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POSSIBLE BINDING OF A MAGNETIC MONOFOLE TO A 

PARTICLE WITH ELECTRIC ChARGE AND A MAGNETIC DIPOLE MOMENT 

Dennis Sivers 
* 

Lawrence Radiation Laboratory 
University of California 
Berkeley, California 

April 28, 1970 

ABSTRACT 

We argue that Dirac monopoles, if they exist, could 

be strongly bound to those naturally occurring free nuclei 

with magnetic dipole moments, and we discuss the effect 

this binding would have on the interpretation of experimental 

monopole searches. 
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I. INTRODUCTION 

This subject was first discussed by Malkus,' who concluded that 

there cannot be bound states between Dirac monopoles and naturally occur-

ring free nuclei. We disagree with Malkus's interpretation of his results, 

and believe that bound states of this type with binding energies up to the 

GeV range are a definite possibility if monopoles exist at all. 

Because they involve assumptions about the properties of an 

unobserved particle, our arguments based on simple nonrelativistjc calcu-

lations are not conclusive. We cannot be sure that we are not neglecting 

certain crucial features of the problem. What these calculations do 

indicate is that the possibility of magnetically charged nuclei must be 

considered in the design of magnetic monopole searches. 2  

The plan of this paper is as follows. In Sec. II we discuss the 

formulation of a nonrelativistic, quantum-mechanical Hamiltonian for the 

problem. In Sec. III we obtain the eigenvalues for the angular operator 

for a spin-O monopole and a spin-1/2 nucleus. In Sec. IV we examine the 

radial equation In two separate cases in which binding is possible. The 

first case ocóurs when the monopole has an electric charge and the problem 

is similar to that of the hydrogen atom. In the second, the tuonopole is 

electrically neutral and there is a hard-core repulsion at small radius. 

In each case, we calculate typical values for the binding energy. Finally, 

in Sec. V we briefly discuss the validity of the calculations and the 

effect the results would have on the conclusions of varous types of 

experimental monopole searches. 
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II. FORMUlATION OF THE PROBLEM AND CHARGE QUANTIZATION 

We work in units with 4 = c = 1 and, since we are primarily 

interested in binding to nuclei, choose the basic unit of energy by 

taking the mass of the nucleon, MN  = 1. In these units the nuclear 

rnagneton is given by e/2. The properties of the charged particle and 

the monopole are summarized in Table I. Note the possibility that the 

monopole carries electric charge, as emphasized by Schwinger, 3  We do 

not necessarily adopt Schwinger t s suggestion that the monopole be given 

fractional electric charge and identified with the quark. 

The magnetic field of a monopole of strength vg located at 

=O isgivenby 

= (vg/r2) 
1r 
	

(2.1) 

In order to construct a nonrelativistic, quantum-mechanical Hamiltoniari, 

we need to construct a suitable vector potential. This is awkward when 

V • B 0, as in (2.1), since we cannot define A by 

= Y2'xj 
	

(2.2) 

together with the gauge condition 

= 0. 	 (2.3) 

DiracTs solution to this problem was to find an expression for 

A which satisfies (2.3), such that the B field given by (2.2) agrees 

with (2.1) except on certain singularity lines. Two possibilities for 

the vector potential are 
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A r 
	e 
( 1 ) = A 	=0 

A (2) - A (2) - 
01 

	

r 	- e 

AØ(1) = vg(l - cos 9)/sin e, 

(2.4) 

= -vg cos 9/sin e, 	(2.7) 

where A 	 is singular along the negative z •axis (r = -z, 9 = 11) 

and A 	is singular aloig the entire z axis. The correspondence 

between (2.1) and (2.2) is then given by 

	

(vg/r2)I 	= 	x 	- B 	 (2,6) 

where 

f&rvg 5(x) 5(y) 	z < 0 	(e = 

	

= 	 - 	 , 	(2.7) 

0 	 z > 0 	(e=o) 

I2vg  5(x) 8(y) 	z < 0 	(e = 

	

B (2). = 
	 . 	(2.8) 

Z 	I 
t,-'2tvg 8(x) 5(y) 	z > 0 	(e = a) 

It is, of course, also possible to take alternative orientations for the 

singularity line or to find expressions for the vector potential involving 

curved singularity lines. In order to have rotation invariance in the 

theory, all physical observables must be independent of the singularity 

line. 

Within the approximations of nonrelativistic quantum mechanics, 

it is acceptable to use either vector potential, (2,4) or (2,7), directly 

in the Haniiltonian, although we must subtract the appropriate fictitious 

field, (2.7)  or (2.8), if we intend to calculate the correct stress-energy 
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tensor. 5  We therefore have the Eàmiltonian6  

(i) = 

- 22 
{ 	

r 	
~ sine 	S 

+ 	
- iZveg(l - cos e)] 

sin S 

+ YZe + U(r) , 

+ V.teg T E 
• r 

(2.9) 

where T = M Mz/(Mf + Mz) and U(r) is an undetermined potential which 

is assumed to be appreciable only at small distances. The necessity for 

includin€ this undetermined potential is discussed later, but at this 

point it reflects our ignorance of hadronic and form-factor effects at 

small distances. 

Schr6dinger's equation is searable; 

H' R(r) (l)( 
	

) = E R(r) (l)( 	
) 	 (2.10) 

becomes 

sin e 
[sin e 	sin S To 

+ ( 	

- izveg(l - cos @)) 
} 

+ ve 	
r 	

(l)( 	
) 	

(l) (1)( 	
) 	 (2.11) 

and 

J 1 / 	\ 2/ 
— ) --- U 	r -- 

There are completely an 

by inserting the vector 

+ 	
+ 2U(r)R1(r) = 2TER(r). 

ilogous expressions for the ilamiltonian obtained 

potential (2.5) instead of (2.4). As yet, we 
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have no way of knowing that the results depend on whether we choose a 

vector potential with a one-sided or a two-sided singularity line. 

To investigate this point, we look at the solution of the angular 

eigen'value equation for i = 

A 	e) e 	
= 	(i) (2,m,Zv) 	e) e, 	(2.1)im  

with 

A(1) 	
e 	

8 	in 9 	

- 

	(1+cos 9) 

+ (- 2Zveg)(° 	

)2] 

(2.1Ll) 

Equation (2.1) has the solution 7  

d 2+s 
= m_zveg, z veg (@) .em (2 = 0,1,2,.), 

(2.17) 

where s = max( rn - Zveg I, 	Zveg I) and the d(e) are the familiar 

representations of the rotation group.. 
8

In order to have rotation 

invariance, we must therefore have the quantization condition 9  

ZVeg = 1 
	

(n = 1, 2,...) 
	

(2.16) 

Proceeding in the same way for the vector potential with the two-sided 

singularity line, we find the angular eigenfuncti.ons 

(2) - 
- dz(8 ) veg 	, (2.17) 

and requiring rotation invariance in this instance gives the stronger 

quantization condition, 

Zveg = 1 n 	 (n = 1, 2, ") . 	 (2.18) 
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The familiar q.uantization conditions, (2.16) and (2.18), have 

been obtained in many independent ways. 10  Here they are necessary in 

order that the angular eigenfunct ions of the quantum mechanical 

Hamiltonian correspond to irreducible representations of the rotation 

group. The eigenvalues corresponding to (2.15) and (2.17) are 

respectively 

m,Zv) = f + ( Im I + Im - 2ZveI){ + 1 + (Imi + !m - 2Zveg) 

2222. 

	

-Zveg 	 (2.19) 

and 

a(2)(mZv) = 

	

+ (lm + Zvegj + rn - zvegj) 

2222 + 1 + j(Im + zvegf + Im - ZveJ)} - z v e g 

(2.20) 

From now on, we take 

eg = 1/2 , 	 (2.21) 

and note that the stronger two-sided quantization condition, (2.18), is 

equivalent to requiring v to be an even integer in (2.16). We then 

have 

a (2 ) 	 Zv ( m Zv ) = 	m + -, zv), 	V = 0, 	+L , -,. 	 , 

(2.22) 

and all results can be obtained by using the r*e) and (2.22). Thus, 

from examining Schr'ddingerts equation with i = 0, the only difference 

between a two-sided and a one-sided vector potential are the different 
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quant1zation conditions, (2.16) and (2.18), and we cannot distinguish 

between the two possibilities unless we observe experimentally a magnetic 

monopole with v = 1. Note that the eigenvalues (2.19) and (2.20) are 

positive definite 

III. THE AEGTJLAR OPERATOR WREN 	0 

Now, consider the solution of the angular eigenvalue equation, 

(2.11), for a spin-i nucleus with t O. 	Let y = 	and x = cos 9, 

then (2.11) becomes 

(A 	+ vyx 	 v.y(l_x)h/2(1+x)2e_\ (Ae 

vy (l_x )V2 (1+x )h/2 e1 	A(1) vyx 	

) 	
Be 

/ 

= - çBe 	

(3.1) 

The polynomials ii(e), (2.15), are orthogonal, and this suggests we 

make the expansion 

	

= 	ci(x), 	 (3.2) 

B 	t 	j'm 

	

- 	d. 	c'() 	 () 
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We have to consider separately two cases of (3.1), 

Casel: 	m 	i, 	(m-Zv).1, 	 (3.4a) 

Case 2: 	m 	l, 	(m - Zv) . 0 . 	 ( 3.4b) 

Other values of m can be reduced to one of these two case by using 

the identity 

(3.5) 

In order to relate 	and 4c 	it is convenient to express them_l

dj in terms of Jacobi polynomials, mn 

m/2 	.jm-zvJ/2 (m, Jm-zvl) r(x) = (1 - x) 	(i + x) 	P 	(x). 	(3,6) 

After the replacement, (3.6), we see that Eq. (3.1) has a different form 

in each of the two cases, (3.4). 

Case 1. Absorbing the normalization of (3.6) into the coefficients 

of (3.2)  and (3.3), we have the equations 

• 	ck [_a(km_lzv) + + vyx] 	(m_i,m_i_Zv) 

+ 	vyd(1 - x2 ) Pmm(X) = 0 , 

= 	 (3.la) 

ck vy pmm(X ) + 	d[_a(k,m,zv) + - vyx} 

x (mmZv)() = 0 . 
	 (3.7b) 
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If the series terminates, then NA = NB + 1. Exanding the Jacobi 

polynomials in power series and matching powers of x, we find the eigen-

values 

± 	 2 	22 

	

Zv 	Zv 
(NB,m,Zv,v7) = (NB + m - -- ) - 

1/2 

- 	B + m -- 	+ ( 	- vy) + [(N 
	Zv\2  Z2v2 	Zv 	2 

(3.8) 

These eigenvalues need not all be positive. The minimum occurs when 

NB = 0, m = Z + 1, or m = 1, 

r 

	1 1/2 mm 	( 	) = 1 + ZVI -Il + IzvI + ( 	- vy)2 	 (.9) 
(N,m) 	

1 	 1 2  

which can be negative when (v2/li.) (z - T)2  is large enough. Inserting 

(3.5) into  (3.7), we get the eigenvalues for the case when m 0 and 

(m - Zv) - 0, 

	

±(NmZvyv) = lt(NB, -m+1, -ZV, _yv), 	m = 0,-1,-2," 

(3.10) 

Case 2, In this instance, the eigenvalues (2,19) are independent 

of m and all equal to 

21 a(1)(,o,zv) = 	+ i) + 	
+ 

 2 	fzvl . 	 ( 3.11) 

Equation (3,1) becomes 
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N 

C [-a(k,O,Zv) + + vyx I p(m_lZv _m+l)(X ) 

+ 	d.vy(1 - X)pm)(X), 	(3.12a) 
j;O 

N 	 N 

vy(i + )pm1,Zv1) (x ) + 	d.[-Cl(jIOIZV) 

+ 	- V7X I P(m, Zv_m)(X ) , 

(3.12b) 

where NA = NB. Using the id.entity 7  

(1 - x) [p(ab) - p(a_1,b+1)] = 	(a + N - i) 	(a-1,b+i) 
(a+bN) N-i 

- 	N 	(a-1,b+1) 
(a+bN) N 

(3.13) 

we can combine the sums in (3.12) and obtain the eigenvalues 1' 

	

\2(NB, zv,yv) = NB(NB + i) + (2NB + i) 2 
IZvI 	 N3  

- 	
- N + 

B 	2 
(3.1 1i.) 

When NB = 0 this reduces to 

Zv 
2 (0;  Zv, yv) = 	- yv = 	(z - T) . 	 (3.15) 
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Inserting (3.7) into  (3.12), we get the eigenvalues for the case when 

m'O, m-Zv1, 

(NB, Zv, v) = 	2(NB, -Zv, -yv) . 	 ( 3.16) 

Figure 1 shows a plot of Zv vs m and indicates where the various 

expressions for the eigenvalues are valid. Tables II and III give a 

tabulation of P . for naturally occurring nuclei with various 

assumptions about the magnetic monopole mass and charge. As can be 

seen, negative eigenvalues are in abundance and, as is discussed in 

Sec. IV, this opens the possibility of bound states between an electrical-

ly neutral monopole and nuclei if there is a hard-core repulsion. 

Numerical calculations of eigenvalues for spin-i and spin-3/2 nuclei 

also indicate the possibility of negative values for the angular eigen-

value. The methods used for the spin- 1 
 case can lead to cubic or 

quartic equations involving P for spin 1 and spin 3/2 respectively, 

so no attempt was made to obtain the analytic form for the eigenvalues 

in these cases. 

As can be seen in (3.8) and (3.14), the angular eigenvalues 

depend on the combination uT, where p. is the strength of the dipole 

moment in nuclear magnetons and T is the reduced mass. The value of 

therefore depends on the monopole mass. In Table I we have therefore 

- 	- 	included the monopole mass that gives 	_. The significance of this 

value is apparent in Sec. IV. 
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IV. THE RADIAL EQUATION 

Hydrogen Atom Type of Solution 

First consider the case when the Coulomb potential is attractive 

and the 1/r2  "potential' T  is repulsive. For this case the form of U(r) 

is unimportant if it is appreciable only for small radii. We then have 

the familiar form of the radial equation for the hydrogen atom. Let 

k2  = -2TE, TYZe2/k = p, and p = 21cr; then (2.12) becomes 

1 	6 	2 3 	
R- (+--i)R = 0. 	 (!l.l) 

Equation .i) has the solution12  

R(p) = e/2 	_(s+1)/2 1F1 (-K; 1-s; p) , 	 (.2) 

where 

s = 	+ 1)1/2., 	
() 

	

+2p = 2K-s+1 = 2K+(+1)1/2 	 () 

The positive root of (4.3)  gives a divergence at the origin, 

and in order for s to be real we must have 	- 1/4 . The confluent 

hypergeometric function, 1F1 (-K;c;z), reduces to a polynomial when K 

is a positive integer, and this gives the quantization condition 

EK  
22 

= -2T 	Z e 	
2 

(2K + ( 4p  + 1]1/2 + 1) 

Typical values of these binding energies are given in Table IV. As can 

be seen there, these binding energies are quite large for a wide range 

of values for the mass and the strength of the monopole. We therefore 

justify a posteriori the neglect of the atomic electrons in the problem. 
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Due to the factor, exp(-kr) in (4.2), the wavefunction is 

small at the radius of a typical orbital electron. Inc luding the effect 

of electrons in the calculation gives a pertubationof order Me/MZ 

This type of binding can occur, of course, when it = o so that the 

nucleus can have spin 0. 

Since Schwinger has emphasized the possibility of a magnetic 

monopole' s having electric charge, this type of binding is potentially 

important. 

Electrir Neutral Monpole with Repulsive Core 

Let Y = 0, so that we have a 1r 2  "potential" and there is an 

infinite repulsive core of radius r 0, 

00 	 O<r<r0  

11(r) = 

0 	 r0 <r<oo . 	 ( 4.6) 

Equation (2.12) then reduces to Bessel's equation subject to the 

boundary conditions 

R(r0 ) = 0, 	 (Ii..7) 

urn 	R(X) 	0 	 (4.8) 
x - 

Let Ic2  = ..2TE, then the most general negative energy solution of (2.12) 

is given by 

R(r) = r
-1/2 f 	

I (kr 	+ C2 K(])} , 	 (. 9) 

where I and K are Bessel functions of order 

p = ( 	
+ 	)h/2 , 	 (l.iO) 
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The asymptotic behavior of the Bessel functions is given by 

K (x) 	 (7r/2x) 1/2 e -x , 	 (ii..fl) p 	x-'co 

1(x) 	 (1/2 X )1/2  e+X 	 (4.) 

so that in order to satisfy the boundary condition, Eq. (4.8), we must 

have c1  = 0. As for the boundary condition, (4.7), for p and x 

real, K(x) has no zeros, as can be seen by examining the integral 

representation 

K(x) 

= fo 	
exp _x cosh t cosh(pt)dt . 	 ( 4.13) 

Therefore, from (4.10), we cannot satisfy (4.7) when P 	i/I-i., When 

- 1/4, p is purely imaginary and we have the possibility of zeros. 

The location of the zeros dan be approximately determined by the asymptotic 

expansion'3 	 / 

K1 (x) 	e/ [2( 	x)Ju/2 
111/3 + 113J 
	

[ 

2(x- 	j  3/ 

(14.1 )4) 

The first zero on the rhs of (4.14) is at p x, and this gives an 

approximate value for the binding energy 

1 

2 	E0 	for 	P < -i/li. . 	 ( 4.17) 
2T r0  

Typical values of this bindg energy for different nuclei are given in 

Table V. Thb importance of the repulsive core is now evident. Without 
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it, the wave function would "fall" to the origin and the energies ( 4 17) 
l) 	. 

can become arbitrarily large in absolute value. 	We emphasize that the 

use of a repulsive core is not necessarily unphysical. Relativistic 

corrections to Schrb.inger's equation can be approximated by a repulsive 

potential proportional to r _ 4, and hadronic effects could give a 

repulsive Yukawa potential. In either of these cases, R would have 

to be small at some typical radius, r 0, and this approximately leads 

to binding energies of the same order of magnitude as those given by 

(4.15), since the energy depends roughly on the smallest radius to which 

the wave function is allowed to fall. It seems reasonable that this 

radius would be near the nuclear Compton wavelength, which is the value 

we have used in Table V. 

The use of the potential U(r) attempts to circumvent the 

limitations of Schrbdinger's equation at small radii. Once these 

limitations are recognized, the conclusion that bound states exist seems 

inescapable. 

V. DISCUSSION AND CONCLUSIONS 

The possibility that magnetic monopoles can be captured and 

bound by common nuclei must be considered in the evaluation of monopole 

searches. For a complete classification and review of the experimental 

situation we refer the reader to the paper by Amaldi. 2  here we discuss 

only those experiments which search for tuonopoles trapped in geological 

materials that are potential collectors. Many of these experiments rely 

on extracting the monopoles from the host material by use of pulsed 

magnetic fields. If the monopole is loosely held with a binding energy 

of a few eV, the magnetic fields can easily extract it. But the binding 
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energies proposed in this paper are orders of magnitude greater than 

those envisioned by Malkus, '  and cannot be overcome by conveniently 

available magnetic fields. 

If the bound states discussed here exist, one must be prepared 

to show that the external field used in a particular experiment can 

remove a magnetically charged nucleus-monopole bound state from the 

surrounding chemical structure. If the magnetic charge is measured by 

ionization, one must consider the possibility that a large electric 

charge is also present. There is also the possibility that the total 

mass of the inonopole and nucleus is considerably larger than the original 

monopole mass.'5  

Another consideration is the abundance of potential collecting 

material. Many experiments have searched for monopoles in ferromagnetic 

material that is scarce compared with the quantity of material represented 

by the nuclei in Table II. A rough figure of merit for experimental 

searches of this type is given by the area of the material exposed to 

cosmic rays multiplied by the exposure time. If common materials as 

well as ferromagnetic materials are potential nionopole collectors, experi-

ments involving a larger surface area of material may be considered. 

We emphasize that those experiments which do not extract monopoles 

from potential collectors in order to detect them are cleaner than those 

which do, since their detection apparatus depends only on the classical, 

large-radius properties of monopoles. Their results are therefore less 

susceptible of possible modification from the quantum-mechanical properties 

of the monopole. 
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FOOTNOTES AND RKFERCES 

* 
National Science Foundation Predoctoral Feflow. 

W. V. R. Malkus, Phys. Rev. 	, 899 (1971). For related discussions, 

see also P. P. Band.aret, Helv. Phys. Acta 19, 703 (1946) and C. J. 

Eliezer and S. K. Roy, Proc. Cambridge Phil. Soc. 58, 4Oi (1961). 

A complete review of monopole searches can be found in E. Amaldi, 

On the Dirac Magnetic Poles, in Old and New Problems in Elementary 

Irticles, edited by G. Puppi (Academic Press, New York, 1968), p.  20. 

More recent experiments that rely on magnetic fie1s to extract monopoles 

are R. L. Fleischer, H. R. Hart, I. S. Jacobs, P. B. Price, W. M. 

Schwarz and F. Auxnento, Phys. Rev, 184 1393  (1969) and R. L. Fleischer, 

P. B. Price, and R. T. Woods, Phys. Rev. 	1398 (1969). An example 

of an experiment that does not depend on extracting monopoles is 

L. W. Alvarez, P. H. Eberhard, R. R. Ross, and R. D. Watt (UCRL-19440, 

Dec. 1969), Science (to be published). 

J.Schwinger, Phys. Rev. 144.,  1087 (1966); 	1536 (1968). Giving 

the magnetic monopole an electric charge is permitted provided one 

uses a vecta potential with a two-sided singularity line, and the 

appropriate quantization. We do not consider the extra factor of 2 

that Schwinger obtains by considering surfaces which intersect a 

gauge line on their boundary. 

ii.. P. A. M. Dirac, Proc. Roy. Soc. (London) A133,  60 (1931); Phys. Rev. 

74, 817 (1948). The use of the vector potential in quantum mechanics 

is obligatory because of the necessity of obtaining a gauge-independent 

translation operator--J. Zak, Phys. Rev. D4, A16O2 (1964). It is 

easily shown that the correct generator of the translation group in 
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the presence of a magnetic field is 

P = -IV - eA - 1 r)(B. 
-d 	 2 

See the discussion of B. Zuinino in 1966 International School of 

Physics "Ettore Majorana, edited by Z. Zichichi (Academic Press, 

New York, 1966), about the interpretation of the singularity lines 

and alternative forms for the vector potential, 

B. Amaldi, op. cit., points out that in order to have the correct 

form.for the stress-energy tensor we must subtract the fictitious 

field, (2.1) or (2.8). The stress-energy tensor is invariant under 

a rotation in "charge space" of the form 

I 	 \ 
/ g' 	7' cos 	 sin 5 	/ g ' 

e' ) = \_sin 	 cos 5 	e I 
If a suitable rotation is chosen, our calculation can be valid for 

a spin-0 nucleus and a magnetic monopole with an electric dipole 

moment. 

The Hamiltonian is in the Puli approximation, neglecting the spin-

orbit interaction. Relativistic corrections are assumed to be 

approximated by the undetermined potential, U(r). 

W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems 

for the Special Functions of Mathematical Physics (Springer-verlag, 

New York, 1966), p. 209. 

M. E. Rose, Elementary Theory of Angular Momentum (John Wiley and 

Sons, New York, 1957), P. 48. 
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E. P. Wigner, Gruppentheorie (Freidrichweinig und. Sohn, Braunschwieg, 

1931) has shown the d. 	are the wave functions of a symmetric top.mn  

We can get a qualitative feel for why we have elgenfunctions of the 

J 
m,Zv1 	

J 
mO 	

J form ci 	/2  instead of ci = Y m  by noting that applying a 

rotation to (2.10) also rotates the direction of the singularity 

line of the vector potential and we must apply a gauge transformation 

to restore the form, (2.4) or (2.5). The theory would therefore not 

be rotation-invariant without gauge transformations, that is, without 

massless photons. The q.uantization condition (2.16) comes from 

J requiring m and n in d 	to be half integral, (2.18) comes mn 

from requiring rn-n to be integral. 

Perhaps the cleanest derivation of the quantization condition (2.16) 

is that of A. Goldhaber, Thys. Rev. 	B1407 (1965), which does not 

depend on a singularity line. 

The elgenvalues, (3.8), were obtained by Malkus in Ref. 1. The eigen-

values, (3.14), were omitted except for the special case, N = 0. 

W. Magnus, et al., op. cit., p.  239. 

Equation ( 1 .15) is an asymptotic representation of the ' tNicholsen" 

te valid for x/p near unity and x-p large, and therefore gives 

only a rough estimate for the location of the zeros. See W. Magnus 

et al., op. cit., p. 142. 

l. L.D. Landau and E. M. Lifschitz, Quantum Mechanics, 2nd. Ed. (Addison-

Wesley, Reading, Mass., 1965). See especially the discussion in Secs. 

22 and 35. 

15. As long as experiments do not detect any monopole signal, this criticism 

is academic. The problem is that these experiments could not determine 

monopole properties from a positive result. 
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Table I. The assumed properties of the magnetic monopole and the nucleus 

(Ref S. 3 	5). 	The unit of magnetic charge is chosen to be 	g = 1/2e, 

from (2.16). 	The mass of the monopole is, of course, undetermined. 

In making sample calculations we have taken 	M 	= 10, 100, but we have 

found no theoretical arguments to indicate that this is the right 

order of magnitude. 

Magnetic monqpole Nucleus 

Magnetic charge vg, 	V = 0, ±1, ±2,... 0 

Electric charge Ye, 	Y = 0,±1,... Ze, 	Z = 0,1,2," 

Mass •  M 

Spin 0 . 	 E=0,, 	1,••. 

Magnetic dipole mom. 0 	 . 

Electric dipole mom. 0 	 . 0 
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Table II. Tical values of P 2 for spin-1/2 nuclei. The value of 

monopole mass which gives P 2 = -1/4 is also shown. 

Nucleus Z 	p. Monopole v P (0,Z,v,11T) 
(% abundance) Mass (M 	= 1) 

2 
 

0.35 -1 -0.25 

0 	-1.91 10 -1 - 0.8 

100 -1 - 0.95 

0.15 -2 -0.25 

10 -2 1.74 

100 -2 - 1.89 

p,H 1 	2 .79 1.16 1 - 0.25 

10 1 -0.77 

100 1 - o.88 

0.812 2 - 0.25 

10 2 

100 2 -1.77 

c13  6 	.0.702 10 1 1.01 
(1.11X10 2 ) . 32.2 1 - 0.25 

100 1 - 1.04 

10 	 2 	 2.03 

23.3 	 2 	- 0.25 

100 	 2 	- 2.09 

Continued. 
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Table II. Cont. 

Nucleus 	 Z 	p. 	Monopole 	V 

(% abundance) 	 Mass (M = i) 
p2(0, z, V, p.T) 

Fl9 9 	2.63 	4.46 1 - 0.25 

(ioo) 10 1 - 4.12 

100 1 -16.6 

4.32 2 - 0.25 

10 2 -8.2k 

100 2 -33.1 

P 15 	1.13 	10 1 3.25 

(100) 24.6 1 - 0.25 

100 1 -5.9 

10 2 6.50 

23.9 2 - 0.25 

100 2 -n.8 
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Table III. Typical values of 	for spin-1/2 nuclei, 

Nucleus 	 Z 	 Monopole 	V 	P 
Mm

(O,z,v,p.T) 
(% abundance) 	 Mass 

10 -1 - 032 

n 	 0 	-1 .91 100 -1 - 0.37 

10 -2 -1.01 

100 -2 -1.1k 

He3  2 	-2.12 10 .1 - 0,86 

(1.3 X 10_ 6 ) ioo i - 1.5 

10 2 - 2.20 

100 2 -3.55 

F19 	 9 	2.63 10 1 4.81 

(100,0 ) 100 1 - 6.8o 

10 2 9.70 

100 2 -14-32 
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Table IV. 	Typical values of the binding energy, E0, 	given by Eq. 	(Li.. 5) 

for naturally occurring nuclei. 

Nucleus 
MY Binding 

Energy (eV. 

p,H 0,52 100 1.9 X 	10 

6 100 5.8 	x 

N1 7 100 9.3 	x 	10 

p31  12.8 100 8i4 X 106 
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Table V. 	Typical values of the binding energy, Eq. (li..15), 	for common 

nuclei. 

Nucleus 
MY Binding energy 

GeV 

n 100 -0.97 0.35 

P,H 100 -0.88 0.32 

C13  100 -1.o4 O.O3 

F'9  100 -16.6 o.i 

p31  100 -5.9 0.12 
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FIGURE CAPTION 

Fig. 1. Plot of Zv vs rn shows the regions where different expressions 

• 	for the angular eigenvalues are obtained. In region 1, use 

• 	Eq. (3.8); in 2, Eq. (3.14); in 3, Eq. (3.10); and in 1,  Eq. (3.16). 



__ a 

X8L704 -2736 

Fig. 1 



I... I_ ¼J r I.. I M .J I I t., I... 

This report was prepared as an account of Government sponsored work. 
Neither the United States, nor the Commission, nor any person acting on 
behalf of the Commission: 

Makes any warranty or representation, expressed or implied, with 
respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information, 
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or 
Assumes any liabilities with respect to the use of, or ,  for damages 
resulting from the use of any information, apparatus, method, or 
process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 
includes any employee or contractor of the Commission, or employee of 
such contractor, to the extent that such employee or contractor of the 
Commission, or employee of such con tractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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