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Abstract 

A signature is an evolving customer pro- 
file computed from call records. AT&T uses 
signatures to detect fraud and to target mar- 
keting. Code to compute signatures can be 
difficult to write and maintain because of the 
volume of data. We have designed and imple- 
mented Hancock, a C-based domain-specific 
programming language for describing signa- 
tures. Hancock provides data  abstraction 
mechanisms to manage the volume of data  
and control abstractions to facilitate loop- 
ing over records. This paper describes the 
design and implementation of Hancock, dis- 
cusses early experiences with the language, 
and describes our design process. 

1 I n t r o d u c t i o n  

There are many families of programs whose 
members have a high degree of commonal- 
ity; such a family is called a domain. When 
the commonality is inherently complex, a 
domain-specific programming language may 
help domain programmers develop better 
software more quickly by factoring the com- 
plexity into the language. Recent examples 
of domain-specific languages and their do- 
mains include Envision [SF97] for computer 
vision, Fran JEll97] for computer animation, 
GAL [TMC97] for video card device drivers, 

*Now in the EECS department at the University 
of California at Berkeley. 

tNow in the CS department at Cornell University 

Mawl [ABB+97] for dynamic web servers, and 
Teapot [CRL96, CDR+97] for writing coher- 
ence protocols. In each case, the domain- 
specific language moved the burden of writ- 
ing intricate domain code from the program- 
mer to the compiler (or interpreter). We 
have designed and built a domain-specific lan- 
guage, called Hancock, to handle the com- 
plexity that  arises from the scale of szgnature 
computations [CP98]. As with the earlier lan- 
guages, Hancock programs are easier to write, 
debug, read, and maintain than the equiva- 
lent programs written in general-purpose pro- 
gramming languages. 

Signatures are profiles of customers that  
are updated daily from information collected 
on AT~T ' s  network. They are used for a vari- 
ety of purposes, including fraud detection and 
marketing. For example, AT~;T uses signa- 
tures to track the typical calling pattern for 
each of its customers. If customers far exceed 
their usual calling levels, the fraud detection 
system raises alerts. In contrast, a sudden 
drop in their calling levels signals that  they 
may have chosen another long-distance car- 
rier, triggering a marketing alert. Cortes and 
Pregibon describe signatures and their uses 
in more detail [CP98]. 

At a high level, the computation of a signa- 
ture is straightforward: process a list of call 
records and update data  in a file based on 
those records. Unfortunately, performance 
requirements that  arise from the volume of 
call records and the amount of stored profile 
da ta  complicate matters substantially. Effi- 
ciently coping with the da ta  requires a more 
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complex system architecture. Furthermore, 
the scale pressures programmers to conserve 
instructions, which tends to reduce program 
readability. The complexity of the architec- 
ture and the code complicates testing, which 
is already difficult because of long testing cy- 
cles. 

The scale of signature computations arises 
from both the number of calls and the number 
of customers. On a typical weekday, there are 
more than 250 million calls made on A T ~ T ' s  
network. The call records that  are used for 
signature computations contain only 32 of the 
more than 200 bytes of data  that  are col- 
lected for each call. To get a sense of the 
scale of this data, it takes about  15 minutes 
to read through one weekday's call data  (ap- 
prox 6.5GB) and about two hours to com- 
pute a typical signature on one processor of a 
16 processor SGI Origin 2000. A typical sig- 
nature tracks several hundred million phone 
numbers. Even if we store only two bytes of 
data  per customer, the files are very large, 
requiring a minimum of 500MB to hold the 
data. Such files also require significant addi- 
tional space to provide appropriate indexing. 

This scale complicates the architecture of 
signature programs because at such levels, 
I /O presents a significant bottleneck. To 
reduce this bottleneck, signature programs 
must be structured to minimize I /O.  In 
particular, signature programs sort the call 
records that  they process to improve locality 
of reference to their signature files, and they 
cache parts of these files to reduce the number 
of disk accesses. Both techniques trade im- 
proved performance for increased code com- 
plexity. 

In addition to affecting the high-level ar- 
chitecture, the amount  of da ta  complicates 
the low-level code structure. Programmers 
writing signature programs have tended to re- 
spond to performance pressures by avoiding 
function calls and thereby writing less mod- 
ular code. The deeply nested code that  re- 
sults is difficult to decipher, which is a serious 
problem because it is often the only documen- 
tation of the signature it implements. An- 
other complication comes from the fact that  
the size of the signature files limits the num- 
ber of bytes we can store per phone number. 
As a result, we cannot store exact informa- 
tion for each phone number; instead we must 
approximate. Managing the translation be- 

tween the representation that  we can afford 
to store and the representation that  we want 
to compute with complicates the code. 

Hancock is a C-based domain-specific lan- 
guage that  reduces the coding effort of writ- 
ing signatures and improves the clarity of the 
resulting code by factoring into the language 
all the issues that  relate to scale. In par- 
ticular, Hancock programmers can focus on 
the signature they want to compute rather 
than the scaffolding necessary to compute it. 
The language includes constructs for describ- 
ing the overall system architecture, for speci- 
fying work that  should be done in response 
to events in the call stream, and for spec- 
ifying the representation of signature data. 
The Hancock compiler uses these constructs 
to generate the boiler-plate code that  makes 
hand-writ ten signatures difficult to maintain, 
without sacrificing efficiency. The Hancock 
runtime system supports external sorting and 
efficient access to signature data. Hancock 
does not address directly the problem of test- 
ing; instead, it reduces opportunities for bugs 
by relieving programmers of the burden of 
writing intricate code. 

This paper describes the design and imple- 
mentat ion of Hancock. Section 2 describes 
the domain in more detail and gives an ex- 
ample signature. Sections 3-5 present Han- 
cock's da ta  and control abstractions. We dis- 
cuss the implementat ion of Hancock's com- 
piler and runtime system in Section 6, early 
experiences with Hancock in Section 7, and 
our design process in Section 8. We conclude 
in Section 9. 

2 S i g n a t u r e  d o m a i n  

Signatures are a way to associate infor- 
mation with individual telephone numbers. 
For each phone number, a typical signature 
contains information about  the characteris- 
tics of outgoing calls from that  number and 
incoming calls to it. The outgoing data  is 
often split into sub-categories based on the 
type of call (for example, toll-free, interna- 
tional, intra-state, and other). This sec- 
tion describes the process of computing sig- 
natures, discusses the representation of signa- 
ture data,  and presents' an example signature. 

We first define some basic terminology. Sig- 
natures maintain information about phone 
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numbers rather than customers. A second 
database can be used to match signature data  
with customer information, but  that  process 
is outside of Hancock's domain. A telephone 
number (973 555 1212) contains an area code 
(973), an exchange (555), and a hue num- 
ber (1212). We often use the term exchange 
to mean the first six digits of a phone num- 
ber (973 555) and the term line to mean the 
whole phone number. Hancock supports a 
few basic types for phone numbers, dates, and 
times: area_code_t, exchange_t, line_t, date_t, 
and time_t. It also supports a type for call 
records: 

typedef struct { 
line_t origin; 
line_t dialed; 
date_t connectTime ; 
t ime_t duration; 
char isIncomplete ; 
char isIntl ; 
char isTollFree ; 

} callRec_t ; 

Each call record contains two phone numbers: 
the originating number and the dialed num- 
ber. Each record also stores the t ime the call 
was connected (connectTimo) and the dura- 
tion of the call in seconds (du ra t i on ) .  Call 
records also contain boolean flags describ- 
ing the type of call: i s I n c o m p l e t e ,  i s I n t l ,  
isTollFree, etc.  

2.1 Signature computation 

We update signature da ta  daily from the 
records of the calls made the previous day. 

Signature 

Figure 2: Signature da ta  representation 

Figure 1 shows a graphical depiction of the 
typical architecture we use for such compu- 
tations. We first sort the call records by the 
originating phone number and then update 
the outgoing portion of the signature for each 
phone number that  made a call. We then re- 
peat this process, sorting the call records by 
the dialed number and updating the incoming 
portion of the signature for each phone num- 
ber that  received a call. This architecture re- 
duces the I /O  needed to process a signature 
by ensuring good locality for references to the 
stored signature da ta  at the cost of a pair of 
external sorts. 

2 . 2  S i g n a t u r e  r e p r e s e n t a t i o n  

As mentioned earlier, the size of signature 
files limits the number of bytes we can keep 
for each phone number. As a result, we can- 
not keep exact information for each line. In- 
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stead, we need to approximate.  Conceptually, 
in each signature we have two views for our 
data: a precise form called the szgnature view 
and an approximate  form called the approx- 
zmatzon view. We compute  with the signa- 
ture, but store the approximation.  The  choice 
of these two views is application specific, as 
is the method for converting between them. 
We call the process of converting from the 
signature to the approximat ion view freezing; 
the converse process, thawing. (See Figure 2.) 
Note tha t  t h a w ( f r e e z e ( v ) )  does not neces- 
sarily equal v because freezing is often lossy. 

Having two views for the da ta  allows pro- 
grammers  to compute  with the natural  rep- 
resentation while saving disk space, but  it 
comes at the cost of having to manage  con- 
versions between the two views. 

2 .3  U s a g e  s i g n a t u r e  

This section describes the Usage signature, 
which we use as a running example.  Usage 
approximates  cumulat ive daily call durat ion 
for incoming calls, outgoing calls, and out- 
going calls to toll-free numbers.  Usage uses 
the same structure to track all three types 
of calls. In particular,  the signature type 
for each is seconds; the approximat ion type, 
a bucket number  between zero and fifteen. 
The buckets represent non-uniform ranges of 
durations. Bucket zero corresponds to very 
short calls and serves as the default value for 
lines with no recorded activity, while bucket 
fifteen corresponds to long calls. Thawing 
converts bucket numbers  to seconds by asso- 
ciating a default durat ion with each bucket. 
Freezing identifies the bucket with the appro- 
priate range of times. 

There are two parts  to the daily Usage com- 
putat ion.  First, we accumulate the precise 
usage in seconds for a part icular  phone num- 
ber for a part icular  type of call, and then we 
blend tha t  da ta  with the existing signature for 
that  type of call. The code for blending is: 

b l e n d ( n e w ,  o l d )  = n e w * l ~ b d a  + 

old*(1-1ambda) 

Blending of this form is common in signature 
computat ions.  

Pseudo-code for comput ing par t  of the 
Usage signature appears  in Figure 3. For 
brevity, we include only the code for com- 
puting the outgoing portion of the signature 

outgoingUsage(origin,  cal ls )  
in t  cumTollFree = 0; 
int cumOut = O; 

uhpprox = Get usage data for o r i g in  
uSig = Convert uhpprox from buckets 

to seconds 

for c in calls do 
if c.isTollFree then 

cumTollFree += c.duration 

else 

cumOut += c.duration 

end|f 

done 

uSig.outTollFree = 

blend(cumTollFree, uSig.outTollFree) 

uSig.out = blend(cumOut, uSig.out) 

uhpprox = Convert uSig from seconds 
to buckets. 

Record new uhpprox data for o r i g in  

Figure 3: Pseudo-code for comput ing par t  of 
the Usage signature 

for a single line, called o r i g i n  in the pseudo- 
code. A detailed version of Usage tha t  tracks 
some additional information can be found in 
Appendix A. 

3 D a t a  m o d e l  

This section describes Hancock's  da ta  
model,  which includes a model for collections 
of call records and a model for profile data.  

3 .1  C a l l  s t r e a m  

We model a collection of call records as 
a s t ream in Hancock. P rogrammers  use the 
s t r e a m  type operator  to declare a new s t ream 
type. Such a declaration names the new 
type and specifies both  the physical and the 
logzeal representations of  the records in the 
stream. Intuitively, the physical representa- 
tion describes the (highly encoded) structure 
of the records as they exist on disk, while the 
logical representation describes an expanded 
form convenient for programming.  The  dec- 
laration specifies a function to convert f rom 
encoded physical to expanded logical records. 
For example,  the following code declares a 
s t ream type c a l l S t r e a m :  
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stream cal lStreara { 

getvalidcall : PCallRec_t => 

callRec t ; 
} 

For this s tream, the physical type is 
PCal lRec_t ,  the logical type is c a l l R e c _ t ,  
and the conversion function g e t v a l x d c a l l  
constructs a logical record from a physical 
one. Function g e t v a l i d c a l l  has type 

char getvalidcall (PCallRec_t *pc 
callRec_t *c) 

This function checks tha t  the record *pc is 
valid, and if so, unpacks *pc into *c and re- 
turns t r u e  to indicate a successful conver- 
sion. Otherwise, g e t v a l i d c a l l  s imply re- 
turns f a l s e .  Programmers  can declare vari- 
ables of type c a l l S t r e a m  using s tandard C 
syntax (for example,  c a l l S t r e a m  c a l l s ) .  

We represent s t reams on disk as a directory 
tha t  contains binary files. Hancock's  wiring- 
diagram mechanism, which we discuss in Sec- 
tion 5, provides a way to match the name of 
a directory to a s tream. 

3 .2  S i g n a t u r e  d a t a  

Hancock provides two mechanisms for de- 
scribing signature data.  P rogrammers  use the 
r e c o r d  declaration to specify the fo rmat  of a 
profile and the map declaration to specify the 
mapping  between phone numbers  and pro- 
files. 

Records are designed to capture the rela- 
tionship depicted in Figure 2. They specify 
the types for the signature and approxima-  
tion views of a profile, as well as the freeze 
and thaw expressions for converting between 
these types. We use the following simple 
record to introduce the pieces of a r e c o r d  
declaration. 

record uFie ld(ufSig ,  ufApprox){ 
int  <=> char; 
ufSig(b)  = bucketToSec[b]; 
uApprox(s) = secToBucket(s);  

} 

This declaration introduces three types: 

• uF ie ld :  the type of the record, 

• u fS ig :  the type of the left-hand view 
(int), and 

• u fhpprox:  the type of the right-hand 
view (char) .  

The u f S i g ( b )  . . . .  port ion of the record 
declaration specifies how to thaw u f h p p r o x  
b to produce a u f S i g  value. Similarly, 
u f A p p r o x ( s )  . . . .  specifies how to freeze 
a uSig  s to obtain a uhpprox value. In this 
application, u h p p r o x ( s )  uses the function 
secToBucke t  to convert the seconds stored in 
integer s into a bucket number,  and u S l g ( b )  
uses the array bucke tToSec  to convert a 
bucket stored in b into the corresponding 
mean number  of seconds for tha t  bucket. To- 
gether, these expressions are an example of 
where t h a w ( f r e e z e ( s ) )  does not equal s. 

Records can have more than one field (in 
which case the fields are named),  and they 
can be included in other record declarations. 
For example,  a second r e c o r d  declaration 
tha t  appears  in the Usage signature, uLine,  
has the following form: 

record  uLine(uSig,  uApprox) { 
uField in; 

uFie ld  out ; 
uFie ld  outTF ; 

} 

As in our earlier example,  this declaration 
introduces three types: uLine,  uSig,  and 
nApprox. The type uLine  is the type of the 
record. The types uSig  and ugpprox  are 
equivalent to C structures constructed from 
the left and right types of uF ie ld :  

typedef  s t r u c t  { 
in t  in ; 
int out ; 
in t  outTF; 

} uSig; 

typedef struct { 

char in; 

char out ; 

char outTF; 

} uApprox; 

Because the record uLine  does not include 
explicit freeze and thaw expressions, Han- 
cock constructs them automatical ly  from the 
freeze and thaw expressions of the record's 
fields. For this record, the compiler con- 
structs the following freeze function: 

uApprox freeze(uSig s){ 

uApprox a; 

a.in = secToBucket(s.in) ; 

a. out = secToBucket (s. out) ; 

a. outTF = secToBucket (s. outTF) ; 

return a; 
} 
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The thaw function is constructed similarly. 
Although this example record only contains 

fields with record types, fields may also have 
regular C types. In this context, C types can 
be thought of as records with the same left- 
and right-hand type and the identity function 
for freezing and thawing. 

To convert between views, Hancock pro- 
vides the view operator ($). The expression 
ua$uSig converts uApprox ua to a uSig, us- 
ing the conversion specified implicitly in the 
uLine declaration. Expression us$uApprox 
behaves analogously. 

Hancock's map declaration provides a way 
to associate data  with keys. Typically a map 
does not contain da ta  for every possible key. 
Consequently, Hancock supports the notion 
of a default value, which is returned when a 
programmer requests da ta  for a key that  does 
not have a value stored in the map. For ex- 
ample, in the following map declaration, the 
keys have type l i n e _ t ,  the data  are struc- 
tures of type uApprox, and the default value 
is the constant uApprox structure consisting 
of all zeros. 

map uMap { 
key line_t; 
value uApprox; 
default {0,0,0}; 

} 

Defaults may also be specified as functions 
that  use the key in question to compute an 
appropriate default for that  key. For ex- 
ample, the map declaration below specifies a 
function, l i n e T o D e f a u l t ,  to call with the 
line in question when a default record is 
needed. 

map uMapF { 
key l i n e _ t ;  
va lue  uApprox; 
de fau l t  l ineToDefault ;  

} 

A common use for this mechanism is to 
construct defaults by querying another data  
s o u r c e .  

The identifier uMap names a new map type. 
Variables of this type can be declared us- 
ing the usual C syntax (for example, uMap 
u s a g e ) .  Hancock provides an indexing oper- 
ator <: . . '> to access values in a map. The 
code: 

l i ne_ t  pn; 

u = usage<:pn:>; 
. . .  

usage<:pn:> = u; 

gives an example of reading from and writing 
to a map. The usual idiom for accessing map 
da ta  combines the indexing and view opera- 
tors as in: 

us = usage< : pn: >$uSig ; 

Hancock also provides an operator  : = : 
copy maps. In particular, the s ta tement  

to 

new_usage :=: usage; 

causes uMap map new_usage  to be initialized 
with the da ta  from u s a g e .  

3 .3  D i s c u s s i o n  

By providing the programmer with appro- 
priate abstractions, Hancock reduces the in- 
tellectual burden of writing signatures. Al- 
though programmers were freezing and thaw- 
ing their da ta  prior to Hancock, they had not 
abstracted this idea. The result was numer- 
ous bugs caused by confusing the types of the 
two views. The structure enforced by records 
eliminates many of these bugs by requiring 
programmers to document the relationship 
between the two views, and to apply the view 
operator  to convert between them explicitly. 
As an added benefit, records simplify signa- 
ture code by generating conversion functions 
automatically from record fields when possi- 
ble. 

Maps provide an efficient implementation 
for the most performance critical part  of sig- 
nature programs. The index operation is 
more convenient than a library interface, and 
it provides stronger type-checking. 

4 C o m p u t a t i o n  M o d e l  

Hancock's computat ion model is built 
around the notion of iterating over a sorted 
stream of calls. Sorting call records en- 
sures good locality for references to the signa- 
ture da ta  that  follow the sorting order. Off- 
direction references may not have good local- 
ity, however. For example, if we sort the call 
records by the originating number, then up- 
dating the usage for tbat  number would have 
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good locality, while updat ing the usage for 
the dialed number  would suffer f rom bad lo- 
cality. Consequently, signature computat ions  
are typically done with multiple passes over 
the data,  each sorting the da ta  in a different 
order and updat ing a different par t  of the pro- 
file data.  We call each such pass, represented 
in Figure 1 as a dashed box, a phase. 

A phase starts  by specifying a name and 
a parameter  list. The body of a phase has 
three pieces: an iterate clause, a list of vari- 
able declarations, and a list of event clauses 
The following pseudo-code outlines the out- 
going phase of the usage signature: 

phase out (callStream calls, uMap usage) { 
iterate clause 
variable declarations 
event clauses 

} 

This code defines a phase out  that  takes two 
parameters:  a s t ream of calls and a usage 
map.  The iterate clause specifies an initial 
s t ream and a set of t ransformations to pro- 
duce a new stream. Variables declared at  the 
level of a phase are visible throughout  that  
phase. The  event clauses specify how to pro- 
cess the transformed stream. The next two 
subsections describe these clauses. 

4.1  I t e r a t e  C l a u s e  

Through the iterate clause, Hancock allows 
programmers  to t ransform a s t ream of logical 
call records into a s t ream of records tailored 
to the particular signature computat ion.  The 
iterate clause has the following form: 

iterate 
over stream variable 
sortedby sorting order 
filteredby filter predicate 
withevents event list 

We explain each of these pieces in turn. 
The ove r  clause names an initial s t ream to 
transform. The s o r t e d b y  clause specifies a 
sorting order for this stream. For example,  
the calls could be sorted by the originating 
phone number  or by the connect time. At 
present, the allowable sorting orders are hard- 
coded into Hancock. The f i l t e r e d b y  clause 
specifies a predicate tha t  is used to remove 
unneeded records f rom the stream. For ex- 
ample, a call s t ream may include incomplete 
calls, which are not used by the Usage signa- 
ture. Removing unneeded call records before 

processing the s t ream simplifies the process- 
ing code. 

The w i t h e v e n t s  clause specifies which 
events are relevant to this signature. We 
call the occurrence of a group of calls in the 
s t ream an event. Depending on the sorting 
order, different groups of calls can be identi- 
fied in the call s t ream. For example,  if the 
calls are sorted by originating number,  the 
possible groups are: 

• calls for the same area code, 

* calls for the same exchange, 

. calls for the same line, or 

• a single call. 

Within an event there are two impor tan t  sub- 
events: the beginning of the block of calls 
and its ending. The possible events and 
sub-events are related hierarchically; calls are 
nested with lines, lines within exchanges, and 
exchanges within area codes. 

Put t ing all these pieces together, the iter- 
ate clause for the outgoing phase of Usage has 
the following form: 

iterate 
over calls 
sortedby origin 
filteredby noIncomplete 
withevents line, call; 

This code specifies that calls is the initial 
stream, tha t  it should be sorted by the origi- 
nating number,  that  it should be filtered us- 
ing function n o I n c o m p l e t e ,  which removes 
incomplete calls from the stream, and that  
two events, l i n e  and c a l l ,  are of interest. 

4 .2  E v e n t  C l a u s e s  

The iterate clause specifies the events of 
interest in the s tream, but  it does not indi- 
cate what  to do when an event is detected. 
The event clauses of a phase specify code to 
execute in response to a given event. We il- 
lustrate this s tructure in Figure 4. Program- 
mers supply event code for the boxes, while 
Hancock generates the control-flow code tha t  
corresponds to the arrows. 

Each event has a name  tha t  corresponds to 
the event name listed in the iterate clause. 
Each event takes as a parameter  the portion 
of the call record that  triggered the event 
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Control flow managed by Hancock 

Figure 4: Hierarchical event structure 

For example, an area code event is passed 
the area code shared by the block of calls 
that  triggered the event. The body of each 
event has three parts: a list of variable dec- 
larations, a begin sub-event, and an end sub- 
event. Variables declared at the level of an 
event are shared by both its sub-events and 
are available to events lower down in the 
hierarchy, using a scoping operator (event  
name: : v a r i a b l e  name). A common pattern 
is for the programmer to declare a variable in 
the code for a line event, to initialize it in the 
begin-line sub-event, to accumulate informa- 
tion using that  variable while processing calls, 
and then to store the accumulated informa- 
tion during the end-line sub-event code. 

A sub-event is a kind (begin or end) fol- 
lowed by a C-style block that  contains a list 
of variable declaration and Hancock and C 
statements. Variables declared in a sub-event 
are visible only within that  sub-event. The 
code in Figure 5 implements the line and call 
events for the outgoing phase of Usage. 

Note that  the c a l l  event does not have 
sub-events. We call such events bottom-level 
events. The lowest event in any list of events 
is a bottom-level event. For example, Fre- 
quency, a signature that  we discuss later, does 
not collect summary information for a set of 
calls. It tracks only the existence of at least 
one call, so l i n e  is its bottom-level event. 

event line(line_t pn) { 

uSig cumSec; 

begin { 
cumSec.out = O; 
cumSec.outTF = O; 

} 

/* process  calls */ 

e n d  { 
uSig us; 

us = usage<:pn:>$uSig; 
us.outTF = 

blend(cumSec.outTF, us.outTF); 
us.out = blend(cumSec.out, us.out); 
usage<:pn:> = us$u/tpprox; 

event call(callRec_t c) { 
uSig line::cumSec; 

if (c.isTollFreeCall) 
cumSec.outTF += c.duration; 

else 
cumSec.out += c.duration; 

Figure 5: Event code for Usage signature 

4 . 3  D i s c u s s i o n  

Hancock's event specifications have several 
advantages First, the specifications have 
the flavor of function definitions with their 
a t tendant  modulari ty advantages, but  with- 
out their usual cost because the Hancock 
compiler expands the event definitions in-line 
with the control-flow code. Second, having 
the compiler generate the control flow re- 
moves a significant source of bugs and com- 
plexity from Hancock programs. Finally, pro- 
grammers can use the variable-sharing mech- 
anism to share information across events. 

A common question when thinking about  
designing a domain-specific language is 
whether or not ,a library would suffice. We 
rejected the library option largely because 
of Hancock's control-flow abstractions. In 
particular, expressing Hancock's event mode] 
and the information sharing it provides 
proved awkward in a call-back framework, the 
usual technique for implementing such ab- 
stractions. 

170 



5 Wiring Diagram 

In the previous section, we explained tha t  
computing a signature may  require multiple 
passes over the data.  Hancock provides the 
sig_maxn construct to express the da ta  flow 
between passes and to connect command-l ine 
input to the variables in the program.  The  
arcs between the phase boxes in Figure 1 de- 
pict this construct. The following code im- 
plements s ig_main for Usage: 

void sig_main ( 
const callStream calls <c:>, 

exists const ublap y_usage <u:>, 
new uMap u s a g e  <U:>) { 

usage :=:  y _ u s a g e ;  
out (calls, usage) ; 
in(calls, usage) ; 

) 

There are three parameters to the Usage 
signature. The first is a stream that contains 
the raw call data. The const keyword indi- 
cates that this data is read-only. The syn- 
tax ( < c : > )  after the variable name calls 

specifies that  this paramete r  will be supplied 
as a command-l ine option using the - c  flag. 
The colon indicates that  this flag takes an 
argument,  in this case the name of the direc- 
tory that  holds the binary call files. The ab- 
sence of a colon indicates tha t  the paramete r  
is a boolean flag. The Hancock compiler gen- 
erates code to parse command-l ine options. 
The second parameter  is a Usage map,  the 
name of which is specified using the -u  flag. 
The cons t  qualifier indicates the m a p  is read- 
only, while the e x i s t s  annotat ion indicates 
the map  must  exist on disk. The final param-  
eter names the Usage m a p  used to hold the 
result of this signature computat ion;  the -U 
flag specifies the file name for this map.  The 
no. qualifier indicates tha t  the m a p  must  not 
exist on disk. 

In general, the body of s ig_main is a se- 
quence of Hancock and C statements .  In Us- 
age, s ig_main copies the da ta  from y _ u s a g e  

into usage  and then invokes Usage's outgoing 
and incoming phases with the raw call s t ream 
and the Usage map  under construction as ar- 
guments. 

5 .1  D i s c u s s i o n  

The wiring d iagram clarifies the dataflow 
between phases For example,  some signa- 
tures need to make off-direction references to 

signature data.  A question tha t  arises is: are 
these references referring to da ta  computed 
in a previous phase or to da ta  computed the 
previous day? This question can be answered 
by looking at s ig .ma in .  If  the parameters  
to the phase do not include the original in- 
put map,  then all references must  be to the 
partially computed map .  

The automat ic  generation of argument  
parsing code is convenient and removes a 
source of tedium, but  its real benefit is that  
it connects Hancock variables to their on- 
disk counterparts.  I t  helps programmers  pro- 
tect valuable da ta  through the cons t ,  new 
and e x i s t s  qualifiers. The runt ime system 
catches a t t empts  to write to constant da ta  
and generates error messages. 1 It  detects 
when da ta  annota ted  as new already exists 
or when da ta  tagged with e x i s t s  is not on 
disk, in each case reporting a run-t ime error. 
These data-protect ion features are impor tant  
when it is t ime-consuming or even impossi- 
ble to reconstruct an accidentally overwritten 
signature. 

6 Implementat ion 

Our implementat ion of Hancock consists of 
a compiler that  translates Hancock code into 
plain C code, which is then compiled and 
linked with a runt ime system to produce ex- 
ecutable code. We modified CELT, a C-to-C 
translator  writ ten in ML[SCHO99] to parse 
Hancock and translate the resulting extended 
parse tree into abstract  syntax for plain C. 
The compiler generates code for the various 
Hancock operators  and clauses and for the 
main routine. The runt ime system, which is 
written in C, manages  the representation of 
Hancock da ta  on-disk and in memory.  I t  con- 
verts between these representations as neces- 
sary and it mediates  all access to the data.  

We were able to build Hancock relatively 
quickly by leveraging other people 's  soft- 
ware. In particular,  we built the com- 
piler on top of CKIT, an existing C-to-C 
translator[SCHO99] written for the purpose 
of building compilers for C-based domain-  
specific languages. We also used a col- 
lection of libraries: msort[Lin99, MMB92], 
sfio[KV91], and vmalloc[Vo96]. Msort pro- 

1 We intend to  check for writes  to  c o n s t  da ta  at 
compile time eventually. 
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Table 1: Example signatures. 

Signature 
Usage 
Frequency 
Activity 
Bizocity 

Description 
Average daily usage 

Calling frequency 
Days since last seen 
"Business-likeness" 

vides an external sorter and silo supports 64- 
bit files, making these two libraries particu- 
larly useful in addressing issues of scale. 

7 E a r l y  e x p e r i e n c e s  

Table 1 briefly describes four signatures: 
Usage, Frequency, Activity, and Bizocity. 
These signatures are computed daily from call 
records. In this section, we discuss how these 
signatures use Hancock's da ta  and control- 
flow mechanisms. 

The maps used by these signatures all have 
index types 'o f  line_t and value types that  
are records. Usage, Frequency, and Activity 
use constant defaults. Bizocity uses a default 
function that  queries a secondary map, which 
indicates whether the phone is a known resi- 
dence, a known business, or unknown. 

The records used in these signatures vary 
based on the application, but  they all have 
a common form: the desired profile contains 
several fields that  have the same underlying 
structure. To express this structure in Han- 
cock, we use two records: one to describe the 
basic fields and a second to group these fields 
into a profile. 

Table 2 describes the basic fields for the 
sample signatures and indicates how many 
such fields are contained in the profile record. 
In all these examples, the approximation type 
is a range that  can be represented with a C 
char  type. The signatures use different ap- 
proximation techinques. Buckehng divides 
the range of signature values into disjoint 
buckets and associates a default value with 
each such bucket. With this technique, freez- 
ing converts a signature value into the con- 
taining bucket, whereas thawing returns the 
default value for a bucket. Bucketing can use 
either fixed-width or variable-width buckets. 
Clamping converts values above the range of 

signature values to the largest value in the 
range and values below the range to the low- 
est value in the range. 

In all four signatures, the amount  of Han- 
cock code needed to describe the da ta  is 
small. The largest, Bizocity, takes fewer than 
30 lines. 

In terms of control-flow, the example sig- 
natures share the same high-level structure, 
each containing two phases: one to compute 
information for outgoing calls and another 
for incoming calls. The  event structures for 
the signatures are different, however. FFre- 
quency tracks only the existence of a call for 
a given number, so its bottom-level event is 
the line event. Activity and Usage do work 
at both call and line events. Bizocity uses 
these events and does significant computat ion 
at the exchange level. 

The  Hancock code that  implements these 
phases is small: the smallest, Frequency, 
takes 40 lines of code; the largest, Bizocity, 
takes 300 lines, more than 100 of which are 
for processing exchange events. 

In all, these examples indicate that  Han- 
cock da ta  descriptions are compact  and that  
the event processing code is modest in size. 
Ideally, we would like to compare the Han- 
cock implementations with hand-writ ten C 
implementations. Unfortunately, this com- 
parison is very hard to do fairly. The only 
C implementation of Usage, Activity, and Bi- 
zocity available to us is a program that  com- 
bines the computat ion of all three signatures 
and has code to manage the on-disk represen- 
tations of the signature files embedded in it. 
This program is about  1500 lines of code. 

8 D e s i g n  P r o c e s s  

This section describes the process tha t  we 
used in the design of Hancock and discusses 
the lessons we learned from our experience. 
Designing a domain specific language involves 
developing a model of the domain and then 
embodying that  model in a language. The 
language should capture the commonalities of 
the domain effectively and let the domain ex- 
perts worry about the details specific to an 
individual application. Figure 6 depicts the 
process we followed; it can be viewed as an 
elaboration of the first box of the F A S T  pro- 
cess [GJKW97]. 
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Table 2: Record structure for example signatures 

Signature Signature Approximation Approximation 
type type method 

Usage int (0-15) variable-width buckets 
Frequency double (0-255) fixed-width buckets 
Activity int (0-39) clamping 
Bizocity char (0-15) fixed-width buckets 

Number of 
fields 

4 
2 
3 
2 

First, we alternated talking with domain 
experts about sample signatures and con- 
structing models of the domain that  captured 
the common elements of these signatures. By 
iterating, we got feedback on the models and 
developed a common vocabulary. 

Once we had a good model for signatures, 
we applied this model by hand to construct a 
few sample applications. This experience led 
us to replace our model with one based on 
more primitive abstractions because the orig- 
inal abstractions were too high-level to serve 
as the. basis for a programming language. We 
eventually used these hand-written signatures 
to establish that  the code we expected to 
generate automatically would perform ade- 
quately and to evaluate whether a library- 
based solution was sufficient. 

After we had revised our model based on 
the hand-written signatures, we translated it 
into an actual language design. This trans- 
lation was not straightforward because al- 
though the model revealed what concepts 
needed to be expressible in the language, it 
did not give much guidance as to how they 
should be expressed. Then we wrote sample 
applications using our design, evaluated the 
resulting programs, and revised the design as 
appropriate. We found that  we needed to it- 
erate through this process many times. We 
discussed these sample applications with the 
domain experts to confirm that  we had cap- 
tured the essential elements of the domain. 

Finally, we implemented a compiler and 
runtime system for Hancock and evaluated 
the signatures written in Hancock. This eval- 
uation led us to refine many aspects of the 
original design, including the stream model, 
the view operator,  the s i g ~ a i n  annotations 
new and exists, support  for user-supplied 
compression functions, the r e c o r d  construct, 
and the implementation of maps. 

8 .1  L e s s o n s  L e a r n e d  

Our goal in this project was to design and 
implement a language that  would be adopted 
by signature researchers. While this project 
is not yet finished and so we cannot claim 
complete success at this time, we believe that  
we are on the right path because the signa- 
ture researchers have become advocates for 
Hancock. We believe that  three things that  
we did were responsible for our success and 
could be useful to others who want to design 
domain specific languages. 

First, we were open to constantly revising 
our models based on many different kinds of 
input. Figure 6 highlights the many sources 
of feedback that  we employed in our design 
process. In addition to consulting with the 
domain experts at many points in the pro- 
cess, we also built artifacts at several inter- 
mediate stages. These artifacts proved useful 
even though they are not the finM product of 
our work. 

Second, we worked closely with domain ex- 
perts and valued their input. This point de- 
serves elaboration, as it seems quite obvious 
that  language designers should heed their ex- 
perts. The fact that  domain experts may 
not be expert programmers leads to a temp- 
tat ion to dismiss their comments. Sample 
implementations they provide may be writ- 
ten badly. Consequently, it is easy to leap 
to the erroneous conclusion that  they do not 
know what they are doing. For example, sig- 
nature researchers had developed a map rep- 
resentation that  drew a lot of criticism from 
others outside the domain. When we investi- 
gated their representation, we learned that  al- 
though their~implementation had some prob- 
lems, the basic structure provided very good 
random access time. Such access is crucial 
to their clients, but  it had been ignored by 
other onlookers As language designers, we 
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Figure 6: Design Process 

had to be very careful to separate crucial do- 
main constraints from irrelevant details in the 
existing implementations. 

Finally, gaining credibility with domain ex- 
perts was essential because they are the po- 
tential users for the language. By designing 
concrete models in response to our discus- 
sions with them, we established that we were 
serious about helping them and that we un- 
derstood their domain. It also gave us a fo- 
cus for our discussions. By handwriting sig- 
natures in C, we established that we could 
satisfy their performance requirements. By 
choosing C as the basis for Hancock, we kept 
Hancock close to their usual programming 
environment. By using signature represen- 
tations consistent with the ones the domain 

experts had designed, we demonstrated that 
Hancock programs could manipulate their ex- 
isting data without difficulty. Most impor- 
tantly, by consulting with the domain experts 
at every point, we improved the design and 
got them excited about using Hancock. 

9 Conclusions 

Hancock handles the scale of the data used 
in signature computations, thereby reducing 
coding effort and improving the clarity of sig- 
nature code. The language, compiler, and 
runtime system provide the scaffolding neces- 
sary to compute signatures, leaving program- 
mers free to focus on the signatures them- 
selves. In particular, Hancock's wiring dia- 
gram makes the relationships among phases 
clear. Its event model allows programmers 
to specify the work needed to compute a sig- 
nature without having to write complicated 
control-flow code by hand. Finally, Han- 
cock's data model makes writing signatures 
less error-prone by handling multiple data 
representations automatically. 

We plan to extend Hancock in two ways. 
First, we intend to enrich the set of opera- 
tions that Hancock provides for streams. For 
example, we plan to add a reduction oper- 
ation that would allow programmers to pre- 
process streams to combine related records. 
Second, we intend to broaden the class of 
data that can be processed using Hancock, 
for example, to include Internet protocol logs 
or billing records. To accomplish this goal, 
we need to provide a mechanism for describ- 
ing data streams. Such a description must 
include how such streams can be sorted and 
how to detect events based on the sorting or- 
der. 
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A The Usage signature 

#define NUMBINS 16 
int bucketToSec[l~JMBINS]= { ... }; 
char secToBucket(int v) { ... }; 

record uField(ufSig, ufApprox) { 
int <=> char; 
ufSig(b) = bucketToSec[b]; 
ufApprox(s) = secToBucket(s); 

} 

record uLine(uSig, uApprox) { 
uField in; 
uField out; 
uField outTF; 
uField outIntl; 

} 

map uMap { 
key line_t; 
value uApprox; 
default {0,0,0}; 

} 

#define LAMBDA .15 
#define blend(new, old) \ 

(((new) * LAMBDh) + \ 
((old)*(l - LAMBDh))) 

#include calls.h 
int getvalidcall(PCallRec_t *pc, 

callRec_t *c){...} 
stream callStream 

{getvalidcall: pCallRec_t => 
callRec_t} 

c h a r  n o I n t l 0 r I n c 0 m p l e t e ( c a l l R e c _ t  *c)  { 
r e t u r n  ! ( c - > i s I n c o m p l e t e )  && 

!(c->isIntl); 
} 

c h a r  n 0 I n c o m p l e t e ( c a l l R e c _ t  *c)  { 
r e t u r n  ' ( c - > i s I n c o m p l e t e ) ;  

} 
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phase out(callStreamcalls, 
uMap usage) { 

iterate 
over calls 

sortedby origin 

filteredby noIncomplete 
vithevents line, call; 

event line(line_t pn) { 
uSig cumSec; 

begin { 
cumSec.outTF = O; 
cumSec.out[ntl = O; 
cllmSec.out = 0; 

} 

end { 
uSig us = usage<:pn:>$uSig; 
us.outTF = 

blend(cumSec.outTF, us.outTF); 
us.outIntl = 

blend(cumSec.outIntl, us.outIntl); 
us.out = 

blend(cumSec.out, us.out); 
usage<:pn:> = usSuApprox; 

event call(callRec_t c) { 
uSig line::cumSec; 

if (c.isTollFree) 
cumSec.outTF += c.duration; 

else if (c.islntl) 
cumSec.outIntl += c.duration; 

else 
cumSec.out += c.duration; 

} /* end call event */ 
}/* end out phase */ 
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phase in(callStreamcalls, 
uMapusage){ 

iterate 
over calls 

sortedby dialed 
filteredby noIntl0rlncomplete 
withevents line, call; 

event line(line_t pn) { 
uSig cumSec; 

begin { 
cumSec.in = O; 

} 

end { 
uSig us = usage<:pn:>$uSig; 
us.in = 

blend(cumSec.in, us.in); 
usage<:pn:> = us$uApprox; 

} 
} 

event call(callRec_t c) { 
uSig line::cumSec; 

cumSec.in += c.duration; 
} /* end call event */ 

}/* end in phase */ 

void sig_main( 
const callStream calls <c:>) { 

exists const uMap y_usage <u:>, 
hey uMap usage <U:> 

usage :=: y_usage; 
out (calls, usage) ; 
in(calls, usage) ; 
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