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Mathematical nuances of Gaussian 
process‑driven autonomous 
experimentation
Marcus M. Noack*  and Kristofer G. Reyes

The fields of machine learning (ML) and artificial intelligence (AI) have transformed almost 
every aspect of science and engineering. The excitement for AI/ML methods is in large 
part due to their perceived novelty, as compared to traditional methods of statistics, 
computation, and applied mathematics. But clearly, all methods in ML have their foundations 
in mathematical theories, such as function approximation, uncertainty quantification, and 
function optimization. Autonomous experimentation is no exception; it is often formulated as 
a chain of off-the-shelf tools, organized in a closed loop, without emphasis on the intricacies 
of each algorithm involved. The uncomfortable truth is that the success of any ML endeavor, 
and this includes autonomous experimentation, strongly depends on the sophistication of 
the underlying mathematical methods and software that have to allow for enough flexibility to 
consider functions that are in agreement with particular physical theories. We have observed 
that standard off-the-shelf tools, used by many in the applied ML community, often hide 
the underlying complexities and therefore perform poorly. In this paper, we want to give a 
perspective on the intricate connections between mathematics and ML, with a focus on 
Gaussian process-driven autonomous experimentation. Although the Gaussian process is 
a powerful mathematical concept, it has to be implemented and customized correctly for 
optimal performance. We present several simple toy problems to explore these nuances and 
highlight the importance of mathematical and statistical rigor in autonomous experimentation 
and ML. One key takeaway is that ML is not, as many had hoped, a set of agnostic plug-and-
play solvers for everyday scientific problems, but instead needs expertise and mastery to be 
applied successfully.

Introduction
Machine learning (ML) and artificial intelligence (AI) have 
transformed how problems involving model creation and 
decision-making from data are approached in all areas of 
science and engineering. Examples are wide ranging and 
include weather forecasts,1,2 protein folding,3,4 natural lan-
guage processing,5 image recognition,6,7 and autonomous 
experimentation.8–12 Some successes, for instance, IBM’s 
Watson and AlphaGo, reached international fame. When 
Watson famously won the popular game Jeopardy in 2011 
against two of the best human players, the general opinion 
was that Watson would soon be able to answer any medical 
or scientific questions better than any human; the reality 
turned out to be very different and mathematics can explain 
why. Contrary to what was perceived outside IBM’s offices, 

Watson’s architecture was specifically customized to win in 
a game, such as Jeopardy, with minimal generalizations in 
place. A current example is large language models,13 such 
as GPT-314 or Turing-NLG,15 which are tailored for natu-
ral language processing and can deliver amazing results for 
some tasks, but are also easily tricked into wrong and over-
confident answers.16 Tuned for a specific task, they do very 
well. At the other end of the spectrum of generalizability, 
largely agnostic ML software tools are being developed and 
distributed (Scikit-learn, PyTorch, TensorFlow) in order to 
give more people access to the power of ML. Although this 
generalization is laudable and necessary, it can also lead to 
user errors and dissatisfaction with the results. There seems 
to be a natural tradeoff between the power of AI and ML 
and its generalization potential. Many of the successes of 
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ML can be attributed to the wide availability of off-the-shelf 
software tools. However, this availability and the user-
friendliness of those tools can lead to a one-concept-fits-all 
attitude, leading to poor performance of the algorithms in 
nonstandard scenarios. To understand this discrepancy, we 
have to dive a bit deeper into the mathematics of ML.

ML can broadly be divided into supervised and unsupervised 
methods. Supervised learning uses “labeled” data D = {xi, yi} 
to find some function f(x) : Rn → R

m that can approximate 
unobserved pairs (xi, yi) . Rn is often called the input space 
or parameter space and here denoted by X  ; Rm is the output 
space. Unsupervised learning does not use labels and attempts 
to find structural (geometric or topological) information about a 
data set D = {xi} . Throughout this article, we focus on autono-
mous experimentation, which is often classified as “active learn-
ing” and is part of supervised ML; even so, many of our take- 
aways are valid for unsupervised learning as well. Supervised 
learning can be characterized by two main building blocks, the 
definition of a function space—sometimes called the hypoth-
esis space—F  containing all conceivable model functions, 
and the selection of an optimality condition, most often some 
misfit, that is maximized (or minimized) to find a candidate 
solution—a particular element of the function space—which 
is called the training in ML. Often, neither step is getting the 
attention it deserves. Common mistakes are to use ML tools that 
span a function space that does not contain functions with the 
desired behavior based on physics or practitioner intuition, or 
to combine solutions in an ensemble even though their function 
spaces are disjoint. A quick note on the diversity of ML. Neural 
networks (NNs) have been so prominent in the literature and 
media that one could equate them with ML; however, kernels,17 
especially in combination with Bayesian methods, provide a 
very powerful and flexible framework for learning which, in 
small data regimes, outperforms NNs. Even so, mathematically 
it can be shown that all different methods are just instances of a 
more fundamental framework.18,19

As an example, we want to have a look at kernel ridge 
regression (KRR),20–22 where the underlying function space 
is a, so-called, reproducing kernel Hilbert space (RKHS)23 
H = {f : f (x) =

∑

N

i
αik(x, xi; h)∀x ∈ X } . For a more acces-

sible notion of the RKHS, we can understand it as a set of 
functions that are all defined by a weighted linear combina-
tion of kernels. In simple terms, kernels are functions that 
get two points of the parameter space as input and return a 
measure of similarity of the function itself. Stationary kernels 
only depend on the distance between the two input points; 
most often the similarity of the function value decreases as the 
distance increases. Nonstationary kernels have no such restric-
tions and can encode complicated rules about how similarity 
between inputs behaves across the domain. Alternatively, but 
equivalently, we can view kernels as basis functions defined 
on the input space, centered at given locations xi . RKHSs have 
gained popularity in recent years due to their importance for 
many machine learning methods, such as Gaussian processes 
(GPs),24 support vector machines (SVMs),25 and kernel PCA 

(principal component analysis).26 It is not uncommon to see 
practitioners using a GP posterior mean and the surrogate com-
puted by KRR to create ensemble models; despite the fact 
that, for the same kernel and the quadratic loss function, these 
models will coincide, which instills unsupported confidence 
in the ensemble. Ensembles of ML solutions carry the risk of 
bias if the underlying function spaces are not compatible (e.g., 
disjoint). The most commonly used optimality condition for 
KRR is to place a measure on the difference between predicted 
and given values ŷi ∈ D̂ , which is the test data set. In the 
standard literature, not much effort is spent on different ker-
nels for KRR; instead the radial basis function (RBF) kernel 

k(x1, x2) = σs exp(−
||x1−x1||22

2l
2

) or other kernels of the Matérn 
class are oftentimes used without justification;17,27 the RBF 
kernel gives rise to a function space that only contains func-
tions of infinite differentiability (very smooth functions)—a 
property often not supported by the data or the underlying 
physics (see Figure 1). Similarly, other Matérn kernels—and 
for that matter all other kernels—have well-defined differenti-
ability properties that directly influence the model. l and σs are 
free parameters, examples of so-called hyperparameters that 
can be interpreted as a global length scale and a signal vari-
ance, respectively. Their global validity is often unsupported 
and, when enforced, can lead to poor performance of kernel 
methods. These challenges directly affect how well ML can 
control data acquisition without human supervision.

As instruments and detectors are accelerating their 
peak data acquisition rates and the increasing complex-
ity of scientific questions give rise to larger and higher-
dimensional parameter spaces, it becomes infeasible 
for the human brain to make optimal decisions about 
experimental design. Autonomous experimentation (AE) 
describes the ability of an instrument and algorithm to 
decide what measurements should be performed next, 
ideally without the need for human interference; it is a 
multifaceted field that needs expertise in instrument sci-
ence, robotics, computer science, and ML. The role of 
ML is twofold: First, as raw data—images, films, spec-
tra—leave the instrument, they have to be analyzed and 
dimensionality reduced. Although many classical methods 
are successfully being used, ML is increasingly considered 
a viable option. Second, intelligent autonomous decision-
making is performed based on all collected and analyzed 
data. This decision-making is commonly categorized as 
active learning, which, as aforementioned, is a kind of 
supervised learning in which the algorithm can choose its 
own training data. If no offline training data are available, 
stochastic process-driven uncertainty quantification (UQ) 
is often used in the form of Gaussian (stochastic) pro-
cesses (GPs).28–31 The principle of a GP is simple; given 
a set of noisy function evaluations, we define a normal 
probability distribution that explains the data and can be 
conditioned on observations to yield a probabilistic view 
of the model function in unobserved regions (see the next 
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section). A well-tuned GP can quantify the uncertainty of 
the model function across the domain, allowing for intel-
ligent decision-making and therefore autonomous control. 
However, the control is only effective if the GP is set 
up correctly, meaning the right function space is consid-
ered and the optimization is sufficiently well posed. AE 
is a particularly challenging ML problem because for new 
experiments often no offline training data are available 
and decisions have to be made on the fly as data are col-
lected. It, therefore, emphasizes the need for particular 
rigor of the underlying mathematics; black-box applica-
tions of off-the-shelf ML tools will often show poor per-
formance, which manifests itself through the overestima-
tion of uncertainties that severely limit the efficiency of 
the AE. Autonomous experimentation plays an important 
role in the materials sciences due to the fact that scientific 
questions are often posed as finding one or more materials 
properties as a function of some parameters. Examples are 
crystal sizes as a function of an annealing history, x-ray 
scattering mapping, or point-wise evaluation of spectra 
originating from neutron scattering.

The aforementioned emphasis in ML on the choice of a 
sensible function space and an appropriate optimality condi-
tion is the main reason why common off-the-shelf tools per-
form suboptimally; not always because they do not possess 
the ability for sufficiently flexible definitions, but they trade 
flexibility for user-friendliness, which is often preferred.

The main objective of this article is to show what gains 
can be made in Gaussian process-driven AE if we open up 
the black box that is ML and spend some time evaluating and 
customizing the underlying mathematics and statistics. After a 
short excursion into some theory, the remainder of this article 
discovers, by example, the shortcomings of some off-the-shelf 
applications of ML tools for AE and how they can be avoided 
by simple adjustments of the core algorithm.

Some theory of Gaussian processes and related 
autonomous experimentation
To maximize the value of the tests in the next section, we 
present some minimal but necessary theory in this section. 
We will start introducing Gaussian processes and then move 
to the way they affect AE through an acquisition functional.

Gaussian processes
Gaussian processes (GPs) are a type of stochastic pro-
cess—sometimes called a random field—in which a set of 
random variables, often thought of as function evaluations 
{f (x1), f (x2), f (x3), f (x4), ...)} , are jointly normally distrib-
uted.24,32,33 Imagine having information about a function in the 
form of probabilistic function evaluations and being interested 
in the best guess of those function evaluations in other places. 
A GP is based on the idea of defining a normal distribution 
over the known and unknown function evaluations. Given 
data D = {xi, yi} , a prior probability distribution over func-
tions f (x) can be defined as follows:

where K is the covariance matrix of the data, whose entries are 
calculated by having the kernel k(xi, xj) act on the data posi-
tions. Kernels can be seen as basis functions that define the 
model but also compute how covariances behave as we move 
away from known data points. In this context, we can under-
stand them as a similarity measure that allows us to calculate 
covariances purely based on data-point locations. µ is the prior 
mean vector. We define the likelihood over observations y(x) as

1p(f) =
1

√

(2π)dim|K|
exp

[

−
1

2

(f − µ)TK−1(f − µ)

]

,

2

p(y|f) =
1

√

(2π)dim|V|
exp

[

−
1

2

(y − f)TV−1(y − f)

]

,

Figure 1.  Learning a two-dimensional map from a set of 1000 observations with an emphasis on kernel designs. The model shown arose from the 
evaporation of a nanoparticle-containing solution.9 The latent function is inherently non-smooth (non-differentiable). This has to be accounted for 
when defining a kernel for the Gaussian process (GP)-driven autonomous experiment. The ground truth is displayed on the left. In the center, we 
see the posterior mean of a GP using the squared exponential radial basis function kernel. In this case, the model has to be smooth, which leads to 
artifacts in the model. On the right-hand side, the posterior mean using an exponential kernel is shown. The exponential kernel is rarely an appro-
priate choice, except when the latent function is non-differentiable, which happens to be the case for many mapping experiments in the materials 
sciences. Here, the use of the exponential kernel leads to a more accurate model prediction.
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where V is the matrix of the noise.11 Our first test (“The role 
of noise for autonomous experiments” section) will focus on 
different choices for the matrix V ; however, we assume uncor-
related noise that renders V diagonal. Most literature assumes 
identically and independently distributed (i.i.d., also homo-
geneous, homoscedastic, or simply constant) noise, which 
translates into V = σ2

n
I . Often, σ2

n
 is estimated by the experi-

menter ad hoc, while others absorb it into the kernel definition 
and optimize its value. As we will see, it is ideal to estimate 
the noise during the measurement process, especially for the 
purpose of AE.

The vast majority of published work about Gaussian pro-
cesses only utilizes a few well-known standard stationary 
kernels to compute covariances.27 The most frequently used 
kernel is the RBF kernel

where σ2
s
 is the constant signal variance and l is the isotropic 

length scale.27 Both signal variance and length scale are hyper-
parameters ( φ ) of the Gaussian process and can be calculated 
by solving the optimization  problem24

which can be understood as maximizing the probability that 
the data would be observed, given a prior probability distribu-
tion. Hyperparameters can be seen as free parameters that are 
part of the kernel and control the quality of the model. Kernel 
functions can freely be defined to account for ever-increasing 
model complexity—as long as positive semi-definiteness is 
maintained. In fact, the real power of Gaussian processes is 
only revealed by utilizing nonstationary kernels. This is the 
focus of our second test (“Stationary kernels versus nonsta-
tionary kernels for Gaussian processes” section). As kernels 
become more complex, the number of needed hyperparameters 
rises and requires advanced optimization procedures; the opti-
mization is often ill-posed and solutions are nonunique. This 
is the focus of the “Training as a constrained and ill-posed 
function optimization problem” section.

Given the hyperparameters, we calculate the posterior 
probability density function given by

where κi = k(x0, xi,φ) , KKK = k(x0, x0,φ) , and Kij = k(xi, xj ,φ) . 
x0 is the point at which the Gaussian posterior should be pre-
dicted. f0 is the value of the latent function f at the point x0 . 

3k(x1, x2) = σ2
s
exp

[

−
||x1 − x2||22

2l
2

]

,

4

arg maxφ

(

log(L(D,φ)) =

−
1

2

(y − µ(φ))(K(φ)+ V)−1(y − µ(φ))

−
1

2

log(|K(φ)+ V|)−
dim(y)

2

log(2π)

)

,

5

p(f
0
|y) =

∫

RN

p(f
0
|f , y)p(f , y)df

∝ N (µ+ κ
T (K + V)−1(y − µ),KKK− κ

T (K + V)−1
κ),

The posterior contains the posterior mean m(x0) and the pos-
terior variance σ2(x0).

Autonomous experimentation
Having calculated the posterior probability density func-
tion (Equation 5), it can now be used to decide where future 
measurements should take place. For this, a function of the 
posterior, a so-called acquisition functional—sometimes sim-
ply called acquisition function— fa(x) : X → R , is defined 
to assign every measurement (point in the domain) a value. 
Commonly, regions of low uncertainty are assigned a low 
value and regions of high uncertainty or probability of find-
ing certain desirable characteristics are assigned a high value. 
There is an overwhelming number of acquisition functionals 
in the literature. Often new acquisition functionals have to be 
defined to allow for optimal performance of the AE. Certain 
acquisition functionals will turn an autonomous experiment 
into Bayesian optimization.32,34 Having defined the acquisition 
functional,29 we solve

where the constraints gi(x) can be used to restrict the search to 
regions that are of special interest or to protect the instrument 
from navigating to regions that are inaccessible or unsafe. An 
additional modification is to estimate or learn a cost function 
c : X × X → R and optimize fa(x)/c(x, x0) , where x0 is the 
last measurement location. In this case, new measurement sug-
gestions are cost-sensitive. The “Acquisition functionals for 
optimal measurement suggestions” section focuses on different 
choices of acquisition functionals for a simple toy example to 
emphasize its importance for the successful execution of an 
autonomous experiment.

Case studies
In this section, we present four case studies that were care-
fully chosen to highlight specific characteristics of GPs and the 
associated autonomous experiments. Although many data sets 
do not stem from the materials sciences, the key takeaways 
always apply to data with similar properties and are agnostic 
to the field in which the data originated.

The role of noise for autonomous experiments
Reading through most of the available Gaussian process lit-
erature, one would be forgiven to assume that i.i.d. noise is 
fundamental to the GP framework. On the contrary, the GP 
framework—as one could expect from a Bayesian method—is 
without any adaptations able to handle non-i.i.d. noise. Non-
i.i.d. noise plays an important role in x-ray scattering and neu-
tron scattering applications, among others. In ML, it is com-
mon to ignore noise entirely and advanced noise models are 
virtually unheard of. In this example, we want to show that the 
consideration and inclusion of non-i.i.d. noise into the model is 

6arg max
x∈X fa(x),

7s.t.gi(x) < / ≤ / = / ≥ / > 0,∀i ∈ {1, 2, 3, 4, ...},
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indispensable for optimal autonomous experimentation.11 This 
is because the sequence of measurements depends on the loca-
tion of the maxima of the acquisition functional, which com-
monly depends on the posterior variance. However, the key 
takeaway here goes beyond AEs and has important implica-
tions for all of ML: accurate estimation and inclusion of noise 
are important for accurate model predictions. Before looking at 
the result, we would expect that the data acquisition is biased 
toward regions with high noise in order to reduce total uncer-
tainty. Our experiment was set up using an anisotropic and sta-
tionary Matérn kernel with ν = 3/2 . The data set is taken from 
IR  spectroscopy29,35 and the material is organic matter. In this 
test, we are approximating a scalar intensity on [0, 1] × [0, 1].

Consider the ground-truth data and the noise model in 
Figure 2. The noise model is usually not known before the 
experiment, but we define it ad hoc to test how treating noise 
differently in the GP affects autonomous decision-making. For 
this example, we are performing standard maximum variance 
steering, where points are placed where the posterior variance 
is at its maximum. One would expect a higher point density in 
places of high measurement noise, but only non-i.i.d. noise, 
estimated and communicated for each new measurement deliv-
ers this behavior. While treating the noise as one hyperparam-
eter, which can be found by solving Equation 4, delivers a 
satisfactory model, the overall approximation error is larger 
than for non-i.i.d. noise. Estimating one noise value ad hoc can 
render the model ineffective because it influences and misleads 
the hyperparameter optimization, which negatively affects the 
accuracy of uncertainty estimation.

Stationary kernels versus nonstationary kernels 
for Gaussian processes
Even more uncommon than non-i.i.d. noise in GPs is the use 
of nonstationary kernels. In a review by Pilario et al.,27 we can 
dissect that around 90% of studies employing kernel methods 
use the RBF kernel. The number is much higher when consid-
ering a broader range of stationary kernels. Stationarity in the 
kernel means we are assuming that covariances between data 
points only depend on their distance, not on the points’ respec-
tive locations (i.e., k(x1, x2) = k(|x1 − x2|) ), a high standard 
to be met for most modern data sets; this is especially true 
for the materials sciences where changes of some parameters 
will have much more impact on the properties of a material 
in some regions in the parameter space than in other regions. 
Imagine inorganic crystal growth as a function of an annealing 
history; clearly, in some temperature regions, the crystal size 
will react much more strongly to temperature changes than in 
others. A prime example to see, experience, and understand 
the importance of nonstationarity in the kernel definition is 
to use the topography of the United States as a test data set. 
Although this data set did obviously not originate from an 
AE or in the materials sciences it has all characteristics we 
need to illustrate the importance of nonstationarity. Clearly, 
covariances should behave differently in the mountainous 
regions of the Rocky Mountains compared to the Great Plains. 

Although for accuracy of the function approximation, the dif-
ference between nonstationarity and stationarity could still be 
bearable, for autonomous experimentation where the accurate 
estimation of uncertainty is a deciding factor, nonstationary 
plays a vital role in the experiment design, as can be seen in 
Figure 3.

For this example, the stationary kernel is given by

d = (x1 − x2)
T
M(x1 − x2) , which is the axially anisotropic 

Matérn kernel of first-order differentiability, with diagonal 
M , length scale l, and signal variance σ2

s
 . The nonstationary 

 kernel36 was defined as

where f (x) =
∑

N

i
αiβ(xi, x;w) . αi are the heights of some 

radial basis functions

with w being the parameter controlling the width. The term 
f (x1)f (x2) can be interpreted as flexible signal variance, 
which impacts how uncertainties are estimated across the 
domain. This leads to uncertainties that are much more reflec-
tive of the true error compared with the use of the stationary 
kernel (see Figure 3).

Training as a constrained and ill‑posed function 
optimization problem
One of the major drawbacks of using nonstationary kernels is 
that they need parametric representations of functions—sig-
nal variances, length scales, and so on—which gives rise to 
many more hyperparameters compared with standard station-
ary kernels. For the example in the last section, for instance, 
the kernel definition needed 286 hyperparameters to be found, 
compared to two for an isotropic RBF kernel. This dependency 
of the hyperparameter number on the kernel definition shifts 
the focus of kernel methods to the training (i.e., the optimiza-
tion of the hyperparameters). In this case study, we want to 
analyze the characteristics of the solutions of the training for 
the kernels used in the last example.

The optimization of the hyperparameters is naturally con-
strained for many kernels due to the subset (0,∞]n ⊂ R on 
which the log likelihood is well defined (e.g., signal vari-
ances and length scales should never be negative or zero). 
n, in this case, is the number of hyperparameters. Other con-
straints are potentially introduced through domain knowledge. 
When using local optimizers for hyperparameter training, it 
is the author’s recommendation to remove the bounds on the 
optimization by considering simple transformations (e.g., 
exp(−||x1 − x2||l2) instead of exp(−||x1 − x2||/l) ). Trans-
formations such as this should be applied to make the optimi-
zation domain closed but unbounded. In Figure 4, we see top 
views of marginal log-likelihood functions. It is apparent that 
nonstationary kernels give rise to nonuniqueness of solutions 

8kstat(x1, x2) = σ2
s

(

1−
√
3d

l

)

exp

[

−
√
3d

l

]

,

9knon(x1, x2) = f (x1)f (x2)kstat(x1, x2),

10β(xi, x;w) = exp [−||xi − x||w2],
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and regions in which the ratio of eigenvalues of the Hessian is 
very large, indicating flat regions or ridges.

It is a frequently discussed topic whether to use opti-
mization to find the hyperparameters or to use Markov 
Chain Monte Carlo (MCMC), which is the fully Bayesian 
approach. The argument against optimization is that it can 
lead to overfitting and the argument against MCMC is that 
it can be slow to converge, especially in situations when 
many hyperparameters have to be found. The advantage 
of optimization is that we do not need to specify a prior, 

which can be difficult for nonstandard kernels. A potential 
middle ground is to find optima using optimization and the 
Laplace approximations to account for the uncertainty in 
the hyperparameters.

Acquisition functionals for optimal measurement 
suggestions
As described in the “Some theory of Gaussian processes and 
related autonomous experimentation” section, the acquisi-
tion functional fa has a major impact on the performance 

Figure 2.  The importance of accurate treatment of noise for the success of an autonomous experiment approximating a scalar spectral intensity on 
[0, 1] × [0, 1] . The top nine images show the progression of the model for three different scenarios (from left to right): The assumption of a constant 
1% noise of the mean of the data values, optimized identically and independently distributed (i.i.d.) noise as part of the kernel, and measured noise. 
The bottom images show the ground-truth model, the noise model, and the accuracy of the model function approximation as a function of the 
iteration number. We can see that fixed noise, which is underestimated in this case, has the potential to render the autonomous experiment entirely 
ineffective. The hyperparameter optimization is misled, which leads to overfitting. Although the optimized noise model performs better, no extra 
emphasis is put on regions with high noise. The measured noise delivers the best model by strategically increasing measurement point density in 
high-noise regions.
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of an autonomous experiment. Imagine a situation in which 
a function should be explored but with a focus on regions 
{x̃ ⊂ X : f (x̃) < b, b ∈ R} . In simpler terms, “valleys” with 
a certain “depth” should be given priority in the exploration. 
For materials scientists, the valley could be understood as a 
region of small crystal or grain sizes. Because the problem is 
exploratory, a practitioner could utilize fa(x) = σ2(x) . How-
ever, the focus on valleys could motivate a lower-confidence-
bound style acquisition functional fa(x) = −(m(x)− 3σ(x)) . 
Ideally, the functional would allow the exploration of the 

regions of interest. Recalling that an acquisition functional 
is a function of the posterior probability density function—
therefore the name “functional”—we could focus on the 
entire region of interest by defining

11

fa(x) = p(−∞ ≤ f (x) ≤ b) =
1

σ
√
2π

∫

b

−∞
e

f (x)−m(x)2

2σ2 df

= 0.5

(

1+ erf

(

b− m(x)

σ
√
2

))

,

Figure 3.  Stationary (left) and nonstationary (right) Gaussian processes applied to the topography of the United States. From the top: 
Ground-truth model using the entire data set, posterior means, variances, and errors for stationary (Equation 8) and nonstationary (Equa-
tion 9) kernels. The overall approximation error is lower for the nonstationary kernel. The key takeaway, however, is that uncertainties are 
much more realistically represented for the nonstationary kernel. The posterior variance for the stationary kernel does not respond to local 
characteristics of the underlying latent function. In contrast, the posterior variance calculated using the nonstationary kernel seems sensitive 
to the latent function, which results in very low uncertainties just east of the Rocky Mountains where the topography is nearly flat.
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i.e., the probability that the latent function f (x) ≤ b . For a  
visual comparison of the mentioned acquisition functionals, see 
Figure 5. We can see in the figure that all acquisition functions 
find similar results. However, while pure exploration wastes 
measurements on exploring the function outside of the region 
of interest, the lower-confidence bound focuses too much on 
finding the minima. The acquisition functional (Equation 11) 
balances the two to allow exploration of the region of interest.

Conclusion
In this article, we looked at some mathematical idiosyncra-
sies and nuances of Gaussian process-driven autonomous data 
acquisition, which can, if not identified and countered, lead 
to undesired behavior and even error-prone model identifi-
cation. We selected four examples: non-i.i.d. measurement 
noise, nonstationary kernels, the issue of ill-posed optimiza-
tion problems that have to be solved for training a GP, and 

a b

c d

–8000

–4000

Figure 4.  Figure emphasizing the difficulties of hyperparameter optimization (training) of highly flexible nonstationary kernels. This issue is inherent 
in most machine learning methods. (a) The marginal log-likelihood function for the stationary kernel (Equation 8). There is a global optimum that 
can easily and inexpensively be found with local or global optimizers. We can see from the eigenvalues of the Hessian that there is a direction (long 
arrow) in which we could move and the function value would only slightly change, which suggests some ambiguity in the model. We can see in (b–d) 
that this phenomenon becomes increasingly challenging in higher dimensions. (b) The marginal log-likelihood function over a 2D slice through the 
286-dimensional space spanned by the hyperparameters. The two presented hyperparameters are the constant width of the basis functions of the 
kernel and the length scale. Just in this slice, we see three optima—two maxima and one saddle point—a local optimizer could identify as the final 
solution. (c) All found eigenvalues of the Hessian in the nonstationary case. The plot reveals that the final solution is actually a saddle point since the 
eigenvalues change sign. The key takeaway from this figure is that finding the hyperparameters of our model robustly becomes more challenging as 
we use more flexible nonstationary kernel designs. Although this is not a reason to avoid those more powerful kernels, it motivates the employment 
of powerful optimization algorithms that can handle nonuniqueness well. (d) The same function in a 2D slice spanned by the first two basis function 
coefficients. Here, many optima can be identified, and some are marked in the image. Every time, the ratio of the eigenvalues tells a story about the 
stability and robustness of the solution.
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tailored acquisition functionals. The key takeaway for all four 
examples is the same: To maximize the success of a GP func-
tion approximation or associated autonomous experiment, we 
have to go beyond standard setups and customize every aspect 
and property of the method. This takeaway is not exclusive to 
the GP framework, but applies to all ML methods.

The first test (“The role of noise for autonomous experi-
ments” section) showed that the performance of an autonomous 
experiment strongly depends on the accurate estimation of the 
measurement noise. The dangers go much beyond inefficien-
cies; insufficiently accurate noise can render the resulting func-
tion approximation entirely useless. In addition, the estimation 

of uncertainties across the domain becomes so poor that data 
acquisition control becomes random due to very small length 
scales, which leads to overfitting (Figure 2) and high uncertain-
ties almost everywhere. Our next test illustrated the benefits of 
allowing nonstationarity in the kernel design (“Stationary kernels 
versus nonstationary kernels for Gaussian processes” section). 
Function approximation and uncertainty quantification are sig-
nificantly more accurate for nonstationary kernels. Both affect 
the performance of the autonomous experiment. More flexible 
kernels, however, lead to many more hyperparameters that have 
to be found. In the “Training as a constrained and ill-posed 
function optimization problem” section, we investigated the 

Figure 5.  Three different acquisition functionals and their effect on exploring the latent function (top). We assume that the interest of the prac-
titioner is in the valley region bordered by the contour line on both sides. An acquisition functional focusing on minimizing the uncertainty (pure 
exploration, left) will explore all regions of the input space. A lower-confidence-bound acquisition functional (middle) will focus on finding minima 
but runs the risk of not exploring the region of interest fully. An acquisition functional using the posterior distribution to value the probability of the 
latent function value being in the right range accomplishes exactly what was intended. Although neither of the shown acquisition functionals is 
particularly sophisticated, they show the importance of customization in order to maximize the benefit during an autonomous experiment.
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nonuniqueness properties of the optimization problem and found 
that more hyperparameters and nonstationary kernels can lead to 
many solutions. This is an important lesson for novel automated 
kernel selection methods, such as deep kernel learning; unneces-
sary hyperparameters will lead to ill-posed optimization prob-
lems that could be impossible to solve robustly. The practitioner 
will often not be informed about the problem but has a faulty 
model to work with. Our last test (“Acquisition functionals for 
optimal measurement suggestions” section) drew attention to the 
acquisition functional of an autonomous experiment. The simple 
example illustrated (Figure 5) that a well-customized acquisition 
functional leads to a much targeted data acquisition.

Of course, there are many more pitfalls to look out for when 
performing ML and AE. Some of those are very practical, such 
as trying to visualize the model at least in slices to validate its 
validity before using it for decision-making and making sure 
the input data are cleaned up. Simple sanity checks can make 
sure the data are in order before applying any ML method: 
Were data points recorded twice? Is noise correctly communi-
cated? Are there “NaN”s in the data set? What about outliers? 
And so on. For GPs, some of the sanity checks are naturally 
included because the trained hyperparameters often have a 
physical meaning, which can be checked against the intuition 
of the practitioner. For this, however, it is indispensable to 
know about the mathematics of the underlying method.

In summary, the authors hope that this collection of exam-
ples will help practitioners in the materials sciences avoid some 
of the common mathematical and statistical pitfalls when using 
Gaussian process-driven autonomous experimentation methods.
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