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A Toolbox of Methods for Probabilistic Inference
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Department of Psychology, Carnegie Mellon University

Pittsburgh, PA 15213 USA

Abstract

We propose that probabilistic inference is supported by a men-
tal toolbox that includes sampling and symmetry-based rea-
soning in addition to several other methods. To flesh out this
claim we consider a spatial reasoning task and describe a num-
ber of different methods for solving the task. Several recent
process-level accounts of probabilistic inference have focused
on sampling, but we present an experiment that suggests that
sampling alone does not adequately capture people’s infer-
ences about our task.
Keywords: probability judgment; probability estimation; rea-
soning; sampling; symmetry

Certainty is often unattainable, and people must therefore
maintain degrees of belief. A prominent tradition in cognitive
science explores where these degrees of belief come from and
how they are updated given evidence. One line of work fo-
cuses on normative accounts of reasoning under uncertainty,
and many of these accounts rely on probability theory. A
distinct but related line of work focuses on process-level ac-
counts that attempt to characterize how probabilistic infer-
ence is implemented by the mind and brain.

Recent work on process-level accounts has emphasized
the idea that the mind approximates probabilistic inference
by sampling (Griffiths, Vul, & Sanborn, 2012; Sanborn
& Chater, 2016; Bonawitz, Denison, Griffiths, & Gop-
nik, 2014). We believe, however, that sampling is just
one among many methods that people use for probabilis-
tic inference. Other possible methods depend on symmetry-
based reasoning (Strevens, 1998; Vasudevan, 2012), counting
events (Johnson-Laird, Legrenzi, Girotto, Legrenzi, & Cav-
erni, 1999; Fox & Levav, 2004), computing sums (Fischbein,
1975), products (Fischbein, 1975) and ratios (Zhao, Shah, &
Osherson, 2009), and ignoring irrelevant information (Grove
& Koller, 1991). This paper lays out an initial proposal about
a mental toolbox of such methods. The long term challenge
is to understand which methods belong in the toolbox, when
they are applied, and how they are flexibly combined. Ad-
dressing this challenge is far from straightforward, but essen-
tial in order to understand probabilistic inference at the pro-
cess level.

A longstanding debate in the reasoning literature pits
model-based approaches against those that rely on mental
proofs. Model-based inference relies on representations of
concrete states of affairs, and mental proofs are constructed
by applying abstract rules. We believe that both approaches
have their merits, and that people draw on both in different

contexts. Our toolbox of methods therefore includes model-
based approaches such as sampling alongside alternatives that
require the construction of mental proofs. A pluralist ap-
proach, of course, does not immediately resolve the issues at
stake in the debate about models and proofs. Detailed work
is needed to establish when people rely on model-based ap-
proaches and when they construct mental proofs.

Spatial reasoning task
Because different tasks may elicit different reasoning meth-
ods, a comprehensive theory of probabilistic inference should
be able to account for a wide range of tasks. As a starting
point, we focus here on one simple task. Figure 1a shows a T-
shaped rock in a square pond. Suppose that a blue beetle and
a gold beetle are both located somewhere on the rock. If the
blue beetle is north of the gold beetle, what is the probability
that the blue beetle is also east of the gold beetle?

The inferences we consider can be formalized using the
graphical model in Figure 1f. Variable T specifies the topog-
raphy of the pond, and zb = (xb,yb) and zg = (xg,yg) indicate
the positions of the blue and gold beetles respectively. These
positions depend on T because both must fall on a rock rather
than in the water. Variables rx and ry indicate relations be-
tween the beetles along the x and y axes respectively. For
example, rx = 1 indicates that blue is east of gold, rx = −1
indicates that blue is west of gold, and rx = 0 captures the
rare case in which neither beetle is east of the other.

In this setting, a model is a pair (zb,zg) that specifies the
locations of both beetles. One example is shown in Fig-
ure 1b. Our task is deliberately chosen so that it is impossible
to enumerate all possible models. In contrast, some previ-
ous research on probabilistic inference focuses on problems
for which the set of models is discrete and relatively small,
which allows inference methods that depend on enumeration
or counting (Fox & Levav, 2004).

Our task has several other appealing properties. It is
closely related to a family of tasks known as three-term se-
ries problems that have been prominent in the reasoning lit-
erature (Clark, 1969; Jahn, Knauff, & Johnson-Laird, 2007).
One such problem asks “if A is west of B and B is west of
C, is A west of C?” Compared to these problems, one advan-
tage of our task is that it allows for a wide range of normative
responses. For example, the normative responses to the ques-
tions in Figures 1a and 1e are 0.5 and 0.75 respectively, and
by varying the shape of the rock it is possible to create a ques-
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(a) (b) (c) (d) (e) (f)

The blue beetle is north of the gold beetle. How likely is it that the blue beetle is east of the gold beetle?

zg

zb

xb

rx ry

T

xg ygybzgzg

Figure 1: (a) Our task requires participants to reason about the relative locations of two beetles in a pond. The rock surface
is shown in grey, and both beetles are located somewhere on the rock. (b) A complete model that specifies the locations of
both beetles. (c) A partial model that specifies the location of the gold beetle only. (d) The normative answer to the canonical
question below the ponds can be computed by dividing the area marked with horizontal lines by the area marked with vertical
lines. (e) A pond that produces a normative response of 0.75. (f) Graphical model showing the relationships between variables
described in the text.

tion with any desired probability as the normative response.
A second advantage of our task is that it admits a range of
variants that can potentially provide insight into probabilistic
inference. One such variant is to ask the same question but
to display the position of one beetle, as shown in Figure 1c.
Finally, the next section illustrates that our task is useful for
exploring probabilistic inference because it can be solved in
principle by several methods.

A toolbox of probability estimation methods
We now describe a toolbox that contains eight methods for
estimating a conditional probability P(rx|ry). This probabil-
ity corresponds to the strength of an argument in which the
premise is ry (e.g. “blue is north of gold”) and the conclusion
is rx (e.g. “blue is east of gold”). To simplify our notation we
treat the topography T as background knowledge and drop it
from our equations.

Each method is intended to represent a family of related ap-
proaches rather than a single precisely-defined algorithm. Af-
ter introducing each method, we describe one concrete instan-
tiation of the method, but other instantiations of each method
are possible.

1. Sample complete models. One way to estimate the
probability P(rx|ry) is to think of a number of models that
make the premise true, and to consider how many of these
models also make the conclusion true (Johnson-Laird et al.,
1999). We refer to this approach as complete sampling, be-
cause each model considered provides a complete specifica-
tion of the positions of the beetles. A normative version of
complete sampling is:

P(rx|ry) =
∫

zb,zg

P(rx|zb,zg)P(zb,zg|ry)dzbdzg

≈ 1
m

m

∑
i=1

P(rx|zi
b,z

i
g),

(1)

where each pair (zi
b,z

i
g) is a sample from P(zb,zg|ry). Equa-

tion 1 shows how sampling m models is a way to approximate

an integral over all possible locations of the beetles, and the
approach is normative in the sense that the approximation ap-
proaches the probability P(rx|ry) as the number of samples
becomes large.

2. Sample partial models. An alternative to complete sam-
pling is to work with partial models such as the example in
Figure 1c that specify the location of one beetle only. For ex-
ample, a reasoner might imagine several possible locations of
the gold beetle, and assess the probability of the conclusion
in each case. A normative version of this method is:

P(rx|ry) =
∫

zg

P(rx|ry,zg)P(zg|ry)dzg

≈ 1
m

m

∑
i=1

P(rx|ry,zi
g),

(2)

where each zi
g is a sample from P(zg|ry). In Equation 1, the

term P(rx|zi
b,z

i
g) is either 1 or 0, and can be computed by

inspecting whether location zi
b lies to the east or the west of

zi
g. The analogous term in Equation 2 is P(rx|ry,zi

g), which
can be computed using the ratio in Equation 3 below, or one
of the other methods in the toolbox.

A premise such as “blue is north of gold” locates a figure
object (blue beetle) with respect to a ground object (gold bee-
tle), and Equation 2 could be used by reasoners who focus on
the ground object. Another approach is to sample possible lo-
cations of the figure object. This approach can be formalized
using a variant of Equation 2 in which zg is replaced by zb.

3. Construct a model-based proof. If the process of sam-
pling models (complete or partial) is accessible to aware-
ness, then reflecting on this process may be enough to derive
some conditional probabilities. Suppose for example that a
reasoner samples the mental model shown in Figure 1b —
a model in which blue is north of gold (as required by the
premise) and in which blue is east of gold (as stated by the
conclusion). An alert reasoner may notice that this model can
be paired with a twin that is identical except that the posi-
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tions of blue and gold are reflected about the rock’s axis of
symmetry. In the twin model the premise still holds but the
conclusion does not. Further reflection may establish the con-
viction that each model can be paired with a twin in this way,
which means that every model that supports the conclusion
is paired with a twin that rejects the conclusion. The predic-
tions based on the models and their twins therefore “cancel
out,” revealing that P(rx|ry) = 0.5. The overall chain of rea-
soning can be formalized as a mathematical proof that refers
to models chosen “without loss of generality.”

4. Exploit symmetry. The proof sketched in the previous
section has two distinctive characteristics: it refers to specific
models and it makes use of symmetry. Symmetry, however,
can also be used to derive probabilities without needing to
consider any specific models. In Figure 1a, a reflection in the
T-shaped rock’s axis of symmetry maps east onto west and
vice versa, but leaves the shape of the rock unchanged. As
a result, inverting east and west in any probability statement
concerning the rock leaves the probability unchanged. For
example, P(blue east of gold|blue north of gold) must equal
P(blue west of gold|blue north of gold), and because these
two probabilities sum to one both must equal 0.5.

Symmetry can also be used to derive an unconditional
probability such as P(blue east of gold) = 0.5. It is vanish-
ingly improbable that the beetles have identical x coordi-
nates, which means that blue is either east or west of gold.
Given that no available information distinguishes between
these states, the principle of indifference (Strevens, 1998) im-
plies that both must have a probability of 0.5.

5. Ignore irrelevant information. A basic strategy for sim-
plifying probabilistic inference is to ignore information that
has no bearing on the conclusion. If the pond contains an
upright square rock, for example, the x and y coordinates of
a beetle are statistically independent—knowing one of these
coordinates places no constraints on the other. It follows that
P(rx|ry) = P(rx) = 0.5, where the final step follows from the
principle of indifference as described in the previous section.

6. Apply the ratio rule. Suppose that zg (the position of the
gold beetle) is known, as shown in Figure 1c. The conditional
probability P(rx|ry,zg) can be computed using

P(rx|ry,zg) =
P(rx,ry|zg)

P(ry|zg)
. (3)

Equation 3 is simple to compute by estimating the area of
two regions in a diagram like Figure 1c. The denominator
P(ry|zg) is proportional to the area of rock that is north of zg
(indicated with vertical lines in Figure 1d). The numerator
P(rx,ry|zg) is proportional to the area that is north and east of
zg (indicated with horizontal lines in Figure 1d).

7. Apply Bayes rule. Bayes rule can be applied as follows:

P(rx|ry) =
P(ry|rx)P(rx)

P(ry)
= P(ry|rx), (4)

where the final step follows from the observation above that
P(ry) = P(rx) = 0.5. In general P(ry|rx) will be no easier to
compute than P(rx|ry), so applying Bayes rule may not be
useful. There may be cases, however, in which one of these
probabilities is easier to compute than the other.

8. Enumerate cases. One general strategy for solving a
difficult problem is to break it down into a set of simpler sub-
problems. In Figure 1e, a reasoner may estimate P(rx|ry) by
considering 4 cases: either both beetles are on the bottom
left rock, both are on the top right rock, blue is bottom left
and gold is top right, or blue is top right and gold is bottom
left. This strategy can be captured formally by introducing a
variable v that indicates which of the 4 cases obtains:

P(rx|ry) = ∑
v

P(rx|v,ry)P(v|ry). (5)

Each of the sub-problems is simpler than the original. For
example, if both beetles are on the same rock, then P(rx|ry) =
0.5, as argued in our discussion of method 5.

Using the toolbox. We suspect that all eight methods in the
toolbox and possibly others are available to human reason-
ers. Given a problem, a reasoner must therefore decide which
method or methods to try. Sometimes two or more meth-
ods will need to be combined: for example, methods 2 and
8 (“sample partial models” and “enumerate cases”) both ex-
press the original probability as a function of several proba-
bilities, which must be estimated in turn.

At present, a detailed mechanistic understanding of proba-
bility estimation seems remote. Establishing that people rely
on one method for a given task is difficult, because numerous
other methods must be ruled out. Establishing that people do
not rely on a given method may be more tractable, because
only one hypothesis must be ruled out. Given the recent em-
phasis on sampling as a mechanism for probabilistic infer-
ence, we designed a study to explore whether sampling is a
plausible account of inference in our setting.

Experiment
We suspect that people rely on sampling when other meth-
ods are unavailable, but are able to exploit symmetry when
relevant. If so, then people’s responses to symmetric ponds
might be systematically different from their responses to
other ponds. Our experiment was designed to test this pos-
sibility.

Participants. 36 participants were recruited using Amazon
Mechanical Turk and paid for their participation.

Materials. Participants were asked to reason about the 26
ponds shown in Figure 2. The first 19 ponds are categorized
as “double symmetry,” “single symmetry” or “no symmetry”
ponds depending on whether they have both vertical and hor-
izontal symmetry, only one of these symmetries, or neither
vertical nor horizontal symmetry. The next 5 ponds are “non-
50” ponds, or ponds for which the normative response is other
than 50.
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Non−50

(n) (o) (p) (q) (r) (s)

(a) (c) (d) (e) (f)(b) (g) (h) (i) (j) (k) (l)

(t) (u) (v) (w) (x)

(y)

(z)Double symmetry

No symmetry Single symmetry

Catch

(m)

Figure 2: Ponds used in the experiment. The normative response for all ponds in the first three categories (no symmetry, single
symmetry, and double symmetry) is 50. Ponds (l), (q), (s) and (x) all have rocks that enclose a body of water.

Procedure. Participants read an introduction that described
an eccentric businessman who owned many square ponds.
Each pond was said to contain a single gold beetle and a sin-
gle blue beetle. Participants were told that the beetles could
not swim, so each beetle was located somewhere on a rock.
They then answered three simple questions that tested their
comprehension of what they had just read. They remained
on the introductory screen until they had answered all three
questions correctly.

Each participant then saw the 24 ponds in Figures 2a-2x
in a random order. For each pond, they read that “In this
pond the blue beetle is r1 of the gold beetle.” They were then
asked “How likely is it that the blue beetle is r2 of the gold
beetle?”, and required to give their answer on a 0-100 scale
with labels at 0 (“Not likely”) and 100 (“Very likely”). For
each pond and each participant, (r1,r2) was a pair of perpen-
dicular directions (e.g. (north, east), (north, west)) randomly
drawn from the set of 8 such pairs.

After the 24 ponds participants responded to two catch tri-
als that had unambiguous answers. One stated that “the blue
beetle is east of the gold beetle” and asked participants to rate
the likelihood that the blue beetle is west of the gold beetle.
The second was similar but used the north-south instead of
the east-west axis. The rocks used for these questions are
shown in Figures 2y and 2z.

Results. We computed normative responses for each pond
by assuming that the location of each beetle was generated
from a uniform distribution over the rock surface. For sin-
gle symmetry and double symmetry ponds, the normative re-
sponse is always 50. Normative responses for the non-50 and
no symmetry ponds were computed by using complete sam-
pling and drawing 100,000 samples. When creating the no
symmetry ponds, the dimensions of the ponds (e.g. the rela-
tive lengths of the two T-segments in Figure 2a) were adjusted
until complete sampling returned a normative result between
49.5 and 50.5.

Because the question associated with each
pond was randomized, all responses were con-
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(a) (b)

Figure 3: (a) Mean human responses versus normative re-
sponses (b) Histogram of correlations achieved by individu-
als

verted to responses to the canonical question
P(blue north of gold|blue east of gold). Our conversion
assumed that P(blue north of gold|blue east of gold) =
1−P(blue south of gold|blue east of gold), and similarly for
other pairs of opposite directions. We also assumed that
P(rx|ry) = P(ry|rx), as discussed in Method 7 above. We
expect that intuitive judgments do not always respect or even
approximate this latter identity, but assuming that they do
allows for a simple first look at our data.

16 participants failed to give ratings of 0 on both catch
trials, and were dropped from all subsequent analyses. Fig-
ure 3a shows that mean responses among those who remained
roughly tracked normative responses. Each point in the scat-
ter plot corresponds to a pond. For example, the point at the
top right of the plot corresponds to Figure 2t. The overall cor-
relation between human and normative responses is 0.83, and
Figure 3b shows the correlations achieved by individual par-
ticipants. Some participants had correlations near zero, but
half had correlations exceeding 0.5. Overall, Figure 3 sug-
gests that humans perform relatively well at the task.

The comparison of primary interest is between no sym-
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Figure 4: Mean distance from 50 for no symmetry, single symmetry and double symmetry ponds. Results are shown for (a)
experimental data (b) complete sampling model with m = 8 (c) partial sampling model with m = 3. These m values were chosen
to approximately match the variability in the human data.

metry ponds, single symmetry ponds and double symmetry
ponds. The normative response for these ponds is always 50,
and we therefore analyzed the extent to which responses dif-
fered from 50. Figure 4a shows that responses for the double
symmetry ponds tended to be closer to 50 than responses to
the other two kinds of ponds. A Mann-Whitney test indicated
that the distance from 50 was greater for no-symmetry ponds
(median = 16, n = 120) than for single-symmetry ponds (me-
dian = 13, n = 120), U = 5998, p = 0.012. A second test
indicated that the difference between single-symmetry ponds
and double-symmetry ponds (median = 0, n = 140) was also
statistically significant (U = 5260, p < 0.001). A natural in-
terpretation of these results is that some participants relied on
symmetry-based reasoning.

Complete and partial sampling can both be implemented in
different ways, but the implementations suggested by Equa-
tions 1 and 2 are especially appealing. These implementa-
tions are relatively simple, and both approximate the norma-
tive response as the number of samples becomes large. Fig-
ures 4b and Figures 4c show results for these two implemen-
tations. In both cases, the number of samples is chosen so
that the model matches the average distance from 50 in the
human data. Although matched to humans in this respect, the
two sampling models do not account for the special status of
the double symmetry ponds in the human data. For example,
the complete sampling model predicts no difference between
the no symmetry and double symmetry ponds.

A second challenge for a sampling model is whether it can
account for the human data given a psychologically plausi-
ble number of samples. For the sake of argument, assume
that each of our participants is using complete sampling, and
that each draws the same number of samples m in Equation 1.
Figure 5 shows how the predicted variability in the human
data decreases as m increases. If each participant drew one
sample only, then some would give responses of 0 and others
would give responses of 100, and the average distance from
50 would be 50 for no symmetry, single symmetry and double
symmetry ponds alike. If m were very large, then each partic-
ipant would give a response very close to 50. Figure 5a shows
that setting m to 5 or 6 is enough to account for the variability
in responses to the no symmetry and single symmetry ponds.
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Figure 5: Distance from 50 predicted by (a) complete and
(b) partial sampling as the number of samples increases. In
(a) a single model curve is shown in black because model
predictions are identical for no symmetry, single symmetry
and double symmetry ponds. In (b) three model curves are
shown because the model predictions for the three classes of
ponds are close but not identical.

For double symmetry ponds, however, m must be set higher
than 20 in order to match the human data. A value this high
does not seem psychologically plausible, and challenges the
hypothesis that people rely on complete sampling when rea-
soning about double symmetry ponds.

Figure 5b shows the analogous plot for partial sampling. In
this case, setting m to 10 or so is enough to account for the
variability in responses to the double symmetry ponds. This
value seems high, but perhaps not high enough to definitively
rule out partial sampling as a psychological account. The dif-
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ference in the human data between double symmetry and both
single and no symmetry ponds, however, remains a challenge
for models that rely on partial sampling.

Discussion. Although our implementations of complete
and partial sampling do not account well for our data, it is
possible that other implementations of these methods will
perform better. Our implementations assume that models are
randomly sampled from the set of all models consistent with
the premise of a given argument, but in reality people may
sample some kinds of models more often than others. For ex-
ample, perhaps people prefer to locate the beetle mentioned
first towards the left of the pond (Jahn et al., 2007) or towards
the top (Levelt & Maasen, 1981). Previous accounts of spa-
tial reasoning have documented effects like these (Jahn et al.,
2007), and it seems likely that similar effects will emerge in
our setting.

In addition to left-right and up-down preferences, people
may also prefer to sample models in which the beetles are lo-
cated along axes of symmetry. A preference of this kind could
help to explain results that are also consistent with symmetry-
based reasoning. In Figure 1a, for example, a partial sampling
method that uses just one sample will generate the normative
response of 50 provided that the single sample locates the
gold beetle along the rock’s axis of symmetry.

Throughout we have mostly considered inference methods
that compute or approximate normative responses. Our data
suggest that people’s responses to our task are roughly con-
sistent with normative inference, but in other settings peo-
ple make inferences that are far from normative. For exam-
ple, base-rate neglect may occur if people apply Bayes rule
without including the prior (Kahneman & Tversky, 1973). In
other cases people may rely on sampling but sample from the
“wrong” distribution—for example, some of our participants
may have sampled from P(zg) rather than P(zg|ry) in Equa-
tion 2. Each method in the toolbox can be applied in norma-
tive and non-normative ways, and detailed work is required
to understand how a method is applied in any given setting.

Conclusion
We suggested that people make use of a mental toolbox that
includes several qualitatively different methods for proba-
bilistic inference. Each of these methods has several variants,
and some methods can be combined with each other. We
therefore believe that people can draw on a set of inference
methods that is relatively large, which makes understanding
probabilistic inference at the process level very challenging
indeed.

Like previous researchers we believe that behavioral exper-
iments can provide some insight into the processes that sup-
port probabilistic inference. We described a spatial reasoning
task that appears to be a natural candidate for inference by
sampling, but our results suggest that any simple sampling
method is unlikely to fully capture the way in which people
approach the task. Ruling out one simple hypothesis about in-
ference is one thing, but providing a comprehensive account

of probabilistic inference is another thing entirely. We con-
fess to some scepticism about whether behavioral data alone
are enough to reveal the mind’s algorithms for probabilistic
inference.
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