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Abstract Continuous monitoring of miter gates used in navigation locks is desirable in order to prioritize maintenance and 9 
avoid unexpected failures. Substantial economic losses to the marine cargo and associated industries are caused by the closure 10 
of these inland waterway structures. Strain gauges are often installed in many of these miter gates for data collection, and 11 
various inverse finite element techniques are used to convert the strain gauges data to damage-sensitive features. One of the 12 
damage features is the development of a contact-loss “gap” between the components (i.e. quoin blocks) that support the gate 13 
laterally, which leads to load re-distribution that can induce overload in some components of the gate. Arguably, a refined finite 14 
element model of such structure can be very computationally expensive even when using linear models. An efficient way to 15 
solve an inverse problem with time-consuming model evaluations is making use of parallel model evaluations using a 16 
Sequential Monte Carlo (SMC) algorithm and parallel solution of the finite element (FE) equations using a commercial FE 17 
software. A significant advantage of SMC algorithms is that model evaluations are independent and are able to be run in 18 
parallel. In this paper, an expensive high fidelity model of a miter gate is used to infer the gap extend given a noisy set of strain 19 
measurements. 20 
 21 
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 24 
1. Introduction  25 
 26 
Navigation locks form a crucial part of inland waterways infrastructure network. Miter gates are the most common type of 27 
navigation locks in the United States (US) with other types of lock gates being sector, tainter, and vertical lift [1]. Miter gates 28 
are steel structures that allow passage of ships, boats, and watercrafts across stretches of different water levels in canals and 29 
rivers. In the US, more than half of these structural assets have surpassed their 50-year economic design life [2]. Damage to 30 
miter gates may lead to closure of a lock chamber. Two types of maintenance events (i.e., scheduled and unscheduled) apply 31 
to miter gates. Scheduled maintenance allows navigation users to adjust their activities to avoid unexpected delays and 32 
minimize their economic loss. However, unscheduled closures resulting from unexpected events such as undetected 33 
deterioration reaching a critical limit state or extreme events (e.g., barge impact) more substantially affect navigation users’ 34 
economic bottom line and induce a higher cost of maintenance [3]. Estimating the condition of a miter gate and its components 35 
can help to reduce the risk in unscheduled maintenance events and prioritizing better schedule maintenance events. The U.S. 36 
Army Corps of Engineers (USACE) have established a discrete rating system to allow inspectors to rate the components of a 37 
miter gate based on condition and performance [4], which are used by decision-makers for maintenance and operations 38 
planning. However, inspections based on this rating system can vary for different inspectors because it is based on engineer 39 
judgement. Continuous structural health monitoring (SHM) of these infrastructure assets may help to reduce the uncertainty 40 
and ensure better-informed decisions that lead to safer and more reliable operations [5]. 41 
 42 
One of the consequences of deterioration in miter gates is the formation of a bearing gap that occurs between the contact blocks 43 
that interface the lock walls and the miter gate [6]. The bearing gap governs the lateral boundary conditions on the gate, and its 44 
degradation from loading, wear, corrosion, and other sources leads to changes in the stress-strain profile of the entire miter gate 45 
[7]. Experienced inspectors and lock operators have indicated the importance of knowing the condition of contact block and its 46 
role in identifying load transfer issues in the gate [2], [8]. Other analyses would have to be conducted to determine the critical 47 
gap parameters (size, location, etc.) that lead to some failure in the gate or in one of its components. Alternatively, the boundary 48 
conditions may also be obtained by inferring directly the forces that support the gate laterally [9]. 49 
 50 
Many of the miter gates owned by USACE are instrumented with strain gauges for data acquisition [10]. The relationship 51 
between the formation of the bearing gap and the stress-strain profile in the entire gate can be better understood by using a 52 
finite element (FE) model. For a SHM system, the inverse relation between the input and outputs of the FE model are desired. 53 
This inverse relation can be estimated by performing Bayesian inference that uses FE model evaluations. A Bayesian approach 54 
is desirable because it is able to quantify the risk on making decisions such as corrective maintenance of components. Many 55 



powerful algorithms that perform Bayesian inference can be used to solve this problem [11]. However, many of these 56 
algorithms are not feasible for real-time health monitoring.  57 
 58 
In this paper, a Bayesian Inversion of High Fidelity FE model is accomplished by using the sequential Monte Carlo (SMC) 59 
algorithm to perform Bayesian inference. This algorithm was selected due to the accuracy in its predictive capabilities and its 60 
parallelizable capabilities to perform (FE) model evaluations [12]. The paper first explains the finite element model and then 61 
describes two modelling options for the bearing gap. In the next section, Bayesian inference on miter gates are explained and 62 
results are shown for two different levels of complexity. The results show the effect of aleatory and epistemic uncertainties 63 
considered in this miter gate problem. Finally, a conclusion and further work section discusses the additional steps to be taken 64 
before deploying a SHM system in miter gates and the issues of dealing with model uncertainty. 65 
 66 
2. Testbed Structure and Finite Element Modeling  67 
 68 
In this research, the Greenup miter gate/lock located on the Ohio river is used as the testbed structure. A physics-based FE 69 
model of the gate was developed in ABAQUS software, shown in Figure 1a. This FE model has been validated using the 70 
measured strain gauge readings [2]. The Greenup gate is a brand-new gate where a negligible gap (“undamaged” condition) 71 
was assumed for validation purposes. 3D linear shells elements were used to reduce the computational cost of such a large 72 
model. Figure 1b shows the side view of a miter gate that is subjected to upstream and downstream hydrostatic forces.  73 
 74 

 75 
Figure 1: FE model of Greenup Gate with sensor locations and loading conditions 76 

 77 
2.1 Modelling Options for Gap Formation 78 
 79 
The gap formation between the contact (quoin) blocks control how the gate is supported laterally and consequently introduces 80 
a change in the stress/strain distribution of the entire gate, especially in the pintle area where the gate is supported by a pintle 81 
ball. For modelling purposes, the pintle ball where the gate rest is idealized as a pin support. In this paper damage is introduced 82 
by controlling the extent of the gap. In order to model the gap itself, two different modelling approaches are presented in this 83 
work: 84 
 85 
Option 1: A contact-type constraint is used between the contact blocks as shown in Figure 2a, making this a computationally 86 
expensive nonlinear problem. To impose the contact constraint, the Lagrange multiplier method was employed. The strain 87 
gauge locations are far from the contact area, mostly due to physical constraints in the miter gate, but this far-field location also 88 
mitigates errors due to the method employed to enforce the contact constraint. The opposite side of the wall quoin block uses 89 
fixed boundary conditions, and symmetry boundary conditions are used at the right end (i.e., miter) of the gate to simulate the 90 
right leaf. The variables  and  denote the gap length and depth, respectively. 91 
 92 
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 93 
Figure 2: a) Option 1: Using contact between wall quoin block and gate quoin block, and b) Option 2: Pin boundary 94 
conditions along the gate quoin block (restrained in x and y directions) except at gap location 95 

Option 2: Pin boundary conditions are used directly to support the gate quoin block instead of modelling the wall quoin block 96 
and using a contact algorithm to support the gate laterally. To model the effect of the gap formation a particular length ( ) of 97 
the gate quoin block is left unrestrained as shown in Figure 2b. This representation may not be as accurate as Option 1, but it 98 
is a more attractive option computationally, since it is a linear FE model.  99 
 100 
The main difference in the physics between Option 1 and 2 is that Option 1 captures the effect of partial gap closure after the 101 
gate is subjected to hydrostatic loads. However, since the portion of the gap that closes is small under most loading scenarios, 102 
Option 2 is a reasonable alternative choice. 103 
 104 
3. Estimating Gap Length in Miter Gates using Bayesian Inference 105 
 106 
For given hydrostatic inputs and gap parameters, the FE model could be evaluated as a “forward model” to yield the resulting 107 
strain field resulting in the gate; consequently, solving an inverse problem is necessary to obtain the gap length value, , given 108 
a set of strain measurements obtained at different locations on the miter gate. There are two general ways often used to solve 109 
an inverse problem: 1) a Bayesian approach, which computes a posterior distribution of the model parameters given prior 110 
knowledge and the data, or 2) a regularized data fitting approach, which chooses an optimal model [13] by minimizing an 111 
objective function that minimize the empirical risk (i.e. training error). In SHM, estimates of gap length (or other damage 112 
parameters) are meaningful to the decision-making process of operators and stakeholders. Therefore, the Bayesian approach is 113 
desired to obtain estimates of the gap length that can help to understand the current damage state of a miter gate. In the Bayesian 114 
approach, the posterior distribution of the model parameters (e.g. gap length) can be obtained from: 115 
 116 

, 117 
 118 
where 119 

, 120 

 121 
and where  represents the strain measurement at gages location, represents the hydrostatic loading conditions (i.e. hup and 122 
hdown), and is assumed to be a zero-mean uncorrelated gaussian distribution as follows: 123 
 124 

 125 

 . 126 
 127 

The posterior distribution of the parameters is typically mathematically intractable due to the normalization term (see Eq. (1)). 128 
In this work, the computation of the posterior is accomplished by using the SMC algorithm to perform Bayesian inference. 129 
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This algorithm was selected due to the accuracy in its predictive capabilities and its parallelizable capabilities to perform (FE) 130 
model evaluations.  131 
 132 
3.1 Batch Inference using SMC  133 
 134 
Sequential Monte Carlo (SMC) or Transitional Markov chain Monte Carlo (TMCMC) methods are a class of simulation-based 135 
Bayesian inference techniques which sample from the complete joint posterior distribution of the unknown parameter vector 136 

. SMC methods do not impose any assumptions on the probability structure prior and the posterior; hence, these methods are 137 
applicable in very general settings. SMC methods are inherently parallelizable, therefore ideal for solving the inverse problem 138 
involving computationally-expensive FE model evaluations.  139 
 140 
The idea of SMC is to avoid directly sampling the target PDF (posterior) but rather sample an easier-to-sample PDF and then 141 
weigh, resample, and perturb the samples to describe the target PDF. The achieve this, SMC constructs a series of intermediate 142 
PDFs, known as tempered posteriors, that start from prior distribution (easy to sample) and converge to the posterior distribution 143 
(hard to sample) as follows 144 
 145 

, 146 

 147 
where  is the tempering parameter at stage . When  at the initial stage ( ), the tempered posterior   148 
is just the prior ,  and when  at the final stage ( ) the tempered posterior  is the target posterior  149 

. SMC represents the tempered posterior distribution at every stage by a set of weighted samples (also called particles). 150 
SMC approximates  stage tempered posterior  by weighing, resampling, and perturbing (using Markov chain 151 
Monte Carlo) the particles of  stage tempered posterior  . The SMC algorithm for sampling the target posterior 152 
is shown in Table 1. 153 
 154 

Table 1: SMC Algorithm  
Let  be the number of particle (or weighted samples) at every stage, and  be the effective sample size at stage  
Initialize , , ,  

Generate  samples  from the prior distribution  

while tempering parameter  
• increase stage number   

• choose  such that ,  

• weighting:  for   

• resampling:  with probability  for  

• perturbation: start an MCMC chain at  and take  steps with target distribution  for each 

. Gather last sample of each MCMC chain to obtain  
end  

are the samples of the target posterior  

 155 
4. Three-stage approach 156 
 157 
Implementing a real SHM monitoring system will, arguably, involve several types of uncertainties that will affect the estimation 158 
process shown previously. One of the main sources of discrepancy between the estimation and the true model parameter values 159 
is due to model uncertainties, i.e., how the forward model (e.g. FE model) used in the inference process differs from the true 160 
physical model. To systematically tackle this problem, a 3-stage approach is used to start accounting for model uncertainties 161 
as shown in Figure 3.   162 
 163 
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 164 
Figure 3: Systematic and progressive approach to handle various sources of uncertainties.  165 

 166 
 167 

4.1 Stage 1: Same FE model 168 
 169 
As shown in Figure 3, stage 1 uses the same FE models to represent the physical model used for estimation and the true 170 
physical model used to obtain the response measurements. Clearly, model uncertainty is not considered in this stage. As 171 
described earlier, there are two competing gap models. Option 2 is used as the FE model in this case due to its fast model 172 
evaluations. The estimation of the gap length for a specific response measurement is shown in Figure 4. The parameter  is 173 
the estimated coefficient of variation, and  is the Pearson correlation coefficient.  174 
 175 

 

 

 176 
Figure 4: a) Joint posterior distribution using 100 particles, and b) prior and posterior distributions vs true value  177 
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As intended the posterior distribution covers the true value of the gap length and also the standard deviation of the (noise) error. 179 
The gap length prior distribution used for the inference follows a uniform distribution between 0 in and 180 in. These values 180 
are based on inputs from experienced lock operators. 181 
 182 
4.2 Stage 2: different FE models 183 
 184 
As shown in Figure 3, stage 2 uses different FE models to represent the physical model used for estimation (option 2) and the 185 
true physical model (option 1) used to obtain simulated response measurements. Model uncertainty is considered in this case, 186 
as the way that the gap between contacts blocks is modelled is very different between options 1 and 2. The gap depth is assumed 187 
to be 0.25 in for modelling option 1, which is used to simulate the true physical process and obtain the measurement response. 188 
 189 

  
 190 

Figure 5: a) Joint posterior distributions using 100 particles, and b) prior and posterior distributions vs true value 191 
 192 
The posterior distribution of the gap length is very confident at a gap length around 124 in, while the true simulated gap length 193 
is equal to 144 in. Therefore, for this singular case the posterior estimation is biased by ~20 in. These results are very consistent 194 
with the values obtained by Brynjarsdottir and O’Hagan [14] when two different models are used to represent the physical 195 
model used for estimation and true physical model used to obtain simulated response measurements 196 
 197 
4.3 Stage 3: Real data 198 
 199 
As shown in Figure 3, stage 3 uses real SHM data for the response measurements and a FE model to simulate the physical 200 
model used for estimation. For this step, a fully FE model should be validated at different damage levels, which in practice it 201 
is challenging to obtain. Also, additional parameters (e.g. critical crack, corrosion, uncertainty in the material, amount of 202 
prestress in the diagonals, etc.) that are strain-sensitive should be identified to improve the predictive capabilities of this 203 
problem.  204 
 205 
5. Conclusions and Further Work 206 
 207 
A miter gate gap estimation is accomplished by perform Bayesian inference using a validated high-fidelity FE model. Two 208 
different models are presented to simulate damage (formation of gap), and a comparison of their predictive capabilities is 209 
performed using a Bayesian approach. The use of the SMC algorithm in large FE models is encouraging due to its parallelizable 210 
capabilities. Often, a (surrogate) data-driven model is created to replace an expensive FE model, but this was not needed in this 211 
work. Physics-based models may be a better option for extrapolation, however, especially when limited damage data is 212 
available. Additional steps need to be taken before deploying a SHM system in miter gates specially when dealing with model 213 
uncertainty. To further improve the predictive capabilities of cases in stage 2 and 3, a bias function can be trained to learn the 214 
model uncertainty between two models as described in detail in [14]–[17]. Again, this bias function should be carefully 215 
studied/interpreted when using them for interpolation or extrapolation. Additionally, a sensitivity analysis should be studied to 216 
understand the sensitivity of the strain gages to different model parameters, as this may also lead to improved predictive 217 
capabilities.  218 
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