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A Perspective on Unique Information:

Directionality, Intuitions, and Secret Key Agreement

Ryan G. James,∗ Jeffrey Emenheiser,† and James P. Crutchfield‡

Complexity Sciences Center and Physics Department,

University of California at Davis, One Shields Avenue, Davis, CA 95616

(Dated: August 28, 2018)

Recently, the partial information decomposition emerged as a promising framework for identifying
the meaningful components of the information contained in a joint distribution. Its adoption and
practical application, however, have been stymied by the lack of a generally-accepted method of
quantifying its components. Here, we briefly discuss the bivariate (two-source) partial information
decomposition and two implicitly directional interpretations used to intuitively motivate alternative
component definitions. Drawing parallels with secret key agreement rates from information-theoretic
cryptography, we demonstrate that these intuitions are mutually incompatible and suggest that
this underlies the persistence of competing definitions and interpretations. Having highlighted this
hitherto unacknowledged issue, we outline several possible solutions.

PACS numbers: 05.45.-a 89.75.Kd 89.70.+c 02.50.-r
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I. INTRODUCTION

Consider a joint distribution over “source” variables X0

and X1 and “target” Y . Such distributions arise in many

settings: sensory integration, logical computing, neural

coding, functional network inference, and many others.

One promising approach to understanding how the infor-

mation shared between X0, X1, and Y is organized is the

partial information decomposition (PID) [1]. This decom-

position seeks to quantify how much of the information

shared between X0, X1, and Y is done so redundantly,

how much is uniquely attributable to X0, how much is

uniquely attributable to X1, and finally how much arises

synergistically by considering both X0 and X1 together.

Unfortunately, the lack of a commonly accepted method

of quantifying these components has hindered PID’s

adoption. In point of fact, several proposed axioms are

not mutually consistent. And, to date, there is little

agreement as to which should hold. Here, we take a

step toward rectifying these issues by bringing to light

a potentially fundamental inconsistency in the intuitions

commonly and often implicitly brought to bear upon in-

formation decomposition. We make the intuitions quan-

titative by appealing to information-theoretic cryptogra-

phy. Taken together, our observations suggest that the

context in which PID is applied should determine how its

components are quantified.

Our development proceeds as follows. Section II briefly

describes the two-source PID. Section III calls out the
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two distinct intuitions often used in interpreting PID.

Section IV introduces a prototype distribution that high-

lights the issues and we interpret it through the lenses

of the two intuitions. Section V defines secret key agree-

ment rates and computes them for the prototype distri-

bution. Section VI then discusses how the two intuitions

relate to secret key agreement rates and identifies when

the latter result in viable decompositions. Finally, Sec-

tion VII summarizes our findings and speculates as to

how future developments can bring consistency to PID.

II. PARTIAL INFORMATION

DECOMPOSITION

Two-source PID seeks to decompose the mutual informa-

tion I[X0X1 : Y ] between “sources” X0 and X1 and a

“target” Y into four nonnegative components. The com-

ponents identify information that is redundant, uniquely

associated with X0, uniquely associated with X1, and

synergistic:

I[X0X1 : Y ] = I∂ [X0 · X1 → Y ] redundant

+ I∂ [X0 → Y \ X1] unique from X0

+ I∂ [X1 → Y \ X0] unique from X1

+ I∂ [X0X1 → Y ] . synergistic

Furthermore, the mutual information between X0 and Y

is decomposed into two components:

I[X0 : Y ] = I∂ [X0 · X1 → Y ] redundant

+ I∂ [X0 → Y \ X1] . unique from X0
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And, similarly:

I[X1 : Y ] = I∂ [X0 · X1 → Y ] redundant

+ I∂ [X1 → Y \ X0] . unique from X1

In this way, PID relates the four component informations.

However, it does not uniquely determine how to quantify

them. To do this, a definition must be supplied for one

of them and then the others follow.

This allows for a range of choices. In the case that

one wishes to directly quantify the unique informations

I∂ [X0 → Y \ X1] and I∂ [X1 → Y \ X0] , a consistency

relation must hold when they are computed indepen-

dently:

I∂ [X0 → Y \ X1] + I[X1 : Y ]

= I∂ [X1 → Y \ X0] + I[X0 : Y ] . (1)

III. THE CAMEL AND THE ELEPHANT

There are two common ways of thinking about PID.

These approaches differ only in the (implied) direction-

ality of cause and effect—a property unspecified by PID.

In the first approach, one thinks of X0 and X1 as “inputs”

that, when combined, produce Y , a “output”. While

seemingly helpful labels, their use already imports an

unwarranted semantics to the relationship between the

three random variables. In this, it inadvertently begs

the main issue we wish to raise here, while at the same

time illustrating the issue.

When taking this view of PID, one generally asks ques-

tions such as “How much information in X0 is uniquely

conveyed to Y ?”. From this vantage, considering the role

of the individual channels X0 → Y and X1 → Y might or

might not help develop intuition. Recalling the aphorism

“a camel is a horse designed by committee”, we call this

the camel intuition as particular input events X0 and X1

come together to describe an output Y .

In the second approach, one considers X0 and X1 as

“noisy observations” or “representations” of a single un-

derlying object Y . When taking this view, one might

ask a question such as “How much information in Y is

uniquely captured by X0?”. Under this, the individual

channels Y → X0 and Y → X1 take on primary impor-

tance. After the parable of the blind men describing an

elephant, we call this the elephant intuition since par-

ticular objects Y may be described by various, possibly

partial, representations, X0 and X1.

Pnt. Unq.

X0 X1 Y Pr

0 1 1 1/4

1 0 1 1/4

0 2 2 1/4

2 0 2 1/4

TABLE I. The pointwise unique distribution.

IV. THE POINTWISE UNIQUE DISTRIBUTION

The pointwise unique distribution [2] is given by the

events and probabilities displayed in Table I: at any time

exactly one of X0 or X1 is a ‘1’ or ‘2’ and matches Y ,

while the other is ‘0’. Let’s now interpret this distribu-

tion by adopting the camel and elephant intuitions in

turn. We will see that they provide contradictory inter-

pretations of the relationships between the variables.

Adopting the camel intuition, we consider the ways in

which X0 influences Y . It is easy to see that half of the

time (Table I’s 1st and 3rd rows) X0 is unable to say any-

thing about the state of Y . The other half of the time

(the 2nd and 4th rows) X0 and Y are perfectly correlated,

while X1 is ignorant as to their state. Analogously, this is

true when considering how X1 influences Y . In this way,

we interpret the distribution’s PID as consisting entirely

of unique informations. The camel intuition is summa-

rized in Table II.

When adopting the elephant intuition, however, a strik-

ingly different picture emerges. Taking the viewpoint

of Y , both single channel distributions p(X0|Y ) and

p(X1|Y ) are identical. So, any information shared with

one must be redundantly shared with the other. These

channels do not allow one to determine the states of either

X0 or X1. What is learned, however, is that exactly one

of them matches Y , while the other is ‘0’. Furthermore,

removing the remaining uncertainty in the values of X0

and X1 requires observing one of them—a synergistic ef-

fect. The resulting elephant analysis is also summarized

in Table II.

In short, the two directional PID interpretations lead

to contradictory quantifications. From the viewpoint of

camels, elephant approaches create redundancy where

there is none. From the vantage of elephants, camels

draw distinctions where none exist. This has been dis-

cussed by Ref. [3] regarding whether or not unique infor-

mation should depend on I[X0 : X1] . From the camel’s

point of view, ignoring this as a constraint may “artifi-

cially correlate” X0 and X1 and thereby inflate redun-

dancy. This viewpoint can be more directly illustrated

by considering the intermediate distribution from which

IBROJA [4]—an elephant—computes unique information
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Decompositions by Intuition

camel elephant

I∂ [X0 · X1 → Y ] 0 bit 1/2 bit
I∂ [X0 → Y \ X1] 1/2 bit 0 bit
I∂ [X1 → Y \ X0] 1/2 bit 0 bit
I∂ [X0X1 → Y ] 0 bit 1/2 bit

TABLE II. Camel and elephant intuitions applied to Table I’s
pointwise unique distribution. The camel intuition takes the
view that X0 and X1 supply Y with unique informations,
though only one of them at a time. The elephant intuition
takes the view that Y provides both X0 and X1 with the same
information, but it gets erased on the way to exactly one of
them.

for the pointwise unique distribution:

X0 X1 Y Pr

0 0 1 1/4

0 0 2 1/4

1 1 1 1/4

2 2 2 1/4

From the elephant’s view, I[X0 : X1] is irrelevant.

V. SECRET KEY AGREEMENT

Secret key agreement is a fundamental concept within

information-theoretic cryptography [5]. The central idea

is that if three parties, Alice, Bob, and Eve, observe some

joint probability distribution ABE ∼ p(a, b, e) where Al-

ice has access only to a, Bob b, and Eve e, is it possible

for Alice and Bob to agree upon a secret key of which Eve

has no knowledge. The degree to which they may gen-

erate such a secret key immediately depends upon the

structure of the joint distribution ABE. It also depends

upon whether Alice and Bob are allowed to publicly com-

municate.

Concretely, consider Alice, Bob, and Eve each receiv-

ing n independent, identically distributed samples from

ABE—Alice receiving An, Bob Bn, and Eve En. A se-

cret key agreement scheme consists of functions f and

g, as well as a protocol for public communication (h)

allowing either Alice, Bob, neither, or both to commu-

nicate. In the case of a single party being permitted

to communicate—say, Alice—she constructs C = h(An)

and then broadcasts it to all parties. In the case that

both parties are permitted communication, they take

turns constructing and broadcasting messages of the form

Ci = hi(A
n, C[0...i−1]) (Alice) and Ci = hi(B

n, C[0...i−1])

(Bob) [6].

Formally, a secret key agreement scheme is considered

R-achievable if for all ǫ > 0:

KA

(1)
= f(An, C)

KB

(2)
= g(Bn, C)

p(KA = KB = K)
(3)

≥ 1 − ǫ

I[K : CEn]
(4)

≤ ǫ

1

n
H[K]

(5)

≥ R − ǫ

where (1) and (2) denote the method by which Alice and

Bob construct their keys KA and KB, respectively, (3)

states that their keys must agree with arbitrarily high

probability, (4) states that the information about the key

which Eve—armed with both her private information En

as well as the public communication C—be arbitrarily

small, and (5) states that the key consists of approxi-

mately R bits per sample.

The greatest rate R such that an achievable scheme ex-

ists is known as the secret key agreement rate. Nota-

tional variations indicate which parties are permitted to

communicate. In the case that Alice and Bob are not

allowed to communicate, their rate of secret key agree-

ment is denoted S(A : B || E). When only Alice is al-

lowed to communicate their secret key agreement rate

is S(A → B || E). And, similarly, if only Bob is per-

mitted to communicate. When both Alice and Bob are

allowed to communicate, their secret key agreement rate

is denoted S(A ↔ B || E). In this, we modified the stan-

dard notation for secret key agreement rates to emphasize

which party or parties communicate.

In the case of no communication, S(A : B || E) is given

by [7]:

S(A : B || E) = H[A f B|E] (2)

where X f Y denotes the Gács-Körner common random

variable [8]. It is worth noting that this quantity does not

vary continuously with the distribution and generically

vanishes.

In the case of one-way communication, S(A → B || E) is

given by [9]:

S(A → B || E) = max {I[B : K|C] − I[E : K|C]} (3)

where the maximum is taken over all variables C and

K, such that the following Markov condition holds:

C−◦−K−◦−A−◦−BE. It suffices to consider K and C such

that |K| ≤ |A| and |C| ≤ |A|2.

There are no such solutions for S(A ↔ B || E), however

both upper- and lower-bounds are known [6].
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Secret Key Agreement Rates

S(X0 : Y || X1) 0 bit
S(X1 : Y || X0) 0 bit

S(Y → X0 || X1) 0 bit
S(Y → X1 || X0) 0 bit

S(X0 → Y || X1) 1/2 bit
S(X1 → Y || X0) 1/2 bit

S(X0 ↔ Y || X1) 1/2 bit
S(X1 ↔ Y || X0) 1/2 bit

TABLE III. The variety of secret sharing schemes and their
rates for the pointwise unique distribution of Table I.

Let us now consider the pointwise unique distribution of

Table I and the ability of X0 and Y to agree upon a secret

key while X1 eavesdrops. 1 This can be interpreted four

different ways. First, neither X0 nor Y may be allowed to

communicate. Second, only Y can communicate. Third,

only X0 is permitted to communicate. Finally, both X0

and Y may be allowed to communicate. Note that the

eavesdropper X1 is not allowed to communicate in any

secret sharing schemes here. Looking at this distribution,

a general strategy becomes clear: both X0 and Y need

some scheme to determine when they agree (the 2nd and

4th rows).

Broadly, the only way in which both X0 and Y can

come to understand if they match or not is if X0 is per-

mitted to broadcast whether she observed a 0 or not.

Therefore, in the instances where X0 is not communi-

cating there is no ability to agree upon a key: S(X0 :

Y || X1) = S(Y → X0 || X1) = 0 bit. However, when

X0 is allowed communication a key can be agreed upon:

S(X0 → Y || X1) = S(X0 ↔ Y || X1) = 1/2 bit. 2 These

rates are summarized in Table III.

VI. DIRECTIONALITY, NATURALNESS, AND

CONSISTENCY

We are now in a position to integrate the two intuitions

with the results of secret key agreement rates. The camel

intuition, with the channels X0 → Y and X1 → Y

taking center stage, most closely aligns with the one-

way secret key agreement rates S(X0 → Y || X1) and

1 Secret key agreement rates have been associated with unique
informations before. An upper bound on S(A ↔ B || E)—the
intrinsic mutual information [10]—is known to not satisfy the con-
sistency condition Eq. (1) [11]. More recently, the relationship
between a particular method of quantifying unique information
and one-way secret key agreement has been considered [12].

2 It is known that S(X0 ↔ Y || X1) = 1/2 bit due to the conver-
gence of upper and lower bounds in this instance.

S(X1 → Y || X0). This also agrees with Section IV’s

quantification (compare Tables II and III):

I∂ [X0 → Y \ X1] = S(X0 → Y || X1) and

I∂ [X1 → Y \ X0] = S(X1 → Y || X0) .

The elephant intuition, with its focus on the channels

Y → X0 and Y → X1 is more naturally aligned with the

one-way secret key agreement rates S(Y → X0 || X1) and

S(Y → X0 || X1). This again accords with Section IV’s

quantification:

I∂ [X0 → Y \ X1] = S(Y → X0 || X1) and

I∂ [X1 → Y \ X0] = S(Y → X1 || X0) .

There are, however, difficulties with these approaches.

The first difficulty concerns the camel intuition. If the

one-way secret key agreement rates S(X0 → Y || X1)

and S(X1 → Y || X0) are used to quantify the unique

informations I∂ [X0 → Y \ X1] and I∂ [X1 → Y \ X0] ,

respectively, the consistency relation given by Eq. (1) is

not necessarily satisfied. Importantly, though, if S(Y →

X0 || X1) and S(Y → X1 || X0) are used, the resulting

PID is always consistent. One concludes that the ele-

phant intuition is the more natural of the two when using

one-way secret key agreement rates to quantify unique in-

formations.

There is another difficulty. PID is defined to be agnos-

tic to directionality. Furthermore, only one of the myr-

iad proposed PID axioms is contingent on any inherent

directionality—the Blackwell Property [13] and it is an

elephant. In this sense, neither the camel nor the ele-

phant intuitions are consistent with PID. Again relating

to secret key agreement, this implies that unique infor-

mations should more closely align with either the pair

S(X0 : Y || X1) and S(X1 : Y || X0) or with the pair

S(X0 ↔ Y || X1) and S(X1 ↔ Y || X0); neither of which

adopt any sort of directionality.

Both approaches bring their own further difficulties. On

the one hand, the no-communication secret key agree-

ment rate is not continuous in the space of distributions,

whereas PID is generally considered to vary continuously.

On the other hand, the two-way secret key agreement

rate S(X0 ↔ Y || X1) has no known closed-form solu-

tion, only upper and lower bounds, and so it cannot be

practically computed. Furthermore and perhaps more

fundamentally, whether or not the two-way secret key

agreement rate results in a consistent decomposition is

not known. That said, our extensive searches of exam-

ples for which the upper and lower bounds converge are

encouraging—they have not resulted in any violations of

Eq. (1).



5

VII. CONCLUSION

At present, a primary barrier for PID’s general adop-

tion as a useful and possibly a central tool in analyz-

ing how complex systems store and process information

is an agreement on a method to quantify its component

informations. Here, we posited that one reason for dis-

agreement stems from conflicting intuitions regarding the

decomposition’s operational behavior. This suggests sev-

eral possibilities.

The first is that PID is inherently context-dependent and

quantification depends on a notion of directionality. In

this case, the elephant intuition is apparently more natu-

ral, as adopting closely related notions from cryptography

results in a consistent PID. If context demands the camel

intuition, though, either a noncryptographic method of

quantifying unique information is needed or consistency

must be enforced by augmenting the secret key agreement

rate.

The second possibility suggested by our observations is

that intuitions which project a directionality on the de-

composition are inherently flawed and that any correct

quantification must be independent of direction. Inter-

estingly, cryptographic notions may still play a role here.

Though, since there is as yet no known way to compute

the two-way secret key agreement rate, its application

remains open.

A final possibility is that associating secret key agreement

rates with unique information is fundamentally flawed

and that, ultimately, PID quantifies unique information

as something distinct from the ability to agree upon a

secret key.

Given that one of the main factors driving PID’s cre-

ation was the need for interpretability, ensuring that the

intuitions brought to bear are consistent with the quanti-

tative values is of the utmost importance. We described

three quantitative regimes, each corresponding to a spe-

cific directionality or the lack thereof. While it is possible

that each can play a distinct role in the understanding

of complex systems, our hope is that a single method

will emerge as the most useful and accepted approach to

understanding the organization of information within a

joint probability distribution.
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