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Abstract 1 
Understanding the spatiotemporal distribution of commercial vehicles is essential for facilitating 2 

strategic pavement design, freight planning, and policy making. Hence, transportation agencies 3 
have been increasingly interested in collecting truck body configuration data due to its strong 4 
association with industries and freight commodities, to better understand their distinct operational 5 
characteristics and impacts on infrastructure and the environment. The rapid advancement of Light 6 
Detection and Ranging (LiDAR) technology has facilitated the development of non-intrusive 7 

detection solutions that are able to accurately classify truck body types in detail. This paper 8 
proposes a new truck classification method using a LiDAR sensor oriented to provide a wide field-9 
of-view of roadways. In order to enrich the sparse point cloud obtained from the sensor, point 10 
clouds originating from the same truck across consecutive frames were grouped and combined 11 
using a two-stage vehicle reconstruction framework to generate a dense three-dimensional (3D) 12 

point cloud representation of each truck. Subsequently, PointNet – a deep representation learning 13 
algorithm – was adopted to train the classification model from reconstructed point clouds. The 14 
model utilizes low-level features extracted from the 3D point clouds and detects key features 15 

associated with each truck class. Finally, model ensemble techniques were explored to reduce the 16 

generalization error by averaging the results of seven PointNet models and further enhancing the 17 
overall model performance. The optimal number of models in the ensemble was determined 18 
through a comprehensive sensitivity analysis with the consideration of the average correct 19 

classification rate (CCR), the variability of the prediction results, and the computation efficiency. 20 
The developed model is capable of distinguishing passenger vehicles and 29 different truck body 21 

configurations with an average CCR of 83 percent. The average correct classification rate of the 22 
developed method on the test dataset was 90 percent for trucks pulling a large trailer(s).  23 

Keywords: Light Detection and Ranging (LiDAR), Classification, Deep representation learning, 24 

PointNet, Model Ensemble 25 

 26 

 27 

  28 
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1. Introduction 1 
Data from the Bureau of Transportation Statistics (BTS) shows that transportation 2 

accounted for approximately 8-9 percent of the Gross Domestic Product (GDP)  in the U.S. from 3 
2010 to 2018 (1), where trucks were the primary contributor that accounted for  80-90 percent 4 
across all modes (2). To facilitate sustained economic growth, investments in the highway 5 
infrastructure need to adequately accommodate future growth, which requires strategic freight 6 
infrastructure planning, effective freight forecasting, and informed policy making (3). 7 

Transportation agencies demand high-quality industry-affiliated truck classification data for 8 
pavement design (4), truck activity forecasts (5), and to assess the effectiveness of the freight-9 
related policies (6). Existing Weigh-In-Motion (WIM) and Automatic Vehicle Classifier (AVC) 10 
systems classify vehicles based on the Federal Highway Administration (FHWA) vehicle 11 
classification scheme (7), which categorizes vehicles according to their axle configurations. 12 

However, commodity and industry affiliations cannot be effectively inferred from truck axle 13 
configuration. Hernandez et al. (8) explored the integration of WIM and inductive loop signature 14 
data to classify trucks based on their body configurations, which are associated with the 15 

commodity carried and operational characteristics. Although inductive loop sensors are widely 16 

deployed in many urban and interstate highway corridors in the US, their coverage remains limited 17 
along rural highway corridors that also contribute significantly to the economy (8). However, the 18 
implementation of pavement intrusive sensors across the extensive rural highway network is 19 

impractical. Therefore, researchers have begun to investigate non-intrusive solutions for collecting 20 
vehicle classification data. The rapid advancement of Light Detection and Ranging (LiDAR) 21 

technology in recent years provides further opportunities for non-pavement intrusive alternatives 22 
to collect detailed vehicle classification data. LiDAR-based vehicle classification was first 23 
investigated in the early 2000s (9, 10). Early laser sensors scanned the cross-section of the roadway 24 

by taking several range measurements as vehicles traversed the scanning area. Overhead 25 

mountings were mostly adopted to capture detailed features from each passing vehicle, (9–11). 26 
However, the real-world implementation of such systems is limited by infrastructure availability. 27 
Lee and Coifman (13) made an early attempt to develop a side-fire laser scanner for vehicle 28 

classification, where a probe vehicle equipped with two laser scanners was parked by the side of a 29 
highway. Both laser scanners were mounted side-by-side to scan the road section vertically. The 30 

data points obtained from vehicles were grouped into vehicle clusters and eight high-level features 31 
were directly extracted to portray the physical characteristics of the vehicle from the vehicle 32 
clusters. A decision tree classifier was then used to assign the high-level feature vectors into six 33 

distinct classes refined from a length-based classification scheme. However, such laser scanners 34 
have an extremely narrow field-of-view, since each laser only scans along a vertical slice across 35 
the roadway. When the laser detection zone is occupied by the vehicle traveling at the outermost 36 

lane (closest to the shoulder), adjacent vehicles traveling on the corresponding inner lanes will be 37 

completely occluded, which could result in significant information loss from other travel lanes. In 38 
addition, researcher also explored using low-cost single-beam side-fire LiDAR to get truck body 39 
information. Asborno et al. grouped the raw distance measurements from the LiDAR sensor over time to 40 
build vehicle signatures and adopted Bayesian combined predictor to classify trucks based on their 41 
aggregated body type classes (12). The roadside setup of the LiDAR sensors has been proved to be a cost-42 
efficient and feasible solution for collecting classification data. However, neither the laser scanner nor the 43 
single-beam LiDAR sensor is able to provide detailed vehicle profile, which limited the classification 44 
accuracy and the total number of vehicles that can be classified. 45 
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Further advances in vehicle classification research accompanied the advent of LiDAR systems 1 
with rotating sensor arrays.  These units are typically equipped with 16 or more lasers mounted on 2 

a rotating platform that is designed to capture a 3D point cloud representation of the environment. 3 
Sahin et al. (14) deployed this advanced LiDAR sensor unit in a vertical orientation to classify 4 
specific truck trailer configurations in detail. The vertical orientation of the LiDAR sensor allowed 5 
them to directly obtain a denser representation of each vehicle object compared to a horizontal 6 
orientation (Figure 1).  7 

 8 

Figure 1 Illustration of LiDAR Orientation (13) 9 

However, the vertical scan limited the horizontal field-of-view of the LiDAR to 45 degrees which 10 
is insufficient to capture entire trucks within a single frame. This was addressed by merging 11 

multiple frames of a detected vehicle to construct a full 3D profile. The 3D truck profile was 12 
subsequently divided into six equal-sized rectangular voxels (volumetric pixels), and high-level 13 

features representing physical characteristics of different trailer types were extracted from them. 14 
Their model was able to classify 10 different trailers with accuracies ranging from 85 percent to 15 

98 percent. The basic assumption of their method was that each truck traverses the LiDAR 16 
detection zone (LDZ) with a constant speed. Consequently, the speed changes of the detected 17 

vehicle could degrade the performance of their classification.  In addition, due to the limited 18 
horizontal field-of-view associated with the vertical orientation of the sensor, this approach would 19 
experience similar occlusion limitations as that of Lee and Coifman (14). In order to obtain a wider 20 

LDZ, Wu et al. (16) adopted a horizontal orientation of the LiDAR sensor for vehicle classification. 21 
Unfortunately, the sparse point cloud representation retrieved from the horizontally oriented 22 
LiDAR gave insufficient information for detailed truck classification. Their method was only able 23 

to classify 8 types of vehicles, where some of the truck-related classes were not well-recognized 24 
in their test dataset (15). 25 

In summary, the vertical orientation of the LiDAR sensor provided a denser representation of each 26 
vehicle object while the field-of-view of the sensor was restricted. Meanwhile, the model 27 

performance could vary with traffic conditions due to the constant-speed assumption made in those 28 
methods (16, 17). Conversely, the horizontal orientation of the sensor broadens the LDZ, but such 29 

placement only captures a sparse point cloud for each vehicle object which gives insufficient 30 
information to classify trucks in detail. A dense representation of vehicle objects with a horizontal 31 
orientation of the LiDAR unit has not been explored in the literature, which is one of the major 32 
motivations of our study. From a classification method perspective, most of the studies extracted 33 
high-level features which describe the physical characteristics (e.g. vehicle height, vehicle length, 34 

vehicle middle drop, the point density of truck refrigeration unit, etc.) of each predetermined 35 
vehicle class from the regularized point cloud, such as 2D projections (9–11) and rectangular 36 
voxels (17), or directly from the clustered sparse point cloud (15). Subsequently, classic machine 37 
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learning algorithms were used to map high-level feature vectors to the predetermined vehicle 1 
classes. These methods treat the feature selection and classification process as two separate 2 

procedures, where the feature selection process is somehow independent of the classification 3 
algorithms. Hence, the optimality of the adopted features is unknown, which may limit the 4 
performance of the approach (17).  5 

This study investigated a new truck classification method using a LiDAR sensor array in a 6 

horizontal orientation, utilizing a reconstruction procedure that combines frames of sparse point 7 
clouds to generate a dense point cloud representation of vehicle objects to facilitate accurate truck 8 
classification, while preserving the panoramic LDZ. First, vehicle point clouds were extracted by 9 
removing the background and clustering the residual points into objects. Then, a two-stage vehicle 10 
point cloud reconstruction framework (18) was adopted to enrich the sparse point cloud obtained 11 

from the horizontally oriented sensor.  Objects associated with the same vehicle from consecutive 12 

frames were grouped and combined to generate a dense 3D point cloud representation of each 13 

vehicle. In contrast to previous studies, which used a classic machine learning framework, this 14 
research adopted the PointNet deep representation learning algorithm to train the classification 15 
model from the preprocessed point cloud data. The difference between representation learning and 16 
classic machine learning is illustrated in Figure 2. The algorithm extracted low-level features from 17 
the point clouds and identified critical features during the training process. Finally, two model 18 
ensemble techniques, simple model averaging and Bayesian model averaging, were explored to 19 
reduce the variability of model predictions for the test dataset and further enhance the model 20 

performance.  21 

 22 

Figure 2 Difference between Classic Machine Learning and Representation Learning (19) 23 

The remaining sections of this paper are organized as follows. The second section describes the 24 
data collection effort and the dataset used in this study. The third section presents the truck 25 
classification framework from the preprocessing step to the model training step. The fourth section 26 
discusses the classification results and compares the model with the latest LiDAR-based truck 27 

classification models from literature (17).  28 

 29 

2. Data Description 30 
2.1 Study Site Layout 31 

The data used in this study were collected from the entrance ramp to the San Onofre truck scale 32 
from the Southbound I-5 Freeway in Southern California (as shown in Figure 3). The LiDAR 33 
sensor is horizontally placed on the top of the control cabinet. The z-axis of the LiDAR sensor is 34 
aligned perpendicular to the truck flow direction. The yellow sector presented in Figure 3 35 

illustrates the approximated LiDAR Detection Zone (LDZ). Data under free flow and congested 36 
conditions were observed at the study site and included in the model development.  37 
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 1 

Figure 3 Layout of the Detection Site 2 

2.2 Data Collection Setup 3 

A video camera, an advanced loop detector card, and a Velodyne VLP-32c LiDAR unit were 4 

installed at the study site as shown in Figure 4. The lateral distance between the centroid of the 5 
LiDAR sensor and the adjacent traffic lane is approximately 6 meters. All three sensors were 6 

connected to a solid-state field processing unit. The video camera and loop detector were used to 7 
establish data groundtruth. The Velodyne VLP-32c sensor has 32 infra-red lasers paired with infra-8 
red detectors mounted on a motorized rotating platform to provide distance measurement between 9 

the sensor and objects (13).  10 

The LiDAR was configured to scan the surroundings at a frequency of 10 rotations per second and 11 

180-degree LDZ, with each rotation generating a single 3D point cloud frame. The LiDAR sensor 12 
was horizontally mounted on a platform attached to the roadside pole of an existing traffic control 13 
cabinet.  14 

 15 

Figure 4 System Setup 16 
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The LiDAR sensor was mounted 2.05 meters above the ground plane and the top laser channel 1 
elevation angle was 15 degrees (Figure 5), which allowed the sensor to capture both the top and 2 

side view of passing vehicles. As shown in Figure 5, the z-axis is perpendicular to the direction of 3 
the traffic and the laser array rotates about the z-axis. 4 

 5 

Figure 5 Illustration of the LiDAR Sensor 6 

A sample of raw point cloud data frame showing a vehicle entering the truck scale within the LDZ 7 
is presented in Figure 6. 8 

 9 

Figure 6 The Raw Point Cloud of the Detection region 10 

 11 

2.3 Data Description 12 

The video data from the camera, inductive loop signature data from the loop detector, and point 13 

cloud data from the LiDAR sensor, were collected simultaneously. The data were collected from 14 
multiple time periods across 7 days between July 18th, 2019, and July 31st, 2019. Overall, point 15 
clouds associated with  7,655 vehicles were labeled, representing 29 different types of trucks 16 

(including a class labeled as “Other,” which represented trucks not belonging to any of the classes 17 
defined in Figure 7) as well as passenger vehicles (Figure 7). 70 percent of the data were used for 18 
training while the remaining 30 percent were reserved for testing. In addition, a temporally 19 
independent test dataset was collected on 8/1/2019. This dataset was continuously collected from 20 

8:20 in the morning to 20:00 in the evening. During this data collection period, 1,472 vehicle 21 
records were captured by loop detectors and have been labeled via the corresponding video images 22 
while 1,489 vehicle objects were detected by the LiDAR sensor using our algorithm. This temporal 23 
continuous and independent test set was used to validate the truck classification method from the 24 
preprocessing step to the classification algorithm. 25 



8 
 

 1 

Figure 7 Illustration of Vehicle Body Configuration used in the study (Note: SU: Single-Unit Trucks, Semi: 2 
Tractors pulling Semi-Trailer, Multi: Tractors pulling Multiple Trailers. Tank Tank: Tank tractor pulling a 3 
tank trailer) 4 

 5 

2.4 Semi-automatic Data Labeling Method 6 

Data labeling has been considered a critical but labor-intensive process in many existing studies 7 
on vehicle classification. Conventionally, the data labeling process requires a large amount of time 8 
to visually verify the body configuration of each detected vehicle through images from the video 9 

camera, and then to manually record the corresponding vehicle characteristics. In this study, a 10 
semi-automatic data labeling strategy was developed to improve the efficiency of the data labeling 11 
process and further enrich the training dataset. The semi-automatic data labeling method using an 12 
inductive loop sensor was intended as an efficient data labeling mechanism to train the LiDAR-13 
based classification model. Therefore, inductive loop sensors are not required for the LiDAR-14 
based model implementation and calibration. 15 
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The overall semi-automatic data labeling process is illustrated in Figure 8. First, the vehicle records 1 
from the three data sources were synchronized and aligned. When a vehicle triggered the inductive 2 

loop sensor, its corresponding images from the video camera were cropped based on the 3 

synchronized timestamp. A time window with a range of ± 0.1 seconds around the time instance 4 
that the vehicle hit the loop sensor was created. The vehicle point cloud object which contained 5 
frames belonging to the time window was subsequently aligned with the vehicle image. Then, this 6 
study adopted a signature-based truck classification model to pre-label vehicle images (20). 7 

Afterwards, misclassified data were manually corrected from visual validation of the pre-labeled 8 
dataset. Finally, the labels were applied to corresponding point clouds as the data sources were 9 
aligned. The signature-based truck classification model had an overall 72.4 percent accuracy (20). 10 
Therefore, the labels of only around 30 percent of vehicles needed to be corrected, which 11 
significantly reduced the workload of data processing. This semi-automatic data labeling strategy 12 

greatly accelerated the labeling process for emerging sensors (Sensor 2 in Figure 8) with the 13 
support of the existing technology (Sensor 1 in Figure 8). 14 

 15 

Figure 8 Semi-automatic Data Labeling Framework 16 

 17 

 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 
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3. Methodology 1 
This section details the data processing procedure and the classification framework developed in 2 

this study. The overall workflow of our truck classification method is shown in Figure 9. 3 

 4 

Figure 9 The Workflow of the New LiDAR-based Truck Classification Method 5 

 6 

 7 

3.1 Data preprocessing 8 

3.1.1 Background Subtraction and Object Detection 9 

A large set of points in the raw point cloud was associated with static objects, e.g. ground, buildings. 10 
These background points were required to be subtracted from the raw point cloud to reduce the 11 
data processing time and improve the accuracy of the proposed classification method. 12 

A point cloud background subtraction method was developed based on spatial occupancy. The 13 
algorithm started with aggregating the point cloud data over an initiation period 𝑡. The points 14 

originating from each of the 32 laser channels of the LiDAR were distributed on a conical surface, 15 
with the LiDAR unit being the apex. The elevation angles of the channels are listed below: 16 
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Table 1 Laser Channel Angles  1 

ID Elevation Angles (deg) ID Elevation Angles (deg) 

0 15 16 -1.667 

1 10.3333 17 -2 

2 7 18 -2.333 

3 4.667 19 -2.667 

4 3.333 20 -3 

5 2.333 21 -3.333 

6 1.667 22 -3.667 

7 1.333 23 -4 

8 1 24 -4.667 

9 0.667 25 -5.333 

10 0.333 26 -6.148 

11 0 27 -7.254 

12 -0.333 28 -8.843 

13 -0.667 29 -11.31 

14 -1 30 -15.639 

15 -1.333 31 -25 

 2 

The cumulative number of points within each cell on the conical surface was subsequently counted, 3 

defined by a horizontal angular resolution 𝜃 , the channel number 𝐼 , and the radical distance 4 

resolution 𝑟. The cells that were occupied by the background objects were deemed to have more 5 

points, which was identified using a threshold 𝛿. These background cells were used as a mask to 6 
filter out background points in other frames. The initiation period 𝑡 should be long enough to 7 

accumulate enough points in the environment, but not too long to waste computational resources. 8 
Smaller point/range resolution values led to smaller cells, which depicted the background with 9 
better resolution. However, too-small cells led to a much longer initialization time and higher 10 

computational complexity. The horizontal angular resolution of the LiDAR sensor, which is the 11 
angular difference between two adjacent points on the same channel, is also an important factor to 12 

consider when choosing 𝜃. The Lidar used in this study has an angular resolution of 0.2°. 𝜃 should 13 

be larger than 0.2° so that at least one point falls into each cell at each frame. 14 

The threshold 𝛿 should be tuned based on all other parameters. The following parameters were 15 
used in this study: 𝑡 = 60𝑠𝑒𝑐 , 𝜃 = 1°, 𝑟 = 0.1𝑚, 𝛿 = 10. The background subtraction result of 16 
frame 126,010 on July 19, 2019, is illustrated in Figure 10, where red represents background and 17 

blue represents foreground.  18 

 19 

Figure 10 Background Subtraction Result (Red: background; Blue: foreground) 20 
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To effectively identify individual vehicles, the foreground points were partitioned based on their 1 
similarity.  Density-based spatial clustering of applications with noise (DBSCAN) is a popular 2 

clustering algorithm that generally works well in existing point cloud studies (21). The algorithm 3 
groups points based on their proximity. It also marks isolated points as outliers, which makes the 4 
algorithm less sensitive to background points that were not removed from the previous step. The 5 
algorithm takes two parameters: 6 

• minPoints: the minimum number of points to form a cluster. Its value should be close to 7 
the point cloud size of a typical vehicle in the dataset. 8 

•  eps: the searching radius to form a cluster. If eps is too small, a large proportion of the 9 
points will not be clustered; whereas for a large eps, most of the points will be allocated to 10 

the same cluster.  11 

Tuning DBSCAN parameters is a sophisticated process. In addition to the heuristic (21) offered 12 

by the authors of the DBSCAN, researchers have proposed many different approaches (e.g. )to 13 

determine the optimal parameters. To find optimal parameters and to conduct sensitivity analysis 14 

for DBSCAN are beyond the scope of our research. Instead, we estimate these parameters 15 

following engineering heuristics. We acknowledge that the resulted parameters are sub-optimal 16 

but are adequate for the vehicle classification task. 17 

For the test dataset, 𝑒𝑝𝑠 should be slightly smaller than jam density spacing such that two adjacent 18 

stopped vehicles are not clustered as the same vehicle. However, if 𝑒𝑝𝑠 is too large, the truck’s 19 

cabin could be identified as a separate object from the trailer. We chose 𝑒𝑝𝑠 to be 1.5 meters. The 20 

physical meaning of eps is the maximum distance between two points to be considered as one 21 

cluster. It is chosen to be slightly smaller than the jam density such that even in completely stopped 22 

traffic, two adjacent vehicles are not grouped into one cluster. For this reason, it does not need to 23 

be tuned under different traffic conditions. The other parameter 𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠 is estimated based on 24 

the size of a typical truck. The value is chosen such that a typical semi-truck can be detected when 25 

it is on the off-ramp (measured from the tip of the offramp divider), which is around 60 meters 26 

from the sensor. Below is the process to estimate the number of points captured by LiDAR when 27 

the distance between the truck’s front face and LiDAR is 𝑑. The scenario is illustrated in Figure 28 

11 with a side view and top-down view,  29 

where 30 

𝑤- width of the truck 31 

ℎ- height of the truck 32 

𝜙1- angle of elevation from the LiDAR to the truck 33 

𝜙2- angle of depression from the LiDAR to the truck 34 

𝜃- beam width of the truck viewed by the LiDAR 35 

𝑙- mounting height of the LiDAR 36 

 37 
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 1 

Figure 11 Detection Illustration 2 

From the top-down view, 3 

𝑎 = 𝜌𝜃 ≈
𝜌𝑤

𝑑
(1) 4 

Where  5 

 𝜌- azimuth resolution of the sensor, represented as the number of points within a unit angle. 6 

𝛼- number of points per laser channel. 7 

From the side view, 8 

𝜙1 = arctan (
ℎ − 𝑙

𝑑
) (2) 9 

𝜙2 = arctan (
𝑙

𝑑
) (3) 10 

For the VLP-32c LiDAR with a 10Hz sampling rate, 𝜌 = 10 points per degree. The mounting 11 

height of the LiDAR 𝑙 = 2.05𝑚. The size limit of trucks defined by the California Department of 12 

Transportation (Caltrans) 1  is used for the calculation, where 𝑤 = 2.59𝑚 (8.5 𝑓𝑒𝑒𝑡) ,  ℎ =13 

4.26𝑚 (14 𝑓𝑒𝑒𝑡). Then, 𝜙1 = 2.11°, 𝜙2 = 1.96°. Based on 𝜙1,𝜙2, and the elevation angles of 14 

the laser channels in Table 1, the number of laser channels that cover the truck, 𝛽 = 10. The total 15 

number of points captured by the Lidar from the truck’s front face at distance 𝑑 = 60𝑚 is thus, 16 

 
1 https://dot.ca.gov/programs/traffic-operations/legal-truck-access/restrict-process 

Truck LiDAR 
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𝑁 = 𝛼 ⋅ 𝛽 ≈
𝛽𝜌𝑤

𝑑
= 247 (4) 1 

To accommodate trucks that are slightly smaller than the typical size. We choose 𝑚𝑖𝑛𝑃𝑜𝑖𝑛𝑡𝑠 to 2 

be 200, which is slightly smaller than 𝑁. 3 

The object detection result of frame 126,010 on July 19, 2019, is illustrated in Figure 10. The 4 
outliers are represented by blue points, while objects are represented in other distinct colors. 5 

 6 

Figure 12 Object Detection Result (Blue: outliers; Green: vehicle 1; Yellow: vehicle 2) 7 

 8 

3.1.2 Data Association and Truck Point Cloud Reconstruction 9 

More detailed truck point clouds for truck classification purposes were reconstructed using the 10 

framework proposed by Allu et al. (18). In this approach, the truck body point clouds were 11 
reconstructed in two steps. Each scan of the side-fire Lidar sensor captured all the truck bodies 12 

presented in the LDZ either partially or completely (side views). For example, Figure 12 presents 13 

one scan of the LiDAR sensor after object detection. This scan captured the front portion of vehicle 14 

1 and the full side view of vehicle 2. The scan obtained rich information of the front portion of the 15 
truck when it entered the LDZ, the side of the truck when it was in the midsection part of the LDZ, 16 

and the rear portion of the vehicle when it was leaving the LDZ. A more detailed truck body can 17 
be reconstructed by aggregating all the point clouds captured while traversing the LDZ. The 18 
objective of the first step was to identify and group the point clouds of the same truck from all the 19 

LiDAR scans during its traversal through the LDZ. In the proposed framework, the point clouds 20 

of the same trucks in two successive LiDAR scans were mapped using a combined strategy of 21 
Kalman Filter-based tracking and Hungarian Algorithm-based data association (23). The 22 
centroid’s location of the minimum oriented bounding box of the ground projected truck point 23 
cloud data was used as the state variable for tracking purposes.  24 

Once the point clouds corresponding to the same truck were grouped, the first 15 percent and the 25 
last 50 percent of all the point clouds were treated as redundant frames and excluded from the 26 

vehicle reconstruction process to improve the computation efficiency. This threshold was 27 
determined through a heuristic process with an objective function formulated as minimizing the 28 
number of statistical outlines of the reconstructed point cloud. As Figure 13 shows, the information 29 
within the vehicle point clouds represented in the green box overlaps the information captured in 30 
the leading and trailing point clouds represented in the red circles. For example, the red circle on 31 

the left-hand side presents the tractor unit of this Low Boy Platform which has been effectively 32 
captured by the point clouds within the green box. Thus, both the leading and trailing redundant 33 
point clouds were excluded without loss of reconstruction detail.  34 
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 1 

Figure 13 Illustration of Point Cloud Reconstruction 2 

Subsequently, more detailed truck body point clouds were reconstructed in the second step by 3 
globally aligning the selected point clouds to one of the truck’s midsection point clouds as 4 
reference. This global alignment was accomplished by initially computing sequential pairwise 5 

transformation matrices using a Random Sample Consensus (RANSAC)-based coarse registration 6 

strategy. These coarse transformation matrices were further fine-tuned using the Iterative Closest 7 
Point (ICP) algorithm. The fine-tuned pairwise transformation matrices along with the 8 
corresponding point clouds were globally aligned using a pose-graph-based Simultaneous 9 

Localization and Mapping (SLAM) optimization algorithm as proposed in Choi et al (24). The 10 
two-staged proposed framework is presented in Figure 14 below.  The results of the object 11 

detection and vehicle reconstruction by sample truck body types are presented in Figure 15. 12 

 13 
Figure 14 Point Cloud Reconstruction Framework (18) 14 
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 1 

Figure 15 Object Detection and Vehicle Reconstruction Results 2 

 3 

3.2 PointNet-based Truck Classification Model 4 
3.2.1 The Deep Representation Learning Algorithm: PointNet 5 

The reconstructed 3D point cloud is an irregular type of geometric data structure, where each point 6 

is represented by its cartesian coordinates (𝑥, 𝑦, 𝑧). A conventional convolution neural network 7 
requires a regular data format such as image pixels and 3D voxels as inputs. Therefore, the point 8 

cloud cannot be directly fed into a typical convolutional architecture. Point clouds are generally 9 
transformed to other data types for classification purposes. In the literature, transportation 10 
researchers have extracted high-level physical characteristics from either raw points (15) or 11 

transformed point clouds, e.g., 2D images (9–11, 16) or 3D voxels (17) to solve the truck 12 
classification problem. Finally, these high-level features are used as inputs to classic machine 13 
learning algorithms. However, such data transformations and aggregations can introduce 14 
quantization error and further conceal the natural invariances of the point cloud data (25), which 15 

affects the accuracy and the variety of types of a truck that can be classified. In order to 16 

accommodate the intrinsic characteristics of the point cloud data structure for improving truck 17 

classification accuracy, a novel deep neural network architecture – PointNet (25) was adopted in 18 
this research. This neural network architecture can directly incorporate point clouds as inputs and 19 
detect critical features for classification from the raw inputs. However, due to the limitation of the 20 
“black box” method, the specific key features were not identified in this paper. The architecture of 21 
PointNet is shown in Figure 16. 22 



17 
 

 1 

Figure 16 PointNet Architecture (25)  2 

PointNet benefits primarily from two components of its architecture: the shared multi-layer 3 

perceptron (MLP) and the max-pooling function. The shared MLP is constructed using 1D 4 
convolution with a kernel size of 1, which provides a dense connection across points with the 5 
shared parameters (weight and bias terms). This means that the spatial encoding of each point can 6 

be learned by the shared MLP. A max-pooling layer is applied as a symmetric function to gather 7 
information from all the points, in order to resolve the invariance to permutation issue of the point 8 
cloud data structure. A function 𝑓(𝑥1, 𝑥2, … , 𝑥𝑁)  of N variables are invariant under random 9 

permutation if the function value does not change over the permutation of its variables. The generic 10 
representation of symmetric functions can be written as: 11 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑁) = 𝑓(𝑥𝑁, 𝑥2, … , 𝑥1) = 𝑓(𝑥2, 𝑥1, … , 𝑥𝑁) = ⋯ (5) 12 

The max-pooling function extracts the global critical feature of each truck point cloud and the 13 

overall model structure is able to learn the skeleton of each object. PointNet ideally fits the task of 14 

truck body classification since the truck body types are generally invariant and distinct in shape. 15 

 16 

3.2.2 PointNet for Truck Classification Model 17 

In this research, the PointNet architecture was adopted to classify truck body types in detail. Prior 18 
to the training process, the reconstructed point cloud needed to be regularized. First, the variable 19 

number of data points in the reconstructed point clouds was uniformly downsampled to a common 20 
number of points, as input into the PointNet. The downsampling process contained three steps. 21 
First, a regular voxel grid with a resolution of 5 percent was generated for each reconstructed truck 22 
point cloud, where those points were bucketed into voxels. Second, each occupied voxel was 23 
represented by a single point, which was calculated by taking the average of all points within each 24 

voxel grid. Finally, 1024 points suggested by Qi et al (25) were randomly sampled from the 25 

uniformly downsampled point cloud. A truck point cloud 𝑘 can be written as a 3D point set, 𝑝𝑘 =26 

{(𝑥𝑗
𝑘, 𝑦𝑗

𝑘, 𝑧𝑗
𝑘)|𝑗 = 1, … , 𝑛} ,where n = 1024 in this study. After the downsampling process, the 27 

centroid of the truck point cloud 𝑘 was moved to the (0,0,0) point in the coordinate and was 28 

represented as 𝑝𝑘𝑐 == {(𝑥𝑗
𝑘𝑐, 𝑦

𝑗
𝑘𝑐, 𝑧𝑗

𝑘𝑐)|𝑗 = 1, … , 𝑛}. The operation along the x axis is presented in 29 

Equation 6, where y and z follow the same calculation. 30 

𝑥𝑗
𝑘𝑐 = 𝑥𝑗

𝑘 −
𝑚𝑎𝑥{𝑥𝑗

𝑘} − 𝑚𝑖𝑛{𝑥𝑗
𝑘}

2
(6) 31 
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Then, the truck point cloud 𝑘  was normalized to a unit sphere and denoted by 𝑝𝑘𝑐𝑛 =1 

{(𝑥𝑗
𝑘𝑐𝑠, 𝑦

𝑗
𝑘𝑐𝑠, 𝑧𝑗

𝑘𝑐𝑠)|𝑗 = 1, … , 𝑛}. The operation along the x-axis is presented in Equation 7, where y 2 

and z follow the same calculation. 3 

𝑥𝑗
𝑘𝑐𝑠 =

𝑥𝑗
𝑘𝑐

𝑚𝑎𝑥{𝑥𝑗
𝑘𝑐}

(7) 4 

The point cloud preparation step is shown in Figure 17. Here, a reconstructed point cloud of an 5 
auto transport with a conventional tractor is taken as an example. 6 

 7 

 8 

Figure 17 Point Cloud Preprocessing 9 

Two data augmentation methods were applied during the model training process (25). First, each 10 

training instance was randomly rotated along the z-axis. Second, each point of the truck point cloud 11 
was jittered with a Gaussian noise which followed a 𝑁(0, 0.02) distribution to increase the diversity 12 
of the training instances. The data augmentation process was used to ensure that the model learned 13 
the shape of the vehicle point cloud which was invariant to its position and orientation in the 14 
coordinate system. For instance, the point generated from the lasers may distribute differently for 15 

a vehicle traveling different lanes. The sample jittering process imitates the vehicle point clouds 16 
located across various lanes on the roadway. The rotation process simulates truck lane changing 17 
behaviors and turning movements.  18 



19 
 

The truck classification model was trained on 5,364 reconstructed truck point clouds with 32 1 
synthetically modified data of every training instance via the aforementioned data augmentation 2 

method. This model was trained with an RTX 2080 super GPU and took approximately 3 hours to 3 
converge. The learning process of the truck classification model is presented in the learning curve 4 
(Figure 18). The model accuracy on both training and test datasets improved in a similar trend 5 
until 100 epochs. After this point, the model performance gradually plateaued on the test dataset 6 
but continued improving on the training dataset. The model converged after 250 epochs. 7 

 8 

Figure 18 Learning Curves 9 

 10 

3.3 Model Averaging 11 

A multiple layer structure with nonlinear activation functions on each layer provides deep neural 12 
networks with the theoretical ability to approximate any complex mapping function (19). However, 13 
deep neural network models generally suffer from high variance issues, where model performance 14 

varies significantly by dataset (26).  Hence, model averaging strategies were explored to reduce 15 
the model variance and further enhance the model performance. The simplest way to apply model 16 

averaging on deep neural networks is to train multiple deep neural networks with different initial 17 
values and have all the models cast their votes. In this study, two model averaging methods were 18 

explored, and are explained in the next subsection. 19 

3.3.1 Simple Model Averaging (SMA) 20 

Let 𝑚𝑎 = {𝑚1, 𝑚2, . . . , 𝑚𝑛}  denote n PointNet models trained with various initial values. 𝑐𝑏 21 

denotes the class labels. 𝑝(𝑐𝑏|𝑚𝑎) represents the probability that model 𝑚𝑎 made a prediction on 22 

class 𝑐𝑏. The equation of SMA is shown below. 23 

𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑐𝑏∈𝐶

∑ 𝑝(𝑐𝑏|𝑚𝑎)

𝑛

𝑎=1

(8) 24 

SMA assumes that 𝑚𝑎 produced an equal contribution to the final decision and gave the prediction 25 
results by averaging all the votes of the candidate models. 26 

 27 
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3.3.2 Bayesian Model Averaging (BMA) 1 

Unlike simple model averaging, which treats candidate models 𝑚𝑎  equally, Bayesian model 2 

averaging assign a prior probability, presenting the subjective credibility of the model predicting 3 
a certain class. The posterior probability derived from the candidate models was used as the final 4 

prediction score (27, 28). In the case of a class 𝑐 to be predicted based on training dataset 𝐷𝑡𝑟𝑎𝑖𝑛 5 

using 𝑛  PointNets with initial value drawn from a normal distribution, the Bayesian model 6 

averaging provides final predictions based on the law of total probability: 7 

𝑝(𝑐) = ∑ 𝑝(𝑐𝑏|𝑚𝑎)𝑝(𝑚𝑎|𝐷𝑡𝑟𝑎𝑖𝑛)

𝑛

𝑎=1

(9) 8 

𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑐𝑏∈𝐶

∑ 𝑝(𝑐𝑏|𝑚𝑎)𝑝(𝑚𝑎|𝐷𝑡𝑟𝑎𝑖𝑛)

𝑛

𝑎=1

(10) 9 

As Equation 10 presents, the averaged model assigns higher weights to the candidate model which 10 
performs better for the specific class (Note that Equation 8-11 were applied to each individual 11 
vehicle record). The final prediction relies on the weighted average of the prediction scores. 12 
 13 

4. Results 14 
4.1 Evaluation Metrics 15 

There are several evaluation metrics shown in Equations 11-14 that can be used to assess the 16 

performance of classification models.  17 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(11) 18 

 19 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(12) 20 

 21 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(13) 22 

 23 

𝐹1𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
(14) 24 

where TP represents the true positive and TN represents the true negative.  25 

FP and FN indicate false positive and false negative, respectively.  26 

As shown in Equation 12, the recall value for each individual class depicts the percentage of 27 

vehicles in a certain class that is correctly classified. This value is also commonly referred to as 28 
the correct classification rate (CCR) in vehicle classification research (15, 17, 29). The CCR was 29 
adopted to assess the model performance of each class. From an overall model perspective, the 30 

accuracy measurement summarizes the total number of vehicles that are correctly classified. 31 
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However, such measurement is biased towards the major classes, since it takes both TP and TN 1 
into consideration. For example, if most of the training instances in a majority class are correctly 2 

classified and the model barely recognized any instances in a minority class, the model will still 3 
be identified as an accurate model in terms of the accuracy measurement. Therefore, this study 4 
also considered metrics such as average CCR across all classes and F1, which does not involve 5 
class distribution in its calculation, to evaluate the overall model performance. 6 

 7 

4.2 Ensemble PointNet Results 8 

Ten PointNet models were trained with different initial values and the same model structure. 9 
Figure 19 shows the CCR of each class from Ten different models on the test dataset, and the 10 
number of test samples is presented in the bar plot. 11 

 12 

Figure 19 Model Variance on Test Dataset 13 

The same model structure yielded high variance in predicting certain classes. For instance, model 14 
5 obtained a CCR of 50 percent on predicting tractors with an end dump trailer, whereas model 9 15 
was able to achieve a CCR of 90 percent on predicting the same class. Conversely, model 1 16 
obtained a CCR of 78 percent for Auto transport with a pickup tractor. But the CCR for model 9 17 

on predicting the same class was only 72 percent. Figure 19 thus reveals the need for an ensemble 18 
model. Auto (Conventional) and Auto (pickup) distinguish the tractor units of auto transport trucks. 19 

“wTrailer” is used to designate a straight truck unit pulling a small trailer. “Other” represents all 20 
the truck types that do not fit the definition of the previous 29 classes. “Tank Tank” represents a 21 
tank tractor with a tank trailer, which specifically belongs to Class 14 in the California-modified 22 
FHWA scheme (30). 23 

In order to select the optimal number of ensembles under both SMA and BMA strategies, a 24 
sensitivity analysis was conducted using various combinations of ten PointNet models. Figure 20 25 
(a) presents the CCR distribution of the different number of model ensembles. For instance, the 26 
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first boxplot in Figure 20 (a) presents the results of 10 single PointNet models. The second boxplot 1 
considers all possible combinations for choosing 2 models to the ensemble at a time from 10 2 

PointNet without considering the order of each individual model. Figure 20 (a) shows that the 3 
variability of prediction results reduces as the ensemble size increases. In Figure 20 (b), the mean 4 
CCR reached the highest values at the ensemble size of 7 and the CCR variance gradually 5 
converged. Therefore, the optimal number of models within the ensemble is determined as 7 for 6 
the SMA ensemble strategy. 7 

 8 

(a)                                                                                        (b) 9 

Figure 20 Simple Averaging Model Selection 10 

Figure 21 presents the sensitivity analysis results on the BMA approach. According to the boxplots 11 
shown on the left-hand side, the variability of the model prediction results followed a reducing 12 
trend as the ensemble size increased. Figure 21 (b) shows that the elbow point was located at an 13 

ensemble size equal to 9 for both the CCR mean and variance values. Thus, the optimal number 14 
of ensembles for BMS is 10. 15 

 16 

(a)                                                                                        (b) 17 

Figure 21 Bayesian Ensemble Model Selection 18 

Results from both Figure 20 and Figure 21 indicate that both ensemble strategies are able to reduce 19 

the variability of the model results as well as improve the average CCR values over adopting only 20 

a single model. 21 

The results from SMA and BMA are presented in Table 2.  22 

Table 2 Model Comparison 23 

  

Ensemble 

Numbers 

Computation 

Time 

Average 

CCR 

Average F1 

Score 

Number of Class CCRs 

larger than SMA/BMA 

SMA 7 Around 21 hours 0.83 0.85 8 

BMA 10 Around 30 hours 0.81 0.83 3 

 24 



23 
 

The SMA model slightly outperforms the BMA model in terms of both CCR and F1 score values. 1 

In addition, the individual class-level CCR of SMA is superior to the BMA models on 8 different 2 

classes. The BMA is able to achieve a similar level of CCR and F1 values with 10 model ensembles 3 

which significantly compromised the computation efficiency, where the marginal costs of the 4 

ensemble model training are approximately 3 hours. The Bayesian-based approach relies on a 5 

reliable prior distribution to improve the model performance. With the limited data points that can 6 

be used for the prior distribution, the prior information may not be sufficiently useful to improve 7 

the overall model performance which could be a disadvantage of the BMS model. Therefore, with 8 

the consideration of average CCR and the computation time, the SMA strategy was suggested for 9 

the use of the truck classification model.  10 

Moreover, average F1 scores that are larger than the average CCR score indicate that the 11 

performance of the ensembled PointNet was not significantly biased towards the majority class 12 

since the minority class presented low variations in their body type design. Hence, the ensemble 13 

PointNet presents a promising result in solving real-world truck body type classification problems. 14 

A comparison between the CCR values in Table 3 and Table 4 shows that the model was less 15 

competent in predicting single-unit trucks, where the average CCR for single-unit vehicles was 77 16 

percent, while performance for trucks with trailers was 85 percent. The “Other” truck type in Table 17 

3 presents the other truck types with the body configuration of the truck pulling trailer(s) whereas 18 

the “Other” truck type in Table 4 represents the other single-unit trucks.19 
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Table 3 Confusion Matrix for trucks with trailer(s) (SMA Approach) 20 

Note: Cells labeled with red colors represent CCR lower than 0.80. The yellow cells highlight the correctly classified numbers. The grey cells point to the main causes of the misclassification. “Cov” is 21 
short for “Conventional”. “P/U/S” is short for “Pickup/Utility/Service Trucks”. ML stands for “Machine Learning”. *The test set used in (17) was different from the test set used in this study. 22 

Table 4 Confusion Matrix for Single-unit vehicles (SMA Approach) 23 

  Bobtail 
Cab-over Enclosed 
Van (SU) Concrete 

Conv Enclosed 
Van (SU) 

End Dump 
(SU) 

Low 
Loading 

Passenger 
Vehicle P/U/S  

Platform 
(SU) 

Stake 
Body (SU) 

Tank 
(SU) Other 

Test 
Counts* CCR 

Bobtail 87 0 0 0 0 0 0 0 1 0 0 0 88 0.99 

Cab-over Enclosed Van (SU) 0 95 0 1 0 1 0 0 0 0 0 0 97 0.98 

Concrete 0 0 9 0 0 0 0 0 1 1 0 1 12 0.75 

Conv Enclosed Van (SU) 0 1 0 289 0 1 0 1 0 0 0 0 292 0.99 

End Dump (SU) 0 2 0 1 14 1 0 1 1 0 0 0 20 0.70 

Low Loading 0 1 0 14 0 63 0 1 0 0 0 1 80 0.79 

Passenger Vehicle 0 0 0 0 0 1 14 2 0 0 0 0 17 0.82 

P/U/S 0 2 0 2 1 3 5 39 2 8 0 2 64 0.61 

Platform (SU) 1 1 0 2 1 0 0 4 90 4 0 3 106 0.85 

Stake Body (SU) 0 1 0 0 0 0 0 11 4 59 0 0 75 0.79 

Tank (SU) 0 0 0 0 1 0 0 0 1 3 5 0 10 0.50 

Other 0 0 0 1 0 1 0 3 3 2 1 9 20 0.45 

Note: Cells labeled with red colors represent CCR lower than 0.80. The yellow cells highlight the correctly classified numbers. The grey cells point to the main causes of the misclassification. “Cov” is 24 
short for “Conventional”. “P/U/S” is short for “Pickup/Utility/Service Trucks”. *The test set used in (17) was different from the test set used in this study. 25 

  
20ft 

Container 

40ft 

Container 

53ft 

Container 

Auto 

(Conv) 

Auto 

(Pickup) 

Drop 

Frame 

(Semi) 

Dry Bulk 

Transport  

Enclosed 

Van (Multi) 

Enclosed 

Van 

(Semi) 

End 

Dump 

(Semi) 

End 

Dump 

wTrailer 

P/U/S 

wTrailer 

Low Boy 

Platform 

Platform 

(Semi) 

Platform 

wTrailer 

Tank 

(Multi) 

Tank 

(Semi) 

Tank 

Tank 
Other 

Test 

Count* 
CCR 

Classic 

ML 

Approach 

(17) 

20ft Container 36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 37 0.97 0.96 

40ft Container 0 154 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 154 1.00 0.98 

53ft Container 0 0 99 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 1 106 0.93  - 

Auto (Conv) 0 0 0 35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 35 1.00 0.91 

Auto (Pickup) 0 0 0 1 14 0 0 0 0 0 0 3 0 0 0 0 0 0 0 18 0.78 - 

Drop Frame (Semi) 0 0 0 0 0 8 0 0 5 0 0 0 0 0 0 0 0 0 0 13 0.62 - 

Dry Bulk Transport 0 0 0 0 0 0 10 0 1 0 0 0 0 0 0 0 2 0 0 13 0.77 - 

Enclosed Van (Multi) 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 3 1.00 - 

Enclosed Van (Semi) 0 0 3 0 0 0 0 0 659 0 0 0 0 0 0 0 0 0 3 665 0.99 0.94 

End Dump (Semi) 0 0 0 0 0 0 0 0 0 18 0 0 0 0 0 0 2 0 0 20 0.90 0.85 

End Dump wTrailer 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 1 0 1 5 0.60  - 

P/U/S wTrailer 0 0 0 0 0 0 0 0 1 0 0 18 0 0 1 0 0 0 1 21 0.86  - 

Low Boy Platform 0 0 0 1 0 0 0 0 0 0 0 1 39 8 0 0 0 0 0 49 0.80  - 

Platform (Semi) 0 0 1 0 0 0 0 0 1 1 0 1 5 135 0 0 2 0 0 146 0.92 0.94 

Platform wTrailer 0 0 0 0 0 0 0 0 0 0 0 2 2 0 16 0 0 0 0 20 0.80  - 

Tank (Multi) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 4 1.00  - 

Tank (Semi) 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 69 0 1 71 0.97 0.97 

Tank Tank 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16 1 18 0.89  - 

Other 0 0 2 0 0 1 0 1 5 1 0 0 1 2 0 0 1 0 9 23 0.39  - 
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This was likely caused by the similarity across body types. For example, with different shapes of 1 
commodities or devices carried, single-unit platform trucks shared similar body configurations 2 

with pickup/utility/service trucks, single-unit stake body trucks, single-unit tank trucks, and single-3 
unit dump trucks. In addition, the “passenger vehicle” class included 4-tire small pickups which 4 
shared a similar profile with 6-tire utility pickups that were categorized in the 5 
“pickup/utility/service” class. 6 

Table 3 presents the confusion matrix of 18 truck body types, including tractors pulling semi-7 
trailers, tractors pulling a large single trailer, and tractors pulling multiple trailers. Body type 8 
confusion occurred primarily among auto transports, low boy platforms, and semi-trailer platform 9 
trucks. Similar to the issues shown in single-unit vehicles, the loading on the trailers was likely the 10 
cause of misclassifications across these three types. Classifying trucks in more detail naturally 11 

increases the chances of misclassification among similar body types. Therefore, balancing the total 12 

number of trucks that can be classified and high CCR values across all classes is critical. 13 

The latest LiDAR-based truck classification method adopted and compared several classic 14 
machine learning algorithms (17). In their approaches, the truck point clouds were first segmented 15 

into six large voxels. Then, relevant features were extracted by using the feature engineering 16 
approach. Those features were predefined before feeding them into the classifiers. Therefore, the 17 
features were yet to be optimized, which limited their models to classify trucks in detail. For 18 

example, essential features may be missed during the feature engineering process prior to the 19 
classifier training. On the contrary, the deep representation learning approach incorporates the 20 

feature selection process into the overall optimization scheme. The raw points were directly 21 
learned by the PointNet and essential features were identified during the learning process (19). The 22 
ensemble PointNet optimally selects the key features and learns the skeleton of each type of vehicle 23 

to classify various truck types accurately in high levels of detail. Furthermore, the ensemble 24 

strategies enhanced the generality of the PointNet and further improve the precision of predictions. 25 

The ensemble PointNet has also been tested under different traffic speed conditions. Since trucks 26 
pulling large trailers may generally travel at a slower speed than the single-unit vehicles or single-27 
unit vehicles pulling a small trailer, these two types of vehicles have been evaluated separately.  28 

Table 5 presents the classification accuracy across three different speed ranges. A Pearson’s Chi-29 
Square statistical test has been performed to verify the independence of classification accuracy 30 

across different speed ranges. As Table 7 presents, the p-values of 0.313 and 0.111 for the 31 
corresponding truck types showed the null hypothesis cannot be rejected at the significance level 32 
of 5 percent. Therefore, there is no significant difference in the classification results across speed 33 
values. 34 

Table 5 Classification Results under Different Speed Ranges 35 

Average Speed mph Truck pulling Large Trailers Single Unit Vehicle w/o a small trailer 

<20 0.96 (683) 0.84 (261) 

20 - 40 0.96 (637) 0.89 (632) 

40> - 0.83 (12) 
Note: the number in the bracket presents the sample size within each corresponding speed range 36 

The coefficient of variance of speeds was also calculated to describe the fluctuation of each 37 
vehicle's speed. Similarly, the classification accuracy across different speed fluctuation levels is 38 
presented in Table 6. The classification model preserves a high accuracy on predicting trucks even 39 
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if their speed changes significantly due to acceleration or deceleration as they traverse the LiDAR’s 1 
field of view. Thus, our model is superior to the latest classification model which performs 2 

reconstruction based on the assumption of constant vehicle speeds (17). The results of Pearson’s 3 
Chi-Square test shows that the model performance is independent of speed fluctuations (Table 7). 4 

Table 6 Classification Results under Different Speed Variance from each Individual Vehicle 5 

Coefficient of Variance of Speeds Truck with Large Trailers Single Unit Vehicle w/o a Trailer 

>0.8 (High Fluctuation) 1.00 (16) 1.00 (9) 

0.2-0.8 (Midian Fluctuation) 0.96 (1,095) 0.84 (122) 

< 0.2 (Low Fluctuation) 0.95 (1,260) 0.88 (774) 
Note: the number in the bracket presents the sample size within each corresponding range of coefficient of variance of speed. 6 

Table 7 p-values of Pearson's Chi-Square Test 7 

 Average Speed Speed Fluctuations 

Truck pulling Large Trailers 0.313 0.355 

Single Unit Vehicle w/o a small trailer 0.111 0.207 

 8 

Some of the minor failure cases of background subtraction have been observed in the test dataset 9 
and presented in Figure 22. For the truck point clouds shown in Figure 22, some points on the 10 

ground plane around the truck point clouds were not successfully eliminated in the background 11 
subtraction step. However, the ensemble PointNet demonstrated sufficient robustness to the noise 12 
data and was nonetheless able to correctly classify them.  13 

 14 

Figure 22 Minor Failure Cases of the Background Subtraction Algorithm 15 

4.3 Model Results on Temporal Independent Dataset 16 

In order to test the model’s ability on collecting truck classification counts, the developed classification 17 
model has been evaluated on a temporally independent dataset where the LiDAR, video, and loop data were 18 
collected simultaneously and continuously over approximately 12 hours. The video and loop data were used 19 
as ground truth to evaluate the performance of the LiDAR-based truck classification model. During the data 20 
collection period, there are 1,472 ground truth vehicles were recorded by inductive loops while 1,489 21 
vehicle objects were detected through the object detection and data association process.  4 (0.3 percent) 22 
vehicles were miss-detected, and 18 (1.2 percent) vehicles were over-counted by the LiDAR sensors. The 23 
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miss- and over-counted cases were primarily caused by the failure of the object detection algorithm due to 1 
the sparseness of the point cloud. Figure 23 presents the object detection results of a tank truck pulling a 2 
tank trailer. As Figure 23(a) shows, the points on the connector between the tractor and trailer were too 3 
sparse to be detected by the object detection algorithm in one of the point clouds associated with object x. 4 
In this case, the tractor and the trailer unit were separated into two different objects: Object x-1 and Object 5 
x-2. However, when the vehicle traveled to a certain position in the LDZ, more points located at the tractor-6 
trailer connector can be captured by the LiDAR sensor (Figure 23(c)), where the Object x was identified as 7 
the Object x-3. Therefore, ultimately, Object x was over-counted as three different objects (Object x-1, x-8 
2, and x-3) after the data preprocessing step. In the temporal independent test dataset, only 1 out of 8 dump 9 
trucks pulling a trailer presented the issue as such. 10 

 11 

Figure 23 Object Detection Error Case 1 (Overcounting) 12 

Figure 24 presents the object detection result of an auto transport truck. The gap between the tailer body 13 
caused the error of the object detection algorithm. The algorithm detected two objects in this frame and 14 
grouped them separately. However, each identified object that contained less than 15 frames was treated as 15 
noises in the preprocessing steps. The frame numbers of the noise objects were determined based on the 16 
vehicle speed within the LDZ. In the study, the diameter of the LDZ is around 50 meters. The LiDAR 17 
sensor rotated with a speed of 10 frames per second. Assuming the vehicle travels at a speed of 80 mph, at 18 
least 15 frames will be captured by the LiDAR sensor. Hence, the vehicle objects with less than 15 frames 19 
were discarded. This vehicle record was missed by the LiDAR detection algorithm due to the sparseness of 20 

its single frame. Such cases only account for 0.3 percent of the independent test dataset, and 3 percent 21 

within the auto transport trucks. 22 

 23 

Figure 24 Object Detection Error Case 2 (Miscounting)  24 

The average CCR and F1 scores for the temporal independent site were 0.85 and 0.83 respectively.  25 

 26 
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5. Conclusion, Discussion, and Future Works 1 
This research presented a novel LiDAR-based truck classification method through the 2 

implementation of a truck point cloud reconstruction framework that was able to retain a wide 3 
LDZ without compromising classification accuracy. The data used in the development of the 4 
model was collected from a horizontally-oriented multi-array 3D LiDAR sensor, which had the 5 
ability to capture a wide field of view of the roadway. In this case, even though vehicles traveling 6 
in the outermost lanes presented in front of the LiDAR sensor for a short period of time and 7 

occluded vehicles traveling in the corresponding inner lanes, the point cloud originating from those 8 
fully occluded vehicles could be retrieved from consecutive frames. The sparse point clouds from 9 
individual frames resulting from a low vertical resolution were enriched by aggregating multiple 10 
frames associated with the same truck. Subsequently, PointNet – a novel deep representation 11 
learning algorithm – was adopted to classify vehicles based on their detailed body types. PointNet 12 

successfully learned the basic characteristics of each truck class by selecting the critical features 13 
from each preprocessed point cloud. Finally, two model ensemble strategies, SMA and BMA, were 14 
explored to improve the generality of the model and to further enhance the model performance. A 15 

detailed sensitivity analysis was conducted to select the optimal number of model ensembles with 16 

the consideration of average CCR, prediction variability, and computation efficiency of the 17 
ensemble model. Our LiDAR-based truck classification model was tested on vehicles traveling in 18 
a variety of speed ranges including conditions with high-speed fluctuations. The performance of 19 

our model was not significantly affected by traffic conditions according to the statistical test results. 20 
A closer assessment of the reconstructed point cloud found that some points on the ground plane 21 

were not eliminated in the background subtraction step. However, the ensemble PointNet 22 
demonstrated sufficient resilience to the noise data and was still able to classify the affected 23 
vehicles correctly. Further, the model has also been evaluated on a temporally independent dataset. 24 

The vehicle counts obtained by the LiDAR sensor were compared to the vehicle counts obtained 25 

from the loop detector. Overall, 0.3 percent of vehicles were miss-detected, and the LiDAR sensor 26 
overcounted vehicles by 1.2 percent. These issues are primarily caused by the occasional 27 
occurrence of sparseness within an individual frame of the vehicle which results in the error of the 28 

object detection algorithm and subsequently leads to misassignment in the data association step. 29 
However, such an issue only accounted for less than 2 percent of the overall dataset and will be 30 

addressed by further improving the object detection algorithm in the future. 31 

The novel framework developed was able to classify heavy-duty trucks in much more detail, with 32 
a close relationship to their industry affiliations. For instance, the new model could accurately 33 
distinguish low boy platforms from general flatbed trucks, where these two types of platform 34 
trucks are designed to carry different types of payloads. This model was able to classify 30 35 

different vehicle types (advantageously mainly trucks) and achieve an average class CCR of 90 36 

percent for a truck with large trailer (s) and 83 percent for single-unit vehicles with or without a 37 

small trailer. Remarkably, the proposed method was able to distinguish 53ft containers and semi-38 
trailer enclosed vans with over 95 percent CCR even though they share very similar physical 39 
characteristics. 40 

The multi-array rotating LiDAR sensor is one of the most critical components for autonomous 41 

vehicles. The cost of LiDAR sensors is likely to reduce significantly with the maturity of the 42 
technology following the mass production of the autonomous vehicle in the future. This expected 43 
trend will increase the potential of using LiDAR sensors as a cost-efficient alternative for roadside 44 

truck data collection. 45 
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In the future, object detection will be further enhanced to better accommodate the occasional 1 
occurrence of sparseness point cloud issues. Furthermore, multi-lane truck classification 2 

applications can be explored as the horizontal orientation of the LiDAR permits capturing a full 3 
360-degree field of view. 4 

 5 
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