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ABSTRACT OF THE DISSERTATION 

Low-coverage transcriptomics 

for understanding genetic regulation of complex traits 

by  

Tommer Abraham Schwarz 

Doctor of Philosophy in Bioinformatics 

University of California, Los Angeles, 2022 

Professor Bogdan Pasaniuc, Chair 
 

Mapping genetic variants that regulate gene expression (eQTL mapping) in large-scale RNA 

sequencing (RNA-seq) studies is often employed to understand functional consequences of 

regulatory variants. However, the high cost of RNA-Seq limits sample size, sequencing depth, 

and therefore, discovery power in eQTL studies. In this work, we demonstrate that, given a fixed 

budget, eQTL discovery power can be increased by lowering the sequencing depth per sample 

and increasing the number of individuals sequenced in the assay. We perform RNA-Seq of 

whole blood tissue across 1490 individuals at low-coverage (5.9 million reads/sample) and show 

that the effective power is higher than that of an RNA-Seq study of 570 individuals at moderate-

coverage (13.9 million reads/sample). Next, we leverage synthetic datasets derived from real 

RNA-Seq data (50 million reads/sample) to explore the interplay of coverage and number 

individuals in eQTL studies, and show that a 10-fold reduction in coverage leads to only a 2.5-

fold reduction in statistical power to identify eQTLs. Our work suggests that lowering coverage 

while increasing the number of individuals in RNA-Seq is an effective approach to increase 

discovery power in eQTL studies. We then build a pipeline using existing tools CIBERSORTx 

and bMIND to computationally deconvolute low-coverage bulk RNA-seq from a total of 1,996 

individuals to estimate cell type expression. We show that cell type expression estimates are 
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consistent with those from scRNA-seq and can be used as a powerful approach to finding ct-

eQTLs. Next, we use medication history from this cohort to look for SNP x lithium interactions in 

ct-eQTLs, finding 110 examples of eGenes whose cell type expression is significantly 

associated with some SNP dependent of lithium usage. 
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Chapter 1: Introduction 

The human genome consists of approximately three billion pairs of nucleotides and a 

copy of is carried in each of the body’s approximately three trillion cells, in the form of genetic 

material called DNA 60. Of the three billion pairs, over 99% of them are identical across the 

human population 61. However, at some positions, there exists variations, where some of the 

population may have one nucleotide, while others have another nucleotide. These positions are 

referred to as single nucleotide polymorphisms (SNPs) or genetic variants. Within the three 

billion pairs there are roughly 20,000 or so genes, which are regions of the genome that provide 

instructions for the bodies machinery to create RNA and proteins, through processes called 

transcription and translation, respectively 62. RNA and proteins are the functional units of cells, 

and together affect different traits by different degrees. 

An important note about the genome, as stated before, is that across each cell in the 

body, the genetic material is the same. This means that across many different tissue types 

(brain, blood, skin, etc.), cells carry the same genome. In order for each tissue to contain highly 

specialized cells, the quantities of RNA and protein produced from each gene must differ. For 

example, if a certain gene encodes instructions for production of a protein that performs critical 

brain functions, this gene might show high expression in brain cells, but lower expression in 

other tissue types.  

When we think about ways to model risk for genetic traits, there are two components 

that we consider that lead to this risk 63-65. The first being genetic factors that put people at risk 

for different traits and the second being environmental factors. This refers to where you live, 

local air quality, diet, other lifestyle characteristics, and everything that is not attributable to 

genetics. The amount that each of these categories affects risk for complex traits varies and we 

think about them in two major categories. First, rare or mendelian traits, that are characterized 

by having large genetic components, carrying genetic mutations inside gene regions that have 

large effects on the trait. Some examples of mendelian traits include cystic fibrosis, sickle cell 

anemia, and beta thalassemia. On the other hand, we have common or complex traits, 
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characterized by substantial environmental components, varying levels of genetic contributions 

that are derived from many genetic variants with small effects, that lie outside coding regions. 

Some examples of complex traits include bipolar disorder, diabetes, and height. Because of the 

large genetic component and large effects of the variants implicated in mendelian traits, they are 

easier to identify and link to function 67-68. However, in complex traits, many of the implicated 

variants lie outside of gene regions and have small effects on the overall outcome, making it 

difficult to draw conclusions about these variants 66.  

Studying the genetic basis of complex traits is important for many reasons, including 

identifying therapeutic targets, early screening for diseases, and understanding how complex 

trait biology may differ across genetic ancestry groups. Roughly 20 years ago, the first genome-

wide association studies (GWAS) were conducted in order to identify regions of the genome that 

are correlated with a trait 69. This is done by gathering a large group of individuals and looking at 

all of the SNPs in the genome for where the presence or absence of one allele is associated 

with some trait. We can calculate the strength of association between each SNP and the 

disease by looking at the frequencies of each of them in a large group of cases and controls. 

We can measure the statistical association of all of the SNPs in the genome with the trait to find 

implicated regions. Using this approach, GWAS has been done for many traits that have 

implicated many different regions of the genome. In 2011, about eight years after scientists 

started doing these studies, there were 249 GWAS studies done that implicated 1,617 regions 

of the genome 71. In the years that followed, measuring genotypes became much less 

expensive and more resources were allocated to these types of studies. By 2018, there were 

5,687 studies that helped discover 71,673 region-trait associations 71.  

GWAS has been tremendously successful in discovering genetic variants that are 

correlated with complex traits. However, the vast majority of risk loci identified in GWAS are 

difficult to interpret as they lie in noncoding regions of the genome 70. It has been shown to lie in 

regulatory regions which leads to the hypothesis that these variants have some collective link to 

gene expression. Variants that regulate gene expression abundance, as measured through 
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expression quantitative trait locus (eQTL) studies, provide insightful information about the 

functional interpretation of GWAS signals1,2. eQTL studies (or mapping) involve gathering a 

population of samples and measuring their genetics. Focusing on a SNP, we separate the 

population into three groups depending on their genotype at that position. For some gene 

nearby that SNP, we look at its measured expression level in each of the individuals, stratified 

by the three genotype groups. From this we can calculate the effect size, representing the 

magnitude of the effect that variant X has on the expression of gene A. We refer to the pair as 

an eQTL and the regulated gene as an eGene. By integrating eQTL associations with GWAS, 

we can hope to identify target genes that are driving the GWAS signal at a locus 3-6. In order to 

use this approach, we must be able to measure gene expression in large groups of individuals. 

RNA sequencing (RNA-Seq) is the state-of-the-art assay for measuring gene expression 

in bulk tissue and is therefore the assay of choice for eQTL mapping 7-8. RNA-seq uses reads to 

sample the RNA being produced during transcription. In fact, the number of reads that goes into 

an RNA-seq experiment is a key factor that determines the quality of the experiment. 

Experiments with many reads will capture the underlying level of gene expression well, and we 

refer to them as having “high-coverage”. On the flip side, experiments with fewer reads will have 

noisier estimates of the underlying gene expression, and we refer to them as having “low-

coverage”. Ideally, we would conduct all RNA-seq experiments with very high coverage, 

however, the high cost of RNA-Seq often limits the sample size and therefore reduces the 

discovery power of eQTL studies based on RNA-Seq 2,6,9. Recent work from the eQTLGen 

consortium where they conducted a meta-cis-eQTL-analysis from 31,684 gene expression 

(combination of microarray and RNA-Seq) identified 16,987 eGenes. Consequent power 

analysis revealed that at a power of 0.80, 1,685 samples are needed to capture eGenes at an 

effect size of 0.124 (the median effect size observed among the 16,987 eGenes identified in the 

study) 10. 

Traditional RNA-Seq study design prioritizes sequencing depth per individual (targeted 

levels of coverage in the range of 30-50 million reads) over the number of individuals (samples) 
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included in the study 11-14, 72. However, given that high levels of coverage per individual limits 

the sample size of a study, this results in a loss of statistical power in eQTL mapping. Previous 

studies have established that the low-coverage whole genome sequencing of a larger number of 

individuals attains increased power of association compared to higher-coverage studies of 

smaller sample sizes in GWAS 15-19. This raises the hypothesis that, similarly as for whole 

genome sequencing and GWAS, lower coverage RNA-seq with a considerable increase in the 

number of individuals sequenced could increase power of discovery in eQTL studies.20-24 

Currently, there is no systematic approach for determining the optimal sample size (in terms of 

number of sequenced individuals) and coverage to maximize eQTL discovery power. 

One application of eQTL discovery is integration with GWAS, using methods such as coloc 25, to 

better understand biological mechanisms driving these GWAS loci. Recent work from GTEx 

shows that just ~20% of GWAS loci colocalize with eQTLs in the most relevant tissue to the 

trait, and other work shows that an average of just ~11% of trait narrow-sense heritability is 

explained by cis-eQTLs measured in GTEx.26-28 To better characterize GWAS loci, it is clear that 

large sample sizes are especially necessary for maximizing power in eQTL studies.10  Looking 

back over the past decade since the inception of RNA-Seq, the size of RNA-Seq datasets has 

been steadily increasing as a result of decreasing sequencing costs and an emphasis on 

exploring the biological mechanisms behind GWAS hits.29 Moving forward, as this trend 

continues, RNA-Seq experiment design is a critical part of maximizing data resources.30 

In this work, we perform RNA-Seq in 1490 individuals at a lower coverage (average mapped 

read depth of 5.9 million reads/sample) and find that eQTL discovery power is better than that of 

an experiment with a similar budget, but with fewer individuals and higher coverage. Compared 

to moderate-coverage RNA-Seq31 and GTEx, we find a high degree of consistency in both the 

gene expression as well as eQTL effects. We assess the interplay of coverage per sample and 

accuracy of expression estimates using synthetic RNA-Seq datasets generated by the down-

sampling of real high-coverage data. Additionally, we generate synthetic data derived from an 

RNA-Seq experiment done at 50 million reads/sample to precisely show how decreasing 
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coverage affects accuracy of gene quantification overall, and in different gene categories (by 

expression, numbers of transcripts, gene length, etc.). Our analyses show that a sequencing 

experiment conducted with a target coverage of 10 million reads/sample has an average 

correlation per-gene of 0.40, when compared to an experiment conducted with a target 

coverage of 50 million reads/sample. We provide evidence to show that under a fixed budget, 

sequencing at lower coverage levels (< 10 million reads/sample) and increased sample size can 

boost the effective sample size per unit of cost compared to standard approaches of eQTL study 

design. 

Chapter 2: Trade off between coverage and sample size in synthetic data 

2.1 Abstract 

Expression quantitative trait studies (eQTL) mapping has proven to be a powerful 

approach to identify common genetic variants contributing to regulation of gene expression, and 

subsequently to complex traits and diseases. Here, we show via simulations, that under a fixed 

budget, low-coverage RNA-seq across an increased number of individuals attains more power 

for eQTL discovery than high-coverage RNA-seq with a limited number of individuals. This is 

quantified by effective sample size, or an estimate for the amount of individuals that would have 

needed to be sequenced at high-coverage to discover the same number of eQTLs. We find that 

with RNA-Seq data at 5-fold reduction in coverage, it is possible to capture upwards of 60% of 

the eGenes found in high-coverage data. Within the context of reducing experimental costs, our 

results suggest that low-coverage RNA-sequencing in many individuals can yield increased 

benefit for eQTL studies. 

2.2 Introduction 

Massive cost reductions in whole genome sequencing and genotyping has enabled 

researchers to collect genotypes at very large scales, leading to very high powered GWAS 

studies. While GWAS links genetic variants to risk for complex traits, eQTL mapping has 
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emerged as an approach for linking genetic variants to gene expression, which can help provide 

some functional information about genetic variants. In the last decade, RNA-seq has become 

the method of choice for measuring gene expression, and while costs have decreased, it is still 

prohibitively expensive when compared to the costs of whole genome sequencing and 

genotyping. When designing an eQTL study with a fixed amount of resources, there exists a 

tradeoff between the number of samples included in the study and the level of coverage that the 

sequencing is performed at. These parameters directly influence how well the study will be 

powered to detect associations. Increasing sample size will reduce coverage, leading to more 

noisy gene expression estimates, while decreasing sample size will lead to more accurate gene 

expression estimates. Therefore, when designing eQTL studies with a fixed amount of 

resources, it is critically important to consider these parameters and their combined impact on 

association power. 

 In the past, eQTL studies have been conducted using RNA-seq experiments at very high 

levels of coverage (40-80 million reads/sample), and experimental guidelines suggest similarly 

high levels of coverage for the purpose of gaining a global view of gene expression. We 

hypothesize that it is still possible to capture much of the gene expression signal sequencing at 

lower levels of coverage, which would enable researchers to boost the number of samples 

included in their studies. In this work, we use actual high-coverage RNA-seq data to create 

many synthetic datasets at varying levels of coverage, and analyze how well we quantify gene 

expression and detect eQTLs at lower coverage levels. 

2.3 Results 

2.3.1: Impact of coverage on discovery power 

We focus on exploring the interplay of number of individuals and coverage for optimizing power 

for discovery in this eQTL study. As simulating RNA-Seq data is challenging 34-35, we down 

sample reads from high-coverage RNA-Seq data to create synthetic datasets at various 

coverages (Methods). We observe that with just a fraction of the reads, it is still possible to 
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estimate gene expression (Figure 2.1A). For example, we demonstrate using synthetic data 

that using just 10% of the data (5.0 million reads/sample) retains a per gene R2 of 0.40, on 

average. In practice, increasing the number of samples in an RNA-Seq study leads to increased 

library preparation costs, making the increase in obtainable statistical association power less 

obvious.  

Table 2.1: Sequencing cost scenarios (corresponding to Figure 2.2) 

The cost parameters corresponding to the effective sample size scenarios in Figure 2.2. Cost 

per sample reflects the cost of library prep to include an additional sample. Cost per lane 

reflects the cost per sequencing lane, which allows for 300 million reads.  

2.3.2 The importance of R2 for estimating power in association studies 

It has been established that statistical power in association studies is a function of sample size, 

phenotype measurement accuracy, and genotype measurement accuracy 15,16,21,35. This means 

that the power of a study with sample size N and estimated gene expression is approximately 

the same as the power of a study with sample size N, using the true gene expression 

measurements (Methods). In this scenario, R2 is the correlation between the true expression 

and the expression estimates. We therefore report the squared correlation (R2) between 

 Cost per lane Cost per sample

Scenario 1 $1790 $87

Scenario 2 $1790 $30

Scenario 3 $1790 $150

Scenario 4 $1000 $150
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synthetic datasets at various coverages and the full data at an average of 50 million reads/

sample (which is assumed to be the true gene expression). While these results show the mean 

R2 for all genes obtained under one synthetic dataset (one draw) per coverage level, we find 

that the synthetic datasets are consistent across multiple draws at the same coverage level 

(Figure 2.3A) and each show similar correlations with the ground truth gene expression (Figure 

2.3B). 

2.3.3 Using synthetic low-coverage RNA-seq to conduct cis-eQTL scans 

Next, we quantified how well lower-coverage RNA-Seq can be used to detect eGenes. We 

explore the number of genes with significant associations after FDR correction at 5% under 

various levels of simulated coverage (Figure 2.1B). Using synthetic data, as the number of 

reads per sample decreases, we find that many eGenes are still detectable. For example, at 10 

million reads per sample, just 20% of the full coverage, 60% of the eGenes are still detected. In 

the context of eQTL studies, synthetic RNA-Seq supports the idea that sequencing at lower 

coverages over a higher number of individuals is a promising approach to boosting statistical 

power. 

2.3.4 Estimation accuracy in synthetic as a function of various gene characteristics 

Finally, we explore the estimation accuracy in the synthetic data as a function of relative gene 

expression abundance, since less abundant genes may not be captured altogether at lower 

sequencing coverages. We stratify genes into five groups based on their relative expression in 

the full dataset (M=50.3 million reads/sample) and report the R2 for genes in each of these 

groups in synthetic data (Figure 2.1C). We observe that in the synthetic RNA-Seq dataset at 10 

million reads/sample, we capture expression of highly expressed genes better than lower 

expressed genes. Specifically, for genes in the lowest through the highest quintiles of relative 

gene abundance, we find the average correlation (R2) to the ground truth of expression to be 

0.36, 0.44, 0.61, 0.73, 0.86, respectively. We observe the same effect for synthetic datasets at 
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coverages of 1 million reads/sample and 25 million reads/sample (Figure 2.4A and Figure 

2.4B). These results suggest that the ability to achieve similar power in eQTL analysis studies 

will differ per gene, and is a function of relative expression. We further investigate the properties 

of genes with quantification accuracy influenced by coverage levels of sequencing and find that 

that protein coding genes are more accurately quantified at lower coverage levels compared to 

non-protein coding genes (Figure 2.5A). Conversely, the number of transcripts per gene, gene 

length, and GC content do not appear to be factors that broadly influence the gene 

quantification accuracy when sequencing coverage is reduced (Figure 2.5B, Figure 2.5C, and 

Figure 2.5D). We also investigate in real data whether genes with a predominantly expressed 

transcript are better estimated in lower-coverage data compared to those genes that do not 

have a predominantly expressed transcript (Figure 2.6). We do not find that this is a factor that 

strongly impacts gene quantification accuracy in real data. 

2.3.5 Optimal association power for eQTLs is attained at lower coverage with a larger 

number of samples 

In the context of reducing experimental costs, we explored the trade-off between the number of 

samples sequenced and the average coverage per sample. To further evaluate the ability of 

lower-coverage sequencing to recapitulate expression signal observed in high-coverage data, 

we evaluated the expected effective sample size obtained with lower coverages per sample 

compared to a conventional approach of 50 million reads/sample. We down-sample reads (as 

described in Section 1 and Methods) from a high-coverage RNA-Seq experiment derived from 

Fibroblast tissue in order to create lower-coverage RNA-Seq synthetic data. This is done to 

match actual low coverage sequencing as closely as possible. To evaluate the relationship 

between cost, coverage, and sample size, we use the following equation to model the budget: 

  (Methods). 

2.3.6 Optimal effective sample size under a fixed budget scenario  

B = N*e + N*g + N*a +  
N*b*c

d
+ f
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We compute the effective sample size of an eQTL study as a function of average coverage, 

which determines the number of samples sequenced under a fixed budget (Figure 2.2A). As an 

example, at a fixed budget of $300,000, the highest effective sample size is achieved by 

sequencing 1378 individuals using 13 million reads per sample, which leads to a corresponding 

effective sample size of 877. An experiment achieving the sample effective sample size, using 

50 million reads per sample, would cost $384,418 (N = 877, R2 = 1.0). Therefore, by lowering 

the coverage of each sample and increasing sample size, we achieve the same effective 

sample size at just 78.0% of the cost. In practice, it is common to observe a considerable 

discrepancy between the target number of reads in an experiment and the number of reads that 

successfully map to genes. This can be attributed to different library prep techniques, quality of 

samples, or tissue type. To show how mapping rate can influence the effective sample size of an 

experiment, we model effective sample size with varying levels of mapping rates (Methods). As 

expected, we observe that as the mapping rate increases, there is a corresponding increase in 

effective sample size (Figure 2.2C). 

2.3.7 Impact of manipulating mapping rate on optimal effective sample size 

With a budget of ~$300k and an expected mapping rate of 0.60 (chosen based on mapping rate 

of similar experiments using TruSeq Stranded plus rRNA and GlobinZero in whole blood tissue), 

we see the maximum effective sample size would be achieved at a target coverage of 16 million 

reads per sample, including 1274 individuals in the study. We estimate that achieving the same 

effective sample size using data with 50 million reads per sample would cost ~$320k (N = 723), 

or 1.06x the cost of sequencing 1274 individuals at a coverage of 16 million reads/sample.  To 

explore other cost scenarios, we created a webtool where one can enter budget, costs, and 

other details about the experiment, in order to see how to achieve optimal effective sample size 

(https://tomschwarz.shinyapps.io/RNASeqCoverageCalculator/). 
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2.3.8 Estimating costs of GTEx RNA-seq under our budget model 

We use this budget model to calculate the cost of the eQTL analysis performed by GTEx under 

standard cost assumptions (Methods). We find that the cost of this experiment (n = 668, 82 

million reads/sample on average) would have been ~$620,000. The cost of the lower-coverage 

RNA-Seq (n = 1490, 5.9 million reads/sample, on average) under these assumptions is 

~$293,000, just 47% of the cost of the GTEx experiment. The GTEx eQTL analysis reports 

10544 eGenes with a significant association, while using the lower-coverage RNA-Seq leads to 

7587 eGenes with a significant association, 72% of what GTEx reports. If we assume that 

genotypes have already been measured in the cohort (such that g = 0), the cost of the lower-

coverage RNA-Seq experiment comes out to $215,000 , while the GTEX experiment comes out 

to ~$585,000. This means that using just ~36% of the cost, lower-coverage RNA-Seq has the 

power to detect ~72% of the eGenes with a significant association. 

2.4 Discussion 

Our study is, in part, motivated by previous findings of whole genome sequencing (WGS) 

studies benefiting from reduced coverage and increased sample sizes 15-16. We note that though 

our application is similar, there remains some key differences. Primarily, there exists a high 

variance in the degree to which transcripts are expressed, which is not easily predictable 16. 

While we generally refer to experiment-wide coverage of an experiment, coverage differs across 

transcripts due to factors such as gene length and number of transcripts per gene. 

Consequently, the nature of RNA-Seq data is such that lowering coverage of sequencing does 

not necessarily have a uniform effect on read sampling, which introduces an additional source 

of noise. It is important to explore the effects of reducing coverage in RNA-Seq as the 

necessary level of coverage in WGS studies are generally dictated by the structural variant 

(SNP, indel, CNV) of interest, with a fairly predictable change in detection with reduced 

coverage. On the other hand, the necessary level of coverage in RNA-Seq is related to its ability 
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to detect lesser abundant transcripts, where the relationship between decreasing coverage and 

ability to quantify these transcripts is not understood as well. 

2.5 Methods 

Cohort Description 

The samples included are from a study with individuals ascertained for bipolar disorder (BP). 

The cohort consists of 916 individuals with BP, 358 controls, and 216 relatives of the individuals 

with BP. 

Connection between effect size and R2  

If g is the genotype at the SNP that we are testing for associations, and  is the effect size of 

that SNP when regressing on the true gene expression, , and  is the effect size of that SNP 

when regressing on the estimated gene expression, . The relationship between y and  is as 

follows that  . It follows that the estimates of effect size for a SNP on the true 

gene expression, , are related to the estimate of effect size for a SNP on the estimated gene 

expression,  as  

where  is a random variable with mean 0 and variance 1. The association test statistics at low-

coverage is  thus implying that the association statistic at low coverage 

is  , where

 is the number of samples included in the association study.   

Budget model 

We modeled the cost of a large-scale bulk RNA-Seq experiment based on parameters from two 

different library prep techniques: (1) TruSeq Stranded plus rRNA and GlobinZero and (2) TruSeq 

Stranded polyA selected, both from the UCLA Neuroscience Genomics core. Cost, or B, is a 

function of the following: , the library preparation cost per sample, b, which is the target 

β

y β̂

~y ŷ

R2 = corr (y, ŷ)

β̂

~̂β ~̂β  = cov(g,  ~y ) = cov(g,  Ry + ε) = cov(g, Ry) + cov(g, ε) = Rβ̂

 ε

xground = Ncor2(g, y)

 xlow−coverage = Ncor2(g, ~y) = N ~̂β
2

= N(Rβ̂)
2

= R2*Ncor2(g, y) =  R2xground

 N

a
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coverage of each sample (in millions of reads). c, the cost per lane (which contains d million 

reads), d is the number of reads per sequencing lane (in millions), g is the cost of genotyping 

per sample,  is the cost of DNA and RNA extraction per sample,  is the number of samples in 

the association study, and , any additional upfront or computational costs associated with 

analysis. Altogether, we model the budget as follows;  

. 

Synthetic low coverage RNA-Seq 

We use high-coverage RNA-Seq (average of 50 million reads/sample, TruSeq Stranded polyA 

selected) from a set of 150 cell lines derived from human fibroblast cells. We assume this to be 

the ground truth of gene expression. We used seqtk (https://github.com/lh3/seqtk) to randomly 

down-sample reads at various coverages, uniformly. We performed five iterations of down-

sampling at each level of coverage in order to account for potential variability in the sampling 

and sequencing errors. 

RNA-Seq processing pipeline 

We used FASTQC to visually inspect the read quality from the lower-coverage whole blood 

RNA-Seq (5.9M reads/sample), the moderate-coverage whole blood RNA-Seq (13.9M reads/

sample), and the high-coverage fibroblast RNA-Seq (50M reads/sample). We then used kallisto 

to pseudoalign reads to the GRCh37 gencode transcriptome (v33) and quantify estimates for 

transcript expression. We aggregated transcript counts to obtain gene level read counts using 

scripts from the GTEx consortium (https://github.com/broadinstitute/gtex-pipeline) 13.  

cis-eQTL mapping 

Excluding related individuals (pi_hat > 0.2) from the analysis, we perform cis-eQTL analysis 

mapping using FastQTL 37, using a defined window of 1 Mb both up and downstream of every 

gene’s TSS, for sufficiently expressed genes (TPM > 0.1 in 20% of individuals).  We run the 

eQTL analysis in permutation pass mode (1000 permutations, and perform multiple testing 

e N

f

B = N*e + N*g + N*a +  
N*b*c

d
+ f
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corrections using the q value FDR procedure, correcting at 5% unless otherwise specified. We 

then restrict our associations to the top (or leading) SNP per eGene. 

R2 adjustment 

To account for the variability in mapping rate across different library prep techniques and 

different tissue types 46-47, we look at the mean R2 at the expected coverage, which is calculated 

as expected coverage =  target coverage * estimated mapping rate. Using mean R2 values from 

comparing lower-coverage synthetic RNA-Seq to moderate-coverage RNA-Seq real data, we fit 

a log curve to estimate the adjusted mean R2 ( ) at the expected coverage.  

Effective Sample Size  

Under a fixed-budget setting, we calculate effective sample size ( ) for a given coverage 

using the adjusted mean R2 ( ) and the number of samples included at a given coverage 

level (N)   
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Figure 2.1: Synthetic lower-coverage RNA-Seq captures expression signal 

(2.1A): On the x-axis, we show the level of simulated coverage, and on the y-axis we show the 

mean Pearson correlation of every gene. We calculate this value by finding the R2 values for the 

TPM values of each of 45,910 genes across 155 samples between the high coverage data 

(average of 50 million reads per sample) and the simulated data, and reporting the mean R2 

value per gene. (2.1B): For a fixed number of individuals, absolute number and percentage of 

eGenes captured at 5% FDR, for synthetic RNA-Seq at varying levels of coverage. (2.1C): 

Gene expression accuracy as a function of relative gene expression observed in actual RNA-

Seq data with 50 million reads/sample. 23,540 genes (with average expression > 0.1 TPM) are 

divided into five ascending quintiles of expression based on their average expression in 155 

samples. 
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Figure 2.2: Effective sample size under various budget parameters 

(2.2A): Effective sample size in RNA-Seq under a fixed budget ($300,000) as a function of the 

number of samples and the resulting coverage. Cost assumptions: $87 per library prep per 

sample, $1790 per lane of sequencing (300 million reads), $53 per genotyped sample. (2.2B): 

Effective sample size in RNA-Seq under a fixed budget ($300,000) as a function of the number 

of samples and the resulting coverage. Cost assumptions vary and are reflected in Table 

2.1. (2.2C): Effective sample size under a fixed budget ($300,000) as a function of the number 

of samples and the results coverage. A global mapping rate parameter is used to simulate 

actual experimental conditions (Methods). 
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Figure 2.3: Variability in correlations in synthetic data. (2.3A) For synthetic data corresponding 

to one sample, a comparison of estimated log TPM values between five different uniform 

sampling draws at 10 million reads/sample, for 14,948 protein-coding genes. (2.3B) For 14,948 

protein-coding genes estimated across five different uniform sampling draws at 10 million reads/

sample, we compare the distribution of correlation (R2) between the estimated expression of the 

samples and the ground truth gene expression. 

 

Figure 2.4: Variability of correlations as a function of average expression in a given gene (2.4A) 

Gene expression accuracy using data simulated with 1 million reads/sample, as a function of 

relative gene expression observed in actual RNA-Seq data with 50 million reads/sample. 23,043 

genes (with average expression < 0.1 TPM) are divided into five ascending quintiles of 

expression based on their average expression in 155 samples. (2.4B) Gene expression 

accuracy using data simulated with 1 million reads/sample, as a function of relative gene 

expression observed in actual RNA-Seq data with 50 million reads/sample. 23,043 genes (with 

average expression < 0.1 TPM) are divided into five ascending quintiles of expression based on 

their average expression in 155 samples. 
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Figure 2.5: Variability of correlation as a function of various gene characteristics. (2.5A) Gene 

expression estimation accuracy simulated at 10 million reads/sample as a function of whether a 

gene codes for a protein. 24,093 genes (with average expression < 0.1 TPM) are divided into 

two groups. (2.5B) Gene expression estimation accuracy simulated at 10 million reads/sample 

as a function of how many transcripts each gene has. 23,540 genes (with average expression < 

0.1 TPM) are divided into three ascending groups based on the number of transcripts contained 

in each gene. (2.5C) Gene expression estimation accuracy simulated at 10 million reads/sample 

as a function of relative gene length. 14,484 genes (with average expression < 0.1 TPM, protein 

coding) are divided into three groups based on the length of each gene. (2.5D) Gene expression 

accuracy as a function of relative GC content. 5,771 genes (with average expression < 0.1 TPM 

and GC content reported) are divided into three groups based on the length of each gene. 
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Figure 2.6: Concordance of gene expression as a function of presence of a predominantly 

expressed transcript (2.6A) Restricting to the 5894 genes with a transcript responsible for at 

least 50% of the gene’s expression in the 13.9M read/sample dataset, comparison of the mean 

expression (log TPM) across samples, of every gene. R2 = 0.91. (2.6B) Restricting to the 14711 

genes without a transcript responsible for at least 50% of the gene’s expression in the 13.9M 

read/sample dataset, comparison of the mean expression (log TPM) across samples, of every 

gene. R2 = 0.90. 

Chapter 3: eQTL mapping using low-coverage RNA-seq 

3.1: Abstract 

Mapping genetic variants that regulate gene expression (eQTL mapping) in large-scale RNA 

sequencing (RNA-seq) studies is often employed to understand functional consequences of 
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regulatory variants. However, the high cost of RNA-Seq limits sample size, sequencing depth, 

and therefore, discovery power in eQTL studies. In this work, we perform RNA-Seq of whole 

blood tissue across 1490 individuals at low-coverage (5.9 million reads/sample) and show that 

the effective power is higher than that of an RNA-Seq study of 570 individuals at moderate-

coverage (13.9 million reads/sample). We perform rigorous analysis to show that the 

associations discovered in eQTL analysis using low-coverage RNA-seq are consistent with 

those from moderate-coverage and high-coverage (83 million reads/sample) RNA-seq. Our 

work suggests that lowering coverage to 5.9 million reads/sample, in practice, remains effective 

in accurately quantifying gene expression estimates. 

3.2: Introduction 

RNA-seq is usually done with higher expression 

Low-coverage sequencing may introduce technical biases. Previous studies have shown that 

reduction in coverage can produce biases that mischaracterize RNA splicing in single cells. 

In this work, we conduct low-coverage sequencing of 1490 samples derived from whole blood 

tissue (5.9M reads/sample). We leverage two existing datasets, one of moderate coverage 

(13.9M reads/sample) and publicly available data from GTEx (83M reads/sample), to validate 

the findings from low-coverage sequencing. We first show that expression estimates are 

consistent with those observed by using moderate-coverage sequencing. We conduct eQTL 

analyses with all three datasets and show that using low-coverage RNA-seq, we observe high 

concordance of effect sizes with eQTLs discovered using both moderate-coverage and high-

coverage RNA-seq. Using coloc and TWAS, we show that using eQTLs derived from low-

coverage RNA-seq, we implicate both new and existing risk variants from GWAS. Finally, we 

show that computational deconvolution tools to estimate cell type proportion perform very 

comparably between low-coverage and moderate-coverage RNA-seq.  
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3.3 Results 

3.3.1: Whole blood RNA-seq datasets and background 

To validate the utility of low-coverage RNA-sequencing, we sequenced whole blood tissue from 

N = 1490 unrelated individuals (Methods) (Figure 3.3A and Figure 3.3B). We target a 

sequencing coverage of 9.5 million reads per sample, yielding M = 5.9 million reads mapped to 

RefSeq genes on average (sd across samples of 1.96 million, Figure 3.4). We refer to this 

dataset as the lower-coverage RNA-Seq, or the M=5.9 million reads/sample dataset. We 

contrast this dataset with an RNA-Seq dataset obtained with a similar budget, but with 2.4-fold 

higher coverage (M = 13.9 reads) across N = 570 individuals (Figure 3.3C and Figure 3.3D) 22. 

We refer to this as the moderate-coverage whole blood RNA-Seq, or the M = 13.9 million reads/

sample dataset (Table 3.1). 

Referred to as: C o v e r a g e 
(million reads 
per sample)

Tissue Number of 
samples

Library prep method

Lower- 
Coverage or M=5.9M 
reads/sample (Whole 
Blood)

5.9 W h o l e 
blood

1490 TruSeq Stranded plus 
rRNA and GlobinZero

Moderate- 
C o v e r a g e o r 
M = 1 3 . 9 M r e a d s /
s a m p l e ( W h o l e 
Blood) 19

13.9 W h o l e 
blood

570 M e t a - a n a l y s i s o f ( 1 ) 
TruSeq Stranded plus 
rRNA and GlobinZero and 
(2) TruSeq Stranded polyA 
selected

High- 
coverage (Fibroblast)

50.3 Fibroblast 150 TruSeq Stranded polyA 
selected

GTEX12 82 W h o l e 
blood

670 TruSeq Non-s t randed 
polyA selected
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Table 1: RNA-Seq datasets discussed in this section 

The coverage refers to the average number of reads that successfully map to the transcriptome, 

except for GTEX, which refers to the median number of total reads per sample (average 

mapped not available). Further description of sample overlaps among cohorts in 

Supplementary Note. 

3.3.2 Gene expression estimates using low-coverage RNA-seq are reliable 

First, we assess the number of genes quantified in the two datasets. We observe 40459 genes 

with at least one mapped read on average across samples in the whole blood moderate-

coverage dataset, and 27308 genes with at least one mapped read on average across samples 

in the whole blood lower-coverage dataset. Notably, when restricting to protein coding genes 

with at least one mapped read in both the moderate-coverage and lower-coverage datasets, we 

find more similar numbers between the data sets, with 18329 and 15605 genes quantified, 

respectively. This is likely due to the very sparse abundance of the non-protein coding genes, 

making them less likely to be detected in a lower coverage dataset. Indeed, we observe similar 

effects across the high vs low coverage datasets when assessing the genes with sufficient 

expression to be included in eQTL analysis (TPM > 0.1 in 20% of individuals, see Methods): 

26566 genes (15496 protein coding genes) in moderate coverage data versus 19039 (13339 

protein coding genes) in low coverage data. Most importantly, we observe a high correlation in 

the abundance levels across the two datasets. We calculate the median TPM across samples of 

62487 gencode genes and restrict to the 20735 protein-coding genes that are detected in both 

datasets. Without recalculating TPM after these restrictions we observe a Pearson correlation 

(R2) of 0.91, thus demonstrating that moderate and lower coverage RNA-Seq recover similar 

expression (Figure 3.1A). 

eQTLGen13 N/A W h o l e 
blood

31684 Meta-analysis consisting of 
RNA-Seq and microarray
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3.3.3 Low-coverage RNA-seq can be used for powerful eQTL mapping 

Next, we investigate the power of low-coverage RNA-Seq for eQTL mapping. We conducted cis-

eQTL mapping with a 1 Mb window using QTLtools,36 restricting to the 1490 unrelated 

individuals in the lower-coverage RNA-Seq data (Methods), to identify 7587 genes (eGenes) 

with a significant association at an FDR adjusted p-value < 0.05. As expected, eQTL distribution 

is concentrated at transcription start sites (TSS), with 73% of eGenes TSS within 250kb of the 

associated SNP (eSNP). Repeating this approach using the moderate-coverage whole blood 

data in 570 individuals, we only find 5971 genes with a significant association at FDR correction 

level of 5%. 4969 of the 7587 eGenes found using the lower-coverage data are also significant 

in the moderate-coverage data. Of these, 2163 of the eGenes are protein coding eGenes that 

share the same associated eSNP, and we see an extremely high level of concordance between 

effect sizes for these eGenes across the two datasets (R2 = 0.93, Figure 3.1B). This further 

indicates that low-coverage RNA-Seq is robust in capturing eQTL effect sizes. Briefly, we tested 

to see whether the mean expression or number of transcripts differed between eGenes that 

shared the same eSNP between the two datasets (n = 2163) and those that did not (n = 4324) 

(Figure 3.5). We find slightly higher expression and a slight increase in the number of 

transcripts in the set of eGenes that do share the same eSNP. 1002 genes were found to be 

eGenes in the moderate-coverage eQTL analysis but not in the lower-coverage analysis, with 

573 (of the 1002) not passing expression levels (TPM >0.1 in 20% individuals) to be included in 

the lower-coverage eQTL analysis; only 234 of the 573 were protein coding genes, suggesting 

that for most protein-coding genes, lower-coverage RNA-Seq can adequately capture their 

expression. Similar concordance is observed at the level of p values for the associations in both 

datasets (Figure 3.1C). Comparing the p values for eGenes detected in both eQTL analyses, 

the corresponding regression line has a slope of 0.39, consistent with the lower-coverage 

dataset having superior statistical power to detect associations over the moderate-coverage 

dataset, and consistent with overall number of significant eQTL discoveries. We report the 
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results from using typed SNPs in these eQTL analyses (Methods), but observe similar patterns 

when using the full set of imputed SNPs. 

3.3.4 Low-coverage RNA-seq successfully captures transcript-level expression 

More recently, RNA-Seq data has been used to quantify gene expression at different 

resolutions, specifically at the transcript/isoform levels. To investigate whether lower-coverage 

RNA-Seq can be reliably used in this context, we use kallisto 33 to quantify transcript expression 

in both the 5.9M and 13.9M read/sample datasets (Methods). We quantify 227,046 transcripts 

between the two datasets and find strong concordance between transcript expression estimates 

across them (R2 = 0.83), suggesting that lowering coverage to this degree does not strongly 

influence the ability to detect changes in transcript expression (Figure 3.1D). However, there 

does seem to be associations between transcript type and how well the transcript is quantified 

using lower-coverage RNA-Seq (Figure 3.12 and Table S3.3).  

3.3.5 Comparison of total reads in low-coverage and high-coverage RNA-seq design  

To further validate the performance of eQTL analysis using low coverage RNA-Seq (coverage 

5.9M, n = 1490), we compared the resulting eQTLs to the ones found by GTEx in whole blood 13 

(Figure 3.2). Restricting to the 12247 protein coding genes with sufficient expression to be 

included in both studies (> 0.1 TPM in 20% of samples) we find that 3916 out of the 5538 

protein coding genes (71%) with a significant association using the lower-coverage data also 

had a significant association in GTEx, correcting at an FDR level of 5%. We note that this is not 

an entirely equal comparison as the three datasets are generated from different budgets (Table 

S3.2). While GTEX (n = 668, 82M reads/sample) consists of 55.6B reads, the lower-coverage (n 

= 1490, 5.9M reads/sample) and moderate-coverage (n = 570, 13.9M reads/sample) datasets 

consist of just 8.8B and 7.9B reads, respectively. Considering the number of eGenes discovered 

using each of these datasets, we find that per 1 billion total reads, we discover 862 eGenes 

using the lower-coverage dataset, 756 eGenes using the moderate-coverage dataset, and just 

190 eGenes in GTEx (Figure 3.2A and Figure 3.2B). Among eGenes shared by both datasets, 
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we found that the leading eSNPs are in LD (average R2= 0.41, sd = 0.39), showing that low-

coverage RNA-Seq captures the same eQTL signal, either directly or by a nearby tagged SNP. 

Further restricting to eGenes with leading eSNPs with a LD R2 value of at least 0.25 in both of 

these datasets (1927 genes) (Figure 3.2C), we observe a correlation (R2) of 0.81 between their 

effect sizes.  We find consistently high correlations regardless of the LD threshold used here 

(Figure 3.6). Looking into the 1622 protein coding genes with a significant association in eQTL 

analysis using the lower-coverage RNA-Seq but not in GTEx using an FDR adjusted p value 

cutoff of 0.05, we observe that 283 have a significant association in GTEx using an FDR 

adjusted p value cutoff of 0.10. To further ensure that these eGenes are not false positives, we 

compare the set of 1622 genes with eQTL analysis conducted by the eQTLGen Consortium 10 

and find that 1498 of these genes (92.4%) have been found to have a significant association in 

eQTLGen. This suggests that the additional associations found using lower-coverage data that 

are not found in GTEx are not false positives, but fall just below the significance threshold in the 

GTEx analysis. 

3.3.6 Low-coverage RNA-seq captures similar dynamic range of gene expression as 

moderate-coverage and high-coverage RNA-seq 

Next, we investigate whether lower-coverage RNA-Seq “misses” genes with a low overall 

expression due to sequencing bias. To do this, we stratify the 19175 protein coding genes 

measured in GTEX into five groups by mean expression and report how many genes from each 

of these groups are discovered as eGenes using (1) GTEx, (2) lower-coverage sequencing, (3) 

both datasets, and (4) neither dataset (Figure 3.2D). At the lowest quintile of expression (3835 

genes total), we observe that GTEx reports just 6 of these genes as eGenes, while using lower-

coverage sequencing reports 78 to be eGenes. In the other four quintiles of higher expression, 

we observe fairly consistent numbers of eGenes identified only in GTEx (794, 997, 1000, 876, in 

increasing order), indicating that the lower-coverage sequencing performs consistently across 

coverage levels. We perform an analogous analysis comparing GTEx and the moderate-

   26



   

coverage dataset (Figure 3.8A), and find that the moderate-coverage RNA-Seq also does not 

detect many eGenes from the lowest expressed quintile of genes.  

3.3.7 Effect sizes of eGenes found using low-coverage and moderate-coverage RNA-seq 

remain highly concordant after accounting for lowly expressed genes 

Next, we look at whether the effect size comparison in real data between eGenes discovered 

using lower-coverage and moderate-coverage is inflated due to poor estimation of lowly 

expressed genes in both datasets. Similarly to the previous section, we stratify the 19175 

protein coding genes measured in GTEX into five groups by mean expression and report how 

many genes from each of these groups are discovered as eGenes using (1) moderate-

coverage, (2) lower-coverage RNA-Seq, (3) both datasets, and (4) neither dataset (Figure 

3.8B). If the effect size concordance was in fact inflated, in real data, we would see either a lot 

of shared detected or shared missed eGenes among the lowly expressed gene quintiles in the 

lower- and moderate- coverage data that are detected in GTEx. However, Figure 3.8B shows 

that none of the three datasets reliably detect eQTLs in the quintile of lowest expression. 

3.3.8 eQTLs found using low-coverage RNA-seq colocalize with GWAS loci 

To demonstrate that these eQTLs are implicated in GWAS loci, we run colocalization analysis 

using GWAS statistics from several blood traits (mean corpuscular volume, mean cell 

hemoglobin, and systemic lupus) (Table 3.2). Using a PP4 threshold of 0.80 (Methods), we see 

that a total of 51 unique eGenes (0.67% of significant associations) colocalize with a total of 50 

unique GWAS SNPs. This is especially encouraging, as we see that there does not exist a 

redundancy of GWAS loci explained by eQTL hits. When performing the same analysis using 

data from GTEx, we find that a total of 91 unique eGenes (0.86% of significant associations) 

colocalize with 82 unique GWAS SNPs. 14 eGenes are in common with 5 GWAS SNPs 

involved in a significant colocalization in both datasets. 
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Table 3.2: Coloc results for selected blood traits 

The number of unique eGenes (columns 1 and 3) and GWAS SNPs (columns 2 and 4) with PP4 

> 0.80 when running colocalization analysis on significant eQTLs from analyses using lower-

coverage RNA-Seq (columns 1 and 2) and results from GTEx (columns 3 and 4).   

3.3.9 eQTLs found using low-coverage RNA-seq can be used for TWAS 

We perform a TWAS analysis for the same three traits (Table 3.4) and find that using the low-

coverage data, there are 143 significant TWAS associations. Using GTEx, there are 311 

significant TWAS associations. Between the two datasets, 59 eGenes are shared. 

Table 3.3: TWAS results for selected blood traits 

trait n coloc eGenes 
– lower-coverage 
(PP4 > 0.8)

n coloc GWAS 
SNPs – lower-
coverage (PP4 > 
0.8)

n coloc eGenes 
– GTEx (PP4 > 
0.8)

n coloc GWAS 
SNPs – GTEx 
(PP4 > 0.8)

Mean 
Corpuscular 
Volume

36 27 54 45

Mean Cell 
Hemoglobin

33 29 52 42

Systemic Lupus 6 6 22 11

All of the above 51 50 91 82

trait Lower-coverage - n 
TWAS eGenes

GTEx - n TWAS 
eGenes

Mean 
Corpuscular 
Volume

104 219

Mean Cell 
Hemoglobin

96 191

Systemic Lupus 33 75

All of the above 143 311
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The number of unique eGenes (columns 1 and 3) and GWAS SNPs (columns 2 and 4) 

significant (FDR < 0.05) in TWAS on eQTLs with significant heritability from analyses using 

lower-coverage RNA-Seq (columns 1 and 2) and results from GTEx (columns 3 and 4).   

3.3.10 Low-coverage and moderate-coverage RNA-seq have comparable computationally 

estimated cell type proportion values  

Finally, we explore the impact of RNA-Seq at lower coverages for cell type expression 

estimation. We use CIBERSORTx 44 to compare cell-type proportion estimates between the 

lower-coverage data and moderate-coverage data (Methods). We find that the median 

estimated cell type proportions are conserved across both datasets, suggesting that 

deconvolution of cell type specific signal from gene expression profiles of whole blood samples 

is not impacted when coverage is reduced by half (Figure 3.9). 

3.4 Discussion 

We conclude with some notes, caveats, and future directions. First, synthetic RNA-Seq via 

down-sampling reads is potentially limited in several ways. These synthetic datasets of lower 

coverage RNA-Seq are created by uniformly sampling from real RNA-Seq data with an average 

of 50 million reads mapped per sample. However, in practice, it is possible that sequencing 

biases are not captured by uniform sampling due to the different experimental setup compared 

to the dataset from which we sample 33,47. Additionally, these synthetic datasets are based on 

data obtained from fibroblast tissue with different transcriptomic profiles from whole blood, 

potentially influencing the sequencing depth required to detect associations with gene 

expression. Finally, this approach is optimized for eQTL discovery. Other mechanisms that are 

detected using RNA-Seq, such as RNA splicing, have different mechanisms and will likely have 

different optimal coverages for detection. The fact that we identify different sets of eGenes 

depending on which gene expression measurements we consider (GTEx vs eQTLGen vs lower-

coverage RNA-Seq), shows that we need to increase cohort sizes in order to fully understand 
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the connection between genetics and gene expression in blood. Furthermore, the results in 

Figure 3.2A (figure showing effective sample size at various coverages) indicate that even 

including 1490 individuals under this fixed budget is not enough to achieve the optimal effective 

sample size. Current approaches are not sufficient to understand the full landscape of eQTLs in 

whole blood tissue, even while only considering a single genetic ancestry group. We compare 

the eGenes identified by GTEx, eQTLGen, and the lower-coverage RNA-Seq (Figure 3.11) and 

find that no single study is sufficient in capturing all of the associations in whole blood. We also 

see evidence of this in Figure 3.2D, Figure 3.7 and Figure 3.8, where the lower-coverage, 

moderate-coverage, and GTEx datasets do not detect nearly as many eGenes from the lowest 

quintile of genes by mean expression. Furthermore, as observed by the relatively low levels of 

overlap in colocalization and TWAS hits between GTEx and the lower-coverage sequencing, 

larger sample sizes are necessary to understand the roles of eQTLs with respect to GWAS. As 

observed in GWAS, much larger sample sizes including far more ancestral diversity in these 

samples will enable discovery of novel associations in transcriptomics. Including non-European 

populations and considering the temporal aspect of gene expression will help us gain a more 

complete understanding of the blood transcriptome landscape in the entire population. 

3.5 Methods 

Genotyping pipeline  

Genotypes for the lower-coverage whole blood samples were obtained from the following 

platforms: OmniExpressExome (N = 810), PSYCH (N = 523), and COEX (N = 163). Given that 

the SNP-genotype data for both the fibroblast and whole blood samples came from numerous 

studies using various genotyping platforms, the number of overlapping SNPs across all 

platforms was < 150k, prompting us to perform imputation separately for each genotyping 

platform (Supplemental Note). Genotypes were first filtered for Hardy-Weinberg equilibrium p 

value < 1.0e-6 for controls and p value < 1.0e-10 for cases, with minor allele frequency (MAF) > 

0.01, and SNP-missingness < 0.05, leaving 148612 typed SNPs. Table S3.1 provides the 

number of typed and imputed SNPs per platform after quality control.  
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Genotypes were imputed using the 1000 Genomes Project phase 3 reference panel 42 by 

chromosome using RICOPILI v.1 43 separately per genotyping platform. These platform-specific 

genotypes were then subsequently merged after imputation, applying an individual-missingness 

threshold of 10% and SNP-missingness of 5% for post-merge quality control. We restricted to 

only autosomal SNPs due to sex chromosome dosage, as commonly done 13. Imputation quality 

was assessed by filtering variants where genotype probability > 0.8 and INFO score > 0.1, 

resulting in 2289732 autosomal SNPs. The low final number of imputed SNPs stems from 

relatively disjoint starting sets of quality-controlled, typed genotypes per platform, leading to 

smaller sets of high-quality imputed variants that overlapped across platforms (with less than 

5% SNP-missingness). Despite this, we were able to use over 15-fold more variants in the 

merged imputed set as compared to the typed merged set. Then subsets of genotypes for the 

fibroblast-specific individuals, lower-coverage-specific individuals, and higher-coverage specific 

individuals were extracted from the merged file set to be used in the eQTL analyses. 

RNA-Seq processing pipeline 

We used FASTQC to visually inspect the read quality from the lower-coverage whole blood 

RNA-Seq (5.9M reads/sample), the moderate-coverage whole blood RNA-Seq (13.9M reads/

sample), and the high-coverage fibroblast RNA-Seq (50M reads/sample). We then used kallisto 

to pseudoalign reads to the GRCh37 gencode transcriptome (v33) and quantify estimates for 

transcript expression. We aggregated transcript counts to obtain gene level read counts using 

scripts from the GTEx consortium (https://github.com/broadinstitute/gtex-pipeline) 13.  

cis-eQTL mapping 

Excluding related individuals (pi_hat > 0.2) from the analysis, we perform cis-eQTL analysis 

mapping using FastQTL 37, using a defined window of 1 Mb both up and downstream of every 

gene’s TSS, for sufficiently expressed genes (TPM > 0.1 in 20% of individuals).  We run the 

eQTL analysis in permutation pass mode (1000 permutations, and perform multiple testing 

corrections using the q value FDR procedure, correcting at 5% unless otherwise specified. We 

then restrict our associations to the top (or leading) SNP per eGene. 
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TWAS and Colocalization 

We used the FUSION framework 4 to perform the transcriptome-wide association study and 

subsequent colocalization 24 analysis. We computed single-best eQTL models for all eGenes 

detected in the lower-coverage dataset with the FUSION.compute_weights.R script. As this 

framework is intended for cis-loci, for each gene we restricted to SNPs within a window of 250kb 

around the gene start and gene end position from the set of imputed genotypes. For the 

functional phenotypes (input through the –pheno flag), we used the gene-level TPMs generated 

by aggregating kallisto transcript expression estimates using scripts from GTEx 34,13. Once the 

weights were generated, we input them in the FUSION.assoc_test.R script along with summary 

statistics from blood-related GWAS: Mean Corpuscular Volume (MCV 38), Mean Cell 

Hemoglobin (MCH 38), and Systemic Lupus Erythematosus (SLE 39); the 1000 Genomes LD 

panel for European ancestries was used as the reference. Colocalization was performed on 

those gene-trait associations that had p value less than 0.05 (--coloc_P 0.05 flag). This pipeline 

was then repeated using the GTEx V8 whole-blood gene expression (using the GTEx pipeline) 

and corresponding SNP-genotypes from 668 unrelated donors. 

Covariates 

For eQTL analyses conducted using the moderate-coverage whole blood and synthetic data 

derived from fibroblasts, we include the top three genotype principal components and top 50 

gene expression principal components, calculated separately for each synthetic dataset. For 

eQTL analyses conducted using the lower-coverage whole blood, we include the top 10 

genotype PCs (to account for the differences across the multiple genotyping platforms used to 

genotype samples in this cohort), and the top 50 expression PCs. In eQTL analyses using 

synthetic data we also include sex and several cell line technical covariates (passage number 

and growth rate). In eQTL analyses using moderate-coverage whole blood, we include sex, 

disease status, and age. In eQTL analyses using lower-coverage whole blood, we include sex, 

disease status, genotyping platform, and several technical covariates regarding the tissue 

samples (RIN and concentration). 
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Cell type proportion estimation 

We estimate the proportion of cell types of both the lower-coverage and moderate-coverage 

bulk whole blood RNA-seq datasets using CIBERSORTx 44 with batch correction applied and 

LM22 signature matrix as the reference gene expression profile. The LM22 signature matrix 

uses 547 genes to distinguish between 22 human hematopoietic cell phenotypes. 
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Figure 3.1: Concordance of eQTL discovery when using lower-coverage RNA-Seq vs 

moderate-coverage RNA-Seq  

(3.1A): Restricting to the 20735 genes with sufficient expression levels to be included in eQTL 

analysis in both the 5.9M read/sample and 13.9M read/sample dataset, comparison of the 

median expression (log TPM) across samples, of every gene. R2 = 0.91. (3.1B): In real data, 

scatterplot of effect sizes of most significant eQTL hits for the 2151 protein coding genes with 

the same eQTL hit in both eQTL analyses performed (lower-coverage and moderate-coverage). 

On the x-axis, we show the effect sizes for these genes using lower-coverage RNA-Seq, on the 

y-axis we show the effect sizes for these genes using moderate-coverage RNA-Seq. (3.1C): 

Real data p-value comparison scatterplot: In real data, scatterplot of -log p-values of most 

significant eQTL hit for 13950 genes included in both eQTL analyses performed (lower-

coverage and moderate-coverage). On the x-axis, we show the -log p-values for these genes 

using lower-coverage RNA-Seq, on the y-axis we show the -log p-values for these genes using 
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moderate-coverage RNA-Seq. The dotted line shows y = x, while the solid line shows the line of 

best fit for the 3985 protein-coding eGenes with a significant eQTL hit in both datasets. (3.1D) 

For the 227046 unique isoforms detected in the lower-coverage and moderate-coverage 

datasets, we show the mean expression across samples in each dataset (R2 = 0.83). 

 

Figure 3.2: eQTL analysis using lower-coverage RNA-Seq is comparable to eQTL analysis from 

the GTEx Consortium 

(3.2A): Estimates for the total number of reads (in billions) included in each of the three RNA-

Seq experiments that we compare. (3.2B): Number of eGenes discovered at an FDR correction 

level of 0.05 in each of the three datasets that we compare. (3.2C): In real data, scatterplot of 

effect sizes of the most significant eQTL hit for the 1927 eGenes with leading eSNPs in LD with 

R2 > 0.25 between the two datasets (lower-coverage RNA-Seq with 5.9M reads/sample and 
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GTEX). On the x-axis, we show the effect size for these eGenes from eQTL analysis conducted 

using the 1490 individuals of EUR ancestry and typed genotypes, and on the y-axis we show 

the effect sizes for these eGenes from eQTL analysis published by the GTEX Consortium. 

(3.2D) The overlap in eGenes identified in the lower-coverage RNA-Seq and GTEX, stratified 

into quintiles by the mean expression level observed in GTEX. 

3 . 3 A : 
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3 . 3 B : 

 

3 . 3 C : 

 

   37



   

3 . 3 D : 

 

Figure 3.3: Distribution of ancestry among samples.  

(3.3A) Genotype PC1 and PC2 are projected onto PCs from 1000 Genomes Project. Points 

labeled with “ANCESTRY” are from 1000 Genomes Project, remaining points designate the 

specific genotyping platform used in our cohort. Boxes are drawn around the centers to show 

where samples from the n = 2000 / 5.9M reads/sample cohort lie. (3.3B) A barplot showing the 

distribution of ancestry observed in the n = 2000 / 5.9M reads/sample cohort, according to the 

MDS plot. Note that only the 1963 samples that pass genotype QC thresholds are included 

here. Exact numbers of samples per ancestry group are: African - 4, American - 34, Asian - 9, 

European – 1916. (3.3C): Genotype PC1 and PC2 are projected onto PCs from 1000 Genomes 

Project. Points labeled with “ANCESTRY” are from 1000 Genomes Project, remaining points 

designate the specific genotyping platform used in our cohort. Boxes are drawn around the 

centers to show where samples from the n = 759 / 13.9M reads/sample cohort lie. (3.3D) A 

barplot showing the distribution of ancestry observed in the n = 759 / 13.9M reads/sample 

cohort, according to the MDS plot. Exact numbers of samples per ancestry group are: African - 

4, American - 19, Asian - 1, European – 735. 
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Figure 3.4: Number of pseudoaligned reads per sample for low-coverage and high-coverage 

experiments. (3.4A) In real data, a histogram showing the number of reads mapped to genes (or 

in kallisto terms: number of reads for which transcriptome successfully mapped), per 

sample. (3.4B) In real data, a histogram showing the number of reads mapped to genes (or in 

kallisto terms: number of reads for which transcriptome successfully mapped), per sample.  
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Figure 3.5: Characteristics of eGenes that do/do not share the same eSNP between lower-

coverage and moderate-coverage RNA-Seq. (3.5A) eGenes with the same eSNP have an 

average expression of 15.6 TPM (sd = 51.1) while eGenes that do not share the same eSNP 

have an expression of 14.2 TPM (sd = 40.8), (p = 0.03). (3.5B) The average number of isoforms 

for eGenes that shared an eSNP was 10.0 (sd = 8.0), while it is only 9.6 (sd = 7.9) for those 

eGenes that do not share an eSNP (p = 0.03). 
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Figure 3.6: Correlation of effect sizes between eQTL analyses low-coverage and GTEX with 

respect to LD-threshold between eSNPs. (3.6) On the x-axis, we show the LD threshold used to 

restrict our comparisons of effect sizes between eQTLs found in the low-coverage dataset and 

GTEX. Only eGenes with the same eSNP, or eSNPs with an LD above the threshold are used. 

On the left-hand y-axis, we show the correlation of the effect sizes. On the right-hand y-axis, we 

show the number of eGenes compared under the given LD threshold. 
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Figure 3.7: Number of eGenes per mean expression quintile across datasets. (3.7A) Stratifying 

the 19175 protein coding genes reported in GTEx into quintile groups by mean expression, on 

the x-axis, we show the quintile groups by increasing mean expression. On the y-axis, we show 

the number of eGenes found in the (1) low-coverage, (2) high-coverage, and (3) GTEx 

experiments, in each of these quintile groups. (3.7B) Stratifying the 24206 protein coding genes 

discovered in the high-coverage fibroblast dataset into quintile groups by mean expression, on 

the x-axis, we show the quntile groups by increasing mean expression. On the y-axis, we show 

the number of eGenes found in the (1) synthetic RNA-Seq at 6M reads/sample, (2) synthetic 

RNA-Seq at 14M reads/sample, and (3) RNA-Seq data at 50M reads/sample, in each of these 

quintile groups. 
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Figure 3.8: eGene concordance by quintile in moderate-coverage RNA-Seq and GTEx: (3.8A): 

The overlap in eGenes between moderate-coverage RNA-Seq and GTEX, stratified into 

quintiles by the mean expression level observed in GTEX. (3.8B): The overlap in eGenes 

between moderate-coverage RNA-Seq and lower-coverage RNA-Seq, stratified into quintiles by 

the mean expression level observed in GTEX. (3.8C): The overlap in eGenes between high-

coverage “ground-truth” RNA-Seq and a 10M read/sample synthetic dataset, stratified into 

quintiles by the mean expression level observed in the high-coverage RNA-Seq 
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Figure 3.9: Real data p-value comparison scatterplot with GTEX. (3.9A) Using the 12,496 

protein-coding genes included both in GTEX and the low-coverage datasets, on the x-axis, we 

show the -log p-values for leading SNP eQTL associations in the low-coverage dataset. On the 

y-axis, we show the -log p-values for leading SNP eQTL associations in the GTEX dataset. 
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Figure 3.10: Estimation of cell-type proportions. (3.10) In real data, a comparison of estimated 

cell type proportions from CIBERSORTx between lower-coverage (5.9M reads/sample) and 

moderate-coverage (13.9M reads/sample) RNA-Seq data for the eight most common cell types 

in whole blood tissue.  
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Figure 3.11: Overlap of significant eGenes using RNA-Seq from three different datasets. (3.11) 

Comparing number of genes with significant associations between three datasets: (1) Lower-

coverage RNA-Seq (5.9M reads/sample on average, across 1,496 individuals), (2) GTEX (83M 

reads/sample on average, across 670 samples), (3) eQTLGen (31,684 individuals, mix of RNA-

Seq and MicroArray assays used).  
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Figure 3.12: Concordance of transcript expression estimation between lower-coverage RNA-

Seq vs moderate-coverage RNA-Seq.  (3.12) For the 12 most highly represented transcript 

types (> 1000 transcripts quantified), we show mean expression estimates in lower-coverage 

RNA-Seq (x-axis) versus moderate-coverage RNA-Seq (y-axis). 

3.8 Supplementary Tables 

Table S3.1: Number of typed and imputed SNPs after QC 

  

Table S3.2: Whole blood RNA-Seq datasets and respective cost estimates. We describe the 

lower-coverage and GTEx datasets in terms of estimated cost from our budget model and an 

Platform N Typed SNPs N Imputed SNPs

OmniExpress Exome 619,690 5,576,428

Global Screening Array (GSA) 514,169 4,383,620

COEX 323,599 4,736,265

PsychArray 378,710 4,528,960

Merged 148,612 2,289,732

Dataset E s t i m a t e d 
n u m b e r o f 
t o t a l r e a d s 
m a p p e d i n 
experiment

Estimated cost 
of experiment

Proportion of cost 
compared to lower-
coverage RNA-Seq 
experiment

Propor t i on o f 
e G e n e s 
i d e n t i f i e d 
c o m p a r e d t o 
lower-coverage 
RNA-Seq

Lower- 
C o v e r a g e o r 
M=5.9M reads/
sample (Whole 
Blood)

~8.8B ~$292,000 1.0 1.0

GTEx ~55.6B ~$620,000 2.12 1.39
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estimate for total number of reads used. We assume that the cost of genotyping is $53 per 

sample (per UCLA Neurogenetics Sequencing Core).  

Table S3.3: Transcript-level expression correlations by transcript type. We quantify expression 

for 226,390 transcripts. For the 12 transcript types with at least 1000 transcripts represented, we 

calculate the correlations between mean transcript expression estimated using lower-coverage 

RNA-Seq and moderate-coverage RNA-Seq.  

3.9 Supplementary Note 

Notes about overlap in datasets: 

- The samples in the low-coverage whole blood and high-coverage whole blood datasets 

are completely disjoint – no individuals overlap here. 

- 97 individuals have RNA-seq data in both the high-coverage fibroblast dataset and low-

coverage whole blood dataset 

- 41 individuals have data in the high-coverage fibroblast dataset and the high-coverage 

whole blood dataset 

Transcript type Number of transcripts Correlation (R2) of expression

Protein coding 83735 0.92

Retained intron 28411 0.89

Nonsense mediate decay 15856 0.88

Processed transcript 14128 0.89

Processed pseudogene 10055 0.72

lncRNA 59133 0.85

Unprocessed pseudogene 2644 0.81

miscRNA 1987 0.82

snRNA 1730 0.95

miRNA 2757 0.81

snoRNA 1367 0.94

TEC 1135 0.82
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- In total, 138 individuals overlap between the high-coverage fibroblast RNA-Seq samples 

and whole blood RNA-Seq samples (low-coverage and high-coverage) 

Chapter 4: Computational deconvolution of bulk RNA-seq enables cell type biological 

insights 

4.1 Abstract 

eQTL mapping using expression estimates from bulk RNA-seq is a widely used tool for 

understanding GWAS. However, a limitation of bulk tissue expression is loss of cell type signal. 

Here, we leverage bMIND to compute cell type specific gene expression estimates using bulk 

RNA-Seq from 1,996 samples derived from whole blood tissue. Using the LM22 signature 

matrix from CIBERSORTx as a reference, we estimate gene expression for eight different 

immune cell types with average proportion across samples >= 0.05, including neutrophils, naïve 

B cells, memory B cells, CD8 T Cells, naïve CD4 T cells, memory CD4 T cells, NK resting cells, 

and monocytes. We show that these expression estimates can be used to conduct cell type 

eQTL analyses, identifying between 2,875 and 4,629 unique eGenes for each cell type, 

including 1,268 eGenes that are not found using bulk gene expression estimates. We find 

evidence of both shared and independent effects between cell type eQTLs and a standard 

eQTL analysis using estimates from bulk tissue. Finally, we investigate the effects of lithium use 

on cell type expression regulation and find 110 examples of genes whose cell type expression 

are differentially regulated dependent on lithium use, compared to just one whose bulk 

expression is differentially regulated dependent on lithium usage. Our study suggests that 

computational methods can be applied to large bulk RNA-Seq datasets to identify cell type gene 

expression signal and cell type specific biology. 

4.2 Introduction 

Bulk RNA-seq has enabled researchers to measure gene expression at scale at the tissue level. 

Among its many uses and applications, integrating bulk RNA-seq estimates with genetic 
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information allows us to find where genetic variants may be associated with regulation of gene 

expression. This approach, known as eQTL analysis, has helped provide functional information 

to genetic variants that we would not see from GWAS. However, one limitation of standard 

eQTL studies is that they generally use expression estimates from bulk tissue. While this is 

informative, it is believed that there are many cell type specific mechanisms driving biology 55-58, 

which can be missed when looking at a collection of many cell types. In recent years, single cell 

RNA-Seq has enabled us to profile the gene expression of an individual cell, giving us a clearer 

picture of cell type gene expression 54. However, single cell RNA-Seq experiments are 

considerably more expensive than bulk RNA-Seq, making it cost-prohibitive to perform these 

assays at the scales necessary to gain a complete picture of expression regulation at the cell 

type level. To leverage the advantages of each of these approaches, we can use computational 

methods to estimate cell type gene expression from bulk RNA-Seq expression.  

There exist many methods to estimate cell type expression from bulk RNA-Seq. We elected to 

use CIBERSORTx 43 and bMIND 49 to estimate cell type proportions and cell type expression, 

respectively. Previous work comparing the effectiveness of various methods to estimate cell 

type proportion identify CIBERSORTx as one of the better performing methods across different 

contexts 47,53. Computational methods for analyzing bulk gene expression data have the 

potential for being advantageous in some applications as it is possible to obtain much larger 

sample sizes using bulk RNA-Seq instead of single cell RNA-Seq. While most single cell RNA-

Seq studies have sample sizes in the range of several hundreds of cells 35, leveraging low-

coverage bulk RNA-Seq allows us to obtain samples from nearly 2,000 individuals. Recent 

studies have shown that there exists a strong shared “cis” component to expression regulation 

between cell types within a single tissue 48. Larger sample sizes will better enable us to 

investigate both the shared and distinct cis-eQTL signal within tissues. 

This cohort has been ascertained for individuals with BP. In addition to genetics and RNA-seq, 

the cohort also includes lithium use status at the time of blood draw. In Europe, where this 

cohort was recruited from, lithium is the most commonly prescribed treatment for BP. Previous 
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studies have shown that bulk whole blood gene expression measurements in individuals with 

bipolar disorder are heavily confounded by lithium usage 59. With increased sample size, we are 

curious to investigate the differential expression of genes in the context of lithium users and 

nonusers. Specifically, whether there exist eQTLs, both at the bulk and cell type level, whose 

effect size is significantly different dependent on lithium use status. 

In this work we build a cell type decomposition pipeline, leveraging several publicly available 

tools, to derive cell type estimates for gene expression. We then use these results to conduct 

cell type cis-eQTL analyses, and compare the shared and unique cell type associations. We 

show that these cell type eQTL results derived from deconvoluted bulk RNA-Seq are consistent 

with eQTLs from scRNA-Seq 50, 52. We go on to identify several examples of “opposite-effect” 

eQTLs, where a cell type eQTL signal demonstrates gene expression regulation in the opposite 

direction from that observed in a bulk eQTL study.  Finally, we explore the effects of lithium use 

on cell type expression, and identify 110 examples of lithium-SNP interactions dictating the 

effect of an eQTL. 

4.3 Results 

4.3.1 Overview of cell type expression estimation pipeline  

To estimate cell type gene expression in whole blood, we use results from analysis of bulk RNA-

Seq 46 (N = 1,996) and computational deconvolution tools (Figure 4.1). First, we estimate cell 

type proportions using the LM22 signature matrix and CIBERSORTx 43 (Figure 4.2A). We find 

that these proportion estimates are consistent with those from other cohorts, namely with 

neutrophils in highest abundance, lymphocytes (including T cells, B cells, NK cells combined) in 

second highest abundance, and monocytes in lowest abundance, in general. However we note 

that blood cell type proportions vary widely per individual depending on numerous factors such 

as medication use, current illness, or age. We find that the proportions estimated via 

CIBERSORTx are consistent with the complete blood count measures taken in the clinic for a 

subset (N=143) of individuals in our dataset (Figure 4.5). For example, we observe a pearson 
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correlation (R2) of 0.76 for cell type proportions estimated in neutrophils using CIBERSORTx 

and proportions measured in clinic. These results suggest that the computationally estimated 

proportions are reliable.  

4.3.2 Cell type expression estimation using computational tools 

Next, we use these proportion estimates and an expression deconvolution software called 

bMIND (Methods) to estimate cell type expression. As expected, we find that R2 of expression 

between different cell types is high, as all cell types are derived from the same tissue (Figure 

4.2B). Next, we wanted to investigate whether despite there being an expectedly high 

correlation structure between different cell types, if computationally estimated cell type 

expression could successfully detect the differences in the expression between different cell 

types. We focused on the 548 genes included in the LM22 matrix (Methods) and found that 

these correlations ranged from 0.45 to 0.87. Finally, principal component analysis confirms that 

the major sources of variation in the dataset are attributable to differences in cell type 

expression (Figure 4.8).  These results suggest that using large cohorts of bulk RNA-Seq, 

paired with computational deconvolution tools, finds differences in expression dependent on cell 

type composition.  

4.3.3 Computationally estimated cell type proportions match sc-RNA-seq estimates 

In order to validate whether the expression estimates we derive using computational methods 

sufficiently match expression estimates observed using single cell RNA-Seq (scRNA-Seq), we 

leverage two scRNA-Seq datasets. We compare median TPM estimates across six cell types 

and find moderate correlation between the reference single-cell expression and computationally 

derived expression, ranging from R2 of 0.11 in naive B cells to R2 of 0.27 in CD8 T cells 

(Supplementary Table 4.1 and Figure 4.7). To further check how well computationally 

estimated expression compares to expression derived from scRNA-Seq, we look at how similar 

expression estimates are between the two reference scRNA-Seq datasets in monocytes, the 
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one cell type with data available in both reference datasets. We find that the median TPM of the 

2836 genes discovered to be eGenes in both datasets have an R2 of 0.22, comparable to the 

correlations observed when comparing computationally estimated expression with scRNA-Seq.  

4.3.4: Cell type expression accounts for varying proportions of variance of BP status 

Among this cohort, there are 1,126 individuals diagnosed with BP, 104 individuals diagnosed 

with schizophrenia (SCZ), and 766 control individuals. We were interested to see whether there 

were BP-specific effects that could be observed using cell type deconvoluted expression and 

related information. We conduct a GREML analysis (Methods) to find the amount of variance in 

BP attributable to variance in gene expression (Supplementary Table 4.3). Using the bulk gene 

expression, we see that up to 87% of trait variance can be explained by variance in gene 

expression. At the cell type level, there exists varying degrees of trait heritability attributable to 

cell type level, the highest being Neutrophils, estimated at 95%. From this, we learn that cell 

type inferred gene expression can be a useful tool for trait prediction.  

4.3.5: Cell type eQTL analysis reveals more refined biological signal 

Next, we were interested in performing eQTL analyses on the resulting cell type expression 

estimates to find evidence of genetic regulation of cell type expression. Restricting to the eight 

cell types with average proportion > 2% (Figure 4.2A), naive B Cells, memory B Cells, CD4 

naive T Cells, CD4 memory T cells, natural killer cells, monocytes, and neutrophils. Also 

restricting the analysis to 1,730 unrelated European individuals, we conduct cis-eQTL mapping 

with a 1 Mb window using QTLtools (Methods), to identify between 2,875 and 4,629 genes 

(eGenes) with a significant association at FDR correction level of 5%, across the eight different 

cell types (Figure 4.3A). In total, we identify 5,752 genes with a significant association in at 

least one of the eight main cell types. We go on to show that there exists a range of 

concordance of effect sizes for eGenes found in both the individual cell type analyses and the 

bulk eQTL analysis (Figure 4.3B and 4.3C). This confirms findings from previous studies 

showing a strong shared genetic effect on gene expression across cell types. We observe that 
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most ct-eGenes are detected as significant in either just one, or all eight cell types (Figure 4.9). 

Additionally, we find evidence of cell type “opposite-effect” eQTLs, where a SNP in a given cell 

type shows an association with the same eGene as detected using bulk RNA-Seq, but in the 

opposite direction. These examples are especially interesting as it supports the idea that looking 

at gene expression at the cell type level can uncover new biological mechanisms that go 

undetected when only using bulk tissue. Similar effects have been observed in other studies 

using both single cell RNA-Seq and deconvoluted bulk RNA-Seq.  

4.3.6: Comparison of computationally estimated ct-eQTL effect sizes with ct-eQTL effect 

sizes derived from sc-RNA-seq 

To further validate these cell type eQTLs, we compared the results of this analysis with results 

from eQTL analysis using single cell RNA-Seq from the BLUEPRINT consortium. We restrict to 

the protein coding genes identified as eGenes using the computational deconvolution approach. 

Generally, we find that the two approaches to cell type eQTL mapping show strong 

concordance. For example, in neutrophils, we find that 2,921 out of the 4,629 genes (63%) with 

a significant association using the computational deconvolution approach also had a significant 

association in using single-cell RNA-Seq, correcting at an FDR level of 5%. Among these 

eGenes, comparing the association with the same leading SNP in both of these datasets 

(Figure 4.3D), we observe a correlation (R2) of 0.66 between their effect sizes. This suggests 

that the computational deconvolution approach to large scale bulk RNA-Seq projects can be 

used to obtain accurate cell type eQTL estimates. 

4.3.7: Lithium-SNP interaction models at the bulk and cell type expression levels 

To investigate lithium-dependent genetic regulation, we perform an interaction model eQTL scan 

between lithium users and nonusers, testing whether there exist SNPs whose cell type or cell 

type specific expression regulation is dependent on the presence of lithium. To do this, we 

include an interaction term for the genotypes and lithium status, in the regression model 
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(Methods). Using bulk expression, we only identify one gene with such an association (FDR p-

value < 0.10). Looking at cell type expression derived from bMIND, we identify as many as 34 

such eGenes (in monocytes), and a total of 110 examples of genes (Li-eGenes) that show 

differential regulation of cell type expression, compared to just one gene that shows differential 

regulation of bulk expression (Supplementary Table 4.4). We see that 97 of the eGenes that 

have significant differential lithium regulation exhibit opposite effect sizes between the lithium 

user and nonuser groups, at the cell type level. The remaining 13 Li-eGenes show same 

direction effect sizes between the lithium user and nonuser groups, with significantly different 

magnitudes. For example, in naïve B cells, KITLG (ENSG00000049130) shows opposite effect 

eQTLs based on rs11104703 (Figure 4.4A). While in monocytes we see that TNFRSF11A 

(ENSG00000105641) shows differential effect size, in the same direction, based on rs79143095 

(Figure 4.4B). Due to the large number of samples used in this analysis, we are powered to 

detect small differences, like these. 

4.4 Discussion 

In this work, we leverage a large-scale bulk RNA-seq dataset and computational deconvolution 

methods to estimate cell type expression in eight major cell types in whole blood tissue. Using 

several published scRNA-seq datasets as a reference, we validate that expression is accurately 

estimated using the computational deconvolution approach. We then use these cell type 

expression estimates to conduct eQTL analyses at the cell type level and again use reference 

sc-RNA-seq datasets to validate effect size estimates observed in computationally deconvoluted 

inferred ct-eQTLs. Finally, we demonstrate that we can use these cell type expression estimates 

along with lithium-usage history from individuals in this cohort to study SNP-lithium interaction 

effects on expression, both at the bulk and cell type level, to uncover genes that have not 

previously been implicated in lithium regulation of whole blood gene expression.  
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Our study is, in part, motivated by trying to find approaches to boost statistical power in 

association studies, at the cell type level. Leveraging bulk RNA-seq to look at cell type biological 

questions enables use of larger sample sizes than would be possible when using scRNA-seq.  

We conclude with some notes, caveats, and future directions. We tested many computational 

tools for deconvolution of bulk RNA-seq data, and while gene expression estimates from 

CIBERSORTx + bMIND were the most consistent with scRNA-seq estimates, it is possible that 

this was true for this specific dataset. Furthermore, we note that correlations between multiple 

scRNA-seq datasets of the same cell type do not have extremely high per-gene correlations, 

such as one would observe when comparing bulk RNA-seq datasets from the same tissue type. 

To this point, current approaches for studying cell type transcriptomics are not sufficient, and 

would benefit from larger sample sizes. It is also important to note that the transcriptome is 

dynamic and responses to perturbations remain poorly understood. More resources will need to 

be invested in both bulk and single cell RNA-seq studies to further understand the landscape of 

the transcriptome. 

4.5 Methods 

Bulk RNA-Sequencing 

We used FASTQC to visually inspect the read quality from the lower-coverage whole blood 

RNA- Seq (5.9M reads/sample), the moderate-coverage whole blood RNA-Seq (13.9M reads/

sample), and the high-coverage fibroblast RNA-Seq (50M reads/sample). We then used kallisto 

to pseudoalign reads to the GRCh37 gencode transcriptome (v33) and quantify estimates for 

transcript expression. We aggregated transcript counts to obtain gene level read counts using 

scripts from the GTEx consortium (https://github.com/broadinstitute/gtex-pipeline). 

cis-eQTL mapping 

Excluding related individuals (pi_hat > 0.2) from the analysis, we perform cis-eQTL analysis 

mapping using FastQTL 37, using a defined window of 1 Mb both up and downstream of every 

gene’s TSS, for sufficiently expressed genes (TPM > 0.1 in 20% of individuals).  We run the 
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eQTL analysis in permutation pass mode (1000 permutations, and perform multiple testing 

corrections using the q value FDR procedure, correcting at 5% unless otherwise specified. We 

then restrict associations to the top (or leading) SNP per eGene. 

Cohort Description 

The samples included are from a study with individuals ascertained for bipolar disorder (BP). 

The cohort consists of 1,126 individuals with BP, 104 individuals with schizophrenia, and 766 

controls (including first and second degree relatives of individuals with BP).  

Genotyping pipeline  

Genotypes for the low-coverage whole blood samples were obtained from the following 

platforms: OmniExpressExome (N = 810), PSYCH (N = 523), and COEX (N = 163). Given that 

the SNP-genotype data for both the fibroblast and whole blood samples came from numerous 

studies using various genotyping platforms (including GSA, Illumina550, OmniExpress Exome, 

COEX, and PsychChip) the number of overlapping SNPs across all platforms was < 80k, 

prompting us to perform imputation separately for each genotyping platform. Genotypes were 

first filtered for Hardy-Weinberg equilibrium p value < 1.0e-6 for controls and p value < 1.0e-10 

for cases, with minor allele frequency (MAF) > 0.01, leaving 148613 typed SNPs. 

Genotypes were imputed using the 1000 Genomes Project phase 3 reference panel11 by 

chromosome using RICOPILI v.1 12 separately per genotyping platform, then subsequently 

merged. Imputation quality was assessed by filtering variants where genotype probability > 0.8 

and INFO score > 0.1, resulting in 2289732 autosomal SNPs. We restricted to only autosomal 

due to sex chromosome dosage, as commonly done13. 

Bulk RNA-Seq processing pipeline 

We used FASTQC to visually inspect the read quality from the lower-coverage whole blood 

RNA-Seq (5.9M reads/sample) and the higher-coverage fibroblast RNA-Seq (13.9M reads/
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sample). We then used kallisto 33 to pseudoalign reads to the GRCh37 transcriptome and 

quantify estimates for transcript expression. We aggregated transcript counts using scripts from 

the GTEX consortium (https://github.com/broadinstitute/gtex-pipeline).  

Cell type proportion estimation 

We estimate the proportion of cell types of both the lower coverage and higher coverage bulk 

whole blood RNA-seq datasets using CIBERSORTx, with batch correction applied and LM22 

signature matrix as the reference gene expression profile. The LM22 signature matrix uses 547 

genes to distinguish between 22 human hematopoietic cell phenotypes. 

Complete blood counts were provided for a subset of the cohort, providing us ground truth 

measures for neutrophils, lymphocytes, monocytes, basophils, and eosinophils. 

Cell type expression estimation 

We log2-transform the matrix of bulk TPM measures and compute the first 50 principal 

components to be included as covariates. Using the cell type proportions derivedoutput from 

CIBERSORTx in conjunction with these log-transformed bulk expression measures, we use 

bMIND in order to derive cell type expression estimates, with flag np=TRUE.  and 50 expression 

PCs included as covariates.  

bMIND derived estimates 

We use output from bMIND, we perform cis-eQTL analysis mapping using QTLtools, using a 

defined window of 1 Mb both up and downstream of every gene’s TSS, for sufficiently 

expressed genes (TPM > 0.1 in 20% of individuals).  We run the eQTL analysis in permutation 

pass mode (1000 permutations, and perform multiple testing corrections using the q value FDR 

procedure, correcting at 5% unless otherwise specified. We then restrict associations to the top 

(or leading) SNP per eGene. 
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Interaction model 

To test whether there exists an interaction between SNP-lithium usage, we included an 

interaction component in the regression model, as such: y = 𝛽 *X + 𝛽*l +𝛽*(X+l)+covariates . We 

use MatrixEQTL 51 to implement this approach, using the “modelLINEAR_CROSS” setting. We 

used estimated counts from genes with at least 1.0 count in at least 40% of samples, including 

the first 25 expression PCs as covariates.  

Estimating variance explained by gene expression 

To estimate variance in case/control status attributed to variance in gene expression, we 

conduct a genomic REML analysis, found here (http://psoerensen.github.io/qgg/).  
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Figure 4.1: Visual schematic of deconvolution pipeline  

This cohort is ascertained for individuals with bipolar disorder and has 800 individuals with BP, 

270 individuals with SCZ, and 735 controls. RNA-seq was performed on whole blood tissue 

collected from each of the samples. CIBERSORTx was used to estimate cell type proportions 

for 22 cell types in whole blood tissues. Of the 22, the eight most abundant cell types were used 

for further analysis. Gene expression estimates and cell type proportion estimates were inputted 

into bMIND to obtain cell type expression estimates for the eight major cell types. cis-eQTL 

mapping was then performed separately for each of the eight cell types.  
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Figure 4.2: Computationally estimated cell type expression 

(4.2A): Using CIBERSORTx, the predicted cell type proportion values of eight major cell types 

in whole blood tissue for all samples in the low-coverage RNA-seq cohort. (4.2B): R2 values of 

computationally estimated expression, using bMIND, between all eight major cell types in whole 

blood tissue. 
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Figure 4.3: Computationally estimated ct-expression and ct-eQTLs 

(4.3A): Using QTLtools, we conduct genome-wide ct-cis-eQTL scans and find between 2,875 

and 4,629 ct-eGenes. (4.3B): Scatterplot of effect sizes of the leading eQTL hit for the 1,870 

eGenes with a shared leading eSNP between the eQTL analysis using computationally 

deconvoluted neutrophil gene expression and bulk gene expression data. On the x axis, we 

show the effect size for the eGenes from eQTL analysis conducted using the bulk RNA-seq, on 

the y axis, we show the effect size for the eGenes from eQTL analysis conducted using 

computationally deconvoluted neutrophil gene expression. (4.3C): Scatterplot of effect sizes of 

the leading eQTL hit for the 1,291 eGenes with a shared leading eSNP between the eQTL 

analysis using computationally deconvoluted monocyte gene expression and bulk gene 

expression data. On the x axis, we show the effect size for the eGenes from eQTL analysis 

conducted using the bulk RNA-seq, on the y axis, we show the effect size for the eGenes from 

eQTL analysis conducted using computationally deconvoluted monocyte gene expression. 

(4.4D) Scatterplot of effect size comparisons between eQTLs identified using scRNA-seq 
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reference data from the BLUEPRINT consortium compared with eQTLs identified using 

computationally deconvoluted data.  

 

Figure 4.4: SNP-lithium interaction eQTLs 

(4.4A): Boxplots showing the expression of KITLG (ENSG00000049130) in naïve B cells, 

stratified by dosage of SNP rs11104703 in lithium users versus nonusers. (4.4B): Boxplots 

showing the expression of TNFRSF11A (ENSG00000105641) in monocytes, stratified by 

dosage of SNP rs79143095 in lithium users versus nonusers. 
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Figure 4.5: Computationally estimated cell type proportions compared to laboratory measured 

cell type proportion values (N=143) 

(4.5A): On the x axis we show the laboratory measured cell type proportions for neutrophils, on 

the y axis we show the computationally estimated cell type proportions for neutrophils derived 

using CIBERSORTx. (4.5B): On the x axis we show the laboratory measured cell type 

proportions for monocytes, on the y axis we show the computationally estimated cell type 

proportions for monocytes derived using CIBERSORTx. (S4.5C): On the x axis we show the 

laboratory measured cell type proportions for lymphocytes, on the y axis we show the 

computationally estimated cell type proportions for lymphocytes derived using CIBERSORTx. 
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Figure 4.6: Mean expression values of LM22 genes across all samples 

(4.6): Using the 548 genes included in the LM22 matrix, we compare mean expression values 

across samples in the eight major cell types.  
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Figure 4.7: Comparing computationally estimated cell type expression with scRNA-seq 

reference datasets 

(4.7A): Monocytes – x axis: bMIND estimated expression, y axis: BLUEPRINT reference. 

(4.7B): Neutrophils – x axis: bMIND estimated expression, y axis: BLUEPRINT reference. 

(4.7C): Monocytes – x axis: bMIND estimated expression, y axis: Schmeidel reference. (4.7D): 

Resting CD4 T cells – x axis: bMIND estimated expression, y axis: BLUEPRINT reference. 

(4.7E): Naïve CD4 T cells – x axis: bMIND estimated expression, y axis: BLUEPRINT reference. 

(4.7F): CD8 T cells – x axis: bMIND estimated expression, y axis: BLUEPRINT reference. 

(4.7G): Naïve B cells – x axis: bMIND estimated expression, y axis: Schmeidel reference 
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Figure 4.8: PCA of computationally deconvoluted expression 

(4.8): Using computationally deconvoluted expression data of N = 1,996 individuals consisting of 

eight cell types from bMIND, PC1 and PC2 are plotted, with each point colored by cell type.  
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Figure 4.9: Number of cell types eGenes are significant in 

(4.9): Of the 5,752 eGenes found in any of the eight primary whole blood cell types, we show 

how many cell types each is a significant ct-eGene in. 

4.8 Supplementary Tables 

Cell type Reference R2 Number of genes

Monocytes BLUEPRINT 0.14 2896

Neutrophils BLUEPRINT 0.48 3157

CD4 Memory T Cells BLUEPRINT 0.26 2504

CD4 Naive T Cells BLUEPRINT 0.27 2504

CD8 T Cells BLUEPRINT 0.24 2504

B Cell Naive Schmeidel 0.11 624

Monocytes Schmeidel 0.15 2896
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Supplementary Table 4.1: Comparing computationally inferred ct-expression with scRNA-seq 

reference expression 

Restricting to the genes identified as eGenes using both the single cell RNA-Seq reference 

dataset and the computationally derived cell type expression, we report R2 values for the 

median TPM for genes across samples. 

Supplementary Table 4.2: Number of ct-eGenes per cell type 

Monocytes * Schmeidel/BLUEPRINT 0.22 2836

Cell type Number of eGenes

Bulk 7302

Naive B Cells 4009

Memory B Cells 3571

Monocytes 3483

Neutrophils 4629

Resting NK Cells 3858

CD8 T Cells 3284

CD4 Memory T Cells 3284

CD4 Naive T Cells 3082

Cell type GREML estimate Variance

Bulk 0.87 0.03
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Supplementary Table 4.3: GREML estimates 

  

Supplementary Table 4.4: SNP-Lithium interaction results 

Using an FDR cut-off of p < 0.10, we look at the number of eGenes with a significant SNP-

lithium interaction. “Same-direction” Li-eGenes have the same direction of effect sizes between 

Naive B Cells 0.09 0.04

Memory B Cells 4.2e-9 0.0

Monocytes 0.40 0.06

Neutrophils 0.95 0.08

Resting NK Cells 0.24 0.06

CD8 T Cells 0.12 0.04

CD4 Memory T Cells 0.14 0.05

CD4 Naive T Cells 0.56 0.07

Cell type Number of Li-
eGenes

Number of “same-
direction” Li-eGenes

Number of “opposite-
direction” Li-eGenes

Naive B cells 24 4 20

Memory B cells 15 3 12

CD8 T cells 2 1 1

Naive CD4 T cells 25 1 24

Memory CD4 T cells 2 0 2

Resting NK cells 5 0 5

Monocytes 34 3 31

Neutrophils 3 1 2
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lithium users and nonusers, and “opposite-direction” Li-eGenes have the opposite direction of 

effect sizes between lithium users and nonusers. 

Chapter 5: Concluding remarks  

Linking genetic variation to risk for complex traits remains an important challenge in 

human genetics. GWAS has allowed us to find many risk regions for various complex traits, but 

results from these studies remain poorly understood, as noncoding regions account for much of 

the risk derived from GWAS. Noncoding regions of the genome are difficult to link to function, as 

the proteins they may be linked to are not as obvious as regions that lie in coding regions. One 

hypothesis is that risk for complex disease may be mediated through gene expression. We can 

link gene expression to genetic variation by conducting eQTL mapping. While the cost of 

genotyping has plummeted, enabling very large-scale genetics studies, measuring gene 

expression accurately remains cost prohibitive. The state-of-the-art method for doing so is RNA 

sequencing (RNA-seq). In this work, we provide a comprehensive investigation, using synthetic 

datasets, into the amount of gene expression signal we expect to obtain as we manipulate 

coverage in RNA-seq. We show that in these synthetic datasets, it is possible to significantly 

reduce coverage while still maintaining high accuracy in gene expression estimates. Though 

these results were promising in simulations, low-coverage RNA-seq data is not commonly used 

in practice, so possible shortcomings due to technical errors are largely unexplored. To address 

this, we design and implement a large-scale RNA-seq experiment at low coverage (5.9M reads/

sample, on average). We investigate whether eQTLs found using this novel approach are 

consistent with those that we find with traditional approaches to RNA-seq experiment design. 

In Chapter 2, we conduct rigorous simulations via downsampling high-coverage RNA-

seq data into various synthetic datasets, to show how manipulating coverage impacts our ability 

to quantify gene expression at various coverages. We create multiple synthetic datasets at each 

coverage level to account for variability in sampling and find that it is still possible to accurately 

quantify gene expression at lower levels of coverage than are typically used. For example, using 
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10% of the reads, we retain an R2 of 0.40, or quantify gene expression with 40% accuracy, on 

average. We go on to show how different features of genes, including mean abundance, 

whether or not they are protein-coding, GC content, number of transcripts, among other 

features, impact quantification accuracy at lower coverage levels. Finally, we provide a formula 

to estimate an experiment’s effective sample size, and provide a webtool to enable scientists to 

more easily explore the tradeoff between coverage and number of samples under a fixed 

budget. 

In Chapter 3 we dive into exploring low-coverage RNA-seq and its implications in real 

data. We generate a large-scale, low-coverage sequencing dataset, including 1490 samples 

derived from whole blood tissue, with RNA-seq at an average sequencing depth of 5.9M reads/

sample. We compare the results from low-coverage RNA-seq with two datasets of higher 

coverage, to ensure accuracy. We use an RNA-seq dataset including 570 samples of whole 

blood tissue sequencing at a mean sequencing depth of 13.9M reads/sample and use RNA-seq 

data from the GTEx consortium, including 670 samples derived from whole blood tissue. We 

compare estimated gene expression levels between low-coverage RNA-seq with moderate-

coverage RNA-seq, and find a very high concordance of mean gene expression across 

datasets, suggesting that low-coverage RNA-seq is broadly effective in capturing gene 

expression. We conduct cis-eQTL mapping for each of the three datasets, and find that the 

resulting effect sizes show strong concordance between the eQTL analysis done using low-

coverage RNA-seq compared to both moderate-coverage and high-coverage RNA-seq. 

Additionally, we show that despite having considerably fewer reads in total, the low-coverage 

RNA-seq approach captures a similar number of associations to GTEx. Finally, we demonstrate 

that the associations found using low-coverage RNA-seq are robust and colocalize with GWAS 

loci for several blood traits. 

In Chapter 4, we leverage computational deconvolution methods to build a pipeline to 

estimate cell type expression in eight major cell types in whole blood tissue. We find that the 

expression estimates generated from this approach are consistent with those observed using 
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sc-RNA-seq. Furthermore, we find that we have increased power to identify sc-eQTLs with this 

approach due to the large sample sizes obtainable in bulk RNA-seq experiments. We 

incorporate an interaction term in the eQTL model to investigate whether there exist SNP-drug 

interactions with respect to lithium usage. We find several examples of genes, both at the bulk 

and cell type level, that are differentially associated with nearby SNPs, dependent on lithium 

usage. We show that this approach can be coupled with  

Both the low-coverage RNA-seq and GTEx consortium RNA-seq are well-powered to 

detect many eQTL associations. However, each dataset discovers additional associations that 

do not meet that statistical threshold cutoffs in the other, and neither is as well powered to 

detect associations as eQTLGen, a meta-analysis of many projects consisting of microarray 

data and RNA-seq, containing >30,000 samples in total. This leads us to believe that there is 

still much work to be done to characterize the full profile of transcriptional regulation through 

genetics by investing more resources in such experiments, especially in recruiting cohorts 

containing more genetic ancestral diversity. We also note that there is a temporal component to 

gene expression that is left largely unexplored. Our work will enable researchers to better 

design experiments without expending additional resources. 

We provide the gene expression estimates from the low-coverage RNA-seq dataset 

generated in Chapter 3 as a publicly available resource (accession number phs002856.v1).  
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