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'POSSIBLE BINDING OF A MAGNETTIC MONOPOLE TO A
PARTICLE WITH ELECTRIC CHARGE AND A MAGNETIC DIPOLE MOMENT
Dennis Sivers*
Lawrence Radiation Iaboratory
University of California

Berkeley, California

April 28, 1970
ABSTRACT

We argue thaﬁ Dirac monopoles, if they exist, could
be stréngly-bbund to those naturally occurring free nuclei
with magnetic dipole moments, and we discuss the effect |

. this Binding wduld have oﬁ the interpretation of experimental

monopole searches.
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I. INTRODUCTION
This subject was first discussed by Malkus,1 who concluded that
there>cannot be bound states between Dirac monopoles and naturally occur-
ring free'huclei. We disagfee with Malkus's interpretation of his results,
and belieue'that bound states of this type wiﬁh binding energies up to the
GeV raﬁgevzire a definite possibility if monopoles exist at a;l.

- Because they involve‘assumptioﬁs about the properties of an
unobserved particle, our arguments based on simple nonrelativistic calcu-
lations'afe not conclusive. We cannot‘be sure that we are not neglecting
ceftain.crucial features of the problem. What fhese calculations do
indicate'is that the possibiliuy of magnetically chafged nuclei must be
‘cons1dered in the design of magnetlc monopole searches.2

The plan of this raper is as follows. In Sec. II we discuss the
formulation of a nonrelativistic, quantum—mechanical Hamiltonian for the
problem.”'InVSec. ITIT we obtain the eigehvalues for the angular operator
for a spin-b monopole end a spin-l/2 nucleus. In Sec. IV we examine the
radial equation in two separate cases in which binding is possible. The
first case occurs when the monopole has an electric charge and the problem
is similar to that of the'hYdrogen atom. In the second, the monopole is
electrically neutral and there is a hard-core repulsion dﬁ small radius.
In each case, we calculate typical values for the binding energy. Finally,
in Sec. V we brlefly discuss the validity of the calculations and the
effect the results would have on the conclusions of various types of

experimental monopole searches.
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II. FORMULATION OF THE PROBLEM AND CHARGE QUANTIZATION

We work in units with 4 = c = 1l and, since we are primarily
interested in binding to nuclei, choose the basic unit of energy by
ﬁaking thelmass of the nucleon, MN = 1.. Iﬁ these units the nuclear
megneton is giﬁen by e/é. The properties of the charged particle and
the monopole are summarized in Table I. Note the Possibility that the
monopole'carries electric charge, as emphasized by Sch'winger.5 We do
not necessarily adopt Schwinger's suggestion that the monopole be given
fractional electric charge and identified with the quark.

The magnetic field of a monopole of strength vg ‘located at

r =0 1s given by
- 2y ~
B = (vg/r%) i. . (2.1)

In order to construct a nonrelativistic, quantum-mechanical Hamiltonian,
: | X v
we need to construct a suitable vector potential. This is awkward when

V+B # 0, as in (2.1), since we cannot define A by

~

By = Yx A . - (2.2)

together with the gauge condition

V-A = o . (2.3)
Dirac's solution to this problem was to find an expression for
A which satisfies (2.3), such that the B field given by (2.2) agrees
with (2.1) except on certain singularity lines. Two possibilities for

the vector poténtial are
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Ar(.l) = Ae(l) =0, A1) vg(1l - cos 0)/sin 8,
' (2.4)
A¥'(2) = AG(Q) -0, . a®) L g cos o/sin 8,  (2.5)
where A( 1) is ‘singular along the negatlve z ~axis (r =’-z, = 1)

and A( )_ is singular along the entire z -axis. The correspondence

between (2 1) and (2. 2) is then given by

(/PN = g a2 g 2  (2.6)
- where

- | rl“ﬂ’% 5(x) 6‘(y)~ ZA< 0 | (6 = n)

Ef(l) =1 < o >, (2.7
| O z>0 (8 =0)
f2ﬂVg 8(x) 8(y) z2<0 (8=nmx)

Ef(e)“ - Ez s | > (2.8)
(-2nvg 8(x) B(y) z>0 (9_= 0)

It is, ofkcourse, also possible to take alternative orientations for the
singularity line or to find expressions for the vector potential involving
curved singularity lines. In order to have rotation invariance in the
' theqry, all physical observables must be independent of the singularity
line. | |

‘Within the approximations of nonrélativistic gquantum mechanics,
it is acceptable to use either vector potential, (2.4) or (2.5), directly
in the Hamlltonlan, although we must subtract the appropriate fictitious

fleld, (2. 7) or (2.8), if we intend to calculate the correct stress-energy
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5

tensor.” We therefore have the Hamiltonians
(ry 1 d 29 1. 9 o)
B s B T T & tshne %5

2Tr

1 0 . ' 2 .0
+ 5 Sz;- 1ZVeg(l - COSs 6) + vueg T 2 - i.
sin” 6 o - .
yzed _ | |
+ '—r—- +\ U(I‘) » (2-9)

where 'T.; M, M'Z/(MY + MZ) and U(r) is an undetérmined potential which
is assumed'to be appreciable only at small distaﬁcés. The necessity for
including this undetefmined potential is discussed later, but at this
point it reflects our ignorance of hadronic and form-factor effects at

small distances.

Schrddinger's equation is separable;

g0 W) yDig gy - 5D v e, #)  (2.10)

becomes

1 o 3 (3 c
) -sin @ Y sin © 5o + 55 -‘iZVeg(l - cos 9) |

sih Q
+veer 2 - 139, g) - W Wi, ) 2w

and

. " (1)
~r_]é <g_r)r2(§;)+ Bre v erue M) - e @ ).
| (2.12)

There are completely analogous expressions for the Hamiltonian obtained

by inserting the vector potential (2.5) instead of (2.4). As yet, we
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- have no way of knowing that the results depend on whether we choose a
vector potential with a one-sided or a two-sided singularity line.

To investigate this point, we look at the solution of the angular

eigenvalpe equation for p = 0,
20 Wiy 1 ) (gm0 v (e) M (2.13)

- Wﬂm

with

(1) N ) d A 1+cos O.
A = —% | sin e 5§.Sin o 56 - (:55 ( —75———-)

| \e
(3 - (o)) |

(2.14)
Equation (2.13) has the solution'
yBgy - gt (o) (2 =0,1,2,-++),
£n - “m-Zveg, L veg i (2.15)

where s = max(|m -~ Zveg|, |Zveg|) and the dmnq(e) are the familiar

representations of the rotation group. In order to have rotation

9

invarianée, we must therefore have the quantization condition
1l
Zveg = 5n (n=1, 2,-++) . (2.16)

Proceeding in the same way for the vector potential with the two-sided-

singularity line, we find the angular eigenfunctions

(2) _  _t+s :
Vim = % zveg®) (2.17)

and requiring rotation invariance in this instance gives the stronger

gquantization condition,9

Zveg = 1 °n : (n=1,2, °=*) . (2.18)
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The familiar quantization conditions, (2.16) and (2.18), have
ibeen obtained in many independent ways.lo Here they are necessary in
order that the anguler eigenfunctions of the quantu@ mechanical
Hamiltonien correspond to irreducible representations of the rotation

group. The eigenvalues corresponding to (2.15) and (2.17) are

respecti?ely

a(l)(‘;m;ZV) = 4L+ %(fml + |m - 2zveg|)pdt + 1+ %(,mf + |m - 2zZveg]|)
- 2PEE (2.19)

and

a(e)(%,m,Zv) = Lo+ %(,m + ZVeg, + |m - ZVeg,)

X (e 1 +,%(,m + Zveg| + |m - Zveg|)} - 22v2e2g2.
(2.20)
From now on, we take
eg = 1/2 3 (2.21)

and note that the stronger two~sided quantization condition, (2.18), is~
equivalent to requiring v to be an even integer in (2.16). We then
have |
a(e)(&,m,Zv) = a(l)(t, ﬁ + %F) Zv), v=0, t, th4 ---

(2.22)
and all results can be obtained by using the wﬁi)(e) and (2.22). Thus,
from examining Schrddinger's equation with p = 0, the only difference

between a two-sided and a one-sided vector potential are the different
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quantization conditions, (2.16) and (2.18), and we cannot distinguish
between the two possibilities unless we observe experimentally a magnetic
monopole with v = 1. Note that the eigenvalues (2.19) and (2.20) are

positive definite.

IITI. THE ANGULAR OPERATOR WHEN u_#’O
Now, consider the solution of the angular eigenvalue equation,
(2.11), for a spin-% nucleus with p £ 0. Let y = uT/2 and x = cos 6,

then (2.11) becomes

A(l) + Vyx v ‘ Vey(l-x)l/2(l+x)l/2e~ié\\ ;Aei(m-l)ﬁ ',

V7(l~X)l/2(l+x)l/2eigs A(l)}, vyx WBeimﬁ

(3.1)

The polynomials wgi)(e), (2.15), are orthogonal, and this suggests we

make the expansion

N

Y, = ) cﬂ,ﬁﬂ_l(x) , (3.2)
=0 ' |
. |

vy = i aviDe . (3.3)

an
Il
e
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We have to consider separately two cases of (3.1),

Case 1: m 21, (m - 2v) 21, (3.k)

Case 2:  m 21, (m-2zv)<o0. o (3.)

Other values of m can be reduced to one of these two case by using

: 8
the identity

m, n -m, ~-n

& (x) = & (x). | L (3.9)

In order to relate W& and w% it is convenient to express the

-1

di in terms of Jacobi polynomlals,7
Vo) = -2 @ sl e D g

After the replacement (3.6), we see that Eq. (3 l) bhas a different form
in each of the two cases, (3.4).
Case 1. Absorbing the normallzatlon of (3.6) into the coefficients

of (3. 2) and (3.3), we have the equations

A o
‘ zg; Cx ['a(k,m-l,ZV) +pB + vyx] Pﬁm-l,m—l-Zv)(x)
=] | N
+ vyd&(lv— XQ) Pgm’m'zv)(x) -0,
B (3.7a)
N N
¢y VY P(m 1,m- l-ZV)( ) o+ dl[-a(k,m,Zv) + B - vyx}

=0 -

x B () <o (5.70)
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If the series terminates, then NA = NB + 1. Expanding the Jacobi
polynomials in power series and matching powers of x, we find the eigen-

values

t . ) zZv
By (Ngym,Zv,vy) = (Np+m=-7) - 55—

- 2N 7V / 2 e
* (N +m - 2Y LB 2. vy)
= B -2 R 2 .
(3.8)
These elgenvalues need not ali be positive. The minimum occurs when

NB=O" m=2+1, or m=1,

- T
min (B, ) = 1+ lzv] -1 1+ Jzv] + ( 2= - vy) , (3.9)
1 2
(Nym-) :

which can be negative when (VE/ W(z - ;.LT)2 is large enough. Inserting
(3.5) into (3.7), we get the eigenvalues for the case when m<0 and

(m - 2Zv)< o,

B

t t
3 (NB,m,ZV,')’V) = ﬁl (NB’ -m+l, -Zv, -yv), cm=0,-1,-2,°° .

(3.10)

Case 2.  In this instance, the eigenvalues (2.19) are independent

of m and all equal to

2t + 1

5 lzv]| . (3.11)

a(,l)(t,o,ZV) = (L +1) +

Equation (3.1) becomes
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N
o, .[-a(k, 0,Z2v) + B + vyx } Plgm'l’?"'mﬂ)(x)
N
T‘B
£ e R® PG, (5z)
526
N N

(m- l,Zv-m+1)( )+

‘V)'ok(l + x)P dj {-oz(j,O,Zv)

+B - vyx ] Pgm,Zv—m)(x) s

(3.12b)

where NA = NB. Using the identity7
(a,b) _ (a-l b+1)] _ (a+N-1) -1 b+1)
(l-x)[ B —(a+b+N)
‘ 2
(a l,b+l)
(252+m
(3.13)

we can combine the sums in (3.12) and obtain the eigenvaluesll

lZvl
52(N 22V, YV) = NB(NB + l) + (2NB + 1) > - il -

When NB = 0 this reduces to

B (0, Zv, yv) = F - v = Z(z - 1) . (3.15)
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Insertihg7(5.5) into (3.12), we get the eigenvalues for the case when

>

m\<~0, m-ZV l,

B Zv, yv) = B (N, -Zv, -yv) . | (3.16)

Figure l‘éhows a plot of Zv vs m and indicéﬁes where the various
expressions for the eigenvalues are valid. Tables IT and IIT give a
tabulafion,of Bmin for naturally occurring nuclei with various
assumptiohs about the magnetic monopéle mass and charge. As can be
seen, hegative eigenvalues aré in abundance and, as is.discussed in
Sec. IV, this opens the possibility of boﬁnd states between an électrical—
ly neuﬁrai-monopole and nuclei if there is a hard-core repulsion.
Numericai calculations of eigenvalues for spin-l.and spin-}/é nuclei
also indicate the possibility of negative values for the angular eigen-
value. The methods used for the spin—% case éan'lead to cubic or
quartic equations involving B for spin 1 and spin j/é respectively,
so no attempt was made to obtain the analytic form for the eigenvalues
in these cases.

As can be seen in (3.8) and (3.1L4), the angular eigenvalues
depend on the combination WT, where M is the strength of the dipole
moment inAﬁucleér ﬁaénetons and T is the reduced mass. The value of
B therefore depends on the monopolé mass. In Table I we have therefore
included fhe monopole mass that gives B = -%. The significance of this

valuevis apparent in Sec. IV.
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TV. THE RADIAL EQUATION

Hydrogen Atom Type of Solution

First consider the case when the Coulomb potential is attractive
and the-l/r2 "potential” is repulsive. For this case the form of U(r)
is unimportant if it is appreciable only for small radii. We then have
the familiaf form of the radial eqpation for the hydrogen atom. Let

Ko = ~2TE, TYZee/k =p, and p = 2kr; then (2.12) becomes

_%%SpE%F;R_.(i_wL%-%)R:o. (4.1)
o} P

Equation (4.1) has the solution12

o ev-p./z’ p-(s+l)/2

where _ _
1/2 ' -
.8 = f(h& + l) / ) ()‘"'3)
+#2p = 2K -s+1 = 21<:+(L|{3+1)1/2 + 1. (b.4)
The positive root of (4.3) gives a divefgence at the origin,
and in order for s to be real we must have B > - 1/4 . The confluent

hypergeometric function, lFl(-K;c;z), reduces to a polynomial when K

is a positive integer, and this gives the quantization condition

2 4
E, = -oT v 7 e s - , (4.5)

@K + [u{a + 1]1/2 + 1)

Typical values of these binding energies are given in Table IV. As can

be seen there, these binding energies are quite large for a wide range
of values for the mass and thé strength of the monopole. We therefore

- Justify a posteriori the neglect of the atomic electrons in the problem.
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Due to thé factor exp(-kr) in (4.2), the wavefunction is
small at the radius of a typical orbital electron. Including the effect
of electrbné in the calculation'gives a pertubation of order Me/MZ'
 This tyﬁe of binding can occur, of courée, Vhen B =0 so that the
" nucleus can-haVe spin O. |
Since Schwinger has emphasized'the possibility of a magnetic

3

monopole's having electric charge, this‘type of binding is potentially

important.

Electrically Neutral Monopole with Repulsive Core .

 Let Y = 0, so that we have a l/r2 "potential” and there is an

infinite repulsive core of radius Ty
<r< '
w . 0O<r r,
Ulr) = :
o ry<r <o . (4.6)

Equation (2.12) then reduces to Bessel's equation subject to the

boundary conditions

R(ry) = O, | (4.7)
lim R(X) = 0. I (4.8)
X = @

Tet X = -2TE, then the most general negative energy solution of (2.12)

“is given by _
R(r) = rfl/g. [cl L) + e K-P(kr)} ;o (4.9)

where Ip and KP are.Bessel functions of ordef

(1 \1/2

p = T *+ B . | (4.10)
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The asymptotic behavior of the Bessel functions is given by

K, (x) ~ (wr/2x)l/2 e, | (k.11)
X = @ . .

Ip(x) ~ (l/2ﬁx)l/2 et , ‘ | (k.12)
X~ ® : o

so that in order to satisfy the boundary condition, Eq. (L4.8), we must

have ¢y - 0. As for the boundary condition, (h.?); for p and x

real, K@(X) has no zerbs,'as can be seen by examining the integral

representation
Ki(x) = exp {-x cosh t ) cosh(pt)dt . -~ (k.13)
0

Therefore, from (4.10), we cannot satisfy (4.7) when B > - 1/4. When
B < - l/h,' p is purely imaginary and we have the possibility of zefos.
The locétion of the zeros can be approximately determined by the asymptotic

13 .

expansion

Kip(x)_ ~ %ne-np_/e {2_(-_%)'}1/2 {J

/

2(x -

1
1/3 7 J-l/}} 2‘{ 17z :

JB/?

(4.14)

The first zero on the rhs of (4.14) is at p = x, and this gives an

approximate value for the binding energy

— ™~ EO for B < -l/)-{- . ()"'-15)
0

Typical values of this binding energy for different nuclei are given in

2T r

Table V. The importance of the repulsive core is now evident. Without
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it, the wave function would "fall" to the origin and the enefgies (4.15)
‘can beédme‘éfbitrarily large in-absolute value.ly 'We emphasize that the
‘use of a répulsive core is not necessérily unphysical. Relativistic
correctiohé7to Schrodinger's eqﬁation can be appfoximated by a repulsive
potentiai proportionaivto r-h', and hadronic efféctsvcould gi&e a
repulsive Yukawa potential. 1In either of these caéés, R would have

to be sméll‘at some typical radius, T and this approximately leads

to binding,énergies of the same order of magnitude as those given by
(h.l5);‘since the energy depends roughly on the smallest radius to which
the wave function is allowed to fall. It seems reasonablé that this
'radiuS'wquld be near the nuclear Compton wavelength, which is the value
we have used in Table V. |

. The use of the potential U(r) attempts to circumvent the

limitationé of Schrodinger's eQuation at small radii. Once these
limitafionsvare recognized, the conclusion that boupd states exist seems

inescapable.

V. DISCUSSION AND CONCLUSIONS

The possibiliﬁy that magnetic monopoles can be captured and
bound_by_éommon nuclei must be considered in the evaluation of monopoie
searches. For a complete classification and review of the experimental
situation we refer the reader to the paper by Amaldi.2 Here we discuss
only those experiments which search for monopoles trapped in geological
matefials ﬁhat are potential collectors. Many of these experiments rely
on extracting the monopoles from the host material by use of pulsed
magnetic‘fields. If the monopole is loosely held with a binding energy

of a few eV, the magnetic fields can éasily extract it. But the binding
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energies proposed in this paper are orders of maghitude greater than
those envisioned by-Malkus,l and cannot be overcome by conveniently
available magnetic fields. N o

'If the bound states discussed here exist, one must be prepared
to show thatithe external fiéld used in a particular experiment can
remove a‘maéneticallyvcharged nucleﬁs-monopole bound state: ffom the
surroundiﬁg chemical structure. If the magnetic charge is measured by
ionizatidn, one must consider the possibility that a large electric
charge is’also present. There is élso the possibility that theitotal
mass of the monopole and nucleus is considerably la?ger than the original
monopole mass.15

- Another consideration is the abundance of potential collecting
material. Many experiments have searched fpr monépbles_in ferromagnetic
material that is scarce compared with the quantity of materiai represented
by the‘nuclei in Table ITI. A rough figure of merit for experimental
searches of this type is given by the area of the material exposed to
'cosmic rays multiplied by the exposure time. If cbmmon materials as
well as ferromagnetic materials are potential monopole collectors, experi-
: ments‘involving a larger surface area of material méy be considered. |

* We emphasize that those experiments which do not extract monopoles
from potential collectors in order to detect them are cleaner than those
Which>do, since their detection apparatus depends only on the classical,
large-radius properties of monopoles. Their results are therefore less
susceptible of possible modification from the quantum-mechanical properties -

of the monopole.
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E. P. Wigner, Gruppentheorie (FreidrichWeinig und Sohn, Braunschwieg,

1931) has shown the din are the wave functions of a symmetric top.

We can get a qualitative feel for why we have eigenfunctions of the
form d° instead of d =
orm m,zv/e *P° mO ~

rotation to (2.10) also rotates the direction of the singularity

YmJ by noting that applying a

line of the vector potential and we must apply a géﬁge transformation
to réstore the form; (2.4) or (2.5). The theory would therefore not
be rdtétion-invariant without gauge transformations, that is, without
massless photons. The quantization condition (2.16) comes from

re uiri m and n in dJ
q ng _ mn

to be half integral, (2.18) comes

from requiring m-n to be integral. |

Perhaps the cleanest derivation of the quantization condition (2.16)
is that of A. Goldhaber, Phys. Rev. 140, BihO?:(l965), which does not.
depend on a singularity line. -

The‘eigenvalues, (3.8), were obtained by Malkus in Ref. 1. The eigen-
values; (3.14), were omitted except for the sbecial case, N = 0.

W. Magnus, et al., op. cit., p. 239. _
Equétion (h.15).is an'asymptotic reﬁresentation of the "Nicholsen"
type valid for x/p near unity and x-p large, ana therefore gives
only a rough estimate for the location of the zeros. See W. Magnus

et al., op. cit., p. 1k,
L,/D; Landau and E. M. Lifschitz, Quantum Mechanics, 2nd Ed. (Addison-

Wesley, Reading, Mass., 1965). See especially the discussion in Secs.
22 and 35.

As lqng as experiments do not detect any monopole signal, this criticism
is academic. The problem is that these experiments couid not determine

monopole properties from a positive result.
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Table I. The assumed properties of the magnetic monopole and the nucleus
(Refs. 3, 5). The unit of magnetic charge is chosen to be g = 1/2e,
from (2;16). The mass of the monopole is, of éourse, undetermined.

In making sample calculations we have taken Mi = 10, 100, but we have
found no- theoretical arguments to indicate that.this is the right

order of magnitude.

Magnetic monopole Nucleus
Magnetic charge vg, v =0,%,%, ... , 0
' Electric charge Ye, Y =0,%,... Ze, Z = 0,1,2,°°"
Mass : oM M,
) | 1
Spin 0 | =05 Lo
Magnetic dipole mom. 0 - : : ue/é

Electric dipole mom. 0 ‘ ‘ 0
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Table II. Typical values of 62 for spin-l/é nuclei. The value of

monopole mass which gives By = -1/h s also shown.

Nucleus . Z u Monopole | v BQ(O,Z,V,uT)
(% abund?.nce) Mass (Mp =1)
0.35 o 0.25
n o 0 -1.91 10 | -1 - 0.87
- | 100 -1 - 0.95
»6 15 -2 - 0.25
10 -2 < 1.7k
100 --2 - 1.89
D, H 1 2.79 1.16 1 - 0.25
10 1 - 0.77
100 | 1 - 0.88
0.812 2 - 0.25
10 2 - 1.54
100 2 - 1.77
ct3 ' 6 0.702 10 1 1.01
(1.11 X 107°) 32,2 1 - 0.25
100 1 - 1.0k4
10 2 2.03
23.3 | 2 - 0.25
100 2 - 2.09

Continued
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Table II; Cont.

Nucleuskl .' Z u ‘Monopole : % BE(O,Z,V,uT)
(% abundance) Mass (Mp = 1)
F19 | ' | 9 2.63 L.46 1 - 0.25
(100) | | 10 i - k.12
100 » 1 -16.6
k.32 | 2 - 0.25
10 2 - 8.4
100 2 -33.1
poL 15 1.13 10 1 3.25
(100) 24,6 1 - 0.25
100 1 - 5.9
10 | 2 6.50
25.9 2 - 0.25

100 2 -11.8
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Table III. Typical values of Bl for spin-l/2 nuclei.

-

Nucleus - 7 Mo Monopole v Bllv[ln(o, Z,V, uT)
(% abundance) Mass
10 -1 - 0.32
n 0 -1.91 100 -1 - 0.37
10 -2 - 1.01
100 -2 - 1.1k
He” 2 -2.12 10 1 - 0.86
(1.3 x 10"6) 100 1 - 1.5
10 o2 | - 2.20
100 2 - 3.55
o _ 9 2.63 10 1 L.81
(100 ) , 100 1 - 6.80
10 2 , 9.70

100 2 ~1k,32
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Table IV. Typical values of the binding energy, Ey, given by Eq. (4.5)

for naturally occurring nuclei.

Nucleus B : B MY Binding
S ' Energy (eV.)

pHE 0.52 100 ‘ 1.9 x 10"
2 6 100 5.8 x 10°
w4 : 7 , 100 | 9.3 x 10°

pt " ., . 12.8 100 8.;; X 10
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Table V. Typical values of the binding enérgy,iEq. (k.15), for common

nuclei.
.'Nucleus _ MY B Bindiﬁg energy
: {GeV)
n 100 -0.95 : 0.35
D, H 100 -0.88 | 0.32
s 100 -1.0L , o.oﬁﬁ
19 100 -16.6. - i 0.51
’1>A31 100 | -5.9 o 6.12
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FIGURE CAPTION
Fig. 1. Plot of Zv s m  shows the regions whére different expressions

for the angularﬂeigenvalues are obtained. In region 1, use

Eq. (5.8); in 2, Eq. (3.1L); in 3, Eq. (3.10); and in 4 Eq. (3.16).
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission: :

A. Makes any warranty or representation, expressed or implied, with

respect to the accuracy, completeness, or usefulness of the informa- -
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages

resulting from the use of any information, apparatus, meuthod, or
process disclosed in this report.

As used in the above, "person acting on behalf of the Commission”’
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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