaries in the
infrastructure to an application developer. Ideally, an application developer should be able
to dictate which parts of the infrastructure should be used for specific data. There are two
reasons for this: first, as hinted above, concerns over data privacy and security—especially
for highly sensitive data—may require that the data does not leave a specific organization.

3An administrative entity/domain in edge-computing could be an individual with a small smart-hub in their home,
small/medium business with a closet full of servers, a large corporation with their own small data-centers, a large scale
cloud service providers with massive data-centers, or anything in-between.
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Second, an application developer should be able to form economic relations with a service
provider and hold them accountable if the desired Quality of Service (QoS) is not provided.

• Secure routing: Data security in transit is equally important as data security at rest and simply
encrypting the data is not sufficient in many cases. Encryption does provide a baseline of
data confidentiality, however any adversary monitoring communication in real time can learn
information from the side-channels (such as size and timing of messages) [13]. In a federated
infrastructure where the system routes a reader/writer to a close-by resource, it becomes
possible for third party adversaries to pretend being such a close-by resource and either
performman-in-the-middle attacks or simply drop traffic (effectively creating a black-hole)—
a problem well studied in overlay routing schemes [14]. The two requirements—allowing
anyone to be a part of the network while preventing adversarial disruption of routing state—
would appear to be at odds, and a system should provide a solution or a workaround to such
conflicting goals.

• Publish-subscribe and multicast: The usefulness of a storage system increases exponen-
tially when communication is an integral part of the ecosystem; such ideas have been well
studied in economics of communication (network effect) [15]. Toward this goal, we believe
that publish-subscribe is an important paradigm of communication for a storage system that
enables composability of services and applications. It is equally important to have network
assisted secure multicast schemes for an efficient use of often limited network bandwidth.

A system that meets these high level requirements—security and locality being the two most
important—provides application developers a secure ubiquitous storage platform. Such a system
is general enough to support a wide variety of deployment scenarios: a service provider model
with high density of resources; private corporations with restricted data flows; predictable control
loops in industrial environments with explicitly provisioned resources; a data-center model similar
to the cloud; or any combination of such scenarios. We also argue that a federated architecture
brings openness to the platform; it allows participants to join the system on their own terms: they
could bring in their own infrastructure for private use, make the infrastructure available to others
in exchange for money, or use the infrastructure for services open to the world.

Not only is such a federated infrastructure better than stove-piped custom solutions, clear
interfaces that separate compute from state allow for a refactoring of applications for a better
security audit of the information—one can reason about the information flows by analyzing well
defined entry-points and exit-points of information in an application.

1.3 Refactoring the world around secure information
Inspired by this idea of a platform for secure ubiquitous storage, we explore the detailed architecture,
mechanisms and implementation of a widely distributed and federated storage and communication
infrastructure in this dissertation. We call this infrastructure the Global Data Plane (GDP). The key
abstraction in the GDP is a DataCapsule, which we introduce next.
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Figure 1.2: A DataCapsule as a digital equivalent of a freight container with standardized charac-
teristics that enable the infrastructure to handle it easily. Internally, a DataCapsule is a cohesive
container of information secured via cryptographic primitives.

1.3.1 DataCapsules: A container for information
A DataCapsule is a secure, globally named container of information. A DataCapsule represents a
sequence of transactions in a specific order with appropriate attribution to the origin of information.
A DataCapsule is a way for applications to maintain secure persistent state in portable form, i.e.
verifying the integrity and provenance of information requires minimal assumptions from the
infrastructure. DataCapsules are identified by a cryptographically derived flat 256-bit name;
this name serves as the cryptographic trust anchor for verifying the membership, integrity, and
provenance of information it contains. Further, the name of a DataCapsule is a location independent
name that is fundamentally decoupled from the physical infrastructure underneath, thus enabling
portability. This portability property for information security is the enabling feature for taming the
complexity of heterogeneous distributed systems.

The inspiration for a DataCapsule comes from freight containers: a concept that revolutionized
the cargo industry. A freight container provides a standardized way of transporting goods around
the world. Even though each container is handled by a number of different operators throughout
its lifetime, the contents are reasonably secure, trackable, and can be handled by the infrastructure
without worrying about specifics of what a container contains. Before the standardization of a
freight container, goods were typically shipped in loose sacks where they were prone to theft, loss,
and damage. Further, moving goods from one mode of transport to a different mode required
repackaging the goods, which was laborious. Freight containers simplified the transportation and
handling of goods. Similarly, DataCapsules enable the infrastructure to handle information securely
and migrate it elsewhere if needed.

The equivalence of a DataCapsule to a freight container breaks slightly in two important ways.
First, unlike physical items, making copies of digital information is rather straightforward. As
such, a DataCapsule can be replicated easily. When we refer to a DataCapsule, we don’t mean a
specific replica. Instead, the DataCapsule is a virtual object represented by a combination of all
the replicas. Second, unlike freight containers that are limited in physical size, there is no inherent
limit on the amount of information a DataCapsule can contain. A single DataCapsule can be just
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a few kilobytes representing a small document, or it can contain terabytes of data that represent
the output of a large scale physics experiment. The standardization that a DataCapsule provides
is in the form of interface to infrastructure to support DataCapsules as well as the interface for
applications. For a freight container, the fact that the physical dimensions, weight limitations, etc.
are well specified isn’t important in itself; instead, fixing such properties leads to a fixed interface
around which the infrastructure can be designed.

While the analogy of a DataCapsule to a shipping container has limits, thinking of information
handling in the form of containers enables a unified way of reasoning about information in-transit
and at-rest, even when such information transits through infrastructure owned and operated by
different stake holders. Just like freight containers, DataCapsules standardize a narrow interface
that is simple enough for the infrastructure to handle, yet sufficient for applications to use it.
The application interface for a DataCapsule is sufficiently narrow to enable both applications and
infrastructure to reason about the information and derive further higher level application-specific
properties.

In terms of interface to applications, a DataCapsule is primarily a single-writer append-only
data structure.4 For readers, DataCapsules support subscribing to new information, secure replays
at a later time (thus providing a time-shift property), and efficient random reads for old information.
Such an interface may seem limiting, but it is a natural fit for anything that can be represented
as a stream of information, e.g. an IoT device generating sensor readings, events such as financial
transactions, etc. Further, the DataCapsule interface is sufficiently rich to fulfill the needs of a wide
variety of general purpose applications.

An important consequence of being able to subscribe to new information in real-time (or in
a time-shifted manner) is that it enables a publish-subscribe mode of operation, which further
enables decoupling of a data producer from a consumer. A DataCapsule can thus be viewed
as a unidirectional communication channel. Since DataCapsules are designed for information
security, publish-subscribe mode benefits from the same information security for free. Thus,
DataCapsules enable a unification of data security at-rest with data security in-transit. Applications
can, if they wish, rely on DataCapsules for all state maintenance and communication with other
applications/services.

DataCapsules provide a narrow uniform interface to the heterogeneous infrastructure under-
neath. We provide a detailed discussion on the DataCapsule interface in the next chapter. But let’s
first see what the supporting infrastructure looks like.

1.3.2 The Global Data Plane: An ecosystem for DataCapsules
DataCapsules provide a way to refactor applications around information. The computation and
application logic generates and orders the information, whereas DataCapsules keep the information
secure in a consistent way. The physical infrastructure provides a backing for DataCapsules: it

4We consider the consequences of violation of the single-writer assumption when we discuss mechanisms in
chapter 3.
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Figure 1.3: The Global Data Plane (GDP) enables an ecosystem for DataCapsules. The GDP
provides maintenance of persistent state for applications and services via the DataCapsule interface.

makes the information persistent and available to others in a secure and verifiable way. We call our
implementation of the necessary ecosystem and infrastructure aroundDataCapsules theGlobal Data
Plane (GDP). The GDP is to DataCapsules what a distributed filesystem is to files. In addition to
providing persistent storage for DataCapsules, the GDP also exposes the underlying communication
fabric to applications that need it; we will explain this in later chapters of the dissertation.

Continuing with the analogy to a shipping container, the GDP can be viewed as the supporting
infrastructure that can handle standardized containers of information in the form of DataCapsules.
In the shipping industry, such infrastructure comprises trains, trucks, ships, cranes, and other
physical equipment owned and operated by multiple administrative entities. Similar to the way
providers in the shipping industry are hired for transportation (and sometime storage), the GDP is
designed with a focus on a utility-provider model of computing.5

In our utility/service provider model, users and applications package their data into DataCap-
sules, which are made durable and available wherever necessary by the service provider. Users
maintain either explicit or implicit economic relations with the service providers in exchange for the
services. To achieve greater availability and redundancy, a user may use multiple service providers
at the same time for the same DataCapsule.

An example of such a utility is already available to us in the form of the Internet. The Internet is
a utility enabled by a federation of Internet Service Providers (ISPs) who provide packet transport

5While the distinction between a ‘service provider’ and a ‘utility provider’ is thin and is used interchangeably even
in this dissertation, we prefer the term ‘utility provider’ with the rationale that a service can be arbitrary complex,
whereas a utility is a smaller, well defined task (or set of tasks). The GDP enables a decoupling of trust from
durability/availability and thus reducing the responsibilities for the infrastructure—it only makes sense that we use the
term utility.
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services. Users do not rely on ISPs for security; instead, they have various tools for transport
security at their disposal (e.g. TLS, HTTPS, VPN, SSH, etc.). In a similar way, DataCapsules
decouple security from durability and availability; while a DataCapsule interface enables security,
the concerns of durability and availability are left to the infrastructure. More importantly, durability
and availability are the only concerns the infrastructure needs to handle. As a result, users can
acquire both storage and communication services from GDP utility providers without trusting them
for data security.6

Other than enabling a utility provider model, the separation of security from durability and
availability has another benefit: it allows a writer to decide on the importance of durability bymeans
of policy specification, thus allowing for applications on both ends of the performance/durability
spectrum to use the same common interface—a high performance video feed that can tolerate a
small number of missing frames as well as a database where every individual transaction must be
made durable.

At a physical level, the GDP is a distributed system of heterogeneous storage and routing nodes;
storage nodes (called log servers) provide a physical backing for DataCapsule storage, routing
nodes (called GDP routers, or simply routers) perform secure data routing. The GDP organizes
resources based on ownership. The physical infrastructure is divided into various administrative
domains (organizations) based on resource ownership; an administrative domain could operate log
servers and play the role of a storage organization, or operate routers and create a routing domain,
or do a combination of both. A key component of the GDP is an underlying routing fabric called
the GDP network, which serves as the message transport layer for the GDP.

With a standardized DataCapsule interface, service providers may implement their systems and
infrastructure as they see fit. Service providers in the GDP are analogous to autonomous systems
(AS) in the IP world. Just like the current Internet, the GDP is enabled by collections of resources
owned by individuals, organizations, and governments. While we present the GDP design with a
public utility provider model as the most common scenario, this same model encompasses private
corporations or even individuals deploying resources for their private use.

Although motivated by the needs for secure ubiquitous storage, the GDP is not restricted to
resources on the edge and can readily be used for traditional computation scenarios. In particular,
GDP log servers and routers can be deployed on existing cloud infrastructure to enable seamless
integration of cloud with the edge or “fog". Such seamless integration enables the GDP to provide
an opportunity to use local resources at the edge wherever possible for low-latency access and using
cloud resources for durability.

6Service providers only see encrypted data, and we trust service providers not to leak such encrypted data to third
parties. If such a leak happens, either because of a malicious infiltration of service provider or because the service
provider itself acts maliciously, the reduction in data security is limited to the additional information revealed through
a side-channel analysis on size and timing of encrypted information.



CHAPTER 1. INTRODUCTION 12

1.3.3 Novelty claims of the GDP
Rather than designing a new system, could we modify existing systems and applications or use
a combination of existing tools to achieve the desired goal of making them work in a federated
environment and untrusted infrastructure? Often, when faced with such a question, application
developers present a simplistic viewpoint: ‘lets add encryption to an existing system’. Such a
viewpoint is very unsettling, since there are a variety of scenarios overlooked by just encrypting
individual data items; an approach like this leads to insecure applications in the worst case and very
specific point solutions in the best case.

A more acceptable approach is to use a combination of well defined tools as layers of abstrac-
tion, but it has two downsides. First, a naive combination of existing tools can often miss the subtle
requirements for such tool, leading to unsolved engineering challenges or broken systems.7 Sec-
ond, duplicated functionality across various layers of abstraction often leads to inefficiencies and
performance penalties; such inefficiencies become more pronounced for applications with small
data items that require strict performance guarantees (such as those involving tight-control loops).
It is our opinion that application developers benefit by having access to well-defined abstractions,
as opposed to being burdened with combining such tools themselves.

Even though application developers can use a combination of existing tools and technologies
to achieve similar functionality as the GDP, it is a burden on developers to use these tools correctly
and requires domain expertise in both computer security and distributed systems. By providing
standardization around information security that is suitable for a wide variety of applications, the
GDP rules out the need for ad-hoc combinations of tools. The GDP provides an infrastructure with
cross-layer optimization focusing on efficiency and a clean application interface, and providing a
high-level interface to be used by application developers.

In addition to standardization, the GDP focuses on multiplicity of resource ownership as well
as information ownership. Most existing ecosystems—especially ad-hoc systems created for a
specific environment—do not have to worry about the multiplicity of resource ownership; a single
administrator system has much more flexibility in design choices than the GDP. As an example, a
closed system can more easily enforce a centralized admission control policy to keep bad actors
out of the system. However, a system like the GDP must allow anyone to join the system, but still
contain the damage that bad actor can do. The generality requirement of the GDP forces us to
go back to first principles and keep a higher standard of security with minimal assumptions in the
operating environment.

The ‘secure ubiquitous storage’ challenge pushes architectural limits of distributed storage
system design, data security mechanism, and real-time communication. These sub-challenges

7As an example: imagine a widely distributed content distribution service S that provides read only copies of data,
similar to various existing commercial CDN services with the exception that S uses roadside cabinets for a true edge-
computing style operation as opposed to traditional CDNs that still adopt a data-center approach with restricted physical
access. A seemingly simple deployment of HTTPS with session reuse (for performance) can be quite challenging to
implement in a way that compromise of a single machine does not result in compromise of the entire infrastructure,
especially in a world where certificate revocations are poorly implemented.
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must be solved together. The GDP, however, is inspired by many existing systems. Let us take a
brief look at some broad classes of systems that we borrow ideas from.
Secure storage: A number of existing storage systems provide a high-level interface to the end-
users in the face of untrusted storage servers. The exact interface varies across various systems,
e.g. SUNDR [16], Oceanstore [17], and Plutus [18] provide a filesystem interface on untrusted
storage servers; CryptDB [19] provides a database interface; Depot [20] provides a key-value store
interface; Antiquity [21] provides a log-based interface; and so on. Additionally, a number of
existing systems have specific goals in specific environments; SiRiUS [22] targets users that cannot
modify remote storage server; CloudProof [23] aims to hold cloud storage servers accountable for
violating data security; and so on. The general mechanisms for such systems fall in two broad
categories: cryptographic solutions that rely on possession of keys and validations of cryptographic
proofs,8 or fault-tolerant distributed systems that assume that a certain fraction of storage servers to
be honest at all times.9 The GDP architecture falls in the former category, which allows us to use
an efficient leaderless replication algorithm and avoid communication penalties associated with the
architectures in the latter category.
Secure communication: For enabling secure communication between two endpoints in the pres-
ence of network level adversaries, a number of high-level tools provide ‘secure channels’; e.g.
IPsec/VPN for generic secure tunneling service, SSH for secure shell and other tunneling appli-
cations, TLS/DTLS for securing other protocols such as HTTP, SMTP, etc. However, all of these
high-level tools assume that the endpoints at the secure channel are trusted, and usually only work
well with a unicast scheme. We borrow ideas from such existing tools: the GDP protocol effec-
tively provides a unidirectional secure communication channel for log operations and uses some
mechanisms similar to TLS; GDP routing domains have few similarities to the core concept of a
VPN.
Publish-subscribe systems: Publish-subscribe (pub-sub) style communication enables decoupling
data producers from the consumers, and has been widely recognized as a useful design pattern for
enabling composability and micro-services in Internet of Things (IoT) [27]. In addition to pub-sub
systems to handle the high volume of data in trusted single-administrator environments (e.g. Apache
Kafka [28]), a number of scalable Internet-wide pub-sub systems also have been devised (see [29]
for an overview). However, there are a number of security issues that a scalable multi-administrator
pub-sub systemought to consider (for an overviewof security challenges, see [30]). TheGDPadopts
the pub-sub mode of operation to achieve a high level of composability. In addition to subscribing
to real time data, a reader can also read old data in bulk efficiently—something that only a few
single administrator systems consider but without any end-to-end data integrity guarantees [28].

8Examples of cryptographic tools are: Digital signature by a writer that allow a reader to verify the integrity of a
blob of data; Authenticated Data Structures (ADSs)—such as Merkle Hash tree—that generalize this to a data structure
and enable a reader to verify data integrity by means of a proof; encryption that can be used for data secrecy; and so
on. [24]

9The basic building blocks used are primarily solutions to the Byzantine Generals’ Problem; examples include
PBFT [25], A2M-PBFT [26], Byzantine-Paxos, Blockchains, etc.
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The GDP as a system does fill some gaps in what one can do with existing systems. Notably,
the GDP provides (1) a widely distributed storage infrastructure; (2) minimal security assumptions
from the infrastructure underneath that does not have a centralized authority and is partitioned into
a large number of administrative domains just like the Internet; (3) support for real-time operations,
i.e. a native communication platform. Rephrasing, the design of the GDP aims to achieve three key
properties: (1) distributed storage, (2) security, and (3) real-time communication.

The GDP aims to achieve the best in all these metrics by targeting a relatively unexplored
design point: a secure DataCapsule interface directly exposed to writers/readers with a separation
of security from durability and availability. We adopt the DataCapsule as a first class data structure,
where the primary task of the infrastructure is to make DataCapsules durable and available to
appropriate readers. This design paradigm enables us to use a leaderless replication algorithm
allowing for a quick path between a writer and a reader for real-time pub/sub mode of operation.

1.4 Research questions and tasks
We organize our work into two high level research tasks that we introduce here. This specific
organization is not because these tasks are completely independent of one another, but because
each of these tasks targets a specific functionality that can be analyzed and evaluated independently.
Further, separating the tasks this way forces us to design our components in a somewhat modular
way. Even though we solve these problems in the context of our specific system, we believe that
the ideas and the results can be applicable to other systems that demand similar requirements.
Task 1 Design ofDataCapsules to be transportable over a federated infrastructure, while providing

integrity and provenance for every single bit of data and enforcing the ordering relationships
between such bits.

First and foremost, this task involves API specification of DataCapsules for writers, readers, sub-
scribers, and the infrastructure in the presence of a threat model where the infrastructure is only
trusted for service, but not for security. We discuss these interface level details in chapter 2. In
chapter 3 and chapter 4, we discuss the internal design and engineering required for the DataCapsule
vision. We specifically try to address three sub-challenges: (1) design of an efficient DataCapsule
that enables a user to achieve application-specific performance/durability goals while preserving
data-integrity; (2) design of an efficient leaderless replication strategy with suitable consistency
guarantees that works well when a DataCapsule is placed in a distributed infrastructure; and (3)
design of a secure communication protocol that translates the operations on a DataCapsule to bits
on the network.
Task 2 Design of a secure routing network with flat address-space that serves as the enabler for a

federated, service-provider model of infrastructure deployment.
This task involves the design of a scalable and secure communication fabric that provides a
datagram based interface for communication between cryptographic principals using primitives
such as unicast, anycast and multicast, while respecting administrative boundaries and locality. We
call this communication fabric the GDP network. We describe the interface briefly in chapter 2. We
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discuss the design and engineering in chapter 5 and chapter 6, where we describe the mechanisms to
address the two main challenges (1) secure unified mechanisms for advertisements, and (2) routing
across administrative domains while providing transitive proofs of routing delegation.

We should emphasize that the contributions of this dissertation is not merely solving these two
research problems as independent units. Instead, the key contribution of the dissertation is the
design of a comprehensive system whose viability happens to depend on addressing these two key
problems.
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Perspectives

A group of blind men heard that a strange animal, called an
elephant, had been brought to the town, but none of them
were aware of its shape and form. Out of curiosity, they
said: “We must inspect and know it by touch, of which we
are capable". So, they sought it out, and when they found it
they groped about it. In the case of the first person, whose
hand landed on the trunk, said “This being is like a thick
snake". For another one whose hand reached its ear, it
seemed like a kind of fan. As for another person, whose
hand was upon its leg, said, the elephant is a pillar like a
tree-trunk. The blind man who placed his hand upon its
side said the elephant, “is a wall". Another who felt its
tail, described it as a rope. The last felt its tusk, stating the
elephant is that which is hard, smooth and like a spear.10

The Global Data Plane means different things to different stake holders, depending on what aspect
of the system they are interested in and how they use it. But primarily, it allows decoupling of
concerns. Let’s see how.

• For infrastructure owners, the GDP enables decoupling of data security from service
availability; the GDP provides infrastructure owners with a way to offer their services to other
users without necessarily having to worry about data security on their own. While standard
operational procedures should be followed for maintaining system security, providing GDP
service enables infrastructure owners to convince their users that an infrastructure breach
does not compromise users’ data.

• For application developers, the GDP is a useful middleware that enables decoupling of infor-
mation from infrastructure by providing a secure information centric abstraction. The GDP
enables application developers to simplify design of complex applications by working at the
abstraction of uniquely named streams of information. More importantly, this simplification
does not come at the cost of security.

• For end users, the GDP provides a way to have better control over their data for privacy
and performance by decoupling deployment/execution from application development. While
application developers design applications, in many cases, they are deployed and executed

10 A famous Indian fable. Illustration from ‘Martha Adelaide Holton & Charles Madison Curry, Holton-Curry read-
ers, Rand McNally & Co. (Chicago), p. 108’. Text from https://en.wikipedia.org/wiki/Blind_men_and_an_elephant.

https://en.wikipedia.org/wiki/Blind_men_and_an_elephant
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by end users, e.g. IoT sensors. By designing applications in a way that GDP names can be
provided as runtime parameters, the GDP enables enough controls for end users to get the
desired security and performance from the system by selecting which parts of the global
system ought to be used for servicing specific data, presumably by selecting appropriate
service providers.

TheGlobalData Plane aspires to solve interesting research challenges and provide rich opportunities
in various domains. Let’s see how.

• For distributed systems’ researchers, the GDP demonstrates how to make a distributed
system work in a federated ecosystem where infrastructure is owned and operated by a
number of real world entities that do not necessarily trust each other. Many existing big-data
systems are designed to work within a single administrative domain—most often limited to a
single data-center—and it is not straightforward to handle situations where either resources,
or data, or both are owned by multiple stake holders.

• For security researchers, the GDP demonstrates how to design a secure platform with
minimal trust among participants, where the only rationale for various parties to coordinate
is an explicit economic contract. Further, it shows how to unify data security at-rest with data
security in-transit—something that’s especially important to handle dynamically evolving
information streams. We take a less than idealistic view of the world from a security
perspective; while many problems we work on are considered solved security problems, they
still are commonplace in the real world. The GDP explores how to mitigate these problems
with a better system architecture.

• For application researchers, the GDP provides opportunities to refactor their applications
around trust in data (and not physical hosts) by using a verifiable information stream. Further,
it gives them opportunities for designing new applications that provide privacy by design.
The GDP provides a platform that enables development of applications that combine the best
of both worlds—using the resources close-by for achieving low latency and using the cloud
for the practically infinite pool of resources. The security guarantees provided by the GDP
enable new applications.
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Chapter 2

DataCapsules and the Global Data Plane

In the previous chapter, we presented a motivation for DataCapsules and a system like the GDP. In
this chapter, we first provide a motivating application example that guided the initial design of the
GDP and DataCapsules. We then describe the threat model that the overall system (the GDP and
DataCapsules) address. Based on the motivating example and the threat model, we then provide
a gentle introduction to the proposed architecture—what is the user interface, what it means for
an application developer, what is the role of system administrators and service providers, etc. In
addition, we formally define various concepts that we will be using for the rest of this dissertation.

This chapter should give a sufficient overview of the system for a reader without necessarily
going into details of internal mechanisms. We discuss internal mechanisms in later chapters. Also
note that this chapter merely describes how the overall system looks like to users, application
developers, and administrators. We discuss the in-depth rationale for our design choices for
DataCapsules and the GDP network in next few chapters.

2.1 The GDP and DataCapsule for Internet of Things (IoT)
In this section, we describe an application model for the Internet of Things (IoT)—one of the
motivating applications that guided our initial design of the interface that theGDP andDataCapsules
provide to users. Later in this chapter (section 2.5), we describe our experiences with real-world
deployments and actual users for DataCapsule-based IoT applications.

IoT applications deal with a wide variety of sensors continuously generating data and actuators
consuming actuation commands; such data requires secure long-term preservation and a secure
transport. Such use cases benefit from the availability of a secure ubiquitous storage platform like
the GDP, and can use the single-writer append-only DataCapsules directly (also see Appendix A).

Recall from the previous chapter that a DataCapsule is primarily a single-writer append-only
data structure. For readers, DataCapsules support subscribing to new information, secure replays
at a later time (thus providing a time-shift property), and efficient random reads for old information.
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Figure 2.1: (a) A logical view of the single-writer DataCapsule when used in the context of Internet
of Things (IoT). The DataCapsule provides an analogy of a pipe with an attached bucket. A sensor
appends data to a sensor-DataCapsule which is consumed by an application, which processes the
sensor data and writes it to an actuation-DataCapsule. An application developer does not need to
interact with physical devices; instead the DataCapsule provides a virtual device with associated
history. (b) The actual physical view of the DataCapsule, where a log server physically stores data
and multiple readers can subscribe to the same DataCapsule.

Keeping the single-writer append-only model of a DataCapsule in mind, sensors are assigned
their ownDataCapsules at the time of sensor provisioning. Each sensor appends the data it generates
to the associated DataCapsule, thus making a DataCapsule the only interface to the rest of the world
for the sensor. Similarly, each actuator is subscribed to an actuation DataCapsule from which it
gets the actuation commands. The designated single writer of the actuator DataCapsule is either a
pre-configured application, or a service representing the actuator (See Figure 2.1).

2.1.1 Benefits of using DataCapsules
A DataCapsule interface makes dumb sensors and actuators significantly more functional. Low-
power sensors usually only generate data, but can’t answer any queries. If data values are written
to a DataCapsule by such sensors, the DataCapsule can be used as a proxy that supports a much
richer set of queries, especially for historical data. A subscription to such a DataCapsule provides
the latest sensor values in almost real time, thus virtualizing the sensor in some sense. Actuators,
on the other hand, usually need to maintain some kind of access control – by physical isolation,
some authentication method, or a combination of both. Instead, if an actuator were to subscribe to
an actuation DataCapsule to read the actuation commands as we described, access control could be
implemented at the DataCapsule level. This makes actuator design simpler and avoids the pitfalls
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Figure 2.2: An example building-automation solution, where physical sensors and actuators are
represented by DataCapsules to applications. Each application can have multiple input/output
DataCapsules, including those representing external data sources. Each sensor DataCapsule can
be subscribed by multiple applications as well.

of ad hoc authentication mechanisms hastily put together by hardware vendors. Long term retention
of actuation commands also provides accounting of actions performed.

Further, there’s no need to expose the physical devices with potentially questionable standards
of software security to the entire world, while still being able to connect things together. This is
especially important because it takes the burden of implementing security off the device vendors’
shoulders. All a device manufacturer has to do is publish data to a DataCapsule (in case of a
sensor), or subscribe to a DataCapsule (in case of an actuator).1

Representing sensors and actuators with DataCapsules separates policy decisions from mecha-
nisms, enabling cleaner application designs. Applications can be built by interconnecting globally
addressable DataCapsules, rather than by addressing devices or services via IP addresses. Further,
with applications running inside containers (Docker [31], [32], Intel SGX enclaves [33], and so
on), forcing data-flows in and out of the container through DataCapsules enables any filtering at the
DataCapsule level (for example, access control). Last but not least, the narrow waist provided by
globally addressable DataCapsules avoids stove-piped solutions and provides for a heterogeneous
hardware infrastructure.

2.1.2 An example IoT application
Let’s see a sample IoT application—a smart building—and see how DataCapsules enable a cleaner
design compared to traditional custom ad-hoc solutions. Imagine a combination of generic off-
the-shelf environmental sensors and actuators to create a customized building-automation solution
to turn on lights, adjust air-conditioning, etc. One would also like to view long-term trends to

1Of course, the devices do need to include some functionality for interacting with DataCapsules, but this is rather
small common piece of code across a wide variety of devices.
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understand various patterns and the typical state of the building in a given season. We deployed a
number of sensors in a machine room that write data to their individual DataCapsules; such data
was used for anomaly detection (such as partial air-conditioning failure) as well as for a web-based
visualization tool to understand the general state of the machine room.

Such an application really illustrates the power of composing sensors and actuators. A con-
ventional application design would use a pub-sub mechanism to make the data from one sensor
available to multiple subscribers. Further, the data from sensors must be stored somewhere for
analysis later. To accurately perform any modeling of building’s behavior, it is also important to
record the state of actuators and any actuation decisions. Using custom ad-hoc pub-sub and storage
leaves questions of data integrity—both in-transit as well as at-rest—unanswered. Further, any bad
data injected into an ad-hoc design is almost impossible to detect later.

A typical cloud based pub-sub solution, as proposed by for example AWS IoT [27], requires
(1) reliable and fast internet connection, (2) explicit access control on actuation, and (3) additional
work to save the data securely for offline analysis. On the other hand, a DataCapsule based design
enables a rather straightforward design with a comprehensive data security model while ensuring
that the building administrators also own their data (see Figure 2.2). Using DataCapsules enables
the application to not worry about integrity of data or access-control issues at the device level.
In addition, with appropriate credentials for reading, any application can perform analysis of, say
energy consumption in a building, at a later time. In general, any application that can be represented
as a static graph of interconnected components can be directly translated to DataCapsule.

2.2 Threat model: Decoupling security from availability
In this section, we describe the general threat model that the GDP together with DataCapsules
attempt to address. This is only a broad overview of threat model for the entire system (the
GDP network and DataCapsules), and we discuss the threat model that individual components are
designed to protect against in later chapters.

Throughout the dissertation, we adopt typical assumptions for security of cryptographic con-
structions (secure hash functions, digital signatures, symmetric and asymmetric encryption), and
that an adversary doesn’t have infinite computation power to launch brute-force attacks against
such constructions. Another assumption is that various entities protect their secret keys. The
GDP and DataCapsules do not provide sufficient protection in case of compromised keys of users,
administrators, or other infrastructure components.
Security goals, i.e. what does ‘data security’ mean? The key goal of the GDP is to keep data
secure in presence of untrusted infrastructure. Our data security goals are at least three fold: (1)
confidentiality, i.e. no information should be leaked to anyone other the authorized producers and
consumers of information; (2) integrity, i.e. nobody other than the authorized producer/consumer
of the information should be able to alter the information in any way without being detected; and
(3) provenance, i.e. every bit of information can be traced back to the producer of the informa-
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tion.2 DataCapsules directly enable integrity and provenance, and enable applications to achieve
confidentiality by providing support for encryption.

A Trust in the writer and the owner of DataCapsule

Readers of a DataCapsule trust the designated single writer of the DataCapsule. If the single
writer intentionally or accidentally corrupts the state of the DataCapsule (either the contents
of DataCapsule itself, or the ordering of the updates), then readers don’t have a remedy for such
corruption. As we will describe in section 2.4, the single writer is also responsible for keeping some
information locally about the state of the DataCapsule. If the writer violates these assumptions,
then the readers still get a verifiable assurance from the infrastructure that the writer is the culprit
to be blamed for such behavior.

Somewhat similarly, the owner of a DataCapsule is trusted tomake appropriate policy decisions.
These policy decisions include, but are not limited to, choosing trustworthy service providers that
will provide the desired quality of service, and setting policy decisions for whether a DataCapsule
must be visible only within a subset of the infrastructure, or visible globally, or something in-
between; etc.3

Finally, readers are expected not to leak information to unauthorized parties. However, malicious
readers can only violate the confidentiality property but not the integrity or provenance.

B Distrust in the infrastructure

Broadly, the infrastructure is not trusted for data security. Even if the infrastructure operators start
actively attacking their own users, data security is not compromised. However, the infrastructure
is trusted for making the negotiated service available; such negotiations and their enforcement is
performed out-of-band via economic and legal frameworks. In case the infrastructure operators act
maliciously, or in case of an adversarial infiltration, the worst that can happen is a service outage.
Security of stored information: A log server that stores a DataCapsule replica may engage in
malicious behavior and may accept bogus writes from unauthorized writers; modify or reorder
stored data to violate the integrity properties; may attempt to use the contents of individual data
items for other purposes thus violating data confidentiality; may respond with bad data to the
readers; or engage in any other similar behavior that corresponds to deviation from the protocol
or violation of data integrity and/or confidentiality. Regardless of malicious behavior from log
servers, data security is not compromised.4

2As an example in real world: Alice sends a text message to Bob. ‘Confidentiality’ means that nobody other than
Alice and Bob know the contents of text message; ‘integrity’ means that Bob can assert that the contents of the text
message hadn’t been changed by an intermediary; and ‘provenance’ means that Bob can verify that the text message in
fact was generated by Alice and not an adversary Eve pretending to be Alice.

3It is certainly possible for the policies to be too restrictive that result in unavailability of services. A real world
example of ‘too restrictive’ policy would be that in a small home network, the only available ISP is not to be trusted
for routing information, thus resulting in the information being locked inside the home network.

4Returning bad data on read requests, however, amounts to the service provider not providing the promised service.
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Security of information in transit: The underlying GDP network provides a datagram transportation
service, but it does not provide generic transport-level security of information. Users must connect
only to trusted service providers; malicious service providers can do practically anything with the
datagrams that are either generated by or are intended for their users. The very limited guarantees
for routing security that the GDP network provides is that an adversary cannot influence the com-
munication path between an arbitrary pair of GDP endpoints.5 However, when information transits
through the GDP network wrapped inside a DataCapsule (or a subset of DataCapsule), the addi-
tional DataCapsule-level protections still apply to ensure that the information in the DataCapsule
is secure.
Isolation from other users: We assume that service providers enforce appropriate isolation for
shared resources; one user should not be able to infer any information about any other user that is
being served by the same log server, for example. However, if such isolation is not maintained,
a malicious user cannot compromise data security beyond the information leaked through side-
channels.
Service availability and data freshness: An important concern is that of data freshness: instead of
returning bad data, a log server may return stale data even when the client asks for latest data—such
behavior may be malicious or accidental (when a replica is, in fact, running behind). A client, by
itself, does not have a good way of detecting staleness of data; however GDP mechanisms provide
for creation of separate freshness services via heartbeats. If an individual node (log server, router,
etc.) is behaving maliciously but there are alternate nodes that are available and reachable, the
GDP architecture allows for a client to retry and get the desired service by connecting through a
different part of the infrastructure.6 In the worst case, when there are no alternates available, the
client can still detect violation of data integrity. However, the federated architecture of the GDP
allows a client to use multiple service providers at the same time and have a workaround for service
availability when an entire administrative entity goes rogue.
Scope of protection from side channels: An important exception to security guarantees from the
infrastructure is that even though operators can become curious and look at contents of individual
messages, they are trusted to not engage in sophisticated side-channel attacks on data confidentiality
by observing access patterns and time or size of messages.7 Additionally, GDP routers are trusted
to provide locality of access wherever possible. Any poorly configured or intentionally faulty router
violating policies for locality of access does not directly compromise data integrity/confidentiality
and a client can hold a service provider accountable for not meeting the desired performance
requirements.

5In other words, the GDP network does not protect against on-path adversaries, and it merely ensures some
protection against off-path adversaries. On-path adversaries can analyze traffic or tamper with it at will. However,
off-path adversaries cannot corrupt the state of the network and insert themselves in the communication path of an
arbitrary pair of GDP endpoints (which could further lead to man-in-the-middle attacks, for example).

6To illustrate, if there is only a single copy of the data (based on client policy specification) and the log server
that stores data maliciously corrupts data, such data is permanently lost. Similarly, if a client is connected through a
malicious router which is the only path to the rest of the infrastructure, the client may have all of its messages corrupted.

7Note that if user A and user B have delegated routing functions to service providers RA and RB respectively, then
both A and B need to trust at least both the service providers—RA and RB for not engaging in such traffic analysis.
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C Untrusted third parties

Broadly, third parties may attempt to do practically anything to compromise the security guarantees
that the GDP and DataCapsules provide. As such, the GDP and DataCapsules must provide a
strong defense against such adversaries.

The federated nature of the GDP allows anyone to join the system and start operating their
own routing domain or storage organization, as long as they provision appropriate resources. This
makes it easy for malicious entities to appear and disappear at will and acquire a different name
each time they come up. Thus, third party adversaries include not just individual rogue attackers
but also infrastructure owners that don’t have anything to do with hosting or servicing/transiting
requests in any way for a given DataCapsule. Further, the utility provider model means that
malicious actors may create short term economic contracts with specific service providers with
the sole purpose of attacking benign users served by the service provider. Third parties may also
attempt to impersonate the designated infrastructure providers, or attempt to corrupt the state of
honest infrastructure providers by pretending to be an authorized client requesting service. The
GDP provides protection from all such attempts by third party adversaries.

Especially for the case of routing functionality, third-party adversaries may attempt to corrupt
global routing state by pretending to provide a better access to the resources (say, a close copy of
data nearby). Note that any network level adversary, that just happens to be in the path between
a given source and a destination, can still observe traffic flows and deduce critical information.
However, the GDP network architecture ensures that information can be routed only via explicitly
trusted paths, and thus it is not possible for an adversary to inject itself at will in the communication
path between an arbitrary pair of endpoints.8 We elaborate this in more detail when we discuss the
threat model specific to the GDP network.

However, if a DataCapsule owner decides to make the DataCapsule publicly available, third
parties can in fact examine encrypted information and potentially get some side-channel information
on the mere existence of information, as well as size and timing of updates to the information—the
GDP and DataCapsules do not provide any defenses for such public DataCapsules.

2.3 The Global Data Plane: An overview of infrastructure
In the GDP, the key organizing principle for infrastructure is that of resource ownership. Just
like in real world, using ownership as the organizing principle in the GDP enables a very clean
way of identifying stake holders.9 Based on resource ownership, the infrastructure is divided into

8If an adversary were to be able to inject itself in the communication path of an arbitrary pair of GDP endpoints,
such adversary can: (1) observe all traffic and perform side-channel attacks based on the size and timing of information,
(2) tamper with traffic (including reordering and replaying of information), or (3) drop all traffic altogether. In a system
like the GDP, even something as naive as (1) can lead to an adversary being able to, for example, enumerate all clients
that interact with a DataCapsule, leading to a privacy disaster.

9Subtle issues, for example privacy, are extremely dependent on policy which is hard to codify in a computer-
readable form. Instead, we tackle a different problem: codify the resource ownership in a computer-readable form, and
make users choose specific resource owners that they want to interact with based on out-of-band negotiations.
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Figure 2.3: An organizational view of the GDP.

organizations; these organizations are somewhat analogous to administrative domains as used in a
number of other systems and real-world organizations. Organizations in the GDP can decide their
internal policies in the way they want, but they still interact with other organizations by adhering
to a well defined interaction framework; in this way, these organizations also bear a resemblance
to Autonomous Systems (ASes) in the Internet. In the real world, these GDP organizations can be
operated by governments, municipalities, for-profit/non-profit organizations (both large and small),
and even individuals (see Figure 2.3 and Figure 2.4).

Just like DataCapsules, such organizations are identified by a unique flat 256-bit name. In fact,
all addressable entities in the GDP have a cryptographically derived flat 256-bit name. We call these
names asGDP names.10 In the GDP, anyone who can provision resources can start an organization;
this makes the GDP an open federated system for anyone to join. All that a new infrastructure
operator needs to do other than provisioning resources is to create a GDP name for the organization.
To create a GDP name, the infrastructure operator first creates a cryptographically signed list of
key-value pairs called metadata. The GDP name is then ‘calculated’ as the cryptographic hash of
this metadata.11 This metadata describes immutable information about the corresponding entity.
A required item in this key-value list is the public signature key of the principal, the private part of
which is used to sign the metadata and kept safe by the infrastructure operator.

The ownership relation between an organization and the resources it owns (which themselves
have their own unique 256-bit names) is specified cryptographically in the form of OwnCerts. An
OwnCert is a type of delegation granted by a domain administrator to a resource (e.g. a physical
host), and allows the given resource to claim that it is operating on behalf of a specific organization.

10Examples of such addressable entities are: DataCapsules, readers, writers, log servers that provide the physical
storage for DataCapsules, GDP routers that route GDP traffic between various entities, and even organizations.

11Unless otherwise specified, ‘hash’ refers to a SHA256 hash function throughout the dissertation.
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Figure 2.4: A more elaborate organizational and physical view of the system.

Broadly, delegations are cryptographically signed statement linking two (or more) GDP names
and represent a specific type of responsibility or authorization granted by an issuer to one or more
issuees; such issuers and issuees are represented by their GDP names.12 The issuer uses the private
key associated with its GDP name to sign such statement, thus making the GDP names a trust
anchor that anyone can use to verify such delegations. Delegations are managed and stored by the
recipient (issuee), and presented to others whenever needed.13 The flat cryptographic names serve
as a trust anchor to verify relationships—encoded in the form of delegations—between various
physical entities without relying on trusted third parties such as traditional hierarchical certificate
authorities.

An organization can provision resources either for its private use, or make them available to
others—enabling a service provider model.14 The service provider model of the GDP assumes that
users enter into economic agreements with infrastructure operators to obtain services. Thus, these
organizations enable what we loosely call as a ‘trust domain’. Contrary to what the name might

12We use four different types of delegations in this dissertation: OwnCert, JoinCert, AdCert, and RtCert. We
will describe them in detail as we go along.

13A delegation is like a passport, where the issuer asserts that it has vetted the issuee in some way. Because
delegations are cryptographically signed, a malicious issuee cannot forge a bogus delegation. A malicious issuer can
certainly issue bogus delegations, but because it is the issuee that must present a delegation to authorize itself in a
given context, honest issuees can simply ignore bogus delegations.

14Note that a service provider model is a generalization where there are at least two distinct roles: the owner and the
user. With such a model, reasoning about resources deployed for private use essentially means that the role of owner
and user are played by the same entity.
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Figure 2.5: A logical view of the system with the GDP network at the core.

suggest, a trust domain is trusted only for maintaining infrastructure and providing some service;
trust domains are not blindly trusted for the actual security of information. We use the terms ‘trust
domain’ and ‘organization’ interchangeably.15

Individual organizations could specialize in providing a specific type of service. There are two
important types that we will describe shortly: ‘storage organizations’ that specialize in providing
storage services and operating log servers, and ‘routing domains’ that specialize in providing
communication services and operates GDP routers.

A Routing domains: Providing communication as a service

Routing domains are organizations that specialize in providing message transport as a service; they
are somewhat equivalent to Internet Service Providers (ISPs) in the current Internet. Collectively,
all the routing domains constitute the message routing fabric called the GDP network that is at the
core of the GDP. The GDP network enables message delivery between various entities by using
their location independent flat 256-bit GDP names (see Figure 2.5). At a very high level, the GDP
network provides an interface similar to a datagram oriented communication much like UDP, except
that datagrams handled by the GDP network use GDP names instead of IP addresses and provide a
number of security guarantees that traditional IP networks lack.

The GDP network is influenced by the traditional IP infrastructure in many ways. The GDP
network can be partitioned into routing domains in the same way as the IP network can be

15To be specific: organizations are ownership domains that enable a trust domain. In this context, a trust domain
is a set of infrastructure trusted for service availability in exchange for money, and is enabled by an organization (or a
number of organizations cooperating with each other) acting as a service provider.
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partitioned into Autonomous Systems (ASes). At a physical level, the GDP network is essentially
an interconnect of GDP routers—an equivalent of typical IP router—owned and operated by
various routing domains. Similar to ASes, routing domains maintain border GDP routers and
internal GDP routers (see Figure 2.4). Routing domains not only provision GDP routers, but
also provide supporting infrastructure and ensure connectivity with other routing domains. The
simplest routing domains may be stand-alone independent domains that rely exclusively on overlay
routing by creating direct TCP connections to other routing domains when they need to reach remote
resources. More complex and extensive routing domains may enter into peering agreements similar
to IP routing.16

To join the GDP network, a user finds a GDP router belonging to a routing domain of choice
and securely advertises one or more GDP names into the GDP network.17,18 Users can indicate
policies on scope of their names—whether such names be made available globally or restricted to
subset of the GDP network, etc. GDP routers then propagate the advertised GDP names in the
GDP network appropriately. On behalf of users, GDP routers deliver datagrams to appropriate
destinations by using overlay routing techniques to find the most optimum path between a given
pair of addresses.

The GDP network differs from the IP routing in a significant way: as opposed to IP networks
where typically the network temporarily leases addresses to participants, GDP names are created
and permanently owned by users who created them. Such name ownership is defined by possession
of private key corresponding to the public signature key included in the metadata used to construct
the GDP name in question. A user can advertise its own name in the GDP network together with
names on behalf of others; however, it must cryptographically prove to the GDP network that it
either owns the name or that it has a delegation from the owner of the name to advertise such a
name. This ensures that malicious adversaries cannot claim to possess arbitrary names and launch
routing attacks by corrupting the routing state of the network; we call this as the delegated secure
flat routing scheme and describe it in detail in later parts of the dissertation.

Routing domains that provide services to end users are analogous to Internet service providers,
except that they provide routing between GDP names and not IP addresses. Similarly, there may
be routing domains that act as transit providers and enable connectivity between other routing
domains. Depending on the ownership of a routing domain and its intended purpose, it could
either be open for anyone to join or be restricted to specific participants. Private domains that
only allow a limited set of participants are a crucial feature to enable control on resources; such
private domains require that anyone attempting to join a routing domain present a delegation by

16In this dissertation, we primarily demonstrate our mechanisms using the former type of domains, since this is
more favorable to an overlay network and directly applicable to a GDP network implementation in the existing Internet.
We then briefly describe how to extend such model to the latter type of routing domains that demand native peering.

17Here, a user is any active process that is interested in initiating or receiving communication. A DataCapsule is
not a user because it is not an active process. Instead, a log server that hosts a DataCapsule is the user that advertises
the GDP name for the DataCapsule along with its own name.

18Usually the choice of routing domain is directed by trust, economic relationship, or other administrative factors.
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Figure 2.6: User interface to the GDP and DataCapsules. Users can use the native DataCapsule
interface directly (see subsection 2.4.1), or they can use higher level abstractions built on top of
DataCapsules (see subsection 2.4.2), or if need be they can directly tap into the underlying GDP
network (see subsection 2.4.3).

the domain administrator. This kind of a delegation is essentially a cryptographic authorization to
join the given domain, and is only granted to valid clients.

B Storage organizations: Providing persistence as a service

Storage organizations are broadly tasked with persistent storage for DataCapsules. They accept
and validate write requests, make information durable, and service read requests from authorized
readers. To enable such persistent storage, storage organizations provision and operate log servers.

A log server stores a DataCapsule replica. It advertises for the DataCapsules it hosts in the GDP
network, and serves write and read requests from appropriate writers/readers. It also communicates
with other log servers to ensure that it is in sync with other DataCapsule replicas (which may be
stored by log servers belonging to other storage organizations). A single log server may host a
replica for many many DataCapsules depending on the availability of local resources. Log servers
are free to choose the on-disk data representation for DataCapsules as they seems fit. Such choices
are implementation specific. For an arbitrarily large DataCapsule, a log server may not be able
to hold the entire contents locally. However, given that a DataCapsule is an append-only data
structure, the log server may offload older parts of DataCapsules to remote machines to enhance
scalability. Such scalability concerns are internal to a storage organization’s operations, and we
don’t discuss such details in this dissertation.
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The task of infrastructure operated by storage organizations is to make information durable,
and not police the order of updates. As long as an update meets the admission control criteria
for a DataCapsule (typically a valid signature as we will describe shortly), the infrastructure may
not permanently reject the update.19 Doing so would be a violation of the agreement between a
DataCapsule owner and the service provider. A service provider must ensure that such violations
are minimized by provisioning sufficient capacity, bug-free software, etc.

DataCapsule owners explicitly delegateDataCapsule storage to one ormore storage organization
by using delegations called AdCerts. Such explicit delegation has two implications: (1) it allows a
user to make economic contracts with service providers and/or hold them accountable if the agreed
upon requirements of performance, locality, and durability are not met; and (2) it allows log servers
operating on behalf of storage organizations to prove to the GDP network that they are in fact
authorized to advertise names for the given DataCapsule.

2.4 Applications’ view of DataCapsules and the GDP
Recall from chapter 1 that DataCapsules provide stable state to applications. Applications devel-
opers must only concern themselves with the DataCapsule API, whereas infrastructure operators
(administrators) are responsible for providing service. In this section, we first describe the interface
for direct interaction with DataCapsules. Then, we describe higher level services and interfaces that
go beyond the native DataCapsule semantics, as well as the interface provided by the underlying
GDP network for applications ( Figure 2.6).

2.4.1 Native DataCapsule user interface
A DataCapsule is a cohesive information container identified by a location independent flat 256-bit
GDP name. At a data-structure level, a DataCapsule is an ordered list of immutable records; a
record is a variable sized read or write to the DataCapsule.

A DataCapsule is a single writer data structure that supports ‘append’ as the only mode of
writing. An ‘append’ operation adds new records to the DataCapsule. The single writer is
responsible for both the contents and the ordering of updates in a DataCapsule. There can be
multiple readers that can perform random reads for old data, or they can ‘subscribe’ to updates.
‘Read’ fetches existing records by addressing them individually or by a range, while ‘subscribe’
allows a client to request future records as they arrive.

The readers, subscribers and (single) writer of a DataCapsule are collectively referred to as
clients. Clients do not need to worry about placement or other policy decisions for DataCapsules;

19In other words, properly formed update requests may only fail with a ‘Service Unavailable’ or similar status
indicating a transient failure.
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Figure 2.7: For applications, a DataCapsule provides a narrow waist interface of secure information
that is sufficient to build higher level services on top.

they direct their requests to the DataCapsule and not to the log server hosting DataCapsules.20,21
A DataCapsule may be replicated widely; the GDP network delivers the requests to an appropriate
replica of the DataCapsule based on locality, quality of service requirements, or any other policy-
based constraints imposed at the network level.

A DataCapsule creation

DataCapsule creation involves creating the DataCapsule metadata and delegating the hosting of
the DataCapsule to service providers.22 At the very least, the metadata contains the public part
of the signature key belonging to the designated single writer of the DataCapsule. In addition,
the metadata may contain policy specifications for desired performance, durability, sources for
read access control, etc. This metadata can be considered a special record at the beginning of the
DataCapsule. The name of a DataCapsule is derived from the hash of this metadata.

The metadata is created by the ‘creator’. The ‘creator’, ‘administrator’, or ‘owner’ of a Data-
Capsule is tasked with the creation, provisioning, and policy specification for the DataCapsule. The
creator designates one or more log servers (or storage organizations in the general case) to physi-
cally store the data, and respond to append queries by the writers and read or subscribe operations
by the readers. The creator is also responsible for the life-cycle management of the DataCapsule

20This is done with the help of GDP library that takes care of translating higher level function calls into network
operations. The library also takes care of creating a names for the client, advertising it onto the network, and translating
operations on a DataCapsule into messages on the network. We describe the details later when we discuss mechanisms.

21Because users interact directly with the information (and not the host), the GDP network fits the definition of an
Information-Centric Network [34]. We will discuss this in detail later.

22This is the same metadata that we described earlier in this chapter, and is a list of key-value pairs identifying
properties of a DataCapsule.
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as well as any potential economic relationship with the service provider(s). For higher availability,
the creator can use a redundancy model by recruiting service from a number of service providers
all at the same time that hold replicas of a DataCapsule.

To answer who should handle the creator/administrator role (i.e. who should own a DataCapsule
in a given application), developers have a few choices based on who owns the data: it can be either
left to end users of the application (e.g. a user provisions a simple home IoT device and creates a
DataCapsule for the said IoT device), or handled by the developers in the case of fully managed
applications (e.g. an IoT device that comes pre-configuredwith a uniqueDataCapsulewhose hosting
and maintenance is included as part of a subscription service), or can be handled by a completely
separate entity.

B DataCapsule writes, reads, and subscription

The single writer possesses a private signature key specific to the DataCapsule; the public part of
this key is what is included in the DataCapsule metadata at the time of creation.23 The writer also
possesses appropriate symmetric encryption keys used to encrypt the data. The writer is responsible
for keeping these secret keys secure. The single writer is also responsible for making the decisions
of what data should go in the DataCapsule and in what order. As part of this responsibility, the
writer must maintain some local state—usually in a non-volatile memory—which includes at least
a few hashes; we will discuss this in more detail later.

The smallest unit of read or write to a DataCapsule is called a record. A record is user-supplied
encrypted information together with some meta information needed to uniquely place the record in
the DataCapsule with respect to other records. Each record has two key properties that uniquely
identify the record in a DataCapsule: a hash value and a monotonically increasing integer called
seqno.

For an append to the DataCapsule: the single writer encrypts the data, creates records with
appropriate meta information, creates some signatures using its own private key, puts the newly
created information inside an append request, and sends this append request to the DataCapsule.
The append request is handled by the log servers delegated to serve the specific DataCapsule. The
log servers validate the request, update the local replica of DataCapsule if validation succeeds, and
send an acknowledgment back to the writer.

Note that from an interface perspective, a record is created and committed for eternity as part
of the abstract DataCapsule as soon as the writer signs the records (even before it is sent out on
the network); whether the record has been delivered to a replica is a separate question. Individual
replicas may be out of sync if they haven’t received all the records that are part of the abstract
DataCapsule, but since the admission control is done at the writer level, all the replicas of a
DataCapsule will eventually be in sync.24

23We assume that the DataCapsule owner has secure access to the public key of the single writer. For the simplest
applications, the same entity could play the role of both the administrator and designated single writer; in such a case,
the public key of the writer is readily available to the owner.

24We discuss more details related to replication and consistency semantics in the next section.
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The append operation created by the writer also includes a ‘heartbeat’—this is a small piece of
data that contains a signature and other appropriate ordering information that can be disseminated
widely in the network if needed. This heartbeat uniquely identifies a particular state of the
DataCapsule.25 These heartbeats are stored by the log server along with the DataCapsule, or can
also be managed by a separate set of more reliable/trustworthy heartbeat-servers if need be.

Readers can request records either by referring to the corresponding hash value that they can
extract out of a heartbeat, or by referring to the unique seqno; they can verify the result of read
queries by asking for a proof from the log server against a given heartbeat.26 Subscribers, on the
other hand, are forwarded the append requests by the log servers as they receive it; they can validate
the append requests in exactly the same way as a log server does and get the information as it is
generated.

DataCapsule creators/administrators may also specify policies on the scope of data, i.e. whether
the given DataCapsule should be restricted to some subset of the infrastructure, made available
globally, or something in-between. Trust domains are trusted to enforce such scope restrictions and
make the data available only to authorized readers, but encryption is the final line of defense even
if such trust domains do not perform their tasks correctly. Only the authorized readers have the
correct decryption key to make sense of data. Thus, even if encrypted data is made available to an
unauthorized entity (for instance, in the case of an infrastructure breach), the loss of confidentiality
is limited. Clients use digital signatures and encryption as the fundamental tools to secure their
data rather than trusting the infrastructure.

C DataCapsule replication and consistency semantics

A DataCapsule can be replicated or distributed over a number of physical machines, and there are
various operations such as migration, replication, etc. that log servers can perform on DataCapsules
in the context of an ecosystem like the GDP. Using multiple log servers (or storage organizations)
allows for fault-tolerance, durability and scalability.

The single-writer and append-only nature of the DataCapsule allows for a leaderless and rela-
tively conflict-free replication algorithm. The level of durability and replication strategy is decided
by the writer based on the type of data; e.g. applications that generate data at a high rate but can
tolerate some missing data, such as video frames, may adopt an optimistic replication strategy,
whereas applications that require high levels of durability may choose a different strategy. Regard-
less of the durability requirements, the simple leaderless replication algorithm converges without
conflicts.27 While it may seem an extremely limiting interface, it is sufficient to address a wide
variety of use cases and rich applications. In later chapters in the dissertation, we will relax this
requirement slightly later on for applications that can work with weaker ordering of updates.

25Note that a ‘heartbeat’ is different than a keep-alive used in various protocols. Instead, a ‘heartbeat’ is more like
a version identifier similar to commit hashes in git.

26Asking for records based on the hash value results in an implicit proof, as we will describe in next section.
27This is assuming correct operation from the single writer, which includes keeping track of state in non-volatile

memory. We discuss the situations where this strategy may fail in a later chapter.
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Since a DataCapsule with replicas is a distributed data structure, it is important to consider
the consistency guarantees. In the most general case, DataCapsules can be exploited to provide
sequential consistency guarantees to readers. As we will discuss in more detail in chapter 3, the
DataCapsule design allows readers to detect out of order or missing records on client side, but they
may still get stale data which can happen when service providers do not fulfill their obligations
to provide service—such violations of service level agreements can be enforced out-of-band. For
readers with stricter consistency requirements, they can achieve a strong consistency without any
changes to the infrastructure or the writer, but such readers are at the risk of stalling in case of a
certain class of infrastructure failures as we will describe in a later chapter. It is important to note
it is the same underlying infrastructure and the common DataCapsule interface that can support
these varying levels of consistency guarantees depending on how readers and writer interact.

2.4.2 Beyond a DataCapsule interface: Higher level storage abstractions
The native DataCapsule interface shelters developers from low-level machine and communication
details by providing the location independent secure storage/communication interface. Simple
applications can directly use the native DataCapsule interface and get the benefits of security and
simplicity. However, many applications are likely to need more common APIs or data structures
than an append-only single-writer DataCapsule interface provides. In order to support a wide
variety of use cases, we next describe other ways for applications to use a DataCapsule.

A Common Access APIs: CAAPIs

We argue that an append-only DataCapsules interface is sufficient to implement any convenient,
mutable data storage repository. In fact, append-only logs have been used to implement file
systems [35]. Various databases also keep their transactions internally as append-only logs to
enable rollback and recovery. In the GDP, we call such a layering of a more familiar interface on
top of a DataCapsule as Common Access API (CAAPI).

CAAPIs are distributed as libraries that users can include in their applications; such a library
translates the familiar interface into operations on a DataCapsule. In addition to translation of
API calls, a CAPPI can perform application specific client-side caching and other optimizations.
Because a DataCapsule serves as the ground truth, the benefit of integrity, confidentiality, and
access control are carried over to such interfaces for free.

We believe that suchCAAPIs are crucial to awidespread adoption ofDataCapsules and theGDP.
As a proof of the CAAPI concept, we have built a key-value store with history, a filesystem based
on FUSE28, and a TensorFlow [36] file system plugin on top of the single-writer DataCapsules.

B Multi-writer DataCapsules

While the basic DataCapsule interface we consider assumes a single-writer model, a number of
applications scenarios greatly benefit from amulti-writer interface. For example, consider a number

28Work done by a team of students as their class project.
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Figure 2.8: A distributed commit service that accepts writes from multiple writers and serves as
the single writer for a DataCapsule. The service is responsible for ordering the updates received
from multiple writers based on some application specific logic.

of temperature sensors deployment in a single room, where a user may be interested in seeing a
unified view of temperature readings from all the sensors instead of dealing with individual sensors.
Another example could be a database which accepts not just reads but also writes from multiple
writers.

A multi-writer interface begs the fundamental question: who performs the ordering of writes
from multiple writers? For such patterns with multiple concurrent writers, we recommend a
service that accepts writes from multiple writers, and then performs an application specific update
ordering or aggregation such as a running average, a median, minimum and maximum, etc. (see
Figure 2.8). Such a ‘commit service’ could be as simple as a process on a single physical node,
or a distributed commit service running on a number of physical nodes that use some well known
consensus protocol (e.g. Paxos, RAFT, etc.).

In a later chapter, we also discuss relaxing the single writer criteria slightly in the following
way: instead of requiring a true single writer, an application may allow multiple writers as long
as they are not concurrently writing. Any deviations from the ‘no concurrent writers’ model may
result in weaker consistency guarantees. Further, it is essential that these multiple writers perform
synchronization of state before starting to write. An example scenario where this pattern is useful
is a DataCapsule that can be mounted as a personal file systems using a CAAPI on multiple devices;
this situation can work with a smart CAAPI that uses some application-specific heuristics to ensure
that only a single device is writing at a time.

C Gateways and protocol translators

Not all clients are capable of communicating using the GDP protocol natively. These limitations
arise because of various reasons such as limited hardware capabilities, custom and proprietary
protocols, closed software, and even software engineering effort needed in some cases. In order
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to support a wide variety of use cases for DataCapsules, we propose a gateway based approach.
The task of mapping the devices and operations to appropriate DataCapsules and DataCapsule-
operations is taken care of by such a gateway.

As an example, we have built a RESTful gateway to enable publishing from a number of sensors
that lack the platform support to interact with the GDP directly. As another example, we created a
websocket subscription gateway that enables web applications to create in-browser visualizations.

Gateways can be as simple as translating an arbitrary protocol to the GDP, or as complex
as implementing the entire client side functionality on behalf of an extremely limited client. It
is expected from a user to understand the implications of using a gateway in their particular
environment. Even though the exact specifics vary based on the gateway functionality and its
implementation, a gateway should be included in the trusted computing base of a client in the most
general case.

2.4.3 Raw interface to the GDP network: Delegated secure flat routing
While most applications should be able to just use either the native DataCapsule interface or higher
level interfaces built on top of DataCapsules, the lower-level routing infrastructure provided by the
GDP network is also available to applications. In fact, DataCapsules and the persistent storage
provided by them can be viewed as an example application hosted by log servers and enabled by
the GDP network.

The GDP network is a flat namespace routing network focused on routing security and targeted
at a service provider model for edge computing and general Internet. At its core, the GDP network
supports datagram oriented communication between 256-bit long cryptographically derived end-
points. The endpoints represent addressable entities such as DataCapsules, hosts, service instances,
etc. The security guarantees of the GDP network are twofold: (1) protection from adversaries at-
tempting to insert themselves between a given pair of addresses by polluting the routing state of the
network, and (2) enabling controls on scope of a GDP name, i.e. restricting whether a GDP name
is visible within a routing domain, or available globally.

In order to achieve security property (1) above, the GDP network follows a slightly different
model thanmany existing networks. Instead of network assigned addresses (as those in IP networks),
users bring the names they own along with them and mark them active when they join the GDP
network. Further, users can even delegate the names to service providers for defined durations; these
service provider provide storage or computation resources and advertise these delegated names,
thus enabling remote access to these resources.

Recall that the underlying infrastructure that supports the GDP network is partitioned into
routing domains based on resource ownership. However, unlike IP-networks, the administrative
boundaries in the form of routing domains are explicitly exposed to the users. This allows users
to specify policies for what parts of the network should these names be visible in, and achieve the
security property (2) above.
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In addition to supporting unicast, theGDP network supports anycast andmulticast at the network
level. Native support of anycast and multicast, coupled with a service provider model, makes it
easier to support multiple instances of a given service replicated widely across service providers
for redundancy, scalability, and low latency access.

Note that the GDP network does not by itself provide general end-to-end transport security in
the most general case. All that the GDP network guarantees is that datagrams are delivered to the
correct destinations, and that arbitrary off-path adversaries cannot tamper with the delivery of such
datagrams. Any end-to-end security guarantees that provide protection from on-path adversaries
must be produced by applications running on top of the GDP network. In fact, we will demonstrate
with the help of an example protocol, called the GDP protocol, how to do this in the case of
DataCapsules.

A Why use something like the GDP network?

One of the original motivations for the GDP and DataCapsules is to use geographical diverse
computing resources to support rich applications that can’t rely solely on Cloud data centers.
However, the heterogeneity and the geographical spread of computing resources presents numerous
challenges. One such prominent challenge is how to name and address services and content. The
traditional way of naming, i.e. by a URL that invariably includes a host name, does not necessarily
work in edge systems that have far greater dynamism and heterogeneity than existing cloud systems,
especially when replicas of the same resource are hosted by a number of different edge service
providers in different physical locations. To address the naming and addressing challenge, we
believe that it is crucial to separate naming and identity from location. Such separation provides
higher-level abstractions for application developers and enables decoupling placement decisions
from identity and addressing.

As we will discuss in more detail when we review related work, such idea is hardly new; a
number of schemes have been proposed in the past two decades to use the identity of the object
as its network address. A large fraction of existing work involves using flat location independent
identifiers derived cryptographically. We believe that such flat names are especially suited in the
context of computation that happens outside data centers, since they provide for an opportunity to
use the location-independent name as a root of trust for further interaction with an object.

While much work has been done in the past, flat namespace routing networks remain prone to
relatively low-cost routing attacks.29 For instance, in a number of networks that propose pervasive
caching of named content, a malicious node can simply lie about the possession of content with a
given name and receive the traffic intended for the specific content [14], [34]. The GDP network
asks a different question: instead of verifying the possession of specific content, can named objects
be explicitly delegated to specific service providers who are tasked with hosting such objects and
potentially paid for such hosting? In situations where an entity has a valid delegation but doesn’t
actually have the object, it would be a violation of the service provider agreement that can be

29Note that attacks on network routing can lead to availability attacks (e.g. routing black hole), man-in-the attacks,
and so on.
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handled out-of-band. We call this as the “Delegated Secure Flat Namespace Routing” problem,
where we embrace the potential of someone advertising content that they don’t have, but there are
economic consequences for it.

While the GDP network builds on the knowledge of a vast breadth of research, the key inno-
vation of the GDP network is to use cryptographic delegations for name advertisement and policy
specification that tie well with a flat namespace enabling the root of trust to start from the destination
address itself. Further, the GDP network allows one to reason about the security properties of the
system by appropriate chaining of cryptographic delegations generated by different parties.

B What is the GDP network good for?

In addition to supporting DataCapsules, the GDP network enables new application scenarios as
well as provides a cleaner architecture for many of today’s applications that, for instance, rely on
somewhat fragile combinations of IP anycast andDNS. the GDP network enables secure association
of identity to the corresponding objects, extremely fine-grained provisioning that empowers edge
computing, multiplicity of service providers (such as multi-cloud architectures), and the control
over scope of information that is highly desirable in edge computing. Other than providing the
routing fabric for the GDP, consider the following as mere examples of what is possible with the
GDP network:

• The GDP network enables unlocking the full potential of DataCapsules. A user may deploy
his own storage infrastructure in his house to store sensitive data in a DataCapsule restricted
to private resources but archival data in a separate DataCapsule provisioned on a municipal-
level storage provider, or maybe even in a far away cloud provider—each DataCapsule is
referred to directly by its flat name regardless of the service provider underneath. Similarly,
multi-cloud applications are possible natively.

• A user may connect to an IoT device by simply using its flat name (identity) instead of
going through a level of indirection (a DNS-based URL). The GDP network allows for
changing service providers underneath while keeping the same address (and associated
security properties derived from the identity of the object).

• A machine-learning enthusiast may deploy a microservice for real-time object detection
in video frames; end-users can simply refer to a running instance of the service by a flat
name, whereas the developer ensures that the running instances are replicated with multiple
compute providers in close proximity to end-users for quick response time and scalability.
Even further, extremely fine grained provisioning of services, even at a building level, can be
done much more easily where different instances of a service are hosted by different service
providers.

• Organizations can enable network isolation based on policies specified by end-users, as
opposed to solely decided by administrators.
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2.5 Application case studies
In this section, we describe two case studies on application of the GDP and DataCapsules to
real-world applications. Both of these case studies helped us refine the design of the GDP and
DataCapsules, and enabled us to get invaluable feedback from users.

2.5.1 TerraSwarm
As a validation of the usefulness of the single-writer append-only DataCapsules to application
developers, we made a preliminary version of the system available to about 8 group of researchers.
These various research groups were all part of a multi-university research project, and spanned a
number of research areas such as discrete event simulation, machine learning, hardware design,
IoT application design, etc. The preliminary version lacked the security and scalability of the GDP
that we hope to achieve, however the user interface provided to the users was that of a single-writer
append-only DataCapsule interface.

Various groups of researchers used the GDP as a data-storage repository as well as a middleware
glue to connect heterogeneous sources and sinks of data together. We provided the GDP to users as
a client side software library in C with Python, Java and JavaScript wrappers around it, whereas we
operated the server-side infrastructure. Additionally, we created a number of gateways to connect
with various sensors and actuators such as Bluetooth based environmental sensors, CoAP based
mesh networks of sensor nodes, sensors publishing to MQTT, REST gateways, and many more.
Some of the applications built on top of the GDP included web-based visualization of time-series
sensor data from environmental sensors, audio/video streaming applications, real-time control
applications for robots, and many more.

In addition to directly accessing the underlying DataCapsule, we created applications providing
richer interfaces, such as a key-value store with history, a client-side cachingmechanism for efficient
queries for records in a window of time, etc.

In summary, a diverse group of users using the system first-hand provided us with a high-
level validation of the user-interface. The experience also demonstrated the weak points of our
preliminary version—scalability and durability. With the mechanisms we will describe in later
chapters, we believe to have addressed these points of weakness.

2.5.2 Secure ‘Fog Robotics’
In order to continue the GDP design as guided by application requirements, we recently started a
new collaboration with a group of robotics and machine learning researchers. We call this initiative
as “Secure Fog Robotics”.

The recent boom of machine learning has enabled new uses for robotics. With more sophisti-
cated sensing of the environment powered by cameras and other rich sensor modalities, robots are
now becoming an integral part of production environments, factory floors, machine shops, and even
homes and businesses. The robots of today are highly connected machines that rely on not just on-
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board resources but remote resources as well. This sub-field of robotics that deals with integration
of cloud resources and Internet connected robots is dubbed as ‘cloud robotics’ [37]. While such
integration expands the resources available to a robotics application beyond the on-board resources
on a robot, there are a number of privacy, security, latency, bandwidth, and reliability issues that
must be addressed.

‘Fog robotics’ is an emerging sub-field of robotics that takes into account the continuum of
heterogeneous resources present between a robot and the cloud, in addition to the usage of cloud
resources. As an example of the fog robotics vision, mobile robots on a factory floor can rely
on reliable fixed infrastructure in the same building, thus minimizing on-board resources leading
to better battery life and reduced unit cost. As another example, multiple robots in a home can
collaborate with each other by sharing information directly instead of relying on the cloud as a
rendezvous point, thus leading to better control on information that leaks outside a user’s home.

Fog robotics is more than merely moving resources closer to where they are to be used. Lower
latency, higher bandwidth, and enhanced reliability are certainly the most obvious effects of using
resource closer to a robot. In the examples scenarios above, fog robotics introduces additional
benefits as well. Going one step further, one could even claim that these other benefits, such
as reduced unit cost in case of mobile robots in a factory floor or enhanced user privacy for
collaborating home robots, are the driving factors of fog robotics. While fog robotics enables new
applications for robotics, there are a number of security and privacy concerns that must be solved.
Robotics applications of today are highly data-driven, and this data needs to be protected. The same
perimeter security limitations that make edge computing challenging present themselves again for
fog robotics.

DataCapsules and the GDP can help alleviate the security challenges by providing secure
information management for robotics. At a very abstract (and superficial) level, if one were
to consider a robot as a computational unit augmented with wheels and motors, then the same
principles of separating computation from state maintenance can be applied to robotics as well.
Examples of the state that robotics applications deal with are: data generated by on-board sensors
and cameras, machine learning models for operating actuators based on what a robot senses, any
remote actuation commands, diagnostic logs, etc. DataCapsules are an ideal mechanism for such
state management. Using the GDP and DataCapsules allows for users to assert more control on the
ownership and security of the information.

As a small demonstration of use of the GDP for fog robotics, we considered the use of a mobile
robot for surface de-cluttering of objects in a machine shop environment [38]. By using on-board
cameras, a robot can detect objects in front of it, plan a grasping of the object, and place it in
appropriate bins. Such application requires extensively trained machine learning models on the set
of objects that a robot may be presented with. There are a number of requirements that make this an
interesting problem from both machine learning and system/data-flow design perspective. While it
is desirable to use practically unlimited resources in the cloud to do such training that can be reused
over and over again, it requires the potentially proprietary images of objects to be sent to the cloud.
Further, once trained, such model needs to be updated periodically. And finally, trained models
must be shared across a number of robots. In summary, selective sharing and appropriate resource
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placement are what makes this problem challenging, and it is a good candidate for demonstrating
application design and a system like the GDP to support the applications.

Our collaborators from robotics research developed a way to train such models in the cloud by
using synthetic 3D models of a large collection of generic objects. These generic models are then
distributed to the local site, and then refined locally for use in the specific environment by using
real images (see [38] for full details). Once refined, such models can be distributed to individual
robots. DataCapsules provide a vehicle for secure dissemination of trained models and any updates,
the data generated at the robots, and any other diagnostics information in the form of a secure,
verifiable, and auditable history that can be verified by each individual party. Further, one can assert
control on the information flows by putting appropriate restrictions on the scope of DataCapsules
at an administrative level.

To help with the use of DataCapsules and the GDP for this surface de-cluttering application
and other machine learning applications in general, we developed a CAAPI for use with Tensor-
Flow [36].30 TensorFlow is a popular machine learning framework that is used by a number of
robotics applications. Our TensorFlow CAAPI is in the form of a C++ library that can be loaded
at run time and works with existing TensorFlow code. The CAAPI allows a user to the GDP and
DataCapsules for all file system access by merely specifying a GDP path instead of a local file
system path. We describe the internal details of this CAAPI in the next part of the dissertation.

While DataCapsules promote a separation of secure persistent state and enable secure man-
agement of information for use in fog robotics, it is only a part of the solution for an end-to-end
secure fog robotics. DataCapsules provide information security while the information is at rest or
in transit, but not when the information is in use. We envision that other techniques complimentary
to DataCapsules, such as hardware enclaves or cryptographic techniques for operating on encrypted
data, can fill the gap. However, a more extended discussion of these techniques is out of scope of
the dissertation. Use of DataCapsules for secure fog robotics is merely the beginning of another
research project in collaboration with other researchers, and many interesting research problems
around the use of DataCapsules for fog robotics are yet to be solved.

30Recall from subsection 2.4.2 that a CAAPI (Common Access API) is a library that provides a more familiar
interface on top of a DataCapsule.
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Part II

The How: Internal Mechanisms
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Chapter 3

DataCapsules: The Design

In this chapter and the next, we discuss the design and internal mechanisms of DataCapsules. Note
that we focus more on the key design aspects of DataCapsule in this chapter; the next chapter is
where we discuss how to solve a number of engineering challenges related to making this design
work in the context of the overall system (the GDP). This is our attempt to tackle the first research
task towards making the GDP vision a reality, which we identified in section 1.4. Recall that the
task is:
Task 1 Design ofDataCapsules to be transportable over a federated infrastructure, while providing

integrity and provenance for every single bit of data and enforcing the ordering relationships
between such bits.

This chapter is structured as follows. First, we discuss background and motivation showing
where DataCapsules fit in the context of existing academic work, and highlighting the threat model
that DataCapsules address. Then, we present the design for DataCapsules as standalone data
structures that can work even in the absence of a network. And finally, we discuss the replication
and durability/consistency implications of hosting a DataCapsule in a distributed environment with
multiple copies.

3.1 Background and related work
A DataCapsule provides answer to the question of how to store data in a secure and portable yet
distributed manner on an infrastructure that cannot be trusted for data security. A wide variety of
related work exists in this domain. We specifically point out two key areas of previous research and
practice: (1) secure storage on untrusted infrastructures, and (2) distributed storage systems that
support replication for durability and high availability.

A DataCapsule is a data structure that can be easily hosted on a distributed but untrusted
infrastructure, and as such, uses ideas from both of these two broad areas. Categorizing existing
systems in these two broad categories echoes the tussle for placement of responsibility (which is
what makes the DataCapsule design a hard problem): secure storage systems often lean toward
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a design where a client is responsible for implementing additional mechanisms necessary for
security,1 whereas distributed storage system architectures often assume that the clients are as
simple as possible and that the infrastructure components handle the complexity introduced by
various kinds of failures.

DataCapsules address this tussle by targeting a relatively unexplored design point: a separation
of durability and availability concerns from security concerns. As we will discuss throughout the
chapter, clients are responsible for ensuring the security of the information, and the DataCapsule
interface enables them to do so. In addition, DataCapsules enable a simple leaderless replication
algorithm that works with minimal responsibilities from the infrastructure. Clients can recover
from abnormalities introduced by infrastructure failures or malicious behavior from infrastructure
components.

Let’s review existing work in the relevant fields.

3.1.1 Secure storage on untrusted infrastructure
Outsourcing data storage to remote but untrusted storage servers has been an area of active research
for more than two decades. A number of academic systems have been proposed to address
some version of the problem; a few of the representative systems are: SUNDR [16], Plutus [18],
SiRiUS [22], Oceanstore [17], etc. CloudProof [23] gives a good overview of such representative
systems.

Almost all existing systems deal with a core data structure—a file, a database, key-value
store, or something else—as the interface that they provide to users; such interface varies across
systems. For example, SUNDR, Oceanstore, and Plutus provide filesystem interface on untrusted
storage servers; CryptDB [19] provides a database interface; Depot [20] provides a key-value store
interfaces; Antiquity [21] provides a log-based interface; and so on. We argue that a DataCapsule
provides a lower level interface: the infrastructure is tasked with making information durable and
available, whereas the contents of a DataCapsule are entirely determined by the client side. Thus,
DataCapsules provide a narrow waist interface that is sufficient to build any of these other storage
interfaces.

Existing systems can broadly be divided in two categories: (1) systems that perform ordering
of updates strictly on the clients with little involvement from the server side (e.g. using purely
cryptographic primitives), and (2) systems that preform ordering of updates on the server-side (e.g.
by using a Byzantine fault-tolerant quorum of servers and assuming that only a fraction of servers
can be malicious). While the latter category is appropriate for certain use cases, it requires that
there be a minimum number of mutually distrustful servers and a superlinear number of messages
exchanged between storage servers for every update. The GDP and DataCapsules are motivated
by the proliferation of edge computing ecosystem where satisfying such minimum number of

1Of course, the server side must do additional work as well, but the onus of verification and security ultimately
falls on the clients.



CHAPTER 3. DATACAPSULES: THE DESIGN 45

mutually distrustful servers may not be feasible at times. As such, we mostly designed the GDP
and DataCapsules by using purely cryptographic primitives.

Note that using cryptographic primitives for secure storage is a bit more involved than ‘just
encrypt the data’. A trivial solution of ‘just using encryption’ is actually a non-starter. Simple
encryption may be sufficient to guarantee confidentiality if the core data structure that a storage
system exposes is read-only (e.g. a read-only file). But handling confidentiality, integrity, and
provenance of information becomes challenging when such data structures can be updated over
time. Handling updates in the presence of untrusted infrastructure is the main challenge that
requires a careful design.

As such, any system offering secure storage must solve two key problems: (1) keeping infor-
mation safe from being tampered with when it isn’t being updated, and (2) handling updates. The
handling of updates involves some way of finding the state of the data structure and dealing with
freshness and consistency issues especially when the storage servers may lie about the current state
of the given data structure. Depending on how a system handles these two main challenges, it may
also have to handle some additional challenges, such as key management, etc.

To solve problem (1), many protocols and distributed systems have used the concept of an
Authenticated Data Structure (ADS) [24]. An authenticated data structure is a data structure where
an intermediary can perform operations on behalf of a user and prove the correctness of such
operations to the user by using a proof. In the context of storage systems, an ADS can be stored
on a remote service provider who is not trusted for data integrity. Using the proofs, the reader
can satisfy itself that the result of a read query is correct; [39] describes the process of generating
proofs. Authenticated data structures have been extensively studied and used in the form of hash-
trees, hash-chains, or other variants [24], [40], [41]. DataCapsules inherit the concept of a proof for
integrity verification from hash-trees. In fact, DataCapsules can be viewed as a custom designed
ADS suitable to our use case.

Solutions to problem (2) vary quite a bit across existing systems. A number of previous systems
have used the concept of freshness [23], [42]. DataCapsules and the GDP use a single-writer model
in which the writer keeps local state to ensure that it can work without trusting the infrastructure to
provide the correct current state of a DataCapsule. Readers must rely on freshness as provided by
the infrastructure which is achieved by out-of-band contractual guarantees. Any further freshness
mechanisms needed for specific use cases can be built on top, if need be.
Why not simply use an existing ADS, such as a Merkle hash-tree?

While a number of ADSes have been proposed (including the widely used Merkle hash tree),
quite a few questions such as key management, update ordering, etc. are left unanswered by a
simple Merkle hash-tree; the overall system still must provide necessary mechanisms for making
these ADSes usable. Even after addressing these engineering details, using an off-the-shelf hash-
tree/hash-chain for the GDP is less than ideal because of (1) performance, and (2) resilience to
faults. In terms of performance, the usage pattern of applications can result in a wide variation
in the cost of proofs (both size and required computation). As we will show in section 3.4, the
DataCapsule design provides applications flexibility for very efficient proofs at the cost of requiring
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the writer to maintain more state (and vice versa).2 As for the fault resiliency, the widely distributed
nature of the underlying storage infrastructure comes with various data consistency challenges. A
number of applications can work well even in the presence of some irregularities in data (e.g.
missing video frames in a video stream). The DataCapsule design allows applications to specify
such tolerances to make the most efficient use of the underlying infrastructure and ensure that the
data structure is not the limiting factor.

As we will show later, even though the DataCapsule design provides enough flexibility to meet
the goals of a wide variety of applications, such flexibility does not come at a cost of weakening
data integrity guarantees.

3.1.2 Distributed storage systems
Distributing and replicating storage is one way to go about achieving high availability, fault toler-
ance, and scalability. Distributed storage systems have been around for almost two decades. The
core idea seems simple: replicate a given piece of data to multiple servers. However, keeping the
replicas consistent is a major challenge that any distributed storage system must solve.

To reason about the guarantees provided by these distributed systems in a formal way, a number
of consistency models have been developed over the years. These consistency models range
all the way from strong consistency to eventual consistency. A number of general techniques and
algorithms have emerged that address various points in the consistency spectrum. A few noteworthy
examples are consensus algorithms such as Paxos [43] and Raft [44]; transaction protocols such as
2PC and 3PC; data structures based approaches such as version vectors and Conflict-free Replicated
Data Types (CRDTs) [45]; and timestamp based approaches. Existing systems employ these existing
techniques to achieve the desired consistency mode for a specific application. A few noteworthy
examples of various consistency models in practice can be seen in systems like Chubby [46],
Google Spanner [47], LogCabin [48] that rely on strong consistency models by using a consensus
algorithm like Paxos or Raft internally. A number of other systems like Tardis [49], Bayou [50]
and Dynamo [51] provide eventual consistency.

Stronger consistency models are useful to applications, since users can work with a simpler
model of storage that is closer to a non-distributed storage system. However, these stronger
consistency models come at a cost of complex system design. CAP theorem [52] suggests that
only two out of three desirable properties—consistency, availability, and partition tolerance—can
be achieved at a time. In different words, when there is a partition, a system must pick either
consistency or availability. Further refinements, such as PACELC [53], suggest that even when
there are no partitions, a system must prioritize between latency and consistency.

On the other hand, weaker consistency models are easier to implement as a system, but harder to
use from applications. The application must do something about potential conflicts detected when
replicas are synchronized. The ease or difficulty of performing conflict resolution varies across

2For example, using a Merkle hash tree is a good choice for random access workloads like a file system. But for
representing a practically infinite stream of events where recent events are of more interest, a Merkle hash tree would
incur too much overhead.
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applications.3 A number of existing techniques, such as version vectors, timestamps, etc. have been
devised to effectively handle conflicts in distributed storage. Further, Conflict-free Replicated Data
Types (CRDTs) [45] have been proposed that ensure applications are designed to play well with
the underlying distributed storage; a CRDT is a data structure where there are no conflicts when
replicas are synchronized by the very design of the data structure.
Where are the GDP and DataCapsules in the distributed storage space?

With DataCapsules, the single writer provides a point of serialization. As such, the discussion
of consistency semantics is slightly different than a typical multi-writer distributed storage system.
A DataCapsule is merely a way of keeping a history of transactions—as decided by the single
writer—in a single cohesive unit that can be stored on servers not trusted for data security.4,5

The GDP exposes primitives of distributed storage to readers and writers allowing users to
get their own desired operational semantics by either doing the necessary extra work themselves,
or specifying policies for the infrastructure.6 In this way, DataCapsules and the GDP provide
the thinnest possible layer between an application and the persistent storage in form of disks
on a remote server, but can incorporate a wide variety of existing mechanisms such as version
vectors, timestamp-based ‘last write wins’, CRDT, etc. to implement application-specific conflict
resolution. This kind of design is in contrast with many other distributed storage systems that
prescribe a specific method for reads and writes, which leads to specific consistency or availability
semantics in case of failures. We will discuss this in more detail towards the end of this chapter.

3.2 DataCapsule threat model
DataCapsules have a modest security goal: provide secure storage even in presence of untrusted
infrastructure. In terms of security properties, DataCapsules primarily aim to provide data integrity
and provenance, and enable confidentiality by providing support for encryption at record level.
DataCapsules provide these security properties when the data is at rest and when under modification
(i.e. handling updates).

The threat model discussed in section 2.2 broadly applies to DataCapsules as well. Readers
trust the DataCapsule owner and the designated single writer to do the correct thing based on

3For example, conflict resolution in a shopping cart application is rather easy because the application is mostly
agnostic to the order of operations, whereas handling conflict resolution in an encrypted file system is extremely
challenging because the order of operations matters and the system has little visibility into the changes introduced by
each operation.

4One could even say that a DataCapsule is a generalized Git repository with a focus on security. While this
simplified view misses the nuances of the design and engineering work needed to make DataCapsules practical, it does
server as a great mental model for the DataCapsule abstraction.

5Even though DataCapsules are an ADS that require proof generation, etc., they are specifically designed to
perform well when replicas are not completely in sync.

6A number of systems consider, for example, a ‘write’ operation to be complete only after it is replicated on N
replicas. The DataCapsule interface by itself does not impose any such restrictions. Applications convey their desired
requirements to the GDP bymeans of policy specification, which can lead to a different definition of ‘write’ for different
DataCapsules.
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the negotiated expectations. The infrastructure is distrusted; log servers may tamper with data
in any way they see fit: they may shuffle bits, change the order of updates, replay information,
reorder updates, etc. Third party adversaries may attempt to insert bad information by, for example
replaying requests, etc.

The only exception to the general threat model is that DataCapsules assume a correctly func-
tioning routing layer underneath (provided by the GDP network). The GDP protocol is designed
specifically to augment security properties of the GDP network by providing security in transit.
Even if the routing layer doesn’t provide necessary security guarantees, DataCapsules may not
operate efficiently, but data security never gets compromised.

3.3 Anatomy of a DataCapsule
In this section, we first describe the internal details (i.e. how a DataCapsule looks in memory)
and the rationale for the DataCapsule design purely at a data structure level. Then, we discuss a
byte-efficient and self-sufficient format for transport or archival storage for DataCapsules (or even
parts of a DataCapsule). Finally, we describe how operations on DataCapsules are materialized.

3.3.1 In-memory structure of a DataCapsule: Records and metadata
Recall that a record is the unit of read or write to a DataCapsule, and that DataCapsule metadata
is the special record at the beginning of a DataCapsule. Records as well as DataCapsule metadata
are immutable structures that are linked with each other using hash-pointers. A DataCapsule is
primarily an ordered list of records with the DataCapsule metadata at the beginning. The simplest
DataCapsule is a hash-chain—a very simple ADS—of records in the order they were generated with
the DataCapsule metadata at the beginning (see Figure 3.1). By using additional hash-pointers and
various strategies of interlinking records, DataCapsules enable better performance for generating
proofs for readers and higher tolerance for failures. We will describe these generalizations later.

A DataCapsule metadata

DataCapsule metadata, as the name implies, is the immutable metadata associated with the Dat-
aCapsule from which the DataCapsule derives its flat 256-bit GDP name. A non-exhaustive list
of information in the DataCapsule metadata is: a public signature key for the signing records
(writer-key), a public signature key of the DataCapsule creator (if different from writer-key), a
source for obtaining decryption key for the data, creation time, truncation policies, a human read-
able name/description of the DataCapsule, etc. Note that the writer-key is a required field in
DataCapsule metadata.

DataCapsule metadata serves an important purpose: it creates a secure association between the
DataCapsule name and the public signature key for the writer; since the DataCapsule name is the
hash of DataCapsule metadata which contains the writer-key, anyone can verify the accuracy of the
writer-key simply by calculating appropriate hash and comparing it with the DataCapsule name.
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Figure 3.1: (a) Record structure demonstrating record-header, body and heartbeat. (b) Without
hash-pointers (offset, headerHash), the records in a DataCapsule make a very skewed Merkle tree
(essentially a hash-chain). Hash-pointers include additional links and transform the Merkle tree to
a Directed Acyclic Graph (DAG).

The writer-key which serves the following purposes: (1) individual records are signed with the
private part of writer-key, providing data-provenance and non-repudiation properties that can be
verified by anyone; (2) it provides a write-access control mechanism for a correctly functioning log
server that can validate a signature and assert that a write request is in fact created by an authorized
writer.

B Records

A record is an immutable structure composed of a header and the body, with an associated heartbeat
(see Figure 3.1).

The record body contains application level data. This data is opaque to the log server (or
any other intermediate entity) and is padded and encrypted using (preferably) a fast, symmetric
encryption scheme, such as AES. An important requirement for the encryption scheme is that
a reader should be able to decrypt records individually.7 The decryption key can be securely
communicated to the allowed readers using any out-of-band communication channel suggested in
the DataCapsule metadata.

7For our prototype implementation, we use AES-128 in CTR mode, where the counter is initialized from the
DataCapsule name and seqno (see later). Using CTR mode enables a reader to individually decrypt records and
reduces management overhead by deriving an IV implicitly from already available information.
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The record header contains meta-information necessary for integrity verification, data-ordering
and storage. At the very essence, the header contains a monotonically increasing integer (seqno),8
the 256-bit name of the DataCapsule (DataCapsule name), a variable number of hash-pointers
to older records in the form of (offset, headerHash) pairs, the hash of most-recent record
header than the current one (prevHash),9 and the hash of the record body (dataHash). Within the
namespace of a DataCapsule, a record could be uniquely referenced either by seqno or by the hash
of the header headerHash. We loosely refer to the headerHash as the ‘hash’ of the record for the
rest of the dissertation.

The record heartbeat is a signed stand-alone piece of data associated with a record that contains
seqno, DataCapsule name, the corresponding headerHash and a signature over the three items
using the private part of the writer-key. Heartbeats are small pieces of data that can be distributed
widely in a network (because of their small size) and have the same built-in ordering as the records
(because of the included seqno).10 A reader, subscriber, or even an infrastructure component can
compare a number of heartbeats, and use the newest heartbeat to incrementally update its local
state about the state of corresponding DataCapsule. Heartbeats enable service providers to build
infrastructure with data-freshness guarantees: a service provider could provision a ‘data-freshness
service’ that collects and delivers the latest heartbeats for DataCapsules served by the service
provider, and end-users can verify the authenticity of such heartbeats. However, as we will describe
shortly, signature verification using heartbeats is not the most optimal way for reading old data in
bulk.

To summarize, record body contains the actual payload; record header describes the ordering
of a record with respect to other records in the given DataCapsule; record heartbeat represents the
authenticity and authorization for a record to be a part of DataCapsule. Separating the heartbeat
from the header allows old signatures to be discarded if needed, allowing for low-overhead archival
storage of DataCapsule. Separating the body of a record from header and heartbeat ensures that the
proofs of data integrity can be generated without needing the full body, which enables a few useful
properties. For large DataCapsules, the bulky parts are in the body; a reader or a log server needs
to keep only the headers in memory to verify the structure of a DataCapsule. This same argument
also implies that proofs can be small and readers can validate old records without needing to fetch
arbitrary sized payloads of intermediate records. Further, a log server can serve read requests along
with appropriate proofs even when it has only a partial replica of the data without the bodies of all
intermediate records.

3.3.2 DataCapsules in transit and archival storage: RecContainers
While the in-memory structure we presented fits the needs of an authenticated data structure, it is
not the most byte-efficient way for representing a set of records due to the inherent redundancy of

8We relax the requirement for seqno to be monotonic in the case of failures on the writer. We discuss this failure
mode and the associated consequences in subsubsection B.

9For the first record, prevHash = DataCapsule name
10Note that heartbeat is different than a typical keep-alive used in various protocols.
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information. For example, storing/transmitting both data as well as a hash of data (for use in hash-
pointers) is wasteful because the hash can be regenerated from the data when needed; signatures
need not be included with every record in a set of consecutive records as one can generate the
integrity proofs using hashes instead; etc. To reduce such redundancy, we introduce the concept
of RecContainers. A RecContainer is a way of representing a collection of records in coherent but
compressed way with sufficient additional information for proving the integrity and provenance of
all records to a verifier.

A RecContainer can be used for representing any subset of records of a DataCapsule, or even the
entire DataCapsule. A RecContainer targets the amortization of cost across a collection of records,
both in terms of byte size as well as computational costs needed for integrity verification. As
such, RecContainers are an ideal representation of records in transit or archival storage. Internally,
appends, reads, and other operations on a DataCapsule are serialized on the network in the form
of RecContainers. Even though RecContainers aren’t directly exposed to the users, it is a central
concept for the implementation of operations on a DataCapsule.

To create a RecContainer, one first collects the records that should go in the RecContainer.
This involves collecting new records in the context of a writer, fetching records from persistent
storage for a log server, and so on. After collecting the desired records, some additional information
is needed to ensure that the recipient of a RecContainer can prove the integrity of every record
contained in the RecContainer. Such information could be in the form of signatures extracted
from record heartbeats, or in the form of additional record headers to create a hash-based proof, or
both (see below). Finally, all this information is passed through a compression step that involves
removing redundant information that can be regenerated on the client-side and then serialized.
How to create proofs? Verifying the correctness of hashes and the signature included in the
heartbeat is a direct way of verifying the integrity of a given record. But once a record r has been
verified, other records older than r can be verified against r by a hash-based proof. Ignoring the
additional hash-pointers for a moment, the record structure described earlier is essentially a hash-
chain (a very skewedMerkle tree, with each new record as the root of a new tree) (see Figure 3.1(b)).
One can use r as the root of a Merkle subtree to generate a proof of integrity by traversing the hash
tree to other records. When additional hash-pointers are present, the DataCapsule can be treated
as a directed acyclic graph (DAG) composed of nodes (record headers) and links (hash-pointers).
To generate an optimized proof for a target record q with respect to a known record r , all one has
to do is to find the shortest path from r to q in the graph.

There are some interesting choices for the additional information added to the RecContainer for
verification; these choices are guided by the desired optimizations. As an example, one may create
a RecContainer by inserting a signature for every single record. But this is quite wasteful if the
RecContainer contains a large number of consecutive records; once the most recent record has been
verified, all other records can be verified by simply using a hash-based proof.11 Even if the records
aren’t consecutive, one could still use a hash-based proof instead of a signature-based proof for
all but one record. The decision to use signatures or hashes depends on the desired optimization;

11Recall that each record header has a hash-pointer to at least the previous record.
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signatures are computationally expensive but using a large number of hashes may be expensive in
terms of byte size.12

Another choice that affects the behavior of a RecContainer is whether to include an ‘absolute’
proof or a ‘relative’ proof. One may create a RecContainer with sufficient number of signatures to
create a completely self-sufficient RecContainer such that anyone can verify the included records.
Or, a RecContainer could be created based on an assumption that the recipient already knows the
hash of certain records; such RecContainer may omit signatures altogether and rely completely
on a hash-based proof. As an example, when a reader of a DataCapsule requests a log server for
certain records of a DataCapsule, it could optionally include information about hashes it knows
already (presumably in a previous read request). Such RecContainers are much more efficient since
they avoid expensive signature verification altogether, and even allow for amortization of costs even
across a number of requests.

Even though the interface to aDataCapsule user only deals with operations at the record level, all
the operations are serialized in the form of RecContainers for maximum efficiency on the network;
we will discuss this process in the next section.

3.3.3 DataCapsule operations
In this section, we describe the internal details of how various operations on a DataCapsule
are materialized. Note that other than DataCapsule creation, clients direct all operations to the
DataCapsule by using the 256-bit DataCapsule name as the destination of their requests. The GDP
network—the underlying routing network—delivers such requests to a DataCapsule replica hosted
on a log server, which responds to the request on behalf of the DataCapsule.

A Creation

The process of creating a newDataCapsule involves sending a ‘create’ request to a log server, which
contains two items: the signed metadata and an ‘advertisement certificate’ (AdCert).

An AdCert represented as AdCert(A → B, expire_at) means: “A designates B to advertise
for A till the time expire_at". Such a certificate is signed by the private key of A; anyone with
the metadata of A can securely get the public key of A and validate the AdCert. Typically, A is the
DataCapsule creator and B is a log server.13 B could also be generalized to a storage organization
instead of a single log server; in such a case, the metadata and AdCert are sent to a designated
‘creation-service’ for B instead of a single log server and B could then appropriately place such
metadata on log servers it controls. Such AdCerts are renewed periodically and their lifetime can
be tweaked by the creator to fit a variety of application and infrastructure scenarios. In some ways,

12In our experience, verifying a signature is roughly 3 orders of magnitude expensive than computing a hash.
13If a DataCapsule is replicated on multiple log servers, each log server is issued a separate AdCert.
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the creator acts as a Certificate Authority issuing a certificate to log servers or service providers to
serve requests on behalf of the DataCapsule.14
Why delegate a specific organization or host for a DataCapsule?

First and foremost, explicit delegation codifies the service-providermodel that can be understood
and verified by computer code. In alternate models of ubiquitous caching and no explicit delegation
(as popularized by various peer-to-peer networks), a reader does not have a remedy for degraded
availability or quality of service for a DataCapsule. When a creator explicitly delegates the hosting
responsibilities to an organization, it presumably also enters into an implicit or explicit economic
agreement for a given level of service that can be enforced by legal contracts.

Second, explicit delegation allows the GDP network—the underlying routing network that we
describe in a later chapter—to provide a baseline level of routing security. By verifying that a log
server (or organization) that claims to host a specific DataCapsule is, in fact, authorized to advertise
the DataCapsule name into the network, the GDP network can ensure that malicious adversaries
cannot launch man-in-the-middle attacks or routing black-holes by claiming to own names they
don’t have authorization for.

Finally, using a cryptographic delegation enables transport-layer security. As we will describe
in detail in the design of the GDP protocol (chapter 4), any acknowledgments or responses from
a log server must be secured at the transport level. Otherwise, an active man-in-the-middle can,
for example, simply drop any append operations and send a spoofed acknowledgment to the writer,
thus framing an honest log server. The identity of the physical server embedded in the AdCert
allows a writer to ascertain that it received an acknowledgment from the designated log server.15
However, note that the AdCerts can be short lived allowing for a DataCapsule to be migrated to
a different service provider. Neither the writer nor the readers need to know about the identity of
the log server in advance; in fact, all the operations from clients are addressed to the DataCapsule
instead of a physical server.

B Append

Recall that a DataCapsule is a single-writer data structure. The single writer holds the private part
of the writer-key and maintains some local state preferably in non-volatile memory.

To append data to a DataCapsule in the simplest case of a single log server (without replication),
the writer creates the appropriate record structure with a header and body.16 The writer is free to
include hash-pointers to any older records as it seems fit.17 The writer signs the record by creating

14Note that in case the DataCapsule is placed on multiple log servers for replication, all log servers are made aware
of each other so that they can keep in sync with each other.

15An alternate strategy could be to include the designated log server in the metadata itself instead of an AdCert,
which could work in certain situations. However, because the metadata is immutable, this alternate strategy has the
downside of fixing the DataCapsule to a particular log server for eternity.

16We describe the append operation with replication later in this chapter.
17The exact nature of the linking structure created bywriter has a number of performance and durability implications,

which we will discuss in chapter 4.
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a heartbeat, it updates its local state in a non-volatile memory, and then sends the append request
along with the signature included in heartbeat to the DataCapsule. The serialized append request
on the network is essentially a RecContainer created by the single writer with new records that are
now a part of the DataCapsule.

Once the writer sends the append request, the GDP network finds an appropriate log server
that has securely demonstrated to the GDP network that it is authorized to advertise for the given
DataCapsule. On receiving the RecContainer as part of an append request, a log server uses the
common RecContainer API to extract verified records from this RecContainer and store them on
persistent storage. The log server sends a secure acknowledgment back to the writer, and notifies
any subscribers to the DataCapsule by simply forwarding the RecContainer received from the
writer.

The ‘single record append request’ can easily be generalized to a ‘multiple record append
request’: instead of sending a single record at a time for append, the writer may send a number of
records—all linked together appropriately—in a single RecContainer. Regardless of the number
of records, any append request needs exactly one signature in the form of a heartbeat for the
most recent record, as long as the previous records are reachable from the most recent record by
following a sequence of hash-pointers. Using multiple records in a single append request not only
has the benefit of amortization of signature generation cost, but also enables ‘atomic transaction’-
like semantics for DataCapsule where an application would like to spread a number of writes over
multiple records (to preserve some application-level logic), but still make sure that the readers
either see all the records included in the append request, or none of them.18
The role of single writer: The single-writer append-only design enables the single-writer to be the
point of serialization—a very useful property that allows us to do perform a leaderless replication.19
However, this benefit comes with two additional costs. First, we use signatures with the writer’s
private key to maintain write access control and provide data-provenance to a reader. In addition
to adding to the message size, signatures are computationally expensive and can incur significant
burden on the writer. Second, the writer needs to maintain the most recent state of the DataCapsule
in a local non-volatile memory. This state includes at least the headerHash of the most recent
record as well as any records that have not been made sufficiently durable. Failing to do so may
result in permanent data loss in the form of holes or divergences called branches in the otherwise
neat hash-chain; we discuss these issues in the next section.
Writer’s responsibilities: First, to ensure the single-writer semantics, the private part of this
writer-key ought to be protected by the designated writer and should not be shared. It is also

18Readers must get an integrity proof from the log server either in the form of hash-pointers or a signature, as we
will describe next. For multiple records in a single append request, the only available proof for records other than the
most recent records is via a path of hash-pointers starting from the most recent record. Thus, it is impossible for a
reader to get an integrity proof for an older record in a multi-record append request without knowing about the most
recent record of the said request.

19Arguably, the single writer is a leader that drives the replication process. However, the term leaderless is in
contrast with the typical distributed algorithms that use an explicit leader election process.
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the responsibility of the writer to create record headers carefully by (1) picking a good set of
hash-pointers that minimizes proof sizes, and (2) ensuring the monotonicity of seqno.

The monotonically increasing nature of seqno is part of the contract that a DataCapsule
writer provides to the readers and subscribers.20 Log servers do minimal verification for records
and merely ensure that records meet the admission criteria, i.e. valid hash-pointers and a valid
signature. Because of the monotonic nature of seqno, a reader can efficiently get the records in
the order they were generated and subscribers can reason about the order of heartbeats. While it
is certainly possible to come up with a design that does not use seqno, the practical challenges of
using only a hash to identify a record outweigh the costs of additional responsibility for a writer.
Further, using a seqno allows us to use the CTR mode of encryption.21

C Read

Readers can query old records either by their headerHash or seqno. When querying by seqno,
a reader can optionally specify a more recent record r that the reader knows of. The log server
replies back with a RecContainer which contains the requested records and a proof based on the
information supplied by the reader. If the reader didn’t supply any information other than the seqno
of requested records, then the log server generates a self-sufficient RecContainer with signatures.
Otherwise, the log server uses hash-based proofs.

Instead of reading one record at a time and seeking individual proofs, a reader can also query for
a range of records by specifying a headerHash or a seqno, and the number of records before the
specified record. Just like multi-record append requests, reading multiple records has the benefit
of amortized cost of proofs.

An important pattern that comes up in many applications is querying for the most recent record.
DataCapsules do not support the operation of querying for the most recent record directly. Instead,
a reader can request for the most recent record heartbeat for a given DataCapsule, which provides
the reader with both the seqno as well as headerHash for the most recent record that a log server
is aware of. If the result of a heartbeat query return a heartbeat older than what a client already
knows of, which could happen when there are multiple replicas slightly out of sync, a client simply
uses the more recent heartbeat it already knows of. Once the reader has acquired the most recent
heartbeat, it can then query the corresponding record directly by using the headerHash.

An alternative designwhere the reader can directly ask a log server for themost recent record has
the downside of being slightly more difficult to program in the presence of replication. Explicitly
separating heartbeat querying from the actual reading allows a reader to get more visibility into the
operation without necessarily exposing the client to the complexities of replication. We discuss
more details of the consistency semantics that a client can expect in the next section.

20One way to look at the argument is: the writer is responsible for ensuring that the information it puts in the
DataCapsule is useful to readers. In the same vein, we argue that crafting an appropriate record header (with monotonic
seqno) is not necessarily changing the requirement that readers trust the writer for meeting certain expectations.

21We discuss the case when a writer fails to fulfill this contract of monotonically increasing seqno—say because of
a crash—in section 3.4.
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The question of freshness: A reader trusts the log servers to not provide stale data, for example,
when querying for the most recent heartbeat. A fundamental design decision of the GDP and
DataCapsules is a service provider model for making the data durable and available; log servers
operated by service providers are inherently trusted for keeping the DataCapsule replicas up-to-
date. A malicious log server can provide stale data to a reader, however this is a violation of the
contract that a DataCapsule owner has with the service providers (or log servers) that it delegated
the hosting responsibilities to, and can be enforced out-of-band. To detect stale data for mission-
critical applications, the writer can append empty records (with null body) at a set interval to force
periodic heartbeats (and indicate the period in the metadata); readers that do not get the periodic
heartbeats can at least detect data staleness.
Integrity verification: hashes or signatures? Even though a heartbeat is associated with each
record, signatures are orders of magnitude more expensive to compute and verify.22 Because of
this heavy cost, a log server uses hashes as much as it can for integrity verification. With the design
of a record header described above, one single signature verification at a particular instance in time
allows a reader to verify everything up to that time in the past with only hash-verification. Not only
does the use of hashes reduce the computation cost, it also frees the log server from the burden of
storing signatures. To reduce storage costs, the log server can eliminate all signatures except the
most recent signature. As a further optimization, a log server can even get rid of all the hashes and
regenerate them from the actual data when needed.23

D Subscribe

Subscriptions are a client requesting to be notified of new data as it is generated by the single writer.
In the simplest model, a client requests that it be notified for a given number of future records, say n.
A log server, when it receives an append request from the writer, forwards the RecContainer from
the append request to the subscribers. These subscribers perform validation of record included in
the RecContainer in the same way as a log server.
Service guarantees on subscription: Subscription, at the very core, is a best-effort service in
our current design, which provides a better alternative than polling for fresh data. However, since
the GDP is a distributed system, there are cases of network partition or other transient failures
where a subscriber may not get notified of new data. A particularly interesting example is that of a
DataCapsule with multiple replicas hosted on different log servers; a subscriber maybe interacting
with a different log server than the one that the single writer is interacting with. In case various
replicas are wildly out of sync for any reason, the subscriber may not receive updates in real-time.
As such, for applications that depend on a real-time delivery of updates must devise application-

22One-time signature schemes are much cheaper than traditional digital signatures, however they suffer from
excessively large data-sizes. Our space-time equation cannot be too biased towards data-size, because it needs to be
transferred over network.

23The storage cost of signature should be evaluated in relative terms—what is the size of an average record’s payload
as compared to the size of an individual signature? Records in a typical IoT application, such as ambient temperature
measurements, are only a few bytes long and often smaller than the size of the signature.



CHAPTER 3. DATACAPSULES: THE DESIGN 57

level construct to detect such failures. A simple example of an application-level workaround is
periodic no-op appends by the single writer at some mutually agreed upon frequency.

In-network multicast vs log server mediated subscription? In our current design, subscription
is essentially a generalized form of a read request that is mediated by a log server. An alternate
design choice could have been to use network-level multicast where subscribers get the append
request (and the associated RecContainer) directly from the single writer. While such a design
is a better design for a number of use-cases (e.g. tight control loops where adding a log server
adds to the latency, or supporting an extremely large number of subscribers), a log server mediated
subscription keeps the design of DataCapsule operations simple. We consider a multicast based
approach as a direction for future research.

3.4 Distributed operation: Replication
As with any other distributed system, replication is desired for a number of reasons: durability of
information in case of failures, enhanced service availability by avoiding single points of failure,
scalability to handle a large number of queries, etc. Recall that a DataCapsule represents a virtual
object spread over a number of servers, and not a single replica. Depending on application
requirements, the GDP and DataCapsules provide a set of options to achieve a desired subset of
properties.

We broadly divide the discussion about replication into durability properties and consistency
semantics. Note that while both durability and consistency are results of replicated operation and
are deeply intertwined, they can be decoupled and be treated somewhat independently. It is possible
to achieve one without the other, and we argue that such a separation is useful to applications. Let’s
see how.

Consider a number of clients that read from multiple replicas. If all clients agree on the order
of updates regardless of the replica they read from, but certain data is missing from all the replicas,
that would be no durability but consistency. Such a situation is still useful for certain class of
applications, for example a video stream with known missing data is still useful as long as video
frames are in known order. On the other hand, a certain information object may be sufficiently
durable, but multiple clients that read from different replicas may not agree on what the order of
updates was, that would be durability but no consistency. As an example application that could
still use benefit from such a situation, consider a shopping cart with unknown order of operations.
It doesn’t matter what order the items were added to the shopping cart as long as the information
is sufficiently durable.

With the GDP, the same underlying infrastructure can support a number of durability and
consistency semantics based on how writers and readers interact with a given DataCapsule. The
desired durability and consistency modes can be included in the DataCapsule metadata; which
allows for the infrastructure and the clients to adjust the interactions with the DataCapsule to ensure
standardized expectations.
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Figure 3.2: A DataCapsule with holes and branches. See subsection 3.4.2.

3.4.1 Durability and consistency in normal operation: No failures
In this section, we consider the durability and consistency that readers can expect when there are
no failures. In the next section, we describe how infrastructure failures lead to reduced durability,
and discuss the weaker consistency semantics for applications where a writer is allowed to fail and
lose its local state.

A Durability Model

DataCapsule design allows durability decisions at a record-level; an application can decide that
a specific record, say a record representing a file system snapshot, should be more durable than
other records. Depending on application requirements and the support from underlying system, the
replication can be performed as either in a writer-driven mode or in a server-driven mode.

A Server-driven mode of durability is essentially optimistic replication: a writer send append
request to the DataCapsule, which is delivered by the underlying infrastructure to the closest replica
of the DataCapsule.24 The writer considers append to be complete as soon as it receives an
acknowledgment from any single log server. The log server performs a best-effort replication of
data by simply forwarding any appends to other log servers responsible for the given DataCapsule.
In such a mode of operation, the writer trusts the server to make the data durable by replicating it
to other log servers. Even if the log server arbitrarily delays the replication process, data integrity
is not compromised; since the ordering is decided by the single writer, any update conflicts can be
easily and securely resolved without any client intervention.

In aWriter-drivenmode of durability, the writer considers an append to be complete only when
it receives a desired number of acknowledgments; i.e. the writer directly ensures that the desired
number of replicas of a record have been created. There are two potential schemes: (1) thewriter still
uses anycast to contact only a single log server, but the log server collects secure acknowledgments
from multiple log servers on behalf of the writer and returns them together in a single message;
or alternatively, (2) the writer uses multicast for append and receives acknowledgments from log
servers directly.

In the absence of failures, even though both modes seem equivalent, there are subtle differ-
ences. In a simple non-replicated model of a DataCapsule, an append request is directed to the
DataCapsule name and not to a specific log server. However, to perform replication effectively,

24This is equivalent to anycast in networking terminology.
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it is important to be able to refer to specific replicas by directly addressing the log server. In a
server-driven mode, the writer can still be shielded from this additional responsibility, which is
why we prefer the server-driven mode; log servers must still keep track of other log servers that
host a replica of a given DataCapsule. For our prototype system, we currently use a server-driven
mode. Nonetheless, discussing the writer-driven mode is certainly useful as it opens up a number
of different consistency/durability modes.

B Consistency model: Strictly ordered updates

The simplest mode for a DataCapsule is that of a strict single writer; this single writer is the point
of serialization. This serialization is manifested in the form of hash pointers and seqno inserted
in the record header by the writer. To create record header correctly, we require that the writer
remembers what it wrote last, potentially in a non-volatile local memory. When the writer comes
back up after a while (say, a reboot), it can use the non-volatile memory to recover its previous
state. Thus, all updates are linked together in a linear order, resulting in a ‘strict order’ of updates
as defined by the hash-chain ordering.25 We call this the Strict Single Writer (SSW) mode.

As an example of SSW mode in practice, consider an IoT device (a temperature sensor, a video
camera, etc.) generating data and committing to a DataCapsule that is tied to the device’s identity.
If the device fails, there’s nobody else to add new information to the DataCapsule.

In SSWmode, readers can contact any replica. Some replicas may run behind and provide stale
information. A reader must keep track of the most recent record that it has read at any given time.
On any subsequent request from a different log server, a reader can detect data older than the most
recent record that the reader has seen by simply looking at the response. Because a reader can
ignore stale information than what it has seen already in the past, it can always order the updates in
the order as performed by the single writer. However, because the reader only contacts a subset of
replicas (typically only one), different readers may get different values. Such behavior is equivalent
to a sequential consistency model.

Note that a strict consistency model can also be achieved by using a smarter reader; the reader
contacts all the servers and picks the most recent state. A reader desiring strict consistency is prone
to a reduced availability in case of network partitions or server failures.26

3.4.2 Handling failures: Holes and branches
In the absence of any failures, the replication process we described above goes smoothly and
readers see strictly ordered updates. DataCapsules provide a useful storage interface even in the
case of failures. Consider an example of a DataCapsule for a home security video archive with
one replica inside a household and another replica in a cloud data center. In case of network

25Strict order: http://mathworld.wolfram.com/StrictOrder.html
26Because of the condition that a write must never be rejected, there are no roll-backs; as long as even a single

server receives a write, it must necessarily be a part of the DataCapsule. In the classic equation W + R > N for strong
consistency, this results in a situation of W , thus R must necessarily be equal to N .

http://mathworld.wolfram.com/StrictOrder.html
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partitions, the security camera can still continue to generate data and write them only to a local
replica with reduced durability. During such network partitions, applications that can work with
reduced consistency guarantees (i.e. stale data) can keep operating. However, applications that
desire a strict consistency must block unless network partition is repaired.

We consider two main categories of failures: failures on infrastructure side (i.e. when not all
designated log servers hosting a replica of a DataCapsule are available), and failures on the writer
side (i.e. the writer does not maintain local state, or strict single writer model is violated). Recall
that a properly signed append request can never be rejected permanently by the infrastructure; the
infrastructure may not be able to serve the append request for various reasons, but the ultimate
decision of what goes in a DataCapsule is made by the writer.27

A Infrastructure failures: Reduced durability

In a situation of server/network failures where a writer does not receive enough acknowledgments,
a decision is to be made by the writer: the writer can either block (potentially indefinitely) or it can
continue at the chance of a potential loss of records which might create a hole (see Figure 3.2). A
hole represents a sequence of records that are permanently lost.28 Whether holes are acceptable
or not, i.e. the writer’s behavior during infrastructure failure, is an application-level decision and
depends on the type of data that a DataCapsule holds; such policies are ingrained in the metadata
of a DataCapsule, and writer must adhere to such policies as part of the contract between the writer
and readers.

Note that a writer’s decision to block is merely to satisfy durability guarantees, and not nec-
essarily for consistency guarantees; we will discuss consistency in the next subsection. Even in
the presence of holes, it is still possible to achieve the desired integrity verification because of the
additional hash-links. In fact, if a writer detects reduced durability, it can even start adding such
additional hash-links to ensure that hash-based proofs can still be made to work. We discuss how
these hash-pointers work in chapter 4.
When are holes okay? Whether holes can be tolerated is application dependent. There are many
types of data where a small probability of loss of individual data items does not make the entire
data-stream useless; such as time-series data values for ambient temperature, or high bandwidth
video-streams with individual frame per record. On the other hand, there are applications where
a single missing update can make the entire data stream useless and thus it is important to ensure
that every single update is made durable, e.g. a filesystem on top of a DataCapsule without any
checkpoints.

The decision of whether holes are acceptable or not also has consequences on the state that the
writer must maintain. For applications where holes are acceptable, simply keeping the headerHash
of the most recent and a few other older records is sufficient. However, for applications where the

27In other words, properly formed update requests may only fail with a ‘Service Unavailable’ or similar status.
28Note that not receiving sufficient acknowledgments is not necessarily indicative of a permanent data loss. In

addition to online replication, log servers also perform offline replication to fill any missing data. We describe this
later in this section.
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durability is of high importance, a writer must maintain the contents of the records as well as the
hashes in the local state till the data is made sufficiently durable.

Further, whether holes are acceptable or not also drives the decision for the replication mode
chosen by the writer. While server-driven durability mode is typically higher performance than
client-driven mode, there is a potential for holes and permanent data loss. Such permanent loss can
occur if the first log server that the writer contacted is malicious, or if there are failures where the log
server crashed permanently before the data could be made sufficiently durable. Thus, applications
that cannot tolerate holes should use writer-driven replication.

Note that the interface to the writer (append) does not change in the presence of holes. A reader
does need to know that in the presence of holes, it may only get partial results for its read query.
A log server marks the non-availability of records as such. Log servers may indicate that they
have finished offline synchronization and even then, they were not able to get the desired records.
Subscription is essentially a best-effort service and a reader may stop getting records temporarily
if the log server dies. However, because a subscriber must renew subscriptions periodically, any
subsequent subscription renewals get redirected to an active log server by the underlying GDP
network. Thus, in case of failure of a single log server, subscribers see a delay in delivery of a set
of records.

B Writer failures: Weaker consistency

So far, we have discussed a more powerful single writer that maintains local state in a non volatile
memory. When this condition is not met, the DataCapsule may end up with branches. Branches
in a DataCapsule occur when two or more records exist that have hash pointers pointing to the
same record (see Figure 3.2).29 Branches result in a ‘partial order’ of records, since it is not always
possible to directly compare the ordering of any given two records.30

In case the writer does not maintain the local state appropriately and recovers after a crash, it
may query a log server about the most recent record and re-populate the local state. However, in the
presence of accidental or malicious stale servers, the writer may not receive the correct state of the
DataCapsule; the writer may start from an older record, thus resulting in an abandoned branch. We
consider such recovery after a catastrophic failure, where the writer lost all its non-volatile state, to
be rare and require readers to be aware of the guarantees from the writer (potentially expressed in
the DataCapsule metadata). Nonetheless, the single-writer DataCapsule primitive works well even
in case of such failures.

Relaxing single writer mode a little bit, we define a Quasi Single Writer (QSW) mode. In QSW
mode, there can be, in fact, multiple writers, but under normal circumstances they do not all write
at the same time. Decisions about ‘who gets to write in a given window of time’ is either done
via out-of-band mechanisms, or implicitly imposed by the application constraints.31 There is no
single point of serialization, and each individual writer must first synchronize its local state with the

29This definition of a branch is ignoring the additional hash pointers.
30Partial order: http://mathworld.wolfram.com/PartialOrder.html
31Note there are no server-side locks.

http://mathworld.wolfram.com/PartialOrder.html
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infrastructure at the startup time. There are chances that either the ‘one writer at a time’ property
or the ‘synchronization at startup’ doesn’t really work, which could result in branches.32

In QSW mode, the consistency model is that of strong eventual consistency (SEC). Even in
the presence of branches, asynchronous replication between replicas will eventually converge. The
‘strong’-ness is implied by the fact that a DataCapsule is a CRDT; the ordering in which updates are
applied does not matter, and that the asynchronous replication is merely a union of all the records.
Once again, the DataCapsule metadata marks the mode of operation of the writer and a reader must
take into account the consequences of such branches.

Two examples of the QSW mode in practice: (1) A personal filesystem maintained by a user,
but mounted on a number of devices. If the user only works with any one device at a given time,
multiple writers at the same time are rare (but still possible). (2) A computer process directly
writing to a DataCapsule (as opposed to an IoT device). Because of application-level failures and
network partitions, it is possible that there are multiple instances of the process all writing at the
same time.

We don’t discuss in detail the situation of multiple writers all writing directly to a DataCapsule
at the same time. It is certainly possible to do, but results in extensive branching. Even though
the consistency semantics are the same as QSW mode (i.e. SEC), it is difficult for an application to
deal with such extensive branching. Instead, we recommend that users run a service that collects
the writes from multiple writers, serializes them in some application specific order, and then acts
as the single writer of the DataCapsule.

Note that the interface to the writer (append) does not change in the presence of branches. The
interface to the reader does change a bit. In presence of branches, reading old records must be done
carefully. Fetching a heartbeat may result in multiple heartbeats that represent different branches of
a DataCapsule. A log server only returns a set of consecutive records at a time as the result of a read
operation, but the reader must decide which heartbeat(s) to use for a read request. Subscriptions,
on the other hand, are best effort. The log server a subscriber is talking to may be running behind
and may get updated out of order. As such, the behavior for subscribers is undefined in the case
of branches. Nonetheless, the allowed deviations from a single writer with persistent state can be
indicated in the DataCapsule metadata, allowing readers to set the expectations correctly.

C Offline synchronization process

In addition to online replication, log servers also perform periodic background synchronization
for partially out-of-date replicas by filling temporary holes or synchronizing branches. Recall
that DataCapsules are hosted by one or more service providers chosen by the DataCapsule-owner
based on some economic model. The infrastructure is not trusted with the contents of a Data-
Capsule, and this should be taken into account even during the offline replication especially when
performing synchronization between log servers belonging to different service providers. Because
of such distrust, a log server must verify any information received from other log servers during

32The semantics of subscriptions are not well defined in case of branches.
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synchronization process in very much the same way as if it received an append request from the
DataCapsule writer.

The append-only design with a writer-driven serialization, coupled with the fact that a well-
formed append may never be rejected, makes a DataCapsule a Conflict-Free (Commutative) Repli-
cated Data Type (CRDT) [45]. Since records are immutable, synchronization is essentially a union
of verified records between active replicas. Thus, it is possible to use a ‘leaderless’ replication
among replicas of a DataCapsule by using an anti-entropy background synchronization protocol.

At the core of any replication algorithm is a compact representation of the local DataCapsule
state; such state is defined by the records of DataCapsule that a log server possesses. Using a
compact representation allows for efficiently carrying out state reconciliation using anti-entropy
gossip protocols. We discuss two algorithms below for such state reconciliation that primarily differ
in the representation used. In our current prototype, we use the first algorithm for its simplicity.

The first algorithm is relatively simple and treats the records in a DataCapsule as a bag of
items, each identified by the headerHash of the record header. A log server sorts the records by
the headerHash, and creates an in-memory Merkle tree composed of the sorted hashes.33,34 All
replicas of a DataCapsule maintain suchMerkle trees with their individual local states. A log server
can then start syncing with a remote log server by traversing this Merkle tree—starting from the
root and then only selecting sub-trees for which the top-hash differs from the remote hash. After
a number of back-and-forth steps of exchanging hashes of sub-trees, the initiating log server can
ascertain the additional records that it can retrieve from the remote log server. The log server then
requests records from the remote log server, along with appropriate proofs, which the remote log
server returns in the form of a RecContainer.

The second algorithm uses the relationships among records, as defined by the hash-pointers.
The local state of the DataCapsule, that may be full of branches and/or temporary holes, can be
efficiently and uniquely described in the form of a set of hash pairs (see Figure 3.3). The first hash in
a hash pair represents a record that either has zero or more than one (but not exactly one) successors
as present in the local state; the second hash is a record that can be reached to by following the
prevHash pointers back from the first hash and is a candidate for being the first hash of another
hash pair.

The algorithm itself has two phases: the first phase attempts to fill the temporary holes, and the
second phase attempts to synchronize branches. At the beginning of first phase, the log servers send
each other the unique representation of their local replica of a DataCapsule. After the exchange of
the representation, each log server knows the sequence of contiguous records that it needs from the
other log server to fulfill its own holes. After this partial synchronization is done, the log servers
then update their own unique representation and initiate the second phase, where they do a similar
information exchange.

33Such a Merkle tree for sorted hashes can also be viewed as a prefix-based tree, where items in a sub-tree share a
common prefix. A representation using prefixes is a lot simpler in terms of implementation.

34Note that this is not to be confused by the DataCapsule hash-pointer structure that may look like a Merkle tree in
certain cases.
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Figure 3.3: An example of a very branched DataCapsule; grayed records are the records that are
not present in the local state. A unique representation of the local state (accounting for missing
records) would be: sorted((19, 13); (15, 13); (13, M); (7, 4); (11, 8)). Note that even though, for
example, record 4 is missing from the local state, a log server knows about the existence of such
record including its headerHash. Further, the pair (13, M) exists in the state because based on the
locally available information, the log server doesn’t know that a record like 2 exists.

The algorithm requires two phases because the local replica of a DataCapsule, when represented
as a directed graph, may have more than one weakly connected components.35 For example, in
Figure 3.3, the local state will have three weakly connected components. As such, there maybe
branches that the log server may not even know about after the first phase.36 The algorithm takes
a conservative approach to minimize extra data transfer between the log servers, and waits for the
second round to infer information about the relative placement of missing records. After the first
phase finishes, the two log servers synchronizing with each other have the same number of weakly
connected components.

35http://mathworld.wolfram.com/WeaklyConnectedComponent.html
36For instance, in Figure 3.3, the log server cannot infer any information about the placement of a contiguous

sequence of records represented by the hash-pair (20, 2) that it may receive from a remote log server.

http://mathworld.wolfram.com/WeaklyConnectedComponent.html
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Chapter 4

Making DataCapsules Practical: The
Engineering

In the previous chapter, we outlined the core design of DataCapsules. However, a number of issues
need to be addressed in order to make DataCapsule vision a reality. For example, clients in real
world have limited local state and they cannot work with a proof that requires sending an unbounded
number of hashes over the network. Further, application developers desire richer interfaces than
the native DataCapsule interface. And finally, the operations on a DataCapsule ought to be carried
out over an insecure network and it is important to address a number of subtle security issues. In
this chapter, we address these practical concerns. Note that these are more than mere optimizations
and essential to making DataCapsules practical and integrate well with the GDP.

4.1 Managing application-specific requirements: Beyond a
hash chain

The structure of the DataCapsules, as we have described thus far, is a very skewedMerkle tree and is
essentially a hash-chain (see Figure 3.1b). The integrity proof generation scheme described earlier
can result in very long proofs with such a simple hash-chain. In order to limit the size of proofs, we
use additional hash-pointers in the record header that can point to any arbitrary record older than a
given record. Using such additional hash-pointers makes the graph of pointers a Directed Acyclic
Graph (DAG) instead of a simple hash-chain and provides for ‘configurability’ of the structure
of a given DataCapsule. This kind of configurability allows for aligning proof generation with
application specific access patterns.

Using hash-pointers has a number of implications: (1) The writer needs to either keep a local
cache of any headerHash’s it might need in future, or query them from a log server on demand
causing a performance penalty. (2) For a reader reading old data, the overhead of verification
is dependent both on the linking structure and the access pattern. (3) The tolerance for failures
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increases with denser links, however too many links may adversely impact archival storage of data
on log servers.

Generating an optimized integrity proof in a generalized DAG: When queried for a record m
against a more recent record n (that a reader may have obtained by verifying a signature from a
heartbeat), a log server has to find the shortest path from n to m in a weighted DAG, where the
weight on an edge is calculated as the size of the record-header where the edge is pointing to. For
most practical purposes, a simple greedy strategy works well enough, where starting from n, one
picks an edge to the oldest record more recent than m.

Why not make a balanced Merkle tree? Instead of using arbitrary hash-pointers, an obvious
design choice would have been to make a balanced Merkle tree rather than a skewed tree. We do,
in-fact, use hash-pointers to create a rather balanced Merkle tree for certain use-cases. However,
the reasons to not restrict the structure to only a balanced tree are: (1) individual applications may
consider some records more important than others and may want optimized proofs for such special
records, e.g filesystem checkpoints; (2) a Merkle tree does not work very well with DataCapsule-
truncation (imagine a situation where we just like to keep last 10 records around); (3) a strict tree
structure forces one to require extra data transfer in the simplest of the cases, such as streaming
video stored in a DataCapsule; (4) Merkle trees require relatively larger state to be maintained on
writer, which may not be available on all devices.1

The choice of hash-pointers is primarily that of the writer to control the performance; all
invariants and proofs works regardless of the structure of hash-pointers. At a high level, the goal
is to find an appropriate trade-off between the cost of ‘append’ and integrity proofs for ‘read’, i.e.
tuning the work needed on writer vs reader.

For formulaic strategies, a writer can calculate in advance how long a specific headerHashwill
be needed.2 With the constraint that a writer can only store limited number of hashes in its local
state, we propose three generic strategies that can be used by applications as a starter template (see
Figure 4.1).

1. The simple linked list (hash-chain) with a constant number of back-links. In addition to
just the prevHash, each record may include links to the last n records as well (where n is
a pre-configured parameter, and allows for a hole of size up to n − 1). This is the simplest
strategy where the writer needs to maintain a constant number of headerHash’s, but the
integrity proof is as long as the number of records between the queried record and an already
known record. However, this simple linked-list design is very efficient in range queries; a
range of records is self-verifying with respect to the newest record in the range. Such a design
is a good fit for applications that require “all the data starting from time t to now".

2. A type of binary tree, where a record has more links to nearby records. The exact strategy
works as follows: the writer expresses the record number (the actual count of records, and

1This becomes especially important in case of commercially available microchips with hardware ECDSA support
but very limited storage, e.g. Atmel ATECC108A that ships with only 10Kb EEPROM.

2In our implementation, a writer maintains a small state machine that dictates when a specific headerHash is no
longer needed.
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Figure 4.1: Generic strategies for creating additional hash-pointers.

not the seqno) in its binary expanded notation in, but in decreasing order of powers. As an
example, 27 = 1 ∗ 24 + 1 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 0 ∗ 20. Then the record contains back-links
to older records as represented by cumulative sums of the terms; we also need to ignore
duplicates, self-pointers, and pointers to immediately previous record (which is included as
prevHash already). To illustrate, 27 will have back-links to record numbers 1 ∗ 24 = 16,
1 ∗ 24 + 1 ∗ 23 = 24, 1 ∗ 24 + 1 ∗ 23 + 0 ∗ 22 = 24, 1 ∗ 24 + 1 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 = 26,
1 ∗ 24 + 1 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 0 ∗ 20 = 27. Since we count 24 only once and ignore 26 and
27, the list of back-links is [16← 27, 24← 27]. Such a strategy ensures that the writer can
determine what headerHash’s to keep in local state for use later. While this strategy requires
more bookkeeping on the writer side than a simple linked list, proof sizes are logarithmic
sized. Such a design is a good fit for readers that perform random reads.

3. A checkpoint strategy. Consider an application that performs checkpoints every n records
by dumping its local state to the DataCapsule; each checkpoint has a link to the previous
checkpoint, and non-checkpoint records have links to the most recent checkpoint. Such a
strategy allows for flexibility while providing good performance and tolerance for holes. Our
version of a key-value store CAAPI, that we will describe in next section, uses a similar
checkpoint strategy. Note that in the most general case, n does not need to be constant and
can vary within a single DataCapsule.
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4.2 Building a CAAPI
In this section, we describe our experiences developing two real-world CAAPIs. Recall from
subsection 2.4.2 that a CAAPI (Common Access API) is a library that provides a more familiar
interface but uses DataCapsules underneath for persistent storage.

4.2.1 A key-value store with history and snapshots
Aspart of TerraSwarm (recall from subsection 2.5.1), we observed a specific usage pattern. A signif-
icant number of applications used time-series data with a small JSON string encoding a dictionary
that contained key-value pairs. Especially small battery powered environmental sensors gener-
ated data of the following type: { "timestamp": "2019090307233404", "temperature":
"29.0", "humidity": "65", ...}. Such data was then parsed and store in a database for
retrieval at a later time.

To address such a usage pattern, we designed a key-value store CAAPI that stored the underlying
data in a DataCapsule as it arrived. Our CAAPI is mostly targeted at time-series dictionaries with
a few keys and small data values, but the values changes often. The CAAPI in the form of a Python
module that a user can import. The module provides a dictionary-like interface that resembles
Python’s built-in dict class with two additional features: (1) the key-value store is backed by a
DataCapsule and thus persistent across program restarts, and (2) in addition to providing the current
value of a key, it also supports asking historical values of a key.

Each update to the key-value store is internally mapped to a new record in the DataCapsule.
Additionally, the CAAPI maintains periodic checkpoints with a varying granularity similar to the
dump utility in Linux. Tunable granularity of checkpoints allow for achieving an acceptable balance
between checkpointing often vs minimizing storage overhead.

A future enhancement to the CAAPI would be to separate the checkpointing in a different
DataCapsule. This allows for adjusting the checkpointing needs based on access patterns and
application specific needs. This CAAPI was developed before we had support for more extensive
linking with additional hash-pointers. However, a checkpoint-style linking strategy, as described
in the previous section, would have been extremely useful to guide the proof-generation with
application-specific access-pattern.

4.2.2 A filesystem for machine learning
To help with the use of DataCapsules and the GDP for fog robotics (recall from subsection 2.5.2)
and machine learning applications in general, we developed a CAAPI for use with TensorFlow [36].
Our TensorFlow CAAPI is in the form of a C++ library that can be loaded at run time and works
with existing TensorFlow code. The CAAPI allows a user to utilize the GDP and DataCapsules for
all file system access by merely specifying a GDP path instead of a local file system path.

TensorFlow has support for custom file system plugins. Such custom file system plugins are
required to implement a narrow interface to a file: given a path, the plugin should be able to return
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a file-handle in the specified mode (read-only vs read-write); writes are append-only and reads can
be random access. Since the only required mode of writing is an append, it is quite straightforward
to map the operations on a file to a DataCapsule. We must reemphasize that the append-only nature
of a DataCapsule does not prevent us from creating an arbitrary mutable file interface.

For our specific implementation, we map regular files to DataCapsules in a one-to-one map-
ping. We maintain the directory structure for the entire file system in a root DataCapsule that
identifies a mapping of full path names to DataCapsule names. Sub-directories are merely
just an entry in the root DataCapsule. For TensorFlow code, users specify the file paths as
gdp://root-DataCapsule-name/path/to/file, where the root-DataCapsule-name is a
hexadecimal encoding of the DataCapsule that represents the root directory structure. Such paths
can be used for the entire life-cycle of a machine learning application; some examples are training
data, logs for model-training progress, checkpoints for trained models, and actual application data
that the trained model operates upon.

Our current design, while simple, has a limitation that the consistency guarantees are limited to
single files; there are no guarantees of consistency across files. Such behavior may not be suitable
for arbitrary applications, but this works just fine for machine-learning applications. While an
alternate design of laying out the entire file system in a single DataCapsule would have allowed us
to get stronger guarantees across files, our current design is simple and effective. Further, it allows
detaching individual files off of one file system and attaching them elsewhere with minimal data
copying.

4.3 Securing network operations: The GDP protocol
Even though DataCapsules provide an intrinsic security for information, the actual communication
must still be translated to fit the underlying transport provided by the GDP network.3 The GDP
protocol is the materialization of operations on DataCapsules to GDP PDUs that the GDP network
can move around.

The GDP protocol is responsible for not just transferring parts of a DataCapsule around, but also
a number of status message such as acknowledgments. While the security of datagrams containing
DataCapsule fragments can be reasoned about by using DataCapsule primitives, various status
messages and acknowledgments do need some mechanisms to provide an end-to-end guarantee.

To illustrate why the security of status messages and acknowledgments is necessary, consider
the case of an append operations; the writer must be able to securely assert that an append operation
actually reached a log server designated by the DataCapsule owner. A malicious on-path adversary
should not be able to silently drop such append requests and send an acknowledgment to the writer
pretending to be the correct log server (and framing an honest service provider in the process).

3Recall that the GDP network provides a UDP-like datagram communication for applications.
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There are a number of communication protocols and tools that provide an end-to-end secure
channel, both for generic message exchange (TLS, VPN, etc) or specific protocols (e.g. HTTPS,
SSH, etc). Using existing tools without modification does not work for at least two reasons:

First, existing secure channel protocols are designed for host-to-host communication. The GDP
network is an information-centric network where one communicates directly with the appropriate
DataCapsule and not a physical host.4 While it is true that a DataCapsule is eventually hosted on
a physical host that is replying on behalf of the DataCapsule, a user does not necessarily know of
the host’s identity in advance. A client could exchange some information with the underlying host,
but that brings us to the second challenge.

The second challenge stems from the fact that DataCapsules are replicated across the network. A
client’s communication with a DataCapsule is inherently datagram based anycast. Existing security
tools that rely on a stream based unicast communication to a specific host do not naturally fit in
this new ecosystem. One could argue that anycast communication is quite similar to unicast and
that a datagram based tool such as DTLS could be made to work with the GDP network. However,
if the underlying network switches a client communicating with a server A to a different server B
advertising for the same DataCapsule, the client must pause and do explicit state negotiation with
the new server before it can start communication again—an expensive process that itself requires
multiple round-trips. Further, such a negotiation may never finish in the simple case of the two
servers getting client messages alternatively—a typical load balancing strategy.5

With this background, we needed to devise transport layer security mechanisms in the GDP
protocol. We present a high level overview next.

4.3.1 GDP protocol design principles
Before discussing details of the protocol, we need to understand the type of messages for DataCap-
sule operations. Viewing the DataCapsule as a storage interface, various DataCapsule operations
can be classified in two very distinct categories:

1. Writes, or in a more generalized viewpoint, operations that involve change of persistent state.
In the context of DataCapsules, examples include DataCapsule-creation, appends, messages
for synchronization among log servers, etc.

2. Reads, or operations that query existing state. DataCapsule operations that fall in this category
are: reads, subscriptions, queries for metadata, etc.

For any DataCapsule operation, there is always an active entity that initiates communication
by sending a request; such request is fulfilled with a response by some other active entity. These

4Recall that the DataCapsule operations from a writer or a reader are directly addressed to the DataCapsule and
not a host; the network finds the closest physical node advertising for the given DataCapsule and delivers the request
to such node.

5A separate argument is that many HTTPS websites are internally served by an array of servers, and they must
have solved the challenge of serving the same resource from multiple physical hosts. However, note that such services
are in the same administrative domain with cooperative front-end load-balancers carefully configured specifically to
prevent such issues.
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requests or responses can last an arbitrary amount of time and can spanmultiple message exchanges.
In the most generalized sense, we can designate entities initiating requests as clients, and those that
respond as servers.6

With the generic classification above, the actual messages can be classified in the following
four categories: (1) state update requests, (2) responses (acknowledgments) corresponding to state
update requests, (3) state query requests, and (4) responses corresponding to state query requests.
We follow certain basic principles in order to secure these types of messages:

1. Secure state update: Any request to update persistent state should have appropriate au-
thenticity proof for the server to verify the identity of request creator and the contents of
the request. Such requests can be forwarded by arbitrary entities without tampering, and
everything should still work.7

2. Secure acknowledgments: Acknowledgments for persistent state update requests should be
created in a way that a client can verify that the state update request has reached the desired
components in the infrastructure. Note that the acknowledgments do not guarantee that the
requested update has been performed because a log server can lie to a client and send false
acknowledgment. However, an adversarial man-in-the-middle should not be able to spoof
acknowledgments and frame an honest server.

3. Proof of correctness: A response to a request querying state should always include a proof
of correctness/integrity. The original request may include some additional information to
optimize the proof in certain cases.

4. Idempotent messages: A request replayed at a later time should not affect the persistent state.
For example, if a correctly signed append request is replayed at a later time (either duplicated
by the routing layer, or by a third party adversary), the state of the DataCapsule should not
be affected.

4.3.2 The GDP Protocol
With the above design principles and the fact that a DataCapsule is an authenticated data structure
with any state update operation designed to be idempotent, the key task of the GDP protocol is
to ensure secure acknowledgments and facilitate key-management. One way to achieve secure
acknowledgments is that the server signs the acknowledgments. However, a client has no a priori
information about the identity of the log server(s); any request from the client is targeted to
the DataCapsule’s name and a log server is merely serving on behalf of the DataCapsule. The
only private key that a log server has is its own private key.8 Thus, if the log server signs the

6This terminology may create some confusion with GDP clients and log servers, but we hope this will be clear
from the context. Note that a GDP client is always a client, but a log server can be either a client or a server, depending
on the particular operation. An example where a log server is acting as a client is during replication.

7For example, in our design, a log server forwards an append request created by the writer to other log servers
during replication and to subscribers subscribing to the DataCapsule. Even though replica log servers and subscribers
receive the ‘state update’ from the original log server acting as a proxy, they should still be able to verify the authenticity
of the append request.

8This is the private key whose corresponding public key is used to derive the GDP name of the log server.
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Figure 4.2: The GDP protocol PDU. PDUs are split in two parts: a PDU header and a PDU
body. The PDU Header primarily contains ‘source’ and ‘destination’ information and is used by
the GDP network to route messages. The PDU body is split into three parts: certs, payload and
trailer. Certs contains certificates/delegations and metadata(s) for key-exchange; payload contains
the actual request/response to/from a log server; trailer contains an HMAC (or a signature) from
the log server.

acknowledgments using its own private key, then the client needs to (1) obtain the corresponding
public key, and (2) verify that this key belongs to a log server authorized to host the DataCapsule
in question.9

The GDP protocol ensures that such key setup between a client and a log server can be done in
parallel with the actual data transfer and does not require any explicit round-trips. This is a notably
different design then, say TLS, where key-exchange is required before any actual data is sent. This
is possible because a client’s message has another layer of security already built-in because of the
DataCapsule construction, and GDP protocol only needs to protect the responses that come back
from a log server.

At a high level, the key exchange happens as follows: the log server provides its ownmetadata and
anAdCert that it presumably received from the log-creator at creation time (which includes the GDP
name of the log server). The log server metadata contains the public key of the log server, and the
metadata should hash to the 256-bit name contained in theAdCert. Additionally, for an optimization
that rids of the expensive signature computation/verification on secure acknowledgments, the client
also includes its own metadata along with a request; the client and the server then establish a shared
secret key derived using EC Diffie Hellman (using each other’s public keys), which is then used by
the log server to perform an HMAC instead of the signature.10,11

9The actual protocol involves the signature over both the original request and the corresponding response (and not
just the response). Additionally, an important bit of information included in the GDP payload is a requestID, which
is a unique 32-bit increasing number that (1) the client uses to correlate responses with requests, and (2) ensures an
acknowledgment by the server for one request cannot be replayed as a response to another request. Note that this
requestID is not to be confused with a seqno used in DataCapsule records.

10We assume that client and server already agree on ECDH shared parameters.
11In actual practice, only the first request from a client includes client’s metadata. If a subsequent request gets

redirected by the GDP network to a different log server, such a log server falls back to using a signature but indicates
in the response that the client should send its metadata again.
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Figure 4.2 shows the GDP PDU format. The PDUs defined by the GDP protocol are split in two
parts: a PDU-header and a PDU-body. PDU-header primarily contains ‘source’ and ‘destination’
information and is used by the GDP network to route messages. PDU-body is further split into
three parts: certs, payload and trailer. Certs contains AdCerts and metadata; payload contains
the actual request/response to/from a log server; trailer contains the HMAC/signature from the log
server.

An additional goal of the GDP protocol is to enable efficient communication by reducing the
number of bits sent on the wire. Toward this goal, the protocol employs two techniques: flowIDs
and payload compression.
FlowID: Including two 256-bit addresses in each PDU is a significant data overhead. For efficient
communication, we use a hop-by-hop flowID; a flowID is a small integer negotiated between two
consecutive nodes on the path between a source and a destination. For each hop on the path in the
overlay network, only the first PDU for a given (‘dst’, ‘src’) pair contains the full addresses and any
future messages include a flowID, thus avoiding the penalty of large addresses. Note that the use
of flowID is merely an optimization and individual nodes may choose not to participate in such
optimization.
Payload compression: The GDP payload contains compressed, network efficient versions of
‘DataCapsule-create’, ‘append’, ‘read’, ‘subscribe’ and their corresponding responses. An essential
element of this compression is to avoid transmitting information that can be securely generated
on the other side.12 As an example, for an ‘append’ request, the actual data sent to the server
does not contain any hashes, since they can be generated locally by the server, only offsets for
hash-pointers. The log server fills in the appropriate hashes that the client skipped transmitting
on the wire and then performs signature validation. Note that any signatures/hashes are over a
serialized version of the in-memory representation, and not the on-the-wire bytes. This ensures
that any accidental/intentional incorrect assumption of shared state does not compromise security.13

Achieving the two conflicting goals—payload compression and a completely stateless protocol—
is a challenging process. A completely stateless protocol, for example, requires AdCerts, metadatas,
and other similar information to be included with all PDUs, resulting in excessive overhead. Any
request failure because of lack of a state negotiation results in extra round-trips, which is also
undesirable. However, with the help of appropriate ‘hints’ for such state negotiation, we believe it
is possible to minimize retransmissions and duplicated state information; this is an active area of
exploration and requires some more engineering work.

12Note that this payload compression is actually implemented as part of the general RecContainer compression that
we discussed in the previous chapter (subsection 3.3.2).

13The same also applies for the flowIDs described earlier; the HMAC is calculated over the original source and
destination address (and not the flowID).



CHAPTER 4. MAKING DATACAPSULES PRACTICAL: THE ENGINEERING 74

4.4 Discussion and future work
In this section, we describe some of the less developed ideas to improve the usability, security,
or performance of the GDP ecosystem. While these ideas aren’t strictly necessary for our initial
prototype, these need to be addressed for a practical adoption of DataCapsules.

Secure (private) query by time

A much desired feature in IoT landscape is querying for information by time (or a range of time).
We refer to ‘time’ as the notion of time relative to the DataCapsule-writer.14 An encoding of
timestamps of appropriate resolution into monotonically increasing integers representing seqno
achieves this property of query by timestamp with only a minor change to the read-requests.

However, a naive encoding of timestamps leaks quite a bit of information to a third party without
a decryption key. The problem isworse forDataCapsules than purely communication based streams,
because the data storage aspect of DataCapsules increases thewindow of opportunity for amalicious
third party interested in this information to more than just the duration of communication. In order
to achieve some confidentiality, an Order Preserving Encryption scheme can be used to separately
encrypt the seqno before creating ‘append’ without any loss of functionality [54].

Encryption key rotation

The decryption keys are a type of capability for reading the data. It is a reasonable assumption
that not all readers with access to a certain DataCapsule will be absolutely secure and trustworthy
to protect the decryption keys. For long-running communications, this can lead to serious data
compromises. To alleviate this inevitable issue, we recommend that the decryption keys be rotated
periodically. The new keys can either be generated by the writer itself and communicated to
the designated readers using the DataCapsule-attach request (see below), or it can be distributed
by a key-broker (indicated in the metadata) to both the writers and readers. Such key-rotation
mechanisms can be used to provide selective access to ranges of data, or implement a revocation
scheme where future access to data is denied.

DataCapsule attach request

DataCapsules, as described so far, are a perfect fit to address a static graph of services. In order to
address dynamic scenarios, a client can use a DataCapsule attach request. A DataCapsule attach
request is a special type of request addressed to a principal that’s not a DataCapsule (a service,
application, user); it specifies a number of input and/or output DataCapsules that the principal
should read from/write to. Such a request acts as a glue to enable composability of DataCapsules
without compromising on security.

A DataCapsule attach request uses the general GDP protocol, and proceeds with a DH-key
exchange as in the regular GDP protocol. However, the key is used to encrypt the payload instead

14The issue of absolute correctness of time on the DataCapsule-writer is out-of-scope of the current work.
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of just calculating an HMAC. In addition to providing a way to compose services, a DataCapsule
attach request also provides for a way to perform in-band exchange of decryption keys that are
required to access the DataCapsules included in the request.

DataCapsule truncation

DataCapsule truncation is the marking of old data ‘safe to delete’. The notion of ‘old’ can be either
described with respect to time or number of records. Since ensuring data is truly deleted from
a remote storage server is probably an unsolvable problem, truncation only provides a hint to the
server that the data is safe to delete. DataCapsule truncation significantly affects the design choice
for hash-pointers in the record headers and one of the reasons a simple balanced Merkle tree is not
the optimal choice for certain use-cases.

DataCapsule truncation is an essential element of the service provider model for DataCapsule
hosting. In fact, DataCapsule owners may base their decision process of choosing a service provider
based on contractual guarantees that truncated portions of a DataCapsule are actually deleted from
all persistent state. Such guarantees are essential for a widespread adoption of DataCapsules by
enterprises and companies bound by legal requirements on data retention.

Transient DataCapsules

Taking DataCapsule truncation to an extreme level, a creator can designate a DataCapsule to
only require a small number of records. Such a DataCapsule can be purely held in memory of
a collection of collaborative log servers, without ever needing to commit data to a physical disk.
Such optimizations can improve the performance significantly and extends the utility and flexibility
of DataCapsules.

Signing frequency

Signature creation/verification is one of the most expensive operation for writers and readers.
Even though more and more devices include hardware-support for cryptographic operation, certain
low-end devices might not be capable of (or need) such real-time signing. A tuning parameter
for DataCapsules is the signing frequency, where a writer does not sign each individual record
as it is generated. With a slightly relaxed threat model and for applications that do not require
real-time communication, a writer can choose not to sign every ‘append’ request. A log server
tentatively accepts such an ‘append’ and sends a secure acknowledgment as usual. However, if the
writer cannot validate a secure acknowledgment, it must then resend the ‘append’ request with the
appropriate signature. Such optimizations are very well suited to low-power radio based sensors
that send multiple records in batches to conserve power.

Read access control

Even though encryption is the prime mechanism for read access control, such a scheme is less
than ideal because of the side-channel information leakage described earlier. In slightly relaxed
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threat model, a log server could be tasked with enforcing read access control with a certificate
based scheme; a reader must include a signature on the read request and include an expiration
time to reduce the potential time-window for a replay of such signed request by an adversary.
Alternatively, in a slightly different relaxation of threat model where routers can be trusted to
enforce access control policies, the access to sensitive DataCapsules could be limited to private
routing domains that require a cryptographic authorization to join. The GDP network, as we will
describe in next few chapters, does provide such support.

Preventing side-channels at DataCapsule level

The information-leakage problem is especially challenging for public DataCapsules because a third
party can monitor communication in real-time by just subscribing to the appropriate DataCapsule;
they don’t even have to be in a special position in the network to observe the traffic pattern. The
time-shift nature and the storage aspect of DataCapsule also makes things easier for an adversary,
since an adversary doesn’t even have to subscribe in real-time to get this meta-information. Instead,
it can read records in bulk at a later time and get at the very minimum size information.

A privacy centric writer can partially alleviate this side-channel leak by using ‘pointer-records’
to overlay a single DataCapsule (‘primary’ DataCapsule) over a collection of ‘secondary’ DataCap-
sules hosted on mutually distrustful servers. Pointer-records can be used to describe a schedule of
N future records using a secure pseudo-random number generator (PRNG) initialized with a seed
s that generates integer values in the range [1,m] (m is the number of secondary DataCapsules). In
this scheme, a pointer record contains N , s and DataCapsule names for each of the m DataCapsules,
with all of this information encrypted using the encryption key that the writer would otherwise use
to encrypt records in a normal DataCapsule.

Only a reader with the appropriate decryption key can decrypt the information in pointer-
records, and follow the pointers to the secondary DataCapsule to retrieve the real payload. An
adversary subscribed to just the primary DataCapsule only obtains the information about new
pointers, where the information leak can be minimized by randomizing N and applying a random
padding to obfuscate size of pointer records. An adversary subscribed to just a single secondary
DataCapsule can obtain the size and time of interleaved records, however the adversary does not
know how many records it missed. A more powerful global adversary subscribed to a subset of
all possible DataCapsules can perform some correlation of individual DataCapsules as constituent
DataCapsule of an overlay DataCapsule, however it can never be sure of the missing information.
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Chapter 5

The GDP network: Delegated Secure Flat
Routing

In this chapter, we present the design of a secure and scalable routing networkwith flat cryptographic
names, called the GDP network. Recall from chapter 2 that the GDP network provides a routing
fabric for enabling the DataCapsule infrastructure. It is also available for direct use by end-users if
they so desire.

The GDP network is an information-centric network: instead of routing messages between
hosts identified by structured IP addresses, it routes information between cryptographic principals
named by flat 256-bit long names (GDP names). Recall that GDP names can represent objects and
hosts alike; objects could be services or information objects like DataCapsules. At an operational
level, the GDP network is composed of many routing domains that do not necessarily trust each
other, yet coexist together. Such coexistence occurs despite the lack of a single administrative entity
performing namespace allocation as in IP-based networks.

A key aspect of the GDP design is the service provider model, which translates to the fol-
lowing in the GDP network context: users maintain ownership of their names, but can securely
delegate hosting of content and services to infrastructure owners/operators. Using flat GDP names
compliments this design philosophy by providing location independence for delegated names.

From a security perspective, flat namespace routing by itself has traditionally been considered a
challenging security problem. Thus, allowing such delegation merely seems to add to the problem.
The security challenge primarily arises from the fact that users pick their own names, which makes
it very easy for malicious actors to make spurious claims to arbitrary names or lure network traffic
via themselves by falsely claiming to offer a good route to an arbitrary name (see Figure 5.1).
Even with hierarchical names assigned by official administrative entities, such as in the IP network,
routing security can be compromised if malicious entities get access to the core of the network [55],
[56]. IP network administratorsmaintain day-to-day security of their networks by filtering abnormal
BGP announcements and by an elaborate set of manual checks and balances. Such mechanisms
do not work for flat namespace networks, because these networks, by their very nature, expose the
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Figure 5.1: Adversarial infiltration in a network with routing domains RA, RB, RC, RD that do not
have any incentive to trust each other. A client W does not even know whether a log server named
LS is legitimately placed in a RB or RB is just pretending to have a close-by copy.

routing protocols to potentially malicious network participants. We will discuss previous attempts
to address this problem in more detail in the next section.

The security guarantee that the GDP network provides is: given a GDP PDU with a specific
(src, dst) pair comprised of flat 256-bit addresses, the GDP network will attempt to efficiently and
securely route the PDU from src to dst—even in the presence of adversarial entities who may claim
to possess any given name and control parts of the network. Note that src and dst are bound to
hardware positions within the network by a process of secure advertisement (see a formal threat
model in section 5.2). In addition to protecting communication paths, the GDP network also
enables native support for controlling the scope of a names: users can specify policy on whether
a given name should be visible globally or just within a routing domain, and the GDP network
enforces such policies. Such a feature, for example, enables DataCapsule owners to lock down the
information to private domains.1

We discuss the design and implementation of the GDP network as an overlay network in this
chapter, however, it should be viewed as a tunneling protocol inside the conventional IP networks
for ease of deployment. In fact, individual routing domains can choose to run the GDP network as
a native protocol and still be compatible with the rest of the system.

1One can view this as a native GDP network-firewall, although we avoid such terminology because of subtle
implications that the term ‘firewall’ has.



CHAPTER 5. THE GDP NETWORK: DELEGATED SECURE FLAT ROUTING 79

5.1 Background and related work
The GDP network builds upon almost two decades of distributed systems knowledge, and almost
every individual component of the architecture has been studied elsewhere in the past. The GDP
network merely fills the gap between existing systems and what is needed to achieve the high-
level goal of providing a scalable and secure routing between flat names that support a service-
provider oriented, multi-stakeholder view of computing landscape, such as those prevalent in edge
computing.

5.1.1 Relevance to current Internet infrastructure
The organizational structure of the GDP network is inspired from ISPs and ASes (Autonomous
Systems) from IP routing. The organizational hierarchy is intentionally designed to mimic the
physical infrastructure to ensure ease of deployment. It also supports well understood economics
models with real-world entities. However, the GDP network differs from the current Internet in
that it enables anyone to start a new autonomous organization (called a routing domain in the
GDP network) as opposed to authoritative, bureaucratic, and legislative structures of the current
Internet [57].

Routing security is a challenging task even for IP networks, mostly due to BGP [55], [56],
[58]. The most effective solution in IP routing is to disallow an adversary to join the network
as a route-advertising entity (AS) in the first place. Such a solution is inherently limiting in our
use case, since even normal users must advertise the names they claim to own in flat namespace
networks. A number of past systems have used network assigned names even for flat namespace
routing, however such solutions restrict the autonomy of individuals especially in global systems
such as ours [59]. Recent work such as Secure BGP [60] aims to alleviate IP’s routing security
challenges; we use a similar principle of using cryptographic tools to control who can advertise for
a given address.

In the IP world, the prime method of delegation of services is a redirection via DNS to an
appropriate hosts managed by a service provider. Using DNS as a redirection mechanisms is
useful, however it remains a coarse grained mechanism for providing geographically relevant
services [61]. Further, DNS is an imperfect mechanism for asserting name ownership and is not
impervious to geopolitical disputes, litigation, censorship, or adversaries. Of course, we do not
deny the usefulness of human readable names, but our goal is to enable security at the network
level itself.

A relevant IP technology worth mentioning is Mobile IP [62]. Mobile IP allows users to keep
a fixed network identity even when moving around, but it has seen rather slow adoption rate [63].
Another such technology is IP anycast; IP anycast allows for multiplicity of service providers,
however it is limited to a small fraction of the namespace; in practice, IP anycast is mostly limited
to large enterprises with substantial resources and influence [64].
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5.1.2 Previous academic research
The design of the GDP network is influenced by a number of previous academic systems spanning
a wide range of goals and functionalities. We discuss a few noteworthy categories below.

A Naming and ICNs

Many previous distributed storage systems (SFS [65], OceanStore [17], etc.) have used crypto-
graphically derived names for their self-certifying property to achieve integrity verification of the
information objects. The concept of using such an identity as the network address and making
information objects first class network entities is at the core of an entire class of networks called
Information Centric Networks (ICN). The GDP network allows for direct addressing of both objects
(such as DataCapsules) and hosts, and thus fits the description of an ICN.

A high level summary of the commonalities and differences among various well known ICNs
is provided by Ghodsi et al. [34]. A few notable systems are CCN [66], NDN [67], DONA [68],
PRISP/PURSUIT [69], NetInf [70], TRIAD [71]. A number of Future Internet Architecture (FIA)
projects such as NDN [67], MobilityFirst [72] and XIA [73] also propose similar designs of higher
level abstractions than IP. Research on Distributed Hash Tables from the early 2000’s also fueled
the development of many of these ICNs [74]–[77]. Our approach of making named objects as
first-class citizens on a network is certainly inspired by these past systems.

A number of general ICN challenges [78] and those specific to ICN security [79] have been
identified in the form of RFCs by ICNRG working group established by IRTF. As echoed by these
RFCs and highlighted by Ghodsi et al. [34], control over information and privacy of access remain
important research problems. In order to provide such control, the GDP network requires explicit
authorization in form of cryptographic delegations before a host can even advertise a given named
content; this is in contrast with the traditional ICN design with pervasive caching [34].

B Flat address space routing

Flat address-space routing has been extensively studied in the past, and a number of distributed
storage systems use structured peer-to-peer networks to implement such routing [74], [75]. Early
flat namespace routing systems focused on scalable, self-organizing routing schemes that work
without the route aggregation property used by IP networks. A number of these routing schemes
follow a variation of the following algorithm.

To begin with, each node is assigned a name from the flat namespace. When a new node joins
the network, it follows a joining algorithm which results in this new node establishing connections
to a number of other existing nodes in the network. Each node maintains a list of directly connected
nodes in a local data-structure typically called a neighbor table. On receiving a message, a node
follows a simple algorithm: it first makes a decision whether this is a message intended for itself,
or a message to be forwarded. If the message is to be forwarded, then it picks the node from the
neighbor table that minimizes the distance between the destination address and the next node’s
address based on some distance metric. Various existing schemes differ in exact details of the
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joining algorithm and the way they maintain the neighbor table in face of nodes joining or leaving.
The distance metric also varies across systems that use the scheme. A common distance metric,
for example, is based on a combination of common prefix length (between destination address and
neighbor IDs) and ping latency.

These early systems didn’t necessarily have suitable protection from adversaries and had limited
deployment potential in the open Internet. A survey by Urdaneta et al. [14] on DHT security gives
an excellent overview of techniques used by various DHTs, and they also conclude that securing
decentralized systems is not an easy task.

In the GDP network context, the biggest challenge posed by such security issues is that an
adversary can advertise for a name of an arbitrary victim, and then influence the routing state of
honest routing nodes and attract traffic for any given target toward itself. The adversary can then
either simply drop the traffic, thus causing a black-hole for data; or simply send it back in the
network to the correct destination, effectively being a man-in-the-middle. Even worse, since the
federation goal of the GDP dictates that anyone can start their own routing domain and be part
of the global infrastructure, an adversary can create an arbitrary number of routing domains and
GDP routers. This makes it incredibly easy for an attacker to insert itself in the communication
path between a given pair of endpoints and perform sophisticated passive network traffic analysis
without detection.

The GDP network is designed with two security goals: routing security and control over scope
of routing. While we don’t claim to have discovered a solution to generalized problems, we rephrase
the problem definition itself to use explicit delegations and client-side policy specification, thereby
providing the security properties described above.

C Future Internet architectures

A number of projects targeting Internet architectures of the future target similar goals as the GDP
network. Named Data Networking (NDN) [67] is a prominent ICN that takes a very different
approach of using human readable hierarchical names instead of the flat names as used by the
GDP network. We chose a different approach than NDN because cryptographic names enable an
integrated key-management solution, where the trust anchor is the name itself.

There are some broad architectural similarities between the GDP network andMobilityFirst [72]
in terms of relying on a global lookup service. MobilityFirst uses GUIDs that resemble GDP names.
However, the names are essentially assigned by the network which does not fit our goal of complete
autonomy without depending on a trusted centralized authority. The GDP network generalizes the
naming to include hosts, services, etc. in a manner similar to XIA [73]. However, while both XIA
and MobilityFirst aim to target routing security, they have limited support for some of the other
goals important to us, such as delegation to service providers, organizational structure, and network
isolation.

SCION [80] is an attempt to fix the problems of the current Internet and incorporate important
properties such as routing security and network isolation into the current routing architecture. While
impressive in their design and goals, SCION is fundamentally different from the GDP network; the
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GDP network is primarily an overlay network relying on cryptographic security provided by flat
names in combination with the organizational structure provided by trust domains.

Probably DONA [68] is one of the closest existing systems to the GDP network in terms of
architecture. The GDP network is, however, more explicit about the organizational structure, and
provides more flexibility and autonomy for administrative domains. For intra-domain routing in the
GDP network, verifiable routing information is acquired on-demand from a distributed database
which is similar to resolution handlers (RHs) in DONA. Note that such a combination of on-
demand routing lookup and a separation of routing from actual forwarding has been used to allow
for flexibility of routing and simplification even in IP routing [81], [82].

Finally, note that most of these Future Internet architectures by themselves are only a partial
solution to the problem of secure ubiquitous storage platform that we are attempting to address in
the GDP, primarly because they do not provide any semantics for information update.

5.2 The GDP network threat model
In this section, we highlight aspects of the general threat model discussed in chapter 2 specific to
the GDP network. We assume typical security properties of cryptographic primitives (signatures,
hashes, etc.), and that the clocks are synchronized to second-level precision to allow for short
lifespans of our cryptographic delegations. We also assume that the private keys are protected
adequately by the appropriate entities.

A An open federated network

TheGDP network allows anyone to participate in the infrastructure. This includesmalicious entities
that may introduce their own routing domains and/or GDP routers, or simply join open routing
domains. An adversary can create an arbitrarily large number of their own objects and advertise
for them. But under no circumstances can such an adversary (1) insert itself in the path of other
people’s communication at will, and (2) pretend to have a name that it doesn’t own. When the GDP
network is operating as an overlay, we generally assume a baseline level security for the underlying
protocols such as TCP/IP (i.e. no IP-hijacking or BGP routing attacks).2

Clients that do not want to setup their own routing infrastructure use services provided by a
trusted routing domain. The trust implies that the routing domain (and the associated infrastructure)
will follow the correct protocol, i.e. the routing domain will not snoop on data to perform side-
channel attacks, and will respect the policies embedded in cryptographic delegations (e.g. ensure
the advertisements don’t leak outside the desired boundaries if dictated by the policies).

The onus of appropriate delegations and policy specification for a given object (such as a
DataCapsule) is on the object owner. Further, the owner who delegates hosting of an object to a

2Note that existing mechanisms to secure TCP/IP traffic are complimentary to the security guarantees of the GDP
network. As an example, a routing domain with infrastructure spread over data centers around the world can (and
should) use technologies such as VPN for securing communication through the public Internet.
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server also must trust the routing domain that the server connects with.3 We assume that the object
owner makes the ‘correct’ decisions; i.e. takes into account what routing domain does the server
connect to, and such.4 Similarly a client trying to reach a certain object in a foreign routing domain
has to trust the owner of the object to pick a trustworthy service providers; e.g. in Figure 5.1, the
client W has to trust both RA and RD, but not third-parties such as RC or RB.5

B Adversarial infiltration in a routing domain

Both security guarantees of the GDP network (routing security and network isolation) hold as long
as the source and destination routing domains are trusted. But these guarantees are diminished
slightly when an adversary infiltrates inside a routing domain.6

When an adversary infiltrates a routing domain by compromising a GDP router, the routing
security properties still hold true to some extent; the adversary can only affect traffic flows that
pass through the compromised GDP router (e.g. for all directly connected clients), but cannot alter
existing routes at arbitrary places in the routing domain.7 In addition to observing traffic on these
flows (as a man-in-the-middle), the adversary could further try to subvert the network isolation
properties by ignoring any policy specification and directing the traffic elsewhere in the system.
The GDP network mechanisms, as we will discuss later in the dissertation, provide remedies to
ensure that such traffic redirection cannot be done in-band via the GDP network; an adversary
can certainly create covert communication channels out-of-band (such as by opening a direct TCP
channel to a server elsewhere, or by tunneling it inside other GDP network traffic).8

A slightly different type of adversarial infiltration is by compromising an existing entity (e.g. a
client) that has valid authorization to join a private routing domain. Once again, such compromised
entity cannot alter routing paths. Similar to the situation with a compromised GDP router, an
adversary can subvert network isolation properties by actively probing private objects and create a
covert channel to the outside world, but cannot use in-band GDP network routing for such leakage.

Thus, the goal of the GDP network is fairly modest in case of breach inside routing domains, i.e.
ensure that a single point of entry for an adversary in a large routing domain can do limited damage.
The GDP network does notmagically protect against a malicious client trying to bridge two disjoint

3Specifically for the case of DataCapsules, this means that the DataCapsule owner must trust both the log server
and the routing domain that the log server connects with. Once again, this trust is only limited to service providers (log
servers and routing domains) providing appropriate services without performing sophisticated side-channel attacks.

4This is a form of transitive trust where the object owner trusts the server owner for its choice of routing domain.
5This requirement of trust from the owner is consistent with our overall GDP threat model, where readers trust the

DataCapsule owner for correct policy specification.
6Recall from chapter 2 that routing domains could be either public or private, i.e. require a cryptographic autho-

rization to join the domain.
7In case of routing domains with a custom network topology hand-crafted by the routing domain administrator,

this may not be true and a compromised GDP router may actually be able to subvert the routing state of the network.
We will discuss such special case in the next chapter along with the discussion on custom routing topology.

8Note that such out-of-band traffic can be suppressed with cooperation of underlying routing/switching infrastruc-
ture.
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private routing domains for subverting network isolation by blocking all information channels,9 but
it guarantees that the malicious client cannot publish objects under the same name elsewhere in the
system in order to attract traffic from benign users, or use GDP network mechanisms against itself
for that matter.

C Miscellaneous mischievous behavior

The GDP network does not provide mechanisms for access control on objects at the server level;
any filtering for requests based on some access-control list on servers is certainly possible but out
of scope of this dissertation. Similarly, any guarantee on the content/correctness of datagrams
delivered by the GDP network is out of scope of our current work. While the GDP network exposes
AdCerts to applications, these AdCerts are intended to assist application writers with identity
verification and do not provide any security guarantee on the content of datagrams.

The GDP network architecture provides only limited defense from a DoS (Denial of Service)
attack. There are a number of ways an adversary can launch DoS attacks: compromise a GDP
router and stop forwarding any traffic, compromise a GLookupService and prevent lookup of
routes, create unbounded new names to cripple the global GLookupService, send requests to a
large number of destinations to keep GDP routers busy with fetching new routes, or traffic flooding
to specific destinations, just to name a few. As demonstrated by current Internet, rate limiting by
economic means is a way to curb such behavior.

5.3 The GDP network overview and architecture
The routing fabric provided by the GDP network is comprised of GDP routers and overlay links
between them. GDP routers route datagramswith 256-bit long flat source and destination addresses.
The routing infrastructure is partitioned into administrative entities called routing domains. End-
users connect into the infrastructure by finding a routing domain that they trust and connecting to
a GDP router of that routing domain. They may then advertise names that they either own or are
delegated to advertise.10

The interface that the GDP network provides is that of secure datagram delivery between
endpoints. In many ways, this is similar to the guarantees provided by UDP, except for one big
exception: it is non-trivial for a user to spoof an arbitrary source address. Similar to UDP, datagrams
may be dropped, reordered, or re-transmitted. With appropriate application level constructs, it is
certainly possible to devise byte-stream interfaces like TCP, however we consider that as out of
scope of the current work.

9This, in some sense, is a fundamental challenge with any perimeter defense and is not exclusive to the GDP
network.

10We use the terms ‘connection’ to refer to a generic protocol that provides the notion of a ‘channel’, e.g. TCP,
SCTP, dTLS. Our definition of ‘connection’, thus, means establishing such a channel followed by some GDP network
specific handshake—we describe such handshake mechanisms later.
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Figure 5.2: Two administrative (routing) domains, RA and RB in the GDP network. A client A in
RA attempts to reach object X hosted on a server B. The GDP network ensures that (1) an adversary
cannot claim to have a nearby copy of X and influence the routing state; (2) X is not made available
outside of RB if the policies dictate so; and (3) the infrastructure can find a route to X if X is indeed
publicly available.

For those users that are interested in restricting the visibility of names to specific parts of
the network (e.g. a routing domain), the GDP network also exposes the boundaries of routing
domains to end-users so that they can specify appropriate policies.11 Such explicit availability
of infrastructure ownership information distinguishes the GDP network from traditional routing,
where end-users are rarely made aware of who owns the infrastructure. GDP network users can,
however, ignore this additional information in the simplest of cases.

Note that while we discuss multiple distinct stakeholder roles in the infrastructure, the same
real world entity might be playing multiple of these roles at the same time. As an example, a user
who does not want to outsource object hosting to a third party can run his or her own servers and
a routing domain with GDP routers. In fact, we envision that users with stricter QoS requirements
and heightened privacy needs will, in fact, run their own private infrastructure that is still connected
to the GDP network in a way similar to how private IP networks complement the global IP network.

5.3.1 Concepts: Names, owners, delegations, and advertisements
We first review a few key concepts. Some of these were introduced earlier in dissertation, but we
generalize those concepts in context of the GDP network. Recall that every nameable entity in the
GDP has a GDP name, which is a flat 256-bit name. In the GDP network, this same GDP name

11We don’t currently provide a formal mechanism for acquiring such information on infrastructure ownership. At
present, we assume that users acquire such information out of band, but they do have access to the said information in
some format that utilizes the OwnCert mechanism.
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serves as the network address for the object. Also recall that GDP names are derived from the
metadata that contains a public signature key.

The key abstraction in the GDP is a DataCapsule, but we generalize the concept to an object in
the GDP network; an object could either be a named information chunk (DataCapsule, or even a
partial replica) or a named service instance. Any object on top of the GDP network defines an API
defined as a set of RPCs encapsulated within GDP network datagrams. This API could be as simple
as GET and PUT for interacting with small information objects. It could be a bit more involved for
partial updates to information objects (e.g. a GDP protocol to interact with DataCapsules). It could
be even more complicated, providing a set of operations for accessing service instances. The GDP
network merely involves delivery of datagrams and is not concerned with the nature of the RPC.

Each object has a specific owner. The owner of an object is typically a human who has policy-
making authority on the object and is ultimately responsible for the life-cycle of the object. The
GDP network view assumes that users generally outsource the hosting responsibilities for objects
to others. The owner is the only entity in possession of the private signature key associated with
the object, which is how the owner exercises its policy making authority.

Servers host objects. The owner of a specific object explicitly delegates the hosting responsibility
to one or more servers and usually maintains either implicit or explicit economic agreements with
such servers. In a more generalized model, servers are owned and operated by service providers.
Object owners delegate the responsibilities to service providers who then delegate it to a subset of
servers they operate. Depending on the exact semantics of the objects being hosted, these servers
may coordinate among themselves to maintain the desired consistency semantics for objects. From
a user’s perspective, all replicas are roughly equal and the GDP network does not make specific
guarantees as to which replica will a user be directed to. The only guarantees are that a replica
within the same routing domain will be reached before any replica outside the routing domain.12

From an object life-cycle viewpoint, a client is a process running on behalf of an end-user
(human or even an application) that cares about generating and consuming information objects,
or generating requests to service instances and processing responses. Clients interact with such
objects by making requests directly to the name of the object (and not to the server that hosts the
objects).

Note that in general, client is a rather context dependent term. From the perspective of the
GDP network as a whole, a client is any active computer process that connects to the routing fabric.
Even servers are a type of client from this viewpoint. From the perspective of an individual GDP
router, anyone who connects and advertises one or more names is a client. Even GDP routers can
be considered clients when they connect to other GDP routers and advertise for all the names that
they know of. Among other things, when a GDP router connects to another GDP router, it acts like
a client and follows the same secure advertisement process as other network entities to advertise its
presence.

12In case of multiple replicas of a DataCapsules, log servers hosting these replicas may engage in a replication
protocol to ensure that replicas are not running behind. Additionally, for a log server to synchronize its copy of
DataCapsule with a specific replica elsewhere, it must use the name of the log server that hosts such a replica.
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Cryptographic delegations: As mentioned above, object owners delegate the responsibility of
hosting objects to service providers by generating cryptographic delegations called AdCerts. An
AdCert, such as (X →A Y ), is a signed statement by the owner of name X allowing a server (or
a service provider in the general case) with name Y to host the object X . This delegation is done
out-of-band, and can include policies such as “X should be visible only within certain routing
domain R”.13
Making names available to the network: For a name to be available in the network, one must
advertise the name. A client or server connects to a GDP router belonging to a specific routing
domain over aTCPchannel and advertises its own256-bit name into the routing fabric by completing
a cryptographic challenge/response to prove the possession of the secret key corresponding to the
name being advertised. Followed by advertisement of their own name, servers advertise names of
objects that they are delegated to serve by presenting the corresponding AdCerts. The result of this
secure advertisement protocol is another type of cryptographic delegation called RtCert, which
allows a GDP router to route traffic on behalf of the advertised names; we discuss the details in a
later section.

5.3.2 Organizing infrastructure into routing domains
As mentioned earlier, the key organizing principle for infrastructure in the GDP network is that of
a routing domain.

A Routing domain: Overview

Routing domains are essentially administrative domains representing resource ownership for routing
infrastructure. The key infrastructure component maintained by a routing domain are GDP routers.
GDP routers are the IP-router equivalent for the GDP network; these are the nodes that do the
routing and forwarding between communicating entities. Thus, a routing domain is essentially a
set of GDP routers owned by the same administrative entity that are connected together as a graph.14

Routing domains are associated with flat GDP names and corresponding private keys owned by
the domain administrators.15 The resource ownership claimed by a routing domain is cryptograph-
ically asserted by using OwnCerts signed with the routing domain’s private key; an OwnCert
(R →O R) signifies that a GDP router R is owned by a routing domain R, and that R allows R to
act as its agent.

A routing domain has well specified entry-points for outsiders that are not part of the routing
domain; these are called border routers and are specifically tagged as such. Other routers are called
internal routers (See Figure 5.3).16 The task of border routers is strictly to facilitate inter-domain

13We only discuss policy specification as an abstract concept. Specifically, we don’t specify a formal language for
policy specification. We consider a policy specification language as a direction for future work.

14In some sense, routing domains are the equivalent of Autonomous Systems in the traditional IP networks.
15The GDP name and the key are linked to each other by the same metadata mechanism as used for DataCapsules.
16The determination of whether a GDP router is border router or internal router is accomplished by putting such

information in the immutable metadata from which the name of the GDP router is derived.
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Figure 5.3: Left: Border (R3
A, R4

A) vs internal (R1
A, R2

A) GDP routers. If RA is private, A must
connect to an internal GDP router and provide a JoinCert issued by RA. Right: Subdomains. RC
as a sub-domain of RB; a border GDP router for RC connects to an internal GDP router of RB as if
it were just a client; such border router must have an OwnCert issued by RC , which in turn has an
OwnCert issued by RB. Note that an OwnCert implies a JoinCert.

communication; clients and servers that are part of a routing domain typically connect to the internal
routers of such a domain.
Private vs public domains: Routing domains could be either open (for anyone to join), or
private ()requiring further authorization). This property of the routing domain is marked as part
of the routing domain metadata. The authorization for joining a private domain is maintained
cryptographically via a JoinCert. A JoinCert (R →J X) allows a client or server X to join a
routing domain R, and is signed with the private key of R. For private domains, clients joining
the domain must necessarily connect to internal routers and provide a JoinCert at the time of
connection. Only border routers accept connections that come without a JoinCert, and filter out
attempts to reach information that should not be visible outside the domain. Note that an OwnCert
implies a JoinCert. As such, all GDP routers for a given private routing domain can join by
presenting their corresponding OwnCert.
Subdomains: Routing domains could be further divided into sub-domains for controlling granular-
ity of administration (see Figure 5.3). Such parent-child relationship between routing domains and
sub-domains is also encoded using OwnCerts. For example, (R1 →O R2) represents the domain
R2 as a sub-domain of R1. The ownership hierarchy is a strict tree: at the leaves are GDP routers.
A standalone GDP router is a routing domain by default.

Routing domains represent the boundaries for the network isolation property; in some way, the
boundaries of a routing domain represent firewalls for specific objects. For routing domains with
sub-domains, these sub-domains allow for more fine-grained control over scope of information.
In order to be able to use such sub-domains for fine-grained placement and control, it is essential
that the organizational structure of the routing domain be visible to users, so that they can create
appropriate policies.
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B Inter-domain interaction

In the simplest GDP network model, all routing domains are completely autonomous, and they use
the GDP network as on overlay on top of the public IP network for all inter-domain traffic. A global
GLookupService (see below) serves as a globally distributed repository associating GDP names
to routing domains in a verifiable way. Traffic from a client sending datagrams to a destination
in a different routing domain eventually reaches a border GDP router of the routing domain; such
a border GDP router, when encountered with a destination that it doesn’t know the path to, can
lookup information for the GDP name in the global GLookupService, and then create an on-demand
connection to the border GDP router of a remote routing domain that is delegated to route traffic
for the destination GDP name (see Figure 5.2).

With this simple GDP network model, all routing domains form a pseudo fully-connected
topology. What this means is that each routing domain can be directly connected to all other
routing domains, but only if the need arises. A given pair of routing domains don’t have to be
connected if there is no inter-domain communication between such domains. Moreover, such
connections are transient: they are established as needed and cleaned up when inactive. Using
direct connections between routing domains, as opposed to using an intermediate domain as a
transit, enables simplification of reasoning about the security of communication paths.

An architecture with such direct inter-domain connectionsmay not seem scalable at first because
of the possible quadratic number of inter-domain connections. However, there are two important
points: (1) The number of active inter-domain communications is far smaller in practice. For
example, even in the traditional IP network, there are only a few popular autonomous systems
(ASes) that have active communication paths with virtually every other AS, but most ASes only
have a rather small number of active inter-AS communications.17 (2) A single connection between
two given routing domains can, in theory, multiplex all possible user-to-user communications
between the given domains.18

To allow for more flexible approaches to inter-domain routing, the simple GDP network model
can be extended beyond direct connections between routing domains. We discuss such an extension
with the help of an example in the next chapter where routing domains use a transit domain.

C Global GLookupService: Enabling sharing of state

A key component of the infrastructure, a global GLookupService, lives in the core of the GDP
network and enables inter-domain routing. The global GLookupService is essentially an untrusted
key-value store that contains verifiable routing and delegation information which can be queried
by anyone. Communication to the GLookupService is done out-of-band and not through the GDP

17Imagine, for example, the likelihood of an active communication path between a small rural ISP in North America
and a small university in Asia.

18An excellent example of an existing system that follows similar architecture of direct inter-domain connections is
the email infrastructure; users of a given email service all connect to the mail server of the domain, which then acts as
a relay to all other domains in the world. On the receiving side, a similar process is carried out in reverse: the recipient
mail server collects (and often holds) email for its users, who are then delivered the message.
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network.19 The keys in the GLookupService are flat names, and the values are the cryptographic
delegations that guide how to reach the name in a verifiable form. Large routing domains can have
a local GLookupService inside the domain to facilitate intra-domain communication.

In addition to normal GDP names, the global GLookupService also contains routing domains
names as keys; for such keys, the values are the corresponding border GDP routers of the routing
domain. This enables anyone to reach the names that have been delegated to a given routing domain
by first talking to the border GDP routers of the said domain.

Note that for a given key, there can be more than one value. As such, the values in the
GLookupService are in fact, sets of possible ways to get to the corresponding keys. As an
example, a routing domain R with two border GDP routers R1 and R2 will be represented in the
GLookupService as [key : R, value : set( (R→R R1), (R→R R2) )].

Viewing the GLookupService as a single component is merely a conceptual representation.
In practice, the global GLookupService is a highly distributed service with globally distributed
caches. Designing a scalable GLookupService can be achieved with existing systems. For example,
a fast, multi-level lookup service similar to DNS can serve the purpose of the GLookupService.
Existing locality aware DHTs [75] can also be used as a potential implementation of such distributed
key-value store.

Note that using DHTs—with their potential security issues that we were trying to avoid in the
first place—for implementing a global GLookupService does not necessarily break our security
model, because such a DHT is used only for lookup and not for actual routing of information.
As we discussed in the threat model, a compromised GLookupService could result in a denial of
service, but not a man-in-the-middle attack.20
Does the global GLookupService represent a repository of active paths? In the most general
scenario when the GDP network is deployed as an overlay network, the answer is no. The global
GLookupService merely represents a repository of publicly accessible delegations (i.e. what names
are authorized to advertise for what other names). In the general overlay scenario, there may or
may not exist an active network connection for every delegation. However, a delegation in the
GLookupService does indicate that an active network connection can be established if need be.21

5.4 Routing workflow: A bottom-up view
To enable the routing security properties of the GDP network as a whole, each GDP router
individually follows a principle of verify before accept (i.e. verify a sender’s legitimacy for a given

19This is a conscious design choice that allows us to have a baseline access to a routing oracle to bootstrap the
overlay GDP network. In our current design, the GLookupService operates on top of UDP.

20Note that a compromised GLookupService that results in a denial of service is not contradictory to our threat
model. Our threat model considers adversaries that would like to insert themselves in arbitrary communication paths,
and perform either active or passive man-in-the middle attacks. A denial of service attack by an active man-in-the-
middle that drops all messages is merely the consequence of a broader attack.

21In the next chapter, where we discuss GDP network deployment with custom topologies inside routing domains,
a GLookupService does in fact include a number of active paths between GDP routers in addition to potential paths.
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Figure 5.4: Simple secure advertisement. A needs to know the GDP name and the IP/port of a GDP
router R that it wants to connect to. A then advertises its name to the GDP router R by completing a
challenge-response process. The challenge-response process includes four messages: (1) The client
sends a nonce NC to the GDP router. (2) The GDP router generates a nonce NR and sends a message
NC | |NR signed with its private key. (3) The client generates an RtCert that includes NR and is
signed with the client’s private key. (4) The GDP router sends back an acknowledgment signed with
its private key. At the end of this message exchange, R has verified that it is talking to the correct
A, and populates its forwarding table. This is a simplified version of a secure advertisement, see
Figure 5.5 for how the process is extended when R is a part of private routing domain that requires
a JoinCert, and where A may have other names to advertise in addition to its own.

source address before accepting traffic) and verify before send (i.e. only send messages to those
who are allowed to receive traffic for a given destination address).

In the next few sections, we describe some key mechanisms and the decision flow for an
individual GDP router that enables these properties. We then move on to how a collection of
GDP routers enables intra-domain routing. And finally, we extend the same basic principals for
inter-domain routing.

5.4.1 Connecting to the GDP network: Secure advertisements
Other than simply forwarding GDP PDUs, GDP routers collectively perform the important task
of verifying users’ claims for names when they connect into the GDP network. The essential
mechanism is a secure advertisement of names. At the core of this secure advertisement process is
a challenge-response mechanism and exchange of cryptographic delegations. GDP routers enforce
such secure advertisement process on anyone that wishes to advertise GDP names to them, whether
that is a regular client or another GDP router, and ensure that the policies encoded in the chain of
delegations are followed appropriately.22

The process works as follows. To start off, a client joins the GDP network by joining a
trustworthy routing domain. The client needs to know the name of the routing domain and the
network address of an internal GDP router for the routing domain. Upon connecting to the GDP

22In contrast, typical flat namespace networks simply allow clients to advertise any names that they wish.
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Figure 5.5: A more complex process than in Figure 5.4; R is owned by a routing domain R that
requires a JoinCert. A acquires (R→J A) out of band and connects to R. B advertises its name to
R by completing a challenge-response, and then advertises an information object X that it has an
AdCert for. At the end of the process, R can populate its forwarding tables for A and X .

router, the client must complete a challenge-response protocol with the GDP router for a name it
claims to own (in this case its own name, see Figure 5.4.) At the end of this challenge-response
protocol, both the client and the server can verify that they are talking to who they think are talking
to. A GDP router populates its local forwarding table and forwards the information appropriately
for the names to be available elsewhere in the network. For handling non-local destinations, the
GDP router can be configured in a number of different ways to reason about the next node that the
GDP router should forward the PDU to.

However, a simple challenge-response, while sufficient to demonstrate the ownership of a
server’s or client’s name to a single GDP router, requires more work to be a usable mechanism for
overall routing security of the GDP network. Specifically, there are three challenges:
(1) How to delegate and advertise objects?

Recall that the servers do not have access to the private key for objects they host, and thus, they
cannot participate in challenge-response on behalf of such objects. To address this challenge, the
object owner delegates the authority to advertise for the names to appropriate servers along with
policies on scope and visibility. This is done by an out-of-band cryptographic delegation with a
limited lifespan called AdCert. An AdCert, (X →A Y ) is a statement signed by the private key for
X (controlled by X’s owner) that allows a server Y to host and advertise for object X . The server Y ,
in turn, advertises its own name Y to a GDP router via challenge-response, followed by presenting
(X →A Y ). (see Figure 5.5). We call names advertised in this manner as delegated names. Such
advertisement binds names to particular locations in the physical network.
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(2) How can a GDP router verify that a client multiple hops away has completed a ‘secure
advertisement’ with some other GDP router?

An underlying security principle in the GDP network is that a GDP router shouldn’t just take for
granted that some other GDP router has performed its job well. Instead, we use a transitive proof
of verification in the form of another type of cryptographic delegation called RtCert. Recall that a
GDP router itself has a cryptographic name. The final result of the ‘secure advertisement’ process
is that the client issues an RtCert to the immediate GDP router. An RtCert (Y →R R) is a limited
lifespan delegation of routing responsibilities for name Y to a specific GDP router named R. The
GDP router R acts as a client to other upstream GDP routers (see Figure 5.7): it first advertises its
own name, followed by all the appropriate RtCert’s and AdCert’s that it has received from all the
clients. If an upstream router Ru sees a sequence (X →A Y ); (Y →R R) from a router R, Ru can
reason that it is safe to send/receive traffic for both X and Y from R.23
(3) How to enforce network isolation and restrict access to private domains without trusting
all GDP routers?

As mentioned earlier, routing domains could be private and may require authorization to join in
the form of a JoinCert. Similar to verifying the advertising delegations from another GDP router
multiple hops away, a GDP router must also verify whether a client multiple hops away has, in
fact, authorization to join the given routing domain. Based on its own verification, a GDP router
may block incoming traffic from unauthorized senders. As a result, the evaluation criteria for a
chain of delegations becomes slightly more involved when considering JoinCerts. We discuss
such generalized evaluation in the next chapter.

Only after a client completes the secure advertisement process that involves the challenge-
response phase and issuance of an RtCert, will a GDP router allow the client to use the given
name, populate its local forwarding tables, and forward the information to appropriate upstream
infrastructure.

Before moving further, let’s summarize the types of delegations: AdCert allows for delegation
of storage responsibility to a host; RtCert allows for delegation of routing responsibilities to a GDP
router (or a routing domain); JoinCert allows creation of a distributed access-control list for who
is allowed to join a routing domain; OwnCert allows asserting the resource ownership hierarchy
in a provable manner. In our implementation, the required metadata for verification is included
along with the delegations. We skip the details for simplicity of explanation. Figure 5.5 shows how
these various cryptographic delegations fit in the ‘secure advertisement’ protocol. We discuss the
generalized evaluation of chains of delegations in the next chapter.

5.4.2 Intra/inter domain advertisement flow and routing
Once a GDP router receives a message to be forwarded, it verifies that the source address has been
advertised on the particular connection by looking at the local forwarding table; if not, the message

23We generalize the chaining of AdCerts and RtCerts in a manner somewhat similar to X.509 certificates; we
discuss the chaining modes later.
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Figure 5.6: Forwarding table of a GDP router for simple local routing. Both A and B finish
a challenge-response protocol with R. Additionally, B advertises for content X by means of an
AdCert (X →A B).

is simply dropped by treating it as unverified incoming traffic (verify before accept). To verify
destination routes (i.e. verify before send), the process is very simple for local destinations: the
GDP router looks up the destination in its local forwarding table. The forwarding table is populated
only if the GDP router has finished the secure advertisement process for the given destination
address. If a local entry is found, the GDP router performs local forwarding (see Figure 5.6).
If, however, there is no local entry for the destination, then the next step in forwarding process
depends on the configuration of GDP router and the network topology in the routing domain. For
example, the GDP router may forward the message to a default route, or lookup information in a
GLookupService. We discuss the various strategies below.

A Intra-domain routing

A single routing domain could have many GDP routers organized into sub-domains and such. The
exact internal topology and routing strategy is left to the routing domain’s discretion to allow for
a wide range of setups from very small single-router domains to huge corporate domains. As a
consequence, the configuration of GDP routers and intra-domain advertising propagation varies as
well.24
Single GDP router deployment: For very small deployments, such as a small house, a single
physical node can serve as both internal router as well as a border router, but it still should be
considered as two logical GDP routers (see Figure 5.6). The single GDP router can forward
datagrams for all intra-domain communications, and act as a border GDP router for inter-domain
communication as well.
Multiple GDP routers in a tree topology: For slightly larger routing domains with a handful
of GDP routers, a domain administrator might choose, for example, a tree topology enabled by
‘default routes’ (see Figure 5.7). In this topology, a GDP router uses its parent as a default route;
if no matching destination can be found in the local forwarding table, then a GDP router forwards

24 Note that for the purpose of discussing intra-domain routing, any communication from inside a routing domain
to destinations outside, all that an internal GDP router has to do is forward the datagrams to a border GDP router. We
discuss the operational details for a border GDP router when we discuss inter-domain routing next. Conversely, for
communication that originates from outside and is directed to a destination inside the routing domain, the border router
simply forward the communication to the appropriate internal GDP router by following intra-domain routing process.
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Figure 5.7: A tree topology with default routes. R3’s forwarding tables contains information from
both R1 and R2 (assuming no policy restrictions).

messages to its default, and so on. The root of the tree acts as a border GDP router; destinations
that the root doesn’t know about are handled via inter-domain routing process.

In such a tree topology, each GDP router does perform source address verification on all
incoming traffic, except for traffic coming from a parent on the default route.25 In such a tree
topology, a child GDP router is merely a client from the perspective of the parent GDP router, and
as such, it needs to complete the secure advertisement process and send all the advertisements to the
parent GDP router along with the RtCerts that it receives from clients that connected to this child
GDP router. A GDP router anywhere in the tree tracks the entire sub-tree’s advertisements, and
thus a simple tree is a good candidate for geographically separated routing domains with relatively
smaller set of names.
Large domains with a local GLookupService: For larger domains with many GDP routers and
many GDP names (such as a university network, a corporate network, etc.), a domain administrator
may desire scalability and fault-tolerance to handle temporary failures of GDP routers.26 In such
large domains, the domain administrator may choose to go with an approach similar to inter-domain
routing by setting up a local GLookupService within the domain. The GDP routers in the domain
are then configured with the local GLookupService enabling them to connect to other GDP routers

25Not doing source address verification for the traffic forwarded by a parent to its child does not violate the security
guarantees of the GDP network. Based on our threat model: since the parent GDP router is the only way for the
children to reach to the rest of the world, it has to be in the path of all such communication. Recall that the GDP
network does not provide any security from on-path adversaries.

26For example, in the tree topology above, any GDP router failure not only affects directly connected clients to that
GDP router but also the entire sub-tree under that GDP router; recovery from such failures is quite expensive.
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Figure 5.8: A pseudo fully-connected topology inside a routing domain, whereGDP routers connect
to each other directly when a communication path needs to be established (see the mechanism
in Figure 5.9). R1 and R2 are connected because of an active communication between A and B.
Similarly R2 and R3 (a borderGDP router) are connected because of a communication betweenC and
some external party. R4 is not connected to anyone because there are no active communications at
themoment. Note that all these connections are created after looking up in a local GLookupService.

Figure 5.9: On-the-fly connection created by looking up in a GLookupService. For the sake
of clarity, the GLookupService only shows information that RB put; the information put by RA
is not shown. Following this mechanism, large routing domains may come up with a pseudo
fully-connected topology as shown in Figure 5.8

directly when needed.27 The local GLookupService serves as a repository of delegations from
which GDP router can lookup information needed to route to destinations not present in the local
forwarding table. See Figure 5.8.

27In the basic GDP network setup operating strictly as an overlay network, the links between GDP routers (and
even routing domains) are TCP connections that can be created on demand during the routing process. A non-overlay
network, e.g. IP networks, does not have such flexibility, and are limited by what physical links exist. In the next
chapter, we generalize the GDP network beyond a strict overlay and consider the case where a routing domain may
want to have a custom topology other than a pseudo fully-connected topology.
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Let’s see how the routing process works in such a case. Recall that a GLookupService is
essentially a key-value store, where keys are GDP names and values are verifiable information on
how to reach the specific key. The information that goes in a GLookupService is similar to that in
the forwarding table of a GDP router. To begin with, when a GDP router RA starts up, it populates
the reachability information in the form of an RtCert (RA →R (IPA : portA)) signed by the private
key of RA. After startup, the GDP router keeps forwarding all RtCerts or AdCerts that it receives
as part of secure advertisement process to the local GLookupService.

When a client A connected to RA wants to reach a name B not present in the local forwarding
table of RA, RA recursively queries the local GLookupService for B (see Figure 5.9). On querying
for B, the response from local GLookupService is (B→R RB); something that presumably resulted
as a part of secure advertisement of B to RB. RA can locally verify the validity of this RtCert. Since
RA doesn’t know about the GDP name RB in its local forwarding table, it then queries the local
GLookupService again for RB, when it receives (RB →R (IPB : portB)): an RtCert that RB put in
the local GLookupService at startup time just like RA did. RA can then initiate a connection to RB
as a client, complete a secure advertisement process issuing an RtCert (RA →R RB),28 advertise
for A to RB,29 and start forwarding traffic.

While we showed how a GDP router can query the local GLookupService in one specific
example shown in Figure 5.9, this can be generalized to three cases. A GDP router queries the
local GLookupService until either (1) RA finds some destination it already knows, or (2) if it finds
an (IP : port) pair that it can create a new connection to as in the example above, or (3) there’s
nothing else to query. As an example of situation (1): for another communication initiated by
A to a client B′ connected to RB, RA can stop the recursive query at RB because it presumably
knows how to get to RB as a result of a previous query. For destinations that are not present in
the local GLookupService (and in the local routing domain), the query fails. In such a case, the
local GLookupService can return the information about a border GDP router, thus kicking off the
inter-domain routing process.

Note that the above strategies (i.e. a tree topology, or a setting up a local GLookupService) can
be mixed and matched as desired. For example, a university campus with multiple buildings may
choose to create a tree topology for GDP routers within a building, and the root of all such trees
could be configured to use a domain GLookupService to create on-demand connections as need
be. Further, the domain administrator may choose to declare individual buildings as sub-domains
and delegate the administration of such sub-domains to others (e.g. building managers).

While such combinations provide quite a bit of flexibility in intra-domain organization of
resources, some domain administrators may like to adopt a more traditional routing strategy, e.g.

28When RA connects to RB and issues an RtCert (RA →R RB), such an RtCert should be a limited RtCert that
allows RB to locally validate that it is talking to the correct RA, but does not allow RB to present the RtCert to others
and claim that it has a path to either RA or A. All cryptographic delegations can include such user-specified restrictions,
which we will discuss in the next chapter. The reason for such a limited RtCert is that RB should not be able to claim
to other GDP routers that it can route traffic on behalf of RA or a different client A′ connected to RA.

29Advertising A to RB is to ensure that RB does not reject incoming traffic from RA based on its incoming traffic
checks.
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Figure 5.10: Inter domain routing; A is part of RA and wishes to reach X . Border GDP routers
of RA reach out to the global GLookupService, find that X is stored on B which is connected to
RB. To reach RB, an on-demand connection is made to border router R1

B. Since R2
A initiates the

connection, it first advertises the presence of A (and the associated chains).

routing based on physical topology as done in IP-routing, where GDP routers should not connect
to each other directly but use other GDP routers as intermediate routers. In such cases, the domain
administrator can achieve their goals by deploying the GDP network with a custom topology for
parts of the routing domain. We discuss these details in the next chapter.

B Inter-domain routing

Inter domain routing is facilitated by a scalable global GLookupService. Such inter-domain routing
is very similar to the intra-domain routing in the case of a localGLookupService aswe just described.
Each routing domain populates its own reachability information in the global GLookupService,
typically in the form of key-value pairs R : (R→R Ri) and Ri : (Ri →R (IP : port)), where Ri are
the border GDP routers for the routing domain R. Records that map flat names to signed IP:port
pairs (e.g. X : (X →R IP : port)) facilitate the creation of new on-demand connections, and ensure
that the GDP network plays well as an overlay on top of an existing IP network across various
domains.

If an advertisement for a name X by a client connected to a routing domain R has a global
scope, then depending on the configuration of R, this information is passed on to the global
GLookupService by either the border routers or the local GLookupService of R (see Figure 5.10).
When included in the global GLookupService, this information typically looks like X : (X →R R).
Regardless of who propagates the advertisements, the global GLookupService (and anyone who
queries it) can verify the correctness of the advertisement.

For a client that wishes to reach an information object not in the current routing domain, such
request eventually reaches a border GDP router (see Figure 5.10). The border GDP router then
looks up for the destination from the global GLookupService. Much like the query pattern in case
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of intra-domain routing with a local GLookupService, the border GDP router keeps querying unless
either it reaches either (1) an IP : port pair of a border GDP router of another routing domain, or
(2) an address already in the forwarding table of the border GDP router, or (3) the lookup fails.

In case (1), the two border routers from different domains establish a new connection. In
Figure 5.10 for instance, the GDP router R2

A from the initiating domain RA presumably acquired a
full chain of delegations from the global GLookupService that enable it to verify that X has been
delegated to RB, and that RB has delegated a border router R1

B as its entry-point. After initiating
a TCP connection to R1

B, R
2
A first advertises for the source address A so that R1

B does not block
traffic originating from A by marking it as unverified incoming traffic. During this advertisement,
R2

A must also present a limited RtCert (R2
A →R R

1
B) valid only for the specific use of inter-domain

routing between RA and RB.30
Case (2) is a result of an additional flow on existing connections. For example in Figure 5.10, if

R2
A and R1

B already had an established connection for some preexisting pair of addresses, they can
reuse the existing connection by simply adding new advertisements.

An important question is: what if there are multiple replicas of a given destination resource
in multiple routing domains? In the general case, when performing a recursive lookup from the
GLookupService for a given name, a GDP router might get multiple responses for the same GET
operation, e.g. in Figure 5.10, RB can be reached by either of R1

B, R
2
B, or R

3
B. The GDP network

must perform a type of “anycast” in this case, choosing one of the replicas as a destination. While
the GDP network does not put any restrictions on how a GDP router should decide between replicas
in such a case, policies by a GDP router to favor close-by entry-points (by some definition of
close-by), or additional hints for preferred domain put by object owners can guide how to handle
such cases. In fact, information for popular content might even be pre-fetched and connections
established in-advance to enable a quicker establishment of the flow.

5.5 Conclusion
Routing in flat namespace, especially in an open federated network, is a challenging security
problem. However, flat names allow us to place a trust anchor in the name itself. With the help of
a secure delegation mechanism and the secure advertisement procedure, the GDP network enables
every GDP router to independently verify the following two facts:

1. Any incoming GDP datagram that a GDP router receives originates from either the source
specified in the GDP datagram itself, or an entity delegated to operate on behalf of the source,
or (in few cases) another GDP router that the recipient GDP router is explicitly configured to
trust.

2. Before forwarding a GDP datagram to a peer (which could be another GDP router or a client),
the GDP router can know for sure that the peer is authorized to receive GDP datagrams for
the specified destinations.

30Once again, it is important to put such restrictions to ensure that R1
B cannot misuse this RtCert to fool an

unsuspecting user by claiming that A has directly delegated routing responsibilities to R1
B.
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In this chapter, we discussed the GDP network exclusively as an overlay network. In the next
chapter, we discuss (1) how to extend the GDP network into domains in which it is not operating
as an overlay network, (2) how to enable a global deployment of the GDP network, and (3) how to
generalize the scoping guarantees.
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Chapter 6

Making the GDP network Real: The
Engineering

In the previous chapter, we discussed the core mechanisms of secure routing. In this chapter, we
discuss the applications of those mechanisms to real world scenarios.

6.1 Deployment in real networks: Beyond an overlay
Real networks are rather complicated. Our simple scenarios we discussed in the previous chapter
require further discussion to be useful in practice. While the pseudo fully-connected topology
operating as an overly is a good start, large domains may desire custom intra-domain routing
topology.1 For better control over latency and QoS, domain administrators may want to create GDP
communication paths that match the underlying physical topology. Such topologies may require
support for multiple hops, which needs additional mechanisms than a pseudo fully-connected
topology.

Both these requirements put an interesting twist to our simple model of the GDP network
because GDP routers may not be able to establish new connections as needed. We translate the
problem to: rather than establishing a new connection between GDP routers RA and RB, how can
one use an optimally located GDP router RC to which both RA and RB are already connected to
(see Figure 6.1).

Note that this same idea can be extended to inter-domain routing to enable transit domains
that provide routing services to other domains, however we believe that such kind of inter-domain
routing will be done on a case-by-case basis.

1Recall that we defined a pseudo full-connected topology as a topology where each GDP router can be connected
directly to all other GDP routers, but only if the need arises.
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Figure 6.1: An example where RA and RC are configured by a domain administrator to connect
with each other and issue each other unrestricted RtCerts. Other GDP routers, RD and RB, operate
as normal by connecting to a local GLookupService. All GDP routers forward advertisements to
the local GLookupService as usual. In this example, RD can directly connect to RB if D wants
to communicate to B. On the other hand, because RA and RC are connected to each other with
unrestricted RtCerts that them to route traffic for each other, D’s communication toC can be routed
via RD ⇒ RA⇒ RC .

6.1.1 Extending the GDP network beyond a pseudo full-connected topology
To create specific routing topology, we first discuss how would a domain administrator configure
a single custom link between one given pair of GDP routers. At boot time, the GDP routers in
question connect to each other and issue the other GDP router an RtCert in the same way as if they
were connecting to the other GDP router as a client. The final topology is identical to as if the GDP
routers had connected to each other with an on-demand connection, except that the RtCert is not a
limited RtCert. These RtCerts are also populated in the local GLookupService.

The routing process for other GDP routers in the domain stays the same (see Figure 6.1.). If
there is a local GLookupService in the domain, other GDP routers can simply query the local
GLookupService for routes as usual.2 For example in Figure 6.1, if D wants to communicate to
C, then RD acting on behalf of D will lookup the local GLookupService for C. From the initial
query, RD learns that C can be reached via RC . RD continues the recursive query and looks for
the reachability information for RC , where it learns two ways to reach RC: one via a new direct
connection between RD and RC , and the other via RA.3 Since RD already has a connection to RA

2Even if there is no local GLookupService, there is no substantial change to the routing process for rest of the GDP
routers in the routing domain. We just choose an example with a GLookupService because it is more interesting.

3The exact entry in the local GLookupService, in this case, would be RC ⇒ set( (RC →R (IPC : portC)),
(RC →R RA) ). The first RtCert is present only if the routing domain administrator configures RA and RC like all
other GDP routers, where they populate their direct reachability information via an overlay link. If desired, this direct
connection functionality can be turned off.
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in this example, the recursive process can be terminated and RD can populate its local forwarding
table accordingly.

With this simple mechanism, a domain administrator can create any arbitrary intra-domain
routing topology as they desire. Note that for routing domains operating with a completely custom
topology, the local GLookupService does not contain any keys for which the value is an (IP : port)
pair. While this simple mechanism allows for GDP network deployments with custom topologies,
this kind of forced creation of a permanent connection comes at two costs:

• The security guarantees are to be reasoned about carefully, because such a situation explicitly
grants permission for each GDP router to route all traffic on behalf of the other GDP router.4
In the example scenario above, for every communication path to C that involves a direct
connection to RC , there is another valid path that involves routing via RA, which may not
always be the most optimum path, but allows an adversary to compromise RA in order to
affect traffic intended for RC and its clients.5

• Withmultiple possibles paths, the path discoverymechanism needs to bemore clever. Adding
a large number of custom paths adds a number of choices for the path between a given pair
of source and destination, making it harder for a GDP router to pick the next destination
in the forwarding process.6 As such, discovery of the most optimum path requires some
global knowledge. We believe a local GLookupService could help to address this problem by
computing paths as an alternate to recursive querying, however, we consider that as a future
enhancement to the GDP network and out of scope of the current dissertation.

Overall, while it is possible to create a GDP network deployment with a completely custom
topology within a domain, this requires putting more trust in individual GDP routers. A single
compromised GDP router in a large domain can launch a similar kind of man-in-the-middle attack
against arbitrary communication paths in the domain that the GDP network aimed to solve in the
first place. However, such issues are contained within the specific routing domain. Even though the
diminished security guarantees may seem quite problematic, the status quo for the current Internet
infrastructure is, in fact, a domain administrator trusting the infrastructure they operate. Thus, even
if a domain administrator runs a GDP network deployment with a custom topology, the security
issues are no worse than the conventional IP networks. Just the fact that a domain is using the GDP
network does provide them the benefits of being able to participate in the GDP, and allows them to
reap the benefits of DataCapsules.

4The limited RtCert in case of an on-demand connection, as we discussed in the previous chapter, specifically is
an attempt to contain such damage.

5For instance, if the relative placement of GDP routers in Figure 6.1 represents actual physical placement and
routing cost, then a path like D⇒ RD ⇒ RA⇒ RC ⇒ C is not too far from optimum. On the other hand, a path B⇒
RB ⇒ RA⇒ RC ⇒ C certainly is quite bad but it is a valid path.

6This issue manifests itself as follows: when a GDP router queries from a local GLookupService for a given GDP
name, it receives back a set of values representing the nodes that can route on behalf of the queried GDP name. If the
GDP router does not have any of those new set of nodes in its local forwarding table, then it must continue the recursive
query. The question is: which value from the set should the GDP router use for the next query to the GLookupService,
or should it query for all of these values? This results in the GDP router essentially doing a graph traversal in the most
general case, which could become quite expensive if the graphs are large.
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Figure 6.2: An example scenario where we have three routing domains: RA, RB, andRC . Similar to
transit networks in the Internet routing, the domain RA serves as a transit domain that connects the
other two routing domains. Each of these routing domains have their own internal GLookupService,
as well as a global GLookupService. Each routing domain has border GDP routers (gray) as well
as internal GDP routers (blue).

6.1.2 Example deployment scenario
Using the first principals described in the previous chapter and the extension to custom topologies,
we discuss a somewhat more realistic deployment scenario with an example topology shown in
Figure 6.2 including a transit network.7 The discussion serves at least two purposes: (1) reinforce
the principals with a slightly more complicated example, and (2) demonstrate that the GDP network
is, in fact, applicable to realworld situations by providing sufficient control (and policy specification)
to routing domains to manage the path taken by messages.

Figure 6.2 shows the final topology that various GDP routers are connected in. We assume that
all domains in Figure 6.2 are running the GDP network with custom topologies as shown in the
figure. We also assume that the local GLookupService for each of RB and RC push the appropriate
information to the upstream network RA, which in turn populates the global GLookupService; all
the propagation of information through GLookupService’s takes into account the scope related
policies as ingrained in the delegations included in the corresponding GLookupService. There are
a couple questions and concerns we would like to answers to.
Howdoes a routing domain set up a custom topology inside the domain? Domain administrators
for each domain can configure their GDP routers using the forced connection between each pair of
GDP routers that they want to connect.

7Transit network: https://www.thousandeyes.com/learning/techtorials/transit-provider

https://www.thousandeyes.com/learning/techtorials/transit-provider
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The local GLookupService for RC , for example, looks like the following before RC is connected
to the upstream domain.

• R1
C ⇒ (R

1
C →R R

2
C).

• R2
C ⇒ (R

2
C →R R

1
C), (R

2
C →R R

3
C).

• R3
C ⇒ (R

3
C →R R

2
C).

• R4
C ⇒ (R

4
C →R R

1
C).

• C2⇒ (C2→R R
3
C).

Note that the GDP routers pass the advertisements they receive to the GLookupService, as in
the case of client C2. Also, note that there are no (IP : port) pairs; this is because the GDP
network is running with a custom topology in our example. Further, note that C2 is a normal client,
which isn’t visible outside the routing domain. Same goes for the client C1. However, log server
LS in RB is visible publicly to allow for outside clients to connect. As such, when LS connects to
R2

B, it issues two RtCerts: (LS →R R
2
B) and (LS →R RB). The first RtCert is what is used for

intra-domain routing and the second used for making LS visible outside RB.
How do routing domains set up the transit network connections, and how is it enforced?
When the domain administrator of, say, RB enters into a transit agreement with RA, RA’s domain
administrator issues a JoinCert and gives it to the domain administrator of RB, which essentially
authorizes infrastructure from RB to connect to an internal GDP router of RA. The domain
administrator of RB issues an RtCert that looks like (RB →R RA); RA can then populate the global
GLookupService with this RtCert allowing anyone else in the world to validate thatRA is delegated
to route traffic for RB. Separately, the border GDP router R1

B connects to an internal GDP router R3
A

of RA by presenting a JoinCert (RA →J R
1
B).8 On connection, R1

B issues an RtCert (R1
B →R R

3
A)

and treats it as a default route.9 Because R1
B is a border GDP router, it already presumably has an

RtCert (RB →R R
1
B), which it then also sends to R3

A. R
3
A forwards all these RtCerts to the local

GLookupService of RA.
To ensure that RB and RC actually use RA as the transit network, they don’t advertise their

availability in the global GLookupService themselves. Instead, they delegate this responsibility to
RA, which RA can fulfill by using the domain level RtCerts that it receives at the time of transit
negotiations. Also, note that border GDP routers of RB and RC connect to an internal GDP router
of RA and not a border GDP router. This is because RB and RC are (hopefully) paying customers
from the perspective ofRA that are buying a transit service. This exact process is used when a single
client seeks routing services from a routing domain (i.e. the Internet Service Provider equivalent

8Such information about which border GDP router from RB will connect to RA is conveyed to RA at the time of
transit negotiation, so that it can issue appropriate JoinCerts.

9R1
B can simply forward datagrams to unknown destinations to such default route, but it must carefully filter any

incoming traffic on such default path and discard any traffic that attempts to access private GDP names that should not
be made available outside the routing domain.
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in the GDP network); the routing domain issues a JoinCert to the client authorizing it to connect
to the given routing domain, and the client issues appropriate RtCerts to the domain.10
What happens when a log server LS joins RB, and how do advertisements propagate? When a
log server LS joins RB, it performs a secure advertisement process with an internal GDP router R2

B
which results in an RtCert (LS →R R

2
B). This RtCert allows R2

B to route traffic on behalf of LS.
After issuing RtCert, the log server sends all the AdCerts that it is granted by the DataCapsules
it hosts. R2

B forwards the RtCert and all the AdCerts to the local GLookupService, which makes
the information available to any other internal GDP router that asks.

For LS (and any DataCapsules it hosts) to be visible outside RB, LS must issue another RtCert
(LS →R RB); this RtCert is issued to the routing domain itself, which is forwarded by the local
GLookupService to upstream GLookupService. In case an external entity wishes to reach LS, it
can acquire this RtCert (LS →R RB) from appropriate sources. Such an external entity can then
recursively query for RB, and then for the border GDP routers, and eventually reach LS.
Client C1 wants to talk to the log server LS in the same routing domain. What happens?
Assuming that C1 has finished connecting, it sends a datagram with the destination LS. The GDP
router R5

B looks for LS in its local forwarding table. If there is no entry for LS, R5
B recursively

queries the local GLookupService. Such recursive queries to the local GLookupService result in
R5

B performing a graph traversal starting from LS. At each step of the recursive query, R5
B either

(1) reaches a node it knows how to talk to, or (2) finds a cycle in the graph, where it terminates
the branch it is following, or (3) exhausts all possible branches and realizes that it does not have a
path to LS. For the case where there is a path, it just picks that path and sends the datagram to the
appropriate next hop.

Note that in our actual implementation, the next hop GDP router follows the same process.
However, there is no reason that the initial GDP router sends the information it queried to the
next hop, since such information is in the form of verifiable RtCerts and AdCerts. Further, for
intra-domain lookup, a local GLookupService can perform this path computation and simply return
the verified results to the client.
Client C2 wants to talk to a log server LS in a different routing domain. What happens? If a
clientC2 in a different routing domainRC wants to talk to the log server LS, then it follows the same
process as client C1. However, because there is no local LS in the routing domain RC , the GDP
router R3

C forwards the datagrams to a border GDP router, which in turn sends them to the internal
GDP router R1

A based on the default path strategy.11 R1
A can then query its local GLookupService

to follow the following chain of delegations: LS ⇒ RB ⇒ R
1
B ⇒ R

3
A ⇒ R

2
A. Once the message

reaches R1
B, it can find LS using the intra-domain routing process as in the case of C1.

10If the client desires to be publicly available allowing people to route to it via the parent routing domain, the client
must issue an RtCert to the domain, in addition to the RtCert that it issues to the internal GDP router. If, on the other
hand, the client wishes to only access other services but not be visible to outsiders, then it only needs to issue only the
latter RtCert.

11Note that if C2 has not been advertised to R1
A in the past, then R1

A will reject the incoming traffic from an unknown
source. This can be easily fixed with first sending a chain of RtCerts that allows R1

A to verify the R1
C can route traffic

on C2’s behalf.
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6.2 Generalized evaluation of certificates/delegations
Recall that RtCerts and AdCerts can be chained; e.g. (X →A Y ); (Y →R R) implies that ‘R
can route traffic for X’. However, with the introduction of other type of cryptographic delegations
(JoinCerts and OwnCerts), the cryptographic delegations form a directed graph (see Figure 6.3
for an example). Given a set of delegations (i.e. a subset of the graph), a GDP router can use the
certificate chain evaluation criteria to assert the validity of advertisement for a given name. With a
few different type of delegations, validating a number of certificates together becomes non-trivial.
In this section, we present a number of rules that a GDP router (or anyone else) can use to validate
whether a given set of delegations allow a specific entity to advertise for a given name.

Let’s first summarize the four types of cryptographic delegations that we have discussed so far:
• AdCert: A cryptographic delegation issued by object owners to servers for delegating hosting
of such objects (e.g. DataCapsules). An AdCert is presented to a GDP router by the server
after it has completed the challenge-response phase of the secure advertisement process.
AdCerts are visible to applications for enabling end-to-end security properties.

• RtCert: A cryptographic delegation issued for delegating routing functionality (i.e. send/receive
messages for the given name). Such delegations are quite flexible in terms of issuer/issuee.
For example, the issuer could be a client, a GDP router, or even a routing domain. Issuees,
for example, could be GDP router, an (IP : port) pair, or even routing domains.

• JoinCert: A cryptographic authorization issued by domain administrator of private domains
to clients, log servers, etc. A JoinCert is presented by the client to an internal GDP router
during the secure advertisement process.

• OwnCert: A cryptographic delegations that represents resource ownership and allows a
given entity (GDP router, log server, etc.) to act as an agent of the issuer. An OwnCert is
issued by domain administrator to sub-domains, GDP routers, etc.

While we will not go in detail, these delegations can also include policy specifications and
chaining restrictions to provide even more fine-grained control on under what condition is a specific
chain valid, and where the advertisement can be sent; such policies are also to be accounted for
during validity evaluation of a specific claim for a name advertisement. As an example, the owner
of a DataCapsule can include a white-list of allowed routing domains, or an RtCert issued during a
on-demand connection between two GDP routers can have a chaining restriction that prevents any
further delegations to be appended to the chain delegations.

In addition tomaking a valid or invalid decision on a given chain, eachGDP router independently
analyzes the ‘scope’ of advertisement for a given name and decides whether it should be sent
elsewhere. For example, a border GDP router (or a local GLookupService, depending on how a
routing domain is configured) filters all name advertisements that do not meet the global publication
criteria. An advertisement for a specific name could be kept strictly local to the GDP router, within
the routing domain, to certain levels of hierarchy involving parent domains, or be made available
globally.
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Figure 6.3: A visual representation of delegations in practice. Di are DataCapsules delegated to
log server S by their respective owners. Individual (Di →A S) can have policy specification such
as whether a given Di is public or restricted in scope. S joins the routing domain R by connecting
to a GDP router R1; Ri are owned by R. S is authorized to join R because it has been granted a
JoinCert by R. S grants (S →R R1) as well as (S →R R); the latter is only necessary if either S or
any of the Di’s are exposed to the world outside R and the domain administrator does not want to
expose the internal topology to the outside world. If, for example, D1 is global but D2 and D3 are
restricted to within R as specified in the corresponding AdCerts, (D1 →A S); (S →R R) will be a
valid chain but (D2 →A S); (S →R R) will not be valid.

6.2.1 Evaluation rules: An algebra for secure routing
There are a number of self-consistent rules for such validity evaluation that allow the GDP network
to achieve the desired security properties under the threat model discussed in the previous chapter.
Let’s see what the general rules are:

1. Each individual link in the chain can be generated completely independently with a different
lifespan.12

2. For a chain to be valid at a given time, each individual link in the chain should be valid. For
example, if in a chain (X →A Y ) ; (Y →R R), the AdCert expires at time t0 and RtCert
expires at a later time t1, then R can only claim to route traffic for X before time t0. It can
still, however, route traffic for Y till time t1.

3. The order of validation follows the direction of the graph, e.g. for A→ B; B→ C, validation
of A→ B must be done before B→ C.

Now, let’s see the rules that are specific to each type of delegation.
• AdCert: An AdCert authorizes the issuee to advertise for the name of the issuer.13 For
example, a DataCapsule X can be delegated to a log server Y with an (X →A Y ).

– In any certificate chain, there can be at most one AdCert; such AdCert, if present, is
always at the beginning. For example, (X →A Y ); (Y →A Z) is not a valid chain.14

12Note that for conciseness, our representation omits expiration time.
13In the GDP, we generalize this to a conglomerate of storage servers.
14In the current GDP design, this is to ensure that service providers can’t simply outsource servicing of names to

others without the knowledge of end-users.
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– An AdCert can have chaining restrictions on the chain as put by the AdCert issuer. A
chaining restriction in an AdCert represents what this AdCert can be chained together
with. For example, an AdCert can include a whitelist of routing domains that must be
used for routing.15

– AdCerts are exposed to the applications, and they can be used for any application-level
end-to-end verification.16

• RtCert: An RtCert grants delegation of routing responsibilities to a GDP router or a routing
domain.

– Just like AdCerts, RtCerts can also include chaining restrictions.
– RtCerts can be arbitrarily chained, except for restrictions placed earlier in the chain.

• OwnCert: An OwnCert codifies resource ownership.
– An OwnCert is issued by an organization, such a routing domain.
– An OwnCert implies transitivity, i.e. (X →O Y ) and (Y →O Z) is equivalent to
(X →O Z).

– Any part of the infrastructure can have at most one owner. Thus, a hierarchy of
OwnCerts, when represented as a graph, is a strict tree with each child having at most
one parent.

– An OwnCert implies JoinCert (see JoinCert discussion below).
– An OwnCert also codifies whether a JoinCert is required for a sub-tree of the or-
ganizational hierarchy or not. Any JoinCert requirements are enforced for the entire
sub-tree. For example, if X requires a JoinCert, and (X →O Y ); (Y →O Z), then both
Y and Z must require a JoinCert.

• JoinCert: JoinCert represents authorization to join a subtree of the organizational hierarchy
represented by OwnCert and is always granted to an active host, i.e. in (R→O X), R is either
a sub-domain or a GDP router, and X is an active host (client or log server).

– JoinCerts are for use only within the issuing routing domain. They don’t need to be
passed to, for example, a global GLookupService.

– Border GDP routers do not require a JoinCert from those connecting; their job is to
facilitate communication from outsiders. Instead, they must perform filtering of routes.
Only internal GDP routers require a JoinCert.

– An OwnCert implies a JoinCert.
– A JoinCert created by a node in the organizational hierarchy (as defined byOwnCerts)
implies a valid JoinCert for the entire sub-tree rooted at the issuing node.

– If a JoinCert is needed for a given domain, all sub-domains must necessarily require
JoinCert.

– For an organizational component that requires a JoinCert, a certificate chain is valid
only if every single node in the chain (except for content that starts AdCert) has a valid

15A domain-specific language can be used for such policy specification. However, we consider the details as out of
scope the dissertation.

16See GDP-protocol in chapter 4 for an example.
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JoinCert. The only exceptions are for default paths, or for the part of the chain before
a border GDP router.

– JoinCerts are issued only to active entities that must go through a challenge-response
phase.

– JoinCerts are not needed for names advertised via AdCert delegation. The entity
delegated to advertise names via AdCerts, however, must present a JoinCert if the
domain requires it.

See Figure 6.3 for an example of some of these rules in practice.

6.2.2 Security analysis of delegations
While a more detailed formal analysis of the security scheme is out of scope of this dissertation,
we provide intuition for why the scheme works. Probably the weakest point of the security scheme
remains regarding the lifespan of delegations and a lack of a revocation scheme; a GDP router is
able to receive traffic on behalf of a client for as long as the entire certificate chain is valid even
after the client goes away. Thus, one should be cautious in creating long-lived delegations to limit
the window of attack.

At a high level, only the owner of a given name can sign cryptographic statements and generate
delegations. Using the flat 256-bit name as the trust anchor ensures the security of verifying
the delegations themselves, and one can be reasonably certain that a given delegation wasn’t
fraudulently signed by an adversary.

The ‘secure advertisement’ protocol is prone to an on-path adversary in limited form: an
active man-in-the-middle can simply hijack an existing TCP connection, kick out a legitimate
client immediately after advertisement, and start sending/receiving traffic on behalf of advertised
names. However, this is broadly consistent with our threat model that we do not protect against
on-path adversaries. Using appropriate nonces during the challenge-response part of the ‘secure
advertisement’ protocol prevents replay attacks.

The certificate chains, in a way, represent the transitive trust graph. Any attacks on the certificate
chain by insertion of new entries inherently implies that the transitive trust is broken, e.g. amalicious
actor M in a certificate chain (X →A Y ); (Y →R R); (R →R M) simply implies that both X and
Y chose their routing domain R poorly because M can now receive traffic for X and Y and not
forward it. Such attacks are out of scope of our threat model. However, note that M cannot forge
(R→R M).

While an RtCert and AdCert are similar in many respects; an AdCert is passed to any RPC-
application running on top of the GDP network and allows verification of the identity of a remote
entity. Further, an AdCert acts as a special marker that ends a certificate chain and ensures that
there are no infinite loops during evaluation.

Amore interesting situation is that of attempts to undermine network isolation. Can an adversary
join a routing domain when not allowed to? What about an adversary that has already broken into



CHAPTER 6. MAKING THE GDP NETWORK REAL: THE ENGINEERING 111

a routing domain? As discussed in the threat model, unless an adversary compromises a router
that’s on the communication path anyway, they cannot affect routing state of other flows.

6.3 Storage organizations and the GDP network
An interesting case arises when we consider delegation of a DataCapsule to a ‘storage organization’
instead of a single log server.17 In our discussion of all the mechanisms thus far, we claimed that for
AdCerts that delegate hosting of a DataCapsule to a log server, the log server can be generalized
to a storage organization. The storage organization can further delegate the DataCapsule hosting
to one of the log servers that it owns. From the perspective of the GDP network verifying a log
server’s claim to host a specific DataCapsule, this generalization works well. If a DataCapsule D
is delegated to a storage organization S, then a log server S owned by S can present an AdCert
(D →A S) together with the OwnCert (S→O S). With a combination of these two delegations, S
can convince the GDP network (and other clients) that it can rightfully advertise for D.

However, there are two problems. First, from a system design perspective, this is slightly
problematic for the following reason. Because the storage organization S could potentially be
operating many log servers S1, S2, etc., not all log servers may have a copy of a given DataCapsule
D. A GDP router R trying to reach D (on behalf of a client) can find all the log servers S1, S2,
etc. by looking up in the global GLookupService, but it has no way of knowing the correct subset
of log servers that host a replica of D. Second problem comes from a security perspective. If
one of the log servers S belonging to S is compromised, it can rightfully claim to advertise all of
the DataCapsules delegated to S. Even further, if S itself is not compromised but an adversary
can somehow observe traffic to S, it can influence the routing state of the GDP network by using
publicly available delegations (D→A S) and (S→O S), and force traffic to any given DataCapsule
D delegated to S towards S.

There are a few mechanisms and strategies to address these challenge, each of which could be
applicable in a given context. We discuss a few of them below.

The first strategy is to explicitly allow all log servers belonging to a storage organization to
receive traffic for any DataCapsule delegated to the storage organization. This strategy works
well in the case of collaborative log servers. There are two scenario where this strategy is quite
appropriate:

1. A small storage organization that runs a few log servers where each log server, in fact, hosts
a replica of all DataCapsules delegated to the storage organization.

2. A very large storage organization with globally distributed infrastructure, where not all log
servers maintain a replica of all the DataCapsules delegated to the storage organization but
they can proxy requests to the correct log server. For this scenario, log servers need an
out-of-band mechanism to find what other log servers in the organization host a replica of a
given DataCapsule. When a log server receives requests for a DataCapsule that it does not

17Recall from chapter 2 that ‘storage organizations’ are organizations that primarily operate log servers and provide
persistent storage for DataCapsules as a service.
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host locally, it can proxy the requests to an appropriate log server (by using the log server’s
name).18 Further, depending on the frequency of access of a given DataCapsules across
geographic regions, the storage organization may migrate DataCapsules to provide the best
quality of service to the clients.

A second strategy is to expose the internal details of a storage organization in a limited form to
DataCapsule owners, and ensure that a specific DataCapsule is delegated not to the organization as
a whole but to a specific subset of infrastructure. This strategy does not require all log servers to
collaborate with every other log server in the organization. There are twomechanisms to implement
this strategy:

1. An organization could expose the geographic placement of its resources to DataCapsule
owners by creating sub-organizations, and DataCapsule owners can delegate DataCapsule
hosting to a specific sub-organization instead. Within a sub-organization, any log server
should be able to serve requests for a DataCapsule delegated to that sub-organization using
either of the approaches discussed in the first strategy.19

2. Instead of exposing details of the geographic placement of infrastructure, a storage organiza-
tion could work at a more abstract notion of a replica group. As the name suggests, a replica
group is a group of log servers that are presumably geographically separated and maintain
replicas of a DataCapsule. The workflow and mechanisms are similar to the sub-organization
discussion above: the storage organization partitions log servers in replica groups (as identi-
fied by the OwnCerts it issues), and DataCapsule owners pick a replica group to place their
DataCapsule in by including the replica group in the AdCerts that they issue. However, for
a chain of delegations (D →A S), (S →O S) to be valid, the included replica group in both
delegations should match.20

6.4 A scalable GLookupService
A core component to enable the GDP network is a scalable GLookupService. In the previous
chapter, we merely assumed the existence of a globally distributed key-value store. In terms of
actually making this work, we reuse an existing system called Redis [83], which is a scalable
key-value store with support for replication.

In terms of the interface that GLookupService needs to support, there are two key operations: a
get operation to lookup the routing information associated with a GDP name and a put operations

18For example, AWS S3 buckets follow this model: S3 buckets are located in a specific AWS region as specified by
the bucket owner. If a client accesses the bucket by connecting to a different AWS region, the requests are proxied by
the AWS infrastructure without the user noticing.

19An example is AWS EC2 infrastructure, where a user picks the parts of the EC2 infrastructure to host services
in at the granularity of regions (i.e. data centers). Users connect directly to the designated parts of the infrastructure
rather than being proxied (as in the case of S3 buckets).

20Note that implementing replica groups requires local filtering of delegations by a GDP router based on replica
groups. Alternatively, the GLookupService interface could be amended to include support for optional fields. We
consider these as directions for future research.
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Figure 6.4: A reference deployment of global GLookupService using Redis as the backend. We
deployed it at three different Amazon EC2 data centers in the world (called a site). We also divide
the keyspace in three roughly equal partitions (marked with different colors), and ensure that the
masters are spread across the sites. Each site also has a UDP front-end exposed to GDP routers;
this front-end acts as a Redis client and uses local nodes for reads, but sends updates to the master
(as dictated by Redis architecture).

to add new RtCerts, etc. As for performance, it is extremely desirable to be able to quickly lookup
names regardless of location; a GDP network where everyone in the world needs to request route
information from a GLookupService in a single centralized location wouldn’t perform well. Thus,
we must have a way to replicate the same information at multiple places and keep it reasonably up
to date. Quick reads by widely replicating information comes with the trade off that any updates
may not be immediately visible; this is because of the delays in information propagation. However,
this is an acceptable trade off in the context of the GDP network.

With these design goals and constraints, we chose to use Redis [83] for a prototype deployment
of the global GLookupService. Redis is an open-source in-memory key-value store that supports
replication. Values in Redis can be just plain strings, or more sophisticated data structures such as
lists, sets, etc. The entire key-space is divided into 16384 key-slots, and each key is deterministically
mapped to a key-slot based on the CRC.21 The entire data is sharded based on the key. Each server
is responsible for a specific set of key-slots, and could act as either a master node or a slave node.
Writes only happen on master, but reads can be performed from any node. If the master goes down,
a slave is automatically elected master.

For our global GLookupService based on Redis, the keys are the GDP name and the values
are a set of all the valid AdCerts and RtCerts associated with the GDP name. We maintain a
front-end that serves the GDP network requests for update and lookup via UDP on one end, and
acts as a Redis client to fetch the requests on the other end. This front-end also lazily cleans up any
AdCerts or RtCerts that are expired. This front-end is a fairly lightweight process that maintains
persistent connections to a number of Redis servers (see Figure 6.4).

21Cylic Redundancy Check.
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The actual data is replicated and stored at a number of data centers in the world (see Figure 6.4);
we perform a geo-replication by using a smart front-end coupledwith clever placement of replicas.22
We try to replicate all data in each data-center in a way that the masters are spread over various
data centers. Each data center has a single front-end that GDP routers talk to. For read requests,
this front-end uses the closest replica (presumably in the same data center). Updates must go to
the designated master for the key-slot that the GDP name belongs to; such master could be in a far
away data center.

While such an architecture seems to work for the moment, this is merely a proof-of-concept
using existing tools and systems as much as possible. This prototype global GLookupService also
demonstrates an example deployment strategy in a federated way: replica data-centers could be
operated by real-world organizations. While updates are targeted to a specific node in our proof-
of-concept, such design is purely because of how Redis operates. In a real federated deployment, a
non-leader based approach could be used where updates can be applied to any node; these updates
can then be propagated to other nodes and merely merged in the form of a set union of unexpired
RtCerts and AdCerts (with an additional verification step to prevent garbage). In such a model,
organizations do not trust each other for correctness but merely completeness of information, which
matches our service provider oriented threat model.

22A form of geo-replication is supported in the Redis proprietary enterprise version.
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Part III

The Results
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Chapter 7

Implementation and Evaluation

In the first part of the chapter, we briefly describe two software implementations of the GDP. The
first implementation is a research prototype written purely in Python. The second implementation
is developed by a group of collaborators in C/C++, and is intended to be a production-level system.
The former is what we claim to be a contribution of this dissertation, and we hope the latter to be
the future of the GDP. For this reason, we focus more on the research prototype in this dissertation.

In the later part of this chapter, we show empirical evaluation of the GDP design and architecture
with the help of the prototype implementations.

7.1 The GDP research prototype
The purpose of this implementation is threefold: first, it provides a proof of concept to demonstrate
that the proposed design of the GDP can actually be implemented; second, it provides a reference
implementation that can be used as a starting point for a more refined system suitable for production
use; third, it serves as a platform for experimentation and refinement of the GDP design itself.

With these goals in mind, we chose to develop this prototype in Python. Even though Python is
an interpreted language with significant overhead in runtime performance, it allows us to do quick
prototyping and move rapidly. Further, with Python’s support for extensions written in C or C++,
this prototype can be extended to include specific functionality written in low-level languages. The
research prototype is currently over 6k lines of code (SLOC), where a line of code is any “non-
blank, non-comment line”.1 The total number of lines, including blank and comment lines, is over
12.5k. The code is available in a git repository hosted at https://repo.eecs.berkeley.edu/
git/projects/swarmlab/gdp-v1.git. In the following discussion, we will refer to the research
prototype as simply “the prototype”.

The prototype heavily uses existing Python libraries and frameworks. Most notably, it uses
‘Python Twisted’ as an event-driven programming framework for handling almost all of the network

1Measured using David A. Wheeler’s ‘SLOCCount’.

https://repo.eecs.berkeley.edu/git/projects/swarmlab/gdp-v1.git
https://repo.eecs.berkeley.edu/git/projects/swarmlab/gdp-v1.git
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I/O.2 All network messages and many data structures are specified via Protocol Buffers, which
allows for extensibility and language agnostic operations.3 All persistent data is maintained in
SQLite, which provides a lightweight database engine that does not require a standalone database
process.4 For cryptographic operations, the prototype can use either pyca/cryptography or
‘M2Crypto’ as a backend.5 For a number of operations that can be expressed in the form of
well-known graph algorithms, we use ‘NetworkX’ as a graphing library.6 Finally, we use ‘PyTest’
for testing and validating the software.7

7.1.1 GDP features implemented by the prototype
The prototype is a work in progress and implements most, but not all, of the GDP design that we
described. Most of the security features are implemented; here is a small, non-exhaustive list of
such features:

• All GDP names derived from the hash of metadata, thus enabling the name as a trust anchor.
• For a DataCapsule, records are linked using appropriate hash pointers. This property,
together with GDP names generated from hash of metadata, allows for creation of verifiable
RecContainers.

• RecContainers (subsection 3.3.2) are implemented and can be used as a secure transport
for all DataCapsule related operations, such as append, read, subscribe, and both online and
offline replication.

• Two type of delegations—AdCert and RtCert—that use the GDP name as the trust anchor
have been implemented.

• Support for secure advertisement via a challenge response between a client connecting to the
routing fabric and the GDP router that it is connecting to.

• Ingress filtering of all GDP-PDUs by aGDP router to prevent blatant source address spoofing:
a GDP router ensures that the remote side (whether it is another GDP router, a client, or a log
server) has provided sufficient proof that it can send datagrams with a given source address.

• Egress verification of routes by a GDP router: before forwarding a GDP-PDU to a remote
party, a GDP router verifies that the remote side is, in fact, authorized to receive GDP-PDUs
with the given destination address.

• Support for secure acknowledgments from a log server to clients (and to other log servers
during synchronization). Provides end-to-end transport level security against tampering of
information by intermediaries.

• Verifiable information in GLookupService, that ensures that a GLookupService needn’t be
trusted for correctness of information.

2https://twistedmatrix.com/trac/
3https://developers.google.com/protocol-buffers/
4https://www.sqlite.org/index.html
5https://cryptography.io/en/latest/ and https://pypi.org/project/M2Crypto/.
6https://networkx.github.io/
7https://docs.pytest.org/en/latest/

https://twistedmatrix.com/trac/
https://developers.google.com/protocol-buffers/
https://www.sqlite.org/index.html
https://cryptography.io/en/latest/
https://pypi.org/project/M2Crypto/
https://networkx.github.io/
https://docs.pytest.org/en/latest/
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7.1.2 Software components and code organization
The software closely follows the design described in earlier chapters. There are, however, a few
components that are grouped together for minimizing duplication of effort. The whole code base
is organized as a Python package called gdp (see below), with a number of sub-packages that
implement the client, log server, routing infrastructure, etc. We only provide a brief overview of
our research prototype in this dissertation, but we encourage an interested reader to explore the
code.

gdp
|-- client # client side interaction with infrastructure
|-- ds # common data structures as Protocol Buffers
|-- gdprpc # common RPC library
|-- __init__.py
|-- routing # routing components
|-- server # log server for persistent storage
‘-- utils # common utility functions

A Common features and code

At the heart of this research prototype is a commonRPC library (gdp.gdprpc) that handles requests
and responses at the GDP PDU level, and can be reused for various GDP components that connect
to the routing fabric such as clients and log servers. Even the GDP routers include this same RPC
library to handle advertisement related requests and responses.

This RPC library provides a base class called Agent that other components in the GDP can
inherit from. An Agent represents a very simple active entity that knows how to (1) handle (and
maintain) AdCerts and perform secure advertisements for a number of names in the network,
and (2) establish a secure channel between a client and a DataCapsule (or any other service with a
number of replicas), which allows for a client to reason about the end-to-end transport level security
properties.

Other than the RPC interface, a number of common utility functions are also grouped together in
the form of a gdp.utils sub-package. This includes logging, common cryptographic operations,
and handling records and RecContainers.8 For our cryptographic operations, we use the Python
cryptography package. We use SHA256 as our hash algorithm and ECDSA for signatures with
NIST curve sect283r1. The choice of ECDSA is to keep key and signature sizes small (78 bytes).

Finally, various Protocol Buffer messages and data structures are separated into a sub-package
called gdp.ds. Most importantly, the Protocol Buffer definitions allow for an easy migration path
to alternate implementations, one networked component at a time.

8Recall that a RecContainer abstraction for enabling an efficient on-the-wire and archival storage format. Rec-
Container targets an amortization of computational and storage costs over a number of records, while enabling a
self-sufficient collection of records.
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B Routing infrastructure

The routing infrastructure, included in sub-package gdp.routing, implements two key compo-
nents: the GDP router and the GLookupService.

The GDP router implementation can be initialized/configured in a number of ways to accom-
modate various scenarios: (1) a standalone mode useful for testing, (2) a mode with a specified
‘default route’ for creating arbitrary hand-crafted topology, and (3) a fully functional mode with
a configured GLookupService that can be used for sharing delegation state across GDP routers.
The GDP router is internally split into two components: a routing fabric and a routing-agent. The
routing-agent handles the secure advertisement process and inserts verified state in an internal
database called RouterDB (essentially a forwarding table). The routing fabric performs the actual
switching of incoming PDUs by looking up verified routes in the forwarding table.

Additionally, we introduce the concept of aCertGraph that can handle a complex graph of delega-
tions (see chapter 6).9 ACertGraph provides a simple interface with two operations, insert-cert
and query-path, and allows for a modular way of handling arbitrary complex routing state.

Our prototype also provides two implementations of GLookupService with different back-ends:
(1) a simple standalone implementation where the in-memory state is stored in a Python dictionary,
which is useful for testing, and (2) a distributed back-end for the state that is maintained in an
off-the-shelf Redis cluster. Both implementations respond to GET and PUT queries over UDP.

Our Redis based GLookupService is deployed in three geographical locations worldwide in
different Amazon EC2 regions: US west coast, US east coast, and Ireland. Using Redis allowed
us to quickly prototype our GLookupService without needing to worry about replication and fault-
tolerance. Our deployed Redis cluster consists of a total of 9 nodes. Among these 9 nodes, there
are a total of three masters—all in different zones. Each master has two slave in the other two
regions that replicate data on the master. Thus, each key is replicated in each of the three region.
In each of the three regions, we also run a GLookupService front-end that enables GDP routers to
issue GET/PUT commands. Internally, this front-end sends write requests to the master node for the
given key, but serves read queries from the closest node.

C Log servers and persistent storage

Log servers in our prototype are implemented as a sub-package gdp.server. The log server
is a subclass of Agent that maintains a list of DataCapsules that it has been delegated to serve.
Additionally, the log server maintains AdCerts for these DataCapsules, which enables the log
server to advertise for these DataCapsules to the GDP network.

To store persistent data, the log server internally uses a separate SQLite database for each
DataCapsule, which allows for quick lookup and response to client queries based on database
indices. The log server can serve the following requests to clients: CreateReq, MetadataReq,

9The CertGraph implementation currently supports AdCert and RtCert, but can be extended to handle JoinCert
and OwnCert as well.
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AppendReq, ReadReq, HeartbeatReq, SubReq.10 The log server alsomaintains an in-memory
copy of active DataCapsules. This in-memory copy is represented as a graph of nodes connected
with hash pointers, which allows for quick construction of proofs for read requests.11

The log server also implements both online and offline synchronization. Online synchronization
is implemented via a FwdAppend request, which forwards appends sent by a writer to all known
replicas. Offline synchronization for any missing state is implemented via an anti-entropy syncing
algorithm.

D Clients

In our prototype, a client is a subclass of Agent and provides some basic initialization of Data-
Capsules. The ‘Client’ class lives under the sub-package gdp.client and enables creating new
DataCapsules, or opening existing DataCapsules in either read only mode or a single writer mode.
The result of these operations is a DataCapsule object, which further enables reads, appends, and
subscriptions. Appends and reads can be performed in a variety of modes (e.g. single vs. multiple
records at a time, synchronous vs. asynchronous modes, etc.). Any read operations automatically
trigger the verification of data integrity by validating proofs provided by the log server.

While the actual operations are performed using the DataCapsule object, it is the ‘Client’ that
maintains appropriate local state. For example, a writer client maintains the required state in a
non-volatile store maintained in a disk-backed SQLite database. The writer client also implements
the logic necessary for calculating if hashes should be kept around for constructing hash-pointers in
future records. Further, our current prototype supports any arbitrary hash-pointer linking strategy
that can be described as a Python generator function.

7.2 The GDP production system
In addition to the research prototype, there also exists another prototype of the GDP developed by
a group of researchers.12 It is mostly written in low-level languages (C and C++). We call this the
production system because there are active users for this system and we maintain a basic server-side
infrastructure in Berkeley. This infrastructure primarily includes four log servers and four GDP
routers in two different physical locations, and a few other key services to improve the usability of
the system. The production system is organized in the following architectural components.

• The GDP library written in C, called libgdp. This library includes the functionality for: (1)
interacting with records (creation of new records, verifying existing records, making records
available to the applications, etc.), (2) an RPC layer that keeps track of requests and responses

10Recall that in our current design, subscriptions are maintained by the log server.
11Proof construction is equivalent to finding the shortest path in this in-memory graph.
12The author of this dissertation had relatively minor role in the software engineering effort for this prototype. We

include the prototype in the dissertation for two reasons: (1) to serve as a reference for the current state of the GDP,
and (2) for the sake of completeness; we use this prototype for a few benchmarks in the later parts of this chapter.
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to a remote entity (including retransmissions if necessary), (3) serializing/deserializing re-
quests and responses to the GDP PDU format, (4) interacting with the GDP network (e.g.
advertising names). Readers and writers link against libgdp to interact with DataCapsules.

• The log server implementation, called gdplogd. gdplogd also links against libgdp.
gdplogd provides persistent storage for DataCapsules by keeping on-disk state in SQLite
databases.13

• The GDP router implementation, which is written as a Click [84] module. The Click GDP
router implementation uses a separate router-to-router protocol that supports fragmentation
and reassembly of GDP PDUs into UDP datagrams for the most optimal use of network
bandwidth. We call this router-to-router protocol as GDP-in-UDP tunneling. This GDP-
in-UDP protocol also handles packet loss by using a NAK-based strategy (i.e. the recipient
requests for UDP fragments that it didn’t receive).

• The GLookupService implementation, called gdpribd. The gdpribd keeps state in a
MySQL/MariaDB database, and uses a custom front-end to serve requests from the Click
GDP router. Internally, gdpribd uses a third party graph engine to keep state of the network
graph and calculate shortest path between a pair of endpoints. Note that in the current design
of the Click GDP router and gdpribd, there is no support for AdCert or RtCert delegations.
The gdpribd serves as a trusted oracle with a global view of the network state.

• A number of language bindings on top of libgdp, which allow users to write applications
in high-level languages. We currently support language bindings for Python and Java. There
is partial support for JavaScript as well.

• A number of applications and services on top of this production system. Notable exam-
ples include a number of protocol translators (MQTT, CoAP, HTTP via RESTful gateway),
in-browser data visualization services, a TensorFlow CAAPI, audio/video storage in Data-
Capsules.

While this production system does not support all the features implemented by the research
prototype, it is significantly more mature in terms of software quality and usability. In the current
state, the two prototypes are not compatible with each other either. We hope that the features
implemented by the research prototype will eventually make their way into the production system,
and that the two versions will be compatible with each other.

7.3 Evaluation of the GDP design
In this section, we show how the system performs in practice. We first attempt to answer the broader
performance related questions with the help of some macro benchmarks where we compare the
performance of the GDP and DataCapsules with existing systems. Then, we go deeper to discuss
performance of some of the GDP specific operations with help of some micro benchmarks.

13In the current implementation, each DataCapsule is stored in a separate SQLite database.
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7.3.1 Macro benchmarks
The GDP and DataCapsules target an ambitious goal of providing secure ubiquitous storage and a
native routing fabric for applications. In this section, we look at how well the GDP performs as a
system regardless of the security goals. We first look at the overall system performance with the
help of a Tensorflow CAAPI (recall from subsection 4.2.2). Then, we look at how the GDP network
compares with existing IP infrastructure for throughput and latency. Finally, we consider the storage
performance of DataCapsules with NFS in terms of throughput and IOPS (I/O operations/sec).

Note that some of the following benchmarks are done on a public cloud (Amazon EC2). Using a
cloud infrastructure for performance measurement has the benefit of standardization of underlying
infrastructure and ability to scale in terms of resources. However, a downside of a public cloud
is potentially erroneous measurements because cloud resources are inherently shared. To account
for spatial and temporal variability, we repeat the measurement a number of times and ignore the
outliers on the lower-end of performance.

Also, note that the evaluation is primarily performed using the research prototype, unless
otherwise noted. We must reemphasize that this is merely a prototype in a high level language. The
observed performance can be much better if software engineering were the focus of the dissertation
(which it is not). Hence, absolute numbers are less important than the relative performance of
various operations.

A Tensorflow CAAPI: An application level benchmark for the GDP

In this section, we illustrate the real world usage of the GDP and DataCapsules with the help of a
case study on machine learning for robotics applications at the edge (see subsection 2.5.2). Recall
from subsection 4.2.2 that we developed a CAAPI for TensorFlow to help with our Secure Fog
Robotics initiative (see subsection 2.5.2).

TensorFlow supports custom filesystem plugins that allows an arbitrary system to be used
for maintaining and interacting with all persistent state (e.g. training/test data, training progress,
models, etc.). By default, TensorFlow ships with a number of filesystem plugins to use cloud storage
such as Amazon S3 or Google Cloud Platform storage. Using the same plugin functionality, our
CAAPI enables existing TensorFlow code to use DataCapsules for maintaining persistent state.
Note that this CAAPI was developed to work with the production system, and not the research
prototype.14

For the purpose of benchmark, we are interested in the overall time it takes to load or store
data using our CAAPI. Specifically, we use two publicly available machine learning models
as the sample data for our experiments. The first model is a small model of size 28 MB

14Note that this CAAPI does not support encryption or signatures on records. As such, the time measurements
reported in Figure 7.1 do not include time needed for signatures or encryption/decryption. This limitation does not
apply to the other experiments reported in this chapter.



CHAPTER 7. IMPLEMENTATION AND EVALUATION 123

(a) Model ssd_mobilenet_v1_coco. (b) Model faster_rcnn_resnet50_coco.

Figure 7.1: Read/write times (seconds) for TensorflowCAAPI comparing the GDP to other options.
We report the time taken for reading/writing two different pre-trainedmodels (averaged over 5 runs).
The left model has size 28 MB, and the right model is 115 MB in size. Smaller is better.

(ssd_mobilenet_v1_coco), and the second model is a much larger model with size 115 MB
( faster_rcnn_resnet50_coco).15

For our experiments, we place a client that runs the CAAPI in a residential network with the
Internet bandwidth capped to 100/10 Mbps (upload/download).16 We run two sets of experiments:
first using cloud infrastructure using Amazon EC2 and S3, and then using edge infrastructure placed
in the same residential network. Note that the Internet bandwidth cap only applies to the first set of
experiments.

For our first set of experiments, we measure time taken for storing or loading models from an
Amazon S3 bucket in the closest S3 region. We then run the GDP infrastructure in Amazon EC2 in
the same region as used for the S3 bucket. We also compare the performance against SSHFS [86]
on the same host as our GDP infrastructure. This is accomplished by mounting a remote directory
on local machine using SSHFS, and treating the mount as a local file.17 For our second set of
experiments, we use the GDP infrastructure in local environment using on-premise edge resources.
Once again, we run SSHFS for comparison. The results for loading/storing the model across all
these set of infrastructures are presented in Figure 7.1.

A few observations from these experiments: First, the GDP and DataCapsules provides per-
formance somewhere between that of SSHFS and S3 when using the cloud infrastructure. As

15TensorFlow detection model zoo: https://github.com/tensorflow/models/blob/master/research/
16100/10 Mbps is a good representative of an average household Internet connection in United States [85].
17We note that the TensorFlow’s S3 implementation for loading data is not particularly efficient, thus the non-

standard use of SSHFS with TensorFlow provides a better comparison.

https://github.com/tensorflow/models/blob/master/research/
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expected, the performance when using edge resources is orders of magnitude better. Second,
storing the models in the cloud is constrained by the limited upload bandwidth, which is why the
‘write’ time is roughly the same for all the cloud experiments for both the models. Third, the read
performance is worse than write performance for cloud. This peculiarity is because of the way
TensorFlow uses the filesystem: writes are simply handed to the filesystem plugin (which can then
be done asynchronously), but TensorFlow reads the models synchronously (e.g. for sequentially
reading a file, a read call for ‘(offset=n+ x, size=x)’ is issued only after the read call for ‘(offset=n,
size=x)’ finishes).

Overall, these experiments show that given equivalent infrastructure, theGDP andDataCapsules
provide comparable performance to existing cloud systems (S3). Additionally, the GDP and
DataCapsules enable the use of close-by infrastructure for better performance, while enabling
better end-to-end security and better control on the data ownership and placement. Even further,
the federated nature of the GDP implies that power users can set up their own private infrastructure
to achieve a given Quality of Service and still enjoy the benefits of a common platform.

B The GDP network performance

From a user’s point of view, the GDP network’s main function is to transfer data from a sender to a
recipient. In the following set of benchmarks, we compare performance of the GDP network with
the underlying TCP/IP infrastructure. Note that because we operate the GDP network as an overlay
on top of TCP/IP, these set of experiments essentially measure the overhead introduced by the GDP
network. In terms of performance, we are interested in two key metrics: throughput and latency.
What’s the sustained throughput that the GDP network can offer?
Throughput offered by a network is a challenging task to measure, especially because there are
quite a few parameters that can be tweaked. We base our performance measurements on the well
established tool iperf [87] that can be used to measure bandwidth between a given pair of hosts.
For throughput measurement supported by the GDP network, we developed the GDP equivalent of
iperf, which we call traffic-agent. Both iperf and traffic-agent can be operated either
as a source of data or a sink of data. We developed this traffic-agent for both the research
prototype and the production system.18

Given a set of endpoints, one of the most significant factor that affects observed bandwidth is
PDU size. In most types of networks, there is a fixed processing cost per PDU, because of which
smaller PDU sizes result in lower bandwidth. As such, in the following set of experiments, the key
parameter that we vary is PDU size. By changing the PDU size, we demonstrate the limits of (1)
PDU processing speeds, and (2) sustained bandwidth supported. Specifically, we use PDUs of size
512, 1024, 2048, 4096, 8192, 16384, 32768, 65536 bytes. For iperf, the equivalent variation is
the buffer size on the reader and the writer.

18Note that the research prototype implements our principles of verify before accept and verify before send. However,
the production system does not currently support these secure routing principles.
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(a) Both sender and recipient in the same network. (b) Sender and recipient on opposite coasts in the US.

Figure 7.2: Sustained throughput as a function of changing PDU size. We measure the raw TCP/IP
throughput using iperf, and compare this with the two software implementations of the GDP. In
these results, prod-version refers to the production system (see section 7.2) and research refers
to the research prototype (see section 7.1).

Note that the following performance measurements are done on the public Amazon EC2
cloud.19 Specifically, our performance measurement is limited to two regions: (1) USAWest coast
(us-west-2 in Oregon), and (2) USA East coast (us-east-1 in N. Virginia). We use c5.xlarge
instances with 4-cores, 8 GB of RAM and up to 10 Gb/sec of advertised network bandwidth.20,21

We perform two sets of experiments by varying the relative location of sender and recipient. In
the first set of experiments, all machines are local relative to each other. For this set of experiments,
both the sender and the recipient are in the same EC2 region (us-west-2). The typical round-
trip latency between any given pair of machines is about 100-200 µs in this environment. In the
second set of experiments, we measure throughput through the regular Internet. The sender and
the recipient are in different regions (us-west-2 and us-east-1) for this set of experiments. The
typical round-trip latency between a pair of machines from different regions is about 70-75 ms.

Note that the network characteristics vary quite a bit even during the experiment. Further, TCP
slow start introduces a warm up period before a steady saturated state is achieved. To account for
these variations during each experiment with a given PDU size, we report the average sustained
throughput and the standard deviation measured in 1 second intervals only after the throughput
becomes stable. For iperf, we run the tool for its default 10 seconds reporting window; we repeat

19Amazon EC2 uses the concept of a ‘region’ as a specific geographic area, and ‘availability zone’ as an iso-
lated location within a region. https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-
availability-zones.html

20https://aws.amazon.com/ec2/instance-types/c5
21As measured by the iperf utility, we see the actual bandwidth to be 4.98 Gb/s in most cases, even though the

advertised bandwidth is up to 10 Gbps.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://aws.amazon.com/ec2/instance-types/c5
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the experiment 10 times, and report the average and standard deviation. The results for these
throughput experiments are presented in Figure 7.2.

A few observations from the first set of experiments (Figure 7.2a): First, iperf represents a
ceiling of the raw network performance. As a well polished tool that’s doing nothing more than
generating a stream of bytes and sending it to the recipient, it is hard for the GDP network to
compete with iperf’s performance when the network bandwidth is plentiful. Second, the research
version has a relatively high per PDU processing overhead. The throughput increases with the
increasing PDU size, and continues to increase even at large PDUs. On closer inspection, we
discovered that the limitation is not in the GDP router but the traffic-agent client. Third, the
production version GDP router is high performance even at lower PDU sizes. Since it is written
in a lower level language, such performance is to be expected. Finally, the fourth observation is
that with some tuning of PDU sizes, both versions of GDP routers can achieve throughput beyond
1 Gbps with commodity hardware.

For the second set of experiments (Figure 7.2b), we see a somewhat similar pattern as the first
set. However, the available bandwidth quickly becomes the limiting factor, and the performance of
all three tools becomes somewhat similar after about 8k bytes/PDU.

Overall, this experiments show that while the end-to-end performance is certainly lower than
what one can achieve with raw TCP/IP, there is a lot of room for improvement just by clever software
engineering. Further, running GDP routers on commodity hardware is certainly viable for many
use cases.
What’s the round-trip latency with the GDP network?
To perform the latency experiments, we developed a custom ping application that is equivalent to
ping utility available on various operating systems. We use the same setup as in the throughput
experiments above. The only difference is that we perform this experiment only with the research
prototype. We measure the average, minimum, and maximum round-trip latency for 100 messages,
both in the case of traditional ping utility and our custom GDP-ping. In case of the GDP, the
first PDU incurs an additional latency of lookup that the GDP router may perform. As such, the
following results do not account for this first PDU latency. We will discuss the latency of the first
PDU in the next section on micro benchmarks.

For the setup where the sender and recipient are in the same region (us-west-2), the average
round-trip ping time is 0.120 ms.22 For a similar setup, the average round-trip GDP-ping latency
is 1.521 ms.23 For the second scenario where the sender and recipient are in different regions, the
average round-trip ping time is 75.295 ms.24 For a similar setup, the average round-trip GDP-ping
time is 76.563 ms.25

Based on these latency results, we make the following observations: First, in the local network,
while the relative latency for GDP-ping is larger than the ping latency by an order of magnitude

22min: 0.108 ms, max: 0.160 ms.
23min: 1.076 ms, max: 18.086 ms.
24min: 75.224 ms, max: 76.786 ms.
25min: 75.946 ms, max: 93.742 ms.
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(1.521 ms vs 0.120 ms), the actual values are rather small. The overhead introduced by the the
GDP network is of the order of a millisecond. When considering the second experiment, we can
see that the GDP network overhead is almost negligible. Second, while the average latency is good,
there is a bit of unpredictability. While the average round-trip GDP network latency is 1.521 ms,
the maximum latency goes up to 18 ms. We attribute this unpredictability to our code being in a
higher level language, and we consider this as a crucial limitation that future versions of the GDP
network must address.

C DataCapsule performance

What is the performance of a DataCapsule when used purely as a remote storage repository? In
the following set of benchmarks, we compare DataCapsule performance to a single append-only
file mounted from a remote NFS mount.26 An append-only file is a useful pattern that applies
directly to a number of machine-generated data, such as IoT sensors, log files, etc. The two
major performance characteristics that we are interested in are: volume throughput and IOPS
(Input/Output operations/second).
What’s the throughput in/out of a DataCapsule as compared to a remote file?
Just like network throughput is highly dependent on the PDU size, storage throughput is affected
heavily by the I/O size for typical storage systems. In general, smaller I/O size allows for a greater
IOPS but lower throughput. The opposite is true as well, where larger I/O size provides more
throughput but lower IOPS. As such, for our throughput measurement, we primarily vary the I/O
size and see how that affects the performance characteristics.

We consider two sets of experiments: first for writes, and second for reads. Both sets of
experiments are performed in Amazon EC2 using two c5.large instances in the same region,
where one machine serves as a client and the other serves as a server. In case of NFS, the server
side is simply an NFSv4 server that exports a directory, and the client side mounts this directory at
a mount point in the local file system. In case of DataCapsules, the server side runs a GDP router
and a log server—both on the same machine, and the client side is a simple GDP client that reads
from or writes to a given DataCapsule.

For generating the workload for NFS file, we use the tool dd—both in case of reads and writes.
dd allows us to generate the workloads we desire while providing control on block size (i.e. the
size of reads and writes) and the exact behavior of reads/writes. Additionally, we need to tune the
NFS mount parameters, especially in the case of reads, to ensure that filesystem optimizations such
as prefetching and caching don’t make the results unfairly favorable to NFS.27,28

26This comparison shouldn’t be taken as criticism of NFS. NFS is a general purpose artifact designed to handle a
variety of filesystem related operations. An append-only file is the most favorable operation for DataCapsules. Instead,
such a comparison is merely to provide a reference point for a reader to understand the DataCapsule behavior.

27For writes: we mount the NFS with default mount options and use the following invocation for dd: dd
conv=fdatasync,fsync,notrunc oflag=dsync,sync,nocache,nonblock [...].

28For reads, we use the additional options-o nosharecache,noac,sync,lookupcache=none,rsize=BLOCK_SIZE
for the mount command, and use the following invocation for dd: dd conv=fdatasync,fsync
iflag=dsync,sync,direct [...].
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(a) Append. (b) Sequential read.

Figure 7.3: Comparison of performance for GDP DataCapsule vs. NFS (using the tool dd). We
can see the variation in time needed for (a) appending, and (b) sequentially reading 10MB data as
the block/record size changes.

In case of DataCapsules, we use a custom designed command line utility called log-append for
appending and log-read for reading. log-append allows user to create a given number of records
of a specific size (i.e. the I/O size) and append those to a DataCapsule. We use a single record
per append request for DataCapsules.29 log-read simply reads a given number of sequential
records from a given DataCapsule; we use a DataCapsule previously populated with log-append,
which indirectly allows us to control the read size. For the purpose of these benchmarks, we use a
DataCapsule with a single replica and a simple linked-list style structure.

For write benchmarks, we write 10MB data (10 MB = 10,000,000 bytes), both for NFS and
DataCapsules. I/O size is varied from 1000, 2000, 5000, 10000, 20000, 50000 bytes.30 For reads,
we sequentially read this same file/DataCapsule generated for a given I/O size. We measure the
total time taken for these reads/writes, and report the results in Figure 7.3.31

29For best performance, multiple records should be batched together to create a single append request. However,
that would lead to an unfair advantage to DataCapsules.

30We avoid records larger than 60k in size in our prototype. While these may seem much smaller for a typical disk
access (SSDs for example have a half megabyte block size), using a larger size in the present case will not the results
significantly, because after a certain limit, the fragmentation at the network level becomes the limiting factor.

31We repeat each experiment 3 times for a given I/O size, and report the ‘best of 3’.
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(a) Append operations per second. (b) Read operations per second.

Figure 7.4: Average I/O operations/sec (IOPS) for NFS (using the tool dd) vs GDP. The IOPS are
calculated from the data in Figure 7.3.

A few observations from these experiments: first, NFS outperforms DataCapsules in each of
the experiments. However, the relative performance of DataCapsules becomes better as the block
size is increased. Second, read time for any given I/O size is much smaller than the corresponding
write time. This is expected behavior for most storage systems, but we explicitly point it out
here because of the seemingly opposite trend observed in Figure 7.1.32 Third, even though NFS
performance is better than DataCapsules, we believe that the GDP and DataCapsules can provide
a close competition to NFS, especially when considering the fact that NFS is a highly polished
software written in a low-level language with decades of software engineering effort, whereas our
current implementation is merely a research prototype.
How many IOPS can a DataCapsule support as compared to a remote file?
This set of throughput experiments above also provides useful insights into the relative performance
of DataCapsules with NFS when considering the IOPS (I/O operations/sec). Based on the number
of reads and writes and the time taken, we calculate the average IOPS for NFS vs DataCapsules,
both for append and sequential read (see Figure 7.4).

For dd and NFS, the number of IOPS decreases gradually as the block size increases. This
is quite expected, since each append or read operation takes longer to complete with larger data

32Recall that in Figure 7.1, the relative performance of reads is worse than writes because of the peculiar way
TensorFlow uses the filesystem.
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size. For DataCapsules, however, the pattern is quite revealing: the IOPS rate is surprisingly
low for smaller record sizes; it first increases and then starts decreasing after around 10k record
size. The reduced IOPS with larger records can be explained in the same way as for NFS. Upon
closer inspection, we found that the relatively smaller IOPS at small record sizes is because of a
number of sub-optimal code fragments in our research prototype.33 We believe that a well tuned
implementation can easily achieve the same performance curve as for NFS.

While these experiment provide a relative comparison between NFS and DataCapsules, the ab-
solute performance for NFS is quite small compared to real-world deployments. Real world remote
filesystems rely very heavily on caching, pre-fetching, potentially unsafe write operations that ac-
cept a very small chance of data corruption for large gains in performance, aligning reads/writes to
disk sector boundaries, etc. In our simplistic experiment, we switch offmost of these optimizations,
and we see “comparable” performance for the two systems. We believe that a real filesystemCAAPI
can also benefit from all these optimizations, thus leading to much higher absolute performance
while providing the security benefits of DataCapsules that go beyond just local environments.

7.3.2 A deeper look at performance and scalability
In our macro benchmarks, we compare the performance of the GDP and DataCapsules with a
number of real world systems. However, there are a number of performance questions unique to
the GDP for which we cannot draw a comparison with other existing systems. In this section, we
dig deeper into GDP specific issues. Note that we exclusively use the research prototype for all
micro benchmarks in this section.

A Performance for the GDP network before the steady state

In the previous section, we looked at the throughput and latency characteristics of the GDP network
in a steady state. But what is the cost of achieving this steady state? Specifically, we are interested in
the cost of secure advertisement, the overhead of lookup from aGLookupService, and the round-trip
latency for first PDU—something that we omitted from our previous reporting of latency.
What is the cost of secure advertisements?
Advertising GDP names in the network is not free. During the secure advertisement process, a
client first needs to establish a TCP connection followed by two round-trips to the GDP router that
involve some cryptographic operations such as issuing an RtCert. Log servers may continue the
advertisement process even further by sending AdCerts for all the DataCapsules they host, which
adds to the cost.

To quantify the additional cost of secure advertisements, we do a simple experiment. We run
a client and a GDP router on the same commodity laptop so that we can rule out the variability

33An example pattern of a sub-optimal code fragment is: using the in operator on a list of records in a loop,
which amounts to an exponential increase in processing time for the specific code fragment. However, because lists are
highly optimized data structures in Python, each single code fragment like this adds to the running time only slightly as
compared to the overall running time. For this specific example, using a set data structure would solve the problem.
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introduced by the network. We then measure the total time taken for the client to advertise its own
name to the GDP router.34 Over 100 runs, the average time taken for the secure advertisement
process is 25.3 ms.35 After the initial secure advertisement process is complete, we measure the
additional cost for advertising one name by sending an AdCert. We measure this cost for 100
names. We find that for advertising each additional name by sending one AdCert at a time, the
average time is 11.5 ms.36,37

While these numbers seem large, we make two observations. First, the closest real world
equivalent to the initial secure advertisement is establishing a TLS session. Creating a TLS
(or even HTTPS) session is not free, and the additional latency introduced by HTTPS session
establishment can range anywhere from 10s to 100s of ms [88]. Thus, the cost of initial secure
session establishment is on par with the TLS/HTTPS session establishment. Second, there is a lot
of room for improvement in our prototype in terms of optimizations. We note three specific areas of
improvement: (1) our research prototype performs cryptographic operations in Python in a single
threaded environment. While Python allowed for a quick prototyping environment, we realized
that it is not a good fit for high performance cryptographic operations. As such, operations such as
validation of certificate chains, issuance of RtCerts, etc. are noticeably slow. (2) Bulk operations,
such as sending multiple AdCerts in a single request for subsequent name advertisements, are
extremely useful because they can be performed in parallel. (3) Our RPC implementation is less
than optimal. This results in extra overhead for each request/response, such as advertising additional
names one at a time.
How expensive is a lookup from a GLookupService?
A GLookupService is crucial for enabling dynamic route lookup when a destination can not be
found in the local forwarding table of a GDP router. However, a GLookupService is architecturally
very simple: the simplest implementation of a GLookupService is dictionary that allows GET and
PUT operations.

To measure the performance of GLookupService, we run a simple standalone GLookupService.
We run a client on the same machine to avoid the effects of network latency and perform a number
of GET operations. The observed round trip time for a GET request, averaged over 100 requests,
is 1.23 ms.38,39

To put these numbers in perspective, the closet real-world equivalent of lookup from a
GLookupService is a DNS query. The observed latency of a DNS lookup is quite compara-

34The time window that we measure starts from the first message from the client initiating a TCP connection and
ends when the client receives a final secure acknowledgment from the GDP router. See Figure 5.4.

35Statistics (all times in ms): Min: 20.495, Max: 35.030, Avg: 25.281, Std: 2.509.
36Statistics (all times in ms): Min: 8.078, Max: 15.561, Avg: 11.461, Std: 1.918.
37Note that we measure the time between a client sending an AdCert and receiving an acknowledgment back from

the GDP router. This time window includes the time taken by the GDP router to verify the authenticity of the AdCert.
38Statistics (all times in ms): Min: 0.81, Max: 2.47., Avg: 1.23. 90 percentile: 1.74, 95 percentile: 2.00.
39Note that these measurements only represent the time taken to complete a GET request, and do not account for

the time that a GDP router must spend in verifying the authenticity of returned results by checking signatures.
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ble. As an example: the average DNS query time for com from a public DNS server adds roughly
2.1 ms to the round-trip ping latency.40
What is the time for first PDU?
The separation of active forwarding state in GDP routers from verifiable routing information in
a GLookupService has an overhead for lookup of destinations that can not be found locally. In
addition to the lookup from a GLookupService, the initiating GDP router must also connect to the
destination GDP router and go through a secure advertisement process, which adds to the overhead.

In order to measure the latency introduced by the GDP network architecture for such a case,
we preform the following experiment. We run five processes: a stand alone GLookupService, two
GDP routers configured to query this GLookupService, and one client process attached to each of
the GDP routers. We run all these processes on the same machine; this allows us to bypass the
variability introduced by network. After both the clients have advertised their names, we initiate
a single GDP-ping from one client to the other. This triggers a GLookupService lookup by the
GDP router, followed by an on-the-fly connection creation. The GDP-pingmessage is delivered to
the destination, and it responds back with a GDP-ping response. Note that this response does not
trigger an additional GLookupService lookup or connection creation. We measure the total time
that the originating client has to wait before receiving this GDP-ping response.

The observed round-trip time for this first GDP-ping, averaged over 10 runs, is 29.6 ms.41 Note
that we restart the entire infrastructure after every run, so that we can measure the round-trip time
for the first message specifically when it requires a GLookupService lookup.

With these results, wemake the following observations: First, the results are quite expected. The
cost of first message is dominated by the cost of secure advertisement that the initiating GDP router
must perform. Second, while this is a relatively large overhead, improvements in the cryptographic
performance of our implementation can significantly reduce this delay. Third, pre-fetching popular
routes and pre-establishing connections to the corresponding GDP routers can greatly minimize
these delays.

B Scalability of the GDP network

The scalability of traditional IP routing comes from the fact that IP addresses are hierarchical.
This hierarchy allows IP routers to use prefix aggregation and exchange routing state in a rather
compressed form. The GDP network differs from the IP design pattern in a fairly significant way
by adopting location independent names as a fundamental concept. Further, the GDP network also
departs from previous designs for flat namespace networks that use DHT routing for achieving
scalability in terms of number of names. The GDP network, instead, adopts a distributed global
GLookupService as a shared repository of routing information. Scalability of the GDP network,
thus, directly depends on how scalable a global GLookupService can be.

40For this estimation, we measured round trip latency from a residential network to 1.1.1.1—a free public DNS
server. We observe the average round-trip latency to be 14.896 ms over 100 measurements. We then measure the
round-trip latency for the DNS name com. Over 100 measurements, we find this latency to be 17.070 ms.

41Statistics (all time in ms): Min: 27.693, Max: 44.356, Avg: 29.610, Std: 4.682.
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Just as a quick exercise, let’s see roughly how much computing resources are needed for
maintaining a global GLookupService that maintains the state of the entire Internet’s worth of del-
egations. While ideally the information should be geographically replicated in a highly distributed
GLookupService managed by multiple entities, let’s keep it simple and treat the GLookupService
as a single centralized component in a data center.

As a reasonable estimate, let’s say there are 1Trillion public named objects that theGLookupSer-
vice needs to handle, and these names are hosted on 1 Billion log servers [89]. Let’s assume that
each of these 1 Trillion names requires 1 KB worth of space in the global GLookupService. The
total storage cost for such names is 1015 bytes, or 1 PetaByte. The current operational cost for an
Amazon EC2 i3.16xlarge instance with 15.2 TB NVMe SSDs with a 1-year service contract is
$3.18/hour ($27,856/year) [90], [91]. This leads to the cost of operating 1 PB worth of storage to
be $209/hour ($1.8 million/year), which seems very much in-reach for large ISPs.

The cost for keeping this information up-to-date depends on the average lifespan of the dele-
gations. A reasonable assumption is that AdCerts are valid for few days (105 seconds), whereas
RtCerts are valid only for a few minutes (102 seconds). Given our earlier assumption on number of
objects (1012) and servers (109), this leads to 107 updates/second for both AdCerts and RtCerts.
Each delegation takes about 103 bytes of network traffic and 10−3 seconds for verification on a sin-
gle CPU core, which leads to approximately 10GB/s incoming network traffic handled collectively
by roughly 104 CPU cores. Once again, given the going rate of $0.101/hour ($882/year) for a 4
core c5.xlarge instance from Amazon EC2 for a 1-year contract term, the computational cost of
verification is $252/hour ($2.2 million/year) on commodity hardware [90], [91].

While these are extremely rough estimates for the resources required, they do demonstrate that
even when running on off-the-shelf servers, the costs of operating a global deployment of the GDP
network are practical. With customized hardware, these costs can be further reduced.

C DataCapsule performance: A deeper look at cost of hash-pointers

Aswe discussed in previous chapters, compared to existing ADS proposals, a DataCapsule interface
provides flexibility to the application to include additional hash-pointers. While the state-of-the-art
already provides logarithmic sized cryptographic proofs for random access, providing flexibility to
applications enables such applications to tune the cost of proofs even further depending on the use
case. We discuss the costs incurred by readers in terms of proof sizes, and the overhead incurred
by the writer in terms of the additional time needed for bookkeeping.

For measuring the cost on readers, we measure proof sizes for the three simple hash-pointer
strategies that we discussed in section 4.1: (1) a simple ‘hash chain’, (2) a ‘snapshot’ strategy where
in addition to a hash chain, an extra hash-pointer points to snapshots done at fixed intervals, and
(3) a ‘tree’ strategy, where hash-pointers effectively look like a tree. For each of the strategies, we
used a number of DataCapsules with varying number of records.

To emulate an application with random read access, we first measure average proof size (in
bytes) when querying for a random record. In Figure 7.5a, we can see how the proof size reaches
O(log(n)) for a ‘tree’ but grows linearly when the ‘hash chain’ grows too long. For a slightly
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(a) Average proof size for a random read as the
number of records grows in a DataCapsule.

(b) Amortized proof size per record for a bulk
read of all the records in a DataCapsule.

Figure 7.5: Proof sizes for various hash-pointer linking strategies.

(a) Total time taken for appending a given number of
records. (b) Amortized time taken per record.

Figure 7.6: Time taken by the writer for a given number of records, and how this time varies
depending on the hash-pointer linking strategy. In (a), we measure the total time a writer takes to
append the given number of records. Using the total time taken and the number of records created,
we calculate the amortized time per record, which we report in (b).

different scenario where an application might want to read a large amount of data in bulk, the cost
of proofs can be amortized over a number of records. For the sameDataCapsules, Figure 7.5b shows
the amortized cost of proof (in bytes) per record when an application reads the entire DataCapsule
sequentially. As we can see, the simple ‘hash chain’ works much better in terms of amortized proof
cost.
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To see the cost of writes on the writer, we measure the total time taken for a given number of
records for the same three hash-pointer strategies. Each record is 100 bytes in size, and we use only
a single record per append request. We report the total time taken for a given number of records,
and the amortized time taken for per append in Figure 7.6.

As we can see from the results, the total cost grows somewhat linearly as the number of records
increases. The pattern for amortized cost per record, however, is a lot more revealing. First, we
can see that for all three strategies, the amortized cost per record is larger when writing a smaller
number of records. We attribute this pattern to the fixed costs incurred at startup time where a
writer must load state from its non-volatile storage. Second, the ‘tree’ pattern performs poorly
as compared to the simpler strategies. In fact, the per record time for 300 records is almost 50%
greater for the ‘tree’ strategy as compared to the simple hash-chain.

From these results, we conclude that while it is not always possible to predict the access pattern,
allowing a writer to make the best guess is a good idea. If such access patterns are not known in
advance, a fall back to a generic ‘good enough’ strategy can be adopted. If a reader cannot get
the desired performance, it can always create a derivative DataCapsule with hash-pointers more
appropriate to the specific use-case. We consider more optimizations in this direction as future
work.
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Chapter 8

Conclusions

Motivated by the need for a secure ubiquitous storage infrastructure, we presented the architecture
and design of a widely distributed and federated infrastructure for data storage and communication
called the Global Data Plane (GDP). The three key takeaways from this dissertation are:

• A refactoring of interfaces and separation of concerns for cleaner application design, and
the use of a secure single-writer append-only log as a unifying communication and storage
primitive to build higher layer services on top.

• The design of the secure single-writer append-only data structure, called DataCapsule, the
can provide secure storage in the presence of potentially untrusted infrastructure and enable
a leaderless replication strategy.

• The design of a scalable and secure routing network, called the GDP network, for inter-
and intra-domain routing in the presence of mutually distrustful routing domains with a flat
address space.

This dissertation is only a beginning for the GDP vision; it merely scratches the surface of a
number of broader issues related to data security in a service-provider ecosystem. We hope that
the future iterations of the GDP and DataCapsules can address some of the shortcomings of the
design presented in this dissertation. At the very least, we hope that the production system provides
a solution to the software engineering issues identified in the research prototype.
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Appendix A

IoT: A Case Study

Outsourced computation and storage has become a wide-spread and commonplace computation
model in the past decade. The emerge of ‘cloud computing’ and the growing computation needs
have been a major proponent for this paradigm shift. This outsourcing model has enabled data-
centers become large resource-pools and the clients shrink in size but grow in numbers. The
transformation of traditional desktop computing to mobile computing is an example of such trend,
and now Internet of Things can only be considered as a continuation of such trend. In particular,
the proliferation of Internet of Things (IoT) would not have been possible without this capability to
offload computation and data storage to more powerful machines.

Even though there is a wide-spread disagreement about whether IoT is purely amarketing phrase
or a fundamentally different computing paradigm to merit a special treatment, the integration of
computation in day-to-day life has certainly enabled application developers to create far richer
applications than ever before—applications that could benefit from a secure ubiquitous storage
infrastructure. In this section, we take a deeper look at the challenges in the IoT ecosystem—both
applications and devices—and demonstrate how an infrastructure like Global Data Plane can help
alleviate some of the challenges.

We believe that there is a strong network effectwhen it comes to the usefulness of IoT ecosystem
(both devices and applications), i.e. the value of the network increases with the number of
connections [15]. The current typical practice is to use the cloud as not only a management
platform but also an intermediary for inter-device (or inter-service) communication. In section A.1,
we look at the performance challenges of IoT applications; we argue that the current architecture of
the cloud as an intermediary in the communication path is not the perfect fit for the growing number
of devices, and that certain M2M applications are limited by the latencies and the performance
characteristics imposed by such a mode of communication. A separate concern with IoT is that of
the security of individual devices, which we look at in section A.2. We argue that the desire to
increase inter-device connectivity, combined with the heterogeneity of devices, makes the security
problem non-trivial to address.
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A.1 A cloud-centric model for the IoT: performance challenges
The cloud-centric model for the IoT involves connecting everything to the cloud and using the cloud
as the interconnecting hub for the various sensors and actuators [93]. Such a model has proved to
be tremendously useful in the growth of the IoT industry. It has enabled hardware vendors and users
to collect sensor-data at scale and use the cloud as the centralized data hub for management and
processing of the collected data [94]. A number of everyday IoT devices have a cloud counterpart
that enables end-users to interact with their devices and the device manufacturers to use user-data
to better understand the market needs. Responding to the market needs, cloud vendors have also
started focusing on the specific needs of IoT vendors, exemplified by the various IoT specific
APIs [27], [95]–[98]. The availability of large scale data from such varied devices has also fueled
the growth of a wide variety of applications.

This cloud-centric model certainly has its merits: the availability of the cloud resources is a
liberating feature for the application developers, who no longer have to work within the constraints
of the actual physical device. As an example, even though a tiny sensor continuously generating data
may lack persistent local storage, an application developer can use the seemingly infinite storage
provided by the cloud to store every bit of data generated by the sensor for eternity. In addition,
the cloud model provides a centralized dashboard that reduces the management overhead for
application developers/administrators considerably, allowing one to control hundreds of thousands
of devices, manage the interconnected nature of the devices, etc.

Even though there are certain advantages of the cloud-centric model, there are a number of
issues with this approach. However, in order to understand the challenges better, let us first look at
a broad classification of the IoT applications:
Long term data analytics: This category includes big data applications that perform machine
learning, statistical analysis, or some other kind of data processing on sensor data collected over
a period of time, or a across a number of devices, or both. For example, building monitoring
system [99], air quality monitoring [100], etc. These kind of applications are typically useful for
understanding long-term trends; such understanding can further be used for various purposes such
as market development, resource planning, public policy, etc. In many cases, such applications
require a significant amount of computational resources and the accuracy of such computations
increases with the amount of data.
Real-time applications: These are the applications that involve some kind of real-time actuation.
These applications could be as simple as turning on a smart light-bulb based on human input, or
as complicated as connected vehicles with real-time decision making [1]. Typically, there is a
control-loop involved in these applications, and humans may or may not be a part of such control
loop. Quite often, there are strict latency bounds for a normal operation of such applications.

It is not uncommon to see the same data being used for multiple applications that span across
the above two categories. We believe that the two types of applications require vastly different
type of performance characteristics from the underlying infrastructure. The applications involving
large scale data analytics require relatively larger computation resources but don’t have strict latency
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bounds. On the other hand, applications involving real-time actuation do have strict latency bounds,
but are often less resource intensive.

While data-center scale resources are a good fit for performing long-term analytics, applications
involving real-time machine-to-machine (M2M) communication and tight control-loops cannot
always rely on the cloud. Even though the cloud is portrayed at the center of the network graph,
the reality is that data centers are not as densely located as the human population. Typical Internet
scale latencies (50-100ms) are acceptable for human in-the-loop computation, but not for M2M
communication. Since the communication latency is directly proportional to distance, the only way
to avoid such latencies is to use edge resources for M2M communication. The importance of using
local resources becomes even more pronounced when reliable Internet connection isn’t available–a
reality often ignored by technologists but faced by billions of people.1

With the performance requirements aside, the security of data and communication is more
important than ever as well. This is especially important in a world where adversarial entities
have the capability to influence the physical world by controlling real things. With security as a
necessity, the lack of appropriate mechanisms for trust is a hurdle in enabling use of resources at the
edge–users whowant to use multiple service providers to better support low latency communication
across a wide geographical range have to use ad-hoc management schemes to make their application
work. Our proposed infrastructure of secure ubiquitous storage enables a user to achieve verifiable
data security without needing to rely on the reputation of a service providers. This opens the
opportunity for an application to seamlessly use a combination of a local resource hub for low-
latency communication and far away resources for durability. In theory, such resource discovery
process could even be automated by taking the economic factors into account.

A.2 Security of IoT devices: A heterogeneity challenge
The general state of security of IoT devices isn’t very good [101]–[104]. With varied kind of smart
devices present in every aspect of life, the impact of a security breach could range from a minor
annoyance to failure of critical infrastructure. Not only security, such smart devices lead to endless
new privacy issues that didn’t exist before [105]. Securing IoT devices is as important as securing
any other computer system, if not more so.

Before looking at the general landscape of security of IoT devices, we need to understand the
challenges first. Except for the pervasive nature of devices, is there any fundamental difference
between IoT devices and traditional computing devices? The Open Web Application Security
Project (OWASP) has compiled a list2 of the top 10 IoT vulnerabilities [106]. None of these

1A smart house with sufficient local resources should be able to provide almost similar functionality whether it is
in San Francisco or in a remote village in a third world country.

2OWASP Top 10 IoT vulnerabilities: (1) Insecure web interfaces, (2) Insufficient authentication/authorization, (3)
Insecure network services, (4) Lack of transport encryption, (5) Privacy concerns, (6) Insecure cloud interface, (7)
Insecure mobile interface, (8) Insufficient security configurability, (9) Insecure software/firmware, (10) Poor physical
security.
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security challenges are specific to IoT landscape. So what makes securing the IoT so hard? We
attribute the security challenges to two broad reasons:
1. Heterogeneous systems: Designing an absolutely secure system is challenging, time-consuming
and costly. Any system involving more than a few hundred lines of code is prone to software bugs
and security issues. The heterogeneity of devices/software in the IoT landscape leads to a large
number of unique designs and code-bases; statistically a significant fraction of these systems will
have security issues. In traditional computing, de-facto standard tools and software libraries have
helped focus the efforts to create better and well maintained software that get regular security
updates. Such practices are hard to realize in the heterogeneous IoT world, especially when there
is little financial motivation for a device vendor to provide long-term security patches. Lack of
software re-usability and market pressure to quickly release products leads to the necessary security
features often being considered ‘optional’. In addition, any resource-intensive security shims around
potentially vulnerable software that work reasonably well for traditional computer systems (e.g.
sand-boxing, firewalls, intrusion-detectors) are impractical for most of the IoT devices.
2. Management overhead and usability: Another security challenge for the IoT devices is usabil-
ity. Better security usually is at odds with usability, especially when it comes to the management
overhead of authentication and authorization (e.g. password management). In the case of IoT (or
any machine-to-machine communication), connectivity and composability of devices and services
is a significant driving factor. Good security practices are usually neglected in favor of such usabil-
ity goals, especially in order to make stove-piped solutions talk to each other. In addition, securing
a wide variety of devices requires one to be an expert of all possible systems, which, combined
with reduced usability, leads to human errors [107].

Even if these are not the only challenges for IoT security, these definitely are some of the
distinguishing challenges for IoT security. We argue that DataCapsules provide a standardized
narrowwaist with reduced attack surface for communicating with physical devices (see section 2.1).
DataCapsules can be used to represent a stream of data generated by a sensor, or consumed by an
actuator, or input/output of an application processing data, thus virtualizing the physical devices in
some sense (see Figure 2.1). Using DataCapsules, any access-control, firewall, intrusion-detection,
etc can be applied to the streamof data living outside the device, thus reducing replication of software
functionality on individual devices. In addition, such standardized streams of data incorporate good
security practices and enable easy composability and hopefully end-to-end security in the IoT.
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