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ABSTRACT OF THE DISSERTATION 

 

Lensfree Holographic On-Chip Imaging and 

Three-dimensional Tracking 

 

By 

 

Ting-Wei Su 

Doctor of Philosophy in Electrical Engineering 

University of California, Los Angeles, 2012 

Professor Aydogan Ozcan, Chair 

 

Despite the rapid progress in optical imaging, most of the advanced microscopy modalities still 

require complex and costly set-ups that unfortunately limit their use beyond well-equipped 

laboratories. To provide affordable and easy-to-use microscopes for resource-limited settings, I 

developed a holographic on-chip imaging technology that utilizes cost-effective and compact 

optoelectronic components to enable the digital reconstruction of microscopic amplitude and 

phase images for biological cells with sub-micron resolution over a field-of-view of >24 mm
2
. 

Without the need for any lenses, bulky optical components or coherent sources such as lasers, 

this partially-coherent computational imaging modality can automatically analyze thousands of 

cells in parallel for their cell type, concentration, structure, and dynamics. As being compact, 

light-weight, cost-effective, high-throughput, and highly-sensitive, this lensfree imaging 
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technology is especially suitable for field diagnostics applications involving global health 

problems such as HIV, malaria, infectious diarrhea, or male infertility.  

 Based on this lensfree imaging technology, I also devised a dual-angle dual-color 

holographic scheme to achieve sub-micron accuracy and sub-12-minisecond resolution for three-

dimensional tracking of >1,500 human sperms in a field-of-view of >17 mm
2
 and a depth-of-

field of >0.5 mm. The high accuracy and high throughput of this lensfree imaging platform 

enabled the first observation of human sperms’ tight (1-6um wide), fast (3-20 r/sec), and rare (4-

5%) helical trajectories, which surprisingly are dominated by right-handed ones (~90%) and can 

be significantly suppressed by seminal plasma. Such a high-throughput 3D tracking platform can 

also be a valuable tool for observing the statistical swimming patterns of various micro-

organisms, leading to new insights in their 3D dynamics. 
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Chapter 1 Introduction 

For decades optical microscopy has been the workhorse of various fields including engineering, 

physical sciences, medicine and biology. Despite its long history, until relatively recently, there 

has not been a significant change in the design and working principles of optical microscopes. 

Over the last decade, motivated partially by the quest to better understand the realm of the nano-

world, super-resolution techniques started a renaissance for optical microscopy by addressing 

some of the most fundamental limitations of optical imaging such as the diffraction limit.
1–8

 

Besides these super-resolution techniques, several other novel imaging architectures were also 

implemented to improve the state of the art in optical microscopy towards better speed, signal to 

noise ratio (SNR), contrast, throughput, specificity, etc.
9–14

 This recent progress in microscopy 

utilized various innovative technologies to overcome the fundamental barriers in imaging and 

has created significant excitement in a diverse set of fields by enabling new discoveries to be 

made. However, together with this progress, the overall complexity and the cost of the optical 

imaging platform relatively increased which limits the wide spread use of some of these 

advanced optical imaging modalities beyond well-equipped laboratories. 

 In the meantime, we have been also experiencing a rapid advancement in digital technologies, 

with much cheaper two-dimensional solid state detector arrays having significantly larger areas 

with smaller pixels, better dynamic ranges, frame rates and signal to noise ratios, as well as much 

faster, cheaper and more powerful digital processors and memories. This on-going digital 

revolution, when combined with advanced imaging theories and numerical algorithms, also 

creates an opportunity for optical imaging and microscopy to face another dimension in this 

renaissance towards simplification of the optical imaging apparatus, making it significantly more 
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compact, cost-effective and easy to use, potentially without a trade-off in its performance. As I 

illustrate in this dissertation, lensfree computational imaging can be considered to be at the heart 

of this new opportunity and when combined with the advanced state of the art and cost-effective 

nature of digital electronics, it can provide a transformative solution to some of the unmet needs 

of bio-medicine and diagnostics especially for resource-limited settings. 

 Lenses for decades have been helping detectors (analog or digital) to operate at the lowest 

possible space-bandwidth product that are determined by the desired field-of-view and the 

resolution of the image. However, the above discussed digital revolution has already advanced 

the state of the art for digital imagers such that a 2D space-bandwidth product of several tens of 

million is readily available nowadays. This implies that today’s detector arrays are now much 

better suited to handle the information distortion caused by diffraction, which may then raise 

questions on the absolute necessity of the use of lenses in optical imaging. Moreover, today’s 

digital processors together with novel algorithms are also in much better shape to process, almost 

instantaneously, the acquired information at the detector end for taking over the job of a physical 

lens. Looking at this picture, one can conclude that the widespread use of lenses (or similar 

wavefront shaping elements) in optical imaging can now be potentially replaced for several 

application needs (specifically for cellular micro-analysis) by cost-effective, compact and much 

simpler optical architectures that compensate in the digital domain for the lack of complexity of 

optical components. This approach should especially address the needs and the requirements of 

resource limited settings, potentially providing a leapfrog in our fight against various global 

health related problems involving infectious diseases. 

 Quite importantly, microscopy in resource-limited settings have requirements considerably 

different from those of advanced laboratories, and such imaging devices should be simple to use 



3 

and operate, cost-effective, compact, and light-weight, while at the same time being properly 

accurate. Another field that would enormously benefit from lensfree, compact and cost-effective 

on-chip digital imagers is the field of microfluidics.
15,16

 Over the last decade, microfluidics has 

revolutionized the available toolset to handle cells by significantly reducing the required device 

and reagent volumes as well as the associated costs. Despite all the progress that is taken on 

merging optical technologies with microfluidics,
17

 one area that still remains relatively low-

throughput, bulky and costly is the optical microscopy platform that is coupled to the micro-

channels. Without significant miniaturization and simplification of this imaging platform 

together with an increase in throughput, the true extent of the microfluidic revolution cannot be 

fully realized especially for cytometry applications in the field. 

 The fruits of this thinking have already appeared in the literature, where various lensfree on-

chip imaging architectures were successfully demonstrated.
17–26

 Among these approaches, 

lensfree digital holography
18–22

 deserves a special attention since with new computational 

algorithms and mathematical models,
27

 it has the potential to make the most out of this digital 

revolution. In this context, lensfree digital in-line holography has already been successfully 

demonstrated for high-resolution microscopy and 3D imaging of cells and other micro-

organisms.
19

 Conventional coherent lensfree in-line holography approaches demand near-perfect 

spatial coherence for illumination, and therefore require focusing of a laser light on a small 

aperture that is on the order of a wavelength for spatial filtering.
19,22

 The use of a small aperture 

size (e.g., 1-2µm) requires a mechanically stable and a carefully aligned system together with a 

high numerical aperture (NA) lens to efficiently couple the laser radiation to the aperture for 

improved light throughput. In addition, keeping such a small aperture clean and operational over 

an extended period of time can be another challenge especially for field use. Further, the cells of 
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interest are typically positioned far away (e.g., >1-2 cm) from the sensor surface such that the 

holographic signature of each cell is spread almost over the entire sensor area, where all the cells’ 

signatures significantly overlap. Such an approach unfortunately limits the imaging field-of-view 

(FOV) at the cell plane. All these requirements not only relatively increase the cost and the size 

of the optical instrument, but also make lensfree coherent in-line holography somewhat 

inconvenient for use in resource limited settings.  

 Incoherent or partially coherent sources in holography have also been utilized in different 

lens-based optical architectures.
13,28–31

 These holographic imaging techniques are not on-chip as 

they utilize various bulky optical components and therefore they can be considered under the 

same category as the advanced imaging modalities discussed in the introduction making them 

less suitable for field use. Much simpler approaches using partially coherent lensfree in-line 

holography have also been recently demonstrated for imaging of latex particles,
21,32

 but these 

techniques also suffer from a small field-of-view as they position the objects-of-interest far away 

from the sensor surface. Further, these studies used coupling optics for the illumination such as a 

microscope objective-lens and had relatively coarse imaging performance.  

 In this dissertation, I report an alternative incoherent cell holography and microscopy 

platform that utilizes cost-effective and compact optical components to enable digital recognition 

and microscopic imaging of cells, achieving sub-cellular resolution over a large field-of-view 

without the need for any lenses, other bulky optical components or coherent sources such as 

lasers. With this lensless system, I illustrate that we can record individual phase and amplitude 

holograms of various cell types for digital recognition and automated counting of each cell type 

based on their 2D holographic signatures, as well as accurately reconstruct their microscopic 

images featuring sub-micron resolution over a >24 mm
2
 field-of-view even at cell densities 
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reaching up to ~0.4 million cells/µL. Because this platform utilizes simple, compact, light-weight 

and cost-effective optical components that are misalignment tolerant it may also provide an 

important tool for telemedicine based cytometry and diagnostics applications in field-portable 

settings for various global health problems such as HIV, malaria, infectious diarrhea, or male 

infertility. Toward this end, here I also demonstrate the 2D and 3D tracking with this lensfree 

imaging technology to investigate the dynamical motion of motile cells, such as human sperms. 

Especially as a high-accuracy high-throughput 3D tracking platform, this technology can be a 

valuable tool for observing the statistical swimming patterns of various micro-organisms, leading 

to new insights in their 3D dynamics. 

 There are several aspects of this novel platform that makes it highly advantageous for 

cytometry applications in resource limited settings. (1) The light source in this holographic 

approach does not need to be a laser such that an incoherent source, such as light emitting diode, 

can be used without the need for any lenses or other bulky optical components.
 
This feature 

greatly simplifies the optical set-up, making it cost-effective and compact, as well as eliminating 

the coherent speckle noise
33

 and substrate induced multiple-reflection effects in cell holograms. 

(2) The presented on-chip holography approach does not require a small aperture size for 

illumination and therefore improves the light throughput of the imaging system by orders-of-

magnitude without causing an issue for cell hologram pattern analysis or digital image 

reconstruction. This large aperture size (e.g., 50-100 µm) also makes it robust to mechanical 

misalignments or potential clogging problems permitting a long time of operation without 

imaging artifacts or the need for realignment, making it highly suitable for field use. (3) Because 

no optical lens is used and the cells of interest are placed much closer to the sensor array 

(typically <0.5-2 mm) than to the light source, I can image a much larger field-of-view typically 



6 

by >10 fold than an optical microscope or >100 fold than a conventional lensless in-line 

holographic microscope. (4) Apart from reconstructing microscopic images of cells through 

holographic processing of the embedded optical phase, we can also detect a unique two 

dimensional holographic texture (i.e., a fingerprint) corresponding to each cell, which provides 

an alternative source of information that complements the reconstructed cell images. Through 

pattern/texture analysis of such holographic cell signatures (both phase and amplitude) it is 

possible to recognize the type and the state of each cell of interest (without digital 

reconstruction), which is especially important for cytometry applications towards making a 

diagnostic decision e.g., based on a comparison of healthy vs. diseased cell hologram signatures. 

(5) The wide light-acceptance angle of image sensors and the small object-sensor distance allow 

the object images of different perspectives (i.e., viewing angles) to be captured easily by 

changing the illumination angles of light sources. This feature enables high-throughput 

tomographic imaging and high-accuracy 3D dynamic tracking of micro-objects to be done in a 

compact and cost-effective format. (6) The performance of the imaging system, such as 

resolution, field-of-view, or frame rate, is highly scalable with the technological advancement of 

image sensor fabrication. Whenever a better image sensor becomes available on the market, the 

technology gets an immediate upgrade in its performance. Such scalability places my lensfree 

on-chip microscopy technology on a sweet spot to follow the rapid trend of the Moore’s Law 

observed in the micro-electronics industry. 
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Chapter 2 Lensfree Holographic Imaging for On-Chip Cytometry 

and Diagnostics 

2.1 Introduction 

Flow cytometry is a powerful technology that enables counting, characterization and sorting of 

cells flowing through a hydro-dynamically concentrated channel. By collecting fluorescence and 

scattered light from the cells as a function of time, this technology can provide various sources of 

information such as the count, type or surface morphology variation of the cells, which are all 

very important in clinical diagnostics.
34

 Most flow cytometers use rather bulky and expensive 

equipment such as photomultiplier tubes (PMTs) and avalanche photodiodes, which limit their 

application at the point-of-care especially in resource limited settings.
35,36

 To address this issue, 

there have been a variety of studies to miniaturize conventional bench-top flow cytometers into 

portable micro flow systems. For instance, to miniaturize the source and detection in micro flow 

cytometry, researchers adopted commercial waveguides that are integrated with micro-fluidic 

channels.
37–40

 Cleaved ends of these waveguides are aligned to the micro-channel to illuminate 

and detect the scattered or fluorescence light from the cells. To address another significant 

challenge in miniaturized system design(i.e., to provide reliable and rapid flow of cells on a chip) 

electrokinetic focusing in micro-fabricated channel structures has also been widely used to 

achieve 2D and even 3D hydrodynamic focusing.
41–46

 All of these heroic efforts and others
47–50

 

are still based on the fundamental principles of conventional flow cytometry and analyze cells 

one at a time (i.e., on-chip detection is achieved serially).  

 In this chapter I introduce a lensless holographic imaging platform that can provide a 

versatile solution to on-chip cytometry and diagnostics. In this scheme, by use of a variable 



8 

pinhole, I control the spatial coherence of the illumination source to enable lensfree recording of 

the holographic diffraction pattern of each cell on the chip using a high-resolution opto-

electronic sensor array that has ~2 m pixel size (see Fig. Error! Reference source not found.). 

fter recording of this holographic lensfree image, a custom developed decision algorithm is 

utilized to process the 2D texture of acquired holograms to rapidly recognize and characterize the 

type and 3D location of each cell/micro-object located within a heterogeneous solution of 

interest. Since this holographic approach does not rely on conventional optical components such 

as lenses, mirrors, beam splitters, etc., it offers a flexible, compact and cost-effective alternative 

for many on-chip diagnostics applications such as whole blood analysis. 

 The holographic diffraction pattern of each cell/micro-object is created by the interference of 

the scattered light from the cell/micro-object with the un-scattered light directly emanating from 

the source. This holographic diffraction pattern should not be confused with the classical 

diffraction signature of the same micro-object. When recorded with a high-resolution sensor 

array, holographic diffraction signature exhibits several advantages compared to the classical 

diffraction pattern of the same micro-object. These advantages will be further explored in the 

Discussions Section.  

 Since there exist several different forms of on-chip cytometry, lensless imaging or 

holographic imaging systems, let me briefly outline the key differences between some of the 

existing systems and the approach of this article: 

 (1) When compared to miniaturized flow cytometers, the proposed approach does not involve 

any fluid flow and captures the holographic diffraction information of the cells on the chip all in 

parallel within less than 0.3 seconds. Quite different from flow-cytometry, my approach relies on 
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digital processing of the holographic diffraction signatures of different cell types to rapidly 

characterize a heterogeneous cell solution on a chip.   

 (2) When compared to existing digital in-line holographic microscopy (DIHM) systems
19,22,51

  

the approach reported in this chapter differs in several significant ways such as much simpler 

digital processing, simpler optical design, and elimination of the use of lenses. However, for the 

general audience, in the Discussions Section I will further expand on these key technical 

differences between DIHM and my approach.  

 (3) There exist various other non-holographic lensless imaging and microscopy approaches 

in the literature.
23,52–54

 Several of these approaches are not designed for cytometry, but rather aim 

to achieve high resolution imaging of e.g., C. elegans within a micro-fluidic channel. For 

instance, the ingenious concept of opto-fluidic microscopy (OFM)
23,52,53

 can achieve a high 

spatial resolution of ~0.5 m on a chip using a slanted array of holes that capture a transformed 

image of the micro-object of interest as it moves through a micro-fluidic channel at a constant 

speed. My lensless on-chip cytometry approach makes use of digital holography to identify 

different cell types on a chip, and in this sense is quite different from these on-chip microscopy 

systems. Furthermore, my approach does not utilize any fluidic motion unlike OFM and 

therefore can monitor a larger field of view much faster, increasing the throughput of cell 

characterization.  

(4) Finally I would like to discuss the major differences of my new holographic cytometry 

approach with respect to some of the existing on-chip imaging work that my lab has previously 

demonstrated.
24–26

 To realize high-throughput cell counting and characterization within a 

compact and cost-effective platform, my lab have recently reported a lensfree on-chip imaging 

platform termed LUCAS (Lensfree Ultra-wide-field Cell monitoring Array platform based on 
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Shadow imaging).
24

 In this initial proof-of-concept, using spatially incoherent broadband white-

light illumination I recorded the classical diffraction pattern (not the holographic diffraction) of a 

homogenous solution of cells using a low-resolution sensor array that had ~9 m pixel size. In 

this primitive LUCAS platform, the volume of the sample solution that could be monitored 

within a second was limited to <0.1 ml.
24

 Relatively recently, this original LUCAS platform has 

been further improved by my lab using narrowband (i.e., monochromatic) tunable wavelength 

illumination together with a custom-developed pattern recognition algorithm.
25,26

 These 

improvements enabled label-free characterization of a heterogeneous cell population on a chip 

over a field of view of ~10 cm
2
 and a depth of field of >4 mm, corresponding to a solution 

volume of >4 ml.  

 Holographic on-chip cytometry approach of this manuscript is significantly different from 

the existing LUCAS based techniques.
24–26

 LUCAS utilizes spatially incoherent light which 

implies that the detected quantity is simply the classical diffraction pattern of each 

cell/microparticle, whereas the proposed approach of this manuscript uses spatially coherent 

illumination to record the holographic diffraction of each cell/micro-object on the chip. As 

discussed earlier, this important difference brings several advantages to my new approach when 

compared to existing LUCAS systems. First, since classical diffraction fringes are due to self-

interference of the scattered light from the cell with itself, they are much weaker in signal 

strength when compared to holographic diffraction patterns. In other words, this improved signal 

to noise ratio (SNR) is due to heterodyne nature of holographic interference, whereas classical 

diffraction can be modeled as a homodyne system. This SNR improvement is especially more 

pronounced for small cells or bacteria that act as weak scatterers. This point will be 

experimentally verified in the Results section. Second, holographic diffraction exhibits improved 
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signature uniformity for a given cell type, i.e., the digital similarity among different holographic 

signatures of the same micro-object type is significantly improved. This is especially quite 

relevant to enable automated pattern recognition of the target cell type within a heterogeneous 

solution using a decision algorithm. Third, with holographic diffraction, the signature differences 

among different cell types become more evident. I will quantify the statistical performance of 

this improvement in the Results section, however, intuitionally this improvement is due to the 

fact that with self-interference most phase related information of the cell/micro-object is lost, 

whereas by recording a hologram with respect to a reference beam (the un-scattered direct light) 

this phase information is now encoded into amplitude oscillations, which enriches the 2D 

information content of the detected cell signature on the chip. A more rigorous discussion of this 

claim will be provided in Chapter 3. 

 Another major difference between the presented technique and the previous LUCAS work
24–

26
 is that here I use a much higher resolution sensor array that has more than 4 fold smaller pixel 

size (i.e., 2.2 m vs. 9.0 m). The significance of this higher resolution sensor array will be 

further quantified in the Results section. 

 These significant improvements of the holographic cytometry approach permit improved 

performance for automated characterization of different cell types within a heterogeneous cell 

solution based on 2D texture analysis of the detected holograms. Apart from these noteworthy 

differences and advances, conceptually, the on-chip lensfree imaging idea of my holographic 

technique can be considered as a significant improvement of the existing LUCAS approach, and 

therefore to help me establish this link, I will refer to this new on-chip cytometry approach as 

“Holographic-LUCAS”. 
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 In summary, Holographic-LUCAS exhibits several advantages within a novel lensfree 

imaging and digital processing scheme to provide a flexible, compact and cost-effective 

alternative to existing approaches for point-of-care cytometry and diagnostics applications such a 

monitoring of HIV patients in resource scarce settings. 

2.2 Experimental Methods 

Set-up: Figure Error! Reference source not found. shows the experimental configuration of 

y Holographic-LUCAS imaging set-up. The results that are presented in this manuscript are 

acquired using two different sensor arrays: (1) a charged couple device (CCD, KAI-10002, 

Kodak) and complementary metal-oxide-semiconductor (CMOS, MT9P031, Micron) image 

sensor which have pixel sizes of 9.0μm (CCD) and 2.2μm (CMOS), respectively. As illustrated 

in the schematic diagram of Fig. Error! Reference source not found.(b), using these two opto-

lectronic sensor arrays I recorded the holographic diffraction signatures of various micro-objects 

such as red blood cells, yeast cells (S. pombe), polystyrene micro-particles of various diameters 

(D=3, 5, 10 and 20μm, Duke Scientific) and Escherichia Coli (E. Coli) samples. The same 

optical set-up can also record the classical diffraction fringes of the cells/micro-objects by 

removing the pinhole or enlarging its diameter. The micro-objects to be imaged are diluted with 

1X PBS, and a total solution volume of 10-100 μl is dropped on a microscope slide using a 

micro-pipette and gently sandwiched by another identical cover glass. Then, the sample is 

positioned using a vacuum pen (NT57-636, Edmund Optics) onto the active region of the sensor 

array. To be able to illuminate the sample volume with tunable monochromatic light (scanning a 

wavelength range of =350-1000 nm), I used a digital monochromator (Oriel Cornerstone
TM

 

260-1/4m, Newport) along with a standard grade fused silica fiber which consists of a bundle of 

250μm diameter fibers (77564, Newport). For Holographic-LUCAS experiments, I used a 
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pinhole diameter of ~100 m placed ~5 cm above the sensor array. As will be discussed later on, 

this configuration implies no fringe magnification (close to unity) for the detected holograms.   

 

Figure 2-1 | (a) Experimental apparatus (under blue light illumination) and (b) schematic diagram of the 

Holographic-LUCAS platform are shown. 

Image Quality Metrics and Decision Algorithm: To provide quantitative comparison for the 

improvement in the quality of Holographic-LUCAS images, I utilized three metrics: (1) digital 

signal-to-noise ratio (SNR), (2) spot/shadow radius (Rrms), and (3) correlation index, all of which 

will mathematically be defined below.  

 Digital SNR of my images is calculated using SNR=|(max(I)μb)/b|, where I is the light 

intensity on the sensor array, and μb and b are the mean and variance of the background noise 

region. For Rrms calculations, I used the concept of root-mean-square (RMS) width which is 

defined as 
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where W is the maximum number of pixels in the region of interest, and  
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In these equations, (x,y) and f(x,y=y0) denote the index of the image pixel and the detected 

intensity profile of a line represented by 0y y , respectively.
55

 

 To better quantify the digital similarity between different holograms of the same cell/object 

type, I introduced the concept of “correlation index” which simply calculates the numerical 

deviation of a given cell image compared to a mean library image of the same cell type. For each 

cell/micro-object type a mean library image, L(x,y), was formed by averaging >20 arbitrarily 

chosen samples within a homogenous solution that are imaged under the same conditions (e.g., 

the same wavelength, the same depth of field etc.). Each individual holographic (or classical) 

diffraction pattern of an unknown particle (i.e., f(x,y)) was first compared to the library image of 

a known particle type to calculate its “deviation” given by 

( , )

( , ) ( , )
x y ROI

Dev f x y L x y


 
. 

The region of interest (ROI) for each calculation occupies an equal amount of area as that of the 

library image. After this step, the correlation of the unknown particle image f(x,y) to the average 

library image L(x,y) is calculated using:  

MINMAX

MIN

DevDev

DevDev
Corr




 1

, 

where DevMAX and DevMIN refer to the maximum and minimum of the deviation values of f(x,y) 

calculated using the individual library images forming L(x,y). Therefore, a target image f(x,y) 

that has the maximum deviation from all the library images will have a correlation index of “0”, 
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and a correlation index of “1” will be assigned to an image with minimal deviation from the 

same set of library images. 

 To characterize the acquired Holographic-LUCAS images, a 2D correlation map is calculated 

for each one of the existing cell/particle image libraries. The user can select which target cell 

libraries to be used, or otherwise, all the existing image libraries are used. To generate the 2D 

correlation map for each library image, first a 2D deviation profile is calculated: 

, 

where DL represents the domain of the library image. Then the 2D deviation map is converted 

into a 2D correlation map using: 

. 

 After the creation of this 2D correlation map, potential candidates showing a large correlation 

peak (that is above a certain threshold value) are further investigated using Rrms and/or SNR 

criterion to make a characterization and counting decision. I should note here that a similar 

decision making process is also utilized in existing LUCAS based incoherent system.
25,26

 As far 

as the decision algorithm is concerned, the most important difference between Holographic-

LUCAS and the previous approaches in 
25,26

 is that the cell signatures (together with their image 

libraries) now exhibit richer source of texture information, together with better uniformity and 

SNR, which then translate into improved characterization performance, which will be quantified 

in the discussions to follow.  

2.3 Results 

To illustrate the performance of the Holographic-LUCAS platform with a high-resolution sensor 

array, I initially imaged a mixture of polystyrene micro-particles (3μm diameter) and E. Coli 

( ', ')
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samples. To provide a direct comparison, Fig. 2-2(a) shows the classical diffraction image of this 

mixture that is acquired with a conventional incoherent LUCAS system as described in the 

literature,
24–26

 i.e., a pixel size of 9.0μm, under λ = 400nm and at Z = 200μm, where λ and Z are 

the illumination wavelength and the distance from the sample to the sensor plane, respectively. 

In this figure, conventional diffraction patterns of five 3μm beads and one E. Coli sample are 

shown. The same region of interest is also imaged using a 40X objective-lens as shown in Fig. 2-

2(b) to verify the LUCAS results. As illustrated in Fig. 2(a), because this mixture contains small 

particles (3 μm) and weakly scattering phase objects (E. coli), the conventional LUCAS system 

has serious issues with signature non-uniformity and low SNR. To demonstrate the improvement 

of the Holographic-LUCAS platform with the high-resolution sensor array, in Fig. 2-2(d) I show 

the holographic diffraction pattern of the same solution sampled with a pixel size of 2.2 μm. In 

contrast to the poor SNR and signature non-uniformity of the conventional LUCAS system (Fig. 

2-2(a)), Fig. 2-2(d) now clearly shows the details of the holographic diffraction signatures of 

three 3μm beads and two E. coli samples, which were again verified by acquiring a high 

resolution (40X) microscope image of the same region of interest as shown in Fig. 2-2(e). In 

particular, this experimental comparison illustrates significantly improved performance of the 

Holographic-LUCAS platform for on-chip imaging of phase objects such as E. Coli samples that 

are quite difficult to see even under a 40X objective lens. For instance, the E. Coli diffraction 

pattern which was very close to the background noise level in Fig. 2-2(a) is significantly 

improved in Fig. 2-2(d) with over 40 times SNR improvement even at a larger sample-to-sensor 

distance of Z = 625μm. Furthermore, the signature uniformity of the micro-particles is now much 

better (see Fig. 2-2(d)) with the use of the high-resolution holographic set-up. 
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Figure 2-2 | (a) Conventional incoherent LUCAS image for a mixture of polystyrene micro-particles (D = 3μm) 

and E. Coli samples imaged with a 9 μm pixel size sensor array. (b) For comparison purposes, a microscope 

image of the same field of view that is acquired with a 40X objective-lens is also shown. (c) The cross sectional 

intensity profile (taken from (a)) of the classical diffraction pattern of a microbead and an E. coli sample is 

illustrated. (d) Holographic-LUCAS image of the same heterogeneous solution now exhibits much better 

signature uniformity. Furthermore, the weak diffraction pattern of the E. coli samples is now significantly 

improved with over 40 times SNR improvement. (e) For comparison purposes, a microscope image of the 
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same field of view that is acquired with a 40X objective-lens is also shown. (f) The cross sectional intensity 

profile (taken from (d)) of the holographic diffraction pattern of a microbead and an E. Coli sample is 

illustrated. Notice that the signal scale is different for the E. coli signature when compared to (c), which 

illustrates the improved performance of the Holographic-LUCAS platform for imaging weakly scattering 

phase objects such as small bacteria. 

 Another advantage of using the high-resolution Holographic-LUCAS platform is the on-chip 

detection of 2D orientation of asymmetric cells with a finer accuracy. One example is illustrated 

in Fig. 2-3 for yeast cells (S. Pombe), where the broken symmetry of the hologram uniquely 

determines the 2D orientation of each yeast cell on the chip. This performance would be greatly 

degraded with a coarser pixel size of e.g., ~9 µm since the fine details of the holographic pattern 

would mostly be smeared out.  

 

Figure 2-3 | Detection of 2D orientation of asymmetric cells using Holographic-LUCAS is illustrated. (a), (b), 

and (c) are the microscope images of S. Pombe yeast cells imaged under 10X objective-lens. (d), (e), and (f) 

show the corresponding Holographic-LUCAS images of the same field of view as in (a), (b), and (c), 

respectively. The orientation of each yeast cell can be uniquely determined by the broken symmetry as shown 

in the holographic-LUCAS images. 
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 To better quantify the performance improvement of the high-resolution sensor array, I 

performed a series of characterization experiments with homogenous solutions containing 5, 10 

and 20µm polystyrene beads. Statistical distribution of three major image parameters, i.e. SNR, 

Rrms and correlation index, are calculated for each particle type using 20 different samples. 

Figure 2-4 shows the performance summary of a large pixel size sensor (9.0μm) compared to a 

small pixel size sensor (2.2μm) for these three image metrics. In Figs. 2-4(a-b), SNR and Rrms 

distribution of three different sized particles, i.e., D=5, 10 and 20μm is shown with red triangles, 

green squares and blue circles, respectively. The performance of the large pixel size sensor array 

(Fig. 2-4(a)) reveals that there is significant overlap among the SNR and Rrms signatures of 

different sized particles, which may translate into possible characterization errors. Furthermore, 

Fig. 2-4(c) also plots the correlation index of these 3 different types of particles to their 

corresponding mean library images. Even though the correlation results of Fig. 2-4(c) reveal, as 

expected, three different groups that can be used for characterization decisions, the variation in 

the correlation index of the same particle type is relatively large, resulting in a large group size. 

On the other hand, the performance of the high-resolution sensor-array platform, as summarized 

in Figs. 2-4(b) and 2-4(d), shows significant improvement for characterization decisions. Both of 

these figures illustrate that the high-resolution sensor array can do a much better job to pick up 

the fine differences of the diffraction patterns corresponding to different particle types. As a 

result of this improved performance, the diffraction signature uniformity of each particle type is 

now much improved, yielding more reliable characterization decisions with distinct statistical 

groups for each image metric as shown in Figs. 2-4 (b) and 2-4 (d). 
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Figure 2-4 | The effects of the pixel size of the sensor array on the statistical distribution of various image 

metrics calculated for three different micro-particle types are shown. (a) 9 μm pixel size performance: SNR 

and Rrms map for 20 samples from each micro-particle type is shown. (b) same as (a) except for 2.2 μm pixel 

size sensor array. (c) 9 μm pixel size performance: The 3D correlation index map that is calculated using 20 

samples from each micro-particle type is shown. (d) same as (c) except for 2.2 μm pixel size sensor array. The 

Tables in (e) and (f) briefly summarize the statistics of the correlation index results of (c) and (d), respectively. 

These results illustrate that the diffraction signature uniformity of each particle type is significantly improved 

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40

SNR [dB]

R
rm

s
 [

u
m

]

D=5um

D=10um

D=20um

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40

SNR [dB]

R
rm

s
 [

u
m

]
D=5um

D=10um

D=20um

1.0
0.8

0.6
0.4

0.2

0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8
1.0

CCD

(a) (b)

(c) (d)

In
cr

ea
si

n
g
 c

o
rr

el
a

ti
o
n

 t
o
 

2
0
u

m
 b

ea
d

 l
ib

ra
ry

 i
m

a
g
e

In
cr

ea
sin

g co
rr

ela
tio

n to
 

5um
 b

ea
d li

bra
ry

 im
ageIncreasing correlation to 

10um bead library image

1.0
0.8

0.6
0.4

0.2

0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6
0.8

1.0

CMOS 

In
cr

ea
si

n
g
 c

o
rr

el
a

ti
o
n

 t
o
 

2
0
u

m
 b

ea
d

 l
ib

ra
ry

 i
m

a
g
e

In
cr

ea
sin

g co
rr

ela
tio

n to
 

5um
 b

ea
d li

bra
ry

 im
ageIncreasing correlation to 

10um bead library image

(e) (f)

Pixel Size: 9.0 um Pixel Size: 2.2 um

Pixel Size: 9.0 um Pixel Size: 2.2 um

Pixel Size: 9.0 um Pixel Size: 2.2 um

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40

SNR [dB]

R
rm

s
 [

u
m

]

D=5um

D=10um

D=20um

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40

SNR [dB]

R
rm

s
 [

u
m

]
D=5um

D=10um

D=20um

1.0
0.8

0.6
0.4

0.2

0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8
1.0

CCD

(a) (b)

(c) (d)

In
cr

ea
si

n
g
 c

o
rr

el
a

ti
o
n

 t
o
 

2
0
u

m
 b

ea
d

 l
ib

ra
ry

 i
m

a
g
e

In
cr

ea
sin

g co
rr

ela
tio

n to
 

5um
 b

ea
d li

bra
ry

 im
ageIncreasing correlation to 

10um bead library image

1.0
0.8

0.6
0.4

0.2

0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6
0.8

1.0

CMOS 

In
cr

ea
si

n
g
 c

o
rr

el
a

ti
o
n

 t
o
 

2
0
u

m
 b

ea
d

 l
ib

ra
ry

 i
m

a
g
e

In
cr

ea
sin

g co
rr

ela
tio

n to
 

5um
 b

ea
d li

bra
ry

 im
ageIncreasing correlation to 

10um bead library image

(e) (f)

Pixel Size: 9.0 um Pixel Size: 2.2 um

Pixel Size: 9.0 um Pixel Size: 2.2 um

Pixel Size: 9.0 um Pixel Size: 2.2 um



21 

using a high-resolution sensor array, yielding more reliable characterization decisions with distinct statistical 

groups for each one of the image metrics. 

 Next I evaluated the performance improvement of the holographic on-chip system over the 

classical LUCAS platform using the same high-resolution sensor array. For this purpose, I 

imaged without using any lenses a heterogeneous solution that contained red blood cells (RBCs), 

yeast cells (S. Pombe), and 10μm polystyrene micro-particles, with and without a 100 μm 

pinhole to control the spatial coherence properties of the source. Figure 2-5 illustrates the 

significant differences between the holographic detection (Fig. 2-5(b)) vs. the conventional 

incoherent detection (Fig. 2-5(a)), both of which utilized the high-resolution sensor-array. As 

discussed earlier, with the pinhole, due to increased spatial coherence, the holographic 

diffraction pattern of each micro-object type exhibits much richer texture information with 

unique oscillating features containing the phase information of each cell/micro-particle. This 

phase information is normally lost during incoherent illumination as discussed in Chapter 3. 

Figures 2-5(c) and 2-5(d) also illustrate the cross-sectional profiles of the diffraction pattern of 

different objects under incoherent and coherent illuminations cases, respectively. These results, 

together with Figs. 2-5(e-j) clearly demonstrate that the holographic diffraction pattern of 

different cells/micro-particles are quite rich in 2D texture providing significant advantages when 

compared to conventional LUCAS systems
24–26

 for lensless characterization and counting of a 

heterogeneous cell solution on a chip. 
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Figure 2-5 | (a) and (b) illustrate the performance differences between conventional LUCAS vs. Holographic-

LUCAS. In each image a high-resolution CMOS sensor array (2.2 μm pixel size) was used. (c) and (d) show 

the cross sectional intensity profiles (taken from (a) and (b)) of various micro-objects imaged using 

conventional LUCAS and Holographic-LUCAS, respectively. Due to increased spatial coherence, the 

holographic diffraction pattern of each micro-object type exhibits much richer texture information with 

unique oscillating features containing phase information of the cell/micro-particle. This phase information is 

normally lost during incoherent illumination as discussed in the theory section of the article. (f,h,j) show 

zoomed images of the holographic diffraction signatures of 10um beads, yeast cells (S. Pombe) and RBCs, 

respectively. For comparison purposes, a microscope image of the same field of view that is acquired with a 

10X objective-lens is also shown in (e,g,i). 
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 To experimentally illustrate this last claim, Fig. 2-6 shows an example of automatic 

characterization of a heterogeneous solution including RBCs, fixed yeast cells (S. Pombe) and 

10μm beads. These three types of micro-objects were individually identified within the acquired 

Holographic-LUCAS image by calculating their correlation to the mean library images of each 

type. The calculated 2D correlation maps (see the Experimental Methods section) are illustrated 

in Figs. 2-6(b-d) for each one of the mean library images, exhibiting sharp correlation peaks for 

target cell/object types. In Fig. 2-6(a) which is taken from the white frame of Fig. 2-5(b), two 

10μm beads, eight RBCs, and four yeast cells were successfully identified by the decision 

algorithm based on the 2D correlation maps shown in Figs. 2-6(b-d). These results demonstrate 

the proof-of-concept for on-chip characterization of a heterogeneous cell solution based on 

pattern recognition of the holographic diffraction pattern of each object type. 
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Figure 2-6 | (a) Automatic characterization of a heterogeneous solution of RBCs, Yeasts (S. Pombe) and 10 

μm beads is illustrated using Holographic-LUCAS (=350nm). 2D correlation maps corresponding to each 

library image are also illustrated in (b-d), exhibiting sharp correlation peaks for the target cells/objects. 

2.4 Discussions 

As briefly outlined in the Introduction Section, the Holographic-LUCAS platform of this chapter 

exhibits several key differences when compared to pre-existing DIHM systems.
19,22,51

 First, the 

detected holographic lensfree image is simply analyzed by a pattern recognition algorithm to 

classify different cell types on the chip. Note that this pattern recognition step is common to any 

other imaging based cytometry approach (including DIHM) once the image is captured or 

reconstructed, and therefore, it does not add an extra source of complexity and computation time 
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(c) (d)
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Z=625um 
λ=350nm
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to the technique reported here. Therefore, numerically and computationally this approach is 

much simpler and faster when cell density is not a major concern. 

 Second, DIHM systems rely on near-perfect spatial coherence of the illumination source 

together with a large zero-order emission cone from the pinhole to achieve a high spatial 

resolution. That is the reason why in most DIHM systems a pinhole diameter of <2-3 m is used. 

With my approach, these requirements are more relaxed since even with partially coherent 

illumination, the signature of different cells/micro-particles can exhibit uniquely different 

features enabling automated characterization of a cell solution using a pinhole diameter of ~100 

m (see the Results sections). This significantly larger diameter of the pinhole is quite important 

to increase the light throughput for illumination. For instance, in DIHM systems, usually a high 

magnification objective lens is utilized right in front of the pinhole to increase its transmission, 

which in my set-up is redundant, making it highly suitable for lensless on-chip miniaturization. 

This is especially significant to reduce the cost and the space requirement of a point-of-care on-

chip cytometry system. 

 With my illumination scheme, for a pinhole diameter of 0.1 mm, using the van Cittert-

Zernike Theorem,
56

 one can estimate the diameter of near-perfect spatial coherence circle at the 

sensor-array plane as ~610λ. However, since Holographic-LUCAS is only concerned with the 

2D texture of the cell holograms, it essentially also works for partially coherent illumination. 

This implies that the diameter within which I have a partial hologram of the cell is effectively 

larger than 610λ. I should note that one can utilize a smaller pinhole size to increase the diameter 

of this coherence circle at the detection plane. However, a smaller pinhole size will also increase 

the interference among neighboring cell holograms, which might reduce the pattern matching 

accuracy due to spatial overlap of the cell patterns. Therefore, a relatively large aperture size 
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such as 0.05-0.1mm does not only improve the light transmission efficiency without the use of 

any focusing optics, but also improves the accuracy of hologram classification. 

2.5 Conclusion 

In this chapter, I experimentally demonstrated the proof-of-concept of a lensfree holographic 

imaging platform, termed Holographic-LUCAS, for on-chip cytometry and diagnostics 

applications.
57

 By controlling the spatial coherence of the illumination source, I recorded 2D 

holographic diffraction pattern of each cell/micro-particle on the chip using a high resolution 

sensor array. The recorded hologram was then processed by using a custom developed decision 

algorithm for matching the detected hologram texture to existing mean library images for on-

chip characterization and counting of a heterogeneous solution of interest. When compared to 

existing on-chip systems, I verified significantly improved performance of this imaging approach 

by automatically characterizing heterogeneous solutions of red blood cells, yeast cells, E. coli 

and various sized micro-particles without the use any lenses or microscope objectives. This 

Holographic-LUCAS platform will especially be quite useful for point-of-care cytometry and 

diagnostics applications including e.g., infectious diseases such as HIV or malaria.  
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Chapter 3 Theory of Partially-Coherent In-Line Holography and 

Digital Iterative Phase Retrieval for Lensfree Microscopy 

3.1 Partially-coherent in-line holography on a chip  

Holography indirectly records the optical phase information through amplitude oscillations 

generated by the interference of coherent optical waves. For making use of this phase 

information toward microscopy, most existing lensless in-line holography systems require high 

level of spatial and temporal coherence and therefore utilize a laser source that is filtered through 

a small aperture, e.g., 1-2 µm wide.
11,58–66

 The optical set-up, however, can be made simpler and 

more robust if a completely incoherent light source filtered through a large aperture (e.g., >100-

200 in diameter) could be used.
67,68

 

 One of the key steps for recording high-quality in-line holograms with a spatially incoherent 

source emanating from a large aperture is to bring the cell plane close to the detector array by 

ensuring zs<<za, where za defines the distance between the incoherently illuminated aperture 

plane and the object/cell plane, and zs defines the distance between the object/cell plane and the 

sensor array (see Fig. 3-1),  While the total aperture-to-detector distance (zs+za) and the overall 

device length remain almost unchanged, conventional lensless in-line holography approaches 

typically choose to utilize za<<zs. Therefore, in addition to an incoherent source used with a large 

aperture, my choice of zs<<za is also quite different from the main stream lensless in-line 

holographic imaging approaches.  
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Figure 3-1 | Hologram formation of on-chip in-line holography with partially coherent illumination. The 

relative positions of the light source, the semen sample, and the sensor chip are depicted with typical 

distances. This schematic drawing is not drawn to scale. 

 To better quantify the impact of these differences on the detected holograms and their 

reconstructions, I assume two point scatterers (separated by 2a) located at the object/cell plane 

(z=za) with a field transmission of  (   )       (     )     (     ) , where the 

intensities of    and    denote the strength of the scattering process for these two point-sources 

and  (   ) is a Dirac-delta function in space. Sub-cellular elements that make up a cell can be 

represented by such point scatterers. Let us further assume that there is a large aperture (of 

arbitrary shape) that is positioned at z=0 with a transmission function of  (   ) and that the 

digital recording device (e.g., a CMOS sensor array) is positioned at z=za+zs, where typically za 

is 3-10 cm and zs is 0.5-2 mm.  

 Assuming that a spatially incoherent light source uniformly illuminates the aperture  (   ), 

the cross-spectral density at the aperture plane can be written as 

 (             )   ( ) (     ) (     ) (     ), 

zs~1 mm

Spatially Incoherent Light

(FOV~24 mm2)

za~4 cm

Da~100 µm

Object Plane

Sensor Plane

 a s aD z z
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where (     )  and (     )  denotes two arbitrary points on the aperture plane and  ( ) 

represents the power spectrum of the incoherent source having its center frequency at    

(corresponding to the center wavelength of   ). After propagating over a distance of za in free 

space, one can write the cross-spectral density at the object plane (just before interacting with the 

cells) as
27
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 At the sensor plane (     ), one can then write the optical intensity  (     ) as 

 (     )  ∫  (             )    . 

Assuming  (   )       (     )     (     ), the optical intensity  (     )  can be 

further expanded into 4 terms, each with a different physical meaning, i.e.,  

 (     )     (     )+   (     )+   (     )    (     ) 

where 
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 and it represents the 2D coherent impulse 

response of free space over a distance of        . For the incoherent illumination source, I 

have assumed that the spectral bandwidth is much smaller than its center frequency   , i.e., 

 ( )     (    ). This is an appropriate assumption since the light sources (LEDs) that I 

have typically used in my experiments have their central wavelengths at 500-650 nm with a 

spectral FWHM of 10-15 nm. 

 In these derivations, paraxial approximation has also been assumed to simplify the results 

since za and zs for my hologram recording geometry are typically much longer than the extent of 

each cell hologram. However, such an approximation was not used in the numerical 

reconstruction process of the cell images, which will be further discussed later on in this chapter.  
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which physically represents the background illumination reaching the sensor plane and carries no 

spatial information regarding the cells’ structure or distribution. For typical illumination 

configurations,     constitutes a uniform or slowly-varying background, and hence can be 

digitally subtracted out without an issue. 

 Eqs. (3-1)-(3-4) are rather important to explain the key parameters in my partially-coherent 

lensless on-chip holography scheme utilizing an incoherent light source emanating through a 

large aperture. Eq. (3-1) includes the background illumination (   term) and the self-interference 

of the scattered waves (the terms that are proportional to |  |
  and |  |

 ), both of which represent 

the classical diffraction that occurs between the object and the sensor planes under the paraxial 

approximation. Note also that these self interference terms in Eq. (3-1) are scaled with  ̃(   ) as 

the physical extent of the spatial coherence at the cell plane is not a determining factor for self 

interference.  

 Eq. (3-2), on the other hand, represents the interference between these two scatterers located 

at the object plane. Just like self-interference, the cross-interference term,   (     ), is also not 

useful for holographic reconstruction of object images. Since this cross-interference term is 

proportional to the amplitude of  ̃ (
  

   
  ), two scatterers that are far from each other can still 

interfere effectively if a small aperture size is used (hence wide  ̃). The  ̃ (
  

   
  ) term predicts 

that, if    
   

  
  (where    is the aperture width), the cross-interference   (     ) from these 

two scattered fields will generate strong but undesired cross-interference patterns at the sensor 

plane. This conclusion is also supported by the fact that the coherence diameter at the object 

plane is on the order of  
   

  
, as estimated by van Cittert-Zernike theorem. Therefore, as 

another advantage of using a large aperture that is illuminated by an incoherent light source, this 
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cross-interference noise term,   (     ), will only contain the contributions of a limited number 

of cells within the imaging field-of-view since the extent of  ̃ (
  

   
  ) will be suppressed by a 

large aperture. Therefore, incoherent illumination through a large aperture will provide better 

image quality for characterizing dense cell suspensions such as undiluted semen samples.  

 The final two terms (Eqs. (3-3) and (3-4)) represent the holographic diffraction patterns in 

the recorded intensity and are the foci of all digital holographic imaging systems, including the 

on-chip implementation discussed in this chapter. Ideally, these terms should dominate the 

information content of the recorded intensity, which is typically true for weakly scattering 

objects. More specifically,   (     )  is the holographic diffraction of the first scatterer 

   (     ); and   (     ) is the holographic diffraction of the second scatterer    (  

   ). Since   
 (     ) creates twin image artifacts at the reconstruction plane when propagated 

in the reverse direction, the complex conjugate (c.c.) terms in Eqs. (3-3) and (3-4) represent the 

source of the twin images. Numerical elimination of these twin image artifacts will be discussed 

in Section 3.2. 

 As indicated by the terms inside the curly brackets in Eqs. (3-4), a scaled and shifted version 

of the aperture function  (   ) coherently diffracts around the position of each scatterer. In 

other words, each point scatterer projects a scaled version of the aperture function (i.e.,  (    

       )) to a location shifted by   folds from origin, and the distance between the object 

plane and the sensor plane is now also scaled by   folds (ie.,        ). It is also important to 

emphasize that the aperture size is effectively narrowed down by   fold at the object plane. For 

M >> 1 (typically 50-200), a spatially-incoherent light source through a large aperture can still 

provide coherent illumination to each cell individually for generating each cell’s holographic 

signature on the sensor plane. This is true as long as the cell’s diffraction pattern is smaller than 
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the coherence diameter at the sensor plane. In my geometry, coherence diameter is typically 

           and it is much larger than the practical width of cell holograms on the sensor 

plane, which is easy to satisfy especially for small zs values. Consequently, for a completely 

incoherent source emanating through an aperture width of    and illuminating a sensor area of  , 

the effective width of each point scatterer diffracting toward the sensor plane would be      

and the effective imaging field-of-view,    , would be     . Considering typical values for za 

(e.g., 3-10 cm) and zs (0.5-2mm), the scaling factor ( ) becomes >100 and    , as a result of 

which even a 50 µm wide pinhole would be scaled down to <500 nm and the entire active area of 

the sensor array now can be used as the imaging field-of-view (i.e.,      ).  

 Although the entire derivation above is based on the formalism of wave theory, the final 

result is also matched to a scaling factor of   
  

  
 (see Figure 3-1) predicted by simple 

geometrical optics. In the case of M>>1 with partially coherent illumination, each cell hologram 

only occupies a tiny fraction of the entire field-of-view and has little cross-talk with other cell 

holograms. As a result, unlike conventional lensless in-line holography, there is no longer an 

overall Fourier transform relationship between the sensor plane and the object plane. Such a 

spatial Fourier transform relationship exists only between each individual hologram and its 

corresponding cell. 

 According to Eqs. (3-4), a narrow enough  (           ) can ensure that the spatial 

features of the cells are not being washed out by partially-coherent illumination through a large 

aperture, as a result of which the modulation of the holographic term at the detector plane to be 

approximated as    (
 

      
(  

    
 )). Such a modulation term suggests that a large fringe 

magnification ( ) allows the use of a larger pixel size of the sensor array for recording the 

holographic fringes of the objects and effectively increases the numerical aperture of hologram 
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recording, which is then only limited by the sensor width. There are, however, also 

disadvantages for having a large  : (1) a coherent light source emanating through a small 

aperture is needed to provide high spatial coherence at the sensor plane, which results in a more 

complicated set-up in terms of alignment of optical components, increasing the overall cost and 

complexity of the imaging platform; and (2) the effective imaging field-of-view is also reduced 

by a factor of   . 

3.2 Digital iterative phase retrieval process and reconstruction of microscopic images 

In partially-coherent lensless on-chip holography with     since the incident wave on each 

cell has very small curvature in its wavefront, the recorded cell holograms can be reconstructed 

assuming plane-wave illumination. To propagate the wavefronts, an angular spectrum approach 

is used for numerically solving the Rayleigh-Sommerfeld integral. Within a linear and isotropic 

medium, this calculation can be done by multiplying the Fourier transform of the incident field 

with a transfer function defining this propagation, i.e.,: 
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where    and    are the spatial frequencies along x and y, respectively, and   is the refractive 

index of the medium. 

 Among various reconstruction methods used in digital holography literature,
18–22,51,69–72

 a 

simple yet effective phase-retrieval approach is chosen to reconstruct the microscopic images of 

cells (for both the amplitude and phase profiles) and eliminate the twin-image artifacts 

introduced by my in-line hologram recording geometry.
67,70

 With a finite support constraint 

defined around each object, this technique can iteratively recover the phase of the diffracted field 

from a single intensity image recorded by the sensor array. As a result, the complete complex 
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field (both the amplitude and phase components) of the cell holograms can be back-propagated 

to the sample plane for reconstruction of the object’s image without twin-image contamination. 

This numerical method can be summarized as follows: 

a) In the first iteration, the intensity of the recorded hologram is propagated back to the object 

plane by a distance of –   , assuming zero as the initial phase value for the complex field. Object 

support,  , is defined for each object either by thresholding the field amplitude at the object 

plane, or by finding its local maxima/minima. 

b) For the complex field at the object plane,     
 (   ), the values outside the object support are 

substituted with a background value     (   ), and the field inside the object support remains 

unchanged, i.e., 

    
 (   )  {

       
(   )      

     
   (   )        

 

where     (   ) is generated by back-propagating the square root of the background image 

(obtained in the absence of the objects) and       (    
   (   ))     (    

(   )) is a 

normalization factor. 

c) The modified field at the object plane is then propagated forward to the sensor plane, on which 

the updated phase of the sensor plane field remains unchanged but the amplitude is replaced with 

the square root of the original recorded hologram intensity. In other words, the measured 

amplitude of the sensor plane field will be kept constant throughout these iterations to ensure 

convergence of the phase. Accordingly, the complex diffraction field at the sensor plane after the 

i
th

 iteration,   
( )(   ), can be written as  

  
( )(   )  |  

( )(   )|      (  
( )

(   )) 
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where the superscripts refer to the iteration step, and   
( )

(   ) denotes the phase of the field at 

sensor plane after the i
th 

iteration. After this modification, the sensor plane complex field is again 

propagated backward to the object plane to get the updated object field. 

 By iterating between steps b and c, the phase values of the sensor field typically converge 

within 15-20 iterations. Once converged, the complex field is propagated backward to the object 

plane as the final output of the microscopic cell images containing both amplitude and phase 

profiles. 

3.3 Experimental demonstration of lensfree on-chip microscopy 

The efficacy of the presented computational lensfree microscopy approach has been tested by 

identifying and counting various cell types in human blood on a chip.
73

  

 First the cytometry performance of this lensfree approach was quantified by imaging whole 

blood samples at various dilution levels and was compared to the texture matching approach 

introduced in Chapter 2. Fig. 3-2(a) illustrates the lens-free red blood cell (RBC) hologram 

amplitudes, as well as their reconstructed images for various cell density levels, which clearly 

indicate the strength of the digital holographic reconstruction to handle highly dense cell 

solutions. Considering the highest concentration in Fig. 3-2(a), where all of the lens-free RBC 

holograms are completely overlapping (because of a high cell density of ~400,000 cells/L), 

using the complementary information of the reconstructed cell images, one can individually 

separate the 2D holographic signature (both phase and amplitude) of any given cell within the 

hologram crowd. This duality between cell hologram texture and the digitally reconstructed cell 

images is especially useful for characterization of dense cell solutions such as whole blood 

samples. 



37 

 

Figure 3-2 | (a) Raw holograms, digital reconstructions, and microscope images of whole human blood sample 

with various concentrations are shown. More than 90% of the cells are red blood cells (RBC). (b) Automated 

counting accuracy of the proposed incoherent cell holography method is illustrated at various RBC densities 

ranging from ~20,000 cells/µL up to ~400,000 cells/µL. Cell counting with 2D texture of raw cell holograms 

starts to lose its accuracy for densities beyond 100,000 cells/µL. The inset in (b) also illustrates a verification 

of RBC volume histogram that is estimated based on holographic reconstructions with a commercially 

available hematology analyzer.  

 In addition, for each dilution level, the density of RBCs based was measured on automated 

counting of digitally reconstructed cell images. The counting results Fig. 3-2(b) revealed that the 

reconstructed cell images yielded an absolute error rate of ~5%, up to a cell density of ~400,000 

cells/µL, when compared to counting results of the same FOV obtained using a conventional 

lens-based microscope.  

 To further validate the holographic characterization results, the inset in Fig. 3-2(b) also 

illustrates a comparison of RBC volume histogram that is estimated based on the same digital 

reconstructions against a commercially available Coulter counter (Coulter LH750, Beckman 

Coulter), which showed a good fit to the results. In these cell volume calculations, it was 
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assumed that RBCs are phase-only objects with an average refractive index of ~1.4. Under these 

assumptions, the thickness of each RBC becomes proportional to its recovered and unwrapped 

optical phase, and the base area of each RBC can be estimated by simple thresholding of the 

recovered phase images. The cell volume of each RBC was then estimated by the product of its 

thickness and base area. 

 Lastly, the sub-cellular structure resolving capability of the presented lensfree microscopy 

approach was tested on blood smear samples that are prepared in accordance with conventional 

staining protocols.
73

 Figure 3-3 illustrates the holographic imaging results of these blood smear 

samples, focusing specifically on the holographic signatures (both amplitude and phase) and the 

reconstructed microscopic images of various blood cells such as granulocytes, lymphocytes, 

monocytes, and platelets. These results, and their comparison to 40x -lens microscope 

images (NA~0.6), indicate that the reconstructed holographic images can be used to discriminate 

sub-cellular differences among three major types of white blood cells (WBC) (i.e., granulocytes, 

lymphocytes, and monocytes), and have the potential to provide three-part differential WBC 

analysis within the same lensfree digital platform. Note also that some of the platelets in these 

images are located at a different depth of field than the WBC, which is why they do not appear in 

some of the reconstructed images.  



39 

 

Figure 3-3 | Holographic imaging results of a blood smear sample, illustrating the lensfree shadow signatures 

of three major types of white blood cells (i.e., granulocytes, lymphocytes and monocytes) and platelets. Different 

than Fig. 8, these stained cells are imaged in a dry smear condition. Through iterative holographic processing, 

the lost phase information of each cell hologram is recovered (second column), which then leads to 

reconstruction of amplitude and phase images of the cells (3
rd

 and 4
th

 columns on the right). The same field of 

view in each case is also imaged using a 40X objective lens (NA=0.6) for comparison purposes (the 5
th

 column 

on the right). Scale bars, 20µm. 

 According to the results presented here and in the related publication,
67,73

 it can be concluded 

that such a computational lensfree microscopy approach can achieve a spatial resolution of 1-2 

μm (NA~0.2) in a very compact and cost-effective setting, which can be very valuable for 

analyzing the micro-organisms that are involved in pandemic diseases in resource-limited areas, 

such as HIV, malaria, or infectious diarrhea. 

3.4 Conclusion 
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In this chapter, I reviewed the fundamental principles of on-chip in-line holography with 

partially coherent illumination as well as the techniques that are used to reconstruct the 

microscopic amplitude and phase images of the micro-objects or cells. Through experiments 

with whole human blood, I demonstrated that this lensless imaging approach can reconstruct 

their microscopic amplitude and phase images with a resolution of 1-2 μm for accurate 

characterizing cells at densities up to 0.4 million cells/µL. With resolution and sensitivity that 

can differentiate between various white blood cell sub-types such as granulocytes, monocytes 

and lymphocytes, such lensless on-chip holography technology will be especially useful for 

point-of-care cytometry and diagnostics applications involving global health problems such as 

HIV,
74

 malaria,
75

 or infectious diarrhea.
76
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Chapter 4 Compact and Light-Weight Automated Semen Analysis 

Platform Using Lensfree on-Chip Microscopy 

4.1 Introduction 

Semen analysis is an important routine that is extensively practiced in laboratories for evaluating 

male fertility
77

 and preparing artificial insemination.
78

 To determine the sperm concentration in 

semen, visual assessment by putting the sample into a counting chamber and then manually 

counting the sperms through an optical microscope is still the gold standard. Not only that this 

method is recommended by the World Health Organization (WHO), but also it is widely used in 

most laboratories that process semen.
79

 Due to the labor intensive nature of this manual method, 

several other optical approaches, including turbidimetry,
80,81,82,83,84,85,86,87

 laser Doppler 

velocimetry,
88,89,90,91,92,93

 and photon correlation spectroscopy,
94,95,96

 have also been proposed to 

automatically analyze semen. However, these approaches are still not widely adopted partially 

because they can only provide indirect estimations of the sperm concentration and motility.  

 Currently, Computer-Assisted Semen Analysis (CASA) systems,
97–103

 which utilize pattern 

analysis algorithms to automatically process the images recorded with a conventional optical 

microscope, is considered as one of the most promising technologies to replace the traditional 

manual semen analysis method. An important feature of CASA systems is their ability to provide 

quantitative information about sperm motility, such as the speed distribution of individual 

sperms, which has been proven to be rather important for predicting fertilization rate
104,105

 as 

well as for evaluation of the correlation between various drugs and sperm quality.
106,107

 However, 

despite the fact that state-of-the-art CASA systems are very efficient and versatile, their 

relatively large dimensions, high cost and maintenance needs partially hinder their wide-spread 
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use in fertility clinics. For the same reason, application of this platform to field-use in veterinary 

medicine such as stud farming and animal breeding
108,109,110

 has also been significantly limited.  

 In addition to these, commercially available male fertility test kits for personal home use, 

such as FertilMARQ
111

 or SpermCheck,
112

 also aim to indirectly quantify sperm concentration 

by a color change due to chemical staining or labeling of sperm-specific proteins. These tests, 

however, cannot quantify sperm motility or the concentration of motile sperms. Recently, an 

alternative semen analysis platform involving a compact micro-fluidic device that can measure 

electrical impedance changes due to sperm movement has also been reported.
113

 However, this 

lab-on-a-chip platform can only provide the total number of the sperms in the sample and cannot 

differentiate motile and immotile sperms from each other, which is an important limitation. 

 In this chapter, as an alternative approach, I present a compact and light-weight platform to 

conduct automated semen analysis on a chip. At the core of my technology lies a lensfree 

holographic on-chip microscope (see Fig. 4-1) which weighs ~46 grams and measures ~ 4.2  

4.2  5.8 cm  providing an imaging field-of-view (FOV) of ~24 mm
2
 together with an effective 

numerical aperture (NA) of ~0.2.
67

 This imaging FOV is more than 20 fold larger than the FOV 

of a typical 10X objective-lens, and therefore provides a significant throughput advancement that 

permits automated monitoring of hundreds to thousands of sperms all in parallel. This lensfree 

on-chip microscope is based on digital in-line holography, and it utilizes an incoherent or 

partially coherent light source (such as a light emitting diode - LED) that is filtered by a large 

aperture of ~0.1mm to illuminate the sample of interest as illustrated in Fig. 4-1. Over a short 

propagation distance of ~4 cm, this illumination light picks up partial spatial coherence, after 

which it scatters from each sperm to coherently interfere with the background light, forming 

lensfree holograms of the sperms over a large FOV (~24 mm
2
). These lensfree sperm holograms 
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can then be rapidly processed (e.g., <1 sec) using a Graphics Processing Unit (GPU) to 

reconstruct their microscopic images (both amplitude and phase
67

) as illustrated in Fig. 2.  

 To conduct automated semen analysis using this lensfree holographic microscope (Fig. 4-1), 

I captured ~20 holographic frames over ~10 seconds for each semen sample. Quite conveniently, 

digital summation of all these lensfree frames removed the moving sperms out of the picture and 

enabled the platform to rapidly count only the immobile sperms based on the reconstructed phase 

images. On the other hand, digital subtraction of these consecutive holographic frames from each 

other this time removed the immobile sperms out of the picture, leaving behind only the moving 

ones, which permits automatic quantification of the individual speed and the trajectories of all 

the motile sperms within an FOV of ~24 mm
2
. I also validated the performance of this platform 

for automated semen analysis by comparing my results against manual analysis of the same 

samples conducted using a conventional bright-field microscope. 

 

Figure 4-1 | A lensfree holographic on-chip microscope that measures 4.24.25.8 cm and weighs 46 grams is 

shown. The embedded light source (an LED filtered by a pinhole) and the CMOS image sensor are both 

powered through a USB connection from the side. This compact on-chip microscope can provide both 
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amplitude and phase images of the sperms (loaded within a sliding tray) over a field-of-view of 24 mm2 with 

an effective numerical aperture of ~0.2.  

I believe that such a compact, light-weight and cost-effective automated semen analysis platform 

running on a wide-field lensfree on-chip microscope would be especially useful for fertility 

clinics, personal male fertility tests, as well as for field-use in veterinary medicine. 

4.2 Experimental Methods 

Lensfree holographic on-chip microscope: A self-contained on-chip microscope (see Fig. 4-

1) is designed to record the holographic images of the semen samples over a field-of-view of ~24 

mm
2
 with an effective NA of ~0.2 without utilizing any lenses or scanning mechanical 

components.
67

 This entire lensfree on-chip microscope assembly weighs ~46 grams and 

measures ~ 4.2 cm  4.2 cm  5.8 cm. Inside this on-chip microscope, a simple light-emitting 

diode (LS E67B, OSRAM Opto Semiconductors, center wavelength: 645 nm, bandwidth: ~15 

nm) is filtered by a 0.1 mm pinhole to provide partially coherent illumination over the semen 

sample that is placed at a distance of ~4 cm from the source. Lensfree holograms of the sperms 

are recorded by a monochrome CMOS image sensor (MT9P031STM, Aptina Imaging, 2.2 µm 

pixel size, 5 megapixel, 24 mm
2
 active area). This entire imaging system, including the light 

source and the sensor-chip, is powered and controlled by a laptop computer through a USB 2.0 

connection. A smart-phone or a personal digital assistant (PDA) could also be used for the same 

purpose. The sample of interest is loaded into this microscope using a sliding tray and held at ~1 

mm above the active area of the CMOS image sensor. 

Sample preparation: Frozen semen specimens were obtained from California Cyrobank and 

were stored in liquid nitrogen. Before use, the specimen vials were thawed in 37C water bath 

for 10 minutes to revive the sperms. A sperm washing medium (9983, Irvine Scientific), pre-
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mixed with a small number of 20 μm polystyrene microspheres (4220A, Thermo Scientific, ~40 

beads/μL), was used to dilute the semen sample to a desired concentration. The diluted semen 

was pipetted into a glass sperm counting chamber (DRM-600, Millennium Sciences, chamber 

depth: 20 µm) and then enclosed with a No. 1 glass cover slip (12-548A, Fisher Scientific) to 

suppress liquid evaporation. The added microspheres act as mechanical spacers to ensure a 

constant chamber height and a uniform sperm distribution. For preparing semen samples with 

immobilized sperms, the diluent was replaced by a bicarbonate-formalin diluting fluid (6710-4, 

Ricca Chemical) while the rest of the procedures remained the same.  

Hologram recording and automated sperm analysis: 20 consecutive lensfree holographic 

frames for each semen sample of interest were recorded using the on-chip microscope shown in 

Fig. 4-1 at a frame rate of 2 frames per second (FPS) and an integration time of ~35 milliseconds 

per frame. Two different processing approaches, digital summation and subtraction of these 

lensfree holographic frames, were applied to separately identify and quantify the immotile and 

the motile sperms in the semen sample. 

 For identification and quantification of the immotile sperms, all the individual holographic 

images were normalized to their own mean intensity and then were summed up digitally. This 

summation operation not only increases the digital signal-to-noise ratio (SNR) of the immotile 

sperms’ holograms, but also smears out the lensfree holograms of the motile sperms. As a result, 

this step creates sufficient contrast and SNR to observe the faint images of the sperms’ tails, 

which enables automated identification of their signatures from the background (see e.g., Fig. 4-

2). 
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Figure 4-2 | (a) The reconstructed phase image contains 8 sperms with different morphologies and 

orientations. (b) A new image was digitally generated by thresholding the intensity of the image shown in (a) 

to highlight the position and the orientation of each sperm head. The red lines indicate the orientations (i.e., 

the major axis) of the elliptical sperm heads. (c) A ridge map of the original phase image shown in (a) was 

generated using a determinant-of-Hessian filter. Positions of the sperm heads in this image are marked with 

red circles. (d) By matching the orientation of each sperm head (red lines in (b)) with the orientation of the 

sperm tails (labeled by green curves in (d)), viable sperms within the sample were automatically identified.  

 Next, an iterative holographic reconstruction algorithm
67

 was used to process this summation 

hologram and reconstruct the microscopic images (containing both amplitude and phase 

information, see e.g., Figs. 4-3(c-d) and 4-4(b-c)) of the immotile sperms. Towards automated 

counting of immotile sperms, candidate objects were initially screened by their distinct and 

bright elliptical heads in the reconstructed phase images (see e.g., Fig. 4-2(d)). These immotile 

sperm candidates were isolated from the background through a threshold operation, where pixels 

(a) Original Phase Image (b) Image after Thresholding

(c) Ridge Map (d) Detection Results

50µm

50µm

50µm

50µm
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above a certain intensity value were grouped together. After this thresholding step, several digital 

properties of each connected region were calculated such as its pixel area, orientation, and a 

coefficient indicating the object circularity.
57

 Thresholded regions of invalid size or shape were 

discarded, and a line was fitted to match the orientation and the length of the fitted ellipse to each 

sperm head (shown with red colored lines in Fig. 4-2(b)). Following this initial screening step, 

the tail of each sperm must also be identified and matched to its corresponding sperm head 

orientation. The condition for a viable sperm is the presence of a healthy tail (in accordance with 

the WHO laboratory manual
79

); and therefore for a positive count, the tail must have an adequate 

length that is also aligned with the orientation of the sperm head. Towards this end, for digital 

enhancement of the contrast of each tail in the reconstructed phase image, a determinant-of-

Hessian filter
114

 was applied to extract the ridge-like features of each individual sperm tail (see 

Fig. 4-2(c)). A threshold was then applied to the resulting image after which the tails were 

identified by searching for the remaining ridges in the neighborhood of the endpoints of each 

head orientation line (i.e., by matching the green and red lines as shown in Fig. 4-2(d)). If a ridge 

is absent from this sperm head neighborhood, or if the tail is not long enough, or has an abnormal 

shape it was discarded. All the valid sperms were then automatically counted and marked in the 

image for further comparison, if necessary. 

 Quantification of the motile sperms in semen is a relatively easier task for my technique 

since the only moving objects within the sample are the motile sperms. For this purpose, 

consecutive lensfree holographic frames were digitally subtracted from each other to create new 

digital holograms (see e.g., Fig. 4-3(a)) that represent differential motion of the sperms. The 

same iterative algorithm
67

 discussed above was then used to reconstruct the differential motion 

of the motile sperms as shown in Fig. 4-3(b). In these reconstructed holographic images, the 
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motion of each sperm generates one negative (dark) and one positive (bright) spot, which 

indicate the start and the end positions of the sperm’s motion, respectively. Therefore, by 

quantifying the relative distance between these bright and dark spots I can simultaneously infer 

the speed and the trajectories of all the motile sperms within my imaging field-of-view (~24 

mm
2
). For this purpose, the locations of these spots were identified by simple thresholding 

followed by calculation of their centroid positions.
115

 As a result of this, the displacements of 

individual sperms between consecutive holographic frames can be easily calculated by using the 

shortest distance between the centroid positions of each dark-bright spot pair (see e.g., Fig. 4-

3(b)). These displacements of motile sperms in all consecutive frames were then linked to each 

other to plot the dynamic trajectories of the sperms within my FOV (see e.g., Fig. 4-4(a)). The 

average speed of each motile sperm was calculated by summing up the magnitudes of its 

displacements in all frames and dividing this sum with the total duration of the frame acquisition. 

 

Figure 4-3 | (a) A digitally subtracted lensfree hologram of three moving sperms is generated from two 

successive frames (500 milliseconds apart) (b) A microscopic image, that is digitally reconstructed from the 

lensfree differential hologram shown in (a), illustrates the positions of three sperms in two successive frames 

(white spots show the sperms’ end positions and black spots show their starting positions). The displacement 

vectors of these sperms are labeled as S1, S2, and S3. 

Sperm Displacement 100 µm

S1

S2

S3

(b) Reconstructed Image(a) Digitally Subtracted Hologram

100 µm
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 Digital processing of the acquired lensfree holographic images, including both immotile 

sperm detection and motile sperm tracking, were implemented in Matlab. The computation time 

for each semen sample was ~15 min for ~24mm
2
 FOV using a PC with an Intel Core2Duo 

E8400 3.00 GHz CPU. By moving these image processing routines to a GPU (e.g., NVIDIA 

GeForce GTX 285), the time required to analyze each semen samples can be significantly 

reduced (by e.g., >10X). 

Microscope comparisons to validate lensfree on-chip imaging: To verify my automatic 

characterization results made with this holographic on-chip microscope, videos of the same 

semen samples were also recorded using a conventional bright-field microscope (ME300TZ-2L-

5M, AmScope). For each semen sample, these videos were recorded across ≥ 9 adjacent FOVs 

(~0.20 mm
2
 each) using a 20X objective-lens (NT38-339, Edmund Optics, NA = 0.4). Motile 

and immotile sperms were then separately counted on the recorded video by visual inspection, 

following the WHO guidelines.
79

 For samples that had less than 0.5 million motile sperms per 

mL, videos were also recorded with a 10X objective-lens (NA = 0.25) that had a relatively larger 

field-of-view than a 20X objective-lens. However, these lower resolution videos were used for 

counting of motile sperms only, and were not used to quantify immotile sperm densities. The 

conventional bright-field microscope videos were always recorded right before the semen 

samples were imaged by the holographic on-chip microscope. The delay between these two 

imaging modalities was kept below 30 seconds to minimize the error from the change of semen 

status. CASA systems were not used for validating my automatic counting results because they 

are commonly believed to be less reliable than the manual method – which is still considered as 

the gold standard right now. 

4.3 Results and Discussion 
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To demonstrate the capabilities of my platform shown in Fig. 4-1 for automated detection of 

sperms from their lensfree holograms, I initially worked with semen samples that had 

immobilized sperms. In these experiments, lensfree holograms of the immobilized sperms were 

digitally reconstructed as detailed in the Methods Section to yield both an amplitude and a phase 

image of each sperm over an imaging FOV covering ~24 mm
2
. As examples, Figs. 4-4 and 4-5 

digitally focus on smaller regions of this FOV to illustrate some of these raw lensfree holograms, 

and their corresponding reconstruction results.  

 

Figure 4-4 | (a) A digitally cropped lensfree hologram of an immobilized semen sample (6.05 million sperms 

per mL) that is acquired with the unit in Fig. 1(a) is shown. (b) For comparison purposes, a bright-field 

microscope image of the same FOV as in (a) is acquired with a 40X objective-lens (NA=0.65). (c) The 

amplitude image reconstructed from the raw hologram shown in (a) for the same FOV indicates the locations 

of the heads of the sperms. (d) The phase image reconstructed from the raw hologram shown in (a) for the 

same FOV illustrates both the heads and the tails of the sperms. (e) Automatic characterization results that 

are generated based on the reconstructed phase image in (d) are illustrated. The elliptical areas 

corresponding to sperm heads are enclosed by red circles while the tails are labeled with green lines. 

(b) 40X Bright-field Objective(a) Recorded Hologram

(c) Reconstructed Amplitude (d) Reconstructed Phase

50µm

(e) Automatic Detection

50µm

50µm 50µm 50µm
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Defective sperms with missing or unusually curved tails (marked with the white arrows in (e)) are not 

reported towards positive sperm counts.  

 

Figure 4-5 | (a) A digitally zoomed lensfree hologram of an immobilized semen sample (1.63 million sperms 

per mL) is shown. The darker holograms correspond to 20µm beads that were used as mechanical support 

(see the Methods section), whereas the rest of the lensfree holograms correspond to sperms. The region 

labeled by a white dashed box stands for the corresponding FOVs of (b), (c), and (d). (b) The amplitude image 

reconstructed from the raw hologram shown in (a) indicates the locations of the sperm heads over a zoomed 

FOV. (c) The phase image reconstructed from the raw hologram shown in (a) illustrates both the heads and 

the tails of the sperms over a zoomed FOV. (d) Automatic characterization results are generated based on the 

phase image shown in (c). The heads of the sperms are marked by circles and the tails are labeled with green 

lines. Defective sperms with missing or unusually curved tails are not reported towards positive counts. 

200 µm

50 µm

50 µm

50 µm

(d) Automatic Detection

(a) Recorded Hologram (b) Reconstructed Amplitude

(c) Reconstructed Phase
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 An interesting observation based on these images is that the sperm tails can only be observed 

in the reconstructed phase images, while the heads of the sperms are clearly visible in both the 

amplitude and the phase images (see e.g., Figs. 4-4(c-d) or 4-5(b-c)). The main reason behind 

this behavior is that the tail of a sperm is a sub-micron structure which generates a rather weak 

scattering signal. Therefore, with the limited NA and SNR of my wide-field lensfree microscope, 

such a small feature does not contribute enough scattering signal to be reconstructed in the 

amplitude image. On the other hand, the refractive index difference between the tail and the 

surrounding medium still creates a sufficient contrast in the reconstructed phase image, 

permitting observation and automated detection of the sperm tails as described in the Methods 

Section. In these results presented in Figs. 4-2, 4-4(d-e), and 4-5, the tail of each sperm was 

automatically identified and matched to its corresponding sperm head orientation. In this process, 

some of the sperms were disqualified from a positive count because of unusually curved tails 

(refer to the Methods Section for details). To further validate my analysis, these automatic 

detection results were also compared against a regular microscope image taken on the same 

field-of-view as shown in Fig. 4-4(b) and 4-4(d-e). 

 To demonstrate the performance of my platform on quantification of motile sperms, I 

characterized several semen samples with varying sperm concentrations. Figs. 4-3, 4-6, and 4-7 

show the differential imaging and automated tracking results of some of these semen samples. 

As detailed in the Methods Section, digital subtraction of consecutive frames from each other 

removes all the stationary holograms and leaves behind only the differential holograms of the 

motile sperms, as also illustrated in Figs. 4-3(a) and 4-7(a). Therefore, each motile sperm has a 

distinctive signature on the new differential hologram that represents the magnitude and the 

direction of the sperm displacement between these two consecutive frames. Performing 
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holographic reconstruction on these differential holograms reveal two spots for each motile 

sperm: one dark spot indicating its start position and another bright one indicating its end 

position (see e.g., Fig. 4-3(b) or 4-7(b)). Based on these reconstructed differential images, I have 

quantified the dynamic trajectories of the motile sperms over my entire imaging FOV (~24 mm
2
) 

as illustrated in Fig. 4-6(a) or 4-7(c). For further quantification of the sperms shown in Fig. 4-

6(a), the displacements of all these motile sperms were linked across all the 20 lensfree frames 

acquired over ~10 seconds, which enabled us to determine the speed histogram of the sperms as 

shown in Fig. 4-6(b). Similar results were also obtained at different sperm concentrations as 

illustrated in Fig. 4-7 for 2.36 million sperms per mL. This average speed histogram calculated 

by my system is essentially equivalent to the distribution of Straight-line Velocity (also known as 

VSL) of the sperms, which is reported to highly correlate with fertilization rate,
104

 suggesting 

that the average sperm speed provided by my platform could be an effective indicator of male 

fertility. 

 

Figure 4-6 | (a) Dynamic trajectories of 221 sperms within a field-of-view of ~24 mm
2
 are automatically 

tracked over a time-span of 10 seconds. The blue spots mark the end positions of the tracked sperms, while 

the green lines refer to their trajectories. (b) The speed histogram of these motile sperms is calculated using 

1 mm

Sperm Trajectories over 10 sec
(FOV  ~ 24 mm2)

(a) 221 Sperms are auto-tracked
Median Speed = 40 µm/sec

Mean Speed = 42 µm/sec

(b)

Speed (µm/sec)
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the information in (a) by summing the sperm displacements from all the consecutive frames and then dividing 

this sum by the total image acquisition duration. 

 

Figure 4-7 | Same analysis as in Figs. 4-3 and 4-6, this time for a more dense semen sample (2.36 million 

sperms per mL) is illustrated. The dynamic trajectories (green lines in (c)) of 1131 sperms within a field-of-

view of ~24 mm
2
 are automatically tracked over a time-span of 10 seconds. From these measurements, the 

speed histogram of these motile sperms is calculated as shown in (d). 

 Finally, using my on-chip imaging platform, I characterized 12 semen samples containing 

both immotile and motile sperms at varying concentrations to validate the automated counting 

accuracy of my system. In Fig. 4-8, my automatic counting results were compared against 

manual counting results achieved using a bright-field microscope (see the Methods Section). 

This comparison confirmed that my automated analysis can accurately quantify the concentration 

100 µm

(a) Digitally Subtracted Hologram

100 µm

1 mm

Recorded for 10 sec 
over the FOV of ~24 mm2

1131 Sperms are auto-tracked

Median Speed = 15.9 µm/sec
Mean Speed = 17.2 µm/sec

(c) Sperm Trajectories (d)

(b) Reconstructed Image

Speed (µm/sec)
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of both immotile and motile sperms up to a density of 8.3 and 6.8 Million/mL, respectively. Such 

a working range allowed my system to reliably analyze human semen samples that were diluted 

by 10 folds. In addition to this, Fig. 4-8 also revealed my automated platform’s superior ability to 

analyze semen samples with very low sperm concentrations. For example, the lowest 

concentration reported in Fig. 4-8 (b), 87,500 sperms/mL, corresponds to ~42 sperms tracked by 

my system over its 24 mm
2
 field-of-view. To achieve the same level of statistical 

characterization accuracy for such a low density semen sample, a conventional microscope 

equipped with a 20X objective-lens would need to look at close to 100 different field-of-views, 

making it quite inconvenient. Therefore, the large field-of-view of my lensfree on-chip imaging 

platform is also quite valuable for providing quantitative results at extremely low sperm densities 

such as observed in post-vasectomy.
116,117 

 

Figure 4-8 | Counting accuracy of the presented automated semen analysis platform for (a) immotile sperms; 

(b) motile sperms; and (c) both the motile and immotile sperms is illustrated at various sperm concentrations 

up to 12.510
6

/mL. The x-axes are the sperm concentrations that are manually counted using a conventional 

bright-field microscope. The y-axes are the sperm concentrations that are automatically counted for the same 

semen samples using lensfree holographic images acquired with the on-chip microscope shown in Fig. 1(a). 

The total counts in (c) are the summed up concentrations of the immotile sperms in (a) and the motile sperms 
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in (b). Correlation coefficients (r) of these characterization results shown in (a), (b), and (c) (0.98, 0.99, and 

0.98, respectively) further validate the accuracy of this compact and light-weight holographic lensfree 

microscope as a semen analysis platform. 

 The potential applications of this semen analysis platform include automated sperm counting 

in fertility clinics, semen quality evaluation in sperm banks, personal male fertility test at home, 

post-vasectomy follow-up check either at home or in clinic, stud performance assessment at 

animal breeding centers, and stud health monitoring in the stud farms. By using a larger-area 

image sensor, this platform can be transformed into a high-throughput multi-tasking test platform 

that can measure sperm’s response to different drugs or chemicals of different concentration in 

parallel.  

4.4 Conclusion 

In this chapter, I demonstrated a compact and light-weight platform to conduct automated semen 

analysis using a lensfree on-chip microscope, which weighs ~46 grams and measures ~ 4.2 cm  

4.2 cm  5.8 cm.
118

 Therefore, it fills up an important gap between simple qualitative male 

fertility test kits and sophisticated quantitative characterization systems based on e.g., CASA. In 

a very compact and light-weight format, this platform can provide quantitative semen analysis 

including the measurements of the absolute concentrations of both motile and immotile sperms, 

as well as the trajectories and the speed distributions of motile sperms. Since several different 

factors other than the sperm concentration are now being used to predict fertility,
119

 such a 

compact and versatile semen analysis tool could be very useful for fertility clinics, personal male 

fertility test kits, as well as for field-use in veterinary medicine. 
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Chapter 5 High-Throughput Lensfree 3D Tracking of Human 

Sperms Reveals Rare Statistics of Helical Trajectories 

5.1 Introduction 

Observing three-dimensional (3D) trajectories of sperms is in general a challenging task. This is 

partially due to limited imaging volume of optical microscopes that are based on conventional 

lenses. For human sperms this becomes even more challenging since the sperm head is small 

(e.g., 3-4 µm) demanding a relatively high-magnification objective-lens, and moves rather fast 

(e.g., 20-100 µm/sec) which makes it difficult to track their 3D swimming patterns as they 

quickly move out of the observation volume of an objective-lens. Partly due to this low 

throughput and the limited spatial and temporal sampling windows that conventional 

microscopes provide, natural 3D swimming patterns of human sperms and their statistics could 

not be reported so far. Earlier results120–125,99,126–135 that were obtained using lens-based 

conventional microscopes either measured the 2D trajectories of the human sperms along a focal 

plane, or reported on sperms of other species such as sea urchin, which were significantly easier 

to resolve under a microscope since their 3D rotation diameter is larger (e.g., >13 µm) together 

with a lower rotation frequency compared to human sperms. 

 Here I report a new technique that is based on lensfree holographic imaging on a chip to 

dynamically track the 3D trajectories of human sperms across a large volume of e.g., 8-17 mm
3
 

(see Fig. 5-1) with sub-micron positioning accuracy. This platform can track >1,500 individual 

human sperms over several hours, obtaining massive statistics about their 3D swimming patterns 

across 10-20 seconds for each continuous pattern. The large statistics provided by this lensfree 

computational imaging platform enabled me to observe, for the first time, the helical trajectories 
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of human sperms, exhibiting a tight helix radius of 0.5-3 µm, a helical rotation speed of 3-20 

rotations/sec and a linear speed of 20-100 µm/sec. Furthermore, this platform revealed that only 

4-5% of the motile human sperms swim along well-defined helices, and that this percentage of 

helical sperms can be considerably suppressed using seminal plasma. Quite interestingly, I also 

observed that a significant majority (e.g., ~90%) of these rare helical sperms preferred right-

handed helices over left-handed ones, which is an observation that is enabled by the large spatial 

and temporal measurement windows that my on-chip imaging platform provides. 

 Compared to earlier reports that also used holographic imaging techniques19,136–143 to track 

sperms or other micro-organisms, my approach is lensfree (Fig. 5-1) and therefore exhibits a 

significantly larger imaging field-of-view of e.g., >17 mm
2
 together with unit fringe 

magnification, while still achieving sub-micron positioning accuracy that is necessary to observe 

human sperms’ tight helical paths. Furthermore, instead of using a laser source with high degree 

of coherence, I use partially-coherent illumination (both spatially and temporally) at two 

different wavelengths emanating from two light-emitting-diodes (LEDs) that are placed at 45 

degrees with respect to each other. This partially-coherent multi-angle illumination at two 

different wavelengths (i.e., blue and red) significantly suppresses speckle and multiple-reflection 

interference noise terms as well as cross-interference among sperms’ diffraction patterns which 

make it feasible to track >1,500 sperms with sub-micron positioning accuracy. My results on 

human sperms demonstrate the unique capabilities of this high-throughput on-chip imaging 

platform by resolving the tight and rapidly evolving rare helical trajectories of motile sperms. 

Finally, the same technique might in general be widely applicable for observing the statistical 

swimming patterns of various other micro-organisms, leading to new insights in their 3D motion 

and the underlying bio-physics. 
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5.2 Methods 

Preparing and incubating human sperm suspension. Fresh semen specimens within less than 

one hour after collection (from anonymous donors) were obtained from California Cryobank 

(CA, USA) without pre-processing. Only specimens with high sperm concentration (>5010
6
 

sperms per mL) and high motility (>70% motile) were used in my experiments. The motile 

sperms were first separated from seminal plasma by centrifugation with density gradient media 

(ISolate, Irvine Scientific, CA, USA) and then washed twice with artificial human tubal fluid 

(HTF, Sperm Washing Medium, Irvine Scientific, CA, USA) to completely remove the residue 

of seminal plasma. After the second washing step, the sperms were re-suspended with various 

culture media in centrifuge tubes at a concentration of ~1010
6
 sperms per mL and incubated at 

37°C with pH buffer HEPES until my imaging measurements. Three different culture media 

were used in this work: (i) Baseline medium, which only contained artificial HTF; (ii) 

suppressing medium I, which was prepared by mixing seminal plasma with HTF by a ratio of 1 

to 9; and (iii) suppressing medium II, which was prepared by mixing seminal plasma with HTF 

by a higher ratio of 2 to 8. For all my imaging experiments except the time-traced ones (e.g., Fig. 

5), the sperm suspensions were incubated for 2-3 hours. Right before lensfree imaging 

experiments, 50-150 μL of the sperm suspension was put into a disposable observation chamber 

prepared by taping a laser-cut Acetal film (0.1-0.5 mm thick) between two pieces of No. 1 cover 

slips. 
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Figure 5-1 | Dual-view lensfree 3D tracking of human sperms. (a) The schematic diagram of the imaging 

system. Two partially-coherent light sources (i.e., red and blue LEDs at 625 nm and 470 nm, respectively) are 

butt-coupled to multi-mode fibers (0.4 mm core diameter each) to simultaneously illuminate the sperms at 

two different angles (red at 0 and blue at 45). A CMOS sensor chip records the dual-view lensfree 

holograms that encode the position information of each sperm. The 3D location of each sperm is determined 

by the centroids of its head images reconstructed in the vertical (red) and oblique (blue) channels. This 

schematic diagram is not drawn to scale. (b) The reconstructed 3D sperm trajectories. 1,575 human sperms 

inside a volume of 7.9 L were tracked at a frame rate of 92 FPS. The time position of each track point is 

encoded by its color (see the color-bar). 
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 Dual-view and multi-color lensfree holographic imaging set-up. The configuration of my 

imaging set-up is illustrated in Fig. 5-1(a). The observation chamber containing the sperm 

suspension is placed directly on top of the protective glass of a CMOS image sensor (Aptina 

MT9P031STC, 5 megapixels, 2.2 m pixel size, monochrome) creating a physical distance of 

~0.8 mm between the bottom of the chamber and the top surface of the CMOS sensor active area. 

The sample suspension is simultaneously illuminated by two partially-coherent light sources 

with different central wavelengths placed at 45 degrees with respect to each other (vertical one: 

625 nm; oblique one at 45 degrees: 470 nm). Both light sources were composed of light-

emitting-diodes (LEDs, bandwidth ~20 nm) that were simply butt-coupled to multi-mode optical 

fibers (core size: 0.4 mm) with the fiber tips placed at a distance of ~10 cm from the sample 

chamber. Such a system, without utilizing any lenses or mechanical-scanners, can simultaneously 

record in-line holograms of the sperms from two different viewing angles over a large field-of-

view of e.g., >20 mm
2
, while also significantly reducing unwanted noise terms such as speckle 

patterns, multiple reflection interference noise or cross-interference among sperms’ 

holograms.67,144  

  To capture the dynamics of the sperms with minimum motion blur, the electronic shutter of 

the CMOS image sensor was set to 5 ms for defining the integration time of each pixel. The FOV 

of the CMOS imaging platform (i.e., 24 mm
2
) was digitally programmed into 16 regions-of-

interest (ROIs), which were sequentially recorded at a frame rate of 92 frames per second (FPS) 

for continuous intervals of 1-20 seconds each. The resulting video data were transmitted to a PC 

in real time through a gigabit Ethernet connection. To avoid the heating of the image sensor 

between tracking experiments, which might damage the sperms inside the observation chamber, 

a programmable power relay (connected to the PC through a USB interface) was used to cut-off 
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the power of the image sensor between video acquisitions. The ON-OFF cycle of the image 

sensor was carefully configured to maintain the observation chamber at 36-37°C for several 

hours. A custom-designed LabVIEW program was used to coordinate the image sensor and the 

power relay for maintaining the temperature as well as to digitally scan over the 16 ROIs of the 

observation chamber. Scanning over 16 ROIs (with >1,600 lensfree holograms) and recording 

the trajectories of >1,500 sperms takes ~10 minutes for each semen sample. However, this 

acquisition time can be significantly reduced to ~30 seconds if external cooling is provided to 

prevent the overheating of the observation chamber. 

3D tracking of human sperms. The lensfree holographic frames recorded by the CMOS image 

sensor were first individually reconstructed on all the possible object planes (with 25 m vertical 

spacing) within the observation chamber, for both the vertical red illumination and the oblique 

blue illumination. This digital reconstruction process for each illumination angle follows the 

iterative phase recovery method that is detailed in a previous publication.145 Because the spatial 

information of each sperm was encoded with different wavelengths at two viewing angles, only 

the reconstruction that is performed with the correct combination of distance (i.e., depth), angle, 

and wavelength can generate clear images of the sperms (see Fig. 5-2). Since incorrectly 

reconstructed projection holograms of the sperms would only show up as weak background noise, 

the sperm head images projected in two different viewing angles at two different wavelengths 

can be isolated from each other although they were recorded at the same lensfree holographic 

frame. This provides an important solution to avoid confusing different projections of different 

sperms with each other, especially at high sperm densities, making my 3D tracking algorithm 

quite robust. Furthermore, without the need to record different viewing angles separately, this 



63 

multi-color approach also simplifies my system, eliminating the use of e.g., pulsed light sources, 

high-speed digital cameras, and the synchronization between them. 

  

Figure 5-2 | Digital separation of the sperms’ vertical and oblique lensfree projections through dual-angle and 

dual-color partially-coherent illumination. (a) A lensfree image showing several sperm holograms recorded 

with a red LED at the vertical angle and a blue LED at the oblique angle simultaneously illuminating the 

sample. (b)-(e)  Lensfree amplitude images that were digitally reconstructed from the same region of interest 

shown in (a), but each with the conditions specified in its legends. The red triangles in (b) mark the successful 

detection of the vertical projections of the sperms, whereas the blue circles in (e) label the successful detection 

of oblique projections. Reconstruction with parameters that are not matched to the original illumination 

conditions would only create weak noise at the background as illustrated in (c-d). 

 In each reconstructed lensfree frame, possible sperm candidates were segmented by 

thresholding the amplitude image for both color channels. Detection artifacts were filtered out 

with a series of morphological criteria, such as peak value, area, and eccentricity.115 Once 
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confirmed as the projection of a sperm, the 2D centroid position of each sperm projection in both 

color channels was calculated by its center-of-gravity115 based on the square of its reconstructed 

amplitude profile. At the same time, the focal distance of each vertical projection (which was 

estimated as the distance with the highest contrast in its reconstructed 2D image stack) was taken 

as the ‘coarse’ vertical (i.e., z) distance of the sperm from the CMOS sensor chip. This initial 

estimate has a lower depth accuracy of 5-10 µm and is just used to search for the corresponding 

projection of each sperm in the oblique illumination channel. The 2D centroid position of the 

sperm head projection in the vertical channel was directly used as the sperm’s x-y coordinate. 

The precise z coordinate of the sperm was then calculated by dividing the distance between its 

vertical and oblique projection centroids with the tangent of the oblique illumination angle in 

water (see Fig. 5-1(a)).  

 Since the centroid coordinates of the vertical and oblique projections can be determined with 

an accuracy much better than the 2.2-m CMOS pixel size,115 this approach can localize 

individual sperms in 3D with sub-micron accuracy.  To shed more light on this, I conducted 

characterization experiments with 3 μm particles that are spread across flat glass surfaces, and 

the results of these experiments confirmed that this platform can provide a 3D localization 

accuracy of 0.3-0.5 m across a depth-of-field of ~2.7 mm (see Fig. 5-3). Note that at larger 

depths (>3 mm) the signal-to-noise ratio of lensfree holograms relatively degrades, reducing my 

3D localization accuracy. 3 μm particles were chosen for these characterization experiments 

since they exhibit a contrast that is matched to human sperms in the reconstructed amplitude 

images. It should be also emphasized that the swimming sperm tails do not constitute a problem 

in the localization calculations since they are considerably narrower (≤0.6 m) compared to the 

sperm head (3-4 µm wide) and exhibit very weak light scattering,118 which significantly 
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decreases their holograms’ strength compared to the sperm heads’ holograms. This behavior is 

also confirmed by the fact that the swimming sperm tails do not appear in the reconstructed 

amplitude images of my lensfree system (see e.g., Fig. 5-2). 

  

Figure 5-3 | The localization accuracy of the lensfree 3D tracking system as a function of the vertical distance 

from the sensor surface. The positional error was characterized by tracking micro-particles (diameter: 3 m) 

that are spread across flat glass surfaces and by calculating the standard deviation of 3D positions for 

individual stationary particles. The vertical distance is defined by the separation between the localized object 

and the imaging plane of the CMOS sensor, which was adjusted by inserting glass slides of different 

thicknesses. Error bars define s.d.. 

 The same 3D localization procedures outlined above for human sperms were repeated for 

each recorded lensfree holographic frame to generate a 3D-t (i.e., space-time) matrix, which 

contains the spatial and temporal coordinates of all the sperm head positions detected in the 

observation volume. The trajectory of each sperm as a function of time was then constructed by 

linking up the nearest detected points118 across the reconstructed 3D amplitude frames. To 

improve the tracking accuracy, a Brownian-statistics-based algorithm146 is also used for better 

handling noise in my measurements. 
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Digital classification of the reconstructed sperm trajectories. The 3D swimming patterns of 

human sperms were categorized based on several dynamic parameters extracted from their 

reconstructed 3D-t trajectories, such as curvilinear velocity, linearity, lateral displacement, and 

number of stable turns (rotations). All the parameter extraction performed in this work was based 

on either 1.1 sec-long trajectories (~100 frames at 92 FPS) or track segments of such length that 

were digitally extracted from longer trajectories (e.g., 10-20 sec long). 

 Before automatically extracting these dynamic parameters for each sperm within the 

observation volume, the reconstructed 3D trajectory segments need to go through a digital 

“straightening” process to compensate the curvature in their 3D motion. For this end, a 3D 

parabolic curve model was used to fit the curved moving axis of each segment by minimizing the 

square of the distance between all the position points and the fitted axis (where the distance was 

created by the sperm’s lateral displacement). All the position points were then reassigned 

laterally onto a plane moving along the axial direction according to their relative position to the 

fitted axis (see e.g., Figs. 5-4(a), (b), and (c)). After this digital straightening step, the moving 

axis of each segment became a straight line and the position points evolved laterally around the 

fitted axis. The lateral coordinates of the position points (i.e., the Xr and Yr in Figs. 5-4(b) and 

(c)) were then used to calculate the instantaneous radius and the angle of the trajectory points 

(see Figs. 5-4(d) and (e)), where the instantaneous angle was further unwrapped to eliminate 

possible 2 phase jumps and fitted with a linear function to estimate its rotation speed. 



67 

 

Figure 5-4 | Detection of a helical trajectory for a human sperm. (a) The original human sperm helix fitted 

with a parabolic line (magenta color) as its curved axis. (b) The same helix is “straightened” by replacing 

each point along a straight axis according to its relative displacement to the fitted axis (the magenta line). (c) 

The front-view of the “straightened” helix shown in (b). The magenta line marks the “middle plane” that is 

used to measure the beat-cross frequency. The instantaneous radius (d) and angle (e) extracted from the 

lateral coordinates (i.e., Xr and Yr) of the helix shown in (c). The angle in (e) is first unwrapped to eliminate 

possible 2π phase jumps and then fitted with a linear function (the magenta line) to match a stable rotation. 
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Red circles on the magenta line in (e) mark the angular data points (the green dots) that lie within 0.6 

radians from the fitted linear function. 

 To report the 3D dynamic swimming parameters of human sperms in a format that is 

compatible with the currently existing standards, I appropriately modified the parameters that are 

used by computer-aided sperm analysis (CASA) systems,
99

 which can be summarized as below: 

Straight-line velocity (VSL) is defined as the distance between the first and the last position 

points in the track segment of a sperm trajectory divided by the total duration of the track 

segment (unit: m/sec).  

Curvilinear velocity (VCL) is defined as the sum of the distances between every two consecutive 

position points in a track segment divided by the total duration of the track segment (unit: 

m/sec). 

Linearity is the ratio between straight-line velocity and curvilinear velocity (VSL/VCL) of a 

track segment (unit: none). 

Amplitude of lateral head displacement (ALH) is defined as twice the maximum displacement of 

a sperm head from its fitted moving axis in a track segment (unit: m). It is directly related to the 

level of bending in the proximal region of the tail
125

 (i.e., a larger ALH value corresponds to 

stronger bending). 

Beat-cross frequency (BCF) is defined as the frequency that the sperm head moves across the 

“middle plane” of the “straightened” trajectory (unit: Hz). The “middle plane” is determined as 

the plane in the Xr-Yr-Zax space that contains the central axis Zax and has the most frequent 

crossing-over of the sperm head (see Fig. 5-4(c)). The value of BCF is in general sublinearly 

proportional to the beating frequency of the sperm tail and is roughly double the frequency of 

head wobbling.
122
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Rotation speed (RPS) is defined as the slope of the linear function that best fits the time 

evolution of the unwrapped rotation angle of a sperm head projected on the Xr-Yr plane (unit: 

revolutions per second, r/sec). It represents how fast a helical track segment revolves around its 

moving axis and is roughly half of the value of the trajectory’s beat–cross frequency.  

Number of stable turns (NST) is defined by multiplying the rotation speed of a sperm with the 

duration that a track segment maintains a small error ( 0.6 radians in this study) to the fitted 

linear function in its unwrapped angle (see Fig. 5-4(e)); unit: none. The segment with a small 

angle error needs to be longer than one rotation cycle for being counted into the number of stable 

turns.  NST represents how close the track segment is to a bended helix and I chose a value equal 

to or larger than 2 to qualify this track segment as a helical sperm trajectory.  

 Note that in this chapter all the human sperm trajectories with a VCL that is smaller than 30 

m/sec are considered as immotile.147 The motile sperm trajectories that cannot be classified as 

helical, hyper-activated, or hyper-helical are then classified as “typical” trajectories. For 

distinguishing helical, hyper-activated and hyper-helical 3D sperm trajectories from ‘typical’ 

ones, the following criteria have been used: 

Helical trajectory – NST ≥ 2.0 (see Fig. 5-7). 

Hyper-activated trajectory – VCL needs to be larger than 150 m/sec; the linearity needs to be 

smaller than 0.5; and ALH needs to be larger than 7.0 m. 

Hyper-helical trajectory – All the requirements for both helical and hyper-activated trajectories 

need to be satisfied.  

 Because of the fact that the fitting of helices requires more than two stable turns and that the 

hyper-activated sperms can change their swimming patterns back and forth within a few 

seconds,
124

 longer sperm trajectories are digitally divided into track segments that are each ~1.1 
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sec long, which is long enough for fitting a helix but short enough for minimizing swimming 

pattern transitions within each segment. 

Automated processing of 3D sperm trajectory data. Data processing procedures including 

reconstruction of lensfree holographic images, localization of sperms’ 3D centroids, tracking 

sperms’ motion, and classification of their 3D swimming patterns were performed fully-

automated with custom-designed Matlab programs. The typical computation time for automatic 

processing of e.g., ~1,600 lensfree images from a single semen sample is ~2.2 hours (using 

Matlab R2011a running on a PC with an eight-core Intel Core i7-930 2.80GHz processor). Since 

most of these procedures are highly repetitive and parallelizable, this computation time can be 

significantly shortened (by e.g., >5-10X)148 once my algorithms are further optimized for 

execution on e.g., graphics processing units (GPUs).  

5.3 Results 

Human sperms exhibit a large variation in their 3D swimming patterns, and therefore using my 

dual-view lensfree holographic imaging platform (Fig. 5-1) I initially grouped these swimming 

patterns into four major categories as exemplified in Fig. 5-5 (i.e., typical, helical, hyper-

activated, and hyper-helical; refer to the Methods Section for their definitions and see Table 5-1).  
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Figure 5-5 | Four major categories of human sperm swimming patterns. (a) The ‘typical’ pattern. (b) The 

helical pattern. (c) The hyper-activated pattern. (d) The hyper-helical pattern. The inset in each panel 

represents the front-view of the “straightened” trajectory of the sperm (see the Methods section for details). 

The arrows indicate the directions of the sperms’ forward movement.  The time position of each track point is 

encoded by its color (see the color-bar). The helices shown in (b) and (d) are both right-handed. Some other 

examples of human sperm trajectories are also provided in Figs. 5-6, 5-7, and 5-8. 
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Typical Helical 
Hyper-

activated 
Hyper-helical 

92.9% 4.4% 2.5% 0.2% 

(±5.3%) (±1.5%) (±1.3%) (±0.2%) 

Table 5-1 | The relative ratios of different swimming patterns observed in 28 measurements of 6 semen 

specimens from different donors, containing 24,090 motile human sperms. The standard deviations listed in 

parentheses were obtained by calculating the deviation of each ratio observed across all the 28 measurements. 

These measurements were made in baseline medium (artificial HTF) after >2 hours of incubation as 

described in the Methods Section. 

 The ‘typical’ trajectory shown in Fig. 5-5 (a) is the most prevalent swimming pattern 

observed among human sperms (>90%, see Table 5-1), in which the sperm head moves forward 

swiftly (as fast as e.g., 140 m/sec) along a slightly curved axis with a small lateral displacement 

(e.g., ~4 m side-to-side). In this category (i.e., ‘typical’), although the lateral displacement 

exhibits a certain degree of periodicity, the sperm head changes its direction arbitrarily in 3D 

space (see e.g., Figs. 5-5(a) and 5-6(a), (c), (d)). However, when these typical trajectories are 

located near the chamber boundaries, some of them also exhibit lateral displacements that are 

better confined to a two dimensional plane which is not necessarily parallel to the boundary (see 

e.g., 5-6 (b)).  
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Figure 5-6 | Additional examples of human sperm ‘typical’ swimming patterns. The inset in each panel is the 

front-view of the “straightened” trajectory of the sperm. The plane of Z = 0 is roughly aligned with the 

bottom of the observation chamber. The time position of each track point is encoded by its color (see the 

color-bar).  

 In the second category of swimming patterns that human sperms exhibit, I observed helical 

trajectories (4-5% of motile human sperms, see Table 5-1) as exemplified in Fig. 5-5(b), which 

show the sperm head moving forward with very stable revolutions around a central axis, creating 

a well-defined helix. Not only this helical trajectory (e.g., Fig. 5-5(b)) is quite tight with an 

average helix radius of e.g., ~1.7 µm and a rotation speed of e.g., ~10 rotations/sec, but also it 

moves rather fast traveling more than e.g., 30-40 µm in depth-of-field (i.e., z direction) within ~1 
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sec making it rather challenging to observe with a typical objective-lens due to its limited depth-

of-field and observation volume. In contrast to ‘typical’ swimming patterns, I observed that the 

structure of these helical patterns did not alter much when the sperm head was near the 

boundaries of the observation chamber (see e.g., Fig. 5-7).   

 

Figure 5-7 | Various examples of human sperm helical trajectories with different NST values. Within a given 

track period of ~1.1 sec, a trajectory with more than two stable turns (NST  2.0) is considered as a helical 
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one (see the Methods section for details). The plane of Z = 0 is roughly aligned with the bottom of the 

observation chamber. The time position of each track point is encoded by its color (see the color-bar). 

 In my third category, I observed hyper-activated 3D swimming patterns (<3% of motile 

human sperms - Table 5-1) that exhibit quite different movement compared to the previous two 

pattern types (see e.g., Fig. 5-5(c)). The most noticeable change in a hyper-activated pattern is 

the decrease of its forward movement, despite the fact that the instantaneous speed of hyper-

activated sperms (e.g., >150 m/sec) is usually 2X faster than the instantaneous speed of ‘typical’ 

or ‘helical’ sperms. Most of the track length of a hyper-activated human sperm is consumed by 

the increased lateral movement, which has a size of >7 m from one side to the other (see e.g., 

Fig. 5-5(c)). This hyper-activated swimming pattern can be also divided into two sub-categories, 

similar to 2D observations:
124

 (i) transitional hyper-activation, where the sperm still moves 

forward with a “meander” track (see e.g., Figs. 5-5(c) and 5-8(a), (c)); and (ii) “star-spin” hyper-

activation (mostly observed near the chamber boundaries), where the sperm bounces around 

vigorously but totally loses its forward movement as illustrated in e.g., Fig. 5-8(b). Similar to the 

‘typical’ swimming patterns, many of the sperms in transitional hyper-activation category show 

quasi-2D lateral displacement near the chamber boundaries (compare e.g., Figs. 5-8(a) and (c), 

where the latter is much better confined to a plane).  
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Figure 5-8 | Additional examples of hyper-activated (a-c) and hyper-helical (d-f) trajectories of human sperms. 

The inset in each panel is the front-view of the “straightened” trajectory of the sperm. The plane of Z = 0 is 

roughly aligned with the bottom of the observation chamber. The time position of each track point is encoded 

by its color (see the color-bar). 
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 In the final category of human sperm swimming patterns, I observed hyper-helical patterns 

(see e.g., Figs. 5-5(d) and. 5-8(d)-(f)) which can be considered as a combination of transitional 

hyper-activation and regular helical trajectories, exhibiting enlarged and slightly more unstable 

revolutions around a helix axis with a sustained forward movement. This swimming pattern was 

significantly rare, constituting only <0.5% of motile human sperms (see Table 5-1). No major 

difference in swimming patterns was observed between the hyper-helical trajectories located in 

free 3D volume and the ones located near the chamber boundaries.  

 An important feature of the presented lensfree on-chip imaging approach is that it can track 

3D trajectories of >1,500 human sperms over a large sample volume, which enables me to 

observe the transitions among different swimming patterns across a time window of 10-20 sec 

for each continuous sperm trajectory. Figure 5-9 and 5-10 illustrate some examples of such 

swimming pattern transitions acquired using my lensfree imaging platform. Based on my 

measurement results, Table 5-2 summarizes the statistics of such transitions among different 

swimming patterns observed in human semen samples. These results reveal that most of the 

observed helical and hyper-activated trajectories quickly switch back to ‘typical’ swimming 

patterns (e.g., ~64% for helical trajectories and ~58% for hyper-activated trajectories), which 

indicates that both patterns are temporary behaviors of human sperm with life spans in the range 

from a few seconds to several tens of seconds.  
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Figure 5-9 | A 10.9-sec long trajectory showing the transitions between different swimming patterns of a 

human sperm. (a), (c), and (d) illustrate digitally extracted segments (~1-sec long each) of the whole sperm 

trajectory shown in (b). More sample trajectories with different pattern transitions are also provided in Fig. 

5-10. The inset in each panel is the front-view of the “straightened” trajectory of the sperm. The time position 

of each track point is encoded by its color (see the color-bar). 
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Figure 5-10 | Additional examples of human sperm trajectories showing the transitions among different 3D 

swimming patterns. The whole trajectories shown in (a), (b), (c), and (d) are each 10.9-sec long, and the insets 

are digitally extracted segments of ~1.1-sec. The time position of each track point is encoded by its color (see 

the color-bar). 
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Typical  
85.1% 

(±8.1%) 

10.1% 

(±7.0%) 

4.8% 

(±4.1%) 

0.0% 

(±0.0%) 

Helical  
63.8% 

(±25.0%) 
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(±22.1%) 
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57.7% 

(±31.3%) 

2.1% 
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30.9% 

(±28.6%) 
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(±9.2%) 

Hyper-

helical 
 

36.7% 

(±38.5%) 

13.3% 

(±30.7%) 

40.0% 

(±44.9%) 

10.0% 

(±30.3%) 

 

Table 5-2 | The relative percentage of swimming pattern transitions (From-To) observed within 3,473 

segments (each ~1.1 sec long) of 656 human sperms trajectories (each 5.5-10.9 sec long). The standard 

deviations in parentheses were obtained by randomly dividing the 656 trajectories into 16 groups and 

calculating the relative percentage deviation of each transition across these groups. 

 The human sperm tracking experiments can be further summarized in Fig. 5-11, where I 

quantify various parameters of 3D swimming patterns, e.g., curvilinear velocity (VCL), straight-

line velocity (VSL), amplitude of lateral head displacement (ALH), beat-cross frequency (BCF), 

linearity (see the Methods Section for details), and compare them to the statistical behavior of 

only the helical human sperms, which constitute <5% of the motile sperms. The mean values of 

these swimming parameters and their standard deviations are also listed in Table 5-3. Based on 

these results, it is rather interesting to note that a significant majority (~90%) of helical human 

sperms in baseline medium prefer right-handed helixes over left-handed ones (see e.g., Fig. 5-

11(f)), exhibiting a tight helix radius of e.g., 0.5-3 m and a rotation speed of e.g., 3-20 

revolutions/sec. 
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Figure 5-11 | Dynamic swimming parameters of 24,090 motile human sperms and 1,069 helical trajectories. 

Color-bar represents the relative density of data points in each graph. Magenta lines enclose 90% of the 

motile/helical tracks presented in each panel. A helix with RPS > 0 (RPS < 0) is defined as right-handed (left-

handed). VSL: straight-line velocity. VCL: curvilinear velocity. ALH: amplitude of lateral head displacement. 

BCF: beat-cross frequency. RPS: rotation speed. r/sec: revolutions per second. These measurements were 

made in baseline medium (artificial HTF) after >2 hours of incubation as described in the Methods Section. 
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Straight-line 

Velocity 

(VSL) 

(μm/sec) 

Curvilinear 

Velocity 

(VCL) 

(μm/sec) 

Linearity 

(VSL/VCL) 

Lateral Head 

Displacement 

(ALH) (μm) 

Beat-cross 

Frequency 

(BCF) (Hz) 

55.7 88.0 0.61 5.4 15.7 

(±24.9) (±28.7) (±0.21) (±2.9) (±5.1) 

(a) Motile Sperms 

 

Straight-line 

Velocity 

(VSL) 

(μm/sec) 

Curvilinear 

Velocity 

(VCL) 

(μm/sec) 

Linearity 

(VSL/VCL) 

Helix 

Diameter 

(μm) 

Helix 

Pitch 

(μm) 

Frequency of 

Rotation (RPS) 

(rev. per sec) 

54.1 99.1 0.54 3.2 7.4 6.8 

(±21.0) (±30.3) (±0.11) (±1.0) (±2.0) (±4.6) 

(b) Helical Trajectories 

Table 5-3 | Typical values of various dynamic swimming parameters measured for human sperms. This Table 

shares the same data as in Fig. 5-11. All the error values in parentheses are ±s.d.. 

 To shed more light on this observation (i.e., the preference of right-handed helices), I 

performed an additional experiment (Fig. 5-12) to measure the percentage of helical trajectories 

as a function of time after the sperms were removed from seminal plasma and were placed into 

baseline medium (see the Methods Section). The results of this time-traced experiment revealed 

that, after removal of the seminal plasma, the percentage of right-handed helical sperms 

significantly increased within 2-3 hours of incubation in baseline medium, reaching 4-5% of 

motile human sperms (see Fig. 5-12), which is also consistent with my previous observations in 

Fig. 5-11 and Table 5-1. On the other hand, the same experiment did not reveal any major 

changes in the left-handed helical sperm percentage as a function of time, which remained to be 

<0.5% even after >3 hours of incubation in baseline medium as illustrated in Fig. 5-12.  
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Figure 5-12 | Time evolution of helical sperm trajectories after re-suspension in artificial human tubal fluid 

(HTF). After 2-3 hours of incubation in HTF, the percentage of right-handed helical trajectories significantly 

increased to 4-5% of motile human sperms, while the percentage of left-handed ones did not show a major 

change, remaining to be <0.5% of motile sperms. 

 These results also suggest that seminal plasma significantly suppresses helical trajectories of 

human sperms, while human tubal fluid initiates them. An experimental comparison of how 

different concentrations of seminal plasma affect the 3D swimming patterns of human sperms (in 

specific helical and hyper-activated trajectories) is also provided in Fig. 5-13, which once again 

confirmed the suppressing effect of seminal plasma on helical trajectories (after >2 hours of 

incubation time - see the Methods Section for details). Another important observation is that the 

helical trajectories, compared to the hyper-activated ones, were more difficult to suppress by 

increasing the percentage of seminal plasma in medium (see Fig. 5-13), suggesting that these two 

swimming patterns might be regulated through different biochemical mechanisms. 
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Figure 5-13 | Quenching of human sperms’ helical (a) and hyper-activated (b) trajectories as a function of 

increased seminal plasma concentration in culture media. Each of the mean±s.d. bars in (a) and (b) was based 

on 14 measurements of 2 specimens (7 with each) obtained from different anonymous donors. 

5.4 Discussion 

It should be emphasized that to obtain large statistics regarding the swimming patterns of human 

sperms one would need a high-throughput imaging platform with sub-micron 3D tracking 

accuracy and sub-12-ms temporal resolution to clearly resolve different patterns, especially the 

helical patterns, which exhibit a tight helix radius of e.g., 0.5-3 µm with a fast rotation speed that 

might reach e.g., 15-20 rotations/sec. Conventional microscopes equipped with e.g., high-

magnification objective lenses and high-frame-rate cameras can only meet these requirements for 

imaging sperms along a 2D plane, which can infer limited information on their natural 3D 

motion.120–125,99,126–132  More advanced microscopy configurations133–135 or holographic imaging 

schemes136–143 have also been used to resolve 3D trajectories of sperms of other species. However, 

these previous approaches have not reported sub-micron 3D localization accuracy throughout a 

large observation volume of e.g., ≥1 L. The dual-view partially-coherent holographic on-chip 

imaging technique described in this chapter uses a lensfree hologram recording configuration to 

image a large field-of-view of e.g., 17 mm
2
 and utilizes a dual-angle illumination scheme to 
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achieve sub-micron localization accuracy for tracking human sperms within a volume of e.g., 8-

17 µL. This high-throughput platform provides unique opportunities to observe the swimming 

patterns of human sperms and reveal their rare statistics for e.g., helical or hyper-helical 

trajectories, as summarized in the Results Section. 

 Surface accumulation of sperms inside an observation chamber is a common phenomenon 

that is observed when the chamber’s depth is larger than the sperm’s body length and has been 

the focus of several studies.127,149–152 This was also observed in my results, happening on both the 

top and the bottom surfaces for all four swimming patterns (see Fig. 5-14). As described in the 

Results Section, the presence of the surface boundaries only modifies the typical and hyper-

activated patterns but not the helical ones. Note that in my experiments, I used plain glass 

surfaces without siliconization to prevent electrostatic adherence of sperms. With different 

surface treatment methods, my platform can also be used to study how the surface properties can 

affect the statistics of sperm movement. Along the same lines, this lensfree sperm imaging 

platform can also provide a high-throughput tool to rapidly quantify the impact of e.g., various 

stimuli and drugs on the 3D swimming patterns of sperms. 
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Figure 5-14 | Surface accumulation of human sperms in an observation chamber. The end positions of (a) 

immotile sperms, and the sperms with (b) typical swimming patterns, (c) helical swimming patterns (blue for 

left-handed ones and red for right-handed), (d) hyper-activated swimming patterns show that sperms of 

different swimming patterns all accumulate on either the top or bottom surfaces of the chamber. The Z = 0 

reference plane of the imaging system was arbitrarily assigned to the center of the slightly tilted bottom 

surface of the observation chamber, whose position was verified by the distribution of the immotile sperms 

shown in (a).  

5.5 Conclusion 

 Dynamic tracking of human sperms across a large volume is a challenging task. To provide a 

high-throughput solution to this important need, I developed a lensfree on-chip imaging platform 

which can track the three-dimensional (3D) trajectories of >1,500 individual human sperms 

within an observation volume of 8-17 mm
3
. This computational imaging platform relies on 

Immotile Sperms

Helical Trajectories

Typical Trajectories
a b

c d
Hyper-activated Trajectories
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holographic lensfree shadows of sperms that are simultaneously acquired at two different 

wavelengths, emanating from two partially-coherent sources that are placed at 45 degrees with 

respect to each other. This dual-angle and dual-color illumination scheme permits dynamically 

tracking the 3D motion of human sperms across a field-of-view of >17 mm
2
 and depth-of-field 

of 0.5-1 mm with sub-micron positioning accuracy. The large statistics provided by this lensfree 

imaging platform revealed that only 4-5% of the motile human sperms swim along well-defined 

helices and that this percentage can be significantly suppressed under seminal plasma. 

Furthermore, among these observed helical human sperms, a significant majority (~90%) 

preferred right-handed helices over left-handed ones, with a helix radius of 0.5-3 µm, a helical 

rotation speed of 3-20 rotations/sec and a linear speed of 20-100 µm/sec.  This high-throughput 

3D imaging platform could in general be quite valuable for observing the statistical swimming 

patterns of various other micro-organisms, leading to new insights in their 3D motion and the 

underlying bio-physics. 
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Chapter 6 Lensfree On-Chip Microscopy over a Wide Field-of-

View using Pixel Super-Resolution 

6.1 Introduction 

Despite of its various advantages over the conventional Digital In-Line Holographic Microscopy 

(DIHM),
19,22,51

 such as incoherent light source, large field-of-view, and easy alignment, the 

achievable numerical aperture (NA) of the lensfree holographic on-chip microscopy technique 

(LUCAS) presented in the previous chapters is significantly lower than the conventional DIHM 

technique (0.1-0.2 vs. ~0.5).  

 To achieve such a high numerical aperture in their reconstructed images, conventional DIHM 

systems utilize a coherent source (e.g., a laser) that is filtered by a small aperture (e.g., <1-2 μm); 

and typically operate at a fringe magnification of F > 5-10, where F = (za+zs)/za; za and zs define 

the aperture-to-object and object-to-sensor vertical distances, respectively. On the other hand, my 

LUCAS systems use an unusually large aperture (50-100μm diameter) and unit fringe 

magnification (F~1) to convert the whole active area of image sensors into the imaging field-of-

view (FOV) for my holographic microscopes (see Chapter 3 for detailed discussion). However, 

the pixel size now starts to be a limiting factor for spatial resolution of my LUCAS technique 

since the recorded holographic fringes are no longer magnified. Because the object plane is now 

much closer to the detector plane (e.g., zs ~1mm), the detection NA approaches ~1. However, the 

finite pixel size at the sensor chip can unfortunately record holographic oscillations 

corresponding to only an effective NA of 0.1-0.2, which limits the spatial resolution to <2μm. 

 In this chapter, I remove this limitation due to the pixel size to report lensfree holographic 

reconstruction of microscopic objects on a chip with a numerical aperture of ~0.5 achieving ~0.6 
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μm spatial resolution at 600 nm wavelength over an imaging FOV of ~24 mm
2
. It should be 

emphasized that this large FOV can scale up without a trade-off in spatial resolution by using a 

larger format sensor chip since in my scheme the FOV equals to the active area of the detector 

array. To achieve such a performance jump while still using a partially coherent illumination 

from a large aperture (~50 μm) with unit fringe magnification, I capture multiple lower-

resolution (LR) holograms while the aperture is scanned with a step size of ~0.1mm (see Fig. 6-

1). The knowledge of this scanning step size is not required at all since I numerically determine 

the shift amount without any external input, using solely the recorded raw holograms, which 

makes my approach quite convenient and robust as it automatically calibrates itself in each 

digital reconstruction process. Because of the effective demagnification in my hologram 

recording geometry (za/zs >100), such discrete steps in the aperture plane result in sub-pixel 

shifts of the object holograms at the sensor plane.  

 Therefore, by using a sub-pixel shifting based super-resolution algorithm I effectively 

recover much higher resolution digital holograms of the objects that are no longer limited by the 

finite pixel size at the detector array. Due to the low spatial and temporal coherence of the 

illumination source, together with its large aperture diameter, speckle noise and the undesired 

multiple reflection interference effects are also significantly reduced in this approach when 

compared to conventional high-resolution DIHM systems providing another important advantage. 
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Figure 6-1 | (a) Schematic diagram of my experimental setup. The aperture to object distance is much larger 

than the object to detector distance (za~10 cm, zs<1mm). A shift of the aperture causes a de-magnified shift of 

the object hologram formed at the detector plane, allowing sub-pixel hologram shifting. (b) Physical pixels 

captured in a single frame, here marked by bold borders, over imposed on the high-resolution pixel grid. This 

frame is shifted a distance of hk horizontally and vk vertically with respect to a reference frame. 

6.2 Pixel super-resolution in lensfree digital in-line holography 

As discussed in the introduction, with unit fringe magnification and low coherence illumination, 

my spatial resolution is limited by the pixel size, rather than the detection NA. Therefore, a 

higher spatial density of pixels is desirable to represent each hologram for reconstruction of 

higher resolution images. This can in principle be achieved by physically reducing the pixel size 

at the sensor to e.g., <1μm, which has obvious technological challenges to claim a large FOV. 

Therefore, in this manuscript I demonstrate the use of a pixel super-resolution approach to 

digitally claim 6 fold smaller pixel size for representation of each object hologram to 

significantly improve my spatial resolution over a large FOV achieving an NA of ~0.5. 

 Specifically, here I increase the spatial sampling rate of the lensfree holograms, and hence 

improve my spatial resolution by capturing and processing multiple lower-resolution holograms, 

za

zs
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that are spatially shifted with respect to each other by sub-pixel pitch distances. As an example, I 

take a 5 megapixel image sensor that is used to record lensfree digital holograms with a pixel 

size of ~2.2μm, and effectively convert that to a 180 megapixel sensor with a 6 fold smaller pixel 

size (~0.37μm), that essentially has the same active area (i.e., the same imaging FOV). I term 

this technique as Pixel Super-Resolution (Pixel SR), to avoid confusion with the recent use of 

the term “super-resolution” describing imaging techniques capable of overcoming the diffraction 

limit.
2–4

 Various Pixel SR approaches have been previously used in the image processing 

community to digitally convert low-resolution imaging systems into higher resolution ones, 

including magnetic resonance imaging (MRI), satellite and other remote sensing platforms, and 

even X-Ray computed tomography.
153–155

  

 The idea behind Pixel SR is to use multiple lower-resolution images, which are shifted with 

respect to each other by fractions of the low-resolution grid constant, to better approximate the 

image sampling on a higher resolution grid. In Fig. 6-1(b), the physical pixels are shown, 

bordered by thick lines, as well as the virtual higher resolution grid. For each horizontal shift hk 

and vertical shift vk of the lower-resolution image, the output of each physical pixel is simply a 

linear combination of the underlying high-resolution pixel values. 

 To better formulate Pixel SR, let us denote the lower-resolution (LR) images by Xk(n1,n2), k 

= 1,…,p, each with horizontal and vertical shifts hk and vk, respectively, and each of size M = 

N1×N2. The high-resolution (HR) image Y(n1,n2) is of the size N = LN1×LN2, where L is a 

positive integer. The goal of the Pixel SR algorithm is to find the HR image Y(n1,n2) which best 

recovers all the measured frames Xk(n1,n2). The metric for the quality of this recovery is 

described below. For brevity in my notation, I order all the measured pixels of a captured frame 

in a single vector Xk = [xk,1, xk,2,…, xk,M], and all the HR pixels in a vector Y = [y1,y2,…,yN]. A 
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given HR image Y implies a set of LR pixel values determined by a weighted super-position of 

the appropriate HR pixels, such that: 

   ̃    ∑       (     )            (6-1) 

where  ̃    denotes the calculated LR pixel value for a given Y, i = 1,…,M; k = 1,…p and Wk,i,j is 

a physical weighting coefficient. I round all the frame shifts (hk and vk) to the nearest multiple of 

the HR pixel size. Therefore, a given LR pixel value can be determined from a linear 

combination of L
2
 HR pixels (see Fig. 6-1). I further assume that the weighting coefficients Wk,i,j 

(for a given k and i) are determined by the 2D light sensitivity map of the sensor chip active area 

and can be approximated by a Gaussian distribution over the area corresponding to the L
2
 HR 

pixels. 

 In my Pixel SR implementation, the high-resolution image (Y) is recovered/reconstructed by 

minimizing the following cost function, C(Y): 

   ( )  
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. (6-2) 

The first term on the right hand side of Eq. (6-2 is simply the squared error between the 

measured low-resolution pixel values and the ones recovered from the virtual high-resolution 

image (see Eq. (6-1)). Minimizing this term by itself is equivalent to the maximum-likelihood 

estimation under the assumption of uniform Gaussian noise.
153

 This optimization problem is 

known to be ill-defined and susceptible to high frequency noise. The last term of Eq. (6-2) is 

meant to regularize the optimization problem by penalizing high frequency components of the 

high-resolution image, where Yfil is a high-pass filtration of the high-resolution image Y, and α is 

the weight given to those high frequencies. For large α, the final high-resolution image would be 

smoother and more blurred, while for small α, the resulting image would contain fine details in 
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addition to high frequency noise. In this work, I used α = 1 and a Laplacian kernel for high-pass 

filtering of Y.
154

 

 As will be detailed in the following sections, my experimental setup handles sub-pixel 

shifting of lensfree holograms and the above described super-resolution hologram recovery 

algorithm over a large imaging FOV with ease and robustness due to the large demagnification 

inherent in its recording geometry.  

6.3 Experimental setup 

A schematic diagram of my setup is shown in Fig. 6-1, I use a spatially incoherent light source 

(Xenon lamp attached to a monochromator, wavelength: 500-600 nm, spectral bandwidth: ~5nm) 

coupled to an optical fiber with a core size of ~50μm, which also acts as a large pinhole/aperture. 

The distance between the fiber end and the object plane (za ~ 10cm) is much larger than the 

distance between the object and the detector planes (zs ~ 0.75mm). My detector is a CMOS 

sensor with 2.2μm×2.2μm pixel size, and a total active area of ~24.4 mm
2
. 

 The large za/zs ratio, which enables wide-field lensfree holography and the use of a large 

aperture size, also makes sub-pixel hologram shifting possible without the need for submicron 

resolution mechanical movement. In other words, the requirements on the precision and accuracy 

of the mechanical scanning stage are greatly reduced in my scheme. Simple geometrical optics 

approximations can show that the object hologram at the detector plane can be shifted sub-pixel 

by translating the illumination aperture parallel to the detector plane. The ratio between the shift 

of the hologram at the detector plane and the shift of the aperture can be approximated as: 

  
         

         
 

  

  
 

  

  
, (6-3)  

where n1 = 1 is the refractive index of air, and n2 = 1.5 is the refractive index of the cover glass 

before the detector array. For za = 10cm and zs = 0.75mm, the ratio between these two shifts 
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become Shologram/Saperture ~ 1/200, which implies that to achieve e.g., 0.5 μm shift of the object 

hologram at the detector plane, the source aperture can be shifted by 200×0.5 = 100 μm. In the 

experiments reported here, I have used an automated mechanical-scanning stage to shift the fiber 

aperture and captured multiple holograms of the same objects with sub pixel hologram shifts. In 

principle, multiple sources separated by ~0.1 mm from each other that can be switched on-off 

sequentially could also be used to replace the mechanical scanning.  

 Using Eq. (6-3), the required aperture shift for a desired sub-pixel hologram shift can be 

calculated. Since the parameters in Eq. (6-3) may not be known exactly, and as a consistency 

check, I independently compute the hologram shifts directly from the captured lower resolution 

holograms, using an iterative gradient algorithm.
154

 Therefore, quite importantly hologram shifts 

to be used in Eq. (6-2) and Eq. (6-3) are computed from the raw data rather than external input, 

which makes my approach quite convenient and robust as it automatically calibrates itself in 

each digital reconstruction process, without relying on the precision or accuracy of the 

mechanical scanning stage. 

6.4 Experimental results 

To quantify the spatial resolution improvement due to Pixel SR, I have imaged a calibration 

object consisting of 1μm wide lines etched into a glass cover slide (using focused ion beam 

milling), with 1μm separation between the lines (see Fig. 6-3(a)). This object is a finite size 

grating, and ideally it is a phase-only object, except the scattering at the walls of the etched 

regions.  

 Initially I used L = 6, i.e., the object holograms were shifted by one sixth of a pixel in each 

direction, for a total of 36 lensfree holograms. Fig. 6-2(a) shows one of these LR holograms 

captured at the detector. The sub-pixel shift amount of each LR hologram with respect to the first 
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LR hologram is calculated from the raw data without any additional input as shown in Fig. 6-

2(b). The super-resolution hologram (see Fig. 6-2(c)) is generated by minimizing Eq. (6-2) using 

the Conjugate Gradient method,
156

 incorporating all the captured 36 LR holograms. It is evident 

that the computed high-resolution hologram now captures the interference fringes which could 

not be normally recorded with a 2.2 μm pixel size. Next, I demonstrate how this super-resolution 

hologram translates to a high-resolution object reconstruction.  

 

Figure 6-2 | Multiple sub-pixel shifted lower-resolution holograms of the grating object are captured. One 

such lower-resolution hologram is shown in (a). The sub-pixel shifts between different holograms are 

automatically computed from the raw data using an iterative gradient method, the results of which are shown 
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in (b). The Pixel SR algorithm recovers the high-resolution hologram of the object as shown in (c). The 

magnified portion of this super-resolution hologram shows high frequency fringes which were not captured in 

the lower-resolution holograms. 

 Given a lensfree hologram (whether one of the lower-resolution holograms or the super-

resolution one), I reconstruct the image of the object, in both amplitude and phase, using an 

iterative, object-support constrained, phase recovery algorithm.67 Accordingly, Fig. 6-3(b) shows 

the amplitude image that I obtain using a single lower-resolution hologram (shown in Fig. 6-

2(a)). The inner features of the object are lost, which is expected due to the limited NA of the 

raw hologram (i.e., <0.2). Fig. 6-3(c) and (d) illustrate the amplitude and the phase images, 

respectively, recovered from the high-resolution hologram obtained from the Pixel SR algorithm 

(already shown in Fig. 6-2(c)). With the SR hologram, fine features of the object are clearly 

visible, and the object distinctly resembles the 40X microscope image shown in Fig. 6-3(a). 
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Figure 6-3 | (a) Microscope image of the object captured with a 40X objective lens (NA=0.65). (b) Amplitude 

reconstruction of the object using a single low-resolution hologram (see Fig. 6-2(a)). (c) Object amplitude 

reconstruction using the high-resolution hologram (see Fig. 6-2(c)) obtained from Pixel SR using 36 LR 

images. (d) Object phase reconstruction obtained from the same high-resolution hologram using Pixel SR. 

The object phase appears mostly positive due to phase wrapping. (e) The spatial derivative of the phase 

profile along the dashed line in pane (d). As explained in the text, this spatial derivative operation yields a 

train of delta functions with alternating signs, broadened by the PSF, which sets the resolution.  

 This grating object was made from indentations filled with air in glass, and therefore should 

have a negative phase. At the wavelength used in recording the raw holograms (600nm), the 



98 

object has a phase that is greater than π. This leads to phase wrapping, and the object’s recovered 

phase appears to be mostly positive. Assuming that this grating object was fabricated with a 

rather fine resolution (which is a valid assumption since the patterning was done with focused 

ion beam milling with a spot size of <50 nm), in an ideal image reconstruction, the phase jumps 

on each line’s edges would be infinitely sharp and impossible to unwrap. Therefore, I can use the 

reconstructed phase image at the edges of the fabricated lines to quantify the resolution limit of 

my Pixel SR scheme. Note that the recovered phase profile of the grating in a direction 

perpendicular to the lines, e.g., the dashed line in Fig. 6-3(d), should have sharp jumps with 

alternating signs. As a result, the spatial derivative of such a profile would consist of delta 

function with alternating signs. The limited spatial resolution of the imaging platform would 

broaden these delta functions by its point spread function (PSF). Therefore, if one were to 

examine the spatial derivative of the phase profile of the images, he would expect to see a series 

of the PSF with alternating signs. In Fig. 6-3(e), the spatial derivative of the phase profile is 

shown along the dashed line indicated in panel (d), interpolated for smoothness. The 1/e width of 

all the peaks shown in Fig. 6-3(e) is ≤ 0.6μm, which leads to the conclusion that the overall 

imaging resolution is ~0.6μm with an NA of ~0.5.  

 It is rather interesting to note that a similar performance could also be achieved with much 

less than 36 lower-resolution holograms (see Fig. 6-4). The pixel SR algorithm that I have 

implemented is an optimization algorithm, which may also work for underdetermined data sets, 

i.e., one can attempt to optimize the cost function (Eq. (6-2)) to recover the best high resolution 

hologram (with the same grid size) using less than L
2
 = 36 LR holograms. Fig. 6-4 shows a 

comparison of the reconstructed high-resolution object images obtained by processing 5, 12, and 

36 LR holograms. These LR holograms were selected from the full set of 36 sub-pixel shifted 
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holograms as shown in Fig. 6-4(d). The randomness of this selection process was slightly 

constricted by enforcing that each sub-set of holograms used by the Pixel SR algorithm would 

contain both the least shifted and the maximum shifted one in order to have well aligned images 

for accurate comparison. The super-resolution algorithm would perform equally well with 

complete randomness, but the comparison between different cases would then be less educative. 

As shown in Fig. 6-4, the reconstructed HR images are qualitatively the same for different 

numbers of LR holograms used, though the contrast is enhanced and the distortions are reduced 

as more LR holograms are used. I have also repeated the process of plotting the spatial 

derivatives of the recovered phase images perpendicular to the grating lines as shown in Fig. 6-

4(e). The width of the derivative peaks (indicative of the spatial resolution in each recovery) did 

not appear to differ much as fewer number of LR holograms are used, which is quite 

encouraging since it implies that a small number of LR holograms, with random shifts, can be 

assigned to an appropriate HR grid to permit high-resolution lensfree image recovery over a 

large FOV. This should allow for great flexibility in the physical shifting and hologram 

acquisition process. 
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Figure 6-4 | Comparison of pixel SR recovery results using different numbers of LR holograms. Panels (a1-

a2), (b1-b2), and (c1-c2) show the reconstructed amplitude and phase images of the same object using 5, 12, 

and 36 LR holograms, respectively. In (d), the sub-pixel shifts of the randomly chosen subsets of LR 

holograms are shown. In (e), the normalized spatial derivative profiles of the recovered phase images for each 

case (a2, b2 and c2) are shown, similar to Fig. 6-3(e). 

 Next, to demonstrate the wide-field imaging capability of my system, I applied the Pixel SR 

scheme to image a whole blood smear sample. In this experiment, a blood smear was created by 

smearing a droplet of whole blood on a cover glass to form a single layer of cells. The entire 

field-of-view (~24mm
2
) is shown in Fig. 6-5 top image. I have used a source wavelength of λ = 
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500nm, and captured 36 sub-pixel shifted holograms. Different regions of the field-of-view are 

digitally cropped (see Fig. 6-5 - Regions A, B and C) to show the image improvement due to 

Pixel SR. The top row of Regions A-B-C is reconstructed using a single LR hologram. The 

middle row is obtained from processing 36 sub-pixel shifted holograms using my pixel-SR 

scheme. The images in the bottom row are obtained with a 40X microscope objective (0.65 NA) 

for comparison purposes. From Fig. 6-5, it is clear that Pixel SR allows resolving cell clusters 

which would be difficult to resolve from processing a single LR hologram. Also, the sub-cellular 

features of white blood cells are visibly enhanced as shown in Fig. 6-5, Region B.  
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Figure 6-5 | Wide-field (FOV~24 mm2) high-resolution imaging of a whole blood smear sample using Pixel SR. 

A comparison among the image recovered using a single LR hologram (NA<0.2), the image recovered using 

Pixel SR (NA~0.5), and a 40X microscope image (NA=0.65) is provided for three regions of interest at 

different positions within the imaging FOV. Regions A and C show red blood cell clusters that are difficult to 

resolve using a single LR hologram, which are now clearly resolved using Pixel SR. In region B the sub-

cellular features of a white blood cell are also resolved. 
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 To display the capability to this lensfree holographic technique for resolving even more 

complicated biological samples, Fig. 6-6 shows Pixel SR results for imaging of Caenorhabditis 

elegans (C. elegans). These images were obtained by processing 16 sub-pixel shifted LR 

holograms captured at an illumination wavelength of λ = 500nm. Once again, the resolution 

improvement due to Pixel SR is clearly visible. Because my imaging system has a poorer axial 

resolution than a 40X microscope objective (NA=0.65), compared to the microscope image the 

Pixel SR image effectively shows a thicker z-slice of the C. elegans 3D body, which is almost a 

cylinder of ~25 μm diameter. 

  

Figure 6-6 | Pixel super-resolution applied to imaging of C. elegans. (a) Recovered amplitude image from a 

single LR hologram. (b) Pixel SR image recovered using 16 sub-pixel shifted holograms. (c) Microscope image 

of the same worm captured with a 40X objective-lens (NA=0.65). 

 Such pixel super-resolution technique also permits my lensfree on-chip microscopy 

technique to generate an extreme space-bandwidth product, corresponding to a reconstructed 

image with e.g., more than one billion pixels. Using a state-of-the-art CCD image sensor (e.g., 
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KAF-39000, Kodak) enables imaging an ultra-wide FOV of ~18 cm
2

 with a half-pitch resolution 

of ~2.19 μm, which contains >1.5 billion effective pixels, assuming 2 pixels define the minimum 

feature size (see Fig. 6-7). In this case, the monochrome CCD chip itself has ~40 megapixels, 

where each pixel is physically ~6 μm wide. However, by employing pixel super-resolution, a 

deeply sub-pixel resolution corresponding to a numerical aperture of ~0.1 can be achieved across 

the entire active area of the CCD chip (i.e., an FOV of ~18 cm
2

 – Fig. 6-7). In comparison, a 

conventional objective-lens with a similar NA would typically have an FOV that is a few square 

millimeters. While mechanical scanning of the sample or the objective-lens could be used to 

enlarge the imaging area, it would be a relatively complicated and costly solution to achieve such 

a wide imaging area of ~18 cm
2
. 
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Figure 6-7 | Gigapixel holographic imaging enabled by pixel super-resolution. (a) A super-resolved lensfree 

image that has ~18 cm2 FOV is illustrated with >1.5 Billion pixels. The inset images in (a) show a USAF 1951 
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Test Chart to demonstrate a half-pitch resolution of ~2.19 μm across this FOV, corresponding to an NA of 

~0.1. (b1-e1) show raw lensfree holograms of human sperms (immobilized on a glass slide) acquired with this 

partially-coherent lensfree imaging platform. Since the physical pixel size of this monochrome CCD chip is ~6 

μm, severe under-sampling of holograms is observed. (b2-e2) show the pixel super-resolved lensfree 

holograms for the same regions as in (b1-e1), which are digitally synthesized by combining 36 (6x6) sub-pixel 

shifted raw lensfree holograms. (b3-e3) illustrate the reconstruction results for these pixel super-resolved 

lensfree holograms, which clearly show the tails of human sperms, providing a decent match to their 

corresponding conventional microscope images (40X objective lens, 0.4 NA), shown in (b4-e4).  

6.5 Conclusion 

In conclusion, I demonstrated lensfree holographic microscopy on a chip to achieve ~0.6 μm 

spatial resolution corresponding to a numerical aperture of ~0.5 over a large field-of-view of ~24 

mm
2
.
157

 By using partially coherent illumination from a large aperture (~50 μm), I acquired 

lower resolution lensfree in-line holograms of the objects with unit fringe magnification. For 

each lensfree hologram, the pixel size at the sensor chip limits the spatial resolution of the 

reconstructed image. To bypass this limitation, I implemented a sub-pixel shifting based super-

resolution algorithm to effectively recover much higher resolution digital holograms of the 

objects, permitting sub-micron spatial resolution to be achieved across the entire sensor chip 

active area, corresponding to an imaging field-of-view of ~24 mm
2
. The success of this pixel 

super-resolution approach was demonstrated by imaging patterned transparent substrates, blood 

smear samples, as well as C. Elegans. By utilizing state-of-art high-pixel-count image sensors, 

such lensfree computational approach can further constitute gigapixel holographic imaging 

systems for biomedical applications with high-throughput requirements. 



107 

Chapter 7 Summary 

To provide affordable and easy-to-use microscopes for resource-limited settings, here I 

developed a holographic on-chip imaging technology that utilizes cost-effective and compact 

optoelectronic components to enable digital recognition and microscopic imaging of cells with 

sub-cellular resolution over a large field-of-view (FOV) without the need for any lenses, bulky 

optical components or coherent sources such as lasers. Replacing optical lenses with digital 

computation, this partially-coherent cell imaging modality is very robust against mechanical 

misalignments, which eliminates potential imaging artifacts and the need for precision mechanics, 

making it highly suitable for field use.  

 Through experiments with whole human blood, I demonstrated that this lensless system can 

detect holograms of various cell types for digital recognition and automated counting of each cell 

type based on their 2D holographic signatures, as well as accurately reconstruct their 

microscopic amplitude and phase images with a resolution of 1-2 μm over a large FOV of 24 

mm
2
 even at cell densities up to 0.4 million cells/µL. With resolution and sensitivity that can 

differentiate between various white blood cell sub-types such as granulocytes, monocytes and 

lymphocytes, this lensless on-chip holography technology will be especially useful for point-of-

care cytometry and diagnostics applications involving global health problems such as HIV, 

malaria, or infectious diarrhea. 

 Based on this technology, I also constructed an automated semen analysis platform based on 

a lensfree field-portable microscope that measures ∼4×4×6 cm and weighs only 46 grams. With 

digital subtraction of consecutive frames quantifying the motion of motile sperms and 

summation of the same frames counting the density of immotile sperms, this computational 
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imaging platform can analyze >2,000 sperms over its 24 mm
2
 FOV with an effective numerical 

aperture (NA) of ∼0.2. Such a field-portable automated semen analysis platform has a great 

potential in personal male fertility test and animal breeding applications. 

 To analyze the three-dimensional (3D) motion of human sperms, I devised a dual-angle dual-

color lensfree imaging scheme to achieve sub-micron accuracy and sub-12-minisecond 

resolution for tracking >1,500 sperms in a field-of-view of >17 mm
2
 and a depth-of-field of >0.5 

mm. The high accuracy and high throughput of this lensfree imaging platform enabled the first 

observation of human sperms’ helical trajectories. The large statistics provided by this platform 

revealed that only 4-5% of the motile sperms swim along well-defined helices and that this 

percentage can be significantly suppressed by seminal plasma. Furthermore, a significant 

majority (~90%) of helical human sperms prefers right-handed helices with a helix radius of 0.5-

3 µm and a helical rotation speed of 3-20 rotations/sec. Such a high-throughput 3D tracking 

platform can also a valuable tool for observing the statistical swimming patterns of various 

micro-organisms, leading to new insights in their 3D dynamics. 

 For the further improvement of the spatial resolution with this lensfree imaging technology, I 

acquired multiple stationary frames with various sub-pixel shifts and used a pixel super-

resolution algorithm to synthesize a high-resolution holographic image. With digital 

reconstruction of images recorded with different image sensors, this technique can either achieve 

a spatial resolution of ~0.6 μm (NA~0.5) over a 24 mm
2 

FOV for imaging fine sub-cellular 

structures, or provide ~1.5 billion effective pixels with ~2.2 μm resolution (NA~0.5) over a FOV 

of 18 cm
2
 for high-throughput biomedical applications. 

 One of the most unique aspects of lensfree computational imaging is the fact that these 

quoted numbers will immediately improve as new sensor arrays become available on the market. 
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This rapid advancement that we experience in sensor array technologies is driven mostly by the 

cellphone and digital camera manufacturers, who produce more than 1 billion new camera 

modules every year, placing lensfree on-chip microscopy on a sweet spot to follow a rapid trend 

that is qualitatively similar to the Moore’s Law in terms of its performance. 

 To conclude, the lensfree holographic on-chip imaging technology that I developed in this 

dissertation, as being compact, light-weight, cost-effective, high-throughput, and highly sensitive, 

can provide a powerful toolset for fighting against global health problems as well as advancing 

statistical studies in cell biology. 
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Appendix Multi-Angle Lensless Digital Holography for Depth 

Resolved Imaging on a Chip 

A.1 Introduction 

In this appendix, I review a multi-angle lensfree digital holography platform that can measure, 

with sub-micron accuracy, both the axial and the lateral position of any given cell/particle within 

an imaging field of view (FOV) of 20-60 mm
2
.
115

 The key to this high-throughput and accurate 

performance in a lensfree configuration is the use of multiple angles of illumination combined 

with a novel digital processing scheme. 

 Unlike conventional lensless in-line holography approaches, here I utilize spatially 

incoherent light sources emanating from large apertures (e.g., 50-100µm) with a unit fringe 

magnification, which enables an imaging field of view that is equivalent to the sensor chip active 

area.
57,67

 In my hologram recording geometry, due to the use of incoherent sources and large 

apertures, the spatial coherence diameter at the sample plane is much smaller than the imaging 

field of view, but on the other hand is sufficiently large to record holograms of each cell/particle 

individually.
67

 Under this condition, the vertical illumination creates lensless in-line holograms 

of the cells on the sensor chip. These digitally sampled cell holograms start to shift laterally on 

the sensor plane as the illumination angle of the source is tilted – for instance the cells at higher 

heights will shift laterally more than the cells located at lower heights (see e.g., Fig. A-1(a)). In 

the presented approach, the exact amount of this lateral shift of each lensfree cell hologram is 

calculated with an accuracy that beats the diffraction limit of light and therefore, by quantifying 

the amount of this lateral shift on the sensor array as a function of the illumination angle, I can 

determine the height of each cell from the substrate over a large field of view without the use of 
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any lenses. Such an accurate depth resolving capability when combined with the wide field of 

view of the presented approach may especially be significant for monitoring multi-layered 

microfluidic devices to improve the imaging throughput or for conducting micro-array imaging 

experiments to quantify e.g., on-chip DNA hybridization over a large field of view.
158

 

 

Figure A-1 | The schematic diagram illustrating the principles of multi-angle lensfree holographic imaging. 

For each illumination angle, a spatially incoherent source such as a light emitting diode is filtered by a large 

aperture (0.05-0.1mm diameter), which is placed ~6 cm away from the object plane. Note that unlike 

conventional in-line holography approaches, the sample plane is much closer to the detector plane with a 

vertical distance of ~1mm, such that the entire active area of the sensor becomes the imaging FOV. (a) The 

shadow of each cell shifts laterally on the sensor plane as a function of the illumination angle of the 

incoherent source, encoding its axial position. (b) Matching of the cells’ shadows acquired at different 

illumination angles can be achieved by forming imaginary rays between each cell shadow and the 

corresponding source. 
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 When compared to lens-based or coherent holographic imaging approaches
159–161

 that also 

have a high localization accuracy, the overall hardware complexity of this multi-angle lensfree 

imaging platform is considerably simplified. Not only that there is no use of lenses or any other 

wavefront shaping elements involved in the presented approach, but also the source requirement 

is greatly simplified permitting the use of spatially incoherent light sources that are emitting 

through rather large apertures.  

 In this appendix, I will describe this multi-angle platform’s hardware configuration, data 

processing procedures, and how its localization performance is compared to its theoretical 

limitation. 

A.2 Depth resolved imaging using multi-angle lensless holography 

The details of the depth resolved imaging process using multi-angle lensfree holography is 

summarized in Fig. A-2 After the capture of the multi-angle lensfree holographic images of the 

sample volume as illustrated in Fig. A-1(a), each one of these raw holograms is then processed 

using an iterative twin image elimination and phase recovery technique,
67,70,72

 which can 

reconstruct amplitude and phase images of different cross sections of the sample volume. As a 

result of this numerical reconstruction process, this platform can distinguish overlapping lensfree 

holograms of the cells from each other and therefore increase the workable density of the cells 

compared to the earlier reported lensfree imaging technique
67

 (see also Chapter 2). 
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Figure A-2 | The detail of the depth resolved imaging process using multi-angle lensfree holography. 

 Before calculating the 3D location of each micro-object within the sample volume of interest, 

the coarse locations and the types of the objects need to be identified in each lensfree image. For 

this purpose, automated pattern matching algorithms
57

 are used to identify the target objects 

within each lensfree image yielding the relative x-y coordinates of each object of interest. 

Repeating this automated identification with a statistical image library of different target cell 

types, this platform digitally sorts out the cell mixture by cell types without extra manipulation 
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measures. This initial screening step ensures that the depth calculations can be limited to only the 

cells of interest and the rest of the undesired micro-objects can simply be ignored. For this 

purpose the raw holograms and/or the reconstructed amplitude images of the cells can be used as 

long as the individual patterns are not severely overlapping.  

 Following this pre-screening process, imaginary rays (with a finite cross-section for each ray) 

are digitally formed by connecting the light source position to the rough x-y coordinate of the 

shadow or the reconstructed image of each target cell within the imaging field of view (see Fig. 

A-1(b)). These solid rays, which are calculated for all the illumination angles (including the 

vertical one), are then combined to find their intersection points in 3D, where the total count of 

the intersecting rays at any given point is also recorded. To provide a rough estimate for the 

position of each target cell type within the 3D sample volume, a threshold is applied to this ray 

count – for instance under 5 different illumination angles a ray threshold of 3 implies that at least 

3 rays can define a positive count towards a target cell type. More discussion on the effect of this 

threshold factor on characterization accuracy is provided in section A.6. The localization 

accuracy of this initial interception algorithm is determined by the cross-sectional width of the 

rays that are used for back-projection of each shadow (Fig. A-1 (b)), and is practically on the 

order of ~5 µm. To achieve a much better depth accuracy (<1 µm) for each target micro-object 

within the sample volume, an additional calculation step is required, which will be discussed 

next. 

 At the end of the above discussed calculation step, for each one of the intersection points 

(that have a sufficient ray count above the threshold), all the shadows of the same cell at different 

illumination angles become digitally connected to each other. In some cases, if there is severe 

overlap between different shadows, some of these lensfree multi-angle images cannot be used. 
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This, however, does not pose a limitation for my depth localization algorithm since 2 

independent angles in principle would be sufficient to localize the depth of the micro-object with 

submicron accuracy, i.e., there is redundancy in the system to better handle dense cell solutions. 

This also implies that for a less dense solution of interest, fewer angles (for instance 2-3) would 

also be sufficient. More discussion on the effect of the cell density on characterization accuracy 

is provided in section A.6. 

 Following these initial steps, the fine axial position of each target object needs to be 

calculated all across the sample volume. Considering the fact that there is no fringe 

magnification or a lens involved in the presented approach and that the pixel size at the sensor 

chip is relatively large (i.e., a few microns), this task seems rather challenging. The key to 

achieve sub-micron depth localization accuracy over a large field of view is to accurately 

calculate the lateral shift of each one of the multi-angle shadows/holograms corresponding to the 

same cell. Since the earlier numerical steps already connected the multi-angle holograms of the 

same cell to each other, all one needs to do next is to accurately calculate the lateral shift amount 

of the cell hologram as a function of the illumination angle. This step involves calculation of the 

centroid location of each cell with an accuracy that is much better than the diffraction limit of 

light. The difference between the centroid locations of at least 2 shadows acquired under 

different illumination angles is sufficient to accurately estimate the relative heights of all the 

cells within the sample volume. Next, I will discuss the details of these centroid calculations for 

each acquired cell shadow. 

A.3 Centroid calculations for lensfree depth localization of cells on a chip 

Accuracy of depth localization is achieved by calculating the centroid location of each cell’s 

shadow/hologram, and determining the relative shift of the centroid position of the same cell as a 
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function of the illumination angle. For this approach to work effectively, the cell holograms 

should exhibit minimum amount of overlap such that their centroid calculations remain accurate. 

While dealing with high cell densities (such as >10,000 cells/µL) there are two factors that help 

one maintain a good depth localization accuracy: (1) The amplitude reconstruction process 

enables resolving highly overlapping cell shadows from each other. This permits digital removal 

of the undesired effects of the other cell shadows on the centroid calculation of each target cell 

type. And (2) there is redundancy in the measurements such that if one illumination angle 

produces an overlap for certain cell shadows (which cannot be fully resolved by the amplitude 

reconstruction process), then the other illumination angles can still remain free from overlaps. 

All one needs is 2 independent illumination angles where the centroid of the same cell shadow 

can be calculated accurately for achieving depth localization. 

Assuming that 
ijI  represents the cell hologram or its reconstructed amplitude image, and ( , )i j  

denotes the pixel numbers, initially I subtract a linearly fitted background image ( )BijI  from 
ijI  

such that 
ij ij Bijp I I   is calculated. This background profile ( )BijI  is automatically calculated for 

each illumination angle through linear regression analysis of 
ijI  and it serves to minimize the 

undesired effects of (1) non-uniform illumination of the sample volume and (2) the surface 

curvature and/or tilt of the substrates on the depth localization accuracy of the cells. This step is 

crucial especially for achieving accurate depth localization over a large FOV as illustrated in Fig. 

3. Following this background subtraction step, the centroid coordinates ( , )c cx y  of each cell are 

calculated as such: 



117 

  ,

ij ij
ij

c

ij
ij

ij ij
ij

c

ij
ij

x n
x

n

y n
y

n


 















 (A-1) 

where 2
ij ijn p  is the square of the subtracted intensity. 

 For each target cell within the imaging field of view, the choice of the region of interest (ROI) 

to define 
ijI  is made through a fast iterative algorithm such that the centroid coordinates ( , )c cx y  

eventually match with the geometric center of the ROI for each cell signature. At each step of 

this iterative algorithm, the center of the ROI was shifted to the position of the calculated 

centroid and the same centroid calculation was repeated until their positions matched with each 

other.  

 After the calculation of all the centroid coordinates of a target cell type under different 

illumination angles, the lateral shift of each cell’s signature was calculated by taking the 

difference of the centroid coordinates. This lateral shift was then transferred into a projected 

height with a known oblique illumination angle, where the angle was already calibrated by a 

glass substrate with a measured thickness. Due to the non-uniformity of the illumination light 

and the surface curvature and/or tilt of the substrates, these projected height values needed to be 

further corrected by a quadratic surface fitting. The same process was performed separately with 

all the oblique illumination angles, and then these corrected height values from different angles 

were averaged to accurately determine the axial position (i.e., the z coordinate) of each cell 

within the sample volume. As for the lateral location (i.e., the x-y coordinates), the centroid 

coordinates calculated on the lensfree image with the vertical illumination was used without 

further modification.  
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A.4 Experimental results 

To validate the depth resolving performance of my multi-angle holographic imaging platform 

over a large field of view of ~60 mm
2
, I conducted an experiment with a mixture of 5, 10 and 20 

µm diameter polystyrene beads (Monosized microsphere size standards, Thermo Scientific) 

suspended in DI water. The micro-particle suspension liquid was dispensed on a 0.5 mm thick 

glass substrate and covered by a No.1 glass cover slip (~150 µm thick) as shown in Fig. A-3(m). 

To quantify the accuracy of my axial localization results over the entire imaging area of the 

sensor, before being imaged, the samples were kept still for >10 minutes, allowing the suspended 

micro-particles to fully settle on the substrates. This ensured that the recovered height (i.e., the 

axial position) of the particles can be related to the well-controlled radii of the micro-particles, 

enabling cross validation of my results. During this settlement time period, holograms of the 

samples were periodically recorded using the vertical illumination to track the trajectories of 

individual particles. These trajectories were then analyzed to ensure that the displacement had 

decreased to a stable level (below the Brownian motion limit).  
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Figure A-3 | The validation of sub-micron localization performance over a large field of view of ~60 mm2. (a-

b-c) Lensfree holograms captured with three different illumination angles are illustrated. (d-e-f) Raw 

hologram signatures (digitally cropped from the vertical illumination hologram shown in (a)) and their 

corresponding reconstructed amplitude images for (d) 5 µm, (e) 10 µm, and (f) 20 µm microbeads are 

illustrated. (g-h-i) Raw hologram signatures (digitally cropped from the oblique illumination hologram shown 

in (b)) and their corresponding reconstructed amplitude images for (g) 5 µm, (h) 10 µm, and (i) 20 µm 

microbeads are illustrated. (j-k-l) Raw hologram signatures (digitally cropped from the oblique illumination 

hologram shown in (c)) and their corresponding reconstructed amplitude images for (j) 5 µm, (k) 10 µm, and 

(l) 20 µm microbeads are also illustrated. The scale bars in (d-l) are 40 µm long. (m) The cross-sectional 

structure of the imaged sample is shown. (n) The 2-D distribution of the characterized microbeads is 

illustrated, with their physical size and the relative height coded by the spot size and the colormap, 
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respectively. (o) The height histogram is calculated from (n) showing three distinct peaks for the 5 µm, 10 µm, 

20 µm beads in the mixture. In (n) and (o), the relative height of the substrate surface is arbitrarily assumed 

to be 0 µm. 

 To record the digital holograms of the micro particles distributed over ~60 mm
2
 field-of-view 

and their lateral shifts as a function of the illumination angle, three optical fibers with a core 

diameter of 50 µm each were utilized to illuminate the sample placed on the bare surface of a 

CCD image sensor chip with a pixel size of 5.4 µm (KAF-8300, Kodak). The protective glass of 

the sensor chip has been removed to minimize the distance between the sample and the sensor 

surface and maximize signal-to-noise ratio of the lensfree holograms. The fibers are individually 

butt-coupled to three cyan light-emitting diodes (LEDs, LXHL-LE3C, Luxeon) and their tips are 

placed approximately 6 cm away from the sample to provide one vertical and two other tilted 

illuminations with (=0; =45) and (=180; =45) as illustrated in Fig. A-1. The center 

wavelength of the LEDs is 505 nm and the FWHM spectral width is ~30 nm.  

 Lensfree height characterization results of these particles are summarized in Fig. A-3, in 

which Figs. A-3(a)~(c) illustrate the raw lensfree holograms that are captured under each 

illumination angle over an imaging FOV of >1 cm
2
. Smaller Figs. A-3(d)~(l) focus on the 

individual holographic signatures, digitally taken from Figs. A-3(a)~(c); and the reconstructed 

amplitude images (created by iterative holographic reconstruction
67

) of these representative 

particle holograms are also shown under different illumination conditions. As expected, in these 

figures the raw holograms of the tilted illumination conditions show an elongated texture, 

parallel to the tilt direction. Based on digital processing of these multi-angle lensfree holograms 

as described in the previous section, I recovered the height distribution of the micro-particles 

from the substrate surface as illustrated in Fig. A-3(n), where for convenience the relative height 
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of the substrate surface is assumed to be 0 µm (the physical size and the height of the particles 

are coded by each spot size and the colormap, respectively). Fig. A-3(o) also reports the height 

histogram calculated from Fig. A-3(n), which clearly resolves 3 different particle types from 

each other based on their relative heights (i.e., radii). These results are in close agreement with 

the height values that one would expect from the radii of these particles, i.e., 10 µm, 5 µm and 

2.5 µm, respectively. One could attribute the differences between my characterization results 

(9.83, 5.06 and 2.47 µm) and the known radii of the particles (10, 5 and 2.5 µm) to the 

unavoidable surface curvature of the substrate over the large imaging field of view (~60 mm
2
) 

and to the standard deviation of the particle radii, which is reported by the manufacturer (Thermo 

Scientific) to be 1% for each particle type. The relatively worse performance (with a standard 

deviation of 0.97 µm) of the smaller sized particle (5 µm) is related to a reduced hologram 

signal-to-noise ratio (SNR) (refer to the individual hologram signatures and the SNR values that 

are provided in Fig. A-3(d-l)). This is also a topic that I will also address in section A.5.  

 I further validated my multi-angle lensless holography approach by imaging a two-layered 

micro-channel containing red blood cells (RBCs) (see Fig. A-4(f)). Whole blood samples were 

mixed with the anticoagulant EDTA at a ratio of 2 mg of EDTA per ml of blood (EDTA tubes, 

BD). The blood was kept still for ~20 minutes until the RBCs settled. After sedimentation, RBCs 

were extracted from the bottom of the sediment and diluted with cell culture medium (RPMI 

1640, Invitrogen) to a concentration of ~15,000 cells/µL. A small number of polystyrene 

microbeads with a diameter of 20 µm were then added to the suspension (~40 beads/L), serving 

as mechanical spacers in the multi-layer structure shown in Fig. A-4(f). 
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Figure A-4 | Lensless multi-angle characterization of RBCs located within two-layered micro-channels. (a)-(e) 

Lensfree holograms are captured with five different illumination angles. The magenta dashed rectangles in 

(a)-(e) are the regions corresponding to the field-of-view shown in (g); and the yellow rectangles define the 

regions corresponding to the field of view of the images in Fig. A-6. (f) The cross-sectional structure of the 2-

layered sample is shown. (g) The 2D distribution of the RBCs located in both vertical channels is calculated 

with their height coded by the colormap. (h) shows the histogram of the cell heights over the entire field of 

view, which exhibits a double peaked behavior, as expected, resolving the 2 vertical micro-channels. In (g) 

and (h), the relative height is arbitrarily assumed to be 0 µm at the surface of the sensor. 

 The holograms of the cells were recorded by placing the samples directly on the image 

sensor chip as shown in Fig. A-4(f). A CMOS image sensor with a pixel size of 2.2 µm and an 
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active area of 24.4 mm
2
 (MT9P031, Aptina) was used for imaging the RBC suspension sample. 

After settlement for >10 minutes, the samples were illuminated from different angles 

sequentially and the lensfree holograms with different illumination angles were recorded 

separately as illustrated in Fig. A-1. Alternatively, this image acquisition process could also be 

done in parallel by turning all the multi-angle sources on at the same time rather than 

sequentially. However the overall density of cells that can be imaged with parallel illumination is 

lower than sequential imaging, which is further quantified in section A.6. 

 To generate these lensfree cell holograms with different illumination angles, five optical 

fibers with a core diameter of 50 µm each were mounted with their tips approximately 6 cm 

away from the samples. Except the vertical illumination case, the illumination angles were 0°, 

90°, 180° and 270° azimuthally and the polar angles were all 45° from the normal direction of 

the imaging plane, as shown in Fig. A-1.The fibers are connected to a Xenon lamp (6258, 

Newport Corp.) filtered by a monochromator (Cornerstone T260, Newport Corp.), where the 

central wavelength of the monochromator was set to ~500 nm and the FWHM spectral width 

was ~10 nm. 

 By processing all these raw holograms acquired at different illumination angles as discussed 

in the previous sections, I recovered the height distribution of the RBCs located at both of the 

vertical channels as illustrated in Fig. A-4(g). Fig. A-4(h) also shows the histogram of the cell 

heights over the entire field of view, which exhibits a double peaked behavior, as expected, 

resolving the 2 vertical micro-channels. Because the cells were permitted to sediment on the 

surface of each micro-layer, I obtained a very narrow height distribution at each channel as a 

result of my fine depth resolving power. For the upper micro-channel, the standard deviation of 

the cell height (2.4 µm) is larger than the lower channel one (1.5 µm), which is due to the surface 
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curvature of the spacer glass. In other words, because the spacer glass between the vertical 

channels is much thinner than the substrate of the bottom layer, it exhibits a significantly larger 

surface curvature over the imaging field of view which increased the height variations as 

observed in the upper channel cell height histogram (Fig. A-4(h)). Meanwhile, for the lower 

channel, the substrate was chosen to be >0.5 mm thick and therefore the cell height histogram 

showed a much better accuracy with a standard deviation of 1.5 µm in relative height of the cells. 

 Once the axial and lateral locations of the cells are accurately determined within this multi-

layered structure (Fig. A-4(f)), I can also characterize other properties of the cells in 3D such as 

the thickness or the volume of each cell. Figs. A-5(a) and (c) report the thickness and the volume 

maps, respectively, of each one of the red blood cells that are characterized in Fig. A-4. In these 

figures the colormaps code the measured thickness (µm) and volume (fL) of each cell. Fig. A-5(b) 

and (d) also plot the thickness and volume histograms of the red blood cells at each vertical 

channel, which predict a mean RBC thickness of 1.74 µm and 1.68 µm for the bottom and top 

channels, respectively; and a mean RBC volume of 95.7 fL and 91.1 fL for the bottom and top 

channels, respectively. These results are in good agreement with standard values of healthy red 

blood cells, further validating my results.
162
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Figure A-5 | Thickness and volume of each cell within the two-layered micro-channels are calculated over a 

field of view of >15 mm
2
. (a) The 3D distribution of the RBCs in both of the vertical channels is illustrated 

with their cell thickness value coded by the colormap. (b) The thickness histograms of the RBCs in both the 

upper and lower micro-channels are shown. (c) The 3D distribution of the RBCs in both vertical channels is 

illustrated with their cell volume coded by the colormap. (d) The volume histograms of the RBCs in both the 

upper and lower micro-channels are shown. 

 The key to estimate each cell’s thickness and volume properties individually over the entire 

imaging FOV is the iterative twin image elimination algorithm that permits digital reconstruction 

of the phase and amplitude images of each cell from its lensfree hologram.
67,73

 To relate the 

recovered optical phase of each cell to a physical thickness, I assumed that red blood cells are 

phase only objects with an average refractive index of 1.40 in a solution with refractive index 

1.33.
163

 Under these assumptions the thickness of the RBC is directly proportional to its phase 

recovered from the iterative twin-image elimination algorithm. The areas of the cells were 
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estimated by a simple global thresholding of the recovered phase images, and the volume of each 

cell was estimated by the product of its thickness and area. 

 For the experiments reported in Figs. A-4~A-5, the cell density at each layer was ~15,000 

cells/µL. To achieve the reported depth accuracy in 3D for such a high concentration of cells, I 

made use of two key factors: (1) I used 5 illumination angles (see Fig. A-4) which reduced the 

likelihood of the events where all the shadows corresponding to a single cell were overlapping 

with other cells for all the illumination angles. And (2) the image reconstruction process enabled 

resolving densely packed cell shadows from each other. A good example of the success of this 

digital reconstruction process is illustrated in Fig. A-6, where 3 red blood cells from the top 

micro-channel overlap at the sensor plane with the holograms of 3 different red blood cells 

located at the bottom micro-channel (refer to the holograms within the white dashed rectangle of 

Fig. A-6(a) which correspond to these 6 RBCs at both layers). Fig. A-6(b) and (c) illustrate the 

reconstructed amplitude images at the bottom and top channel surfaces, respectively. Fig. A-6(d) 

also illustrates the digital reconstruction results at an intermediate plane between the bottom and 

the top micro-channels. To independently confirm my reconstruction results, two microscope 

images of the bottom and top micro-channels (corresponding to the same FOV as in Fig. A-6(a)) 

are also provided in Figs. A-6(e) and (f), respectively. Here I would like to also emphasize that 

the lensfree holographic image and its reconstructions that are reported in Figs. A-6(a)~(d) are 

digitally taken from a much larger field of view shown in Fig. A-4(a), which illustrates ~2 orders 

of magnitude increased FOV of my approach when compared to conventional optical microscope 

images (Figs. A-6(e)~(f)). 
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Figure A-6 | Demonstration of overlapping RBCs from two vertical micro-channels being digitally resolved 

by the holographic reconstruction process. (a) The raw lensfree hologram of the digitally zoomed region 

specified with the yellow rectangle in Fig. A-4(a) is illustrated. The amplitude images (b), (c), and (d) were 

reconstructed from (a) at a height of 1026 µm, 1081 µm, and 1049 µm respectively. In these reconstructed 

images, “L” and “U” refer to the RBCs located at the lower and upper micro-channels, respectively. The 

same field of view is also imaged using a 40X objective lens (0.65 NA) by focusing on both the lower (e) and 

the upper (f) micro-channels for comparison purposes. Note that the field of view that is imaged with Fig. A-4 

constitutes ~2 orders of magnitude improvement over the 40X microscope images shown in (e-f). 

A.5 Quantitative analysis of the depth localization accuracy  

The accuracy of the centroid-based localization method described in this appendix has two 

fundamental limiting factors in a lensfree holographic configuration: the detection noise and the 

pixelation error. Brownian motion of particles is a key factor only when the micro-objects are 
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suspended in the liquid, which can then be handled by reducing the integration time at the sensor 

chip or by using simultaneous multi-angle imaging where all the illumination angles are used at 

the same time. Once the micro-objects settle on the substrate surface, the friction between the 

objects and the surface provides enough anchoring force to significantly limit the Brownian 

motion.  

 In this section, I will derive the governing theory to quantify the effects of the detection noise 

and the pixelation error on the accuracy of my depth localization calculations. Next I start with 

the quantification of the detection noise. 

 The effect of the detection noise on the calculation of the centroid coordinates of the particles 

under the vertical illumination can be analyzed by quantifying the error propagation from the 

noise at individual pixels to the centroid calculations.
164,165

  Following the same notation 

presented in Section A.4, the centroid coordinates of a particle shadow created by the vertical 

illumination can be re-written as:  
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where x ij ij
ij

u x n , y ij ij
ij

u y n , and ij
ij

v n . 

By using the law of error propagation, the variance of cx  and cy  ( 2
xcS  and 2

ycS , respectively) can 

then be evaluated as:  
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where 
22 2

ux x xS u u   is the variance of xu , 
22 2

uy y yS u u   is the variance of 
yu , 

22 2
vS v v   

is the variance of v , 
uvx x xS u v u v    is the covariance of xu  and v , uvy y yS u v u v   is 

the covariance of 
yu  and v ; and  denotes the expectation operator. With these definitions of 

xu , yu , and v , their variance and covariance can be expressed as: 
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where 
22 2

ij ij ijS n n  is the variance of 
ijn  and   ijkl ij ij kl klS n n n n    is the covariance of 

ijn  at two pixels. Since the noise on individual pixels can be assumed to be uncorrelated, 
ijklS  

can be dropped and the variance of the centroid coordinates, cx  and cy , (under the vertical  

illumination) can be simplified as: 
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where 2 2 2
0ux ij ij

ij
S S x , 2 2 2

0uy ij ij
ij

S S y , 2 2
0v ij

ij
S S , 2

0uvx ij ij
ij

S S x , and 2
0uvy ij ij

ij
S S y . 

Since the detection noise, without loss of generality, can be assumed to have a probability 

density function with normal distribution, the variance of 2
ij ijn p  can be evaluated as: 
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where 2

pijS  is the variance of 
ijp . As expected, Eq. (A-6) predicts that the noise level of 2

ij ijn p  

is not only directly linked to the noise level of 
ijp  but also modulated by the 2D profile of 

ijp . In 

summary: Eqs. (A-5) and (A-6) determine the effect of the detection noise on the accuracy of the 

lateral centroid calculations for a measured pattern of 
ijI  under the vertical lensfree illumination.  

The same analysis can also be applied to calculate the variation of the centroid coordinates for 

patterns imaged under oblique illumination angles, such that 2
xcoS  and 2

ycoS  can also be quantified 

in a similar fashion. Given ( , )co cox y  as the centroid coordinates of an oblique shadow, and 
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 as the lateral shift along this oblique illumination angle, then the 

variance of the lateral shift 2( )ShiftS  and the variance of the projected height 2( )HeightS  can be 

estimated by the law of error propagation as such: 
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where ( )co cdx x x  ,  ( )co cdy y y  , 
dxdyS  is the covariance of dx  and dy  with its value close to 

zero, 
g  is the oblique illumination’s refractive angle within the substrate, and 2

dxS , 2
dyS , 2

xcS , 2
ycS , 

2
xcoS , 2

ycoS  are the variances of dx , dy , cx , cy , cox , coy , respectively. 

 After calculating the variance values of the projected height from all the oblique illumination 

angles with Eqs. (A-7) and (A-8), the standard deviation of the averaged particle height is 

estimated by:  

  2
, ,

1

1
,

an

Height AVG Height a
a

a

S S
n 

   (A-9) 

where an  is the number of the oblique illumination angles involved in calculating the particle 

height and 2
,Height aS  is the variance of the projected height for an individual oblique illumination 

angle. Therefore Eqs. (A-5)-(A-9) quantify the contribution of the detection noise to the final 

depth resolution of the proposed multi-angle lensfree holography platform. 

 Next I will investigate the impact of the second major source of error in my depth 

localization calculations, such that the effect of the pixelation error at the sensor array will now 

be quantified. For the vertical lensfree illumination case, the effect of pixelation error on 

determining the lateral centroid coordinates of the particle can be estimated by analyzing its 

spatial pattern sampled at the sensor array.
166

 Assuming that ( , )e x y  is the 2D continuous profile 

of the vertical projection pattern without noise (i.e., it represents the optical intensity profile of 

the particle’s holographic shadow on the image sensor before being sampled); and that ( , )ef x y  

represents the convolution of ( , )e x y  with a square function whose width is the pixel size () of 

the image sensor, then the centroid coordinates cx  and cy  of the sampled pattern of the vertical 

illumination case can be calculated as:  
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where ( ) ( , )ex ef x f x y dy   and  ( ) ( , )ey ef y f x y dx  . Assuming that x and 
y  define the offset of 

the centroid position from the center of a pixel along the x and y directions, respectively, then the 

centroid coordinate estimation errors ( )x x  and ( )y y   can be expressed as
166
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where ( )exF u  and ( )eyF v  represent the Fourier transforms of ( )exf x  and ( )eyf y , respectively; 

( )exF u  and ( )eyF v  are the first derivatives of ( )exF u  and ( )eyF v , respectively. Without loss of 

generality, one can confidently assume that x and 
y  are both uniformly distributed between  

-/2 and /2. Accordingly, the standard deviation of the 2D localization errors arising from 

pixelation noise can be calculated as such:  
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  (A-12) 

Eq. (A-12) quantifies the impact of pixelation error on the accuracy of the lateral centroid 

coordinate calculations for a pattern measured under the vertical lensfree illumination. The same 

procedures that were discussed above for the detection noise analysis can also be used to 

calculate the variances of the centroid coordinates for all the oblique illumination angles due to 
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pixelation error. After calculating the variances of all illumination angles, the height deviation 

contributed by pixelation error can then be evaluated the same way as the height deviation due to 

the detection noise was calculated above (refer to Eqs. (A-7)~(A-9)).  

 To better quantify the nature of the detection noise in my set-up, I experimentally 

characterized the noise statistics of one of my sensors (Kodak, CCD KAF-8300) under the same 

illumination conditions that are reported in the Experimental Results Section (Fig. A-3). In these 

characterization experiments, my goal was to estimate the relative strengths of different noise 

terms in my experimental set-up to permit an accurate comparison of my results against the 

theoretical limits. Toward this end, Fig. A-7(a) reports the variance values of the pixels of the 

sensor chip measured with different integration times as a function of the illumination intensity. 

To quantify the individual contributions of different noise processes, I used a noise model given 

by 

  
2 2

2 1 0,I tS a I a I a t a      

where I  is the mean value of the measured pixels; 2
IS  is the variance of the pixel values; t  is the 

integration time; 2a , 1a , ta , and 0a  are the parameters for Relative Intensity Noise (RIN), Shot 

Noise (SN), Dark Leakage Noise (DLN), and Readout Noise (RN), respectively. Multi-variable 

fitting results showed that the detection noise at the sensor chip was mostly dominated by RIN 

and SN (see the Fig. A-7(b) for the decomposition of the noise terms as a function of the pixel 

intensity). These results enabled me to assess the relative magnitudes of different detection noise 

terms and their total contribution to the localization error in my lensfree measurements. 
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Figure A-7 | Noise characteristics of a typical CCD image sensor, Kodak KAF-8300, are quantified. (a) 

reports the variance values of the pixels of the sensor chip measured with different integration times as a 

function of the illumination intensity. (b) quantifies the decomposition of various noise terms as a function of 

the illumination intensity. The fitted strengths of individual noise terms in (b) were calculated based on the 

parameter values estimated in (a). The results indicate that dominant detection noise sources were relative 

intensity noise and shot noise for this image sensor. 

After these characterization steps, using Eqs. (A-7)~(A-12), I estimated the individual 

contributions of both the detection noise and the pixelation error on the accuracy of my centroid 

calculations for the depth localization experiments reported in Fig. A-3 (see Tables A-1~A-2 for 

the summarized results). In my experiments, since a total distance of 500-1000 µm has been used 

between the micro-objects and the sensor plane, the detected holograms are spread out over at 

least 6-8 pixels, which greatly suppressed the pixelation error. Therefore, the relative weight of 

the pixelation error on centroid calculation accuracy is much smaller than the detection noise 

contribution as also quantified in Tables A-1 and A-2. The overall lateral localization errors 

reported in Table A-1 (Sxc,all and Syc,all) are purely based on the vertical lensfree illumination 
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measurements, while the height localization errors reported in Table A-2 are calculated from all 

the oblique illumination angles together with the vertical one (see Fig. 3(a~c)). 

 

Beads 

Diameter 

(um) 

Estimated Lateral Localization Error (µm) 

Det. Noise  Pixelation  Overall 

Sxc Syc  Sxc,px Syc,px  Sxc,all Syc,all 

5 0.30 0.31  0.13 0.11  0.32 0.33 

10 0.09 0.10  0.04 0.02  0.10 0.10 

20 0.04 0.04  0.00 0.00  0.04 0.04 

 

Table A-1 | The theoretical breakdown of the lateral localization error. Standard deviation values were 

evaluated for each micro-particle type using the lensfree holograms of Figs. A-3(a)~(c). 

Beads 

Diameter 

(um)  

Height Deviation (µm) 

Detection 

Noise 

(SN+RIN) 

 
Pixelation 

Error 

 Beads 

Size 

STD 

Theoretical 

STD
 

Measured 

STD 

Systematic 

STD 

5  0.66  0.05  0.03 0.67 0.97 0.71 

10  0.20  0.01  0.05 0.21 0.37 0.31 

20  0.08  0.00  0.14 0.16 0.32 0.28 

Table A-2 | The theoretical breakdown of the height localization errors and comparison to the measurement 

results. Standard deviation values of both the theoretical and experimental results are evaluated with the 

lensfree holograms of Figs. A-3(a~c). The theoretical standard deviation (STD) in height of each micro-

particle type is evaluated by summing the height deviation contributed by detection noise, pixelation error, 

and bead size deviation. 

Table A-2 also indicates that the level of my experimental characterization accuracy is quite 

close to the theoretical limit that is calculated based on the measured noise characteristics of the 

set-up. This fairly close comparison between my characterization results and the theoretical 

values supports the validity of my error analysis as well as the depth localization algorithm. 

Furthermore, the statement that the decreased depth localization accuracy with smaller micro-
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objects (as observed in Fig. A-3) is due to the decrease of the detection signal-to-noise ratio is 

also validated with this comparison reported in Table A-1. 

A.6 Theoretical analysis of multi-angle characterization error rate 

Besides the accuracy of cell/particle localization, another important parameter that needs more 

discussion for the presented multi-angle lensfree imaging platform is its characterization error 

rate (i.e., the overall percentage of false positives and missed cells within the sample volume), 

which surely is dependent on the density of the objects to be imaged. To better investigate and 

quantify this dependence, I have performed numerical simulations, the results of which are 

summarized in Figs. A-8~A-12. In these simulations, I report the density of cells in terms of the 

density of shadows that they create at the sensor plane under the vertical illumination. Therefore, 

this density of shadows at the sensor plane is equivalent to the number of independent micro-

objects to be imaged per frame, which is a direct measure of the throughput of imaging.  

 Overlapping shadows at the sensor plane, which can cause both missed (i.e., un-identified) 

objects as well as false characterized (i.e., false positive) objects, is the major source of the 

characterization error for this multi-angle imaging platform. Therefore, I would start the 

quantitative analysis of system characterization error by investigating the overlapping of cell 

shadows in the single-layer case. The shadow overlapping ratio of a homogeneous cell 

suspension in such case can be modeled by randomly distributing a large number of identical 

small circular patterns over the field of view:
167

 

 The probability of overlapping between any two shadows can be calculated by the 

probability that the distance between the centers of two shadows in the field of view is smaller 

than their diameters: 
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where r is the distance between the centers, D is the diameter of the shadows, A is the area of the 

field of view, and the boundary effect is neglected. For each shadow, the probability of being not 

overlapping with any of the other N-1 shadows in the field of view will be 
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, (A-13)  

where N A   is the shadow density defined as the number of shadow in unit area. 

 Assuming that all the non-overlapped shadows will be detected correctly by the pattern 

matching algorithm, Pnov can be considered as the true positive rate for the single-layer case. 

Since there is no significant source of phantom cells in this detection mechanism, the false 

positive rate is assumed to be zero. Therefore the total error rate Err for the single-layer case will 

be simply the sum of false negative rate RFN and false positive rate RFP, i.e., 
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1 0

1 exp
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 (A-14) 

where false negative rate RFN is the probability of a cell failing to be detected correctly and 

essentially is the complement of true positive rate RTP (i.e. RFN = 1 – RTP); false positive rate RFP 

is the ratio between the number of phantom cells being incorrectly detected and the number of 

existing cells that are vertically projected into unit area. 

 Equation (A-14) provides a convenient method to simulate the relation between 

characterization error rate and cell density in the single-layer case and how it is affected by the 

number of illumination angles. According to my simulation results, as the density of shadows at 
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the sensor chip increases, the overlap probability among cell shadows also increases as illustrated 

in Fig. A-8. Since illuminating with multiple light sources simultaneously is in effect multiplying 

the density of cell shadows by the number of illumination angles, as one would expect, 

sequential imaging with different illumination angles copes much better with increasing shadow 

density when compared to parallel (i.e., simultaneous) imaging with all the angles (see Fig. A-8). 

The cost of this improvement that comes with sequential lensfree imaging is a reduction in the 

speed of data capture since more frames need to be captured to characterize the same volume of 

interest. 

 

Figure A-8 | The shadow overlap probability plotted as a function of both the shadow density (i.e., the 

throughput) and the multi-angle hologram recording method (parallel vs. sequential). The diameter of the 

holographic shadows for all the angles and all the vertical layers is assumed to be 10 μm. 

 Next, I are going to use Eq. (A-13) to analyze the characterization error rate in the multi-

layer case, in which the cells are dispensed to several layers, sequentially illuminated by multiple 

angles, are then located through the process described in section A.2. 

 Several assumptions are made to simply the analysis of the multi-layer case: (1) The shadows 

of a cell in all illumination angles are all assumed to circles with identical diameters. Since the 



139 

holographic reconstruction can provide the cell’s projection profile on the plane normal to the 

illumination beam, the shape of the cell shadow will not be changed much by the projection 

distortion.  (2) The same type of cells on different layers will have similar shadow sizes. This is 

validated by the presumption that the layers are physically close to each other, e.g. three layers 

are packed in a 200-m-thick microfluidic device. Both the sizes of the hologram or the 

reconstruction patterns will not change significantly for this scale of distance. (3) The cross-

sections of the backward projected beams on each layer have the same shapes and dimensions as 

their corresponding cells. (4) All the cells under investigation have similar shapes and sizes. (5) 

The cells are evenly distributed across all layers. Hence, if the total shadow density across nL 

layers is , the cell density in each layer by will be 
Ln , with the unit of cells per unit area. 

The true positive rate for the multi-layer case is lowered by two situations: The clustering of the 

cells in the same layer makes the cell shadows overlapped in all angles; the shadow of an 

isolated cell is overlapped with the shadow of another cell on a different layer in a certain 

illumination angle. Using Eq. (A-13), the probability for a cell being isolated from any other 

cells in the same layer can be expressed as 
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Then, the probability of the shadow of an isolated cell in one layer not overlapping with the 

shadow of any cells on the other 1Ln  layers in one illumination angle is equivalent to the 

probability of a shadow not overlapping with the other N
n

n

L

L 1
 imaginary shadows in the same 

layer, i.e. 
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Accordingly, the probability that the shadow of an isolated cell not overlapping with any other 

cell shadows in ni angles but overlapped in the other nA-ni angles is 
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where C
k

n
 is the number of ways of picking k unordered outcomes from n possibilities and nA is 

the number of the illumination angles used for matching shadows. 

 Based on the cell locating process described in section A.2, there are two requirements for a 

cell to be correctly detected by the shadow matching algorithm: (1) The cell can’t overlap with 

any other cell on the same layer. (2) The number of the beams projected from the detected 

shadows and intercepting on the cell’s location must be larger than the threshold value nT. In 

other words, the cell shadow needs to be isolated from the shadows of other cells in at least nT 

angles, i.e. 
TiA nnn  . 

 As a result, the true positive rate for the multi-layer case can be evaluated by combining Eq.  

(A-15)~(A-17) as 
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If only the vertical illumination is used to characterize multiple layers of cells, both nA and nT 

will equal to one and the true positive rate will degenerate to the single-layer case, i.e., 
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 The second part of the error rate Err is contributed by false positives, which results from the 

coincidental interception of backward projected beams on spots without actual cells and 



141 

increases quickly with higher cell densities. First I evaluate the probability of a point on a certain 

layer not being occupied by the 
LnN cells in that layer as 
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The probability that an unoccupied point lies within the backward projected beams of any cells 

on the other 1Ln  layers in one illumination angle can be calculated as the probability of a point 

being inside any of the other N
n

n

L

L 1
 imaginary cells in that layer, i.e., 
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Accordingly, the probability that an unoccupied point lies within the backward projected beams 

of some cell shadows in ni angles but outside any beams in the other nA-ni angles is 
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 The false positive occurs when a point is not occupied by any cell and lies within some 

backward projected beams in at least nT angles. Therefore the probability of a point turning into a 

false positive can be evaluated by 
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If there is only one single layer of cells, false positive will never occur regardless of the number 

of illumination angles and the threshold value: 
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To quantify the false positive in a measurable way, the average shadow spacing is used as the 

sampling period on all layers for determining the false positive density, 

  
LFPFP n

r
PD

2

1


 ,  

which is defined by the number of false positives vertically projected on an unit area of the 

imaging plane. In this way, the false positive rate can be calculated by dividing the false positive 

density by the shadow density, 
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 Now, let’s check the validity of this false positive model with a special case in which the area 

density of the shadows is low, i.e., r
2 

<< 1, and the threshold value is set to one:  
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where the approximation of   xx 1exp  is used. Then the false positive rate will become 
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,  

which means that a cell in any layer can generate one false positive on each of the other 1Ln  

layers with each of the nA illumination angles. Since the result meets the expectation, this 

particular case logically validates the false positive model of equation (A-19). 

 By combining equation (8) and (17), one can calculate the total error rate in the multi-layer 

case as 

  
FPTPFPFN RRRRErr  1 . (A-20) 

 Using Eq. (A-20), I quantified the performance of my algorithm in Fig. A-9 for such 

characterization errors as a function of the shadow density at the sensor chip, according to the 

procedures described in section A.2. Fig. A-9(c) concludes that for the same total number of cells 

to be imaged per FOV (such that for achieving the same characterization throughput) utilizing 3 

or 4 vertical micro-channels performs roughly the same in terms of their characterization error 

rate, whereas 2 vertical micro-channels (although performing much better than a single channel 

having all the cells) perform worse than either 3 or 4 vertical channels. The same conclusion is 

also summarized in Fig. A-9(d) in a different format: for a total error rate of 5%, a 3- or 4-

layered microfluidic device with this multi-angle imaging platform will have ~2.3 times higher 

throughput than a single-layered device. 
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Figure A-9 | Quantified performance comparison of the multi-angle lensfree holographic cell characterization 

platform as a function of the shadow density and the number of vertical layers on the sensor chip. (a) The 

true positive rate, (b) the false positive rate, and (c) the total error rate for different cell densities distributed 

to 1, 2, 3, or 4 vertical layers/channels, where the total error rate includes both the missed cells and the false 

positives. (d) The maximum permitted shadow density (i.e., the maximum permitted throughput) at the 

sensor plane is plotted as a function of the number of vertical layers when the total error rate is maintained at 

a level of 5%. The cells are assumed to be illuminated from 5 different angles as shown in Fig. A-1(a), and the 

ray threshold value is set to 3 for detecting each cell’s 3-D location (based on the simulation results in Figs. A-

10~A-12). The shadow width at the sensor plane is assumed to be 10 m for these numerical simulations. 

 More detailed investigation of the behavior of 2, 3 and 4 vertical channels for handling 

increasing shadow densities (i.e., increasing throughput) as a function of the number of 

illumination angles and ray threshold factor is provided in Figs. A-10, A-11, and A-12, 
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respectively. These detailed figures also support the conclusions of Fig. A-9, and further shed 

light on the choice of the optimum conditions for a given number of illumination angles to 

achieve a desired imaging throughput at an acceptable characterization error rate. 

  

Figure A-10 | Error rate characterization of the reported multi-angle algorithm for analyzing 2 vertical layers 

of cells with different illumination conditions and ray threshold values. (a) The true positive rate, (b) the false 

positive rate, and (c) the total error rate as a function of the shadow density at the sensor plane are reported 

for 5 illumination angles. In each image, the effect of the ray threshold value (denoted by nT) on my 

characterization accuracy is also quantified. (d), (e) and (f) report the same error characterization as a 

function of the imaging throughput for this time 3 illumination angles, rather than 5. The holographic 

shadow width of the cells at the sensor plane is assumed to be 10 m for these calculations.  
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Figure A-11 | Same as Fig. A-10, except that the error characterization results as a function of the imaging 

throughput are now reported for 3 vertical layers of cells with different illumination conditions and ray 

threshold values (nT). 
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Figure A-12 | Same as Fig. A-10, except that the error characterization results as a function of the imaging 

throughput are now reported for 4 vertical layers of cells with different illumination conditions and ray 

threshold values (nT).  

 The above discussion clearly shows this multi-angle holographic imaging platform can 

achieve a much higher throughput with multi-layered micro-fluidic devices. The compactness 

and increased throughput of this platform will greatly benefit point-of-care cytometry and 

diagnostics applications. Within a simple micro-fluidic device, the body fluid from multiple 

patients can be simultaneously imaged and characterized in isolated layers without the risk of 

cross-contamination. 
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