
UC Berkeley
UC Berkeley Previously Published Works

Title
Spatial correlation of shear-wave velocity in the San Francisco Bay Area sediments

Permalink
https://escholarship.org/uc/item/25h1p1mj

Journal
Soil Dynamics and Earthquake Engineering, 27(2)

ISSN
02677261

Authors
Thompson, Eric M
Baise, Laurie G
Kayen, Robert E

Publication Date
2007-02-01

DOI
10.1016/j.soildyn.2006.05.004
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/25h1p1mj
https://escholarship.org
http://www.cdlib.org/


ARTICLE IN PRESS
0267-7261/$ - se

doi:10.1016/j.so

�Correspond
E-mail addr
Soil Dynamics and Earthquake Engineering 27 (2007) 144–152

www.elsevier.com/locate/soildyn
Spatial correlation of shear-wave velocity in the San Francisco
Bay Area sediments

Eric M. Thompsona,�, Laurie G. Baisea, Robert E. Kayenb

aDepartment of Civil and Environmental Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA
bUS Geological Survey, 345 Middlefield Rd., MS-999, Menlo Park, CA 94025, USA

Received 7 April 2006; received in revised form 29 April 2006; accepted 2 May 2006
Abstract

Ground motions recorded within sedimentary basins are variable over short distances. One important cause of the variability is that

local soil properties are variable at all scales. Regional hazard maps developed for predicting site effects are generally derived from maps

of surficial geology; however, recent studies have shown that mapped geologic units do not correlate well with the average shear-wave

velocity of the upper 30m, Vs(30). We model the horizontal variability of near-surface soil shear-wave velocity in the San Francisco Bay

Area to estimate values in unsampled locations in order to account for site effects in a continuous manner. Previous geostatistical studies

of soil properties have shown horizontal correlations at the scale of meters to tens of meters while the vertical correlations are on the

order of centimeters. In this paper we analyze shear-wave velocity data over regional distances and find that surface shear-wave velocity

is correlated at horizontal distances up to 4 km based on data from seismic cone penetration tests and the spectral analysis of surface

waves. We propose a method to map site effects by using geostatistical methods based on the shear-wave velocity correlation structure

within a sedimentary basin. If used in conjunction with densely spaced shear-wave velocity profiles in regions of high seismic risk,

geostatistical methods can produce reliable continuous maps of site effects.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Observations from large earthquakes (e.g. 1985 Mexico
City and 1989 Loma Prieta) have shown that the stiffness
of the soil at a site has a strong effect on the level of
shaking. Variability in these local stiffnesses contributes to
the variability of ground motions over short distances
within sedimentary basins [1–5]. The engineering code has
simplified these site effects into a single parameter: the
average shear-wave velocity in the upper 30m at a site,
Vs(30) [5]. Initial maps of site effects assign a site class, A
through F, based on Vs(30) measurements in each geologic
unit as defined by the National Earthquake Hazards
Reduction Program (NEHRP) [6].

This study seeks an appropriate model for the horizontal
variability of near surface shear-wave velocity to make
e front matter r 2006 Elsevier Ltd. All rights reserved.
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reliable estimates in unsampled locations. Shear-wave
velocity is an important parameter because Vs(30) is used
to determine response spectra for building codes and
detailed shear-wave velocity models are necessary for
accurate ground motion modeling. Stochastic spatial
models have been shown to appropriately describe the
variability of soils. Fenton [7] summarizes the different
stochastic models of soil properties including the sample
covariance, spectral density, variance function, variogram,
and wavelet variance functions. Fenton [8] used 143 cone
penetration test (CPT) soundings from soil distributed over
an area of 18 km2 in which he assumes that the volume of
soil is a homogeneous random field and that each sounding
of tip resistance is a sample of that random field. From this
study he concluded that the vertical variation of tip
resistance is fractal. This implies the variability increases
indefinitely as the scale of measurement increases. If the
variance becomes constant at some scale, then it would be
a finite variance model, and the distance at which the
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Fig. 1. Map showing the location of SCPT and SASW sites within the

sedimentary basin. The SCPT data is more continuous and densely spaced

than the SASW data. The SASW data is mostly grouped in two locations:

near Berkeley, and near Alameda.
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variance reaches the maximum value is called the range.
The maximum variance and the range characterize the
heterogeneity of a variable. Many previous studies have
used similar techniques to analyze the spatial variability of
soil properties and we discuss a few examples here. Elkateb
et al. [9] modeled liquefaction damage with CPT measure-
ments and assumed that the horizontal correlation
structure is the same as the vertical but with an increased
range. The horizontal range should be larger than vertical
due to the horizontal layering of sediments. Soulie et al.
[10] modeled the variability of undrained shear strength in
clays and found a vertical range of 3m and horizontal
range of 30m. DeGroot [11] compiled soil properties
(including N values, tip resistance, undrained shear
strength, and hydraulic conductivity) and found values
for the range in the vertical direction to be between 0.5 and
3m and the horizontal range between 15 and 30m. These
previous studies have all modeled relatively homogeneous
soil deposits at the site-specific scale. The spatial extent we
are interested in for regional mapping of seismic hazard is
greater than an order of magnitude larger than these
previous studies.

Initially, the maps of ground-motion amplification were
based on previously mapped geologic units [12]. For each
geologic unit, an average shear-wave velocity was deter-
mined from velocity profiles. The United States Geologic
Survey (USGS) collected 210 SCPT profiles in a 140 km2

area of the San Francisco Bay, California, which provided
more detailed velocity data within each geologic unit [13].
Holzer et al. [14] produced NEHRP site class maps from
these data by calculating Vs(30) on a 50m grid. The
researchers set the shear-wave velocity of each geologic
unit equal to the mean of the distribution of Vs values
measured within each geologic unit. The shear-wave
velocity profile was constructed at each node of the 50m
grid by manually contouring the thickness of each unit.
They calculated Vs(30) from the shear-wave velocity profile
at each node. This method produced more variability of
the mapped Vs(30) values than regional maps based
exclusively on surficial geology such as Wills et al. [6].
The variability of Vs(30) in these maps results from the unit
thickness contouring since the shear-wave velocity of each
geologic unit is constant. Most of the profiles in this dataset
do not reach depths of 30m so this method requires
extrapolation of the Vs data to depths not measured in the
dataset.

As an alternative approach, we investigate the spatial
variability of shear-wave velocity across geologic units
within a sedimentary basin. Scott et al. [15] found that
mapped geologic units do not correlate well with Vs(30)
measurements. The assumption of horizontal spatial
homogeneity, as in the stochastic methods of Fenton [7,8]
and Elkateb et al. [9] does not apply because our
measurements are taken from different geologic formations
such as dune sands, alluvial fans, bay mud, and artificial
fill. We also do not assume that the shear-wave velocity of
each geologic unit is constant.
The two techniques used to measure shear-wave velocity
in this study, seismic cone penetration test (SCPT) and
spectral analysis of surface waves (SASW), each have a
different role in this study. In order to map surface shear-
wave velocity across a region, we need data that are densely
spaced and accurately represent site response effects. The
benefit of the SCPT data is that the sampling density is
great enough that it can be continuously mapped.
However, the measurements do not reach depths great
enough to reliably characterize the Vs(30). For this study,
we collected 48 SASW measurements. The SASW techni-
que accurately measures the shear-wave velocity to depths
of 30m or greater, but the 48 sites collected for this study
are not as closely spaced or as spatially extensive as the
SCPT data. Fig. 1 shows the measurement locations for the
SASW and SCPT data used in this study. If the SASW data
are strongly correlated to the SCPT data then we can use
both measurements together to map seismic hazard.

2. Methods

2.1. SCPT data

The SCPT data used in this paper were collected and
presented in a digital database by Holzer et al. [13]. The
locations of these measurements are included in the map in
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Fig. 2. The schematic layout of the common source mid-point SASW

array used in this study. The forward and reverse accelerometer pair for

each spacing records the surface waves produced by the harmonic source

located at the center.
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Fig. 1. As the cone is driven through the soil, the tip
resistance and sleeve friction are measured at 50mm
increments and a seismometer in the tip measures seismic
waves produced by a strike plate at the ground surface at
depth increments of approximately 2m. The shear-wave
travel time is picked from the resulting seismogram. From
the travel time data, shear-wave velocity may be calculated
for the interval between each measurement. Because of
uncertainty in picking shear-wave arrivals, the individual
travel times may result in large errors in the calculated
velocity. This is apparent because some 2-m intervals in
this SCPT data have negative shear-wave velocities when
calculated with this method.

As a more stable and reliable measure of shear-wave
velocity, we interpret a layered velocity model for each site
using automated algorithms written in the open-source
statistical language and environment R [16]. The method is
based on that described by Boore [17], but does not
account for refractions at layer boundaries and assumes no
prior knowledge of layer boundary depths. The ray path is
approximated by a straight line which is reasonable for
small horizontal surface offsets (0.96m for these data).
First, a single-layer model with thickness equal to the depth
of the deepest measurement is fit to all travel times. A
boundary is placed at the maximum residual in the model
and travel time curves are then recalculated using the new
layers. The algorithm then picks the layer with the largest
root mean square (RMS) error to add a new boundary.
Within this layer, the maximum residual is chosen for a
new boundary. Each layer is required to include multiple
travel time measurements. This is iterated until no new
boundaries can be found, or the addition of another layer
does not significantly reduce the RMS error of the model.
Once the layer boundaries are chosen, the shear-wave
velocity profile is calculated in a single inversion. We then
review the residuals and add or remove boundaries
manually if necessary.

From the calculated shear-wave velocity profile we need
a single value of shear-wave velocity for each site for
regional mapping. To be consistent with current engineer-
ing practice, we would like to use Vs(30) but only about 9
of the 210 SCPT profiles reach depths of 30m or greater.
Extrapolating profiles with maximum depths less than 30m
depth can lead to incorrect site classifications and poor
velocity estimates at individual sites [18]. Instead we
calculate a similar value, Vs(10), which is the time-weighted
average shear-wave velocity, V(d), of the upper d meters,
with n layers with thickness Dz calculated according to the
equation

V ðdÞ ¼
d

ttðdÞ

and the travel time tt(d) is

ttðdÞ ¼
Xn

i¼1

Dzi

V sðdÞi
.

Of the 210 original SCPT sites, we use only the190 sites
in which the travel time measurements reach a minimum
depth of 10m. Of these 190 sites, we remove one from our
analysis because it is collocated with another site.

2.2. SASW data

For this study we collected 48 SASW measurements in
the same area as the SCPT data. The locations of the
SASW measurements are included on the map in Fig. 1.
We use the SASW method to measure soil stiffness because
it can be efficiently performed in urban areas. A recent
blind comparison of seismic methods showed that the
SASW method applied in this study produces accurate
shear-wave velocity profiles and can identify low-velocity
layers in the near-surface sediments [19]. We chose
locations at public parks where possible, but otherwise
the accelerometer arrays are placed on the sidewalks of city
streets.
We generate surface waves by vertically loading the soil

with an electro-mechanical shaker driven at discrete
harmonic frequencies between 2 and 200Hz. We arrange
the 4 accelerometers according to the common source-
midpoint geometry illustrated in Fig. 2. These acceler-
ometers measure the vertical acceleration time series
produced by the harmonic vertical loading. We calculate
the phase angle (f, in radians) from the cross power
spectra of two accelerometers. From the phase, and the
separation distance between the seismometers, d, we can
calculate the wavelength, l ¼ 2pd/f. At each site we collect
phase data with accelerometer spacing from 2 to 50m. The
source to receiver distance is always greater than or equal
to the distance between accelerometers to minimize the
near-field effects [20]. From the frequency and the
wavelength we calculate the Rayleigh wave velocity,
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Vr ¼ fl. At each site, we combine the velocity and
wavelength data from each array spacing to calculate an
average dispersion curve (the relationship of surface wave
velocity vs. wavelength) for each site.

We find layered velocity model that produces the best-fit
theoretical dispersion curve by minimizing the sum of the
squares of the residuals relative to the experimental
dispersion curve measured in the field. We use the
algorithm WaveEQ by OYO Corp [21] to invert for the
layered velocity model from the experimental dispersion
curve. This is an automated-numerical approach that uses
a constrained least-squares fit of the theoretical and
experimental dispersion curves. With this dataset, we invert
for the shear-wave velocity profile in the upper 30m of the
soil unless the maximum wavelength of the experimental
dispersion curve is greater than 90m, in which case we
increase the depth of the inversion profile to the maximum
wavelength of the experimental dispersion curve divided by
three (lmax/3). Most profiles contain 6–8 layers unless the
addition of more layers is required to fit the shape of the
experimental dispersion curve. Multiple inversions are fit to
the experimental dispersion curves by adjusting the
parameters (such as the initial velocity model, the number
of layers, etc.) to verify that the solution is stable.
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Fig. 3. Two shear-wave velocity profiles measured by the SASW and

SCPT methods located within 100m of each other. The SASW method

effectively averages the shear-wave velocity over the volume of sediment

through which the surface wave travel (up to 200m for these data), while

the SCPT method measures the shear-wave velocity along a single vertical

raypath.
2.3. Geostatistics

We presume that the SCPT and SASW measurements
are densely spaced enough that the Vs values are not
random in the sense that closely spaced observations will
be more similar than those further apart. Geostatistics is an
appropriate tool for spatial prediction and stochastic
simulation of data if this spatial structure exists. The
experimental semivariogram (described below) describes
the spatial structure, and using a suitable semivariogram
model to interpolate between data points can significantly
reduce the variance of predicted values. We use the geoR
package [22] within the statistical language and environ-
ment R for the geostatistical calculations. The empirical
semivariogram, g(h), with N sample pairs separated at a
distance of h is estimated by the following equation:

gðhÞ ¼
1

2N

XN

i¼1

½V sðsiþhÞ � V sðsiÞ�
2,

where s is the spatial location of the velocity measurement,
Vs. The sample pairs are divided into bins of separation
distance. We fit a model semivariogram to the empirical
semivariogram and find that exponential and linear models
are appropriate for the data in this study. The exponential
model has the form:

~gðhÞ ¼ o 1� exp �
h

a

� �� �
þ t

and the linear model has the form

~gðhÞ ¼ m h½ � þ t.
The model parameters are found by minimizing the
weighted least-square error as described by Cressie [23].
The nugget variance is t, the range is 3a, and the sill
variance ( ~s2), is o+C. Graphically, the sill variance is the
value at which the semivariogram plateaus as the distance
increases and it is equivalent to the population variance of
the variable. The range is the distance at which the
semivariogram reaches the sill, and points at distances
larger than the range are not correlated. The nugget
variance is the variance at the origin, or separation distance
of 0. The nugget variance characterizes the continuity of
the variable being modeled. A flat empirical semivariogram
is characteristic of a purely random variable with no
correlation structure. Geostatistics cannot improve esti-
mates of a purely random variable. The linear model does
not contain the parameters a or o because the range and
sill are infinite. The slope of the linear model is m, and the
nugget variance is t.
We include the equations necessary for describing the

soil variability above and recommend the reader to any of
the well-written texts on the subject (e.g. [24,25]) for further
details of the geostatistical modeling.

3. Results

3.1. Comparison of SCPT and SASW methods

The two measurements of shear-wave velocity used in
this paper are inherently different. Fig. 3 presents closely
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spaced shear-wave velocity profiles measured by the SCPT
and SASW methods and the corresponding Vs(10) and
Vs(30) values. These two sites are separated by approxi-
mately 100m. There is no reason to expect that these
profiles should be identical, so the purpose of this figure is
to compare the nature of the two methods and not the
absolute values of the profiles. The SCPT method more
directly measures shear-wave velocity in the sense that it
divides the time for the shear-wave to arrive by the distance
traveled. On the other hand, the SASW method is
measuring the dispersion of surface waves and the shear-
wave velocity is calculated by inverse methods which yield
a non-unique solution. Further, the SASW method is
effectively averaging the soil properties over the volume of
sediment through which the surface wave travel (up to
200m for these data), while the SCPT method effectively
measures the shear-wave velocity for a single vertical
raypath. From the two profiles, it is apparent that the
SASW technique produces greater detail, but this is
controlled by the inversion process in which the number
of layers is specified. The SCPT method measures shear-
wave arrivals every 2m, and so it cannot resolve changes in
the shear-wave velocity profile at scales equivalent to 4m
or less. For example, the upper layer in the SCPT profile in
Fig. 3 is defined by only two measurements, and the lower
layer is defined by 6. These velocities may actually
represent the average shear-wave velocity of thinner layers
which cannot be resolved. The SASW dispersion curve is
compiled from multiple receiver spacings (typically 2
arrays, each with 5–6 different spacings from 2 to 50m),
each spacing measures the phase at 30–60 wavelengths
(wavelength determines the depth of particle motion in
the Rayleigh wave). Thus, the SASW method measures the
shear-wave velocity more continuously with depth and
the precision of the SASW profile should be greater than
the SCPT profile. A blind comparison of shear-wave
velocity measurement techniques [19] found that the SCPT
method is biased by 15% high relative to suspension log
data and that the SASW method used in this study is
unbiased in the upper 20m and showed a bias to high
velocities at greater depths.
Fig. 5. Continuous map of Vs(10) based on the SCPT data collected by

Holzer et al. [13].
3.2. Semivariogram estimation

Fig. 4 shows the experimental and model semivario-
grams for the SASW and SCPT data. We use 400m
distance bins for the 190 SCPT measurements and calculate
the exponential model parameters: the nugget variance is
80m2/s2, the sill variance is 5204m2/s2, and the range is
approximately 3.7 km. This model fits the empirical data
well and the nugget variance is small relative to the sill
variance demonstrating that high correlations exist over
short horizontal distances. We use a larger bin size of 1 km
for the SASW data because it is less closely spaced and
there are fewer measurements. The SASW data are best
fit with a linear covariance model with nugget variance.
The nugget variance is 1427m2/s2 and the line has a slope
of 0.28.
We estimate Vs(10) values everywhere within the region

contained by the SCPT measurements in a 100m grid with
ordinary kriging and the model semivariogram for the
Vs(10) values. These results are shown in Fig. 5. We only
calculate estimated values within the sedimentary basin
where the variance of the prediction is less than the
population variance of the Vs(10) values.
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3.3. Sampling density

To address the effect of sampling density on the
estimated spatial correlation structure we use a Monte
Carlo simulation to produce random subsets of the data
from which we calculate the model semivariogram. This is
relevant to geohazards mapping because it directly
addresses the horizontal sample density that should be
required to map site-response. From the original 189 SCPT
samples, each realization uses a random subset such that
every sample has equal probability of selection and can
only be used once per realization. For each sample density
we calculate the nugget variance, range, and sill variance
for the exponential semivariogram for 100 realizations.
Fig. 6 plots the mean of (A) the nugget variance, (B) the
range, and (C) sill variance for 5000 realizations at each
sampling density. The selection of each semivariogram
model was automated because of the large number of
realizations required for a meaningful Monte Carlo
simulation.
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Fig. 7 shows 100 example realization of the experimental
variogram with 1.2 samples per km2 (170 samples) and 0.79
(110 samples) samples per km2. This figure shows that as
the sampling density decreases, the standard deviation of
the nugget variance, the range, and the sill variance
increase. Interestingly, all three of the variogram model
parameters increase at a relatively constant rate as the
sampling density decreases. This results from the model
variogram being less well constrained by the empirical
variogram. Fig. 6 shows that the values of the range and sill
variance increases distinctly as the sampling density is
decreased below 0.85 samples/km2. The reason for this
change is that at the lower sampling densities, some of the
realizations of the experimental semivariogram appear
linear. Since the linear experimental semivariogram is fit
automatically with an exponential model, the values for the
model range and sill become unrealistically large. There-
fore, the large jump in Fig. 7 represents a breakdown in
the assumption of an exponential model. To illustrate this,
Fig. 8 shows the histograms of the nugget variance, range,
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and sill variance calculated from the 0.79 samples/km2

Monte Carlo simulation (110 samples). The median of the
range is 3.96 km, and the maximum value is greater than
2000 km, which is an unrealistic value for the simple reason
that it is greater than the spatial extent of the dataset. The
median of the sill variance is 5314m2/s2 but the maximum
sill variance is approximately 356,000m2/s2 which is
similarly unrealistic because it is greater than the popula-
tion variance of the data. These outliers are not valid
models and indicate that while most of the realizations with
0.79 samples/km2 are reasonable, some appear linear and
should not be fit with an exponential semivariogram
model.

4. Discussion

Although geologic units are often used for mapping
sediment shear-wave velocities, geologic units may not be
appropriate shear-wave velocity boundaries because dif-
ferent geologic units can contain sediments with similar
shear-wave velocities. Fig. 9 shows the probability density
functions of shear-wave velocity for each geologic unit
from the SCPT study of Holzer et al. [26]. This figure
shows that the distributions are broad and there is
significant overlap between different geologic units. Most
shear-wave velocity measurements could likely be located
within more than one geologic unit and the geologic unit
does not accurately determine the shear-wave velocity.

The range in the horizontal correlation structure of the
sediments studied in this paper is approximately two orders
of magnitude larger than most previous studies that use
geostatistical methods to model soil properties. The
physical properties measured in the previous studies are
effectively point data (such as tip resistance or undrained
shear strength) whereas we use the shear-wave velocity
averaged over a large volume of sediment. The spatial
coverage and separation distance of the data in this study is
not capable of resolving correlations at the smaller scales of
these previous studies. For the Vs(10) data, we find that the
variance continues to increase at separation distances up to
approximately 4 km. We do not find that the variance of
Vs(30) flattens at any distance measured. This suggests that
it may be fractal. However, the spacing between SASW
measurements does not provide sufficient data to constrain
the model below 1 km or beyond about 5 km. The Monte
Carlo simulation described above shows that this type of
semivariogram could be produced from an exponential
distribution of velocity that was not sampled densely
enough. Therefore, a more densely spaced dataset would
provide more conclusive results.
The variance of Vs(30) is lower than Vs(10) at all

separation distances. This could be because Vs(30) is
inherently less variable than Vs(10) as a result of the larger
‘‘size’’ of the Vs(30) measurement. Alternatively, the Vs(30)
semivariogram may be less well constrained because there
are fewer measurements and the spatial coverage is less
continuous. If the latter were true and we had a more
extensive dataset of SASW measurements then the linear
shape of the Vs(30) semivariogram may become more
similar to the exponential shape of the Vs(10) semivario-
gram.
Fig. 5 illustrates how geostatistical methods can be

used to produce a more detailed and accurate map of
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shear-wave velocity. Current site effects maps are limited to
the range of Vs(30) values that define each NEHRP site
class (180m/s or greater for each site class) and by
previously mapped boundaries based on geologic units.
As more data are collected, researchers are finding that
geologic boundaries are inappropriate site class boundaries
[15]. Site class boundaries derived from a map of kriged
Vs(30) measurements should be more reliable because it is
based on the empirical velocity structure of the sediments
rather than mapped geologic units.

Although we have enough measurements of Vs(10) to
map continuously, it is not a reliable measurement of site
response. It would therefore be useful if we could relate the
Vs(10) values to Vs(30). At each Vs(30) measurement
location, we estimate the Vs(10) using ordinary kriging.
Fig. 10 plots Vs(10) against Vs(30). The figure includes the
linear model with the associated 95% confidence interval
(solid lines) and the 95% tolerance interval (dashed lines).
The intervals show that Vs(10) is weakly correlated to
Vs(30) and that Vs(10) can only predict Vs(30) to within
about 70m/s. Unfortunately, the magnitude of the error in
predicting Vs(30) from Vs(10) is too large to produce
meaningful maps of site response.

5. Conclusions

The SCPT Vs(10) measurements and SASW Vs(30)
measurements each have a different function in this paper.
Previous studies have correlated Vs(30) with ground
motion amplification factors. However, measurements of
Vs(30) are typically expensive and time consuming to
collect. The Vs(30) measurements discussed herein are
sparse and we are not able to determine an appropriate
semivariogram model especially at small and large separa-
tion distances. The Vs(10) data are important because the
sample locations are densely spaced, resulting in a clear
characterization of the shear-wave velocity correlation
structure. Because Vs(30) is the same physical property as
Vs(10) but extended to greater depths, we expect that
Vs(30) should exhibit a similar correlation structure as
Vs(10). Fig. 4 shows that the correlation of Vs(30) is greater
than that of Vs(10) at all separation distances and appears
to be linear while the Vs(10) correlation structure is
exponential. This could be due to the difference in
sampling density, because the characteristic size of the
measurements are different, or simply because the correla-
tion structure of the sediments at greater depths is
different.
Continuous mapping of Vs(30) would help identify

localized areas of high seismic risk in urbanized areas.
The soil properties can change the amplitude and
frequency content of ground motions over short horizontal
distances which can cause severe damage to structures
adjacent to undamaged areas. This study demonstrates that
shear-wave velocity of the upper 10m of soil exhibit
horizontal correlations at distances of up to 4 km. Since
shallower measurements of shear-wave velocity cannot
accurately predict Vs(30), Vs(30) must be measured
directly.
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