
Lawrence Berkeley National Laboratory
LBL Publications

Title
Hancock: a language for processing very large-scale data

Permalink
https://escholarship.org/uc/item/25k1q1zq

Journal
ACM SIGPLAN Notices, 35(1)

ISSN
0362-1340

Authors
Bonachea, Dan
Fisher, Kathleen
Rogers, Anne
et al.

Publication Date
1999-12-31

DOI
10.1145/331960.331981

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/25k1q1zq
https://escholarship.org/uc/item/25k1q1zq#author
https://escholarship.org
http://www.cdlib.org/

Hancock:
A Language for Processing Very Large-Scale Data

Dan Bonachea* Kathleen Fisher Anne Rogers

AT~T Labs
Shannon Laboratory

180 Park Avenue
Florham Park, NJ 07932, USA

b o n a c h e a @ c s , b e r k e l e y , edu

{kf isher , amr}@research, a r t . com

fms@cs, cornell, edu

Frederick Smith t

Abstract

A signature is an evolving customer pro-
file computed from call records. AT&T uses
signatures to detect fraud and to target mar-
keting. Code to compute signatures can be
difficult to write and maintain because of the
volume of data. We have designed and imple-
mented Hancock, a C-based domain-specific
programming language for describing signa-
tures. Hancock provides data abstraction
mechanisms to manage the volume of data
and control abstractions to facilitate loop-
ing over records. This paper describes the
design and implementation of Hancock, dis-
cusses early experiences with the language,
and describes our design process.

1 I n t r o d u c t i o n

There are many families of programs whose
members have a high degree of commonal-
ity; such a family is called a domain. When
the commonality is inherently complex, a
domain-specific programming language may
help domain programmers develop better
software more quickly by factoring the com-
plexity into the language. Recent examples
of domain-specific languages and their do-
mains include Envision [SF97] for computer
vision, Fran JEll97] for computer animation,
GAL [TMC97] for video card device drivers,

*Now in the EECS department at the University
of California at Berkeley.

tNow in the CS department at Cornell University

Mawl [ABB+97] for dynamic web servers, and
Teapot [CRL96, CDR+97] for writing coher-
ence protocols. In each case, the domain-
specific language moved the burden of writ-
ing intricate domain code from the program-
mer to the compiler (or interpreter). We
have designed and built a domain-specific lan-
guage, called Hancock, to handle the com-
plexity that arises from the scale of szgnature
computations [CP98]. As with the earlier lan-
guages, Hancock programs are easier to write,
debug, read, and maintain than the equiva-
lent programs written in general-purpose pro-
gramming languages.

Signatures are profiles of customers that
are updated daily from information collected
on AT~T ' s network. They are used for a vari-
ety of purposes, including fraud detection and
marketing. For example, AT~;T uses signa-
tures to track the typical calling pattern for
each of its customers. If customers far exceed
their usual calling levels, the fraud detection
system raises alerts. In contrast, a sudden
drop in their calling levels signals that they
may have chosen another long-distance car-
rier, triggering a marketing alert. Cortes and
Pregibon describe signatures and their uses
in more detail [CP98].

At a high level, the computation of a signa-
ture is straightforward: process a list of call
records and update data in a file based on
those records. Unfortunately, performance
requirements that arise from the volume of
call records and the amount of stored profile
da ta complicate matters substantially. Effi-
ciently coping with the da ta requires a more

163

complex system architecture. Furthermore,
the scale pressures programmers to conserve
instructions, which tends to reduce program
readability. The complexity of the architec-
ture and the code complicates testing, which
is already difficult because of long testing cy-
cles.

The scale of signature computations arises
from both the number of calls and the number
of customers. On a typical weekday, there are
more than 250 million calls made on A T ~ T ' s
network. The call records that are used for
signature computations contain only 32 of the
more than 200 bytes of data that are col-
lected for each call. To get a sense of the
scale of this data, it takes about 15 minutes
to read through one weekday's call data (ap-
prox 6.5GB) and about two hours to com-
pute a typical signature on one processor of a
16 processor SGI Origin 2000. A typical sig-
nature tracks several hundred million phone
numbers. Even if we store only two bytes of
data per customer, the files are very large,
requiring a minimum of 500MB to hold the
data. Such files also require significant addi-
tional space to provide appropriate indexing.

This scale complicates the architecture of
signature programs because at such levels,
I /O presents a significant bottleneck. To
reduce this bottleneck, signature programs
must be structured to minimize I /O. In
particular, signature programs sort the call
records that they process to improve locality
of reference to their signature files, and they
cache parts of these files to reduce the number
of disk accesses. Both techniques trade im-
proved performance for increased code com-
plexity.

In addition to affecting the high-level ar-
chitecture, the amount of da ta complicates
the low-level code structure. Programmers
writing signature programs have tended to re-
spond to performance pressures by avoiding
function calls and thereby writing less mod-
ular code. The deeply nested code that re-
sults is difficult to decipher, which is a serious
problem because it is often the only documen-
tation of the signature it implements. An-
other complication comes from the fact that
the size of the signature files limits the num-
ber of bytes we can store per phone number.
As a result, we cannot store exact informa-
tion for each phone number; instead we must
approximate. Managing the translation be-

tween the representation that we can afford
to store and the representation that we want
to compute with complicates the code.

Hancock is a C-based domain-specific lan-
guage that reduces the coding effort of writ-
ing signatures and improves the clarity of the
resulting code by factoring into the language
all the issues that relate to scale. In par-
ticular, Hancock programmers can focus on
the signature they want to compute rather
than the scaffolding necessary to compute it.
The language includes constructs for describ-
ing the overall system architecture, for speci-
fying work that should be done in response
to events in the call stream, and for spec-
ifying the representation of signature data.
The Hancock compiler uses these constructs
to generate the boiler-plate code that makes
hand-writ ten signatures difficult to maintain,
without sacrificing efficiency. The Hancock
runtime system supports external sorting and
efficient access to signature data. Hancock
does not address directly the problem of test-
ing; instead, it reduces opportunities for bugs
by relieving programmers of the burden of
writing intricate code.

This paper describes the design and imple-
mentat ion of Hancock. Section 2 describes
the domain in more detail and gives an ex-
ample signature. Sections 3-5 present Han-
cock's da ta and control abstractions. We dis-
cuss the implementat ion of Hancock's com-
piler and runtime system in Section 6, early
experiences with Hancock in Section 7, and
our design process in Section 8. We conclude
in Section 9.

2 S i g n a t u r e d o m a i n

Signatures are a way to associate infor-
mation with individual telephone numbers.
For each phone number, a typical signature
contains information about the characteris-
tics of outgoing calls from that number and
incoming calls to it. The outgoing data is
often split into sub-categories based on the
type of call (for example, toll-free, interna-
tional, intra-state, and other). This sec-
tion describes the process of computing sig-
natures, discusses the representation of signa-
ture data, and presents' an example signature.

We first define some basic terminology. Sig-
natures maintain information about phone

164

Call recordsl
I
I
I

Outgoing phase

Son by
Origin

Update
Outgoing

Data J I'
I

. . . . I I _

Old Dma New Data

Sort by
Dialed

Incoming phase

Figure 1: High-level architecture of signature computations

Update
Incoming

Data

"1

numbers rather than customers. A second
database can be used to match signature data
with customer information, but that process
is outside of Hancock's domain. A telephone
number (973 555 1212) contains an area code
(973), an exchange (555), and a hue num-
ber (1212). We often use the term exchange
to mean the first six digits of a phone num-
ber (973 555) and the term line to mean the
whole phone number. Hancock supports a
few basic types for phone numbers, dates, and
times: area_code_t, exchange_t, line_t, date_t,
and time_t. It also supports a type for call
records:

typedef struct {
line_t origin;
line_t dialed;
date_t connectTime ;
t ime_t duration;
char isIncomplete ;
char isIntl ;
char isTollFree ;

} callRec_t ;

Each call record contains two phone numbers:
the originating number and the dialed num-
ber. Each record also stores the t ime the call
was connected (connectTimo) and the dura-
tion of the call in seconds (du ra t i on) . Call
records also contain boolean flags describ-
ing the type of call: i s I n c o m p l e t e , i s I n t l ,
isTollFree, etc.

2.1 Signature computation

We update signature da ta daily from the
records of the calls made the previous day.

Signature

Figure 2: Signature da ta representation

Figure 1 shows a graphical depiction of the
typical architecture we use for such compu-
tations. We first sort the call records by the
originating phone number and then update
the outgoing portion of the signature for each
phone number that made a call. We then re-
peat this process, sorting the call records by
the dialed number and updating the incoming
portion of the signature for each phone num-
ber that received a call. This architecture re-
duces the I /O needed to process a signature
by ensuring good locality for references to the
stored signature da ta at the cost of a pair of
external sorts.

2 . 2 S i g n a t u r e r e p r e s e n t a t i o n

As mentioned earlier, the size of signature
files limits the number of bytes we can keep
for each phone number. As a result, we can-
not keep exact information for each line. In-

165

stead, we need to approximate. Conceptually,
in each signature we have two views for our
data: a precise form called the szgnature view
and an approximate form called the approx-
zmatzon view. We compute with the signa-
ture, but store the approximation. The choice
of these two views is application specific, as
is the method for converting between them.
We call the process of converting from the
signature to the approximat ion view freezing;
the converse process, thawing. (See Figure 2.)
Note tha t t h a w (f r e e z e (v)) does not neces-
sarily equal v because freezing is often lossy.

Having two views for the da ta allows pro-
grammers to compute with the natural rep-
resentation while saving disk space, but it
comes at the cost of having to manage con-
versions between the two views.

2 .3 U s a g e s i g n a t u r e

This section describes the Usage signature,
which we use as a running example. Usage
approximates cumulat ive daily call durat ion
for incoming calls, outgoing calls, and out-
going calls to toll-free numbers. Usage uses
the same structure to track all three types
of calls. In particular, the signature type
for each is seconds; the approximat ion type,
a bucket number between zero and fifteen.
The buckets represent non-uniform ranges of
durations. Bucket zero corresponds to very
short calls and serves as the default value for
lines with no recorded activity, while bucket
fifteen corresponds to long calls. Thawing
converts bucket numbers to seconds by asso-
ciating a default durat ion with each bucket.
Freezing identifies the bucket with the appro-
priate range of times.

There are two parts to the daily Usage com-
putat ion. First, we accumulate the precise
usage in seconds for a part icular phone num-
ber for a part icular type of call, and then we
blend tha t da ta with the existing signature for
that type of call. The code for blending is:

b l e n d (n e w , o l d) = n e w * l ~ b d a +

old*(1-1ambda)

Blending of this form is common in signature
computat ions.

Pseudo-code for comput ing par t of the
Usage signature appears in Figure 3. For
brevity, we include only the code for com-
puting the outgoing portion of the signature

outgoingUsage(origin, cal ls)
in t cumTollFree = 0;
int cumOut = O;

uhpprox = Get usage data for o r i g in
uSig = Convert uhpprox from buckets

to seconds

for c in calls do
if c.isTollFree then

cumTollFree += c.duration

else

cumOut += c.duration

end|f

done

uSig.outTollFree =

blend(cumTollFree, uSig.outTollFree)

uSig.out = blend(cumOut, uSig.out)

uhpprox = Convert uSig from seconds
to buckets.

Record new uhpprox data for o r i g in

Figure 3: Pseudo-code for comput ing par t of
the Usage signature

for a single line, called o r i g i n in the pseudo-
code. A detailed version of Usage tha t tracks
some additional information can be found in
Appendix A.

3 D a t a m o d e l

This section describes Hancock's da ta
model, which includes a model for collections
of call records and a model for profile data.

3 .1 C a l l s t r e a m

We model a collection of call records as
a s t ream in Hancock. P rogrammers use the
s t r e a m type operator to declare a new s t ream
type. Such a declaration names the new
type and specifies both the physical and the
logzeal representations of the records in the
stream. Intuitively, the physical representa-
tion describes the (highly encoded) structure
of the records as they exist on disk, while the
logical representation describes an expanded
form convenient for programming. The dec-
laration specifies a function to convert f rom
encoded physical to expanded logical records.
For example, the following code declares a
s t ream type c a l l S t r e a m :

166

stream cal lStreara {

getvalidcall : PCallRec_t =>

callRec t ;
}

For this s tream, the physical type is
PCal lRec_t , the logical type is c a l l R e c _ t ,
and the conversion function g e t v a l x d c a l l
constructs a logical record from a physical
one. Function g e t v a l i d c a l l has type

char getvalidcall (PCallRec_t *pc
callRec_t *c)

This function checks tha t the record *pc is
valid, and if so, unpacks *pc into *c and re-
turns t r u e to indicate a successful conver-
sion. Otherwise, g e t v a l i d c a l l s imply re-
turns f a l s e . Programmers can declare vari-
ables of type c a l l S t r e a m using s tandard C
syntax (for example, c a l l S t r e a m c a l l s) .

We represent s t reams on disk as a directory
tha t contains binary files. Hancock's wiring-
diagram mechanism, which we discuss in Sec-
tion 5, provides a way to match the name of
a directory to a s tream.

3 .2 S i g n a t u r e d a t a

Hancock provides two mechanisms for de-
scribing signature data. P rogrammers use the
r e c o r d declaration to specify the fo rmat of a
profile and the map declaration to specify the
mapping between phone numbers and pro-
files.

Records are designed to capture the rela-
tionship depicted in Figure 2. They specify
the types for the signature and approxima-
tion views of a profile, as well as the freeze
and thaw expressions for converting between
these types. We use the following simple
record to introduce the pieces of a r e c o r d
declaration.

record uFie ld(ufSig , ufApprox){
int <=> char;
ufSig(b) = bucketToSec[b];
uApprox(s) = secToBucket(s);

}

This declaration introduces three types:

• uF ie ld : the type of the record,

• u fS ig : the type of the left-hand view
(int), and

• u fhpprox: the type of the right-hand
view (char) .

The u f S i g (b) port ion of the record
declaration specifies how to thaw u f h p p r o x
b to produce a u f S i g value. Similarly,
u f A p p r o x (s) specifies how to freeze
a uSig s to obtain a uhpprox value. In this
application, u h p p r o x (s) uses the function
secToBucke t to convert the seconds stored in
integer s into a bucket number, and u S l g (b)
uses the array bucke tToSec to convert a
bucket stored in b into the corresponding
mean number of seconds for tha t bucket. To-
gether, these expressions are an example of
where t h a w (f r e e z e (s)) does not equal s.

Records can have more than one field (in
which case the fields are named), and they
can be included in other record declarations.
For example, a second r e c o r d declaration
tha t appears in the Usage signature, uLine,
has the following form:

record uLine(uSig, uApprox) {
uField in;

uFie ld out ;
uFie ld outTF ;

}

As in our earlier example, this declaration
introduces three types: uLine, uSig, and
nApprox. The type uLine is the type of the
record. The types uSig and ugpprox are
equivalent to C structures constructed from
the left and right types of uF ie ld :

typedef s t r u c t {
in t in ;
int out ;
in t outTF;

} uSig;

typedef struct {

char in;

char out ;

char outTF;

} uApprox;

Because the record uLine does not include
explicit freeze and thaw expressions, Han-
cock constructs them automatical ly from the
freeze and thaw expressions of the record's
fields. For this record, the compiler con-
structs the following freeze function:

uApprox freeze(uSig s){

uApprox a;

a.in = secToBucket(s.in) ;

a. out = secToBucket (s. out) ;

a. outTF = secToBucket (s. outTF) ;

return a;
}

167

The thaw function is constructed similarly.
Although this example record only contains

fields with record types, fields may also have
regular C types. In this context, C types can
be thought of as records with the same left-
and right-hand type and the identity function
for freezing and thawing.

To convert between views, Hancock pro-
vides the view operator ($). The expression
ua$uSig converts uApprox ua to a uSig, us-
ing the conversion specified implicitly in the
uLine declaration. Expression us$uApprox
behaves analogously.

Hancock's map declaration provides a way
to associate data with keys. Typically a map
does not contain da ta for every possible key.
Consequently, Hancock supports the notion
of a default value, which is returned when a
programmer requests da ta for a key that does
not have a value stored in the map. For ex-
ample, in the following map declaration, the
keys have type l i n e _ t , the data are struc-
tures of type uApprox, and the default value
is the constant uApprox structure consisting
of all zeros.

map uMap {
key line_t;
value uApprox;
default {0,0,0};

}

Defaults may also be specified as functions
that use the key in question to compute an
appropriate default for that key. For ex-
ample, the map declaration below specifies a
function, l i n e T o D e f a u l t , to call with the
line in question when a default record is
needed.

map uMapF {
key l i n e _ t ;
va lue uApprox;
de fau l t l ineToDefault ;

}

A common use for this mechanism is to
construct defaults by querying another data
s o u r c e .

The identifier uMap names a new map type.
Variables of this type can be declared us-
ing the usual C syntax (for example, uMap
u s a g e) . Hancock provides an indexing oper-
ator <: . . '> to access values in a map. The
code:

l i ne_ t pn;

u = usage<:pn:>;
. . .

usage<:pn:> = u;

gives an example of reading from and writing
to a map. The usual idiom for accessing map
da ta combines the indexing and view opera-
tors as in:

us = usage< : pn: >$uSig ;

Hancock also provides an operator : = :
copy maps. In particular, the s ta tement

to

new_usage :=: usage;

causes uMap map new_usage to be initialized
with the da ta from u s a g e .

3 .3 D i s c u s s i o n

By providing the programmer with appro-
priate abstractions, Hancock reduces the in-
tellectual burden of writing signatures. Al-
though programmers were freezing and thaw-
ing their da ta prior to Hancock, they had not
abstracted this idea. The result was numer-
ous bugs caused by confusing the types of the
two views. The structure enforced by records
eliminates many of these bugs by requiring
programmers to document the relationship
between the two views, and to apply the view
operator to convert between them explicitly.
As an added benefit, records simplify signa-
ture code by generating conversion functions
automatically from record fields when possi-
ble.

Maps provide an efficient implementation
for the most performance critical part of sig-
nature programs. The index operation is
more convenient than a library interface, and
it provides stronger type-checking.

4 C o m p u t a t i o n M o d e l

Hancock's computat ion model is built
around the notion of iterating over a sorted
stream of calls. Sorting call records en-
sures good locality for references to the signa-
ture da ta that follow the sorting order. Off-
direction references may not have good local-
ity, however. For example, if we sort the call
records by the originating number, then up-
dating the usage for tbat number would have

168

good locality, while updat ing the usage for
the dialed number would suffer f rom bad lo-
cality. Consequently, signature computat ions
are typically done with multiple passes over
the data, each sorting the da ta in a different
order and updat ing a different par t of the pro-
file data. We call each such pass, represented
in Figure 1 as a dashed box, a phase.

A phase starts by specifying a name and
a parameter list. The body of a phase has
three pieces: an iterate clause, a list of vari-
able declarations, and a list of event clauses
The following pseudo-code outlines the out-
going phase of the usage signature:

phase out (callStream calls, uMap usage) {
iterate clause
variable declarations
event clauses

}

This code defines a phase out that takes two
parameters: a s t ream of calls and a usage
map. The iterate clause specifies an initial
s t ream and a set of t ransformations to pro-
duce a new stream. Variables declared at the
level of a phase are visible throughout that
phase. The event clauses specify how to pro-
cess the transformed stream. The next two
subsections describe these clauses.

4.1 I t e r a t e C l a u s e

Through the iterate clause, Hancock allows
programmers to t ransform a s t ream of logical
call records into a s t ream of records tailored
to the particular signature computat ion. The
iterate clause has the following form:

iterate
over stream variable
sortedby sorting order
filteredby filter predicate
withevents event list

We explain each of these pieces in turn.
The ove r clause names an initial s t ream to
transform. The s o r t e d b y clause specifies a
sorting order for this stream. For example,
the calls could be sorted by the originating
phone number or by the connect time. At
present, the allowable sorting orders are hard-
coded into Hancock. The f i l t e r e d b y clause
specifies a predicate tha t is used to remove
unneeded records f rom the stream. For ex-
ample, a call s t ream may include incomplete
calls, which are not used by the Usage signa-
ture. Removing unneeded call records before

processing the s t ream simplifies the process-
ing code.

The w i t h e v e n t s clause specifies which
events are relevant to this signature. We
call the occurrence of a group of calls in the
s t ream an event. Depending on the sorting
order, different groups of calls can be identi-
fied in the call s t ream. For example, if the
calls are sorted by originating number, the
possible groups are:

• calls for the same area code,

* calls for the same exchange,

. calls for the same line, or

• a single call.

Within an event there are two impor tan t sub-
events: the beginning of the block of calls
and its ending. The possible events and
sub-events are related hierarchically; calls are
nested with lines, lines within exchanges, and
exchanges within area codes.

Put t ing all these pieces together, the iter-
ate clause for the outgoing phase of Usage has
the following form:

iterate
over calls
sortedby origin
filteredby noIncomplete
withevents line, call;

This code specifies that calls is the initial
stream, tha t it should be sorted by the origi-
nating number, that it should be filtered us-
ing function n o I n c o m p l e t e , which removes
incomplete calls from the stream, and that
two events, l i n e and c a l l , are of interest.

4 .2 E v e n t C l a u s e s

The iterate clause specifies the events of
interest in the s tream, but it does not indi-
cate what to do when an event is detected.
The event clauses of a phase specify code to
execute in response to a given event. We il-
lustrate this s tructure in Figure 4. Program-
mers supply event code for the boxes, while
Hancock generates the control-flow code tha t
corresponds to the arrows.

Each event has a name tha t corresponds to
the event name listed in the iterate clause.
Each event takes as a parameter the portion
of the call record that triggered the event

169

Begin End

A r e a ~ /

Call ~

[•] Programmer supplied code

Control flow managed by Hancock

Figure 4: Hierarchical event structure

For example, an area code event is passed
the area code shared by the block of calls
that triggered the event. The body of each
event has three parts: a list of variable dec-
larations, a begin sub-event, and an end sub-
event. Variables declared at the level of an
event are shared by both its sub-events and
are available to events lower down in the
hierarchy, using a scoping operator (event
name: : v a r i a b l e name). A common pattern
is for the programmer to declare a variable in
the code for a line event, to initialize it in the
begin-line sub-event, to accumulate informa-
tion using that variable while processing calls,
and then to store the accumulated informa-
tion during the end-line sub-event code.

A sub-event is a kind (begin or end) fol-
lowed by a C-style block that contains a list
of variable declaration and Hancock and C
statements. Variables declared in a sub-event
are visible only within that sub-event. The
code in Figure 5 implements the line and call
events for the outgoing phase of Usage.

Note that the c a l l event does not have
sub-events. We call such events bottom-level
events. The lowest event in any list of events
is a bottom-level event. For example, Fre-
quency, a signature that we discuss later, does
not collect summary information for a set of
calls. It tracks only the existence of at least
one call, so l i n e is its bottom-level event.

event line(line_t pn) {

uSig cumSec;

begin {
cumSec.out = O;
cumSec.outTF = O;

}

/* process calls */

e n d {
uSig us;

us = usage<:pn:>$uSig;
us.outTF =

blend(cumSec.outTF, us.outTF);
us.out = blend(cumSec.out, us.out);
usage<:pn:> = us$u/tpprox;

event call(callRec_t c) {
uSig line::cumSec;

if (c.isTollFreeCall)
cumSec.outTF += c.duration;

else
cumSec.out += c.duration;

Figure 5: Event code for Usage signature

4 . 3 D i s c u s s i o n

Hancock's event specifications have several
advantages First, the specifications have
the flavor of function definitions with their
a t tendant modulari ty advantages, but with-
out their usual cost because the Hancock
compiler expands the event definitions in-line
with the control-flow code. Second, having
the compiler generate the control flow re-
moves a significant source of bugs and com-
plexity from Hancock programs. Finally, pro-
grammers can use the variable-sharing mech-
anism to share information across events.

A common question when thinking about
designing a domain-specific language is
whether or not ,a library would suffice. We
rejected the library option largely because
of Hancock's control-flow abstractions. In
particular, expressing Hancock's event mode]
and the information sharing it provides
proved awkward in a call-back framework, the
usual technique for implementing such ab-
stractions.

170

5 Wiring Diagram

In the previous section, we explained tha t
computing a signature may require multiple
passes over the data. Hancock provides the
sig_maxn construct to express the da ta flow
between passes and to connect command-l ine
input to the variables in the program. The
arcs between the phase boxes in Figure 1 de-
pict this construct. The following code im-
plements s ig_main for Usage:

void sig_main (
const callStream calls <c:>,

exists const ublap y_usage <u:>,
new uMap u s a g e <U:>) {

usage :=: y _ u s a g e ;
out (calls, usage) ;
in(calls, usage) ;

)

There are three parameters to the Usage
signature. The first is a stream that contains
the raw call data. The const keyword indi-
cates that this data is read-only. The syn-
tax (< c : >) after the variable name calls

specifies that this paramete r will be supplied
as a command-l ine option using the - c flag.
The colon indicates that this flag takes an
argument, in this case the name of the direc-
tory that holds the binary call files. The ab-
sence of a colon indicates tha t the paramete r
is a boolean flag. The Hancock compiler gen-
erates code to parse command-l ine options.
The second parameter is a Usage map, the
name of which is specified using the -u flag.
The cons t qualifier indicates the m a p is read-
only, while the e x i s t s annotat ion indicates
the map must exist on disk. The final param-
eter names the Usage m a p used to hold the
result of this signature computat ion; the -U
flag specifies the file name for this map. The
no. qualifier indicates tha t the m a p must not
exist on disk.

In general, the body of s ig_main is a se-
quence of Hancock and C statements . In Us-
age, s ig_main copies the da ta from y _ u s a g e

into usage and then invokes Usage's outgoing
and incoming phases with the raw call s t ream
and the Usage map under construction as ar-
guments.

5 .1 D i s c u s s i o n

The wiring d iagram clarifies the dataflow
between phases For example, some signa-
tures need to make off-direction references to

signature data. A question tha t arises is: are
these references referring to da ta computed
in a previous phase or to da ta computed the
previous day? This question can be answered
by looking at s ig .ma in . If the parameters
to the phase do not include the original in-
put map, then all references must be to the
partially computed map .

The automat ic generation of argument
parsing code is convenient and removes a
source of tedium, but its real benefit is that
it connects Hancock variables to their on-
disk counterparts. I t helps programmers pro-
tect valuable da ta through the cons t , new
and e x i s t s qualifiers. The runt ime system
catches a t t empts to write to constant da ta
and generates error messages. 1 It detects
when da ta annota ted as new already exists
or when da ta tagged with e x i s t s is not on
disk, in each case reporting a run-t ime error.
These data-protect ion features are impor tant
when it is t ime-consuming or even impossi-
ble to reconstruct an accidentally overwritten
signature.

6 Implementat ion

Our implementat ion of Hancock consists of
a compiler that translates Hancock code into
plain C code, which is then compiled and
linked with a runt ime system to produce ex-
ecutable code. We modified CELT, a C-to-C
translator writ ten in ML[SCHO99] to parse
Hancock and translate the resulting extended
parse tree into abstract syntax for plain C.
The compiler generates code for the various
Hancock operators and clauses and for the
main routine. The runt ime system, which is
written in C, manages the representation of
Hancock da ta on-disk and in memory. I t con-
verts between these representations as neces-
sary and it mediates all access to the data.

We were able to build Hancock relatively
quickly by leveraging other people 's soft-
ware. In particular, we built the com-
piler on top of CKIT, an existing C-to-C
translator[SCHO99] written for the purpose
of building compilers for C-based domain-
specific languages. We also used a col-
lection of libraries: msort[Lin99, MMB92],
sfio[KV91], and vmalloc[Vo96]. Msort pro-

1 We intend to check for writes to c o n s t da ta at
compile time eventually.

171

Table 1: Example signatures.

Signature
Usage
Frequency
Activity
Bizocity

Description
Average daily usage

Calling frequency
Days since last seen
"Business-likeness"

vides an external sorter and silo supports 64-
bit files, making these two libraries particu-
larly useful in addressing issues of scale.

7 E a r l y e x p e r i e n c e s

Table 1 briefly describes four signatures:
Usage, Frequency, Activity, and Bizocity.
These signatures are computed daily from call
records. In this section, we discuss how these
signatures use Hancock's da ta and control-
flow mechanisms.

The maps used by these signatures all have
index types 'o f line_t and value types that
are records. Usage, Frequency, and Activity
use constant defaults. Bizocity uses a default
function that queries a secondary map, which
indicates whether the phone is a known resi-
dence, a known business, or unknown.

The records used in these signatures vary
based on the application, but they all have
a common form: the desired profile contains
several fields that have the same underlying
structure. To express this structure in Han-
cock, we use two records: one to describe the
basic fields and a second to group these fields
into a profile.

Table 2 describes the basic fields for the
sample signatures and indicates how many
such fields are contained in the profile record.
In all these examples, the approximation type
is a range that can be represented with a C
char type. The signatures use different ap-
proximation techinques. Buckehng divides
the range of signature values into disjoint
buckets and associates a default value with
each such bucket. With this technique, freez-
ing converts a signature value into the con-
taining bucket, whereas thawing returns the
default value for a bucket. Bucketing can use
either fixed-width or variable-width buckets.
Clamping converts values above the range of

signature values to the largest value in the
range and values below the range to the low-
est value in the range.

In all four signatures, the amount of Han-
cock code needed to describe the da ta is
small. The largest, Bizocity, takes fewer than
30 lines.

In terms of control-flow, the example sig-
natures share the same high-level structure,
each containing two phases: one to compute
information for outgoing calls and another
for incoming calls. The event structures for
the signatures are different, however. FFre-
quency tracks only the existence of a call for
a given number, so its bottom-level event is
the line event. Activity and Usage do work
at both call and line events. Bizocity uses
these events and does significant computat ion
at the exchange level.

The Hancock code that implements these
phases is small: the smallest, Frequency,
takes 40 lines of code; the largest, Bizocity,
takes 300 lines, more than 100 of which are
for processing exchange events.

In all, these examples indicate that Han-
cock da ta descriptions are compact and that
the event processing code is modest in size.
Ideally, we would like to compare the Han-
cock implementations with hand-writ ten C
implementations. Unfortunately, this com-
parison is very hard to do fairly. The only
C implementation of Usage, Activity, and Bi-
zocity available to us is a program that com-
bines the computat ion of all three signatures
and has code to manage the on-disk represen-
tations of the signature files embedded in it.
This program is about 1500 lines of code.

8 D e s i g n P r o c e s s

This section describes the process tha t we
used in the design of Hancock and discusses
the lessons we learned from our experience.
Designing a domain specific language involves
developing a model of the domain and then
embodying that model in a language. The
language should capture the commonalities of
the domain effectively and let the domain ex-
perts worry about the details specific to an
individual application. Figure 6 depicts the
process we followed; it can be viewed as an
elaboration of the first box of the F A S T pro-
cess [GJKW97].

172

Table 2: Record structure for example signatures

Signature Signature Approximation Approximation
type type method

Usage int (0-15) variable-width buckets
Frequency double (0-255) fixed-width buckets
Activity int (0-39) clamping
Bizocity char (0-15) fixed-width buckets

Number of
fields

4
2
3
2

First, we alternated talking with domain
experts about sample signatures and con-
structing models of the domain that captured
the common elements of these signatures. By
iterating, we got feedback on the models and
developed a common vocabulary.

Once we had a good model for signatures,
we applied this model by hand to construct a
few sample applications. This experience led
us to replace our model with one based on
more primitive abstractions because the orig-
inal abstractions were too high-level to serve
as the. basis for a programming language. We
eventually used these hand-written signatures
to establish that the code we expected to
generate automatically would perform ade-
quately and to evaluate whether a library-
based solution was sufficient.

After we had revised our model based on
the hand-written signatures, we translated it
into an actual language design. This trans-
lation was not straightforward because al-
though the model revealed what concepts
needed to be expressible in the language, it
did not give much guidance as to how they
should be expressed. Then we wrote sample
applications using our design, evaluated the
resulting programs, and revised the design as
appropriate. We found that we needed to it-
erate through this process many times. We
discussed these sample applications with the
domain experts to confirm that we had cap-
tured the essential elements of the domain.

Finally, we implemented a compiler and
runtime system for Hancock and evaluated
the signatures written in Hancock. This eval-
uation led us to refine many aspects of the
original design, including the stream model,
the view operator, the s i g ~ a i n annotations
new and exists, support for user-supplied
compression functions, the r e c o r d construct,
and the implementation of maps.

8 .1 L e s s o n s L e a r n e d

Our goal in this project was to design and
implement a language that would be adopted
by signature researchers. While this project
is not yet finished and so we cannot claim
complete success at this time, we believe that
we are on the right path because the signa-
ture researchers have become advocates for
Hancock. We believe that three things that
we did were responsible for our success and
could be useful to others who want to design
domain specific languages.

First, we were open to constantly revising
our models based on many different kinds of
input. Figure 6 highlights the many sources
of feedback that we employed in our design
process. In addition to consulting with the
domain experts at many points in the pro-
cess, we also built artifacts at several inter-
mediate stages. These artifacts proved useful
even though they are not the finM product of
our work.

Second, we worked closely with domain ex-
perts and valued their input. This point de-
serves elaboration, as it seems quite obvious
that language designers should heed their ex-
perts. The fact that domain experts may
not be expert programmers leads to a temp-
tat ion to dismiss their comments. Sample
implementations they provide may be writ-
ten badly. Consequently, it is easy to leap
to the erroneous conclusion that they do not
know what they are doing. For example, sig-
nature researchers had developed a map rep-
resentation that drew a lot of criticism from
others outside the domain. When we investi-
gated their representation, we learned that al-
though their~implementation had some prob-
lems, the basic structure provided very good
random access time. Such access is crucial
to their clients, but it had been ignored by
other onlookers As language designers, we

173

domain
experts

develop
models

wnte programs
by hand

a la model

design
language

write
programs

implement
system

Figure 6: Design Process

had to be very careful to separate crucial do-
main constraints from irrelevant details in the
existing implementations.

Finally, gaining credibility with domain ex-
perts was essential because they are the po-
tential users for the language. By designing
concrete models in response to our discus-
sions with them, we established that we were
serious about helping them and that we un-
derstood their domain. It also gave us a fo-
cus for our discussions. By handwriting sig-
natures in C, we established that we could
satisfy their performance requirements. By
choosing C as the basis for Hancock, we kept
Hancock close to their usual programming
environment. By using signature represen-
tations consistent with the ones the domain

experts had designed, we demonstrated that
Hancock programs could manipulate their ex-
isting data without difficulty. Most impor-
tantly, by consulting with the domain experts
at every point, we improved the design and
got them excited about using Hancock.

9 Conclusions

Hancock handles the scale of the data used
in signature computations, thereby reducing
coding effort and improving the clarity of sig-
nature code. The language, compiler, and
runtime system provide the scaffolding neces-
sary to compute signatures, leaving program-
mers free to focus on the signatures them-
selves. In particular, Hancock's wiring dia-
gram makes the relationships among phases
clear. Its event model allows programmers
to specify the work needed to compute a sig-
nature without having to write complicated
control-flow code by hand. Finally, Han-
cock's data model makes writing signatures
less error-prone by handling multiple data
representations automatically.

We plan to extend Hancock in two ways.
First, we intend to enrich the set of opera-
tions that Hancock provides for streams. For
example, we plan to add a reduction oper-
ation that would allow programmers to pre-
process streams to combine related records.
Second, we intend to broaden the class of
data that can be processed using Hancock,
for example, to include Internet protocol logs
or billing records. To accomplish this goal,
we need to provide a mechanism for describ-
ing data streams. Such a description must
include how such streams can be sorted and
how to detect events based on the sorting or-
der.

10 Acknowledgments

We would like to thank Corinna Cortes and
Daryl Pregibon for their help in understand-
ing the signature domain, Glenn Fowler, John
Linderman, and Phong Vo for their assistance
with the run-time system, Nevin Heintze and
Dino Oliva for their help in using CK1T, Dan
Suciu and Mary Fernandez for discussions
which helped refine the stream model, and
John Reppy for producing the pictures

174

References

lABS+97]

[CDR+ 97]

[CP98]

[CRL96]

ff~l197]

[GJKW97]

[KV91]

[Lin99]

[MMB92]

[SCH099]

[SF97]

[TMC97]

Atkins, D., T. Ball, M. Benedikt,
G. Bruns, K. Cox, P. Mataga, and K. Re-
her. Experience with a domain specific
language for form-based services. In Pro-
ceedmgs of the USENIX '97 Conference
on Domain-Speclfic Languages, 1997.

Chandra , S., M. Dahlln, B. Richards,
R. Y. Wang, T. E. Anderson, and J. R.
Larus. Experience with a language for
writing coherence protocols. In Proceed-
ings of the USENIX '97 Conference on
Domam-Spectfic Languages, 1997.

Cortes, C. and D. Pregibon. Gigs min-
ing. In Proceedings of the Fourth Inter-
natsonal Conference on Knowledge Dis-
covery and Data M, ning, 1998.

Chandra, S., B. Richards, and J. R.
Larus. Teapot: Language support for
writing memory coherence protocols. In
Proceedings of the S I G P L A N '96 Confer-
ence on Programming Language Design
and Implementation (PLDI), 1996.

Elliott, C. Modeling interactive 3D and
mul t imedia an imat ion with an embedded
language. In Proceedings of the USENIX
'97 Conference on Domain-Specific Lan-
guages, 1997.

Gupta , N. K., L. J. Jagadeesan, E. E.
Koutsofios, and D. M. Weiss. Auditdraw:
Generat ing audi ts the fast way. In Pro-
ceedmgs of the Third IEEE Symposium
on Requtremen~s Engineering, 1997.

Kern, D. G. and K.-P. Vo. SFIO:
Safe/fast string/file IO. In Prec. off
the Summer '9l Usemx Conference.
USENIX, 1991, pp. 235-256.

Linderman, J. Msort. Pr ivate communi-
cation, 1999.

McIlroy, M. D., P. M. Mcllroy, and
K. Bostic. Engineering radix sort.
Technical Memorandum 11260-920902-
$3TMS, AT&T Bell Labs, Murray Hill,
N J, September 1992.

Sift, M., S. Chandra, N Heintze, and
D. Oliva. Pre-release of C-frontend
l ibrary for SML/NJ. See ht tp: / /cm.be i l -
labs .com/cm/cs /what / smln j / index .h tml . ,
1999.

Stevenson, D. E. and M. M Fleck. Pro-
gramming language support for digitized
images or, The monsters in the closet.
In Proceedings of the USENIX '97 Con-
ference on Domain-Specific Languages,
1997.

Thibaul t , S., It. Marlet, and C. Consel.
A domain specific language for video de-
vice drivers: From design to implemen-
tat ion. In Proceedings of the USENIX

[Vo96]

'97 Conference on Domain-Specific Lan-
guages, 1997.

Vo, K.-P. Vmalloc: A general and ef-

ficient memory allocator. Sof tware--

Practice and Exper, enee, 26, 1996, pp.

1-18.

A The Usage signature

#define NUMBINS 16
int bucketToSec[l~JMBINS]= { ... };
char secToBucket(int v) { ... };

record uField(ufSig, ufApprox) {
int <=> char;
ufSig(b) = bucketToSec[b];
ufApprox(s) = secToBucket(s);

}

record uLine(uSig, uApprox) {
uField in;
uField out;
uField outTF;
uField outIntl;

}

map uMap {
key line_t;
value uApprox;
default {0,0,0};

}

#define LAMBDA .15
#define blend(new, old) \

(((new) * LAMBDh) + \
((old)*(l - LAMBDh)))

#include calls.h
int getvalidcall(PCallRec_t *pc,

callRec_t *c){...}
stream callStream

{getvalidcall: pCallRec_t =>
callRec_t}

c h a r n o I n t l 0 r I n c 0 m p l e t e (c a l l R e c _ t *c) {
r e t u r n ! (c - > i s I n c o m p l e t e) &&

!(c->isIntl);
}

c h a r n 0 I n c o m p l e t e (c a l l R e c _ t *c) {
r e t u r n ' (c - > i s I n c o m p l e t e) ;

}

175

phase out(callStreamcalls,
uMap usage) {

iterate
over calls

sortedby origin

filteredby noIncomplete
vithevents line, call;

event line(line_t pn) {
uSig cumSec;

begin {
cumSec.outTF = O;
cumSec.out[ntl = O;
cllmSec.out = 0;

}

end {
uSig us = usage<:pn:>$uSig;
us.outTF =

blend(cumSec.outTF, us.outTF);
us.outIntl =

blend(cumSec.outIntl, us.outIntl);
us.out =

blend(cumSec.out, us.out);
usage<:pn:> = usSuApprox;

event call(callRec_t c) {
uSig line::cumSec;

if (c.isTollFree)
cumSec.outTF += c.duration;

else if (c.islntl)
cumSec.outIntl += c.duration;

else
cumSec.out += c.duration;

} /* end call event */
}/* end out phase */

Permission to make digital or hard copies of all or part of this work for
personal or classroom use Is granted without fee provided that
copies are not made or distributed for profit or commercial advant
-age and that copies bear this notice and the full citation on the first page
To copy otherwise, to repubhsh, to post on servers or to
redistribute to liStS, requires pnor specific permission and/or a fee.
DSL '99 10199 Austin, TX, USA
© 2000 ACM 1 -58113-255-7 /00 /0003 . .$5 00

phase in(callStreamcalls,
uMapusage){

iterate
over calls

sortedby dialed
filteredby noIntl0rlncomplete
withevents line, call;

event line(line_t pn) {
uSig cumSec;

begin {
cumSec.in = O;

}

end {
uSig us = usage<:pn:>$uSig;
us.in =

blend(cumSec.in, us.in);
usage<:pn:> = us$uApprox;

}
}

event call(callRec_t c) {
uSig line::cumSec;

cumSec.in += c.duration;
} /* end call event */

}/* end in phase */

void sig_main(
const callStream calls <c:>) {

exists const uMap y_usage <u:>,
hey uMap usage <U:>

usage :=: y_usage;
out (calls, usage) ;
in(calls, usage) ;

176

