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ABSTRACT OF THE DISSERTATION

The Complex Dimensions of Space-Filling Curves

by

Adam Doren Richardson

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2022

Distinguished Professor Michel L. Lapidus, Chairperson

Space-filling curves have been colloquially referred to as “fractals” since the term was coined

and defined by Benoit Mandelbröt in the late 1970s. However, space-filling curves themselves

do not satisfy Mandelbröt’s definition, and other definitions of fractality also neglect to

properly classify space-filling curves as fractals. This is due to the fact that, as sets, they

are topologically simple because they fill N -dimensional space and, thus, coincide with

N -dimensional space. In the 1990s through the present, Distinguished Professor Michel L.

Lapidus and various collaborators have developed a more accurate definition of fractality

based on a larger theory of complex dimensions of fractal sets. These complex dimensions

correspond to the existence of singularities of certain complex-valued zeta functions associated

with fractal sets. These singularities are termed complex dimensions due to their connection

with “fractal dimensions” such as the Minkowski dimension, and the complex-valued zeta

functions used in analytic number theory. The theory has been incredibly fruitful over

the years, even allowing for the Riemann hypothesis to be recast in terms of the complex

dimensions of the geometric zeta function of an appropriate fractal string. Today, it has

allowed the present author to prove that a class of space-filling curves are, indeed, fractals,

and to provide insight into the oscillatory properties of these curves via their complex

dimensions.
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In this dissertation, Chapter 1 provides the motivating background for the study of

complex dimensions of fractal sets. Chapter 2 introduces the theory of fractal strings in R

and the complex dimensions of fractal strings. Chapter 3 generalizes the theory to dimensions

greater than 1. Chapter 4 provides all the necessary background in the theory space-filling

curves required to make sense of the results of this dissertation. Chapter 5 details the

construction of a class of relative fractal drums (RFDs) associated to a class of plane-filling

curves. This construction allows us to detect the complex dimensions of such curves for

the first time, and thereby properly classify them as fractals in a rigorous way. Chapter

6 details how this class of RFDs also allows us to investigate the oscillatory properties of

these curves, in particular in the points and the volume of the tubular "-neighborhood of

the curves. Chapter 7 concludes the dissertation with some conjectures about future results

involving di↵erent classes of space-filling curves.
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The Sierpiński Gasket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

The Devil’s Staircase Revisited . . . . . . . . . . . . . . . . . . . . . . . . . 35

4 The Theory of Space-Filling Curves 38

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 The Hilbert Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 The Peano Curve, and a Class of Space-Filling Curves . . . . . . . . . . . . 50

5 Relative Fractal Drums (RFDs) for a Class of Plane-Filling Curves 54

5.1 The Hilbert Curve RFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 A Generalized RFD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

ix



5.3 The Peano Curve RFD, and another Hilbert Curve RFD . . . . . . . . . . . 75

6 Languidity, and the Oscillatory Behavior of Space-Filling Curves 84

6.1 Languidity of Relative Fractal Drums Associated with Space-Filling Curves 85

6.2 Oscillatory Behavior of Space-Filling Curves . . . . . . . . . . . . . . . . . . 89

Oscillations in the Volume of the Tubular Neighborhood . . . . . . . . . . . 90

Oscillation of Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Future Results 106

7.1 Extension to Regular Rectilinear Tessellations of IN . . . . . . . . . . . . . 106

7.2 Extension to Irregular Rectilinear Tessellations of IN . . . . . . . . . . . . . 109

7.3 Extension to Regular Nonrectilinear Tessellations of RN . . . . . . . . . . . 109

References 112

A Codes and Images 113

A.1 Mathematica Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A.2 Lindenmayer Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.3 More Images of the Hilbert Curve Relative Fractal Drum . . . . . . . . . . 130

x



List of Figures

1.0.1 The Cantor-Lebesgue function, or “The Devil’s Staircase”. . . . . . . . . 4

2.2.1 The Cantor string, CS [LvF13]. . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 An inner "-tubular neighborhood of the Cantor string, CS [LvF13]. . . . 13

2.3.1 The screen SSS and the window W . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 The complex dimensions of the Cantor set shown on the complex plane C. 18

3.4.1 The first 8 approximations to the Sierpiński gasket (SG). . . . . . . . . . . 31
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Chapter 1

Introduction

The mathematical concept of dimension has been seriously studied since the 19th century,

and it emerged initially to give su�cient generalized meaning to intuitive concepts like a

line, a curve, and a surface, as well as higher dimensional objects. Until the 20th century,

the notion of dimension was exclusively a nonnegative integer. In [Edg90], Gerald A. Edgar

quotes Hermann Weyl on the notion of dimension: “We say that space is 3-dimensional

because the walls of a prison are 2-dimensional.” This intuition is codified in the topological

notions of dimension called the small and large inductive dimensions. In the 1920s the theory

of fractal dimensions was detailed by Minkowski, Hausdor↵, Besicovich, and Bouligand,

extending the notion to nonnegative real numbers in order to explore geometric properties

of “rough” arbitrary sets in Euclidean space. This gave rise to the Hausdor↵ dimension and

Minkowski-Bouligand dimension (also known as the box dimension) which are fundamental

tools of fractal analysis. In the 1990s Michel L. Lapidus proposed the idea of complex

dimensions of bounded fractal strings based on collaborative work in, for example, [LvF13].

The notion of complex dimensions gives us the most accurate way of defining fractality to

date.

In the late 1970s, Benoit Mandelbröt coined the term fractal and gave the following

intuitive description of a fractal in his book The Fractal Geometry of Nature [Man82]: “a

rough or fragmented geometric shape that can be split into parts, each of which is (at
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least approximately) a reduced-size copy of the whole.” In an attempt to make this notion

mathematically rigorous, he initially settled on the following definition.

Definition 1.0.1 ([Man82]). A fractal is by definition a set for which the Hausdor↵-

Besicovitch dimension strictly exceeds the topological dimension.

However, in the late 1980s after another decade of research involving “fractals” and

“fractal-like” constructions and behaviors, Mandelbröt admitted in Peitgen and Richter’s book,

The Beauty of Fractals [PR86], that “[The definition’s] generality was to prove excessive:

not only awkward but genuinely inappropriate. [...] This definition left out many ‘borderline

fractals’, yet it took care, more or less, of the frontier ‘against’ Euclid. But the frontier

‘against’ true geometric chaos was left wide open! I know definitions matter little, but this

one can still be improved upon.”

These “borderline fractals” are not as borderline as one might imagine (and as we will see

in detail, shortly) and their exclusion by this definition is, indeed, apparently and evidently

inappropriate. The existence of mathematical objects that exhibit the heuristic qualities

of what mathematicians would like to label as “fractal” that fail to fulfill the hypotheses

of Definition 1.0.1 naturally led to other attempts at developing a more accurate formal

definition. Kenneth Falconer writes in his book Fractal Geometry: Mathematical Foundations

and Applications [Fal90], “My personal feeling is that the definition of a ‘fractal’ should be

regarded in the same way as a biologist regards the definition of ‘life’. There is no hard and

fast definition, but just a list of properties characteristic of a living thing, such as the ability

to reproduce or to move or to exist to some extent independently of the environment. Most

living things have most of the characteristics on the list, though there are living objects that

are exceptions to each of them. In the same way, it seems best to regard a fractal as a set

that has properties such as those [in Definition 1.0.2 below], rather than to look for a precise

definition which will almost certainly exclude some interesting cases.” We list the properties

he suggested in Definition 1.0.2, here.
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Definition 1.0.2 ([Fal90]). When we refer to a set F as a fractal we will typically have the

following [properties] in mind.

(i) F has a fine structure, i.e. detail on arbitrarily small scales.

(ii) F is too irregular to be described in traditional geometrical language, both locally and

globally.

(iii) Often F has some form of self-similarity, perhaps approximate or statistical.

(iv) Usually, the “fractal dimension” of F (defined in some way) is greater than its

topological dimension.

(v) In most cases of interest F is defined in a very simple way, perhaps recursively.

The definition of a “fractal dimension” as mentioned in Property (iv) varies, but common

dimensions used are the Minkowski-Bouligand dimension or box dimension (see Definition

2.1.9 in Chapter 2), and the Hausdor↵ dimension. Some authors will also include the

property of nowhere di↵erentiability as characteristic of fractality.

The present author has not been satisfied with the various definitions and purported

properties of fractals specifically because there are often many “fractal” counterexamples.

This does not mean that we, as mathematicians, should cast aside the search and need for

a proper formal definition, nor does it mean that we should settle for ambiguity to avoid

exclusion, but more likely that our understanding of this idea we call “fractality” is still

inchoate and we have simply been unable to properly characterize the phenomenon. At

least until the work of the present author’s Ph.D. advisor, Distinguished Professor Michel

L. Lapidus. Professor Lapidus once said: “One cannot think of a fractal as only a set,

sometimes it is a structure, sometimes it is a process.” Detecting that structure requires

the theory of complex dimensions (see Chapters 2 and 3). We proceed now to o↵er up

some counterexamples to Definitions 1.0.1 and 1.0.2 which illustrate why a more appropriate

definition is necessary.

3



Figure 1.0.1: The Cantor-Lebesgue function, or “The Devil’s Staircase”.

Counterexample 1.0.1 (The Cantor-Lebesgue Function, or “The Devil’s Staircase”).

Every math graduate student who has taken a course in real analysis is intimately familiar

with this function, and it serves as an example of a fractal that fails the requirements of

Definition 1.0.1, and/or Property (iv) in Definition 1.0.2). To show this, let f be the Cantor-

Lebesgue function (see Figure 1.0.1), and recall the construction of f (see, for example,

[Fol99] Chapter 1, Proposition 1.22): let C be the usual middle-third Cantor set in [0, 1] ⇢ R.

Recall that any point in C can be described in a ternary form where each ternary digit is a 0

or a 2, i.e. x =
P1

n=1
an
3n where an 2 {0, 2}. Define f as

f(x) =

8
>>>>><

>>>>>:

1X

n=1

bn

2n
where bn =

an

2
and x 2 C

sup
yx

x2C

f(x) if x 2 [0, 1] \ C.
(1.0.1)

In other words, f is constant o↵ of C. By inspection, in particular by examining Figure

1.0.1), this function has characteristics that most mathematicians would describe as fractal.

However, it is also rectifiable (it has length 2, in fact, a curious property) so this means that

its Hausdor↵ dimension coincides with its topological dimension, 1, so it is not a fractal by

Mandelbröt’s original definition. Note also that, since the 0-dimensional Lebesgue measure

4



of C is 0, f is almost everywhere di↵erentiable on [0, 1], so the nondi↵erentiability criterion

some choose to cite as characteristic of fractals is also not satisfied.

Counterexample 1.0.2 (The a-string). This quintessential example can be found in

the paper Fractal Drums, Inverse Spectral Problems for Elliptic Operators and a Partial

Resolution of the Weyl-Berry Conjecture [Lap91] written by Professor Michel L. Lapidus as

well as the book Fractal Geometry, Complex Dimensions and Zeta Functions [LvF13] by

Professor Lapidus and Dr. Machiel van Frankenhuijsen. The a string is a simple construction.

Let a > 0 and consider the collection of lengths La = {lj}1j=1 where

lj =
1

ja
� 1

(j + 1)a
for j 2 Z+

.
1 (1.0.2)

This collection is known as the a-string, and it can be realized as a countable union of

intervals formed by removing the points 1
ja

from the interval (0, 1):

⌦a =
1[

j=1

✓
1

(j + 1)a
,
1

ja

◆
. (1.0.3)

The boundary of this set is

@⌦a =

⇢
1

ja
: j 2 Z+

�
[ {0}. (1.0.4)

As shown in [Lap91], Appendix C, @⌦a has Minkowski dimension D = 1
1+a

for any a > 0.

Let’s take a = 1 for a moment, for clarity. If a = 1, then the 1-string is just the harmonic

string, and the boundary of the 1-string is simply the harmonic sequence and its limit point

0:
n
0, 1, 12 ,

1
3 ,

1
4 , . . .

o
. This set has Minkowski dimension D = 1

1+1 = 1
2 > 0, thus, we have a

set that satisfies Properties (i), (iii), (iv), and (v) of Definition 1.0.2, yet it is clearly not a

fractal.

Counterexample 1.0.3. As a final counterexample, we have space-filling curves. The

theory of space-filling curves is laid out in detail in Chapter 4, but for now, we can take the

1The symbol Z+ denotes the set positive integers: Z+ = {1, 2, 3, . . .}.
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Hilbert curve (see Section 4.2) as a counterexample. The Hilbert curve is the image of a

continuous surjective mapping from the unit interval [0, 1] to the unit square [0, 1]⇥ [0, 1].

More directly, its image is the unit square itself. The unit square satisfies none of the

properties in Definition 1.0.2, and no one would describe it as fractal, yet the Hilbert curve

is often labeled as a fractal, not because of its image, but because of its process of generation.

One might also note how the Hilbert curve is nowhere di↵erentiable (see [Sag94], Section 2.5)

as evidence of its fractality, but there are space-filling curves which are almost everywhere

di↵erentiable, e.g. Lebesgue’s space-filling curve (see [Sag94] again, Chapter 5, Theorem

5.42).

We will revisit each of these examples, but space-filling curves o↵er a perfect example

of how fractality is a subtle phenomenon, and, at least until this dissertation, the label of

“fractal” bestowed upon them has been strictly colloquial and convenient. To make sense of

the fractal nature of space-filling curves, we first need the theory and machinery of complex

dimensions, to which we now turn.
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Chapter 2

The Theory of Complex

Dimensions in R

2.1 Preliminaries

Presently, we restrict ourselves to the case when the ambient space in which we are working is

R, i.e. RN where N = 1. The next chapter will detail the generalization of this 1-dimensional

theory to higher dimensions. A similar exposition can be found in the the book Fractal

Geometry, Complex Dimensions and Zeta Functions by Michel L. Lapidus and Machiel van

Frankenhuijsen [LvF13], and this author encourages the interested reader to pick up a copy

and dive into the fascinating details discussed there. To begin, we define a fractal string.

Definition 2.1.1. An ordinary fractal string L is a bounded open subset ⌦ of R. Such a

set can be decomposed into a countable union of disjoint open intervals (see, for example,

[Fol99]) of length lj , and we can write L := {lj}j�1. We can assume without loss of generality

that l1 � l2 � l3 � · · · � 0 where each length is counted according to multiplicity. The

boundary of L is denoted by @L and is defined as the boundary, @⌦, of ⌦.

Note that
P

j�1 lj < 1 since ⌦ is bounded, and, indeed, this sum is equal to the

1-dimensional Lebesgue measure of ⌦. Note also that the number of lengths of an ordinary

7



fractal string could be finite, but the more interesting examples have an infinite number of

lengths. Moreover, this definition is made intentionally general so that the theory can be

applied to other related mathematical constructs, and we will formalize the definition of

fractality below (see Definition 2.3.5) to di↵erentiate fractal objects from non-fractal objects.

Another important interpretation of an ordinary fractal string is that of a 1-dimensional

drum with fractal boundary. If we consider a single interval for a moment, it can be viewed

as a string that, when plucked, produces a sound. A fractal string is a union of these strings.

In higher dimensions, the appropriateness of the term “drum” may be easier to see if one

imagines, say, a timpani drum. We also use the term ordinary here since this definition

can be generalized to strings whose lengths have non-integer multiplicity, but since our

applications do not, at least at present, require non-integer multiplicities, we will omit that

part of the theory. Again, we encourage the interested reader to explore [LvF13] because

there is a fountain of fascinating related ideas there.

Definition 2.1.2. The geometric counting function of L is the counting function of the

reciprocal lengths that comprise L:

NL(x) := #
⇣
{j � 1 : l�1

j
 x}

⌘
=

X

j: l�1
j x

1 (2.1.1)

where #(·) is the counting measure.

Next we need some basic definitions that will be used throughout this text.

Definition 2.1.3. For any x 2 R, the floor of x is defined as the largest integer less than

or equal to x and is denoted bxc. Sometimes this is simply called the integer part of x.

The ceiling of x is defined as the smallest integer greater than or equal to x and is denoted

dxe. The fractional part of x is defined as the noninteger part of x and is denoted {x}. In

particular, this notation allows us to write x = bxc+ {x} and x = dxe+ {x}� 1.
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Definition 2.1.4. For a point x 2 R and a set ⌦ ✓ R we define the distance between x and

⌦, denoted d(x,⌦), as

d(x,⌦) := inf
y2⌦

|x� y| (2.1.2)

where | · | is the standard Euclidean distance induced by the 1-dimensional Lebesgue measure

in R.

Definition 2.1.5. Given a set ⌦ ✓ R and t > 0, we define the inner tubular neighborhood

of ⌦ as

⌦t := {x 2 ⌦ | d(x, @⌦) < t}. (2.1.3)

Now we set out to define the Minkowski dimension of a set which is a common “fractal

dimension” (see Definition 1.0.2 in Chapter 1) used for analysis. We omit discussion of the

Hausdor↵ dimension since it is not used our particular analysis, but an interested reader

can find a detailed and approachable description in [Edg90]. The Minkowski dimension of a

set is defined in terms of the Minkowski content of a set.

Definition 2.1.6. For any set ⌦ ✓ R and d � 0, the upper d-dimensional Minkowski content

of ⌦ is

M⇤d(⌦) := lim sup
t!0+

|⌦t|
t1�d

. (2.1.4)

The lower d-dimensional Minkowski content of ⌦ is defined analogously as

Md

⇤(⌦) := lim inf
t!0+

|⌦t|
t1�d

. (2.1.5)

By definition we have 0  Md
⇤(⌦)  M⇤d(⌦)  +1. If these two values coincide, we simply

call the value the d-dimensional Minkowski content of ⌦ and we can write

Md(⌦) = lim
t!0+

|⌦t|
t1�d

. (2.1.6)
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Note that, in general, the d-dimensional upper (or lower) Minkowski content is not a

measure. Indeed, if we consider the set of rational numbers Q,

M⇤d(Q) = M⇤d
⇣
Q
⌘
= M⇤d(R) > 0, (2.1.7)

but Q is countable and so should have measure 0 by countable additivity (see, for example,

[Fol99]). In particular, M⇤d is not a measure in RN unless d = 0 in which case

M⇤0(⌦) = lim sup
t!0+

|⌦t|
t

= #(⌦). (2.1.8)

Similar arguments hold for M⇤. The fact that the Minkowski content is not a measure is

beneficial in the study of fractal geometry since the fractality of an object can depend on

countable sets.

Definition 2.1.7. We say a set ⌦ ✓ R is Minkowski nondegenerate if and only if 0 <

Md
⇤(⌦)  M⇤d(⌦) < +1, i.e. if and only if the Minkowski content is a nonzero finite

number.

Definition 2.1.8. We say a set ⌦ ✓ R is Minkowski measurable if and only if 0 < Md
⇤(⌦) 

M⇤d(⌦) < +1 and M⇤d = Md
⇤ = Md, i.e. if and only if ⌦ is Minkowski nondegenerate

and the upper and lower Minkowski contents coincide.

Now that we have established the definition of the Minkowski content of a set, we can

define the Minkowski dimension of a set.

Definition 2.1.9. For any set ⌦ ✓ R, the upper Minkowski dimension of ⌦ is the unique real

number D := D(⌦) := dimB(⌦) such that M⇤d(⌦) = +1 for all d < D, and M⇤d(⌦) = 0

for all d � D.1

The lower Minkowski dimension of ⌦ is defined analogously as the unique real number

D := D(⌦) := dimB(⌦) such that M⇤d(⌦) = +1 for all d < D, and M⇤d(⌦) = 0 for all

d � D.
1The subscript B is used because the Minkowski dimension of a set is equivalent to the box dimension of

a set. For a proof of this, see [Lap91] Corollary 3.1.
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If these two values coincide, we simply call the quantity the Minkowski dimension of ⌦

and write D = D(⌦) = dimB(⌦).

Singling out the upper Minkowski dimension for a moment, the fact that such a number

exists and is unique needs to be proven in order to establish the soundness of the definition.

We do so below for the case when M⇤d(⌦) < +1 and leave the case when M⇤d(⌦) = +1

as an exercise to the reader. Moreover, if d = D (or d = D or d = D), then the Minkowski

content can be any value in [0,+1].

Lemma 2.1.1. The upper Minkowski dimension D of a set ⌦ exists and it is unique.

Proof. Let � > 0 and let d � 0. Suppose that M⇤d(⌦) < +1. Since the limit superior

always exists,

M⇤(d+�)(⌦) = lim sup
t!0+

|⌦t|
t1�(d+�)

= lim sup
t!0+

1

t��
· |⌦t|
t1�d

=

 
lim sup
t!0+

1

t��

! 
lim sup
t!0+

|⌦t|
t1�d

!
= 0 · M⇤d(⌦) = 0.

(2.1.9)

Similarly,

M⇤(d��)(⌦) = lim sup
t!0+

|⌦t|
t1�(d��)

= lim sup
t!0+

1

t�
· |⌦t|
t1�d

=

 
lim sup
t!0+

1

t�

! 
lim sup
t!0+

|⌦t|
t1�d

!
= +1 · M⇤d(⌦) = +1.

(2.1.10)

Thus d = D is a real number such that M⇤d(⌦) = +1 for all d < D, and M⇤d(⌦) = 0

for all d > D. Moreover, this number is unique since, otherwise, if say D1 and D2 had such

a property and were distinct, say D1 < D2, then M⇤
D1+D2

2

(⌦) = 0, contradicting the fact

that M⇤
d
(⌦) = +1 for d < D2.

Now that we have established the soundness of the definition of the upper (and lower)

Minkowski dimension, we provide a characterization of this quantity that is helpful in the
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analysis of the zeta functions we will see later. This characterization can also be taken as an

equivalent definition.

Definition 2.1.10. For any set ⌦ ✓ R,

D(⌦) = inf{d � 0 | M⇤d(⌦) < 1} (2.1.11)

= inf{d � 0 | M⇤d(⌦) = 0} (2.1.12)

= sup{d � 0 | M⇤d(⌦) = +1}, (2.1.13)

and a similar characterization of the lower Minkowski dimension holds by replacing D with

D.

Remark 2.1.1. The more irregular the boundary of @⌦, the larger the Minkowski dimension

D will be. Additionally, it is always the case that 0  H  D  1 where H represents the

Hausdor↵ dimension of a set. (See [Edg90] for a definition and exploration of the Hausdor↵

measure and dimension, and [Lap91] for a detailed comparison between the two notions of

dimension.)

Remark 2.1.2 (Independence of Geometric Realization). The reason to use the Minkowski

dimension for our analysis as opposed to the Hausdor↵ dimension is that the Minkowski

dimension is invariant under displacement of the intervals which comprise a fractal string L,

whereas this is not the case for the Hausdor↵ dimension (see [Lap91]). Thus, a fractal string

L is completely determined by the sequence of lengths that comprise it. This independence

also holds in higher dimensions, in particular for relative fractal drums (see Chapter 3).

2.2 The Cantor String

The quintessential example of a nontrivial ordinary fractal string is the Cantor String, LCS ,

partially depicted in Figure 2.2.1 and detailed at length in [LvF13]. Let ⌦ = CS be the
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Figure 2.2.1: The Cantor string, CS [LvF13].

1
3

1
9

1
9

Figure 2.2.2: An inner "-tubular neighborhood of the Cantor string, CS [LvF13].

complement in [0, 1] of the usual ternary Cantor set. In particular,

CS =

✓
1

3
,
2

3

◆
[
✓
1

9
,
2

9

◆
[
✓
7

9
,
8

9

◆
[
✓

1

27
,
2

27

◆
[
✓

7

27
,
8

27

◆
[
✓
19

27
,
20

27

◆
[
✓
25

27
,
26

27

◆
[ · · ·

(2.2.1)

and we can see here that the intervals are being counted according to multiplicity. Of

particular interest is the volume of the inner tubular neighborhood of CS. In general, for

any fractal string, the volume of the inner tubular "-neighborhood of the boundary is given

by

V (") =
X

j: lj�2"

2"+
X

j: lj<2"

lj . (2.2.2)

In essence, Equation 2.2.2 expresses the total inner "-tubular volume as 2" times the

number of lengths that are greater than or equal in length to 2" plus the sum of all the

lengths that are less than 2". This makes sense because if lj � 2", then we need only include

the value 2", but if lj < 2", then the interval corresponding to lj is already shorter than 2"

in length so we must add the entire length itself (see Figure 2.2.2). Note that the volume of

the inner tubular neighborhood is independent of geometric realization as well since it only

depends on the lengths that comprise the string.

13



Let’s find the inner tubular volume of the Cantor string. Let "  1
2 be given and let

n = b� log3(2")c. Then, after examining the Cantor string for a bit, we can deduce that

VCS(") = 2" · (2n � 1) +
1X

k=n

2k · 3�(k+1) = 2" · 2n +

✓
2

3

◆
n

� 2". (2.2.3)

In order to obtain an explicit formula for VCS("), we observe that, for any b > 0 and

b 6= 1,

b
n = b

b� log3(2")c = b
� log3(2")�{� log3(2")} = (2")� log3 b · b�{� log3(2")}. (2.2.4)

Using this result for b = 2 and b = 2
3 , and setting D = log3 2 = log 2

log 3
2, we can rewrite

Equation 2.2.3 as

VCS(") = (2")1�D

 ✓
1

2

◆{� log3(2")}
+

✓
3

2

◆{� log3(2")}
!

� 2". (2.2.5)

The function in parentheses is bounded, nonconstant, and multiplicatively periodic in

that it takes on the same value at " and "

3 . It doesn’t have a limit as " ! 0+, and this is

an example of what we refer to as geometric oscillations. We will see that this property

is characteristic of fractals, and is related to the complex dimensions of a fractal. We can

further explore the oscillatory behavior in Equation 2.2.5 by using the Fourier series of the

map u 7! b
�{u} for b > 0 and b 6= 1:

b
�{u} =

b� 1

b

X

n2Z

e
2⇡inu

log b+ 2⇡in
. (2.2.6)

Setting p = 2⇡
log 3 and substituting Equation 2.2.6 into Equation 2.2.5 yields

VCS(") =
1

2 log 3

X

n2Z

(2")1�D�inp

(D + inp)(1�D � inp)
� 2". (2.2.7)

The number p is called the oscillatory period of the Cantor string.

2Here and henceforth, the notation “log” refers to the natural logarithm.
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2.3 The Geometric Zeta Function of a Fractal String

The definition of a geometric zeta function and many of its properties, some of which we

will omit here, is introduced in [LvF13] Section 1.2. Let L = {lj}j�1 be a fractal string. By

definition, the sum
P1

j=1 l
�

j
converges for � = 1, so by passing to a complex variable s 2 C,

the generalized Dirichlet series

⇣L(s) =
1X

j=1

l
s

j (2.3.1)

defines a holomorphic function on {s 2 C : Re s > 1} (see, for example, [Con78]).

Definition 2.3.1. The geometric zeta function of a fractal string L is defined as

⇣L(s) =
1X

j=1

l
s

j =
X

`

w` · `s, (2.3.2)

where w` is the multiplicity of the (distinct) length `. Note that this series is only well-defined

if it converges, and if it converges, then it does so absolutely since the lengths lj are all

nonnegative real numbers.

Remark 2.3.1 (Independence of Geometric Realization). Note here that the geometric

zeta function of a fractal string is also independent of geometric realization, an important

attribute of this analytical tool. We will also see this for the relative distance zeta function

discussed in Chapter 3 (see Remak 3.3.2).

Definition 2.3.2. The abscissa of convergence of the series in Equation 2.3.2 is defined as

� = inf

8
<

:↵ 2 R :
1X

j=1

l
↵

j < +1

9
=

; . (2.3.3)

In other words, {s 2 C : Re s > �} is the largest open half-plane on which this series

converges. Moreover, the function ⇣L(s) is holomorphic on this half-plane.
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Theorem 2.3.1 ([LvF13] Theorem 1.10). Suppose a fractal string L has infinitely many

lengths. Then the abscissa of convergence of its geometric zeta function (the series in 2.3.2)

coincides with D = DL, the Minkowski dimension of @L.

We omit the proof of this theorem here, but a complete proof can be found in [LvF13].

Note that if L has finitely many lengths, then D = 0, but � = �1 since ⇣L(s) converges for

all s 2 C. We also get the following corollary.

Corollary 2.3.1. The Minkowski dimension of an ordinary fractal string satisfies 0  D  1.

The geometric zeta function of a fractal string is a fundamental tool of fractal analysis.

It is holomorphic on some open half plane, but it may admit an analytic continuation to a

larger set. In general, it will not have an analytic continuation to all of C. In order to study

it more carefully, we introduce the notions of a screen and a window.

Definition 2.3.3. We define the screen SSS to be the contour SSS := {s 2 C : s = S(t) +

it, t 2 R} where S : R ! [�1, DL] is a Lipschitz continuous function. We define the

window W to be the part of the complex plane that is to the right of the screen, i.e.

W := {s 2 C : Re s � S(Im s)}. Note that W is a closed subset of C and SSS = @W , the

boundary of W . (See Figure 2.3.1.)

We will assume that ⇣L is admissible, i.e. has a meromorphic extension to an open

neighborhood of W and that ⇣L does not have any singularity on the screen SSS. (See Definition

3.3.7 in Chapter 3 for a more general definition.)

Definition 2.3.4. The set of visible complex dimensions of a fractal string L is

DL := DL(W ) := {! 2 W : ⇣L has a singularity at !}. (2.3.4)

If W = C, then we call the set DL(C) simply the set of complex dimensions of ⇣L.

Remark 2.3.2. Note that the term complex dimension in this context is not the same as

the one used in di↵erential geometry where C = R2 is often called a space of “complex
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SSS

W

Re

Im

Figure 2.3.1: The screen SSS and the window W .

dimension 1”. The term “complex dimensions” was settled upon since these singularities are

directly associated with the “fractal dimension” of an object, in this case the Minkowski

dimension, and, as we will see now, the existence of nonreal singularities.

Definition 2.3.5. A fractal string is defined as fractal if and only if the meromorphic

continuation of its associated geometric zeta function has at least one nonreal complex

dimension.

This powerful definition gives a way of properly characterizing fractality in R and we will

see how it can be extended to RN in Chapter 3. Let’s return to the example of the Cantor

string (see Section 2.2). By the definition of CS, the geometric zeta function of CS is

⇣CS(s) =
1X

n=0

2n · 3�(n+1)s =
3�s

1� 2 · 3�s
. (2.3.5)

This series is valid initially for all s 2 C such that Re s > DCS = D = log3 2 by Theorem

2.3.1, but has a meromorphic continuation to all of C, which we can write as the rational
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function on the right in Equation 2.3.5. The singularities of ⇣L, i.e. the complex dimensions

of CS, can be found by solving the complex exponential equation 1� 2 · 3�s = 0. This yields

DCS = {D + inp : n 2 Z}, (2.3.6)

where D = log3 2, the Minkowski dimension of the Cantor set, C = @CS, and p = 2⇡
log 3 is the

oscillatory period of the Cantor string. Figure 2.3.2 depicts the poles of ⇣CS on the complex

plane C. Consequently, the Cantor set is a fractal by Definition 2.3.5.

Im

Re
D 1

�3ip

�2ip

2ip

3ip

�ip

ip

Figure 2.3.2: The complex dimensions of the Cantor set shown on the complex plane C.

Remark 2.3.3. Heuristically speaking, nonreal complex dimensions above D indicate

oscillations in the geometry of CS and the volume of the tubular neighborhood as well. We

also see this oscillatory behavior in the geometric counting function of CS (Definition 2.1.2):

for any x � 1, there are 1 + 2 + 4 + · · ·+ 2n�1 lengths greater than x
�1 where n = blog3 xc.

Thus, NCS(x) = 2n � 1, and using the Fourier series in 2.2.6, we find

NCS(x) =
1

2 log 3

X

n2Z

x
D+inp

D + inp
� 1 =

1

2 log 3

X

!2DCS

x
!

!
� 1. (2.3.7)
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This oscillatory behavior is characteristic of fractals defined as in Definition 2.3.5, and we

will explore it again in Chapter 6.

Naturally, one may be skeptical about the definition of fractality given in Definition 2.3.5.

Why should this definition be taken over others? The a-string given in Counterexample 1.0.2

provides a clear reason: as detailed in [LvF13], Section 6.5.1, Theorem 6.21, the Minkowski

dimension of the a-string is 1
a+1 , and the set of complex dimensions of the a-string is the

following (or at least a subset of the following).

Da =

⇢
D =

1

a+ 1
,� 1

a+ 1
,� 2

a+ 1
,� 3

a+ 1
, . . .

�
=

⇢
n

a+ 1
: n 2 Z+ [ {�1}

�
. (2.3.8)

More specifically, all of the complex dimensions of the a-string are real, so it is, correctly,

not classified as a fractal under Definition 2.3.5, even though it has a “fractal dimension”

(Minkowski dimension) that is strictly greater than its topological dimension, 0. More

evidence that this is the appropriate definition to describe fractality will be given in the

next chapter where we generalize the theory to dimensions larger than 1.
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Chapter 3

The Theory of Complex

Dimensions in RN

3.1 Introduction

The following chapter details a natural generalization of the theory of complex dimensions

to the higher-dimensional space, RN , for N 2 Z+. In higher dimensions, the richness and

beauty of the theory of complex dimensions becomes even more clear, and, naturally, we

can recover the theory for R (when N = 1). This generalization to higher dimensions is

critical for fractal analysis since many fractals have a dimension greater than 1, in particular,

space-filling curves. As with Chapter 2, this preliminary exposition is similar to that found

in the book Fractal Zeta Functions and Fractal Drums: Higher-Dimensional Theory of

Complex Dimensions [LRŽ17] by Michel L. Lapidus, Goran Radunović, and Darko Žubrinić,

and we encourage the interested reader to pick up a copy and explore. We begin with some

preliminary definitions and theorems that are analogous to the ones seen Chapter 2.
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3.2 The Distance Zeta Function of a Set in RN

Definition 3.2.1. For a point x 2 RN and a set A ✓ R we define d(x,A) as

d(x,A) := inf
y2A

|x� y|N (3.2.1)

where | · |N is the standard Euclidean distance induced by the N -dimensional Lebesgue

measure in RN .

Definition 3.2.2. Given a set A ✓ RN and t > 0, define the tubular neighborhood of A as

At := {x 2 RN | d(x, @A) < t}. (3.2.2)

Remark 3.2.1. Note that this definition di↵ers from Definition 2.1.5 in that x is not

restricted to A, so rather than an inner tubular neighborhood, we are working with the

complete tubular neighborhood. For our analysis this distinction will not matter, (see

Remark 3.3.3 and Theorem 2.3.1) but for intuition in R1, the inner tubular neighborhood is

more helpful. Also, now that we are in RN , the use of the word tubular is easier to intuit:

suppose A is a line in R3. Then At is the open cylinder of radius t with axis the line A, i.e.

the open tube surrounding the line A. If we instead consider A = S
2, the closed unit sphere,

embedded in R3, then At = (S2)t is the region between the two open spheres of radius 1± t

centered at the center of A.

Definition 3.2.3. For any set A ✓ RN and d � 0, the upper d-dimensional Minkowski

content of A is

M⇤d(A) := lim sup
t!0+

|At|N
tN�d

. (3.2.3)

The lower d-dimensional Minkowski content of A is defined analogously as

Md

⇤(A) := lim inf
t!0+

|At|N
tN�d

. (3.2.4)
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By definition we have 0  Md
⇤(A)  M⇤d(A)  +1. If these two values coincide, we simply

call the value the d-dimensional Minkowski content of A and we can write

Md(A) = lim
t!0+

|At|N
tN�d

. (3.2.5)

Remark 3.2.2. This definition di↵ers from Definition 2.1.6 in that the N -dimensional

Lebesgue measure is being used, and the exponent of the term in the denominator is N � d,

where N is the dimension of the ambient space RN . Note that when N = 1, we recover

Definition 2.1.6.

Definition 3.2.4. We say a set A ✓ RN is Minkowski nondegenerate if and only if 0 <

Md
⇤(A)  M⇤d(A) < +1, i.e. if and only if the Minkowski content is a nonzero finite

number.

Definition 3.2.5. We say a set A ✓ RN is Minkowski measurable if and only if 0 <

Md
⇤(A)  M⇤d(A) < +1 and M⇤d = Md

⇤ = Md, i.e. if and only if A is Minkowski

nondegenerate and the upper and lower Minkowski contents coincide.

Definition 3.2.6. For any set A ✓ RN , the upper Minkowski dimension of A is the

unique real number D := D(A) := dimB(A) such that M⇤d(A) = +1 for all d < D, and

M⇤d(A) = 0 for all d � D.

The lower Minkowski dimension of A is defined analogously as the unique real number

D := D(A) := dimB(A) such that M⇤d(A) = +1 for all d < D, and M⇤d(A) = 0 for all

d � D

If these two values coincide, we simply call the quantity the Minkowski dimension of A

and write D = D(A) = dimB(A).
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Definition 3.2.7. For any set A ✓ RN ,

D(A) = inf{d � 0 | M⇤d(A) < 1} (3.2.6)

= inf{d � 0 | M⇤d(A) = 0} (3.2.7)

= sup{d � 0 | M⇤d(A) = +1}, (3.2.8)

and a similar characterization of the lower Minkowski dimension holds by replacing D with

D.

In Definition 2.3.1, we defined the geometric zeta function of a bounded set ⌦ ⇢ R in

terms of the lengths comprising the string L. The analogous generalization of this fractal

zeta function to bounded sets A ⇢ RN is given by the following definition.

Definition 3.2.8. Let A ⇢ RN be a bounded set, and let � > 0 be arbitrary but fixed. The

distance zeta function of A is

⇣A(s) :=

Z

A�

d(x,A)s�N dx (3.2.9)

for all s 2 C su�ciently large. The integral is taken in the sense of Lebesgue and, as such, is

absolutely convergent.

In essence, we are taking the distance from any point in a �-neighborhood of A, raising

that value to the complex exponent s � N , and integrating the result over the entire

�-neighborhood. In analogy to Definition 2.3.2 we have the following definition.

Definition 3.2.9. The abscissa of convergence of the integral in Equation 3.2.9 is defined

as

D(⇣A) := inf

(
↵ 2 R :

Z

A�

d(x,A)↵�N dx < 1
)
. (3.2.10)

In other words, {s 2 C : Re s > D(⇣A)} is the largest open half-plane on which this series

converges. Note also that D(⇣A) 2 R [ {±1}, so the abscissa of convergence can be ±1.
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The following theorem establishes several important results about the distance zeta

function, and part of it is analogous to Theorem 2.3.1. We simply state it here, but the

interested reader can find a complete proof in [LRŽ17] subsection 2.1.2 (see Theorem 2.1.11).

Theorem 3.2.1 ([LRŽ17] Theorem 2.1.11). Let A ⇢ RN be a bounded set and let � > 0.

Then

(a) The distance zeta function ⇣A defined in Equation 3.2.9 is holomorphic (i.e. analytic)

in the open right half-plane {Re s > dimBA} and for all complex numbers in that

region, its complex derivative is given as follows:

⇣
0
A(s) =

Z

A�

d(x,A)s�N log d(x,A) dx. (3.2.11)

(b) The lower bound in the open right half-plane {Re s > dimBA} is optimal from the

point of view of the (absolute) convergence of the Dirichlet-type integral defining ⇣A.

In other words

dimB(A) = D(⇣A), (3.2.12)

where D(⇣A) is the abscissa of convergence as defined in Equation 3.2.10. It follows

that D(⇣A) 2 [0, N ]. Furthermore, the identity in Equation 3.2.9 contnues to hold in

the half-plane of convergence {Re s > dimBA} of ⇣A. Moreover we have

D(⇣A) = inf

(
↵ 2 [0, N ] :

Z

A�

d(x,A)↵�N dx < 1
)
. (3.2.13)

(c) If the Minkowski (box) dimension D := dimB A exists, D < N , and MD
⇤ (A) > 0, then

⇣A(s) ! +1 as s 2 R converges to D from the right (so that D is a singularity of ⇣A).

3.3 The Relative Distance Zeta Function of a Set in RN

Now we introduce the relative distance zeta function, a fractal zeta function that gives us

much more freedom in analyzing fractals of interest, and allows us to recover the theory in
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R. For a complete introduction as well as a bevy of interesting examples and connected

topics, see [LRŽ17] Section 4.1.1.

Definition 3.3.1. Let ⌦ ⇢ RN be an open set, not necessarily bounded, but of finite

N -dimensional Lebesgue measure. Let A ✓ RN , also possibly unbounded, such that ⌦ ✓ A�

for some � > 0. The distance zeta function ⇣A,⌦ of A relative to ⌦ (or the relative distance

zeta function) is defined by

⇣A,⌦(s) :=

Z

⌦
d(x,A)s�N dx, (3.3.1)

for all s 2 C with Re s su�ciently large.

Definition 3.3.2. The ordered pair (A,⌦) in Definition 3.3.1 is called a relative fractal

drum, abbreviated RFD.

Remark 3.3.1. In practice, A is typically the fractal of interest, and ⌦ is typically a set

whose closure contains the fractal of interest, although this is not necessary for the relative

distance zeta function in Definition 3.3.1 to be well-defined. The shape of the drum ⌦ is a

choice, but the entirety of the drum must be contained in some tubular neighborhood of A

to be valid. Consequently, when the role of � needs to be emphasized, we can equivalently

define the relative distance zeta function as

⇣A,⌦(s; �) :=

Z

⌦\A�

d(x,A)s�N dx, (3.3.2)

where � > 0 is a fixed number su�ciently large.

Remark 3.3.2 (Independence of Geometric Realization). Note here that the relative

distance zeta function is independent of geometric realization, just as we saw with the

geometric zeta function in Chapter 2. In other words, this zeta function and the results

obtained from its use, in particular the singularities, do not depend on an immutable

geometric configuration of the fractal of interest.
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Next we introduce the relative Minkowski content to continue our analysis.

Definition 3.3.3. For any set A ✓ RN and any d 2 R, we define the upper d-dimensional

Minkowski content of A relative to ⌦ (or the upper relative Minkowski content of the RFD

(A,⌦)) by

M⇤d(A,⌦) := lim sup
t!0+

|At \ ⌦|N
tN�d

. (3.3.3)

The lower d-dimensional Minkowski content of A relative to ⌦ is defined analogously as

Md

⇤(A,⌦) := lim inf
t!0+

|At \ ⌦|N
tN�d

. (3.3.4)

Note that now we have �1  Md
⇤(A,⌦)  M⇤d(A,⌦)  +1 whereas with Definitions

2.1.6 and 3.2.3 we have 0  Md
⇤(A,⌦)  M⇤d(A,⌦)  +1. If these two values coincide, we

simply call the value the d-dimensional Minkowski content of (A,⌦) and we can write

Md(A,⌦) = lim
t!0+

|At \ ⌦|N
tN�d

. (3.3.5)

Similar to the equivalent definition given in Definition 3.2.7, we also have:

Definition 3.3.4. For any relative fractal drum (A,⌦), we define the upper d-dimensional

Minkowski dimension of A relative to ⌦ (or the upper relative Minkowski dimension of the

RFD (A,⌦)) as

D(A,⌦) = inf{d � 0 | M⇤d(A,⌦) < 1} (3.3.6)

= inf{d � 0 | M⇤d(A,⌦) = 0} (3.3.7)

= sup{d � 0 | M⇤d(A,⌦) = +1}, (3.3.8)

and a similar characterization of the lower relative Minkowski dimension holds by replacing

D with D.
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Definition 3.3.5. We say an RFD (A,⌦) is Minkowski nondegenerate if and only if

0 < Md
⇤(A,⌦)  M⇤d(A,⌦) < +1, i.e. if and only if the Minkowski content is a nonzero

finite number.

Definition 3.3.6. We say an RFD (A,⌦) is Minkowski measurable if and only if 0 <

Md
⇤(A,⌦)  M⇤d(A,⌦) < +1 and M⇤d = Md

⇤ = Md, i.e. if and only if (A,⌦) is

Minkowski nondegenerate and the upper and lower Minkowski contents coincide. (For a

more detailed discussion of the relative Minkowski dimension, see [Lap91].)

Remark 3.3.3. Given some open set ⌦ ✓ RN , if we assume A = @⌦, then dimB(@⌦,⌦) is

the inner Minkowski dimension of @⌦. If N = 1, this current scenario where (A,⌦) = (@⌦,⌦)

allows us to recover the theory presented in Chapter 2. However, since we need not restrict

ourselves to this special case, it may the case that dimB(A,⌦) di↵ers from dimB(A), where

dimB(A) is as defined in Definition 3.2.6. More specifically, we have

dimB(A,⌦) 2 [�1, dimB(A)], (3.3.9)

and similarly for the lower Minkowski dimension. In some cases, the inequality dimB(A,⌦) 

dimB(A) may be strict (see Example 4.1.23 in Section 4.1.1 of [LRŽ17]).

Definition 3.3.7. A relative fractal drum (A,⌦) is said to be admissible if its relative

distance zeta function ⇣A,⌦ can be meromorphically extended to an open connected neigh-

borhood of some window W , and that ⇣A,⌦ does not have any singularity on the screen

SSS.

Now that we have all the tools we need, given any RFD (A,⌦), we can define the

relative complex dimensions of A with respect to ⌦. Like before, we will assume that ⇣A,⌦ is

admissible.

Definition 3.3.8. The set of visible relative complex dimensions of an admissible RFD

(A,⌦) is

DA,⌦ = DA,⌦(W ) := {! 2 W : ⇣A,⌦ has a singularity at !}.
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If W = C, then we call the set DA,⌦(C) simply the set of relative complex dimensions of

⇣A,⌦.

This natural extension yields the following robust definition of fractality.

Definition 3.3.9. A set A ✓ RN is defined as fractal if and only if there exists an

associated relative fractal drum (A,⌦) (in the sense of Definitions 3.3.1 and 3.3.2) such that

the meromorphic continuation of the associated relative distance zeta function has at least

one nonreal complex dimension.

This definition expands the robustness of Definition 2.3.5 and allows us to properly

classify some sets in R2 and above that have otherwise not been properly classified as fractals

or nonfractals. In particular, it allows us to show that a class of plane-filling curves (see

Chapter 4) satisfies this definition, and thus can be accurately, instead of just colloquially,

classified as fractals for the first time.

Next, we have the following important result, analogous to Theorems 3.2.1 and 2.3.1.

Theorem 3.3.1 ([LRŽ17] Theorem 4.1.7). Let ⌦ be an open subset of RN of finite N -

dimensional Lebesgue measure, and let A ✓ RN be such that ⌦ ✓ A� for some � > 0. Then

the following properties hold:

(a) The relative distance zeta function ⇣A,⌦ defined in Equation 3.3.1 is holomorphic

(i.e. analytic) in the open right half-plane {Re s > dimB(A,⌦)} and for all complex

numbers in that region, its complex derivative is given as follows:

⇣
0
A,⌦(s) =

Z

⌦
d(x,A)s�N log d(x,A) dx. (3.3.10)

(b) The lower bound in the open right half-plane {Re s > dimB(A,⌦)} is optimal from

the point of view of the (absolute) convergence of the Dirichlet-type integral defining

⇣A,⌦. In other words

dimB(A,⌦) = D(⇣A,⌦), (3.3.11)

where D(⇣A,⌦) is the abscissa of convergence as defined in Equation 3.2.10.
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(c) If the Minkowski dimension D := dimB(A,⌦) exists, D < N , and MD
⇤ (A,⌦) > 0, then

⇣A,⌦(s) ! +1 as s 2 R converges to D from the right (so that D is a singularity of

⇣A,⌦).

Remark 3.3.4. One might wonder why we prefer to work with the upper Minkowski

(or box) dimension instead of the lower, and the answer is that the upper Minkowski

dimension enjoys finite stability. More specifically, given any two sets A,B ✓ RN , we have

dimB(A [ B) = max
n
dimB(A), dimB(B)

o
. This is not the case for the lower Minkowski

(or box) dimension (see [Fal90], or [LRŽ17] Section 6.1.2). Moreover, this result can be

extended to the relative Minkowski dimension, i.e. for any two RFDs (A,⌦) and (B,⌦)

sharing the same drum, we have dimB(A [B,⌦) = max
n
dimB(A,⌦), dimB(B,⌦)

o
.

Next we have three other important and useful theorems about the relative distance zeta

function that we will use in application in Chapter 5. First we state a basic definition.

Definition 3.3.10. Given a set A ✓ RN and a real number k 2 R, we define

kA := {kx 2 RN : x 2 A} = {(kx1, kx2, . . . , kxN ) : (x1, x2, . . . , xN ) 2 A}. (3.3.12)

Theorem 3.3.2. Let ⇣A,⌦(s) be the relative distance zeta function of some relative fractal

drum (A,⌦). Then for any real constant k > 0 we have that D(⇣kA,k⌦) = D(⇣A,⌦) =

dimB(A,⌦), and

⇣kA,k⌦(s) = k
s
⇣A,⌦(s) (3.3.13)

for Re s > dimB(A,⌦).

In other words, for positive scalars, the abscissa of convergence of the relative distance

zeta function of the scaled RFD is the same as the abscissa of convergence of the relative

distance zeta function of the unscaled RFD. Moreover, the zeta function of the scaled RFD

can be written as a complex exponential multiple of the zeta function of the unscaled RFD.

Theorem 3.3.3. Assume that ⌦ =
S1

j=1Bj is an open subset in RN of finite N -dimensional

Lebesgue measure, where {Bj}1j=1 is a sequence of pairwise disjoint open subsets of RN .
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Also assume that A ✓ RN and there exists a � > 0 such that ⌦ ✓ A�. Then for all s 2 C

such that Re (s) > dimB(A,⌦), we have

⇣A,⌦(s) =
1X

j=1

⇣A,Bj (s).

In other words, if our RFD is a disjoint union of sub-RFDs or relative fractal subdrums,

then the relative distance zeta function of the union is the sum of the relative distance

zeta functions of the individual subdrums, provided the subdrums are disjoint. This result

combined with the result in Theorem 3.3.2 is very helpful when an RFD exhibits self-

similarity at scale because, as long as the subdrums are disjoint, we can compute the zeta

function of the entire RFD if we know the zeta functions of sub-RFDs.

Theorem 3.3.4 ([LRŽ17] 4.1.14). Suppose that (A,⌦) is a Minkowski nondegenerate RFD

in RN , (in particular dimB(A,⌦) = D), and D < N . If ⇣A,⌦(s) can be meromorphically

extended to a connected open neighborhood of {Re (s) = D}, then D is necessarily a simple

pole of ⇣A,⌦, the residue res(⇣A,⌦(s), D) is independent of � and

MD

⇤ (A,⌦) 
res(⇣A,⌦(s), D)

N �D
 M⇤D(A,⌦). (3.3.14)

Furthermore, if (A,⌦) is Minkowski measurable then this inequality yields

MD(A,⌦) =
res(⇣A,⌦(s), D)

N �D
. (3.3.15)

This theorem is a helpful one because it allows us to express the D-dimensional relative

Minkowski content of a set in terms of its relative distance zeta function. In particular, we

will use this Theorem in Chapter 5 to assert the appropriateness of a class of relative fractal

drums.
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3.4 Examples of Relative Fractal Drums in R2

Examples are always illuminating, and this section consists of two examples that can help

elucidate the application of the theory of complex dimensions in R2.

The Sierpiński Gasket

Figure 3.4.1: The first 8 approximations to the Sierpiński gasket (SG).

The Sierpiński gasket is a quintessential example of a fractal in R2, and in this section we

will see how to construct an admissible RFD for the gasket, compute its relative distance zeta

function, and find its complex dimensions. More details about this example can be found in

[LRŽ17] Section 4.2.3, Example 4.2.24, where the use of relative fractal sprays is employed.

One way of constructing the gasket is shown in Figure 3.4.1: one begins with the standard

closed equilateral unit triangle, and then removes the successive open inner triangles formed

by connecting the midpoints of the edges of the remaining triangles. Continue this process

ad infinitum, and the set that remains is the Sierpiński gasket, SG. It is an interesting object

for many reasons, but one intriguing property is that it has zero 2-dimensional Lebesgue

measure (area) and infinite 1-dimensional Lebesgue meaure (length). This is often used as

a motivating example for the development of the theory of fractal dimensions. One can

calculate directly that the Minkowski dimension (and Hausdor↵ dimension) is DSG = log2 3,
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and we will see it recovered here. Note that 1 < log2 3 < 2, so the higher-dimensional theory

of complex dimensions is needed for our analysis. Now we proceed to compute the relative

distance zeta function of A = SG. For a drum, we simply choose ⌦ to be the open unit

triangle. Let � > 1/6 so that A� is simply connected, and we have that ⌦ ⇢ A�. To begin,

the integral we are trying to compute is

⇣SG,⌦(s) =

Z

⌦
d(x, SG)s�2 dx,

Z

⌦
d((x, y), SG)s�2 dy dx, (3.4.1)

so we need to analyze carefully what d((x, y), SG) should be. Note that for any (x, y) 2 SG

itself, d((x, y), SG)s�2 = 0, so the integral is 0 as well. Consequently, we need only compute

the integral for points that lie o↵ of SG, but inside the open unit triangle ⌦. Looking at the

construction of SG, we can see that ⌦ \ SG is a disjoint union of open equilateral triangles,

each a scaled copy of the open unit equilateral triangle. Each of these triangles can be

decomposed into six 30-60-90 subtriangles (see Figure 3.4.2), over which d((x, y), SG) can

be seen to be simply the distance to the long leg of the subtriangle. Looking at one of the

six subtriangles in the unit triangle ⌦ = ⌦0, and centering the vertex of the 30� angle at

the origin on a Cartesian plane with the long leg extending to the right along the positive

direction of the x-axis, we can compute the relative distance zeta function of that subtriangle

and SG as follows. (See Figure 3.4.3.)

SGSG

SG

⌦n,k

Figure 3.4.2: Decomposition of one cell of ⌦n into six right subtriangles.
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Figure 3.4.3: Region of integration for one of the six subtriangles in ⌦0.

⇣SG,⌦0,k(s) =

Z

⌦0,k

d((x, y), SG)s�2 dy dx =

Z 1/2

0

Z
x/

p
3

0
y
s�2 dy dx

=

Z 1/2

0


1

s� 1
y
s�1

�
x/

p
3

0

dx =
(
p
3)1�s

s� 1

Z 1/2

0
x
s�1 dx

=
(
p
3)1�s

s� 1


1

s
x
s

�1/2

0

=
(
p
3)1�s2�s

s(s� 1)
.

(3.4.2)

This is the relative distance zeta function for one of the six subtriangles in ⌦ = ⌦0. Now we

can employ the help of Theorem 3.3.2 to compute the relative distance zeta function of any

of the scaled (right) triangles, and then apply Theorem 3.3.3 to add up these zeta functions

and yield the relative distance zeta function for (SG,⌦) itself. For any n = 1, 2, 3, . . . each

open subtriangle removed in the construction of the nth approximation to SG is a copy of ⌦0

scaled by a factor of 2�n. For each n = 1, 2, 3, . . ., there are 6 · 3n�1 right subtriangles that

comprise the equilateral triangles removed. Thus, for any k = 1, . . . , 6 · 3n�1, by Theorems

3.3.3 and 3.3.2, we have

⇣SG,2�n⌦n,k
(s) = (2�n)s⇣SG,⌦0,k(s). (3.4.3)
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Therefore,

⇣SG,⌦(s) =
1X

n=1

6·3n�1X

k=1

⇣SG,2�n⌦n,k
(s) =

1X

n=1

6 · 3n�1 · (2�n)s⇣SG,⌦0,k(s)

=
1X

n=1

2 · 3n · (2�n)s · (
p
3)1�s2�s

s(s� 1)

=
2(
p
3)1�s2�s

s(s� 1)

1X

n=1

3n · (2�s)n =
2(
p
3)1�s2�s

s(s� 1)

1X

n=1

(3 · 2�s)n

=
2(
p
3)1�s2�s

s(s� 1)
· 3 · 2�s

1� 3 · 2�s
=

6(
p
3)1�s2�s

s(s� 1)(2s � 3)
.

(3.4.4)

Immediately we can see that this zeta function has singularities (simple poles, in fact) at

s = 0 and s = 1, and if we solve the complex exponential equation 2s�3 = 0, the left hand side

of which appears in our denominator, we find there are also (simple) poles at s = log2 3+ inp

where n 2 Z and p = 2⇡
log 2 . When n = 0, we recover DSG = D(⇣SG,⌦) = log2 3. Therefore,

the set of complex dimensions of the Sierpiński gasket is

DSG = {0, 1} [
⇢
log2 3 +

2⇡

log 2
iZ
�
, (3.4.5)

and the Sierpiński gasket is a fractal by Definition 3.3.9.

Heuristically, the pole ! = 0 corresponds to the endpoints of the line segments that

comprise SG, ! = 1 corresponds to the line segments themselves, and ! = D = log2 3

corresponds to the Minkowski dimension of the gasket. The presence of nonreal complex

dimensions, namely when n 2 Z \ {0} above, indicates that the Sierpiński gasket is, indeed,

a fractal. Moreover, we can write the volume of the tubular neighborhood of SG as a sum

over these complex dimensions as we did in Chapter 2 for the Cantor set (see Section 2.2, in

particular Equation 2.2.7). Later on, in Chapter 6, we will discuss tube formulas in more

detail.
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Figure 3.4.4: An approximate RFD for the Cantor-Lebesgue function (The Devil’s Staircase).

The Devil’s Staircase Revisited

Let us now return to the example of the Cantor-Lebesgue Function (the Devil’s Staircase)

(see Counterexample 1.0.1 from Chapter 1).

Example 3.4.1 (The Cantor-Lebesgue Function, or “The Devil’s Staircase”). In Coun-

terexample 1.0.1, we noted that the Cantor-Lebesgue function, denoted by f , did not satisfy

conventional definitions of fractality, but it is certainly an object we would like to classify as

fractal. We now proceed to construct an RFD for the staircase and compute its complex

dimensions as in [LRŽ17], Section 5.5.4. Figure 3.4.4 shows the generating process for the

RFD: for each horizontal line segment in the construction of the staircase, we attach two

scaled, open, isosceles triangles as shown, each with one of the equal-length sides contacting

a horizontal segment of the curve. Each triangle is a scaled copy of an original triangle called

the fundamental cell, denoted by ⌦0. Corresponding to each generation n of the Cantor

string CS, there are 2n subtriangles, denoted ⌦n

i
for 1  i  2n, each scaled by a factor of

3�n. The complete drum is the union of these scaled, open triangular subdrums, denoted ⌦:
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Figure 3.4.5: The fundamental cell for the Cantor-Lebesgue function (The Devil’s Staircase).

⌦ =
1[

n=1

2n[

i=1

⌦n

i =
1[

n=1

2n[

i=1

3�n⌦0 (3.4.6)

For convenience, we take the length of the congruent sides of ⌦0 to be 1. Placing an

acute angle of ⌦0 at the origin in R2 and letting one congruent side coincide with I = [0, 1]

along the x-axis, we can compute the relative distance zeta function of (I,⌦0) as follows.

⇣I,⌦0(s) =

Z

⌦0

d(x, I)s�2 dx

=

Z 1

0

Z
x

0
y
s�2 dy dx

=
1

s� 1

Z 1

0
x
s�1 dx

=
1

s(s� 1)
.

(3.4.7)

Using Theorems 3.3.2 and 3.3.3, we can compute the following.
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⇣f,⌦(s) =
1X

n=1

2nX

i=1

⇣f,⌦n
i
(s) =

1X

n=1

2nX

i=1

(3�n)s⇣I,⌦0(s)

=
1X

n=1

2nX

i=1

(3�n)s
1

s(s� 1)
=

1

s(s� 1)

1X

n=1

2n(3�n)s

=
1

s(s� 1)

1X

n=1

✓
2

3s

◆
n

=
2

s(3s � 2)(s� 1)
.

(3.4.8)

This function is valid initially for all s 2 C with Re s > 1, and then for almost all s 2 C

after meromorphic continuation. Examining the denominator we can see that the set of

complex dimensions of the Cantor-Lebesgue function is

D = {0, 1} [
⇢
log3 2 +

2⇡

log 3
iZ
�
, (3.4.9)

which contains at least one nonreal complex number. Therefore, the Cantor-Lebesgue

function is, indeed, a fractal by Definition 3.3.9, despite other definitions (such as Definitions

1.0.1 and 1.0.2 in Chapter 1) failing to classify it as so. This example illustrates the versatility

and accuracy of Definition 3.3.9 where others have fallen short.

Before we can discuss the new results of this dissertation regarding the complex dimensions

of space-filling curves, we need to discuss the theory of space-filling curves itself.
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Chapter 4

The Theory of Space-Filling Curves

4.1 Introduction

In this chapter we introduce the theory of space-filling curves necessary to explore the results

of the subsequent chapters. The subject of space-filling curves is a rich and intriguing one,

and the interested reader can find many texts on the subject. For our purposes, Hans

Sagan’s book Space-Filling Curves [Sag94], and Stein and Shakarchi’s book Real Analysis

[SS05], volume III, of their Princeton Lectures in Analysis, have all the necessary details. A

note about Stein and Shakarchi’s treatment of the Hilbert curve: they refer to the Hilbert

construction and Hilbert curve as the Peano construction and the Peano curve, perhaps to

pay homage to Peano who created the first space-filling curve, but the construction they

detail is that of Hilbert’s design. Either way, their treatment of the construction is excellent

and ours follows a similar approach for brevity.

The subject of space-filling curves was first conceived by Italian mathematician Giuseppe

Peano (1858 – 1932) in 1890 when he constructed a continuous and surjective mapping from

the unit interval I = [0, 1] to the unit square I
2 = [0, 1]⇥ [0, 1] = [0, 1]2 in his paper Sur une

courbe, qui remplit toute une aire plane [Pea90]. His research in this area was motivated

by the work of Georg Cantor (1845 – 1918) who had shown previously, in 1878 [Can78],

that I and I
2 have the same cardinality, i.e. there exists a bijection between I and I

2. A
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natural question is whether or not such a mapping is continuous, and Eugen Netto (1848

– 1919) provided a negative answer to this question a year later in 1879 [Net79] when he

showed that such a bijective mapping must always be discontinuous. A continuous injective

mapping from I to I
2 is trivial to construct, but the question of the existence of a continuous

surjective mapping from I to I
2 remained unanswered until Peano’s construction in 1890.

Peano discovered the first space-filling curve and described it analytically in terms of an

operator from I to I
2 (see Section 4.3), but it was David Hilbert (1862 – 1943) who, in

1891 in [Hil91], provided a generalizable, geometric generating procedure for curves such

as Peano’s, resulting in an entire class of space-filling curves, the class consisting of curves

which the present author will demonstrate must be fractals in the subsequent chapter. In a

sense, Hilbert’s original plane-filling curve is the canonical example of a space-filling curve,

and it provides an illuminating example for the study of space-filling curves. First we need

to establish some important preliminary definitions used in the general theory, definitions

which can be found in [Sag94].

Definition 4.1.1. For M,N 2 Z+[{0}, if f is a function from RM into RN , then we define

the direct image of A under f as

f⇤(A) = {f(x) 2 R(f) : x 2 A \D(f)} ✓ RN
, (4.1.1)

where A ✓ RM , D(f) is the domain of f , and R(f) is the range of f .

Definition 4.1.2. If f : I ! RN , N � 0 is continuous, then the direct image f⇤(I) is called

a curve. f(0) is called the initial point of the curve, and f(1) is called the endpoint of the

curve. We call x = f(t) for all t 2 I a parametric representation of the curve C = f⇤(I).

Definition 4.1.3. If f : I ! RN for N � 1 is continuous and the N -dimensional Jordan

content of the direct image is strictly positive, i.e. JN (f⇤(I)) > 0, then f⇤(I) is called a

space-filling curve.1

1Here JN (A) is the N -dimensional Jordan content of the set A ✓ RN . The Jordan content is similar to
the Lebesgue measure except the infimum is taken over coverings by finitely many rectangles. For a detailed
introduction to the Jordan content, see [Fol99] Section 2.6.

39



Remark 4.1.1. The most general term in use is space-filling curve because the target

space can be N -dimensional for N � 1. If N = 1, then the examples are trivial but are

still examples, and this natural generality further suggests the need to use a more robust

definition of fractality as provided in [LvF13] and Definition 3.3.9 so that nonexamples of

fractals are not included in the definition of fractality. However the first space-filling curves

were produced as surjections from I onto I
2, so they are often referred to as plane-filling

curves in order to emphasize that the target space is R2.

Definition 4.1.4. A contraction mapping is a function f from a metric space (X, d) to

itself with the property that there exists some nonnegative real number 0  r < 1 such that

for all x, y 2 X, we have d(f(x), f(y))  r · d(x, y). The number r is called the contraction

ratio.

Definition 4.1.5. An iterated function system (IFS) is a finite set of contraction mappings

on a complete metric space.

4.2 The Hilbert Curve

Now we set about detailing the construction of the Hilbert curve and proving a few of its

important properties. As mentioned previously and in Section 4.3, Peano discovered the

first plane-filling curve, defining it in terms of an operator (see Formulas 4.3.1 and 4.3.2)

but Hilbert recognized a geometric generating procedure innate to Peano’s construction.

In particular, he noticed that adjacent subintervals of I (in particular [0, 19 ], [
1
9 ,

2
9 ], . . .,

[89 , 1]) were mapped to adjacent subsquares of I2 and produced his own, arguably simpler,

plane-filling curve by exploiting this idea.

We begin with a heuristic explanation of the construction before proceeding to the details.

Beginning with the unit square, I2, we subdivide it into four congruent subsquares, as in

Figure 4.2.1. Connect the centers of these four subsquares with a polygonal curve that

does not intersect itself. This is a first approximation, f1⇤(I), to the Hilbert curve fH⇤(I).

Continuing, subdivide the four subsquares of the first generation into four subsquares each,
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n = 1 n = 2 n = 3 n = 4

Figure 4.2.1: The first four approximations to the Hilbert curve.

for a total of sixteen subsquares in the unit square. Connect the centers of these sixteen

subsquares with a polygonal curve as shown in Figure 4.2.1 that does not intersect itself.

This is a second approximation, f2⇤(I), to the Hilbert curve fH⇤(I). Repeat this procedure

ad infinitum, and we claim the resulting object is the plane-filling curve fH⇤(I) known as

the Hilbert curve, and that it is a continuous surjective mapping from I to I
2.

There is much to be verified here: does this sequence of mappings and associated curves

actually converge? If so, to what does it converge? Is the limit mapping well-defined? Is it a

curve? Is it a space-filling curve? We proceed to answer all of these questions, first focusing

on a specific regular partition of the unit interval I, then of the unit square I
2, and then

establishing a correspondence between the subsets of the partitions. More details of this

construction can be found in [SS05], Chapter 7, Section 3.

Definition 4.2.1. Given the closed unit interval I, we define the quartic intervals to be the

closed intervals of the form
h

k

4n ,
k+1
4n

i
for any positive integer n � 1 and any nonnegative

integer 0  k  4n � 1. For example, the first generation of quartic intervals are

J1 =


0,

1

4

�
J2 =


1

4
,
1

2

�
J3 =


1

2
,
3

4

�
J4 =


3

4
, 1

�
(4.2.1)

Definition 4.2.2. A chain of quartic intervals is a decreasing sequence {Jn}1
n=1 of quartic

intervals, i.e.

J
1 � J

2 � J
3 � · · · (4.2.2)

where J
n is a quartic interval of the nth generation.
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Proposition 4.2.1. If {Jn} is a chain of quartic intervals, then the following hold.

(i) There exists a unique t 2 I such that t 2
T1

n=1 J
n

(ii) Conversely, given t 2 I, there is a chain of quartic intervals {Jn} such that t 2
T1

n=1 J
n.

(iii) The set of t 2 I for which the sequence in part (ii) is not unique is a set of measure

zero.

Proof. To show (i), note that {Jn} is a decreasing sequence of nonempty compact sets, so

it’s intersection is nonempty and such a t exists. Moreover, the length of each interval is 4�n

which goes to 0 as n ! 1 so such a t must be unique. Otherwise, if there were two distinct

t1 and t2 in the intersection, then there exists a quartic interval Jm such that t1 2 J
m, and

|Jm|1 < |t1 � t2|1 which implies that t2 is not in the intersection, a contradiction.

To show (ii), let t 2 [0, 1] be arbitrary but fixed. For any n, there exists at least one

quartic interval Jn

i
such that t 2 J

n

i
, hence t lies in the intersection t 2

T1
ni=1 J

ni where ni

is the index of the ith quartic interval in generation n that contains t.

If t is an endpoint of a quartic interval in the nth generation, then it belongs to at most

two quartic intervals in the nth generation, and it has the form i

2n where 0  i  2n. In

other words, t is a dyadic rational. The dyadic rational numbers are a subset of the rational

numbers and so have measure 0, proving (iii).

This result yields the fact that the unique point in the intersection of any chain of

quartic intervals can be naturally described as a list of quaternary (base-4) digits, each digit

corresponding to the index of the quartic subinterval in each generation in which t lies. More

specifically, the quaternary representation of t is the following.

t =
1X

n=1

qi

4n
= 0.q1q2q3 . . . where qi 2 {0, 1, 2, 3}. (4.2.3)
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Now we turn our attention to the unit square, I2.

Definition 4.2.3. Given the closed unit square I
2, we define the dyadic squares as the

closed squares formed by subdividing the unit square by successively bisecting the edges. In

Figure 4.2.1, the gray lines indicate the lines of subdivision.

Definition 4.2.4. A chain of dyadic squares is a decreasing sequence {Sn}1
n=1 of dyadic

squares, i.e.

S
1 � S

2 � S
3 � · · · (4.2.4)

where S
n is a dyadic square of the nth generation.

Proposition 4.2.2. If {Sn} is a chain of dyadic squares, then the following hold.

(i) There exists a unique x 2 I
2 such that x 2

T1
n=1 S

n

(ii) Conversely, given x 2 I
2, there is a chain of dyadic squares {Jn} such that x 2

T1
n=1 S

n.

(iii) The set of x for which the sequence in part (ii) is not unique is a set of measure zero.

The proof of this proposition is analogous to that of Proposition 4.2.1 and is left as an

exercise to the reader. Now that we have established how we are going to partition I and

I
2, we can define a dyadic correspondence.

Definition 4.2.5. A dyadic correspondence is a mapping � from quartic intervals to dyadic

squares that satisfies the following:

(i) � is bijective.

(ii) � respects generations, i.e. if Jn

i
is a quartic interval of the nth generation, then �(Jn

i
)

is a dyadic square of the nth generation.

(iii) � respects inclusion, i.e. if J2 ✓ J
1, then �(J2) ✓ �(J1).

Note that there is a guaranteed bijection from any quartic interval to any dyadic square

by the results of Cantor, so the defining characteristics of such a correspondence really lie in

properties (ii) and (iii).
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Remark 4.2.1. Given a dyadic correspondence �, it induces a mapping � : I ! I
2 as

follows: given a chain of quartic intervals {Jn}, by Proposition 4.2.1 there is a unique t such

that we can write {t} =
T

n
J
n. By definition, {�(Jn)} is a chain of dyadic squares and so

we can define

�(t) = x :=
1\

n=1

�(Jn). (4.2.5)

Remark 4.2.2. �(t) is well-defined on I except on a countable set of measure 0: if we let A

be the set of dyadic rational numbers in I and B be the set of points in I
2 that have a dyadic

rational for at least one of their coordinates, then � is well-defined on I \ (A [ ��1(B)). To

define � on the sets A and ��1(B), we must choose representative chains of quartic intervals

and dyadic squares, respectively, for the points in those sets.

Remark 4.2.3. The pointwise-defined nature of the correspondence � induces oscillations

in the 0-dimensional components of the curve, the points, which we will discuss in Chapters

5, 6, and 7. Moreover, without ambiguity, for any quartic interval J , we have

�(J) = {�(t) : t 2 J} =
[

t2J
�(t) :=

[

t2J

1\

n=1

�(Jn)

=
[

t2J
�

0

@
1\

n=1

J
n

1

A =
[

t2J
�({t}) = �(J).

(4.2.6)

The first part of Hilbert’s contribution to the theory after Peano’s discovery is encapsu-

lated in Proposition 4.2.3 below.

Proposition 4.2.3. There is a unique dyadic correspondence �H such that

(i) If Jn

1 and J
n

2 are two adjacent intervals of generation n, then �H(Jn

1 ) and �H(Jn

2 ) are

two adjacent squares of generation n, and

(ii) In generation n, if Jn
� is the leftmost quartic interval and J

n
+ is the rightmost quartic

interval, then �H(Jn
�) is the lower left dyadic square and �H(Jn

+) is the lower right

square.
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n = 1 n = 2 n = 3 n = 4

Figure 4.2.2: The first four approximations to the Moore curve.

Remark 4.2.4. Hilbert demonstrated that there exists a unique traversal (or ordering) of

the dyadic squares of any generation n which begins at the lower left square and ends at the

lower right square, and ensures that the adjacency mentioned in Proposition 4.2.3 holds. In

the limit, the initial point of the Hilbert curve itself is (0, 0) and the terminal point is (1, 0).

This traverse is only unique up to rotations by 90�, rotations which will correspondingly

permute the initial and terminal points of the Hilbert curve around the vertices of the unit

square. There is, however, another traverse of the dyadic squares discovered by E.H Moore

in 1900 [Moo00] that induces a plane-filling curve, but the initial and terminal squares of

the ordering are the bottom center subsquares, respectively, and so the initial and terminal

points of the curve itself, in the limit, coincide at the point
⇣
1
2 , 0
⌘
. Approximations to

the Moore curve are pictured in Figure 4.2.2, and one can see how their structure is very

similar to those of the Hilbert curve seen in Figure 4.2.1. Note also that the number of nth

generational unit segments is the same as that of the Hilbert curve (see Definition 4.2.6

below).

Despite it’s gravity with respect to the theory of space-filling curves, we omit the proof

of Proposition 4.2.3 so as to not get too far o↵ of the course of this dissertation, but a

complete proof can be found in [SS05] Chapter 7, Section 3 where Proposition 4.2.3 is stated

as Lemma 3.7 and proved thereafter.

Remark 4.2.5. As a helpful side note, if a reader is interested in producing images of these

approximating polygons, Wolfram’s Mathematica has a built in function that can do this.

More specifically, the command HilbertCurve[n] will give a list of points in [0, n]⇥ [0, n]
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of the nth generation that preserves the traverse given in Proposition 4.2.3. The command

Graphics[HilbertCurve[n]] will generate an upscaled (by a factor of n) picture of the

approximating polygon in generation n. This code, and others, for images found in the

figures of this dissertation can be found in Appendix A.

Now that we have established (or at least accepted) that such a dyadic correspondence

exists, we can precisely define the Hilbert curve, and verify that it is indeed a space-filling

curve. Let �H be the dyadic correspondence given in Proposition 4.2.3. Let {Sk}4
n

k=1 be

the sequence of dyadic squares of the nth generation, ordered according to the traverse in

Proposition 4.2.3 and depicted in Figure 4.2.1. More specifically, let �H(Jk) = Sk. For

k = 2, 3, . . . , 4n � 1, let tk be the midpoint of Jk:

tk =
k � 1

2

4n
, (4.2.7)

and for k = 1 and k = 4n let tk be the leftmost and rightmost endpoint of Jk, respectively.

Let xk be the center of square Sk, and for all k = 1, 2, . . . , 4n, define

fn(tk) := xk. (4.2.8)

Connecting the centers xk by vertical and horizontal line segments according to the ordering

described by �H allows us to extend fn(t) continuously to all of I = [0, 1].

Proposition 4.2.4. The sequence of continuous functions {fn} converges uniformly to

a continuous function fH . Moreover, fH : I ! I
2 is surjective so that fH⇤(I) = I

2 is a

space-filling curve.

Proof. This proof follows the proof given after the proof of Lemma 3.7 in Chapter 7, Section

3 of [SS05]. First note that fn is continuous for any n � 1 by construction, and in fact is

di↵erentiable almost everywhere except when t = tk since it is composed of line segments.
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Next, for any n � 1 and any k such that 1  k  4n, we have

|xk � xk+1|  2�n and |tk � tk+1|  4�n
. (4.2.9)

Consequently, for all t 6= tk,

dfn

dt
=

|xk � xk+1|
|tk � tk+1|

 2�n

4�n
= 2n. (4.2.10)

By the definition of fn, for all s, t 2 I, we have

|fn(t)� fn(s)|  2n|t� s|. (4.2.11)

Additionally,

|fn+1(t)� fn(t)| 
p
2 · 2�n (4.2.12)

because fn+1(t) and fn(t) lie in the same dyadic square in generation n due to the fact that

�H is a dyadic correspondence. As a result, {fn} is uniformly convergent. Next, writing

fH(t) = lim
n!1

fn(t) = f1(t) + lim
n!1

nX

i=1

fi+1(t)� fi(t), (4.2.13)

we obtain

|fH(t)|  |f1(t)|+ lim
n!1

nX

i=1

|fi+1(t)� fi(t)|

 |f1(t)|+
1X

i=1

p
2 · 2�n

= |f1(t)|+
p
2 < 1.

(4.2.14)

Thus, fH exists, and it is a continuous function since each fn is continuous and {fn} is

uniformly convergent. Finally, by Proposition 4.2.3 and by construction, every fn visits

every dyadic square of generation n as t passes from 0 to 1. Thus, fH is dense in the unit

square I
2 because it meets every open set that intersects I2. Equivalently, its closure is the
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unit square. Since it is continuous, fH(I) is the continuous image of a compact set and so is

compact. In particular fH(I) is closed so it is equal to its closure, the unit square. Thus fH

is surjective, and we have that fH⇤(I) is a space-filling curve.

Remark 4.2.6. We could have instead used the induced mapping �H for the proof of

Proposition 4.2.4 because, due to the ordering given by �H , �H is well-defined for all t 2 I.

Suppose that t 2
T

n
J
n

1 and t 2
T

n
J
n

2 where {Jn

1 }, {Jn

2 } are chains of quartic intervals.

Then J
n

1 and J
n

2 are adjacent for su�ciently large n, whence �H(Jn

1 ) and �H(Jn

2 ) are

adjacent for su�ciently large n, and so �H(t) =
T

n
�(Jn

1 ) =
T

n
�(Jn

2 ). Thus,

�H(t) =
1\

n=1

�(Jn) =
1\

n=1

S
n = lim

n!1
fn(t) = fH(t). (4.2.15)

Remark 4.2.7. By construction, in any generation n the length of any line segment

connecting the centers of two consecutive subsquares is 2�n, and there are 4n � 1 of these

segments. Thus the total length of any approximating polygon is 2n � 2�n. Naturally, this

length goes to infinity as n goes to infinity.

Definition 4.2.6. We call the length of a line segment connecting the centers of consecutive

subsquares in generation n the nth generational unit length or the unit length of generation

n, and we refer to one of these line segments as an nth generational unit segment or a unit

segment of generation n.

The construction of fH (and �H) and the proof of Proposition 4.2.4 reveal the delicate

and elegant structure needed to produce a space-filling curve. Restated succinctly, the

ordering asserted by �H in Proposition 4.2.3 guarantees that image points of consecutive

generations of approximating polygons “don’t wander too far” from each other, which yields

the uniform convergence of the sequence. This yields the existence of the limit curve, and

the continuity of the approximating polygons under this uniform convergence yields the

continuity of the limit curve. The ordering (traversal) also guarantees that the center of

every subsquare of I2 in any generation is visited, so the image of the limit curve is dense
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since it will meet any open set in intersecting I
2. I is closed, so the limit curve is closed and

dense in I
2, so it must be I

2 itself.

Remark 4.2.8. The Hilbert curve construction is extendable to RN for N > 2 as well so

that fH⇤(I) = I
N , but we will not detail it here. We will breifly address the case of the

Hilbert curve that fills I3 in Chapter 7, but other such constructions will be addressed in

later work.

Remark 4.2.9. There are many variations on the Hilbert curve, and popular variations

involve extending the approximating polygons given in the proof of 4.2.4 to the points

(0, 0) and (1, 0) in some fashion. This is not necessary to produce the Hilbert curve, but

this practice allows the approximations to be produced via a convenient iterated function

system, which has the unit square as its attractor (see System 4.2.16 below). This is a good

reason why fractality should not be strictly defined in terms of iterated functions systems;

sometimes they are not necessary to produce a “fractal”. In light of this, one can call the

construction of the Hilbert curve using the polygons described in the proof of Proposition

4.2.4 the canonical construction of the Hilbert curve, or the minimal construction of the

Hilbert curve, because the approximating polygons have minimal length and satisfy all of the

necessary requirements to converge to the unit square. They are also the polygons depicted

in Hilbert’s original paper on the curve, [Hil91].

In [Sag94], Sagan details the use of the following iterated function system acting on the

unit square to produce a myriad of Hilbert curve variations.

H0(z) =
1

2
z̄i H2(z) =

1

2
(z + 1 + i)

H1(z) =
1

2
(z + i) H3(z) =

1

2
(�z̄i+ i) + 1

(4.2.16)

For modeling purposes, this iterated function system and can help elucidate the extent

of the oscillations of points mentioned in Remark 4.2.3, but this discussion will be reserved

for Chapter 6.
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Figure 4.3.1: The first three approximations to the Peano curve.

Now we turn our attention to the Peano curve, and the generalization of the geometric

generating procedure described in the construction of the Hilbert curve.

4.3 The Peano Curve, and a Class of Space-Filling Curves

In 1890, Peano defined a map fp : I ! I
2 in terms of the operator

ktj = 2� tj for tj = 0, 1, 2, (4.3.1)

where, given any ternary representation of a point x 2 I, written x = 0.t1t2t3 . . ., fp(x) is

given as

fp(x) = fp(0.t1t2t3 . . .) =

✓
0.t1(kt2t3)(kt2+t4t5) · · ·
0.(kt1t2)(kt1+t3t4) · · ·

◆
, (4.3.2)

where k
↵ denotes the ↵th iterate of k. In his paper, [Pea90], he showed this mapping is

continuous and surjective, but did not give a geometric interpretation of it. However, David

Hilbert noticed there was a triadic correspondence induced by this operator that defined

a mapping similar to that in Proposition 4.2.3 between the ternary intervals of I and the

triadic squares of I2. This led him to construct the Hilbert curve, and produce a general

geometric generating procedure. For clarity, we need some definitions.

Definition 4.3.1. In RN , a tessellation is a covering of RN using one or more geometric

shapes, called cells, with no overlaps and no gaps. Intuitive examples can be readily found

in R2 where the cells are called tiles (e.g., tiled floors or walls).
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Definition 4.3.2. A regular tessellation is a tessellation using congruent cells, i.e. all of

the cells in the tessellation are the same.

Definition 4.3.3. In RN , a rectilinear tessellation is a tessellation using N -dimensional

rectangles, not necessarily cubes.

Definition 4.3.4. In RN , a regular rectilinear tessellation is a tessellation using N -

dimensional cubes.

These definitions are detailed explicitly so that di↵erent classes of space-filling curves

and their complex dimensions can be discussed without ambiguity. For example, regular

nonrectilinear tessellations and irregular rectilinear tessellations can produce space-filling

curves, and conjectures for these classes of space-filling curves are discussed in Chapter 7.

Returning to regular rectilinear tessellations, the, or perhaps more appropriately, a,

Peano curve is produced similarly to the Hilbert curve. This is achieved by connecting the

centers of the triadic subsquares in each generation by a continuous curve that follows an

appropriate traverse, and taking the limit of this sequence of approximations. The image

of this limit curve is the unit square, I2. There are several di↵erences between the Hilbert

curve and the Peano curve, but one notable di↵erence is that there exist many triadic

correspondences between I and I
2 that can produce a space-filling curve, and di↵er by

more than a simple rotation of the square. In other words, there is more than one traverse

(ordering) of the triadic squares that results in a space-filling curve, so there is more than

one “Peano mapping” and in some sense more than one “Peano curve”. In contrast, the

Hilbert curve induced by the ordering in Proposition 4.2.3 is unique (up to rotations by 90�).

The existence of multiple Peano curves was proved by Walter Wunderlich (1910 – 1998)

in his 1973 paper Über Peano-Kurven [Wun73]. In fact, he was able to demonstrate that

there are 274 ways of producing a Peano curve. 272 of those ways he referred to as the

“switchback type”, and the other 2 he referred to as the “meandering type”.

Remark 4.3.1. Examples of these two types are given in Figures 4.3.1 and 4.3.2, and in

each example the image points of consecutive generations of approximating polygons “don’t

51



n = 1 n = 2 n = 3

Figure 4.3.2: The first three approximations to a Peano curve of the meandering type.

wander too far” from each other, as required. Note also that, regardless of the traverse

used, the minimum number generational unit segments needed to connect the centers of

consecutive subsquares and produce a minimal construction of the Peano curve is the same

in each case.

Remark 4.3.2. The unit length of generation n (see Definition 4.2.6) for the Peano curve

is 3�n and there are 9n � 1 of these generational unit segments, so the total length of any

minimal approximating polygon is 3n � 3�n, similar to the Hilbert curve.

Definition 4.3.5. More generally, given any positive nonunital integer � 2 {2, 3, 4, . . .},

there exists a corresponding regular rectilinear tessellation whence we can subdivide the unit

square I
2 into �

2n subsquares for any n 2 Z+. Using an appropriate �-adic correspondence

�� between the �-ary subintervals of I and the �-adic subsquares of I2, we can produce a

sequence of approximating curves that converges to a space-filling curve as we have seen

above. We denote the set of plane-filling curves produced as described above by S2(�), and

the class of these sets, indexed by �, is denoted by R2.

Remark 4.3.3. The subscript 2 in Definition 4.3.5 denotes the dimension of the space the

curves fill; more generally, we have SN (�) and RN . This dissertation and most of the new

mathematical results herein involve plane-filling curves in the class R2, but the present

author has conjectures for how these new results will extend to higher dimensions, and other

classes of space-filling curves that are induced by di↵ererent tessellations (see Chapter 7).
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This concludes the discussion of the theory of space-filling curves that we will need to

access the results of the following chapters, but it does not need to be the end of your

exploration. The present author encourages the interested reader to read more about

space-filling curves since they are interesting objects that challenge our intuition about what

dimension really means.
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Chapter 5

Relative Fractal Drums (RFDs) for

a Class of Plane-Filling Curves

Now that we have all the necessary background, we are ready to create a class of relative

fractal drums (RFDs) that will allow us to detect the complex dimensions of a class of

space-filling curves and prove that they are, indeed, fractals. Professor Lapidus and the

present author have always agreed that such curves must be fractals, and Professor Lapidus

suggested that a relative fractal drum in R3 could be successful in detecting the complex

dimensions. This chapter details such successful constructions.

Recall from Counterexample 1.0.3 in Chapter 1 that space-filling curves in the class R2,

i.e. plane-filling curves generated via regular rectilinear tessellations of I2 (see Definition

4.3.5 in Chapter 4), are not classified as fractals under the conventional definitions discussed

in Definitions 1.0.1 and 1.0.2 in Chapter 1, even though they are colloquially referred to as

fractals because mathematicians would like to label them as such. Recall also from Chapter

3 the following definition of fractality.

Definition 3.3.9. A set A ✓ RN is defined as fractal if and only if there exists an

associated relative fractal drum (A,⌦) (in the sense of Definitions 3.3.1 and 3.3.2) such that

54



the meromorphic continuation of the associated relative distance zeta function has at least

one nonreal complex dimension.

The di�culty is in devising a valid RFD for a plane-filling curve in R2 because the image

of the curve is the complete unit square, I2. For example, if we take ⌦ = (I2)t, the t-tubular

neighborhood of I2 in R2 where t > 0, the relative distance zeta function of (I2, (I2)t) (see

Definition 3.3.1) is

Z

(I2)t

d((x, I2)s�2 dx =

Z

I2
d((x, y), I2)s�2 dx dy +

Z

(I2)t\I2
d((x, y), I2)s�2 dx dy

=

Z

(I2)t\I2
d((x, y), I2)s�2 dx dy

(5.0.1)

since d((x, y), I2 = 0 for all (x, y) 2 I
2. The remaining integral is taken over the open

tubular neighborhood surrounding the unit square, and this can be computed by breaking

the integral up into four equivalent integrals taken over the four rectangles with one side a

side of the unit square, and another four integrals taken over the quarter-circular wedges

centered at the four vertices of the unit square. More specifically, we have

4

Z 1

0

Z
t

0
x
s�2 dx dy =

4ts�1

s� 1
(5.0.2)

for the integrals over the rectangles, and

4

Z ⇡
2

0

Z
t

0
r
s�2 · r dr d✓ =

8⇡ts

s
(5.0.3)

for the integrals over the quarter-circular wedges. Adding these up, we have

Z

(I2)t

d((x, y), I2)s�2 dx dy =
4ts�1

s� 1
+

8⇡ts

s
, (5.0.4)

and we can see that the set of complex dimensions given by this RFD is simply {0, 1}. This

makes sense because the RFD is only picking up the topological dimensions associated
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with the line segments that comprise the boundary of the unit square and the points that

comprise the set of vertices of the unit square. It is not detecting any complex dimensions

associated with the dimension of the unit square itself, i.e. ! = 2, because this RFD is not

robust enough. We could recover the 2nd dimension by using another fractal tube function

called the tube zeta function as described in [LRŽ17] (cf. Section 2.2.2, Definition 2.2.8), but

we will not be using this fractal zeta function in our analysis. Moreover, neither of these

zeta functions (the distance or tube zeta functions) reveal any nonreal complex dimensions,

which indicates, unsurprisingly, that the unit square is not a fractal.

After some thought, it becomes clear that a better approach is to embed I
2 in R3. With

this extra space, one may consider instead choosing ⌦ = I
3 \ @I3, the open unit cube in R3,

so that the closure of one face of I3 \ @I3 coincides with I
2. Let’s observe what happens in

this case. We have

Z

I3\@I3
d(x, I2)s�3 dx =

Z 1

0

Z 1

0

Z 1

0
z
s�3 dz dy dx =

1

s� 2
. (5.0.5)

Here the only complex dimension we pick up is ! = 2. If we instead integrate over a

“pu↵ed up” cube, i.e. a t-tubular neighborhood of I3, we would also pickup dimensions 1

and 0 corresponding to the edges and vertices, respectively, but we still would not detect

any nonreal complex dimensions, as expected.

The problem with these choices of ⌦ is that they are not refined enough to elicit the

fractal qualities of a space-filling curve in R2. One issue in particular is that these choices of

drum do not respect the generations that are characteristic of the constructions of space-filling

curve, so they cannot detect the oscillations induced by these constructions.

The next section will detail the construction of a specific relative fractal drum for the

Hilbert curve; an original construction developed by the present author that will then be

generalized and proved valid in several ways.
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n = 1 n = 2 n = 3 n = 4

Figure 4.2.1: The first four approximations to the Hilbert curve. (Repeated from page 41.)

5.1 The Hilbert Curve RFD

As mentioned in Chapter 4, the Hilbert curve is, in some senses, the canonical plane-filling

curve, and it serves as a perfect object with which to demonstrate the validity of the following

RFD. Recall the construction of the Hilbert curve, illustrated again in Figure 4.2.1. The

Hilbert curve RFD is constructed as follows.

Remark 5.1.1. Let n = 1, 2, 3, . . . represent the nth generation of approximation to the

Hilbert curve. Figure 5.1.1 depicts what we refer to as the fundamental cell, ⌦0, for the

Hilbert curve RFD. It is defined as the open region in R3 bounded by the 2-dimensional

planes given by z = y, z = 1 � y, x = 0, x = 1, and y = 0. This cell is the “base drum”

for the RFD in the sense that all of the other subdrums in the RFD are scaled copies of

this one. In particular, for each of the 4n � 1 unit segments of generation n (see Definition

4.2.6), we associate/attach an appropriately scaled copy of ⌦0 to the unit segment so that

the segment is the boundary of the lower edge of the triangular prism shown in Figure 5.1.1.

For n � 1, this line segment is contained in I
2, so these prisms are touching the unit square

only at these edges of generational unit length. Repeat this process for each generation n:

scale the fundamental cell by a factor of 2�n and attach a prism to each generational unit

segment. Define the union of all of the scaled copies of the fundamental cell to be ⌦, and we

claim (fH⇤(I),⌦) := (H,⌦) = (I2,⌦) is the appropriate Hilbert curve RFD.

Remark 5.1.2. More specifically, for any n � 1, let ⌦n

i
be a copy of the fundamental cell

⌦0 scaled by a factor of 2�n, where 1  i  4n�1. Then ⌦n

i
= 2�n⌦0 (see Definition 3.3.10),
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Figure 5.1.1: Isometric and side views of the fundamental cell, ⌦0, for the Hilbert Curve

and we can write

⌦ =
1[

n=1

4n�1[

i=1

⌦n

i =
1[

n=1

4n�1[

i=1

2�n⌦0. (5.1.1)

Before we can assert that this is a valid RFD, let alone the one we are seeking for the

Hilbert curve, we need the following corollary. It is a corollary of Proposition 5.2.1, which is

proved below. For now we assume this corollary to be true and verify it later.

Corollary 5.1.1. The prisms comprising ⌦ in the construction of the Hilbert curve RFD

can be taken to be disjoint and arranged in a configuration such that only the lower edge of

each touches the plane R2, and the projection of ⌦ onto the plane is contained entirely in

the unit square, I2. In other words, a valid geometric realization of the relative fractal drum

(H,⌦) exists.

Remark 5.1.3. Figures 5.1.2 to 5.1.9 show a model of the RFD that has been scaled by a

factor of 1
2 to emphasize how the structure of the RFD complements the structure of the

Hilbert curve, and to show that it is plausible that there is enough space to fit all of the

prisms above and below the unit square so they do not intersect each other. Some other,

more stunning images of this can be found in Appendix A. An unscaled version is pictured

in Figures 5.3.4 and 5.3.5 in Section 5.3 below where there is also a discussion of another

valid RFD for the Hilbert curve. All of these models were made with Mathematica, and the

Mathematica code itself can be found in Appendix A as well.
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Figure 5.1.2: A 3D model of the Hilbert Curve RFD with the prisms scaled down by a factor
of 1

2 , viewed from above.

Figure 5.1.3: A 3D model of the Hilbert Curve RFD with the prisms scaled down by a factor
of 1

2 , viewed from the side.
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Figure 5.1.4: Scaled Hilbert curve RFD,
generation 1.

Figure 5.1.5: Scaled Hilbert curve RFD,
generations 1 and 2.

Figure 5.1.6: Scaled Hilbert curve RFD,
generations 1–3.

Figure 5.1.7: Scaled Hilbert curve RFD,
generations 1–4.

Figure 5.1.8: Scaled Hilbert curve RFD,
generations 1–5.

Figure 5.1.9: Scaled Hilbert curve RFD,
generations 1–6.
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Note that when n = 1, the generational unit length is 1
2 , so for any � � 1

2 we have

⌦ ⇢ H�, where H� is the �-tubular neighborhood of H = I
2, i.e. ⌦ is contained in a

su�ciently large open neighborhood of the unit square embedded in R3. Additionally, since

the 3-dimensional Lebesgue measure of ⌦0 is 1
2 , by countable additivity we have that the

3-dimensional Lebesgue measure of ⌦ is

|⌦|3 =

������

1[

n=1

4n�1[

i=1

⌦n

i

������
3

=
1X

n=1

4n�1X

i=1

|⌦n

i |3 =
1X

n=1

4n�1X

i=1

|2�n⌦0|3

=
1X

n=1

(4n � 1)2�3n · 1
4
=

1

4

1X

n=1

2�n � 2�3n =
1

4

 
1
2

1� 1
2

�
1
8

1� 1
8

!

=
1

4

✓
1� 1

7

◆
=

3

14
< 1.

(5.1.2)

Now we have established that ⌦ ⇢ H� and |⌦|3 < 1, we can compute the relative

distance zeta function of (H,⌦). First we compute the relative distance zeta function for

the fundamental cell, ⌦0:

⇣H,⌦0(s) =

Z

⌦0

d(x, H)s�3 dx =

Z 1

0

Z 1
2

0

Z 1�y

y

z
s�3 dz dy dx

=
1

s� 2

Z 1
2

0
(1� y)s�2 � y

s�2 dy

=
1

(s� 2)(s� 1)

h
�(1� y)s�1 � y

s�1
i 1

2

0

=
1

(s� 2)(s� 1)

"
�
✓
1

2

◆
s�1

�
✓
1

2

◆
s�1

+ 1

#

=
1

(s� 2)(s� 1)
[�2 · 21�s + 1] =

1� 22�s

(s� 2)(s� 1)
.

(5.1.3)

Remark 5.1.4. Note that the distance function in this case is simply d(x, H) = z since the

fractal of interest, H, is the unit square in the plane z = 0 which lies directly below any

point in ⌦0. This also holds for any subdrum ⌦n

i
. In particular, d(x, H) = d(x, 2�n

H) for

any x 2 ⌦n

i
. Also note that the only singularity of ⇣H,⌦0(s) is s = 1 because the possible at
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singularity s = 2 is canceled by the factor of 1� 22�s in the numerator. It is expected that

there is a singularity at s = 1 since the contacting edge is a 1-dimensional line segment.

Now, each subdrum ⌦n

i
is a scaled copy of ⌦0, and since d(x, 2�n

H) = z = d(x, H) for

any point x 2 ⌦n

i
, it follows that

Z

⌦n
i

d(x, 2�n
H)s�3 dx =

Z

⌦n
i

d(x, H)s�3 dx. (5.1.4)

Thus Theorem 3.3.2, the scaling property of the relative distance zeta function, yields

⇣H,⌦n
i
(s) = ⇣2�nH,⌦n

i
(s) = ⇣2�nH,2�n⌦0

(s) = (2�n)s⇣H,⌦0(s). (5.1.5)

We can also apply Theorem 3.3.3 given in Chapter 3 since these prisms are all disjoint when

properly configured. With these two results in hand, we have the following.

⇣H,⌦(s) =
1X

n=1

4n�1X

i=1

⇣H,⌦n
i
(s) =

1X

n=1

4n�1X

i=1

(2�n)s⇣H,⌦0(s)

=
1X

n=1

4n�1X

i=1

(2�n)s
(1� 22�s)

(s� 2)(s� 1)
=

(1� 22�s)

(s� 2)(s� 1)

1X

n=1

2�sn(4n � 1)

=
(1� 22�s)

(s� 2)(s� 1)

1X

n=1

h
(22�s)n � (2�s)n

i
=

(1� 22�s)

(s� 2)(s� 1)

"
22�s

1� 22�s
� 2�s

1� 2�s

#

= ⇠⇠⇠⇠⇠⇠
(1� 22�s)

(s� 2)(s� 1)

"
22�s �⇠⇠⇠⇠

2�s22�s � 2�s +⇠⇠⇠⇠
2�s22�s

⇠⇠⇠⇠⇠⇠
(1� 22�s)(1� 2�s)

#
=

2�s(4� 1)

(s� 2)(s� 1)(1� 2�s)

=
3

(s� 2)(s� 1)(2s � 1)
.

(5.1.6)

In other words, the relative distance zeta function of the Hilbert curve RFD is

⇣H,⌦(s) =
3

(s� 2)(s� 1)(2s � 1)
. (5.1.7)
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This function is valid initially for all s 2 C such that Re s > 2, but it can be extended

meromorphically to all of C via analytic continuation (see Theorem 3.3.1). From Equation

5.1.7 we can read o↵ the singularities of ⇣H,⌦(s), and we have that the set of relative complex

dimensions of the Hilbert curve must be

D(⇣H,⌦) =

⇢
0 +

2⇡

log 2
iZ
�
[ {1, 2}. (5.1.8)

Since this set contains nonreal numbers, it is shown that the Hilbert curve is indeed a

fractal according to Definition 3.3.9, and its oscillatory period is p = 2⇡
log 2 .

Remark 5.1.5. There is a beautiful reaction occurring in this construction. Since the

Hilbert curve H = I
2 is a 2-dimensional object, we expect to see the pole s = 2, and this

pole did not manifest via the relative distance zeta function of ⌦0 because it is cancelled out.

However, after taking the union of all of the scaled subdrums, a factor of 1� 22�s appears in

the denominator due to the geometric series that results from summing the zeta functions of

all of the subdrums. Moreover, the factor of 2s � 1 appears precisely because the minimal

representation of any nth approximation only requires 4n � 1 generational unit segments.

This is one reason why it is important to distinguish between the necessary conditions to

produce a space-filling curve and the convenient conditions, as mentioned in Remark 4.2.9.

Now that we have seen this construction, there are some natural questions to ask.

1. Is Corollary 5.1.1 true, i.e. does a valid geometric realization exist?

2. Is this RFD unique, i.e. does there exist another RFD that is capable of correctly

detecting the complex dimensions of the Hilbert curve?

3. Why is this RFD the one that correctly detects the complex dimensions of the Hilbert

curve?

4. Can this construction be generalized to space-filling curves produced by other regular

rectilinear tessellations of the unit square I
2?
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5. Can this construction be generalized to space-filling curves produced by other nonrec-

tilinear tessellations of subsets of the plane R2?

6. Can this construction be extended to higher dimensional Hilbert curves, and more

generally, other higher dimensional space-filling curves?

We proceed to answer the first four questions in the next two sections, and leave the

discussion of the last two questions for Chapter 7.

5.2 A Generalized RFD

The construction of the Hilbert curve RFD given in the previous section can indeed be

generalized to any regular rectilinear tessellation of I2, and once we have done so, we will

a�rm the validity of not only the Hilbert curve RFD, but an entire class of RFDs associated

with R2, the class of all space-filling curves generated via regular rectilinear tessellations

of the plane. Once we have produced the generalization, we will demonstrate that a valid

geometric realization exists for any regular rectilinear tessellation.

To begin, recall Definition 4.3.5, and let � 2 {2, 3, 4, . . .}1, that is, let � be a positive

integer greater than or equal to 2. For n = 1, 2, 3, . . ., we can construct a regular rectilinear

tessellation of I2 by subdividing the unit square into �
2n subsquares, and, by choosing an

appropriate �-adic correspondence (traverse) ��, create an associated space-filling curve

⇤ 2 S2(�). For example, in the construction of the Hilbert curve, � = 2, and in the

construction of the Peano curve, detailed in Section 5.3 below, � = 3. In order to produce

an associated relative fractal drum analogous to that of the Hilbert RFD, we need to use

the correct fundamental cell. In Figure 5.2.1, we see the fundamental cell, ⌦0, for any curve

in S2(�). In particular, it is the open region in R3 bounded by the 2-dimensional planes

z = 1� y, z = 1
1��

y, x = 0, x = 1, and y = 0. Some examples of fundamental cells for other

choices of � are shown in Figure 5.2.2.

1From this point forward, anytime � is used, it is assumed to be a positive integer greater than or equal
to 2. See Section 7.2 in Chapter 7 for a brief discussion of the cases when � is a real number greater than or
equal to 2.
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Figure 5.2.1: Isometric and side views of the fundamental cell, ⌦0, for any curve in S2(�)
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Figure 5.2.2: Side views of the fundamental cells for some values of �.
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Seeing the side views of some of the fundamental cells for large values of � in Figure 5.2.2

makes it clear that the existence of a valid geometric realization is not a trivial matter since

the volume of space beneath these cells is decreasing as � increases. However, the subdrums

are also getting thinner as � increases. We now show that a valid geometric realization

exists by proving the following Proposition.

Proposition 5.2.1. Let � 2 {2, 3, . . .}, and let ⌦0 be the associated fundamental cell. Then

the volume of space above and below the unit square I
2 is su�cient to accommodate the

disjoint union of all of the prisms in all of the generations in the construction of the associated

RFD so that each prism touches the unit square along one edge of generational unit length.

In other words, a valid geometric realization of this RFD exists for any � 2 {2, 3, . . .}.

Proof. This amounts to a 3-dimensional “prism packing” problem which reduces to a problem

of available 2-dimensional area in the unit square: the maximum height of the cavity under

a prism restricts how many prisms of the subsequent generations can fit underneath and

still contact the plane in which the unit square is embedded, and this space restriction is

in one-to-one correspondence with a restricted projected area under each prism. A simple

calculation shows that, for any �, the area covered (or shadowed) by a single scaled prism

in the nth generation is given by Formula 5.2.1 below. See Figures 5.2.3 and 5.2.4 for a

visualization of the area restrictions.

An =
�� 1

�2n+1
. (5.2.1)

In each generation, there is a minimum amount of area within the unit square that must

be accessible for intersection with the projected area of the prisms yet to be placed. We

denote this minimum area by m(n). Since there are �
2n � 1 prisms in any generation n, we

must be able to access a minimum area of

m(n) = An · (�2n � 1) =
�� 1

�2n+1
· (�2n � 1). (5.2.2)
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In each generation n, there is also some amount of area that is geometrically inaccessible due

to the placement of the prisms from all of the previous generations combined. We denote

this accumulated, inaccessible (or restricted) area by r(n). As long as r(n) does not meet or

exceed m(n), i.e. r(n) < m(n), a valid geometric realization will exist since there will be

enough space to place all of the prisms in each generation, and thus enough room to place

all of the prisms in the RFD.

To determine the formula for r(n), note that a prism in the (n� 1)th generation restricts

��1
�

of the area it covers from being accessed (or shadowed) by a prism in the nth generation

(see Figures 5.2.3 and 5.2.4). More specifically, the area restricted from prisms in generation

n by a single prism in generation n� 1, is

�� 1

�
·An�1 =

�� 1

�
· �� 1

�2n�1
=

(�� 1)2

�2n
. (5.2.3)

The total area restricted from the nth generation, r(n), is the sum of the areas restricted

by all previous generations. The restriction relationship between consecutive generations

enables us to count how much accumulated area is restricted for each generation. More

specifically, we find the following.

r(n) =
�� 1

�
·An�1

nX

k=1

�
k�1

⇣
(�2)n�k � 1

⌘
(5.2.4)

Simplifying Formula 5.2.4, we find

r(n) =
�� 1

�
·An�1

nX

k=1

�
k�1

⇣
(�2)n�k � 1

⌘
=

�� 1

�
· �� 1

�2n�1
· 1
�

nX

k=1

�
k

⇣
�
2n�2k � 1

⌘

=
(�� 1)2

�2n+1

nX

k=1

⇣
�
2n�k � �

k

⌘
=

(�� 1)2

�2n+1
· (�

n � 1)(�n � �)

�� 1

=
(�n � 1)(�n�1 � 1)(�� 1)

�2n
. (5.2.5)
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Now we can proceed by showing that r(n) < m(n) for all n � 2. We have the following

chain of equivalent inequalities.

r(n) < m(n)

(�n � 1)(�n�1 � 1)(�� 1)

�2n
<

�� 1

�2n+1
(�2n � 1)

(�n � 1)(�n�1 � 1) < �
2n�1 � �

�1

�
2n�1 � �

n � �
n�1 + 1 < �

2n�1 � �
�1

�
n+1 + �

n � � > 1. (5.2.6)

Inequality 5.2.6 holds for all � > 1, and all n � 1. Consequently, there is always enough

room available in the unit square to place the �2n � 1 scaled prisms that are required for the

nth generation of the construction, even after all of the previous prisms have been placed.

In other words, a valid geometric realization of this RFD exists for any �.

Since a valid geometric realization exists for any �, we have also proved Corollary 5.1.1,

i.e. that the Hilbert curve RFD is valid construction.

Remark 5.2.1. Now is a good time to point out that the exact placement of the prisms

does not need to follow the traverse of the approximating polygons because the unit square

is filled by the space-filling curve itself, not by any approximation. As mentioned in Remark

5.1.4, this is what allows us to choose the distance function d(x, H) = z. Moreover, as

mentioned in Remarks 3.3.2, 2.3.1, and 2.1.2, all of our analytical tools are independent

of geometric realization. The question of whether or not it is necessary to move them is

addressed in Section 5.3 below.

Remark 5.2.2. As a side note, referring back to Formulas 5.2.2 and 5.2.5, observe that

lim
n!1

r(n) = lim
n!1

m(n) =
�� 1

�
, (5.2.7)
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n = 1 n = 2 n = 3 n = 4

Figure 5.2.5: The first four “approximations” to an accordion “curve”.

so the accumulated restricted area coincides with the minimum area needed at infinity, which

is to be expected. Moreover, this limiting value, ��1
�

, goes to 1 as � ! 1, as we would also

expect. This is a piece of evidence that suggests this construction of a generalized RFD is

the correct one, addressing Question 3 to some extent.

Before we come to the main result of this dissertation, it is edifying to explore the following

counterexample which also serves as evidence that this construction of a generalized RFD is

the correct one.

Counterexample 5.2.1 (The Accordion “Curve”). The first four “approximations” to one

of these accordion “curves” (or scan curves) when � = 2 are shown in Figure 5.2.5, and they

consist of a simple scanning traverse from left to right and then right to left, moving up or

down one square when an edge square is reached. In the same sense as the a-string discussed

in Counterexample 1.0.2, accordion “curves” are not generally considered to be fractals.

However, for each n, these polygons have the same number of generational unit segments

as the Hilbert curve so in light of Proposition 5.2.1 and Remark 5.2.1 one might suspect

that the relative distance zeta function for this “curve” would be the same as that of the

Hilbert curve, given in Equation 5.1.7. Thus our definition of fractality would erroneously

include these “non-fractal” objects. But the accordion “curve” is not a space-filling curve.

In fact, “it” is not a curve at all. The sequence of mappings whose images are depicted in

Figure 5.2.5 does not converge, and the distance between images of points in consecutive

generations can di↵er by over 1� 2�n, i.e. points can “wander too far” for the sequence to

converge. Since this sequence of mappings does not converge to the unit square, we cannot
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choose the distance function d(x, I2) to be simply z as we did for the Hilbert curve, and

the relative distance zeta function we derived does not apply here. If we instead took our

distance function to be the distance from a point in a subdrum to the segment which it

contacts in the unit square, a simple pole of s = 1 would arise since the topological dimension

of a generational unit segment is 1. Moreover, the union of all the subdrums in a given

generation would also yield a pole at s = 1, but the union of all of the generations of scaled

subdrums would not have any geometric significance as it does for the Hilbert curve.

We are now ready to assert and prove the main result of this dissertation.

Theorem 5.2.1 (A.D. Richardson, 2021). Let � 2 {2, 3, 4, . . .} and let ⇤ 2 S2(�) be a

plane-filling curve. Let (⇤,⌦) be the associated RFD, constructed as above. Then a relative

distance zeta function for (⇤,⌦) is

⇣⇤,⌦(s) =
�
2 � 1

(s� 2)(s� 1)(�s � 1)
. (5.2.8)

Consequently, the set of relative complex dimensions of ⇤ is

D(⇣⇤,⌦) =

⇢
0 +

2⇡

log �
iZ
�
[ {1, 2}, (5.2.9)

and therefore ⇤ is a fractal by Definition 3.3.9. Since this is true for any � 2 {2, 3, 4, . . .}, it

follows that every space-filling curve in R2 is a fractal by Definition 3.3.9.
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Proof. Given ⇤ 2 S2(�), we first compute the relative distance zeta function for the

fundamental cell ⌦0 (see Figure 5.2.1):

⇣⇤,⌦0(s) =

Z 1

0

Z 1� 1
�

0

Z 1�y

1
��1y

z
s�3 dz dy dx =

1

s� 2

Z 1� 1
�

0
(1� y)s�2 � (�� 1)2�s

y
s�2 dy

=
1

(s� 2)(s� 1)

h
�(1� y)s�1 � (�� 1)2�s

y
s�1
i1� 1

�

0

=
1

(s� 2)(s� 1)

"
�
✓
1

�

◆
s�1

� (�� 1)2�s

✓
�� 1

�

◆
s�1

+ 1

#

=
1

(s� 2)(s� 1)

"
�
✓
1

�

◆
s�1

� (�� 1)

✓
1

�

◆
s�1

+ 1

#

=
1

(s� 2)(s� 1)

h
�� · �1�s + 1

i
=

(1� �
2�s)

(s� 2)(s� 1)
.

(5.2.10)

Just like before, each subdrum ⌦n

i
is a scaled copy of ⌦0, so we can apply Theorems

3.3.2 and 3.3.3, yielding

⇣⇤,⌦(s) =
1X

n=1

�
2n�1X

i=1

⇣H,⌦n
i
(s) =

1X

n=1

�
2n�1X

i=1

(��n)s⇣H,⌦0(s)

=
(1� �

2�s)

(s� 2)(s� 1)

1X

n=1

�
�sn(�2n � 1) =

(1� �
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(s� 2)(s� 1)

1X

n=1

h
(�2�s)n � (��s)n

i

=
(1� �

2�s)

(s� 2)(s� 1)

"
�
2�s

1� �2�s
� �

�s

1� ��s

#

= ⇠⇠⇠⇠⇠⇠
(1� �

2�s)

(s� 2)(s� 1)

"
�
2�s �⇠⇠⇠⇠⇠

�
�s

�
2�s � �

�s +⇠⇠⇠⇠⇠
�
�s

�
2�s

⇠⇠⇠⇠⇠⇠
(1� �

2�s)(1� ��s)

#

=
(�2 � 1)��s

(s� 2)(s� 1)(1� ��s)
=

�
2 � 1

(s� 2)(s� 1)(�s � 1)
.

(5.2.11)

Thus, we have Equation 5.2.8 and we can read o↵ the set of relative complex dimensions

of ⇤ as:

D(⇣⇤,⌦) =

⇢
0 +

2⇡

log �
iZ
�
[ {1, 2}. (5.2.12)
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Since this set contains at least one nonreal complex number, ⇤ is a fractal by Definition

3.3.9. Since � was chosen arbitrarily, every plane-filling curve in R2 is a fractal by Definition

3.3.9.

At last the fractality of such curves has been established! The value p = 2⇡
log � is the

oscillatory period of ⇣⇤,⌦. Note that all of the complex dimensions are simple poles, and we

can compute the residues:

res(⇣⇤,⌦(s), 2) = lim
s!2

�
2 � 1

(s� 1)(�s � 1)
= 1, (5.2.13)

res(⇣⇤,⌦(s), 1) = lim
s!1

�
2 � 1

(s� 2)(�s � 1)
=

(�� 1)(�+ 1)

�(�� 1)
= �(�+ 1), and (5.2.14)

res(⇣⇤,⌦(s), 0 + inp) = lim
s!inp

(s� inp)(�2 � 1)

(s� 2)(s� 1)(�s � 1)

= lim
s!inp

�
2 � 1

(s� 2)(s� 1)
· lim
s!inp

s� inp

�s � 1

=
�
2 � 1

(inp� 2)(inp� 1)
· lim
s!inp

1

(log �)�s

=
�
2 � 1

log �(inp� 2)(inp� 1)
(5.2.15)

for all n 2 Z.

Now we can, at least initially, address Question 3 by recalling Theorem 3.3.4:

Theorem 3.3.4 ([LRŽ17] 4.1.14). Suppose that (A,⌦) is a Minkowski nondegenerate RFD

in RN , (in particular dimB(A,⌦) = D), and D < N . If ⇣A,⌦(s) can be meromorphically

extended to a connected open neighborhood of {Re (s) = D}, then D is necessarily a simple

pole of ⇣A,⌦, the residue res(⇣A,⌦(s), D) is independent of � and

MD

⇤ (A,⌦) 
res(⇣A,⌦(s), D)

N �D
 M⇤D(A,⌦). (3.3.14)
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Furthermore, if (A,⌦) is Minkowski measurable then this inequality yields

MD(A,⌦) =
res(⇣A,⌦(s), D)

N �D
. (3.3.15)

In light of the results in Theorem 5.2.1, we use Equation 5.2.13 to conclude that

M2(⇤,⌦) =
res(⇣⇤,⌦(s), 2)

3� 2
= 1, (5.2.16)

as expected of the unit square. Of course it still remains to be shown that (⇤,⌦) is Minkowski

measurable, but this is proven in detail in Proposition 6.2.1 in Chapter 6.

Remark 5.2.3. Note that the complex dimensions with nonzero imaginary part are precisely

those with real part equal to 0. In other words, the oscillatory behavior of this fractal is

associated with the 0-dimensional objects, the points. This is an artifact of the fact that

the �-adic mapping �� is defined pointwise using chains of �-ary intervals. Based on the

appearance of the images of approximations to these curves (see, for example, Figures 4.2.1

and 4.3.1) one might wonder if there are oscillations associated with topological dimensions

1 and 2. It is clear that there are no oscillations associated with dimension 2 because

that is the topological dimension of the unit square itself. The intuition for why there

are not oscillations associated with dimension 1 is less immediate, and is easier to intuit

when working with curves that fill a space of dimension greater than 2, so we reserve this

discussion for Remark 7.1.1 in Chapter 7.
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Figure 5.3.1: The fundamental cell for a Peano curve RFD.

5.3 The Peano Curve RFD, and another Hilbert Curve RFD

We begin this section with an example of another RFD for a plane-filling curve, a Peano

curve.

Example 5.3.1 (The Peano curve RFD). Let � = 3 and let P = I
2 represent (the direct

image of) a Peano curve. Then Equation 5.2.8 gives

⇣P,⌦(s) =
8

(s� 2)(s� 1)(3s � 1)
, (5.3.1)

and the set of complex dimensions for a Peano curve is

D(⇣P,⌦) =

⇢
0 +

2⇡

log 3
iZ
�
[ {1, 2}. (5.3.2)

We can also compute this directly by computing the zeta function for the fundamental cell,

and summing up the zeta functions as before. Those calculations are included below because

they can help illuminate where certain factors arise in computation of the relative distance

zeta function.
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(5.3.3)
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(5.3.4)

In Remark 5.2.1, it is mentioned that the exact placement of the prisms in the RFD

does not need to follow the traverse of the approximating polygons as long as the edge of

each one is contacting the unit square. A natural question to ask is whether or not it is

necessary to move the prisms around to accommodate all of them, or if they can be taken

to follow the traverse of the approximating polygons. Figure 5.3.2 shows the first three

approximations to a Peano curve of the switchback type, overlayed and colored green, red,

and blue for generations n = 1, 2, 3 respectively. It illustrates that there is nontrivial overlap

of the approximating curves. More specifically, if we lay each generation of approximating
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Figure 5.3.2: The first three approximations to a Peano curve of the switchback type,
overlayed and colored according to generation.

Figure 5.3.3: The first four approximations to the Hilbert curve, overlayed and colored
according to generation.

polygons on top of each other, there will be line segments that are covered by segments

from an infinite number of generations. This means that infinitely many of the prisms in

the corresponding RFD will have a nonempty region of intersection in R3 that has positive

3-dimensional Lebesgue measure. In this event, we cannot invoke Theorem 3.3.3 so our

RFD would not be valid. However, the independence of geometric realization allows us to

translate and rotate these prisms to accommodate them all, so for curves such as a Peano

curve, this translation is necessary.

In contrast, Figure 5.3.3 shows the first four approximations to the Hilbert curve,

overlayed and colored green, red, blue, and pink for generations n = 1, 2, 3, 4 respectively. In

this case, we see that there is only trivial overlap of the polygons at points. In this event,
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Figure 5.3.4: A 3D model of the Hilbert Curve RFD with the prisms unscaled, viewed from
above.

as long as the prisms in the RFD are not so tall that they overlap in R3, translation of

the prisms would not be necessary. However, as mentioned in Remark 5.1.3, the model of

the Hilbert curve RFD depicted in Figures 5.1.2 and 5.1.3 has the prisms scaled down by

a factor of 1
2 to illustrate the relationship between the prisms and the approximations to

the Hilbert curve itself. Figures 5.3.4 and 5.3.5 depict the actual size of the prisms in the

Hilbert RFD as described in Remark 5.1.1, and illustrate that these prisms, too, must be

translated to accommodate all of them.

One might wonder if the scaled down version of the Hilbert curve RFD would still

be valid since it is convenient and more intriguing to have a construction that does not

require the prisms to be moved around. While it is still an admissible RFD, it is not quite

appropriate. In particular, the Minkowski content of H = I
2 relative to the scaled-down

RFD ⌦ is 1
2 , not 1 as we would expect since our fractal of interest has the unit square as

its image. This is not to say that the scaled RFD, by any scalar, is not a worthy object of

study, but as we will see now, there is another Hilbert curve RFD that is perhaps more

appropriate for that particular curve.
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Figure 5.3.5: A 3D model of the Hilbert Curve RFD with the prisms unscaled, viewed from
the side.

Remark 5.3.1. The Hilbert curve is unique in that the fundamental cell for the Hilbert curve

RFD has symmetry that we can exploit; symmetry that is not enjoyed by the fundamental

cells for RFDs associated with curves induced by � > 2 tessellations. More specifically,

by scaling the original fundamental cell for the Hilbert curve RFD down by a factor of 1
2 ,

the number of prisms needed in each generation doubles as well because the length of the

contacting edge is reduced by 1
2 . But in doing so, the area covered by any prism is also cut

in half, and so the area covered by any generation of prisms is cut in half. This means there

is room for (at least) another duplicate set of prisms in any generation, and since the original

fundamental cell for the Hilbert curve RFD is exactly half of a rectangular prism, we can

instead choose our fundamental cell to be a rectangular prism. The rectangular prism is

exactly double our original fundamental cell, ⌦0, and it contacts one-half of a generational

unit segment. The resulting zeta function will be slightly di↵erent as we will see, but it

will yield the same complex dimensions and relative Minkowski content. Moreover, the

rectangular prisms will not need to be rotated or translated to accommodate them. Figures
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Figure 5.3.6: A 3D model of a Hilbert Curve RFD using rectangular prisms instead of
triangular prisms, viewed from above.

Figure 5.3.7: A 3D model of a Hilbert Curve RFD using rectangular prisms instead of
triangular prisms, viewed from the side.

5.3.6 and 5.3.7 show a 3D model of the RFD itself, and more images can be found in

Appendix A, Section A.3. In this case, this model is unaltered, and even though the closed

faces of the prisms may intersect, recall that the construction uses open subdrums, so all of

these prisms are in fact disjoint from one another. We proceed to detail the calculation of

the relative distance zeta function for this RFD, denoted (H,⇥).

First we compute the relative distance zeta function for the fundamental cell ⇥0 which

is pictured in Figure 5.3.8.
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Figure 5.3.8: Isometric and side views of a di↵erent fundamental cell, ⇥0, for the Hilbert
Curve.
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(5.3.5)

Notice the additional factor of 21�s in the numerator that is not present in Equation

5.1.3, the relative distance zeta function for (H,⌦0). In each generation n, there are now

2 · (4n � 1) of these rectangular prisms; two to cover each generational unit segment. Just
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like before, each subdrum ⇥n

i
is a scaled copy of ⇥0, so we can apply Theorems 3.3.2 and

3.3.3, yielding
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(5.3.6)

This function is valid initially for all s 2 C such that Re s > 2, but it can be extended

meromorphically to all of C via analytic continuation. From Equation 5.3.6 we can read o↵

the singularities of ⇣H,⇥(s), and we have that the set of relative complex dimensions of the

Hilbert curve still must be

D(⇣H,⇥) =

⇢
0 +

2⇡

log 2
iZ
�
[ {1, 2}. (5.3.7)

Moreover,

res(⇣H,⇥(s), 2) = lim
s!2

3 · 22�s

(s� 1)(2s � 1)
=

3 · 22�2

(1)(3)
= 1, (5.3.8)

so by Theorem 3.3.4 again, we have the desired result

M2(⇤,⇥) =
res(⇣⇤,⇥(s), 2)

3� 2
= 1. (5.3.9)

Remark 5.3.2. This provides a negative answer to Question 2 since there is, indeed, at

least one other RFD that is appropriate for detecting the complex dimensions of the Hilbert

curve, but its construction is dependent on a symmetry that cannot be exploited for � > 3,
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so the present author believes this is a special case exclusive to curves in S2(2). However, this

construction may have some intriguing applications since the Hilbert curve is a plane-filling

curve and these associated prisms follow the traverse of the approximations in a disjoint way

through R3. Additionally, the volume of the tubular neighborhood relative to this RFD (and

the others depicted above) has lower order oscillations as we will see in the next chapter.

Remark 5.3.3. Speaking more generally, it is still an open problem whether or not other

such constructions exist for � > 3, but questions of uniqueness are typically more di�cult to

answer than questions of existence. However, the present author has explored many variations

of fundamental cells in the course of their research and, while some other fundamental

cells were discovered which produce the necessary factor of 1 � �
2�s (or simply 1 � 22�s

in the case of the Hilbert curve) seen in Equation 5.2.10, they yielded other intractable

characteristics; some failed to admit a valid geometric realization because there was not

enough room to accommodate all of the prisms necessary for the construction, and some

could not be generalized to large � without the volume of the RFD going to infinity.

With this collection of new results in hand, we turn now to an exploration of the

oscillatory behavior of space-filling curves in the next chapter.
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Chapter 6

Languidity, and the Oscillatory

Behavior of Space-Filling Curves

In this chapter we will explore and detail the oscillatory behavior of space-filling curves,

but first we need to define the notion of a languid relative fractal drum. Languidity is a

condition necessary for us to utilize a powerful theorem from [LRŽ17] that allows us to

recover pointwise explicit formulas for the volume of the tubular neighborhood of an RFD

as well as antiderivatives of these formulas. For convenience, we repeat Definitions 3.2.2,

2.3.3, and 3.3.7 below.

Definition 3.2.2. Given a set A ✓ RN and t > 0, define the tubular neighborhood of A as

At := {x 2 RN | d(x, @A) < t}. (3.2.2)

Definition 2.3.3. We define the screen SSS to be the contour SSS := {s 2 C : s = S(t) +

it, t 2 R} where S : R ! [�1, DL] is a Lipschitz continuous function. We define the

window W to be the part of the complex plane that is to the right of the screen, i.e.

W := {s 2 C : Re s � S(Im s)}. Note that W is a closed subset of C and SSS = @W , the

boundary of W . (See Figure 2.3.1.)
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SSS

W

Re

Im

Figure 2.3.1: The screen SSS and the window W . (Repeated from page 17.)

Definition 3.3.7. A relative fractal drum (A,⌦) is said to be admissible if its relative

distance zeta function ⇣A,⌦ can be meromorphically extended to an open connected neigh-

borhood of some window W , and that ⇣A,⌦ does not have any singularity on the screen

SSS.

6.1 Languidity of Relative Fractal Drums Associated with

Space-Filling Curves

We begin with the definitions of d-languidity and strong d-languidity. See [LRŽ17] Section

5.3.2 for more details about these definitions and more results related to them.

Definition 6.1.1. An admissible relative fractal drum (A,⌦) in RN is said to be d-languid

if for some fixed � > 0, its relative distance zeta function ⇣A,⌦( · ; �) satisfies the following

growth conditions:
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There exists a real constant d 2 R, the d-languidity exponent, and a two-sided sequence

(Tn)n2Z of real numbers such that T�n < 0 < Tn for n � 1, and

lim
n!1

Tn = +1 and lim
n!1

T�n = �1 (6.1.1)

satisfying the following two hypotheses L1 and L2:

L1: For a real fixed constant c > N > dimB(A,⌦), there exists a positive constant C > 0

such that for all n 2 Z and all � in the open interval (S(Tn), c),

|⇣A,⌦(� + iTn; �)|  C(|Tn|+ 1)d . (6.1.2)

L2: For all t 2 R, |t| � 1,

|⇣A,⌦(S(t) + it; �)|  C|t|d , (6.1.3)

where C is a positive constant which (without loss of generality) can be chosen to be the

same one as in condition L1.

Definition 6.1.2. In addition, an admissible relative fractal drum (A,⌦) in RN is said to

be strongly d-languid if for some fixed � > 0, its relative distance zeta function ⇣A,⌦(·; �)

satisfies condition L1 with S(Tn) ⌘ �1, i.e. for every � < c, and additionally there exists

a sequence of screens Sm : t 7! Sm(t) + it for m � 1, t 2 R with supSm ! �1 as m ! 1

and with a uniform Lipschitz bound supm�1 kSmkLip < 1 such that the following condition

holds:

L2’: There exist constants B,C > 0 such that for all t 2 R and m � 1,

|⇣A,⌦(Sm(t) + it; �)|  CB
|Sm(t)|(|t|+ 1)d . (6.1.4)

Remark 6.1.1. The “d” in the definitions of d-languidity and strong d-languidity denotes

that the zeta function being used is the relative distance zeta function. This is because the

condition of languidity developed in [LRŽ17] and [LvF13] uses the tube zeta function, but we
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do not use that zeta function in the analysis presented in this dissertation. The interested

reader can find a detailed and analogous discussion of languidity based on the tube zeta

function in Section 5.1.1 of [LRŽ17].

Remark 6.1.2. Hypothesis L1 is a polynomial growth condition along horizontal line

segments in the complex plane, while hypotheses L2 and L2’ are polynomial growth

conditions along the vertical direction of the screen(s). These hypotheses are necessary

prerequisites for determining the pointwise and distributional fractal tubular volume formulas

with and without error term. More specifically, if (A,⌦) is a strongly d-languid RFD, then

there is an exact, generalized pointwise formula (in terms of t) for V⇤,⌦(t) = |At \ ⌦|N , and

the primitives (antiderivatives) V [k]
⇤,⌦(t) of that formula for k > d � 1.

Proposition 6.1.1. Let (⇤,⌦) be a relative fractal drum associated with a plane-filling

curve in R2 and constructed as described in Remark 5.1.1 and generalized in Section 5.2.

Then (⇤,⌦) is strongly d-languid.

Proof. Let � � 2 and let ⇤ 2 S2(�). By Theorem 5.2.1, the relative distance zeta function

for (⇤,⌦) is

⇣⇤,⌦(s) =
�
2 � 1

(s� 2)(s� 1)(�s � 1)
. (6.1.5)

For any s 2 C that is not a singularity of ⇣⇤,⌦, we have

��⇣⇤,⌦(s)
�� =

�����
�
2 � 1

(s� 2)(s� 1)(�s � 1)

����� 
�
2

|s� 2||s� 1||�s � 1| . (6.1.6)

We will verify condition L1 first. Choose our sequence (Tn)n2Z to be given by

Tn =
(2n+ 1)⇡

log �
. (6.1.7)

It follows immediately that T�n < 0 < Tn for n � 1, and that

lim
n!1

Tn = lim
n!1

(2n+ 1)⇡

log �
= +1 and lim

n!1
T�n = lim

n!1

(�2n+ 1)⇡

log �
= �1.

(6.1.8)
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Moreover, this choice of Tn avoids any singularities of ⇣⇤,⌦ since Tn 6= np = n
2⇡
log � for any n.

Fix a number c 2 R such that c > 3 > dimB(⇤,⌦) = 2. For any � < c, by application of

the triangle inequality and the definition of a complex exponential, we have

��⇣⇤,⌦(� + iTn; �)
��  �

2

|� � 2 + iTn||� � 1 + iTn||���iTn � 1|

 �
2

|Tn||Tn|
��e(log �)�ei(log �)Tn � 1

�� .
(6.1.9)

By our choice of sequence (Tn), ei(log �)Tn = e
i(2n+1)⇡ = �1 for all n 2 Z. Consequently,

���e(log �)�ei(log �)Tn � 1
��� =

���e(log �)� + 1
��� � 1 (6.1.10)

for all � < c. Thus, Inequality 6.1.9 becomes

��⇣⇤,⌦(� + iTn; �)
��  �

2

|Tn|2
. (6.1.11)

Now, for any x 2 R and any � > 1, if |x| � 1, then �|x| � |x| + 1. Consequently,

1
|x|2  �

2

(|x|+1)2 . Since minn2Z{|Tn|} = |T0| = ⇡

log � > 1, it follows that

��⇣⇤,⌦(� + iTn; �)
��  �

2

|Tn|2
 �

5

(|Tn|+ 1)2
= �

5(|Tn|+ 1)�2
. (6.1.12)

Choosing C = �
5 and d = �2, we see that we have verified condition L1.

Next, to show condition L2’, let our sequence of screens be given by

Sm = {Sm(t) + it : m 2 N, t 2 R} = {�m+ it : m 2 N, t 2 R}. (6.1.13)

Then clearly supSm ! �1 as m ! 1 and supm�1 kSmkLip = 1 < 1. For any m 2 N, the

triangle inequality yields
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|⇣⇤,⌦(Sm(t) + it; �)| =

�����
�
2 � 1

(s� 2)(s� 1)(�s � 1)

�����
s2Sm

 �
2

|�m� 2 + it||�m� 1 + it||��m�it � 1|

 �
2

|m||m||��m � 1| .

(6.1.14)

Since m � 1, ��m
< �

�1
< 1. Thus |��m � 1| > �

�1, whence
1

|��m � 1|  �, so

|⇣⇤,⌦(Sm(t) + it; �)|  �
3

|m|2  �
5

(|m|+ 1)2
= �

5(|m|+ 1)�2  �
5(|t|+ 1)�2

. (6.1.15)

Choosing B = 1, we have B
|Sm(t)| = 1 for all m � 1, and so Inequality 6.1.14 yields

��⇣⇤,⌦(Sm(t) + it; �)
��  �

5(|t|+ 1)�2
. (6.1.16)

This verifies condition L2’ and, therefore, (⇤,⌦) is strongly d-languid.

6.2 Oscillatory Behavior of Space-Filling Curves

In this section we will elucidate the oscillatory behavior associated with plane-filling curves in

R2. This oscillatory behavior is also expected for curves in RN , and a conjecture about this

phenomenon is detailed in Chapter 7. In the first section we show that there are subcritical

oscillations in the volume of the tubular neighborhood of (⇤,⌦), i.e. oscillations in the

lower order terms of the tubular volume formula. We compute this formula directly for the

generalized RFD constructed in Chapter 5, and then, using the result of strong d-languidity

established in Proposition 6.1.1, recover the volume formula from the general theory of

fractal tube formulas detailed in Chapter 5 of [LRŽ17].
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Figure 6.2.1: Side view of the RFD submerged to the “water line” z = t.

Oscillations in the Volume of the Tubular Neighborhood

Let � � 2 and let ⇤ 2 S2(�) ⇢ R2. Let (⇤,⌦) be the associated relative fractal drum. Define

V⇤,⌦(t) := |⇤t\⌦|3, i.e. the pointwise volume of the tubular neighborhood of ⇤ = I
2 relative

to ⌦. Since the drum lies entirely above and below the unit square, for t > 0, we have

⇤t \ ⌦ = [0, 1]2 ⇥ (�t, t) \ ⌦. (6.2.1)

By counting prisms (subdrums) according to multiplicity in each generation n, we can write

⇤t \ ⌦ = [0, 1]2 ⇥ [0, t) \ ⌦. (6.2.2)

More intuitively, this allows us to view ⇤t\⌦ as being the part of the RFD that is submerged

up to some “water line” z = t. Figure 6.2.1 illustrates this idea.

For any t > 0, there exists an M 2 N such that

1

�M
 t <

1

�M�1
, (6.2.3)
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Figure 6.2.2: A prism in ⌦1 submerged up to the line z = t.

in particular,

M =

&
log�

✓
1

t

◆'
(6.2.4)

where d·e indicates the ceiling function (see Definition 2.1.3 in Chapter 2). The choice of t

partitions ⌦ into three disjoint collections of prisms, ⌦1,⌦2, and ⌦3, so that ⌦ = ⌦1[⌦2[⌦3

where

⌦1 =
M�2[

n=1

�
2n�1[

i=1

⌦n

i , (6.2.5)

⌦2 =
�
2(M�1)�1[

i=1

⌦M�1
i

, and (6.2.6)

⌦3 =
1[

n=M

�
2n�1[

i=1

⌦n

i (6.2.7)

This allows us to compute the total volume of the tubular neighborhood in three parts,

by computing the volume of submerged portion of each collection separately and adding the

results.
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First we compute |⇤t \⌦1|3. See Figure 6.2.2 for a visual reference. The cross-section of

the submerged section of any prism in ⌦1 is a triangle that has area

A =
1

2
t · t(�� 1) =

t
2(�� 1)

2
. (6.2.8)

The base of any (3-dimensional) prism has length 1
�n , thus the volume of the submerged

portion is

Vn =
t
2(�� 1)

2�n
. (6.2.9)

There are �2n� 1 prisms ⌦n

i
in any nth generation contained in ⌦1, so we have the following.

|⇤t \ ⌦1|3 =
M�2X

n=1

(�2n � 1) · Vn =
M�2X

n=1

(�2n � 1)
t
2(�� 1)

2�n

=
t
2(�� 1)

2

M�2X

n=1

✓
�
n � 1

�n

◆

=
t
2⇠⇠⇠⇠(�� 1)

2

"
�
M�1 + �

2�M � �� 1

⇠⇠⇠�� 1

#

=
t
2

2

h
�
M�1 + �

2�M � �� 1
i
.

(6.2.10)

Next we compute |⇤t \ ⌦2|3. See Figure 6.2.3 for reference. The cross-section of these

prisms is a quadrilateral Q which can be decomposed into a right triangle T and a trapezoid

Z:

Q = T [ Z (6.2.11)

We have

|T |2 =
1

2
· 1

�M
· �� 1

�M
=

�� 1

2�2M
, (6.2.12)
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Figure 6.2.3: A prism in ⌦2 submerged up to the line z = t.

and

|Z|2 =
1

2
h(b1 + b2)

=
1

2

✓
t� 1

�M

◆"
�� 1

�M
+

�� 1

�M
�
✓
t� 1

�M

◆#

=
1

2

✓
t� 1

�M

◆✓
2�� 1

�M
� t

◆

=
1

2�M

✓
(2�� 1)t� �

M
t
2 � 2�� 1

�M
+ t

◆
.

(6.2.13)

Adding these results together, we have

|Q|2 = |T |2 + |Z|2

=
�� 1

2�2M
+

1

2�M

✓
(2�� 1)t� �

M
t
2 � 2�� 1

�M
+ t

◆

=
1

2�M

✓
�� 1

�M
+ (2�� 1)t� �

M
t
2 � 2�� 1

�M
+ t

◆

=
1

2�M

✓
� 1

�M�1
+ 2�t� �

M
t
2

◆

=
t

�M�1
� 1

2�2M�1
� t

2

2
.

(6.2.14)
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Therefore,

|Q|3 =
1

�M�1
· |Q|2 =

1

�M�1

"
t

�M�1
� 1

2�2M�1
� t

2

2

#

=
t

�2M�2
� 1

2�3M�2
� t

2

2�M�1
.

(6.2.15)

Since there are exactly �
2(M�1) � 1 prisms in ⌦2, we have

|⇤t \ ⌦2|3 =
⇣
�
2(M�1) � 1

⌘
· |Q|3

=
⇣
�
2M�2 � 1

⌘ 
t

�2M�2
� 1

2�3M�2
� t

2

2�M�1

!
.

(6.2.16)

Lastly, we compute |⇤t \ ⌦3|3. The entirety of any prism in ⌦3 is included in ⇤t \ ⌦.

The volume of any prism in generation n is

Vn =
1

2
· 1

�n
· �� 1

�n+1
· 1

�n
=

�� 1

2�3n+1
. (6.2.17)

There are �
2n � 1 prisms in any generation n, so we have

|⇤t \ ⌦3|3 =
1X

n=M

(�2n � 1) · Vn =
1X

n=M

(�2n � 1) · �� 1

2�3n+1

=
�� 1

2�

1X

n=M

✓
1

�n
� 1

�3n

◆

=
⇠⇠⇠�� 1

2◆�

2

64
��1�3M

⇣
�
2M+1 + �

2M+2 + �
2M � �

2
⌘

⇠⇠⇠⇠(�� 1)(�2 + �+ 1)

3

75

=
�
�3M

⇣
�
2M+1 + �

2M+2 + �
2M � �

2
⌘

2(�2 + �+ 1)

(6.2.18)

Now that we have all three subvolumes calculated, we combine Equations 6.2.10, 6.2.15,

and 6.2.18, yielding
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|⇤t \ ⌦|3 = |⇤t \ (⌦1 [ ⌦2 [ ⌦3)|3

= |⇤t \ ⌦1|3 + |⇤t \ ⌦2|3 + |⇤t \ ⌦3|3

=
t
2

2

h
�
M�1 + �

2�M � �� 1
i

+
⇣
�
2M�2 � 1

⌘ 
t

�2M�2
� 1

2�3M�2
� t

2

2�M�1

!

+
�
�3M

⇣
�
2M+1 + �

2M+2 + �
2M � �

2
⌘

2(�2 + �+ 1)
.

(6.2.19)

After simplifying, we arrive at the following.

|⇤t \ ⌦|3 =
1

2

 
(�1�M )3(1 + �)

1 + �+ �2
� 2t(�1�M )2 + (�1�M � 1)(1 + �)t2 + 2t

!
. (6.2.20)

Next, observe that

�
M = �

d� log� te = �
� log� t+(1�{� log� t}) = �

� log� t · �1�{� log� t} =
1

t
· �1�{� log� t} (6.2.21)

where {·} indicates the fractional part of a number (See Definition 2.1.3 in Chapter 2). Thus,

�
1�M = t · �{� log� t} (6.2.22)

Substituting Equation 6.2.22 into Equation 6.2.20 yields that

V⇤,⌦(t) = |⇤t \ ⌦|3 =
1

2

 
(�1�M )3(1 + �)

1 + �+ �2
� 2t(�1�M )2 + (�1�M � 1)(1 + �)t2 + 2t

!

=
1

2

 
t
3 · �3{� log� t}(1 + �)

1 + �+ �2
� 2t3 · �2{� log� t} + t

3 · �{� log� t}(1 + �)

!

� 1

2

 
(1 + �)t2 � 2t

!
, so
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Figure 6.2.4: A plot of VH,⌦(t), the volume of the tubular neighborhood of (H,⌦).

V⇤,⌦(t) = t� t
2

2
(1 + �) +

t
3

2
(1 + �)

 
�
3{� log� t}

1 + �+ �2
� 2�2{� log� t}

1 + �
+ �

{� log� t}

!
(6.2.23)

Remark 6.2.1. The expression in the large parentheses in Formula 6.2.23 is multiplicatively

periodic: it takes the same value at t and t

�
. This illustrates the oscillatory behavior within

the tubular neighborhood. Compare this result with the result of the Cantor string CS

given in Section 2.2 and Equation 2.2.5 in Chapter 2. Note that, since the limiting behavior

we are interested occurs as t ! 0, the oscillations are occurring in the lower order terms so

we have subcritical oscillations ; here, t1 is the highest order term. For clarity, consider again

the example of the Hilbert curve RFD. Figure 6.2.4 is a plot of Formula 6.2.23 for � = 2.

Notice that VH,⌦(t) steadily increases almost linearly as t increases precisely because the

dominating term is of order 1. It also stops increasing once t = 1
2 because this is the point

after which the entire Hilbert curve RFD is contained in the tubular neighborhood, giving

total volume |⌦|3 = 3
14 as deduced in Equation 5.1.2 in Chapter 5. Figure 6.2.5 is a plot of
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Figure 6.2.5: A Linear-Linear plot of WH,⌦(t), the oscillatory term in VH,⌦(t).

the oscillatory term, call it W⇤,⌦(t), found in Formula 6.2.23 for � = 2. More specifically,

W⇤,⌦(t) =
�
3{� log� t}

1 + �+ �2
� 2�2{� log� t}

1 + �
+ �

{� log� t}
, (6.2.24)

so for � = 2 we have

WH,⌦(t) =
8{� log2 t}

7
� 2 · 4{� log2 t}

3
+ 2{� log2 t} (6.2.25)

Figure 6.2.6 is a Log-Linear plot of WH,⌦(t) that normalizes the period.

As in Section 2.2 we can also express this oscillatory behavior more explicitly using the

Fourier series of the map u 7! b
�{u} given in Equation 2.2.6 in Chapter 2, and repeated here

for convenience:

b
�{u} =

b� 1

b

X

n2Z

e
2⇡inu

log b+ 2⇡in
(2.2.6)
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Figure 6.2.6: A Log-Linear plot of WH,⌦(t), the oscillatory term in VH,⌦(t).

Using Equation 2.2.6 and writing p = 2⇡
log � , we have

�
{� log� t} = (��1)�{� log� t} =

�
�1 � 1

��1

X

n2Z

e
2⇡in(� log� t)

log ��1 + 2⇡in

= (1� �)
X

n2Z

e
�2⇡in

⇣
log t
log �

⌘

� log �+ 2⇡in
= (1� �)

X

n2Z

t
� 2⇡

log � in

� log �
⇣
1� 2⇡

log � in

⌘

=
�� 1

log �

X

n2Z

t
�inp

1� inp
.

(6.2.26)

Collecting all of these, we have

�
{� log� t} =

�� 1

log �

X

n2Z

t
�inp

1� inp
, (6.2.27)

�
2{� log� t} =

�
2 � 1

log �

X

n2Z

t
�inp

2� inp
, and (6.2.28)

�
3{� log� t} =

�
3 � 1

log �

X

n2Z

t
�inp

3� inp
. (6.2.29)
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We can use Equations 6.2.27, 6.2.28, and 6.2.29 to rewrite W⇤,⌦(t) as

W⇤,⌦(t) =
�
3{� log� t}

1 + �+ �2
� 2�2{� log� t}

1 + �
+ �

{� log� t}

=
1

1 + �+ �2
· �

3 � 1

log �

X

n2Z

t
�inp

3� inp
� 2

1 + �
· �

2 � 1

log �

X

n2Z

t
�inp

2� inp
+

�� 1

log �

X

n2Z

t
�inp

1� inp

=
�� 1

log �

0

@
X

n2Z

t
�inp

1� inp
� 2

X

n2Z

t
�inp

2� inp
+
X

n2Z

t
�inp

3� inp

1

A .

(6.2.30)

Thus, the volume of the tubular neighborhood of ⇤ with respect to ⌦ is,

V⇤,⌦(t) = t� t
2

2
(1+�)+

t
3

2
·�

2 � 1

log �

0

@
X

n2Z

t
�inp

1� inp
� 2

X

n2Z

t
�inp

2� inp
+
X

n2Z

t
�inp

3� inp

1

A (6.2.31)

which we can write in terms of the complex dimensions of ⇤:

V⇤,⌦(t) = t� t
2

2
(1 + �)

+
t
3

2
· �

2 � 1

log �

0

B@
X

!2D(⇣⇤,⌦,C)\{1,2}

t
�!

1� !
� 2

X

!2D(⇣⇤,⌦,C)\{1,2}

t
�!

2� !

+
X

!2D(⇣⇤,⌦,C)\{1,2}

t
�!

3� !

1

CA

(6.2.32)

This formula also allows us to establish the following important proposition about the

Minkowski measurability of these relative fractal drums, one which again asserts that this

class of RFDs is the correct one with which to study the complex dimensions of space-filling

curves.

Proposition 6.2.1. The RFD (⇤,⌦) is Minkowski measurable (see Definition 3.3.6) for

any � � 2, the relative Minkowski dimension (see Definition 3.3.4) of ⇤ = I
2 with respect to

⌦ is D = 2, and the 2-dimensional relative Minkowski content is 1.
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Proof. By Formula 6.2.31, we have

|⇤t \ ⌦|3
t3�2

= 1� t

2
(1 + �) +

t
2

2
· �

2 � 1

log �

0

@
X

n2Z

t
�inp

1� inp
� 2

X

n2Z

t
�inp

2� inp
+
X

n2Z

t
�inp

3� inp

1

A .

(6.2.33)

Taking the limit as t ! 0+, the last two terms go to 0, and all that remains is the

constant term, 1. Thus, by Definition 3.3.3,

M⇤2(⇤,⌦) = M2
⇤(⇤,⌦) = M2(⇤,⌦) = lim

t!0+

|⇤t \ ⌦|3
t3�2

= 1. (6.2.34)

Therefore, (⇤,⌦) is Minkowski measurable, the relative Minkowski dimension is D = 2,

and the relative 2-dimensional Minkowski content of (⇤,⌦) is 1 as expected for the unit

square.

Next, we use the result of Proposition 6.1.1, i.e. that the relative fractal drum (⇤,⌦) is

strongly d-languid for any ⇤ 2 R2, and recover the tubular volume formula, Formula 6.2.31,

from a more general formula.

Definition 6.2.1. For consistency with [LRŽ17], given s 2 C and a nonnegative integer k,

the rising factorial (or Pocchammer function) is defined as

(s)0 := 1, and (s)k := s(s+ 1)(s+ 2) · · · (s+ k � 1). (6.2.35)

More generally, we have

(s)k :=
�(s+ k)

�(s)
(6.2.36)

where � is the standard gamma function that extends the factorial function n! for nonnegative

integers n.

Theorem 6.2.1 ([LRŽ17] Theorem 5.3.13; Exact pointwise fractal tube formula via ⇣A,⌦).

Let (A,⌦) be a relative fractal drum in RN which is strongly d-languid for some � > 0 and

with d-languidity exponent d 2 R. Furthermore, let k > d � 1 be a nonnegative integer
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and assume that dimB(A,⌦) < N . Then the following exact pointwise fractal tube formula,

expressed in terms of the relative distance zeta function ⇣A,⌦ := ⇣A,⌦(·; �), holds for every

t 2 (0,min{1, �, B�1}):

V
[k]
A,⌦(t) =

X

!2D(⇣A,⌦,C)
res

 
t
N�s+k

(N � s)k+1
⇣A,⌦(s),!

!
(6.2.37)

Here, B is the constant appearing in L2’, d is the d-languidity exponent occurring in

the statement of hypotheses L1 and L2, and V
[k]
A,⌦(t) is the kth primitive (antiderivative) of

VA,⌦(t).

Proposition 6.1.1 yields that our RFDs are strongly d-languid with languidity exponent

d = �2. Recall from the proof of Proposition 6.1.1 that B = 1 (see Equation 6.1.16).

To recover our volume formula, we choose � � 1
2 and k = 0 > d � 1 = �3 so that

V
[k]
⇤,⌦(t) = V

[0]
⇤,⌦(t) = V⇤,⌦(t). Then Formula 6.2.37 yields

V⇤,⌦(t) =
X

!2D(⇣⇤,⌦,C)
res

 
t
3�s

3� s
⇣⇤,⌦(s),!

!
. (6.2.38)

Recall from Theorem 5.2.1 that the set of complex dimensions of any curve ⇤ 2 R2 is

D(⇣⇤,⌦) =

⇢
0 +

2⇡

log �
iZ
�
[ {1, 2}. (6.2.39)

When ! = 2, we have

res

 
t
3�s

3� s
⇣⇤,⌦(s), 2

!
= lim

s!2

�
2 � 1

(s� 1)(�s � 1)
· t

3�s

3� s

=
(�2 � 1)t

(1)(�2 � 1)(1)
= t,

(6.2.40)
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which is the first term in our volume formula, Formula 6.2.31. When ! = 1, we have

res

 
t
3�s

3� s
⇣⇤,⌦(s), 1

!
= lim

s!1

�
2 � 1

(s� 2)(�s � 1)
· t

3�s

3� s

=
(�2 � 1)t2

(�1)(�� 1)(2)

=
(�+ 1)⇠⇠⇠⇠(�� 1)t2

(�1)⇠⇠⇠⇠(�� 1)(2)
= � t

2

2
(1 + �),

(6.2.41)

which is the second term in Formula 6.2.31. When ! = 0 + inp, for each n 2 Z we have

res

 
t
3�s

3� s
⇣⇤,⌦(s), 0 + inp

!
= lim

s!inp

(s� inp)(�2 � 1)t3�s

(s� 2)(s� 1)(3� s)(�s � 1)

= lim
s!inp

t
3(�2 � 1)t�s

(1� s)(2� s)(3� s)
· lim
s!inp

s� inp

�s � 1

=
t
3(�2 � 1)t�inp

(1� inp)(2� inp)(3� inp)
· lim
s!inp

1

(log �)�s

=
t
3(�2 � 1)

log �
· t

�inp

(1� inp)(2� inp)(3� inp)
. (6.2.42)

Using partial fraction decomposition on the second factor in the final expression in

Equation 6.2.42, we get

res

 
t
3�s

3� s
⇣⇤,⌦(s), 0 + inp

!
=

t
3

2
· (�

2 � 1)

log �

 
t
�inp

1� inp
� 2 · t

�inp

2� inp
+

t
�inp

3� inp

!
, (6.2.43)

whence

X

n2Z
res

 
t
3�s

3� s
⇣⇤,⌦(s), 0 + inp

!

=
t
3

2
· (�

2 � 1)

log �

0

@
X

n2Z

t
�inp

1� inp
� 2

X

n2Z

t
�inp

2� inp
+
X

n2Z

t
�inp

3� inp

1

A ,

(6.2.44)
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which is the third, oscillatory term in our tubular volume formula, Formula 6.2.31. Conse-

quently, we recover Formula 6.2.31 from the general formula for the volume of the tubular

neighborhood of a strongly d-languid relative fractal drum:

V⇤,⌦(t) =
X

!2D(⇣⇤,⌦,C)
res

 
t
3�s

3� s
⇣⇤,⌦(s),!

!

= t� t
2

2
(1 + �) +

t
3

2
· �

2 � 1

log �

0

@
X

n2Z

t
�inp

1� inp
� 2

X

n2Z

t
�inp

2� inp
+
X

n2Z

t
�inp

3� inp

1

A

(6.2.45)

Oscillation of Points

For clarity and explicitness, we will turn again to the Hilbert curve. As mentioned in Remark

4.2.9 in Chapter 4, the following iterated function system (IFS) (see Definition 4.1.5 in

Chapter 4) is derived in [Sag94] for the Hilbert curve.

H0(z) =
1

2
z̄i H2(z) =

1

2
(z + 1 + i)

H1(z) =
1

2
(z + i) H3(z) =

1

2
(�z̄i+ i) + 1

(4.2.16)

This IFS acts on the unit square, I2, and if we choose the initial set (or leitmotif ) for the

IFS to be any curve connecting the points (0, 0) and (1, 0), then repeated application of 4.2.16

will produce approximating curves that converge to the Hilbert curve fH⇤(I) = H = I
2,

albeit di↵erent from the approximating polygons in the minimal construction. From this

IFS, Sagan produced the first arithmetization of the Hilbert curve in 1991, i.e. a formula

for the location of the image points fH(t) 2 I
2 given any t 2 I. Let t 2 I be represented in

quaternary form:

t =
1X

n=1

qi

4n
= 0.q1q2q3 . . . where qi 2 {0, 1, 2, 3}. (4.2.3)
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Then the image of t under the Hilbert mapping fH (see Proposition 4.2.4 in Chapter 4) is

fH(0.q1q2q3 . . .) =
1X

n=1

✓
1

2

◆
n

(�1)e0n sgn(qn)

2

64
(1� dn)qn � 1

1� dnqn

3

75 (6.2.46)

where

sgn(x) =

8
>><

>>:

0 if x = 0

1 if x > 0,
(6.2.47)

e0n = #
�
{qk : qk = 0 and k < n}

�
mod 2 (6.2.48)

e3n = #
�
{qk : qk = 3 and k < n}

�
mod 2, (6.2.49)

and

dn = (e0n + e3n) mod 2. (6.2.50)

Note that fH above is a vector-valued function and the expression in brackets in Formula

6.2.46 is a vector in R2.

Remark 6.2.2. The values e0n and e3n arise from cancellations that occur from successive

applications of the same contraction mapping Hi in System 4.2.16. For a detailed derivation

and explanation see [Sag94] Section 2.3, but for our discussions, it su�ces to note that e0n

controls whether or not the factor �1 is applied at any digit qn. Since these are quaternary

digits, they correspond to a quartic interval of the nth generation, and the quaternary

representation of t corresponds to a quartic chain (see Definition 4.2.2 and Proposition 4.2.1

in Chapter 4). The application of a factor of �1 at generation n corresponds to the direction

the traverse �H requires when passing from a quartic interval of generation n to a quartic

interval of generation n+ 1. This is what induces the oscillatory behavior of the points, as

this factor of �1 is passed to the image vector accordingly.
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Remark 6.2.3. Formula 6.2.46 is exact for any finite dyadic rational number in I = [0, 1].

Consequently, it can be used to approximate the image point fH(t) of any t 2 I. The

present author translated this formula into a Mathematica code that will not only provide

the coordinates of any finite quaternary number, but also the intermediate image points

under this mapping. The code is Code A.1.2 in Appendix A, Section A.1.

This concludes the main body of work presented in this dissertation, but in the remaining

chapter, we have a few conjectures that will be addressed in later work.
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Chapter 7

Future Results

The classes of curves (and associated relative fractal drums) studied herein are only a small

collection of the space-filling curves that exist. There are many space-filling curves that are

generated by other means, and over the course of this research, a point of focus has always

been generalizing the constructions and theory to other space-filling curves. In this chapter

we restrict ourselves, still, to space-filling curves induced by tessellations, and present two

conjectures for two di↵erent classes of space-filling curves.

7.1 Extension to Regular Rectilinear Tessellations of IN

The first class of interest is RN , the class of space-filling curves induced by regular rectilinear

tessellations of the unit N -cube, IN . Recall that R2 is the class of all plane-filling curves

induced by regular rectilinear tessellations of I2, so a natural question to ask is whether

or not the construction of the relative fractal drum (⇤,⌦) detailed in Chapter 5 can be

extended to N � 3. The present author has made recent advancements in this area, and has

nearly found the correct generalization to higher dimensions. In light of these advancements,

we present the following conjecture.

Conjecture 7.1.1 (A.D. Richardson, 2022). Let � 2 {2, 3, 4, . . .} and let ⇤ 2 SN (�) ⇢ RN

be a space-filling curve. Let (⇤,⌦) be the associated RFD, constructed “similarly” to the
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RFDs constructed above in Chapter 5. Then a relative distance zeta function for (⇤,⌦) is

⇣⇤,⌦(s) =
(�N � 1)(N � 1)!

(s�N)(s� (N � 1)) · · · (s� 2)(s� 1)(�s � 1)
. (7.1.1)

Consequently, the set of relative complex dimensions of ⇤ is

D(⇣⇤,⌦) =

⇢
0 +

2⇡

log �
iZ
�
[ {1, 2, . . . , N}, (7.1.2)

and therefore ⇤ is a fractal by Definition 3.3.9. Since this is true for any � 2 {2, 3, 4, . . .}, it

follows that every space-filling curve in RN is a fractal by Definition 3.3.9.

Remark 7.1.1. The first thing to note about this relative distance zeta function is that

it picks up a simple pole at each subdimension M where 0  M  N , and, as in Theorem

5.2.1, the poles with nonzero imaginary part all have real part equal to 0, i.e. the oscillations

still only occur with respect to dimension 0. It is expected that there is a pole for each

topological dimension based on the general theory of complex dimensions, but what is not

immediately apparent is why there are no oscillations associated with dimensions other

than 0. As mentioned in Remark 5.2.3, the lack of oscillation is easier to make sense of in

higher dimensions. Recalling Remark 4.2.3, the oscillations above 0 are an artifact of the

pointwise-defined nature of the �-adic mapping �� which defines the traverse of the �-adic

subsqaures in RN . If there were oscillations associated with some other subdimension M for

0 < M < N , then this ordering would require consecutive generations of point images to

remain “close” in M -dimensional space since these M -dimensional objects can be written

as unions of the point images as shown, for example, in Equation 4.2.6 in Remark 4.2.3.

However, if this requirement is fulfilled, then points within some M -dimensional slice of RN

must be held “apart” from points in another M -dimensional slice as the generations increase,

but this will break the inequality needed for uniform convergence of the approximating

polygons (see, in particular, Inequality 4.2.12 in the proof of Proposition 4.2.4), and we have

a contradiction.
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Figure 7.1.1: The first three approximations to the 3-dimensional Hilbert curve.

As is common, a clear example is given by the Hilbert curve, this time in R3, i.e.

fH(t) : I ! I
3. Figure 7.1.1 shows approximations to this curve. If oscillations occurred

which are associated with dimension 2, then, given any planar slice of I3, we would expect

the 2-dimensional slices in consecutive generations to be mapped to each other. But this

keeps some images of distinct planar slices separate from each other in R3 through some

number of generations, a contradiction.

Once it is established that oscillations occur only above dimension 0, and that we must

still pick up a singularity at every subdimension M for 0  M  N , the denominator of

Equation 7.1.1 becomes clear. Next we must account for the volume factors these additional

poles will introduce when we calculate the N -dimensional Minkowski content using this

relative distance zeta function. In this case, there will appear a factor of (N � 1)! in the

denominator when the residue at N is computed, and by extension in the calculation of the

N -dimensional Minkowski content. Thus, we need an additional factor of (N � 1)! in the

numerator, yielding Equation 7.1.1.

At the time of submission of this dissertation, the present author had already devised an

N -dimensional fundamental cell for (N � 1)-dimensional space-filling curves that results in

this zeta function, but it does not scale down to N = 2, so we must leave Conjecture 7.1.1

as a conjecture for now.
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7.2 Extension to Irregular Rectilinear Tessellations of IN

Irregular rectilinear tessellations are like regular ones except the cells of the tessellation can

be rectangles with di↵ering side lengths. These tessellations can still result in space-filling

curves much the same way regular rectilinear tessellations do. For now we can denote the

class of N -dimensional space-filling curves generated by irregular rectilinear tessellations by

IN The present author has a conjecture for the structure of the zeta functions and the RFDs

associated with curves constructed in this way, but there are many details to include and

another paper will be necessary to elucidate all of them. In some sense, this generalization

is analogous to generalizing � to noninteger values, but more explicitly it involves arbitrary

finite sequences of dissection scalars that determine the cells of the decomposition of IN to

be applied in each generation. These dissection scalars may or may not be rationally related,

and so two cases must be explored. The present author has an intuition that the results will

have a structure and “flavor” similar to what one sees in Chapter 2 of [LvF13] where the

geometric zeta functions of lattice and nonlattice fractal strings are explored and classified.

7.3 Extension to Regular Nonrectilinear Tessellations of RN

The next natural question is how to extend the RFD construction to space-filling curves that

are induced by regular nonrectilinear tessellations, i.e. tessellations by cells that are still

congruent, but are not cubes. One class of examples in R2 can be illustrated by looking at a

self-similar trapezoidal tessellation of a trapezoid, as pictured in Figure 7.3.1. The fact that

such a tessellation results in a plane-filling curve is actually an exercise in [Sag94] (Exercise 12,

Chapter 2) which is attributed to J. Mioduszewski. This tessellation has 4n sub-trapezoids in

each generation, and induces a variant of the Hilbert curve which instead fills the trapezoid

so it makes sense that the complex dimensions of such a plane-filling curve will be the same

as those of the Hilbert curve. Figure 7.3.2 shows the first approximating polygon for such a

curve. However, the 2-dimensional Minkowski content will not (necessarily) be 1 as with the

unit square, it will be the area of the planar figure, in this case the area of the trapezoid.
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Figure 7.3.1: A trapezoid partitioned into four congruent similar trapezoids.

Figure 7.3.2: The first approximation to a “trapezoidal Hilbert curve”.

Let NN represent the class of all N -dimensional space-filling curves induced by regular

nonrectilinear �-adic tessellations of RN such that there are �
Nn subcells in each generation.

Since the cells of these tessellations are homeomorphic to regular cells of a rectilinear

tessellation, we have the following conjecture.

Conjecture 7.3.1 (A.D. Richardson, 2022). Let � 2 NN be a space-filling curve and let

� 2 {2, 3, 4, . . .}. Let L be a projective transformation between the cells of the tessellation

associated with � to the regular rectilinear cells associated with a curve ⇤ 2 SN (�) ⇢ RN .

Let (�,⌦) be the RFD associated with �, constructed “similarly” to the RFDs in Chapter 5.

Then a relative distance zeta function for (�,⌦) is

⇣�,⌦(s) =
| detL| · (�N � 1)(N � 1)!

(s�N)(s� (N � 1)) · · · (s� 2)(s� 1)(�s � 1)
(7.3.1)

where detL is the determinant of L. Consequently, the set of relative complex dimensions

of � is

D(⇣�,⌦) =

⇢
0 +

2⇡

log �
iZ
�
[ {1, 2, . . . , N}, (7.3.2)
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and therefore � is a fractal by Definition 3.3.9. It follows that every space-filling curve in

NN is a fractal by Definition 3.3.9.

Admittedly, the argument above is only a heuristic one, and there is much to verify

and prove in this conjecture, but if this conjecture is not correct, a similar, more refined

conjecture should be correct.
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Appendix A

Codes and Images

This appendix contains many of the codes used to produce the images in this dissertation,

and there are some codes for interactive models related to the Hilbert curve and the RFD.

In the last section, Section A.3, there are some more images of the di↵erent Hilbert curve

relative fractal drums (RFDs). The present author invites the interested reader to copy and

paste these codes into their own Mathematica notebook and explore the insightful interactive

models.

A.1 Mathematica Codes

Code A.1.1 (Hilbert Curve Generations and a Node-Traversing Point). The following

code produces a nice interactive visualization of the first 9 approximations to the Hilbert

curve, correctly scaled to lie within the unit square, I
2. The dyadic squares of each

generation are shown as a grid. The red dot follows the traverse of the ordering given by

�H (see Proposition 4.2.3 in Chapter 4). The traverse is given by the built-in Mathematica

command HilbertCurve[n] which returns a Line object determined by a list of points

{x,y}. One notable issue with the built-in command (as mentioned in the documentation of

the command) is that the step size between nodes (points) has length 1 for any generation n,

so as n increases, the boundary of the approximations increases. In this code, and the other
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Mathematica codes below, the node data is scaled down appropriately within the function

gen[n] to fit within the unit square.

(*Point extraction function*)

extractPoints = Extract[#, {1, ## & @@ #} & /@ #2] &;

(*Rescale HilbertCurve[n] to fit generation n inside unit square*)

gen[n_] :=

extractPoints[HilbertCurve[n, DataRange -> {{0, 1}, {0, 1}}],

Range[4^n]]*(2^n - 1)/(2^n) + 1/(2^(n + 1));

(*Graph generations and point*)

Manipulate[

Graphics[

{Line[gen[n]],

Red, PointSize[0.03], Point[gen[n][[i]]]},

ImageSize -> Medium,

Axes -> True,

AxesOrigin -> {0, 0},

AxesLabel -> {x, y},

AspectRatio -> 1,

PlotRange -> {{0, 1}, {0, 1}},

Ticks -> {Range[2^n]*2^-n, Range[2^n]*2^-n},

GridLines -> {Range[2^n]*2^-n, Range[2^n]*2^-n}

],

{n, 1, 9, 1}, {i, 1, 4^n, 1}

]
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Code A.1.2 (Hilbert Curve Arithmetization: Trajectory of Image Points). The following

code produces an interactive visualization of the image points of finite quaternaries in [0, 1]

under the Hilbert mapping fH . This code is a Mathematica translation of the Hilbert curve

arithmetization computed in [Sag94] Sections 2.3 and 2.4, which is given by Formula 6.2.46

in Chapter 6 and repeated here for convenience.

Let t 2 I be represented in quaternary form:

t =
1X

n=1

qi

4n
= 0.q1q2q3 . . . where qi 2 {0, 1, 2, 3}. (4.2.3)

Then the image of t under the Hilbert mapping fH (see Proposition 4.2.4 in Chapter 4) is

fH(0.q1q2q3 . . .) =
1X

n=1

✓
1

2

◆
n

(�1)e0n sgn(qn)

2

64
(1� dn)qn � 1

1� dnqn

3

75 (6.2.46)

where

sgn(x) =

8
>><

>>:

0 if x = 0

1 if x > 0,
(6.2.47)

e0n = #
�
{qk : qk = 0 and k < n}

�
mod 2 (6.2.48)

e3n = #
�
{qk : qk = 3 and k < n}

�
mod 2, (6.2.49)

and

dn = (e0n + e3n) mod 2. (6.2.50)

Given any t 2 [0, 1], writing it in quaternary form yields the generational addresses of

the quartic intervals that comprise the chain which converges to t. As the number of digits

increases, the more accurate the approximation to t becomes. Correspondingly, Formula

6.2.46 and this code produce increasingly accurate approximations to the image point fH(t)

as the generation (number of digits) n increases. From this we can see the potential oscillation
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of the image points as they converge to their attractor. In general, the approximation will

be within an error of
p
2 · 2�n, and the pattern of oscillation is dependent on the quaternary

representation of t. This code has t = 1
⇡
as a placeholder value for convenience.

(*Enter t in [0,1]*)

t = 1/Pi;

(*Produces list of first 10 quaternary digits of t*)

list = IntegerDigits[IntegerPart[N[t*4^10]], 4]

(*Gives Number of 0’s or 3’s preceding digit list[[j]], mod 2*)

e0[j_] := Mod[Count[Drop[list, -Length[list] + j - 1], 0], 2];

e3[j_] := Mod[Count[Drop[list, -Length[list] + j - 1], 3], 2];

(*Gives d_j factor in arithmetization*)

d[j_] := Mod[e0[j] + e3[j], 2];

(*Arithmetization of curve [Sagan, H. 1991]*)

hilbert[q_] := {Sum[(1/2^j)*(-1)^(e0[j])*

Sign[q[[j]]]*((1 - d[j])*q[[j]] - 1), {j, Length[q]}],

Sum[(1/2^j) (-1)^(e0[j])*Sign[q[[j]]]*(1 - d[j]*q[[j]]), {j,

Length[q]}]};

(*Gives entry point into nth generation dyadic square point in I^2*)

hilbert[list]

(*Generates interactive point trajectory*)

Manipulate[
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Column[{

Graphics[

{Red, PointSize[0.02],

Point[hilbert[Drop[list, -Length[list] + n]]]},

ImageSize -> Large,

Axes -> True,

AxesOrigin -> {0, 0},

(*AxesLabel\[Rule]{x,y},*)

AspectRatio -> 1,

PlotRange -> {{0, 1}, {0, 1}},

Ticks -> {Range[2^n]*2^-n, Range[2^n]*2^-n},

GridLines -> {Range[2^n]*2^-n, Range[2^n]*2^-n}

], Grid[{{"Decimal", t, "\[TildeTilde]", N[t, 10]}, {"Generation",

n}, {"Quaternary Truncation",

Drop[list, -Length[list] + n]}, {"Entry Point of dyadic square",

hilbert[Drop[list, -Length[list] + n]]}}]},

Alignment -> Center],

{n, 1, Length[list], 1}

]

Code A.1.3 (Hilbert Curve RFD, scaled by 1
2). This code produces a 3-dimensional

interactive model of the scaled down version of the Hilbert curve RFD detailed in Chapter 5

and pictured in Figures 5.1.2 and 5.1.3. This version is scaled down by a factor of 1
2 , and it

shows how the prisms can be attached to the polygonal approximations directly, without

translation. See Section A.3 below for more images. M is the highest generation of prisms to

include. This code has M=4 as a placeholder, but M=7 or M=8 provides a more detailed and

striking model, albeit slower to compute and more di�cult to manipulate.
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(*Point extraction function*)

extractPoints = Extract[#, {1, ## & @@ #} & /@ #2] &;

(*Set max generation M*)

M = 4;

(*Compute coordinates of nodal points for all generations up to M*)

Do[

(*Rescale HilbertCurve[n] to fit generation n inside unit square*)

gen[n] = extractPoints[

HilbertCurve[n, DataRange -> {{0, 1}, {0, 1}}],

Range[4^n]]*(2^n - 1)/(2^n) + 1/(2^(n + 1));

, {n, M}]

(*Creates list of vertex coordinates for all prisms up to generation M*)

prisGen = Reap[

Do[

prisCoord = Sow[Reap[

Do[

(*Creates list of vertex coordinates for prisms in generation n*)

If[gen[n][[i, 1]] == gen[n][[i + 1, 1]],

P11 = Append[gen[n][[i]], 0];

P12 = Append[gen[n][[i]], 1/(2^(n + 1))];

P13 = Append[

ReplacePart[gen[n][[i]],

1 -> gen[n][[i, 1]] + 1/(2^(n + 2))], 1/(2^(n + 2))];
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P21 = Append[gen[n][[i + 1]], 0];

P22 = Append[gen[n][[i + 1]], 1/(2^(n + 1))];

P23 = Append[

ReplacePart[gen[n][[i + 1]],

1 -> gen[n][[i, 1]] + 1/(2^(n + 2))], 1/(2^(n + 2))];

,

P11 = Append[gen[n][[i]], 0];

P12 = Append[gen[n][[i]], -1/(2^(n + 1))];

P13 = Append[

ReplacePart[gen[n][[i]],

2 -> gen[n][[i, 2]] + 1/(2^(n + 2))], -1/(2^(n + 2))];

P21 = Append[gen[n][[i + 1]], 0];

P22 = Append[gen[n][[i + 1]], -1/(2^(n + 1))];

P23 = Append[

ReplacePart[gen[n][[i + 1]],

2 -> gen[n][[i, 2]] + 1/(2^(n + 2))], -1/(2^(n + 2))];

];

Sow[{P11, P12, P13, P21, P22, P23}]

,

{i, 4^n - 1}]

][[2, 1]]]

,
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{n, M}]][[2, 1]];

(*Generates the model*)

Graphics3D[

Table[Prism[prisGen[[n]]], {n, M}],

Boxed -> False,

Axes -> True,

AxesOrigin -> {0, 0, 0},

AxesLabel -> {x, y, z},

Ticks -> {{1/8, 1/4, 1/2, 3/4, 1}, {1/8, 1/4, 1/2, 3/4,

1}, {-1, -1/2, -1/4, -1/8, 0, 1/8, 1/4, 1/2, 1}}]

Code A.1.4 (Hilbert Curve RFD, unscaled). This code is virtually identical to that of

Code A.1.3, but the prisms are actual size. The model produced by this code allows us to

visualize the nontrivial overlap of the subdrums that necessitates they be translated from

the original positions of the approximating polygons. M is the highest generation of prisms

to include. This code has M=4 as a placeholder, but M=7 or M=8 provides a more detailed

and striking model, albeit slower to compute and more di�cult to manipulate.

(*Point extraction function*)

extractPoints = Extract[#, {1, ## & @@ #} & /@ #2] &;

(*Set max generation M*)

M = 4;

(*Compute coordinates of nodal points for all generations up to M*)

Do[

(*Rescale HilbertCurve[n] to fit generation n inside unit square*)

gen[n] = extractPoints[
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HilbertCurve[n, DataRange -> {{0, 1}, {0, 1}}],

Range[4^n]]*(2^n - 1)/(2^n) + 1/(2^(n + 1));

, {n, M}]

(*Creates list of vertex coordinates for all prisms up to generation M*)

prisGen = Reap[

Do[

prisCoord = Sow[Reap[

Do[

(*Creates list of vertex coordinates for prisms in generation n*)

If[gen[n][[i, 1]] == gen[n][[i + 1, 1]],

P11 = Append[gen[n][[i]], 0];

P12 = Append[gen[n][[i]], 1/(2^(n))];

P13 = Append[

ReplacePart[gen[n][[i]],

1 -> gen[n][[i, 1]] + 1/(2^(n + 1))], 1/(2^(n + 1))];

P21 = Append[gen[n][[i + 1]], 0];

P22 = Append[gen[n][[i + 1]], 1/(2^(n))];

P23 = Append[

ReplacePart[gen[n][[i + 1]],

1 -> gen[n][[i, 1]] + 1/(2^(n + 1))], 1/(2^(n + 1))];

,

P11 = Append[gen[n][[i]], 0];
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P12 = Append[gen[n][[i]], -1/(2^(n))];

P13 = Append[

ReplacePart[gen[n][[i]],

2 -> gen[n][[i, 2]] + 1/(2^(n + 1))], -1/(2^(n + 1))];

P21 = Append[gen[n][[i + 1]], 0];

P22 = Append[gen[n][[i + 1]], -1/(2^(n))];

P23 = Append[

ReplacePart[gen[n][[i + 1]],

2 -> gen[n][[i, 2]] + 1/(2^(n + 1))], -1/(2^(n + 1))];

];

Sow[{P11, P12, P13, P21, P22, P23}]

,

{i, 4^n - 1}]

][[2, 1]]]

,

{n, M}]][[2, 1]];

(*Generates the model*)

Graphics3D[

Table[Prism[prisGen[[n]]], {n, M}],

Boxed -> False,

Axes -> True,

AxesOrigin -> {0, 0, 0},

AxesLabel -> {x, y, z},

Ticks -> {{1/8, 1/4, 1/2, 3/4, 1}, {1/8, 1/4, 1/2, 3/4,
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1}, {-1, -1/2, -1/4, -1/8, 0, 1/8, 1/4, 1/2, 1}}]

Code A.1.5 (Hilbert Curve RFD, using rectangular prisms). This code is very similar

to that of Code A.1.3, but it contains a duplicate command to repeat the prisms in each

generation, producing the RFD (H,⇥) which uses rectangular prisms instead of triangular

prisms. (See Remark 5.3.1 of Section 5.3 in Chapter 5.) M is the highest generation of prisms

to include. This code has M=4 as a placeholder, but M=7 or M=8 provides a more detailed

and striking model, albeit slower to compute and more di�cult to manipulate.

(*Point extraction function*)

extractPoints = Extract[#, {1, ## & @@ #} & /@ #2] &;

(*Set max generation M*)

M = 4;

(*Compute coordinates of nodal points for all generations up to M*)

Do[

(*Rescale HilbertCurve[n] to fit generation n inside unit square*)

gen[n] = extractPoints[

HilbertCurve[n, DataRange -> {{0, 1}, {0, 1}}],

Range[4^n]]*(2^n - 1)/(2^n) + 1/(2^(n + 1));

, {n, M}]

(*Creates list of vertex coordinates for all prisms up to generation M

for one half*)

prisGen1 = Reap[

Do[

prisCoord1 = Sow[Reap[

Do[
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(*Creates list of vertex coordinates for prisms in

generation n*)

If[gen[n][[i, 1]] == gen[n][[i + 1, 1]],

P11 = Append[gen[n][[i]], 0];

P12 = Append[gen[n][[i]], 1/(2^(n + 1))];

P13 = Append[

ReplacePart[gen[n][[i]],

1 -> gen[n][[i, 1]] + 1/(2^(n + 2))], 1/(2^(n + 2))];

P21 = Append[gen[n][[i + 1]], 0];

P22 = Append[gen[n][[i + 1]], 1/(2^(n + 1))];

P23 = Append[

ReplacePart[gen[n][[i + 1]],

1 -> gen[n][[i, 1]] + 1/(2^(n + 2))], 1/(2^(n + 2))];

,

P11 = Append[gen[n][[i]], 0];

P12 = Append[gen[n][[i]], -1/(2^(n + 1))];

P13 = Append[

ReplacePart[gen[n][[i]],

2 -> gen[n][[i, 2]] + 1/(2^(n + 2))], -1/(2^(n + 2))];

P21 = Append[gen[n][[i + 1]], 0];

P22 = Append[gen[n][[i + 1]], -1/(2^(n + 1))];
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P23 = Append[

ReplacePart[gen[n][[i + 1]],

2 -> gen[n][[i, 2]] + 1/(2^(n + 2))], -1/(2^(n + 2))];

];

Sow[{P11, P12, P13, P21, P22, P23}]

,

{i, 4^n - 1}]

][[2, 1]]]

,

{n, M}]][[2, 1]];

(*Creates list of vertex coordinates for all prisms up to generation M

for the other half*)

prisGen2 = Reap[

Do[

prisCoord2 = Sow[Reap[

(*Creates list of vertex coordinates for prisms in

generation n*)

Do[

If[gen[n][[i, 1]] == gen[n][[i + 1, 1]],

P11 = Append[gen[n][[i]], 0];

P12 = Append[gen[n][[i]], 1/(2^(n + 1))];

P13 = Append[

ReplacePart[gen[n][[i]],

1 -> gen[n][[i, 1]] - 1/(2^(n + 2))], 1/(2^(n + 2))];
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P21 = Append[gen[n][[i + 1]], 0];

P22 = Append[gen[n][[i + 1]], 1/(2^(n + 1))];

P23 = Append[

ReplacePart[gen[n][[i + 1]],

1 -> gen[n][[i, 1]] - 1/(2^(n + 2))], 1/(2^(n + 2))];

,

P11 = Append[gen[n][[i]], 0];

P12 = Append[gen[n][[i]], -1/(2^(n + 1))];

P13 = Append[

ReplacePart[gen[n][[i]],

2 -> gen[n][[i, 2]] - 1/(2^(n + 2))], -1/(2^(n + 2))];

P21 = Append[gen[n][[i + 1]], 0];

P22 = Append[gen[n][[i + 1]], -1/(2^(n + 1))];

P23 = Append[

ReplacePart[gen[n][[i + 1]],

2 -> gen[n][[i, 2]] - 1/(2^(n + 2))], -1/(2^(n + 2))];

];

Sow[{P11, P12, P13, P21, P22, P23}]

,

{i, 4^n - 1}]

][[2, 1]]]

,
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{n, M}]][[2, 1]];

(*Generates the model*)

Graphics3D[

{Table[Prism[prisGen1[[n]]], {n, M}],

Table[Prism[prisGen2[[n]]], {n, M}]},

Boxed -> False,

Axes -> True,

AxesOrigin -> {0, 0, 0},

AxesLabel -> {x, y, z},

Ticks -> {{1/8, 1/4, 1/2, 1}, {1/8, 1/4, 1/2, 1}, {1/8, 1/4, 1/2,

1}}]

A.2 Lindenmayer Systems

All of the figures in this dissertation which depict approximations to plane-filling curves

were produced using an appropriate Lindenmeyer system (or L-system). Some of them

are readily available online and some were developed by the present author after studying

examples found online. They are given here for the interested reader. A very nice collection

of L-systems for fractal-like constructions can be found on Paul Bourke’s website, [Bou91].

Code A.2.1 (Sierpiński Gasket, Figure 3.4.1).

Axiom: X

Rules:

X -> X-Y+X+Y-X

Y -> YY

Angle: -120
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Code A.2.2 (Hilbert curve, Figure 4.2.1).

Axiom: L

Rules:

L -> +RF-LFL-FR+

R -> -LF+RFR+FL-

Angle: 90

Code A.2.3 (Moore curve, Figure 4.2.2).

Axiom: LFL+F+LFL

Rules:

L -> -RF+LFL+FR-

R -> +LF-RFR-FL+

Angle: 90

Code A.2.4 (Peano curve of the switchback type, Figure 4.3.1).

Axiom: R

Rules:

L -> LFRFL-F-RFLFR+F+LFRFL

R -> RFLFR+F+LFRFL-F-RFLFR

Angle: 90

Code A.2.5 (Peano curve of the meandering type, Figure 4.3.2).

Axiom: L

Rules:

L -> LF+RFR+FL-F-LFLFL-FRFR+

R -> RF-LFL-FR+F+RFRFR+FLFL-

Angle: 90
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Code A.2.6 (Accordion curve, Figure 5.2.5).

This is not an e�cient L-system to generate an accordion curve, but it is the code used in

this dissertation.

Axiom: A

Rules:

A -> FB+F+FC+

B -> FFBB

C -> FFBB-F-BBFFF+F+BBFFF-D-E

D -> F

E -> FFFFFFFBBBB+F+FFFFFFFBBBB-F-FFFFFFFBBBB+F+FFFFFFFBBBB-H-J

H -> F

J -> FFFFFFFFFFFFFFFBBBB+F+FFFFFFFFFFFFFFFBBBB-F-

FFFFFFFFFFFFFFFBBBB+F+FFFFFFFFFFFFFFFBBBB-F-

FFFFFFFFFFFFFFFBBBB+F+FFFFFFFFFFFFFFFBBBB-F-

FFFFFFFFFFFFFFFBBBB+F+FFFFFFFFFFFFFFFBBBB

Angle: 90

129



A.3 More Images of the Hilbert Curve Relative Fractal Drum

Below are some more images of the scaled version of the Hilbert curve relative fractal drum

(RFD) and some more images of the RFD using rectangular prisms. The Mathematica codes

for these images are given in Code A.1.3 and Code A.1.5, respectively, in Section A.1. Using

those codes, the images below are produced by orienting the model to be viewed from above

and below.
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Figure A.3.1: Hilbert curve RFD top view,
generation 1.

Figure A.3.2: Hilbert curve RFD top view,
generations 1 and 2.

Figure A.3.3: Hilbert curve RFD top view,
generations 1–3.

Figure A.3.4: Hilbert curve RFD top view,
generations 1–4.

Figure A.3.5: Hilbert curve RFD top view,
generations 1–5.

Figure A.3.6: Hilbert curve RFD top view,
generations 1–6.
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Figure A.3.7: Hilbert curve RFD top view, generations 1–8.
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Figure A.3.8: Hilbert curve RFD bottom
view, generation 1.

Figure A.3.9: Hilbert curve RFD bottom
view, generations 1 and 2.

Figure A.3.10: Hilbert curve RFD bottom
view, generations 1–3.

Figure A.3.11: Hilbert curve RFD bottom
view, generations 1–4.

Figure A.3.12: Hilbert curve RFD bottom
view, generations 1–5.

Figure A.3.13: Hilbert curve RFD bottom
view, generations 1–6.
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Figure A.3.14: Hilbert curve RFD bottom view, generations 1–8.
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Figure A.3.15: Hilbert curve rectangular
RFD top view, generation 1.

Figure A.3.16: Hilbert curve rectangular
RFD top view, generations 1 and 2.

Figure A.3.17: Hilbert curve rectangular
RFD top view, generations 1–3.

Figure A.3.18: Hilbert curve rectangular
RFD top view, generations 1–4.

Figure A.3.19: Hilbert curve rectangular
RFD top view, generations 1–5.

Figure A.3.20: Hilbert curve rectangular
RFD top view, generations 1–6.

135



Figure A.3.21: Hilbert curve rectangular RFD top view, generations 1–8.
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Figure A.3.22: Hilbert curve rectangular
RFD bottom view, generation 1.

Figure A.3.23: Hilbert curve rectangular
RFD bottom view, generations 1 and 2.

Figure A.3.24: Hilbert curve rectangular
RFD bottom view, generations 1–3.

Figure A.3.25: Hilbert curve rectangular
RFD bottom view, generations 1–4.

Figure A.3.26: Hilbert curve rectangular
RFD bottom view, generations 1–5.

Figure A.3.27: Hilbert curve rectangular
RFD bottom view, generations 1–6.
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Figure A.3.28: Hilbert curve rectangular RFD bottom view, generations 1–8.
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Index

a-string, 5

d-languidity, see languidity, 86

abscissa of convergence

of the distance zeta function, 23

of the geometric zeta function, 15

accordion “curve”, 70

accordion curve

L-System, 129

admissible relative fractal drum, 27, 84, 85

box dimension, 3

Cantor set, 12

Cantor string, 12

tubular volume, 14

Cantor-Lebesgue function, 3, 35

ceiling function, 8

complex dimensions, 16, 20, 27

of a fractal string, 16

of a generalized plane-filling curve, 71

of an RFD, 27

of the Hilbert curve, 63

visible, 16, 27

contraction mapping, 40

curve, 39

devil’s staircase, see also Cantor-Lebesgue

function, 3, 35

direct image of a set, 39

distance function, 8, 21

distance zeta function, 21, see also relative

distance zeta function

analyticity, 24

dyadic correspondence, 43

dyadic mapping, 44, 48

dyadic squares, 43

chain of, 43

floor function, 8

Fourier series of u 7! b
�{u}, 14, 97

fractal, 1, 2, 17, 28, 54, 55, 73

fractal string, 7, 12, 16

ordinary, 7

fractional part (of a real number), 8

fundamental cell

devil’s staircase, 36

generalized plane-filling curve RFD, 64

Hilbert curve RFD, 57
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relative distance zeta function, 61

generational unit length, 48

generalized plane-filling curve, 66

Hilbert curve, 57

Peano curve, 52

generational unit segment, 48

generalized plane-filling curve, 66

Hilbert curve, 57

Peano curve, 52

geometric counting function, 8

geometric realization

generalized RFD, 66

Hilbert curve RFD, 58

independence, 12, 15, 25

geometric zeta function, 15

Hilbert curve, 40

3D, 108

arithmetization, 104, 114

construction, 40, 44, 46

IFS, 49, 103

L-system, 128

node-traversing point, 113

RFD, 57

Hilbert curve RFD, 57, 117

construction, 57

rectangular prisms, 78, 123

relative distance zeta function, 62

scaled, 58–60, 130

unscaled, 58, 120

volume, 61

iterated function system (IFS), 40, 49, 103

L-systems, see Lindenmayer systems, 127

languidity, 85

hypothesis L1, 86, 87

hypothesis L2’, 86

hypothesis L2, 86, 87

languidity exponent, 86, 101

strong languidity, 85, 86

Lindenmayer systems, 127

Mathematica, 45, 104, 113

Minkowski content, 9, 21

lower, 9, 21

upper, 9, 21

Minkowski dimension, 3, 10, 12, 16, 22, 99

lower, 10, 22

upper, 10, 22, 29

Minkowski measurable

RFD, 27, 99

set, 10, 22

Minkowski nondegenerate

RFD, 26

set, 10, 22

Moore curve, 45

L-system, 128
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oscillatory period

of a fractal string, 14

of a generalized plane-filling curve, 73

of a Peano curve, 75

of the Hilbert curve, 63

Peano curve, 50

meandering type, 52

L-system, 128

RFD, 75

switchback type, 50

L-system, 128

Peano curve RFD, 75

plane-filling curve, 38–40

relative fractal drum for, 54

Pocchammer symbol, 100

quartic intervals, 41

chain of, 41, 42

relative distance zeta function, 24, 25

analyticity, 28

countable additivity, 29

scaling property, 29

relative fractal drum (RFD), 25, 31, 54

generalized plane-filling curve RFD, 64

relative distance zeta function, 71

Hilbert curve RFD, 57

relative fractal subdrum (sub-RFD), 30

relative Minkowski content, 26

lower, 26

upper, 26

relative Minkowski dimension, 26

scaled set, 29

screen, 16, 84

Sierpiński gasket, 31

L-system, 127

space-filling curve, 38–40

relative fractal drum for, 106

tessellation, 50

irregular rectilinear, 109

the class of space-filling curves IN , 109

rectilinear, 51

regular, 51

regular nonrectilinear, 109

the class of space-filling curves NN , 109

regular rectilinear, 51, 64, 106

the class of plane-filling curves R2, 52

the class of space-filling curves RN , 52,

106

tubular neighborhood, 21, 84

inner, 9, 21

pointwise fractal tube formula, 100

volume, 13, 90, 96, 99, 103

window, 16, 84
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