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Original Article

Physical activity can have a significant effect on glucose 
metabolism in individuals with and without type 1 diabetes 
mellitus (T1DM). Moderate aerobic exercise can signifi-
cantly increase the skeletal muscle uptake of glucose.1 For 
someone with T1DM this increase in glucose uptake without 
adjustment of insulin infusion and/or carbohydrate ingestion 
can result in potentially dangerous hypoglycemia.2 In these 
individuals the normal physiologic counter-regulatory 
responses to an exercise-induced decrease in blood glucose 
(BG) are either nonexistent or blunted.3 As a result, exercise 
for individuals with T1DM involves extensive education, 
careful planning, and close monitoring. Adjustments to insu-
lin doses and/or insulin infusion rates are common, and rapid-
acting glucose drinks or snacks must be available to prevent 
or treat hypoglycemia before, during, and after exercise.

The detection of physical activity is not a new field of 
development.4-10 Exercise detection is in principle the 

same for those with and without T1DM and has been 
explored using heart rate monitors, accelerometers, and 
with sports armbands that detect activity and galvanic skin 
response.11-15 The difference is that most techniques in use 
today have not been studied to determine if they are able to 
detect the start and stop of exercise prior to the occurrence 
of a significant change in BG in persons with T1DM. Thus 
existing attempts to use automated detection of exercise to 
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Abstract

Background: Early detection of exercise in individuals with type 1 diabetes mellitus (T1DM) may allow changes in therapy 
to prevent hypoglycemia. Currently there is limited experience with automated methods that detect the onset and end of 
exercise in this population. We sought to develop a novel method to quickly and reliably detect the onset and end of exercise 
in these individuals before significant changes in blood glucose (BG) occur.

Methods: Sixteen adults with T1DM were studied as outpatients using a diary, accelerometer, heart rate monitor, and 
continuous glucose monitor for 2 days. These data were used to develop a principal component analysis based exercise 
detection method. Subjects also performed 60 and 30 minute exercise sessions at 30% and 50% predicted heart rate reserve 
(HRR), respectively. The detection method was applied to the exercise sessions to determine how quickly the detection of 
start and end of exercise occurred relative to change in BG.

Results: Mild 30% HRR and moderate 50% HRR exercise onset was identified in 6 ± 3 and 5 ± 2 (mean ± SD) minutes, while 
completion was detected in 3 ± 8 and 6 ± 5 minutes, respectively. BG change from start of exercise to detection time was 1 
± 6 and –1 ± 3 mg/dL, and, from the end of exercise to detection time was 6 ± 4 and –17 ± 13 mg/dL, respectively, for the 
2 exercise sessions. False positive and negative ratios were 4 ± 2% and 21 ± 22%.

Conclusions: The novel method for exercise detection identified the onset and end of exercise in approximately 5 minutes, 
with an average BG change of only –6 mg/dL.

Keywords
type 1 diabetes mellitus, exercise, accelerometry, physical activity, artificial pancreas

mailto:dassau@engineering.ucsb.edu


Dasanayake et al 1237

inform insulin dosing, as could be used in an artificial pan-
creas (AP) system, may be limited by a lack of understand-
ing of how this detection relates to change in BG and the 
delays in detection seen when solely relying on continuous 
glucose monitors (CGMs).15,16 Recently, adaptive multi-
variable techniques have been used in exercise detection 
and future glucose prediction when integrated in AP use 
with very promising results in simulator models and in a 
small number of patients.11,12,14,17

The primary goal of this study was to develop a novel, 
simple and reliable method to detect the start and end of 
exercise that could rapidly perform detection before any sig-
nificant change in BG occurred in people with T1DM. We 
used a combination of heart rate and acceleration data to 
design a novel exercise detection algorithm, and then subse-
quently tested the algorithms performance by analyzing the 
results from planned exercise sessions.

Methods

Clinical Trial Design

After IRB approval, 18 subjects (10 women, 8 men) with 
T1DM were recruited for the study. Inclusion criteria 
included age 18 to 75 years, T1DM duration of at least 1 
year, use of an insulin pump for at least 6 months, and free of 
major micro- and macro-vascular complications of diabetes. 
Exclusion criteria included pregnancy, hemoglobin HbA1c > 
9.0% and concomitant disease or medication use affecting 
metabolic control.

Subjects wore a Dexcom G4™ Platinum CGM (Dexcom 
Inc, San Diego, CA) and an ActiGraph wGT3X-BT wireless 
activity monitor (ActiGraph, Pensacola, FL) with its compat-
ible Polar® heart rate monitor (Polar Electro Inc, Lake 
Success, NY) for a 4- to 5-day period. Data were collected 
from the activity monitor, CGM, insulin pump, and glucose 
meter at the end of the week. Subjects also completed activ-
ity, diet, and stress record sheets each day during the study 
week.

For the first 2 days, subjects performed outpatient ambu-
latory data collection. The data collected were used to 
develop the novel exercise detection scheme, as described 
below. The next day subjects returned to the clinic for 2 mon-
itored exercise sessions. The first exercise session occurred 
in the morning and the second in the afternoon; for both exer-
cise sessions, no special intervention such as adjustment of 
insulin basal rate was done. If the subject’s BG level was 
>270 mg/dL on arrival to the clinic, the exercise session was 
cancelled and rescheduled. Subjects whose glucose levels 
were below 120 mg/dL before exercise were given 16 g of 
carbohydrate (CHO)—fruit juice, glucose tablets, or nutri-
tion bar—and then they waited for 30-40 minutes for their 
BG to be >120 mg/dL. If the glucose level was <70 mg/dL 
during exercise, exercise was discontinued and the subject 
was given 16 g of CHO (fruit juice or glucose tablet) and 

treatment with 16 g CHO was repeated as necessary until BG 
was above 80 mg/dL.

On arrival to the clinic, subjects checked their BG with 
their meter and rested for a half hour. Subjects then exer-
cised, either on a recumbent stationary bicycle or by walking 
on a motorized treadmill, for 1 hour at 30% predicted maxi-
mal heart rate reserve (HRR) with BG checks every 15 min-
utes. Subjects then rested for 2 hours with BG checks every 
half hour. Lunch with known carbohydrate, fat, and protein 
content was served at approximately noon, and the subjects 
gave themselves an insulin bolus based on their usual insulin 
to carbohydrate ratio. Capillary BG was checked every half 
hour for 2-4 hours until BG had returned to the prelunch 
level. In the afternoon, the subjects exercised at 50% HRR 
for 30 minutes with BG checks every 15 minutes. Following 
the second exercise segment, subjects were monitored for 
approximately 2 hours in-clinic. If BG was stable and 
between 80-180 mg/dL, the subject was discharged, and 
activity, heart rate, and CGM data were collected for 2 more 
days.

Exercise Detection Methodology

The ActiGraph wGT3X-BT wireless activity monitor, a 
commercially available continuous activity measuring sys-
tem, uses piezoelectric sensors to assess acceleration of the 
body. The acceleration signal was sampled at 30 Hz and fil-
tered using a band-pass filter for noise reduction. These data 
were integrated over 1-minute intervals to get the average 
values and make them compatible with the heart rate data, 
which were obtained at every 1 minute. Most of the time 
heart rate and acceleration data were highly correlated, as 
expected, and their covariance matrix was nearly singular. 
Therefore, principal component analysis (PCA) was used to 
analyze the heart rate and acceleration data for the purpose of 
activity detection.18 Hotelling’s T2 statistic, calculated from 
the PCA model, and confidence limits were used to identify 
activity.18,19 The traditional T2 statistic has many issues when 
the variables are highly correlated and their covariance is 
very ill conditioned.20 These problems can be minimized 
from calculating T2 value from a PCA model. CGM data 
were used to evaluate the performance of the detection 
method, with glucose change calculated as the CGM glucose 
measurement at the end of exercise compared to the begin-
ning. Capillary BG measurements were not used. The calcu-
lation of the confidence limit for the PCA model is included 
in section 2 of the Supplemental Material. Two days of non-
exercise data collected at ambulatory conditions were used to 
develop the PCA model and to compute the confidence limit 
for detection. Then in-clinic data were used to validate the 
detection method.

For each subject the 90% T2 confidence limit was calcu-
lated from ambulatory data. The proposed detection method 
flags an activity if the T2 statistic exceeds this threshold for 5 
consecutive samples. The false positive ratio is defined as 
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 denote the time periods that 
the algorithm classified as exercise and no-exercise, respec-
tively, during nonexercise periods. Similarly, the false nega-
tive ratio is defined as t

FN
/(t

FN
+t

TP
), where t

FN
 and t

TP
 denote 

the time periods that the algorithm classified as no-exercise 
and exercise, respectively, during exercise periods.

Results

Eighteen subjects completed the study; however, 2 subjects 
(1 woman and 1 man) were excluded from the analysis 
because of technical difficulties during the data collection. 
The reported results are based on the remaining 16 subjects. 
Detailed subject information is given in Supplemental Table 
S1. The mean ± standard deviation (range) for age was 49.2 
± 16.3 years (18-73), height 173.4 ± 10.3 cm (157-193), 
weight 75.6 ± 15.3 kg (53-104), years of diabetes 27.6 ± 18.6 
years (3-62), and average total daily insulin dose over 2 
weeks 40.8 ± 22.3 units (22.7-98.1). The average resting 
heart rate was 63.9 ± 8.8 beats per minute (bpm) (42-80) and 
the predicted HRR was 173.9 ± 12.8 bpm (157-200). The 
target heart rate at 30% HRR was 96.8 ± 7.6 bpm (82-116), 
and the target heart rate at 50% HRR was 118.9 ± 8.3 bpm 
(109-140). Due to decreasing BG indicated by both finger-
stick and CGM, 1 subject ended the 30% HRR session at 47 
minutes, 1 subject at 49 minutes, and 1 subject at 55 minutes. 
One other subject ended the 50% HRR session at 22 minutes 
due to decreasing BG. All other subjects completed both 
exercise sessions. Five subjects had a BG ≤60 mg/dL by fin-
gerstick and 2 by CGM at the end of the 30% HRR session. 
No subject had a BG ≤60 mg/dL by fingerstick or CGM at 
the end of the 50% HRR session. All subjects had some inter-
vention, such as carbohydrate before exercise or carbohy-
drate after exercise. One subject was given extra insulin after 
the second exercise session and 1 subject was given a correc-
tion bolus prior to the second exercise session due to high 
BG levels ≥180 mg/dL.

Figure 1 presents representative data collected during in-
clinic sessions for subjects 2 and 6 (complete data are shown 
in the Supplemental Material). When both the heart rate and 
accelerometer sensors are working properly, rapid detection 
of exercise occurred, as is illustrated in Figure 1. For subject 
2, both 30% HRR and 50% HRR exercise sessions were 
detected in 8 and 4 minutes, respectively, with glucose 
change of –18 and –4 mg/dL. For subject 6, the 2 exercise 
sessions were detected in 4 and 3 minutes with glucose 
change of 0 and –7 mg/dL. For all 16 subjects, the detection 
method was able to identify the mild 30% HRR exercise in 6 
± 3 minutes (range 2-13 minutes), and the moderate 50% 
HRR exercise in 5 ± 2 minutes (range 3-12 minutes).

Detection of exercise by the proposed PCA method using 
heart rate and acceleration measurements is presented in sec-
tion 2 of the Supplemental Material. This method was com-
pared with detection using the individual sensors, heart rate 
alone, and accelerometer alone. The results are summarized 

in Table 1. The PCA-based detection method had a low false 
positive ratio of 4 ± 2% and moderate false negative ratio of 
21 ± 22%.

From Table 1 it is evident that the acceleration sensor pro-
vides slightly better, but not statistically significant, detec-
tion results compared to the PCA-based detection methods. 
This is due to outliers in the heart rate data. One of the cur-
rent challenges in using a heart rate sensor is the loss of con-
ductivity due to sensor movement during activity. As a result, 
an erroneous default heart rate reading of either 0 or 72 bmp 
was recorded. Six out of the 16 subjects had a heart rate sen-
sor dropout for a significant period of time during the in-
clinic sessions, while the acceleration sensor only had 
significant dropouts for subject 16. The acceleration and 
heart rate dropouts for subjects 12 and 16 during exercise 
sessions are illustrated in Figure 2. The acceleration sensor 
dropouts resulted in a negative mean detection time of t = 
–0.3 minutes, as shown in Table 1.

Relying on a single sensor can cause false exercise detec-
tions or long detection times. By using the PCA analysis and 
the 2 sensors, exercise periods can be detected reliably. 
Tables 2-5 show a detailed analysis of the 3 methods and a 
univariate statistical detection method that uses upper 90% 
confidence limit of both sensors for exercise detection. Two 
exercise sessions at 30% HRR for subjects 11 and 15 were 
not identified by the PCA method due to significant periods 
of heart rate sensor failures. However, for 4 other cases 
where the heart rate sensor was unable to identify exercise 
due to sensor dropouts, the PCA method and the acceleration 
sensor were able to detect the exercise activity. Detection 
times for the acceleration sensor and PCA were compared 
using a pairwise t-test to determine statistical significance. 
The P values for all 4 detection events (starts and completion 
of 30% and 50% HRR exercise periods) were not significant. 
However, the PCA-based method has the advantage of 
detecting events in the case of 1 sensor failure. Furthermore, 
it is applicable for situations where more than 2 types of sen-
sors are available.

Figure 3 depicts the magnitude of glucose changes during 
exercise sessions at both the time of detection and at 1 hour 
after the exercise period ended. Glucose change during the 
detection period refers to the time that the method takes to 
flag an exercise activity from the actual start time of the exer-
cise. Similarly, glucose change during the end of exercise 
detection is measured by the time that the method takes to 
flag the end of exercise from actual exercise end time. The 
glucose concentration change from the start of exercise to the 
detection time was 1 ± 6 mg/dL, range –18 to +7 mg/dL, for 
30% HRR exercise. For 50% HRR exercise, it ranged from 
–7 to +7 mg/dL with –1 ± 3 mg/dL. The total BG concentra-
tion change from the start of exercise to its completion time 
was –69 ± 31mg/dL, range –126 to –16 mg/dL, for 30% HRR 
exercise and –43 ± 29 mg/dL, range –99 to –4 mg/dL, for 
50% HRR exercise. Note that duration of the 30% HRR exer-
cise session (60 minutes) is larger compared to the 50% HRR 
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Table 1. Summary of the Exercise Detection Results by Heart Rate Monitor, Acceleration Sensor, and the PCA-Based Detection 
Method (Mean ± SD), Which Shows Very Low False Positive Ratios.

Detection method

Exercise onset Exercise completion

False positive (%) False negative (%)t
1
 (min) t

2
 (min) t

1
 (min) t

2
 (min)

Heart rate only 10.5 ± 10.1 13.9 ± 21.7 6.8 ± 3.7 0 ± 33 5 ± 6 46 ± 34
Acceleration only 5.2 ± 2.7 4.1 ± 1.2 −0.3 ± 6.9 2.8 ± 5.3 3 ± 2 20 ± 22
PCA and both sensors 5.8 ± 3.4 4.6 ± 2.2 3.1 ± 7.5 6.4 ± 4.7 4 ± 2 21 ± 22

t
1
 and t

2
, detection times for 30% and 50% HRR exercise, respectively.

Figure 1. Data for subjects 2 and 6 with exercise onset and completion detection by the PCA-based detection method. The first row 
shows acceleration and heart rate data, while the second row shows the CGM data, blood glucose data, and meal information. The third 
and fourth rows show the insulin delivery data and the calculated values of the T2 statistic.
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exercise session (30 minutes). This is the reason for larger 
glucose drop during 30% HRR exercise even though its inten-
sity is lower compared to 50% HRR exercise. The PCA-based 
method was able to detect both exercise onset and completion 
for glucose changes that were relatively small compared to 
the overall glucose change that was recorded during the exer-
cise and 1 hour after the exercise ended.

Discussion

We developed a novel method for detecting physical activity 
using heart rate and accelerometer data in adults with T1DM 

and showed rapid detection of start and end of exercise prior 
to any significant change in BG. The method was able to 
quickly identify the onset and cessation of exercise with min-
imal false positive and false negatives. It accurately identi-
fied the onset and conclusion of exercise periods in 
approximately 5 minutes with a relatively small BG change 
even at a relatively low intensity of exercise (30% HRR). 
The detection method exhibited good robustness to outliers 
and sensor dropouts.

The methodology we have developed has important 
implications for clinical treatment, as early and reliable noti-
fication of glycemic changes related to exercise can allow an 

Figure 2. Data for subjects 12 and 16 showing sensor failures. Subject 12 has a heart rate sensor failure and subject 16 has an 
acceleration sensor dropout during the exercise sessions, but PCA was able to detect these events with low false rates. Subject 12 has 
the false positive and false negative ratios of 1.69% and 13.13%, and subject 16 has ratios of 3.57% and 31.94%, respectively. Note that 
subject 16 had an extra exercise session.
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individual with T1DM to alter their treatment plan, whether 
that is by changes in carbohydrate intake or adjustments to 
insulin dosing. The importance of early detection of exercise 
prior to significant changes in BG has also been shown by 
recent publications that tested automatic adjustment of insu-
lin dosing after detecting exercise using an AP device. Very 
promising results from Turksoy et al showed that a 

multivariable adaptive model with multiple inputs to adjust 
insulin delivery could improve glucose control in a small 
number of patients.11,12,14,17 Breton et al used heart rate mea-
surements as an indicator for exercise during closed-loop 
insulin delivery trials.13 During this study, the AP algorithm 
was manually informed that exercise had started whenever 
the subject’s heart rate reached a specified percentage above 

Table 2. Time Taken to Detect Events Using Only Acceleration Sensor, Glucose Change During Each Detection Time, and False Rates.

Subject

Exercise onset Exercise completion Exercise onset Exercise completion

False positive (%) False negative (%)t
1

t
2

t
1

t
2

d
1

d
2

d
1

d
2

1 2 3 5 6 −1 −2 −7 −17 7.49 5.43
2 8 3 6 4 −18 −3 −9 −2 5.03 12.82
3 2 3 4 3 −2 −3 −6 −17 1.65 5.43
4 5 4 4 3 5 1 −6 −10 1.66 8.89
5 4 5 4 6 3 2 −6 −6 2.61 9.78
6 4 3 4 4 0 −7 0 −10 1.97 5.56
7 3 3 3 4 2 −1 −3 −10 5.36 6.52
8 5 4 6 4 1 −2 −14 −10 2.64 8.7
9 4 5 5 6 6 0 −2 −8 2.67 9.89

10 4 3 5 5 7 −4 −2 −21 2.85 7.69
11 7 6 4 4 3 1 −1 −14 1.8 31.87
12 4 6 5 −4 −2 1 −7 −11 1.69 13.13
13 5 3 −22 4 1 −1 −9 −8 5.39 27.93
14 13 3 5 5 1 −1 −4 −9 2.49 19.05
15 — 5 — 6 — 0 — −14 1.76 66.23
16 3 6 −48 −15 6 7 −46 −24 0 77.08

d
i
, glucose change during exercise detection in mg/dL for exercise i ∈  {0,1}; t

i
, time to detect exercise in minutes for exercise i ∈  {0,1}; —, undetected 

cases.

Table 3. Time Taken to Detect Events Using Only Heart Rate Monitor, Glucose Change During Each Detection Time, and False Rates.

Exercise onset Exercise completion Exercise onset Exercise completion

False positive (%) False negative (%) t
1

t
2

t
1

t
2

d
1

d
2

d
1

d
2

1 — 4 — 5 — −2 — −14 1.29 70.65
2 9 6 4 8 −20 −6 −6 1 3.02 17.95
3 3 4 7 10 −3 −5 −9 −22 5.66 8.7
4 6 5 8 29 6 2 −9 −32 13.72 11.11
5 32 6 5 7 −4 2 −8 −6 3.13 65.22
6 4 4 3 3 0 −10 −1 −7 1.48 25.56
7 3 4 4 11 2 −1 −3 −25 5.13 7.61
8 — 5 — 5 — −3 — −12 1.32 71.74
9 5 4 9 12 6 1 0 −5 4.9 9.89

10 5 5 14 28 8 −4 1 −41 11.14 10.99
11 — — — — — — — — 0 100
12 — — — — — — — — 0 100
13 — 12 — 5 — −3 — −10 1.35 82.88
14 15 71 6 −86 1 −24 −4 −50 22.64 50
15 — 9 — 5 — −1 — −12 1.47 76.62
16 9 8 4 12 15 9 −11 −47 4.08 29.86

d
i
, glucose change during exercise detection in mg/dL for exercise i ∈  {0,1}; t

i
, time to detect exercise in minutes for exercise i ∈  {0,1}; —, undetected 

cases.
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resting heart rate; the algorithm was informed again when 
the measured heart rate was reduced at the end of exercise. 
This approach successfully demonstrated that adjusting insu-
lin delivery during and at the end of exercise could improve 
glycemic control.

The best sensors for use with our PCA algorithm, whether 
heart rate, accelerometer or another sensor, remain to be deter-
mined. Heart rate monitors have been used for many years dur-
ing exercise training to help people improve aerobic fitness,21 
and can be a fast and easy indicator of activity or exercise.13 

Table 4. Time Taken to Detect Events Using the PCA-Based Detection Method, Glucose Change During Each Detection, and False 
Rates.

Exercise onset Exercise completion Exercise onset Exercise completion

False positive (%) False negative (%) t
1

t
2

t
1

t
2

d
1

d
2

d
1

d
2

1 2 3 5 5 −1 −2 −7 −14 7.24 5.43
2 8 4 4 6 −18 −4 −6 0 2.51 14.1
3 2 3 5 6 −2 −3 −7 −24 2.59 5.43
4 5 4 6 15 5 1 −8 −39 6.44 8.89
5 7 5 4 6 5 2 −6 −6 2.61 13.04
6 5 3 3 4 −2 −7 −1 −10 1.72 6.67
7 3 3 3 7 2 −1 −3 −18 6.06 6.52
8 10 4 5 4 −1 −2 −12 −10 2.37 14.13
9 4 5 6 9 6 0 −1 −8 3.56 9.89

10 4 3 12 16 7 −4 0 −48 7.51 7.69
11 — 12 — 3 — 4 — −11 0.67 79.12
12 4 6 5 −4 −2 1 −7 −11 1.69 13.13
13 11 4 −23 4 3 −1 −10 −8 4.85 36.94
14 13 3 5 5 1 −1 −4 −9 6.72 19.05
15 — 5 — 6 — 0 — −14 1.76 66.23
16 3 6 4 10 6 7 −11 −39 3.57 31.94

d
i
, glucose change during exercise detection in mg/dL for exercise i ∈  {0,1}; t

i
, time to detect exercise in minutes for exercise i ∈  {0,1}; —, undetected 

cases.

Table 5. Time Taken to Detect Events Using Both Heart Rate Monitor and Accelerometer in Univariate Setting, Where Exercise Was 
Flagged When Both Sensors Exceed 90% of Their Confidence Limit, Glucose Change During Each Detection, and False Rates.

Exercise onset Exercise completion Exercise onset Exercise completion
False 

positive (%)
False 

negative (%) t
1

t
2

t
1

t
2

d
1

d
2

d
1

d
2

1 2 4 5 6 −1 −2 −7 −17 6.2 65.22
2 9 6 6 8 −20 −6 −9 1 2.01 5.13
3 3 4 7 10 −3 −5 −9 −22 4.01 3.26
4 6 5 8 29 6 2 −9 −32 12.06 2.22
5 32 6 5 7 −4 2 −8 −6 0.52 55.43
6 4 4 4 4 0 −10 0 −10 0.49 20
7 3 4 4 11 2 −1 −3 −25 0.23 1.09
8 5 5 6 5 1 −3 −14 −12 1.32 63.04
9 5 5 9 12 6 0 0 −5 2.23 0

10 5 5 14 28 8 −4 1 −41 8.29 3.3
11 7 6 4 4 3 1 −1 −14 1.8 68.13
12 4 6 5 4 −2 1 −7 11 1.69 86.87
13 5 12 22 5 1 −3 9 −10 4.04 54.95
14 15 71 6 86 1 −24 −4 50 20.15 30.95
15 — 9 — 6 — −1 — −14 0.29 10.39
16 9 8 48 15 15 9 46 24 4.08 47.22

d
i
, glucose change during exercise detection in mg/dL for exercise i ∈  {0,1}; t

i
, time to detect exercise in minutes for exercise i ∈  {0,1}; —, undetected 

cases.
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However, heart rate monitors are not always reliable15 and 
heart rate can change for reasons other than activity, such as 
during stress.22 In addition, individuals with T1DM can have 
autonomic dysfunction with resting tachycardia, impairing 
heart rate response to exercise.23-25 Accelerometers have been 
used for several years for physical activity detection, and many 
types are now on the market to aid people in monitoring their 
activity levels. However, placement of the accelerometer(s) on 
the body for accurate detection and classification of exercise is 
important. Finally, using CGM alone is not sufficient as the 

CGM signal still lags behind the actual BG value when BG is 
changing rapidly. Combining accelerometer and heart rate 
monitors with CGM may potentially offer the best outcome.

Exercise detection using a combination of sensors is not a 
new field. Some previous studies have relied on custom devices 
for exercise detection.9,10 More recent attempts to classify activ-
ity detection have shown classification accuracy as high as 
86%.8,26 Models have also been developed to account for known 
changes in glucose dynamics during exercise.27 The advantage 
of the technique we have developed for exercise detection is that 

Figure 3. Glucose change during and after exercise sessions. D
1
 and D

2
 show the glucose change during the 2 exercise sessions of 30% 

HRR and 50% HRR, respectively. Black and white indicate the glucose change during the detection period and the glucose change during 
the entire exercise time, respectively. Similarly, A

1
 and A

2
 show the glucose change after the exercise sessions, where black and white 

indicate the glucose change during the end of exercise detection period, and the glucose change after 1 hour from the exercise end time, 
respectively. The hatched bars indicate the cases where PCA-based detection method fails to detect exercise.
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in addition working rapidly and accurately, it detects the onset 
and end of exercise before any significant change in glucose 
readings occurs as measured by CGM. If integrated into AP 
control systems, this will allow for informing the system that 
exercise activity has occurred before any changes in glucose are 
detected. By accurately determining the duration of exercise, as 
we have done, we hope to use this technique to inform AP con-
trol systems in future studies of when to respond and not to 
respond to exercise detection, as informing on the duration of 
exercise will have significant treatment implications.

Strengths of our study include the use of commercially 
available devices for heart rate and activity monitoring. This 
will be important for exercise detection outside of a clinic or a 
research setting, as many systems used in exercise detection 
research today still rely on a significant amount of customized 
equipment.28,29 As demonstrated in many industrial applica-
tions of PCA, our PCA-based detection method has the poten-
tial to be applicable when there are more than 2 sensors.20 It 
could be used for fault detection and classification to identify 
sensor failures. Similar to other studies, we encountered sensor 
dropouts for several subjects and the data for those subjects’ 
dropout periods were omitted in model calibration and replaced 
with means in model validation.27 We also found that accelera-
tion detectors were more sensitive for low to moderate activity 
than were heart rate sensors. This result will be important for 
detection of less intense activity or activities of daily living. 
Also similar to other studies, we found that accelerometer 
placement was very important for exercise detection and that 
the heart rate detection method was not always reliable.16

It should be noted that this study had a small sample size 
and focused on only 2 types of exercise. Although acceleration 
and heart rate signals are usually correlated, they can be 
affected differently during various physiological conditions, 
for example the physiologic response to anaerobic exercise or 
stress. Aerobic exercise should increase both heart rate and 
acceleration of the body, but resistive-type anaerobic exercise 
may only increase the heart rate. Stress can cause an increased 
heart rate without any acceleration.22 A combination of sensors 
may be needed to distinguish exercise from other conditions. 
Furthermore, utilization of 2 or more sensors provides an addi-
tional robustness to sensor failures and outliers.

Conclusions

Using PCA, we were able to analyze heart rate and acceler-
ometer data to reliably detect the onset and completion of 
physical activity prior to any significant changes in BG. The 
next step is to use this detection analysis method with real-
time integration into an AP system for automatic control of 
BG during and after different types of exercise.
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