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Abstract In the context of ongoing climate change, extreme weather events are9

drawing increasing attention from the public and news media. A question often10

asked is how the likelihood of extremes might have changed by anthropogenic11

greenhouse-gas emissions. Answers to the question are strongly influenced by the12

model used, duration, spatial extent, and geographic location of the event – some13

of these factors often overlooked. Using output from four global climate models, we14

provide attribution statements characterised by a change in probability of occur-15

rence due to anthropogenic greenhouse-gas emissions, for rainfall and temperature16

extremes occurring at seven discretised spatial scales and three temporal scales.17

An understanding of the sensitivity of attribution statements to a range of spatial18

and temporal scales of extremes allows for the scaling of attribution statements,19

rendering them relevant to other extremes having similar but non-identical char-20

acteristics. This is a procedure simple enough to approximate timely estimates21

of the anthropogenic contribution to the event probability. Furthermore, since22

real extremes do not have well-defined physical borders, scaling can help quantify23

uncertainty around attribution results due to uncertainty around the event defini-24

tion. Results suggest that the sensitivity of attribution statements to spatial scale25

is similar across models and that the sensitivity of attribution statements to the26

model used is often greater than the sensitivity to a doubling or halving of the27

spatial scale of the event. The use of a range of spatial scales allows us to identify28

a nonlinear relationship between the spatial scale of the event studied and the29

attribution statement.30

Keywords Attribution · Extremes · C20C+ · AGCMs31

1 Introduction32

Event attribution literature has been populated by targeted studies investigating33

the influence of human activity on the properties and probability of recent major34

weather events (e.g. Stott et al, 2004; Dole et al, 2011; Peterson et al, 2012, 2013;35

Herring et al, 2014, 2015). Each of these studies focused on one or a few extreme36

N. Christidis

Met Office Hadley Centre, Exeter EX1 3PB, UK
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weather events which adversely impacted human health, infrastructure, or agricul-37

ture (or a combination of these), usually attracting substantial attention from the38

public and media. However, attribution statements for these events as well as the39

nature of associated impacts, vary according to the spatial and temporal scales40

chosen to define them. These definitions are often somewhat arbitrarily chosen. For41

example, in Stott et al (2004), who examined the 2003 European heatwave, there42

is a mismatch between the spatial scales for which the severest impacts were felt,43

and those defined in their analyses – only roughly two-thirds of the area examined44

in their study was European land (the remaining area was over North Africa),45

and mortality was mostly a consequence of a two-week heatwave in August mostly46

confined to western Europe (Robine et al, 2008), not a hot summer. As demon-47

strated by Angélil et al (2014b), the sensitivity of attribution statements to the48

spatial and temporal scales of the extreme event can be substantial (increasing as49

the spatial scale increases), however their study only tests sensitivity to very large50

changes in the spatial scale: from 2 ·106km2 to the resolution of the two models51

they used, being ∼22500km2 and ∼40000km2 (∼1.5◦ and ∼2◦).52

53

The endogenous variability of the atmosphere depends on the spatial scale54

(Hawkins and Sutton, 2012) and this would be expected to translate into a depen-55

dence of event attribution calculations because of their sensitivity to the magnitude56

of endogenous variability (Bellprat and Doblas-Reyes, 2016). Angélil et al (2014b)57

revealed the existence of this scale dependence in climate model simulations, but58

they did not determine the functional form of the relationship. Here we expand on59

Angélil et al (2014b) by determining this functional relationship in a number of cli-60

mate models examining the robustness of the relationship across those models, by61

calculating attribution statements for extremes occurring over a set of discretized62

spatial scales – all at subcontinental domains. The range of spatial scales allows63

us to more precisely characterise the relationship between the spatial scale and64

attribution statement – a relationship that is potentially nonlinear. Results can65

enable us to, for example, scale previously published attribution statements such66

that they are relevant to extremes occurring at slightly different spatial scales.67

A by-product of this sensitivity analyses are results showing the magnitudes of68

attribution statements across models. We therefore additionally explore reasons69
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for differences in attribution statements between models.70

71

We use the probabilistic event attribution framework designed by Pall et al72

(2011), using large initial condition ensembles from four Atmosphere-only Global73

Climate Models (AGCMs). The large ensembles better resolve the statistics of74

the rare weather events we are interested in, and such ensemble sizes are feasible75

since AGCMs are less computationally expensive to run compared to their cou-76

pled counterparts. Similar to Pall et al (2011) who use the Fraction of Attributable77

Risk (FAR), we characterise the anthropogenic contribution to the chance of the78

extreme with the Probability Ratio (PR) which is given by ratio of the probability79

of exceeding an extreme threshold in model runs forced by natural and anthro-80

pogenic influences (ALL) to the probability of exceeding the same threshold in81

model runs forced by only natural influences (NAT). If the PR > 1, anthropogenic82

greenhouse-gas emissions have increased the chance of the event. If the PR < 1,83

they have decreased the chance of the event. Using this framework, we take a brute84

force approach by calculating attribution statements on a global scale for daily,85

5-day, and monthly temperature and rainfall extremes occurring at seven different86

spatial scales over thousands of different locations (see Fig. 1).87

88

The goal of this paper is to understand the dependence of event attribution89

conclusions on the spatial scale for subcontinental domains. Some event attribu-90

tion studies, for example Stott et al (2004), have considered events occurring over91

regions approaching continental scales (i.e. 4 million km2 and larger). We do not92

consider these larger scales in this paper because our method of using fixed regions93

becomes more of an issue at larger scales, with the sample of regions being smaller94

and thus it being more difficult to distinguish between region-specific properties95

(for example if a region happens to contain a section of Arctic coast) and generic96

properties for that type of region (e.g. mid-latitude continental). Refinement of97

event attribution techniques to smaller scale events is identified as a major di-98

rection and challenge in the field (and others National Academies of Sciences,99

Engineering and Medicine, 2016) so continental-scale analyses might be expected100

to become less frequent in the future.101

102
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While there remain pressing questions on issues that challenge event attribu-103

tion assessments, such as how multi-model ensembles can be best used to optimise104

key properties seen in observations (e.g. variability; dynamical response to bound-105

ary conditions), this paper directly addresses a particular question, that being on106

the sensitivity of event attribution analyses to the definition of the event examined.107

108

2 Data109

We use four AGCMs, each run under two forcing scenarios. The first being a fac-110

tual scenario forced with natural and anthropogenic influences (ALL) simulating111

weather that might have occurred under observed historical boundary conditions.112

The second set of ensembles are run under a counterfactual “natural” scenario113

(NAT), in which emissions from human activities had not interfered with the cli-114

mate system.115

116

The ALL scenario is forced with observed boundary conditions for greenhouse117

gases, tropospheric aerosols, volcanic aerosols, ozone concentrations, solar irradi-118

ance, sea surface temperatures (SST), sea ice coverage (SIC), and land cover. In119

the NAT scenario, greenhouse gases, tropospheric aerosols and ozone were altered120

to estimate pre-industrial levels, while ocean temperatures were cooled and sea ice121

coverage expanded according to an estimate based on output from the interna-122

tional CMIP5 climate modelling effort (http://portal.nersc.gov/c20c/input_123

data/C20C-DandA_dSSTs_All-Hist-est1_Nat-Hist-CMIP5-est1.pdf). The NAT124

SST variability is based on observed ocean surface conditions, which preserves125

month-to-month and year-to-year variability, such as the El Niño-Southern Oscil-126

lation phenomenon (ENSO).127

128

The AGCMs used are part of the C20C+ detection and attribution project129

(http://portal.nersc.gov/c20c/): the CAM5.1, MIROC5, HadGEM3-A-N216,130

and HadAM3P-N96 AGCMs, run at resolutions of ∼1.4◦, ∼1◦, ∼0.5◦ and ∼1.8◦
131

respectively. The area covered by grid cells varies with latitude, decreasing with132

increasing distance from the equator. In CAM5.1, prescribed SSTs up to 1982 are133
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an adjusted version of the HadISST1 dataset (Rayner et al, 2003), after which the134

NOAA-OI.v2 dataset is used (Hurrell et al, 2008). In HadAM3P-N96, SSTs were135

prescribed using NOAA-OI.v2. The HadGEM3-A-N216 (Christidis et al, 2013) and136

MIROC5 (Shiogama et al, 2013, 2014) prescribed monthly SST and SIC were taken137

from the HadISST1 dataset. Any differences between the AGCMs may be partially138

due to CAM5.1 and HadAM3P-N96 using prescribed aerosol burdens (black car-139

bon, organic carbon, sulfate and sea salt), while MIROC5 and HadGEM3-A-N216140

simulate aerosol distributions from prescribed aerosol emissions. The MIROC5141

and HadGEM3-A-N216 experimental setups therefore allow for interactions be-142

tween the simulated weather and atmospheric chemistry, while in CAM5.1 and143

HadAM3P-N96 the absence of this interaction may prevent the occurrence of feed-144

backs relevant in the simulation of extremes, particularly hot events.145

146

In HadGEM3-A-N216, all ensembles members have the same initial conditions147

but differences are generated using parameter perturbations and a stochastic ki-148

netic energy backscatter scheme (Christidis et al, 2013). In CAM5.1, MIROC5149

and HadAM3P-N96, each ensemble member from each AGCM differs from the150

next only in its initial conditions. Each model run has been trimmed to cover the151

January 2008 - December 2012 period. Daily means of two meter air tempera-152

ture and precipitation are used in this analyses. Extremes are by definition rare,153

therefore in order to resolve the statistics of these events, we use the maximum154

number of available simulations from each AGCM. This consists of 100 ALL and155

NAT members from CAM5.1, 60 ALL and 50 NAT counter-factual members from156

MIROC5, 15 ALL and NAT members from HadGEM3-A-N216, and 50 ALL and157

NAT members from HadAM3P-N96.158

159

3 Method160

In order to better resolve the statistics of extreme events, all members and all161

years from each AGCM are pooled before any further calculations are made. All162

data are remapped to the coarsest model being HadAM3P-N96 using a first order163

conservative remapping procedure (Jones, 1999). We calculate PRs for the prob-164
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ability of exceeding daily, 5-day and monthly one-in-ten-year (0.027% chance of165

occurrence; also expressed as a 1 in 365 × 10 chance of occurrence) hot and cold166

temperature extremes, and one-in-one-year (0.27% chance of occurrence) wet ex-167

tremes. However, we exclude one-in-ten-year rainfall extremes, because over many168

regions, they are too extreme to be accurately sampled in the NAT scenario, par-169

ticularly for monthly extremes as the averaging across time increases the signal170

(anthropogenic) to noise (natural variability) ratio. 5-day and monthly weather171

are calculated by averaging daily output with 5-day and 30-day running windows172

with a 1-day step. This procedure simply smooths the distributions and will not173

systematically increase or decrease exceedance probabilities.174

175

We select wet and cold event thresholds from ensembles driven by the ALL176

scenario. However since one-in-ten-year hot extremes simulated under the ALL177

scenario rarely occur in weather simulated under the NAT scenario, we select178

these thresholds from the NAT ensembles. Therefore, for hot extremes, PNAT is179

fixed at 0.027%, and PALL varies according to the chance of exceeding the thresh-180

olds obtained from the NAT ensembles. For cold and wet extremes, PALL is fixed181

at 0.027% and 0.27% respectively, and PNAT varies according to the probability of182

events being colder or wetter than the thresholds derived from the ALL ensembles.183

When the desired percentile lies between two data points, the value is estimated184

via linear interpolation.185

186

We use this method to calculate PRs for extremes occurring over almost all187

land regions of the globe, at 7 different spatial scales (Fig. 1) – the largest being188

demarcated by the 58 regions in the Weather Risk Attribution Forecast (WRAF,189

Fig. 1a), and the smallest being the resolution of HadAM3P-N96 (not shown).190

These regions are on average 2.18 · 106 km2 with a standard deviation of 4.64 · 105
191

km2 . We define the second largest spatial scale (“1
2 WRAF”; Fig. 1b) by halv-192

ing the area of each of the WRAF regions. The axis (latitudinal or longitudinal)193

along which regions are split is always perpendicular to the axis with the greater194

maximum latitudinal or longitudinal distance. After a region has been split, the195

areas of the two halves are equal, with accuracy being to the nearest grid cell. For196

the 3rd spatial scale (“1
4 WRAF”; Fig. 1c), we halve the areas of the “1

2 WRAF”197
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regions. We continue to halve regions until the 6th spatial scale (“ 1
32 WRAF”) has198

been defined. The average area of the regions from the WRAF scale to the 6th199

spatial scale are: 2.18 · 106 km2; 1.09 · 106 km2; 5.44 · 105 km2; 2.72 · 105 km2;200

1.36 · 105 km2; and 6.81 · 104 km2. The 7th and smallest spatial scale is defined201

as the resolution of the coarsest model being HadAM3P-N96. For the 1st to 6th
202

spatial scales, area-weighted averages are taken from the temperature and rainfall203

grid cell values at every time-step.204

205

To prevent positive and negative infinity log(PR) values interfering with the206

calculations, we have artificially adjusted all cases where either PALL or PNAT =207

0% to a probability assuming one-tenth of an event (day, 5-day or month) ex-208

ceeded (or fell below for cold events) the threshold. Depending precisely on the209

temporal scale examined, this for example equates to an exceedance probability210

of ∼0.000055% (0.1 in 5× 100 years) in CAM5.1 (the probability will be slightly211

greater for other models given the number of runs is less). These cases occur over212

a negligible percentage of the regions, and are therefore hardly expected to effect213

the results.214

215

4 Results216

PRs have been computed for hot, cold, and wet extremes; occurring at 3 tem-217

poral scales; 7 spatial scales; over 58 regions of the world; using output from 4218

AGCMs. Before we discuss summarised results for all models, variables, spatial219

and temporal scales, we begin with Fig. 2, which highlights a key contribution220

this analyses makes beyond Angélil et al (2014b). The figure summarises the PR221

for hot day extremes in CAM5.1 for tropical regions (y-axis; being the average PR222

for all regions occurring within the tropics at a given spatial scale) as a function of223

the spatial scale of the extreme (x-axis). Linear interpolation for scaling PRs had224

the Angélil et al (2014b) method been applied (dashed line), fails to characterise225

the non-linear relationship seen when 7 spatial scales are used (pink markers). An226

interpolated attribution statement can differ by approximately 20% for a given227
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spatial scale where the vertical distance between the two lines is greatest.228

229

Next, we present the main results: PRs for temperature extremes averaged sep-230

arately over the tropics and extra-tropics, and PRs for rainfall extremes averaged231

across each of the 58 WRAF regions. The reason for summarising the results for232

temperature and rainfall in such a way is that PRs for temperature extremes ex-233

hibit similar values across bands of latitude, while PRs for extreme rainfall tend to234

vary more across smaller spatial scales (Angélil et al, 2014a,b). Results calculated235

for every variable over each spatial and temporal scale (without averaging across236

the tropics, extra-tropics, or the WRAF regions), can be found in the Supplemen-237

tary Material as scatter plots (Figs. S2-S10) and as maps (Figs. S11-S13).238

239

The pink curve in Fig. 2 is again shown in Fig. 3(a). Here however, the axes are240

logarithmic (log10 on the y-axis and log2 on the x-axis) so the six curves (tropics241

and extra-tropics for each of the temporal scales) can be visualised more comfort-242

ably within each panel. Given the log-log axes, the relationships are linear, offering243

a straightforward way to interpolate PRs for events occurring at different spatial244

scales. Regions are defined as falling within the tropics if more than half of the grid245

cells of which they are comprised fall between 23.5◦N and 23.5◦S. As expected,246

PRs in Fig. 3 are above Unity (the dashed horizontal line) for hot events and247

below Unity for cold events. The PRs for hot extremes over the tropics (denoted248

as ‘T’) are greater in CAM5.1 and HadGEM3-A-N216 than MIROC5 by a factor249

of roughly 5. PRs for cold extremes are more similar between AGCMs, decreas-250

ing slightly from HadGEM3-A-N216 to MIROC5 to CAM5.1 and HadAM3P-N96.251

Because estimates at each scale are based on the same data, confidence intervals252

on the actual PR value would not provide an accurate indication of confidence253

intervals on the difference in values between different spatial scales; the difference254

in values will depend very strongly on the correlation in variability between scales.255

For this reason, we do not plot confidence intervals because they would be mis-256

leading.257

258

We see a clear division between PRs over tropical and extra-tropical regions259

when attributing hot extremes (Fig. 3a-d). This characteristic can be explained by260
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the fact that temperature variability generally decreases with decreasing latitude:261

as distance from the equator decreases, the anthropogenic signal tends to emerge262

more clearly from the noise of natural variability, resulting in a PR tending away263

from Unity (Angélil et al, 2014b; Harrington et al, 2016). This concept is addition-264

ally relevant when values are averaged across space or time, as we are essentially265

smoothing the noise of natural variability. Thus, in all six panels, PRs tend away266

from Unity as the spatial or temporal scales of the events increase. The PR is267

found to have a log-log relationship with spatial scale here.268

269

Although PRs for temperature typically exhibit a smooth transition from weak270

(a near-unity PR) to strong as distance from the equator decreases, PRs can vary271

significantly within WRAF regions – in Figs. S2-7 and S11-12 we see larger spread272

between PRs which occur at small spatial scales. This suggests that the WRAF273

regions may have a North-South spatial extent large enough (not excluding other274

possible factors contributing to PRs) to result in a range of PRs – a consequence275

of noise/seasonality being highly sensitive to distance from the equator. PRs vary276

less across WRAF regions close to the equator (e.g. red markers for Africa) than277

those in the extra-tropics, as the change of temperature variability as a function278

of latitude is low near the equator (see Fig. 4c).279

280

Angélil et al (2016) evaluate the shapes of extreme rainfall and tempera-281

ture tails in three of the models used in this analyses (CAM5.1, MIROC5, and282

HadGEM3-N-216). Their results suggest there is substantial tail bias mostly in283

favour of overly strong attribution statements for one-in-ten-year hot and cold284

daily extremes, because the simulated tails tend to be shorter than those in re-285

analyses products, thereby increasing the anthropogenic signal to the noise of286

natural variability. The exception being attribution statements for hot extremes287

over North America and parts of Asia, which were found to be biased in favour of288

being overly weak (Angélil et al, 2016). Extremes in all of the current generation289

reanalyses used in (Angélil et al, 2016) except for ECMWF Interim Reanalysis290

(ERA-Interim; Dee et al (2011)) have not yet been thoroughly evaluated against291

observations. Extremes in ERA-Interim were briefly evaluated against gridded ob-292

servations over Australia in Angélil et al (2016) and thoroughly in Donat et al293
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(2014). Of all reanalyses evaluated in Donat et al (2014), ERA-Interim performed294

best and was therefore a reason to use it in Angélil et al (2016).295

296

The difference between PRs for hot extremes over the tropics and extra-tropics297

vary depending on the AGCM. The difference is smallest in MIROC5 where PRs298

over the extra-tropics and tropics are roughly a factor of 4 apart. The gap is299

larger in HadAM3P-N96 and even larger in CAM5.1 and HadGEM3-A-N216, be-300

ing roughly an order of magnitude. The inter-model differences are mostly a result301

of inter-model variations of PRs over the tropics. We further explore reasons for302

these difference in Fig. 4 by separating internal variability in the AGCMs from303

mean temperature response to forcings. In both panels statistics are calculated304

using the pooled runs from each AGCM. Panels (a) and (b) show the difference of305

zonal mean (land only) temperature between both scenarios (ALL minus NAT) in306

each AGCM. Panel (a) shows the raw differences, while in panel (b) we divide by307

the difference in the global mean temperature between both scenarios (ALL minus308

NAT), which allows us to visualise the sensitivity of mean temperature to anthro-309

pogenic forcing at every latitude per degree Kelvin of global warming. In panel310

(c), curves of the zonal mean standard deviations calculated at the grid-point level311

with daily data, are plotted for both scenarios in each AGCM.312

313

Panels (a) and (b) suggest that temperature differences are largest at the poles314

(particularly the north pole in agreement with Stott and Jones (2009)), a phe-315

nomenon known as polar amplification. The raw differences (panel (a)) over the316

tropics are lowest in MIROC5 and similar in CAM5.1, HadGEM3-A-N216, and317

HadAM3P-N96, which corresponds to the PRs for hot extremes in Fig. 3. Al-318

though the sensitivities of tropical temperature to a degree of global warming in319

CAM5.1 and HadAM3P-N96 are similar to that of MIROC5 (panel (b)), CAM5.1320

and HadAM3P-N96 result in PRs more similar to HadGEM3-A-N216 since their321

global mean temperature differences are ∼0.35K greater than that of MIROC5322

and HadGEM3-A-N216. Panel (c) suggests that anthropogenic influences on our323

climate have reduced temperature variability at the poles, but have hardly caused324

change in variability over the tropics between AGCMs or scenarios. Internal vari-325

ability is therefore not responsible for the differences in PRs between AGCMs over326
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the tropics in Fig. 3.327

328

There is little reason to average PRs for one-in-one-year rainfall extremes over329

spatial domains larger than the WRAF scale, because although PRs for rainfall330

do vary geographically, we do not see a systematic difference between PRs over331

the tropics and over the extra-tropics (see Figs S8-10 and S13) like we do for tem-332

perature extremes. In Fig. 5, for PRs calculated over each of the 7 spatial scales,333

we average results across each of the 58 WRAF regions – each line representing334

a different WRAF region. In other words, for one curve, no averaging has been335

applied to the first marker as the event occurs at the WRAF scale. The value for336

the second marker is the arithmetic mean of two values as there are two regions337

within each WRAF region, each occurring at the 1
2 WRAF scale. Only results338

from CAM5.1 are shown here (see Fig. S1 for results from all models). To avoid a339

saturated figure, we separate PRs for daily, 5-day and monthly extremes into indi-340

vidual panels. The colours represent distance from the equator, being the absolute341

value of arithmetic mean of the latitude of every gridcell within a WRAF region.342

Regions near the equator are magenta, and those furthest from it are cyan.343

344

As in Fig. 3, PRs tend away from Unity as spatial and temporal scale increases.345

Regions furthest from the equator tend to be the regions with PRs closest to Unity,346

while regions closest to the equator have higher and lower PRs. Similar results are347

seen in the other 3 models (Fig. S1).348

349

Averaging PRs within the spatial domain of a WRAF region, as done in Fig. 5,350

can result in a loss of useful information. PRs for rainfall can be very sensitive351

to small scale changes in location – for example neighbouring grid cells can have352

strikingly different attribution statements as shown in Angélil et al (2014a), as353

rainfall extremes can be very localised. Angélil et al (2014a) use a bootstrap sam-354

pling procedure to show that the difference was not a consequence of noise due355

to sampling, but rather a dynamical response native to the model. However since356

models resolve the dynamics at the grid cell scales poorly, PRs for rainfall over357

individual grid cells are unlikely to be reliable.358

359
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Fig. 6 highlights the evolution of the PR and uncertainty around it due to inter-360

nal variability as the spatial scale changes. The spread of PRs within one WRAF361

region (northwestern United States; the red curve in the red box in Fig. 5(c)) is362

shown. Here best estimate PRs from CAM5.1 are shown for wet extremes lasting363

a month occurring over the whole region and within the region. This is a region364

of particular interest as PRs are split between being above and below Unity. PRs365

shown are those before averaging, as in Figs. S2-13. The spread of the raw PRs at366

the grid cell scale is ∼0.4 to ∼2.5, however when an average is taken across the367

WRAF scale for events occurring at each of the 7 spatial scales, PRs lie between368

∼0.9 and ∼1.3 (red curve in the red box in Fig. 5(c)).369

370

Uncertainty due to internal variability on the best estimate (BE) of the PRs are371

described by their colours, and calculated by generating 10000 bootstrap datasets372

of the ALL and NAT realisations. Simulations are shuffled, not days, in order to373

preserve sequencing information. For each dataset the corresponding PR is calcu-374

lated (on the log scale) per the procedures discussed in the Methods section. This375

gives a sample of 10000 PR values that characterise the sampling distribution of376

the PR estimate. To quantify uncertainty in the estimated PR, we used the basic377

bootstrap confidence interval procedure (not to be confused with the percentile378

bootstrap confidence interval), by which lower and upper uncertainty bars are cal-379

culated by BE− (E95−BE) and BE− (E05−BE) respectively, where E95 and380

E05 represent the 95th and 5th percentiles of the 10000 bootstrapped PR values381

(Davison and Hinkley, 1997; Davison and Huser, 2015). With ensemble sizes of382

50-100 simulations per scenario, this bootstrap estimate should provide a decent383

approximation of the uncertainties in the probabilities of exceedance; however,384

for the 15-member ensembles of HadGEM3-A-N216 this will be a rather poorer385

estimator. The legend depicts the range of uncertainty for each coloured marker.386

Uncertainty due to internal variability on average increases with decreasing spatial387

scale and the higher the PR is – the latter being a sign of the extreme threshold388

being further out into the tail (Fischer and Knutti, 2015).389

390

Results shown in Figs. 5 and 6 suggest the PR may be sensitive enough to391

small changes in the exact location of the defined extreme and its spatial scale, to,392
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for example, change the attribution statement from being ‘positive’ (roughly that393

anthropogenic influence increased the chance of the event) or ‘negative’ (roughly394

that anthropogenic influence decreased the chance of the event), or vice versa. Al-395

though there is currently no strict definition of a ‘positive’ or ‘negative’ attribution396

statement (and others National Academies of Sciences, Engineering and Medicine,397

2016), studies should properly justify their choice of spatial scale and location for398

extreme rainfall events.399

400

Relationships between attribution statements for sequential pairs of spatial401

scales are identified to gauge the reliability of the scaling. We regress 58 PRs (one402

for each WRAF region, each value being the average of PRs across that WRAF403

region) against 58 PRs for events occurring at one larger or smaller spatial scale.404

Figure 7 demonstrates this for 5-day wet extremes in MIROC5. We regress PRs for405

extremes occurring at the 1
2 WRAF scale against those occurring at the 1

4 WRAF406

scale. The correlation coefficient of 0.93 denotes a strong relationship, and the gra-407

dient of less than one (0.73) indicates that PRs on average tend away from Unity408

as spatial scale increases. The advantage of this method is that the sensitivity of409

PRs to spatial scale is based on sensitivity within all of the WRAF regions. This410

means that the resulting regression is also helpful to scale attribution statements411

for extremes occurring within regions where the average PR across the region is412

not very sensitive to the spatial scale (Fig. 7).413

414

Correlation coefficients for all combinations of: the AGCM; pairs of spatial415

scales; temporal scale of the event; and event type, are plotted in Fig. 8, and coef-416

ficients to two decimal places can be found in Table S1. All but a few correlation417

coefficients for hot and cold extremes lie between 0.95 and 1. For wet extremes418

the coefficients lie between 0.75 and 1. The higher the correlation coefficient, the419

more reliable the scaling. The high coefficients between the smallest spatial scales420

may be artefacts of the experimental setup. Because the effective dynamical reso-421

lution of a climate model is greater than the resolution it is run at, the variability422

near and at the grid scale is expected to be under-represented. Reduced variabil-423

ity (noise) increases the strength of the attribution statement (the anthropogenic424

signal), resulting in higher correlation coefficients with statements for events oc-425
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curring at slightly larger spatial scales, where this artefact is not as prominent and426

noise is rather reduced through averaging over space. Caution should therefore be427

taken when scaling events at near-grid cell spatial scales. Scaling can be performed428

with the gradients and y-intercepts (for all regressions) found in Table S2.429

430

For example, a PR of 10 (whether it be a statement already published or not)431

for a 5-day heatwave occurring over the 1
2 WRAF scale can be scaled to one oc-432

curring over the 1
4 WRAF scale using the following relationship found in CAM5.1:433

y = 0.95x+ 0.01. A PR of 9.51 results when x = 10. Given the relationships found434

in MIROC5, HadGEM3-A-N216, and HadAM3P-N96; PRs of 9.59, 9.18, and 9.07435

result respectively.436

437

5 Discussion438

This study characterises functions representing the relation between the spatial439

scale of the extreme and its attribution statement. Although global mean tem-440

perature differences between the NAT and ALL scenarios are ∼0.35◦K greater in441

CAM5.1 and HadAM3P-N96 than MIROC5 and HadGEM3-A-N216, zonal mean442

land temperature difference in the AGCMs hardly correspond to the global re-443

sponse. The response is also highly sensitive to latitude. For example, HadGEM3-444

A-N216 has a higher temperature sensitivity over the tropics per degree global445

warming than CAM5.1, MIROC5 and HadAM3P-N96, resulting in comparable446

attribution statements with CAM5.1 and HadAM3P-N96 for extremes occurring447

over this region. In essence, it appears that zonal mean absolute temperature dif-448

ferences correspond closely to attribution statements for temperature extremes,449

suggesting mean temperature is a low order proxy for extreme temperature in450

agreement with Seneviratne et al (2012). Given the sensitivity of results to the451

model used, we stress the importance of model evaluation in event attribution452

studies.453

454

PRs for hot extremes over the extra-tropics were found to lie anywhere between455

∼5 and ∼30 depending on the spatial and temporal scale of the event, and the456
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AGCM used – the highest from HadGEM3-A-N216 and the lowest from MIROC5.457

PRs for hot extremes over the tropics were anywhere between ∼12 and ∼250,458

the highest PRs coming from both CAM5.1 and HadGEM3-A-N216. For cold459

extremes, PRs ranged between ∼0.05 and ∼0.2 over the extra-tropics and between460

∼0.008 and ∼0.15 over the tropics. For the PRs over individual regions within the461

extra-tropics or tropics, see Figs. S11 & S12. In general, PRs for temperature462

extremes are less sensitive to variations in the spatial scales of the events than463

to the AGCM used. PRs for wet events may be similarly sensitive to the AGCM464

used as to slight changes in the spatial scales (see Figs S8-10 and S13), but further465

statistical analyses would be required to test this robustly. Although, it is clear466

that model responses to anthropogenic forcings do not impact PRs for rainfall as467

directly as it impacts PRs for temperature, which may be due to limited moisture468

availability over land. Statements do however vary largely between AGCMs in469

terms of whether they are positive (PR > 1) or negative (PR < 1), as shown in470

Figs. S8-10 and S13. On average, PRs for wet events are greater than Unity but471

only marginally, in agreement with Pall et al (2011); Peterson et al (2013); Herring472

et al (2014, 2015); Fischer and Knutti (2015). In this study we only look at one-in-473

one year wet extremes. Studies have shown that PRs increase as the anomaly of the474

wet extreme increases (Angélil et al, 2014a; Fischer and Knutti, 2015), owing to475

the Clausius-Clapeyron relation – a relation most pertinent to short-lived extreme476

rainfall (Allen and Ingram, 2002; Christensen and Christensen, 2003; Pall et al,477

2007; Jones et al, 2010; Westra et al, 2014), influencing the limit on the most478

extreme wet event possible as a function of temperature. Warming raises this479

limit.480

Results shown in Figs. 3 and 5 clearly show a nonlinear relationship between481

the PR and the spatial scale. The correlation coefficients between PRs for tem-482

perature extremes occurring at different spatial scales are almost all greater than483

0.95 (3 are between 0.9 and 0.95). For rainfall extremes the correlations are all484

greater than 0.75, although most are greater than 0.9. Such results should encour-485

age the scaling of attribution statements to provide real-time statements for new486

extremes occurring at different spatial domains. Since PRs between models can487

vary substantially, there is future work to be done in order to reduce this uncer-488

tainty. However since the sensitivity of the PR as a function of the spatial scale489
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is similar between models, scaling could still be performed in the future as model490

uncertainty is reduced. Furthermore, because real extremes do not have clear-cut491

physical borders, it is important to understand how attribution results scale as a492

consequence of uncertainty around the event definition.493

494

In some cases such as the region examined in Fig. 6, PRs tend to be close and495

on both sides of Unity – in close proximity to thresholds which could categorise496

an attribution statement as either ‘positive’, ‘neutral’ or ‘negative’. Although no497

such definitions have yet been established, failure to thoroughly justify the spatial498

scale and location of an event can result in biased attribution statements, possibly499

leading to a change in the sign of the statement.500
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(a) WRAF (b) 1
2
WRAF (c) 1

4
WRAF

(d) 1
8
WRAF (e) 1

16
WRAF (f) 1

32
WRAF

Fig. 1 The 1st(a) to 6th(f) spatial scales over which grid cell values are aggregated. Regions

derived from the original WRAF regions (panel a and thick black lines in all panels), are

demarcated by the thin black lines. The 7th and smallest spatial domain is not shown as it

is the grid cell scale. The regions shown here were derived from a high resolution grid of the

WRAF regions (1440 x 720), such that the smaller regions could be most accurately defined

before remapping them to the resolution of the coarsest model for the analyses.
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Fig. 2 One-in-ten-year hot day PRs from CAM5.1 as a function of spatial scale. Each of the

seven pink markers is the arithmetic mean of PRs for all regions within the tropics, occurring

at a given spatial scale. The dashed line represents the relationship had two spatial scales been

used, as was performed in Angélil et al (2014b).
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(a) CAM5.1, hot (b) MIROC5, hot (c) HadGEM3-A-N216, hot (d) HadAM3P-N96, hot

(e) CAM5.1, cold (f) MIROC5, cold (g) HadGEM3-A-N216, cold (h) HadAM3P-N96, cold

Fig. 3 PRs for one-in-ten-year hot (top panels) and cold (bottom panels) extremes, calcu-

lated from CAM5.1, MIROC5, HadGEM3-A-N216, and HadAM3P-N96 output. Each marker

represents the arithmetic mean of PRs calculated over either tropical (‘T’) or extra-tropical

(‘ET’) regions, for one-in-ten-year hot and cold extremes occurring at a specified spatial and

temporal domain. The dashed black line represents a PR of Unity.
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(a)

(b) (c)
Fig. 4 Zonal mean of land-only temperature (a & b) and land-only standard deviation (c),

across all time-steps in all ensemble members in each AGCM. Zonal means in the panel (b)

have been divided by the global mean temperature difference (All minus Nat) in each model,

to highlight changes per degree Kelvin warming.
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(a) CAM5.1 (day) (b) CAM5.1 (5-day) (c) CAM5.1 (month)

Fig. 5 One-in-one-year wet day (first row), 5-day (second row), and month (third row) PRs,

from CAM5.1, MIROC5, HadGEM3-A-N16, HadAM3P-N96. Each marker represents the PR

for extremes occurring at one of seven different spatial scales, averaged at the WRAF scale.

Each line represents a different WRAF region. The dashed black line represents a PR of

Unity. The red curve in the red box in panel (c) is examined in more detail in Fig. 6. The

colours represent distance from the equator, being the absolute value of arithmetic mean of

the latitude of every gridcell within a WRAF region. Regions near the equator are magenta,

and those furthest from it are cyan.

Fig. 6 PRs for wet months in CAM5.1 for the red curve in the red box in figure 5(c), before

averaging over space. The WRAF region is Northwestern United States. The dashed black line

represents a PR of Unity. The markers can be one of 5 colours, denoting a range of uncertainty

due to internal variability around the best estimate. The uncertainty range for each colour

appears in the legend, and has been calculated using a Monte Carlo sampling procedure.
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Fig. 7 Regressions between PRs derived at “ 1
2

WRAF” and “ 1
4

WRAF” scales over each of

the 58 WRAF regions, for one-in-one-year 5-day wet extremes. The position of each marker

is determined by the average of four PRs in a WRAF region (y-value) and the average of two

PRs in the same WRAF region (x-value). Data used are from MIROC5.

(a) Hot (b) Cold (c) Wet

Fig. 8 Correlation coefficients between pairs of spatial domains, for day, 5-day, and month-

long hot (a), cold (b), and wet (c) events, from CAM5.1, MIROC5, HadGEM3-A-N216, and

HadAM3P-N96. For explanatory purposes, the marker encircled in red is the correlation coef-

ficient from Fig. 7
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