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Abstract— Respiratory motion is one of the main sources 
of motion artifacts in positron emission tomography (PET) 
imaging. The emission image and patient motion can be 
estimated simultaneously from respiratory gated data 
through a joint estimation framework. However, 
conventional motion estimation methods based on 
registration of a pair of images are sensitive to noise. The 
goal of this study is to develop a robust joint estimation 
method that incorporates a deep learning (DL)-based image 
registration approach for motion estimation.  We propose a 
joint estimation framework by incorporating a learned 
image registration network into a regularized PET image 
reconstruction. The joint estimation was formulated as a 
constrained optimization problem with moving gated 
images related to a fixed image via the deep neural network. 
The constrained optimization problem is solved by the 
alternating direction method of multipliers (ADMM) 
algorithm. The effectiveness of the algorithm was 
demonstrated using simulated and real data. We compared 
the proposed DL-ADMM joint estimation algorithm with a 
monotonic iterative joint estimation. Motion compensated 
reconstructions using pre-calculated deformation fields by 
DL-based (DL-MC recon) and iterative (iterative-MC recon) 
image registration were also included for comparison. Our 
simulation study shows that the proposed DL-ADMM joint 
estimation method reduces bias compared to the ungated 
image without increasing noise and outperforms the 
competing methods. In the real data study, our proposed 
method also generated higher lesion contrast and sharper 
liver boundaries compared to the ungated image and had 
lower noise than the reference gated image.  

 
Index Terms— Deep learning, joint estimation, image 

reconstruction, motion correction, PET 

 
 

I. INTRODUCTION 

Positron emission tomography (PET) imaging is a 

noninvasive imaging modality that provides in vivo 

visualization of biochemical processes in a living body through 

the use of radiotracers. It is widely used in many clinical 

imaging applications, including oncology, cardiology and 

neurology. With the latest state-of-the-art whole-body PET 

scanners using detector crystals of about 3 mm in size [1], [2], 

the intrinsic spatial resolutions of PET scanners have been 

substantially improved. As a result, physiological motions, e.g., 

heart beating and respiratory motion, have become a limiting 

factor for PET spatial resolution in clinical practice. For 

example, Lu et al. has reported that respiratory motion caused 

an averaged displacement of 6.1 mm among 10 patient scans 

for a total of 323 regions of interest  (ROIs) [3]. Therefore, 

correction for respiratory motion is essential for obtaining high-

resolution PET images. One motion correction method is the 

event-by-event correction based on list-mode data processing. 

Motion is measured using a special motion detection hardware, 

such as a POLARIS [4] or Anzai AZ-733V system (Anzai 

Medical Co, Ltd., Tokyo, Japan), or using a data-driven 

approach [5], [6]. The event-driven motion compensation is 

performed by transforming the line-of-response (LOR) along 

which the event is measured to the position it would have been 

measured if the object had not moved [7]. However, the event-

driven approach has two limitations. First, an event that is 

normally detected can exit the field of view (FOV) because of 

motion, which results in a loss of the event. Second, an event 

that is normally undetected may be detected because of the LOR 

transformation. Therefore, after correction for motion, some 

detected events may correspond to no actual detector pairs. 

These problems may lead to image artifacts and a decrease of 

signal-to-noise ratio (SNR) [8]. 

Another motion correction method is the image-driven 

approach. In this method, respiratory gating is used to divide 

PET data into several gates based on a respiratory motion signal 

that is either obtained externally or estimated from the PET 

data. Motion inside each gate is considered negligible. Because 

gated PET images can be very noisy due to low count statistics, 

one way to enhance the performance of gated PET is to estimate 

the motion information from the 4D gated PET images and then 

to perform motion compensated image reconstruction to utilize 

all gated data [3]. However, conventional motion estimation 
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methods based on registration of a pair of images are sensitive 

to noise and require high SNR for an accurate estimation. A 

better alternative is to estimate the PET activity image and 

patient motion simultaneously from the gated data through a 

joint estimation framework. Such a framework uses all 

measured PET data for image reconstruction and enables more 

accurate noise modeling in the motion estimation [9], [10]. In 

joint estimation methods, the objective function includes a set 

of parameters describing the image activity distribution and a 

set of deformation parameters describing the motion between a 

fixed frame and one or more moving frames. These two sets of 

parameters are estimated jointly. A challenge of the joint 

estimation method is that the resulting objective function is 

nonconvex and the optimization problem is difficult to solve. 

Some algorithms require a line search to guarantee 

convergence, which can be computationally intensive because 

of the involvement of a forward projection operation. Wang et 

al. proposed an image-space algorithm based on the idea of 

optimization transfer (OT) [11]. The algorithm uses the 

expectation-maximization (EM) surrogate function and does 

not require the forward projection operation in the estimation of 

motion parameters. However, the cost function is still 

nonconvex in the intensity-based non-rigid image registration 

problem, so the OT algorithm can be trapped in a local optimum 

and the solution is highly influenced by noise in the images. 

Burger et al proposed a variational model for joint motion 

estimation and image reconstruction [12], and Chen et al further 

extended this method to simulated tomographic images [13]. 

Recently, deep learning (DL) techniques have provided new 

approaches to image registration [14]–[19]. There are three 

widely used components of DL-based image registration [20], 

an encoder–decoder based architecture incorporating several 

hierarchical convolution layers for multi-scale feature 

extraction [16], [19], [21], a spatial transformer network (STN) 

[22] for spatial transformation, and a generative adversarial 

network (GAN) [23]–[25] where a generator predicts the 

deformation field and warps the moving image and the warped 

moving image is evaluated by a discriminator. One advantage 

of DL methods is that a pretrained network can incorporate 

prior knowledge of motion fields from training data into the 

motion estimation process. Previously, we proposed an 

unsupervised non-rigid image registration framework using DL 

to estimate deformation fields for respiratory gated images [21] 

and demonstrated that it could outperform an iterative image 

registration method.  

 In this paper, we propose a joint estimation method that 

incorporates the DL-based image registration network. The 

activity image and deformation field are formulated as the 

solution of a constrained optimization problem. The 

constrained optimization problem is solved by the alternating 

direction method of multipliers (ADMM) algorithm [26]. Each 

iteration of our proposed algorithm, which is referred to as DL-

ADMM, consists of three steps: gated image reconstruction by 

the maximum a posteriori expectation maximization (MAP-

EM) algorithm, motion estimation by a regularized DL-based 

image registration, and regularized image fusion with motion 

compensation. The overall diagram of our proposed method is 

shown in Fig.1. The effectiveness of the algorithm is 

demonstrated using simulated and real data.  

 

II. MATERIALS AND METHODS 

A. Data model 

Let us denote the PET activity image of a reference fixed gate 

by 𝒙𝑓 ∈ ℝ𝑁×1 and that of the 𝑚th moving gate by 𝒙𝑚 ∈ ℝ𝑁×1, 

where 𝑚 ∈ {1,2, … , 𝐾} and 𝐾  is the total number of moving 

gates. In statistically based PET image reconstruction, the 

measured data in each gate, 𝒚𝑚 ∈ ℝ𝑀×1 , can be modeled as 

independent Poisson random variables and their mean �̅�𝑚 ∈
ℝ𝑀×1 are related to the corresponding activity image through 

 �̅�𝑚 = 𝑤𝑚 ∙ 𝑵 ∙ 𝑨𝑚 ∙ 𝑷 ∙  𝒙𝑚 + 𝒔𝑚 + 𝒓𝑚, (1) 

where the (𝑖, 𝑗) th element of 𝑷 ∈ ℝM×N , 𝑝𝑖,𝑗 , denotes the 

probability of detecting an emission from pixel 𝑗, 𝑗 ∈ {1, … , 𝑁}, 

at detector pair 𝑖 , 𝑖 ∈ {1, … , 𝑀}, 𝑵 ∈ ℝM×M and 𝑨𝑚 ∈ ℝM×M 

are diagonal matrices containing the normalization factors and  

attenuation factors, respectively, for the 𝑚th moving gate, 𝒔𝑚 ∈

ℝM×1 denotes the expectation of scattered events, 𝒓𝑚 ∈ ℝM×1 

denotes the expectation of random events. The weighting factor 

𝑤𝑚 accounts for the duration of each gate with ∑ 𝑤𝑚 + 𝑤𝑓𝑚 =

1. The log-likelihood function for the 𝑚th gate can be written 

as 

𝐿(𝒚𝑚|𝒙𝑚) = ∑ 𝑦𝑚
𝑖 log �̅�𝑚

𝑖 − �̅�𝑚
𝑖 −

𝑀

𝑖=1

log 𝑦𝑚
𝑖 !, (2) 

The overall log-likelihood function of all gated PET data is  

 

𝐿(𝒚|𝒙) = ∑ 𝐿(𝒚𝑚|𝒙𝑚) + 𝐿(𝒚𝑓| 𝒙𝑓)

𝐾

𝑚=1

, (3) 

 
Fig. 1. The overall diagram of our proposed DL-based 

joint PET reconstruction and motion estimation (DL-

ADMM). The DL-ADMM algorithm consists of three 

steps: gated image reconstruction by the maximum a 

posteriori expectation maximization (MAP-EM) algorithm, 

motion estimation by a regularized DL-based image 

registration, and regularized image fusion with motion 

compensation. 
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B. Motion deformation field estimation using a neural 
network  

In this study, we apply our previously developed 

unsupervised deep learning model for deformable motion 

estimation [21]. The overall network architecture is shown in 

Fig. 2. 

The network was trained using pairs of moving and fixed 

images, 𝒙𝑚 and 𝒙𝑓,  in an unsupervised manner by minimizing 

a penalized loss function: 

𝜽 = arg min  
𝜽

−𝐶𝐶(𝑻(𝒙𝑚, 𝜽), 𝒙𝑓) + 𝜆 ∑‖𝛻𝜽‖2, (4) 

where CC denotes the cross correlation between the fixed and 

warped moving images, and 𝜆 is a regularization parameter. An 

L-2 norm regularizer on the gradients of the deformation 

field (𝜽)  is applied to encourage a smooth 𝜽. 

After training, the network generates a deformation field 

(𝜽𝑚) for any pair of moving (𝒙𝑚) and fixed (𝒙𝑓) images. Here 

we denote this estimation by a non-linear function 

 𝜽𝑚 = 𝒇(𝒙𝑚,  𝒙𝑓), (5) 

where 𝒇: ℝ → ℝ  represents the DL based motion estimation 

operator.  

 

C. Joint estimation of activity image and motion 

The joint estimation is formulated as a constrained 

optimization problem with moving frames related to a fixed 

frame via the deep neural network: 

 

𝒙 = arg max
{𝒙𝑚}𝑚=1

𝐾 ,𝒙𝑓

∑ 𝐿(𝒚𝑚|𝒙𝑚) + 𝐿(𝒚𝑓|𝒙𝑓)

𝐾

𝑚=1

, (6) 

 𝑠. 𝑡.  𝒙𝑓 = 𝑻(𝒙𝑚, 𝜽𝑚) and 𝜽𝑚 = 𝒇(𝒙𝑚,  𝒙𝑓)  

where 𝑻(∙,∙) denotes the deformation operator. The constrained 

optimization problem in (6) can be written in an augmented 

Lagrangian format as 

 

 

𝒙 = arg max
{𝒙𝑚}𝑚=1

𝐾 ,𝒙𝑓

∑ 𝐿(𝒚𝑚|𝒙𝑚) + 𝐿(𝒚𝑓|𝒙𝑓)

𝐾

𝑚=1

− ∑
𝜌𝑚

2

𝐾

𝑚=1

‖𝜷 − 𝑻(𝜶𝑚, 𝜽𝑚)

+ 𝑬𝑚‖2

− ∑
𝜏𝑚

2

𝐾

𝑚=1

‖𝜽𝑚 − 𝒇(𝜶𝑚, 𝜷)

+ 𝑩𝑚‖2

− ∑
𝜂𝑚

2

𝐾

𝑚=1

‖𝒙𝑚 − 𝜶𝑚 + 𝑪𝑚‖𝟐

−
𝛿

2
‖𝒙𝑓 − 𝜷 + 𝑫‖

2
, 

(7) 

which can be solved by the ADMM algorithm. This constrained 

optimization is decoupled into the following subproblems: 

𝒙𝑚 = arg max 
𝒙𝑚

𝐿(𝒚𝑚|𝒙𝑚)

−
𝜂𝑚

2
‖𝒙𝑚 − 𝜶𝑚 + 𝑪𝑚‖2, 

 

(8) 

𝒙𝑓 = arg max 
𝒙𝑓

𝐿(𝒚𝑓|𝒙𝑓) −
𝛿

2
‖𝒙𝑓 − 𝜷 + 𝑫‖

2
, (9) 

𝜽𝑚 = arg min 
𝜌𝑚

2
𝜽𝑚

‖𝜷 − 𝑻(𝜶𝑚, 𝜽𝑚) + 𝑬𝑚‖2

+
𝜏𝑚

2
‖𝜽𝑚 − 𝒇(𝜶𝑚, 𝜷)

+ 𝑩𝑚‖2, 

(10) 

𝜶𝑚 = arg min 
𝜌𝑚

2
𝜶𝑚

‖𝜷 − 𝑻(𝜶𝑚, 𝜽𝑚) + 𝑬𝑚‖2

+
𝜏𝑚

2
‖𝜽𝑚 − 𝒇(𝜶𝑚, 𝜷) + 𝑩𝑚‖2

+
𝜂𝑚

2
‖𝒙𝑚 − 𝜶𝑚 + 𝑪𝑚‖2, 

(11) 

 
Fig. 2. The structure of the motion estimation network. Left: A RegNet [42] consists of several convolution, down-sampling, 

and up-sampling layers with skip connections to output a deformation field for each pair of moving and fixed images. The 

kernel size is 3 × 3 × 3 in all convolutional layers. Batch Normalization (BN), Dropout and Leaky ReLU are used after each 

convolutional layer. The number of feature channels is listed under each block. Right: The cascaded motion estimation network 

consists of three RegNet subunits which are connected via spatial transformer (STN) layers. The estimated deformation field of 

each subunit is concatenate with the result from the previous subunit through a convolution layer (Conv). Gaussian filter with 

sigma = 2 voxels is applied to the input image pair to reduce noise. 

 

Conv3D + stride 2 + Dropout + BN + LeakyReLU

Conv3D + stride 1 + Dropout + BN + LeakyReLU + Upsampling

Conv3D + stride 1 + Dropout + BN + LeakyReLU

Concatenate
RegNet

16 32 32 32 32 32 8 8 3

G

G

Moving

Fixed

Moving

Reg
Net

STN

G

Fix_f

Reg
Net

Fix_f

+ vConv

STN

Moving

G
Reg
Net

Fix_f

+ Conv

Moving

STN

G Gaussian filter (sigma = 2) + Concatenation vConv Convolution layer
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𝜷 = arg min 
𝜷

∑
𝜌𝑚

2

𝐾

𝑚=1

‖𝜷 − 𝑻(𝜶𝑚, 𝜽𝑚) + 𝑬𝑚‖2

+ ∑
𝜏𝑚

2

𝐾

𝑚=1

‖𝜽𝑚 − 𝒇(𝜶𝑚, 𝜷)

+ 𝑩𝑚‖2 +
𝛿

2
‖𝒙𝑓 − 𝜷 + 𝑫‖

2
. 

(12) 

Subproblems (8, 9) correspond to MAP-EM PET image 

reconstruction using a quadratic regularization. The MAP 

image estimates can be found by the OT method [11], [27]. 

Using the EM surrogate function, the surrogate objective 

functions for subproblems (8, 9) are 

 
𝑃(𝒙𝑚|𝒙𝑚

𝑛 ) = ∑ 𝑝𝑚,𝑗(�̂�𝑚,𝑗,𝐸𝑀
𝑛+1 log𝑥𝑚,𝑗 − 𝑥𝑚,𝑗)

𝑁

𝑗=1

−
𝜂𝑚

2
(𝑥𝑚,𝑗 − 𝛼𝑚,𝑗 + 𝐶𝑚,𝑗) 

2, 

(13) 

 

𝑃(𝒙𝑓|𝒙𝑓
𝑛) = ∑ 𝑝𝑓,𝑗(�̂�𝑓,𝑗,𝐸𝑀

𝑛+1 log𝑥𝑓,𝑗 − 𝑥𝑓.𝑗)

𝑁

𝑗=1

−
𝛿

2
(𝑥𝑓,𝑗 − 𝛽𝑗 + 𝐷𝑗) 

2, 

(14) 

where 𝑝𝑚,𝑗 = ∑ [𝑤𝑚 ∙ 𝑵 ∙ 𝑨𝑚 ∙ 𝑷]𝑖𝑗
𝑀
𝑖=1  and �̂�𝑚,𝑗,𝐸𝑀

𝑛+1  is given by 

 

�̂�𝑚,𝑗,𝐸𝑀
𝑛+1 =

𝑥𝑚,𝑗

 𝑝𝑚,𝑗

∑ 𝑝𝑖,𝑗

𝑦𝑚,𝑖

[𝑷 ∙ 𝒙𝑚 +
𝒔𝑚 + 𝒓𝑚

𝑤𝑚𝑵 ∙ 𝑨𝑚
]𝑖

𝑀

𝑖=1

. (15) 

The update equations for the jth pixel of 𝒙𝑚  and  𝒙𝑓  by 

maximizing (13) and (14), respectively, are 

 

𝑥𝑚,𝑗
𝑛+1

=
1

2
[(𝛼𝑚,𝑗

𝑛 − 𝐶𝑚,𝑗
𝑛 −

𝑝𝑚,𝑗

𝜂𝑚

)

+ √(𝛼𝑚,𝑗
𝑛 − 𝐶𝑚,𝑗

𝑛 −
𝑝𝑚,𝑗

𝜂𝑚

)
2

+ 4
𝑝𝑚,𝑗

𝜂𝑚

�̂�𝑚,𝑗,𝐸𝑀
𝑛+1 ], 

(16) 

 

𝑥𝑓,𝑗
𝑛+1

=
1

2
[(𝛽𝑗

𝑛 − 𝐷𝑗
𝑛 −

𝑝𝑓,𝑗

𝛿
)

+ √(𝛽𝑗
𝑛 − 𝐷𝑗

𝑛 −
𝑝𝑓,𝑗

𝛿
)

2

+ 4
𝑝𝑓,𝑗

𝛿
�̂�𝑓,𝑗,𝐸𝑀

𝑛+1 ]. 

(17) 

The minimization of the subproblems (10-12) are regularized 

weighted least squares (RWLS) problems with a quadratic 

regularization. A gradient descent approach can be used to 

solve these subproblems. We get the following update 

equations by taking the derivative of the objective functions of 

each subproblem with respect to the unknown variable: 

𝜃𝑚,𝑗
𝑛+1 = 𝜃𝑚,𝑗

𝑛 − 𝑙𝑟𝜃 {−𝜌𝑚 ∑[𝜷𝑛 − 𝑻(𝜶𝑚
𝑛 , 𝜽𝑚

𝑛 )

𝑁

𝑢=1

+ 𝑬𝑚
𝑛 ]

𝑢
[
𝜕𝑻(𝜶𝑚

𝑛 , 𝜽𝑚)

𝜕𝜃𝑚,𝑗
]

𝑢

+ 𝜏𝑚(𝜽𝑚
𝑛 − 𝒇(𝜶𝑚

𝑛 , 𝜷𝑛) + 𝑩𝑚
𝑛 )𝑗} , 

(18) 

𝛼𝑚,𝑗
𝑛+1 = 𝛼𝑚,𝑗

𝑛 − 𝑙𝑟𝛼 {−𝜌𝑚[𝑻∗(𝜷𝑛 − 𝑻(𝜶𝑚
𝑛 , 𝜽𝑚

𝑛+1)

+ 𝑬𝑚
𝑛  , 𝜽𝑚

𝑛+1)]𝑗

− 𝜏𝑚 [∑(𝜽𝑚
𝑛+1 − 𝒇(𝜶𝑚

𝑛 , 𝜷𝑛)

𝑁

𝑢=1

+ 𝑩𝑚
𝑛 )𝑢

𝜕𝒇(𝜶𝑚
𝑛 , 𝜷𝑛)𝑢

𝜕𝛼𝑚,𝑗
]

−
𝜂𝑚

2
(𝒙𝑚

𝑛+1 − 𝜶𝑚
𝑛 + 𝑪𝑚

𝑛 )𝑗
 } , 

(19) 

𝛽𝑗
𝑛+1 = 𝛽𝑗

𝑛 − 𝑙𝑟𝛽 { ∑ 𝜌𝑚(𝜷𝑛 − 𝑻(𝜶𝑚
𝑛+1, 𝜽𝑚

𝑛+1) + 𝑬𝑚
𝑛 )𝑗

𝐾

𝑚=1

− ∑ 𝜏𝑚 [∑(𝜽𝑚
𝑛+1 − 𝒇(𝜶𝑚

𝑛+1, 𝜷𝑛)

𝑁

𝑢=1

𝐾

𝑚=1

+ 𝑩𝑚
𝑛 )𝑢

𝜕𝒇(𝜶𝑚
𝑛 , 𝜷𝑛)𝑢

𝜕𝛽𝑗
]

− 𝛿(𝒙𝑓
𝑛+1 − 𝜷𝑛 + 𝑫𝑛)𝑗

 }, 

(20) 

 

where 𝑙𝑟𝜃 , 𝑙𝑟𝛼 , 𝑙𝑟𝛽 are the step sizes of each gradient update, 𝑻(∙

,∙) denotes the forward transformation from the fixed gate to the 

moving gates, and 𝑻∗(∙,∙) is the transpose of the transformation 

for back warping the fixed gate to the moving gates.  

The RWLS problems in (10-12) are non-convex and can have 

multiple local minima. Therefore, the solutions for the updates 

in (18-20) highly depend on the implementation of the 

optimization processes and initialization. In order to assign a 

good initialization for 𝜽𝑚 , we use the gated Maximum 

Likelihood Expectation Maximization (ML-EM) reconstructed 

images to estimate the initial values of 𝜽𝑚 . For 𝜶𝑚  and 𝜷 

initialization, we first obtained a motion compensated 

reconstruction 𝒙𝑖𝑛𝑖
  [21], and used 𝒙𝑖𝑛𝑖

  to initialize 𝜷  and 

warped 𝒙𝑖𝑛𝑖
  based on 𝜽𝑚 to initialize 𝜶𝑚.  

The final step of the ADMM algorithm is the update of the 

Lagrange multipliers as the following: 

 𝑬𝑚
𝑛+1 = 𝑬𝑚

𝑛 + 𝜷𝑛+1 − 𝑻(𝜶𝑚
𝑛+1, 𝜽𝑚

𝑛+1), (21) 

 𝑩𝑚
𝑛+1 = 𝑩𝑚

𝑛 + 𝜽𝑚
𝑛+1 − 𝒇(𝜶𝑚

𝑛+1, 𝜷𝑛+1), (22) 

 𝑪𝑚
𝑛+1 = 𝑪𝑚

𝑛 + 𝒙𝑚
𝑛+1 − 𝜶𝑚

𝑛+1, (23) 

 𝑫 
𝑛+1 = 𝑫 

𝑛 + 𝒙𝑓
𝑛+1 − 𝜷𝑛+1. (24) 
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The overall algorithm is summarized in Algorithm 1. 

 

D. Implementation details and reference methods 

The motion estimation network was implemented in Keras 

2.2.4 with Tensorflow 1.5.0 and trained on a NVIDIA GTX 

1080Ti GPU. The adaptive moment estimation (ADAM) 

optimizer [28] with the default parameter settings was used. 

The learning rate was set to 0.0005 and batch size was set to 1. 

The cost function was calculated between the warped moving 

image and the fixed image using (4). For the proposed joint 

estimation framework, the hyperparameters 𝜌𝑚, 𝜂𝑚 and 𝛿 were 

set to 1 and 𝜏𝑚 was set to 0.4 and they were fixed during each 

iteration. The first-order gradient of 𝒇(𝜶𝑚
 , 𝜷 ) with respect to 

𝜶𝑚
  and 𝜷 in subproblem (19, 20) was implemented using the 

tf.gradient function in the TensorFlow on GPU. However, this 

gradient operation is time consuming. To speed up the 

reconstruction, we further evaluate the performance when 𝜏𝑚 =
0 using simulation datasets. Table 1 summarizes the methods 

and pre-determined hyper-parameters for the reconstruction 

included in this study. 

We compared the proposed DL-ADMM joint estimation 

algorithm with the monotonic iterative joint estimation method 

 
1  Part of Michigan Image Reconstruction Toolbox (MIRT) from 

http://web.eecs.umich.edu/~fessler/code/index.html 

using OT with the EM surrogate function[11]. Below we refer 

to this method as “Iterative-joint estimation” method. For a fair 

comparison, we initialized the motion field using the result 

from an iterative image registration [29] using a publicly 

available Bspline toolbox1. We used the default weighted-least-

squares similarity measure. Gaussian post-filtering with sigma 

= 2 voxels was applied to suppress gated image noise. The 

number of iterations was chosen to be 200 based on visual 

assessment of the deformation field. Furthermore, we also 

performed motion compensated reconstruction using the 

motion field pre-determined either using the DL method or the 

iterative registration software. We refer to these 

two methods as “DL-MC recon” and “Iterative-MC recon”. 

III. EXPERIMENTAL SETUP 

A. Simulation study 

We generated twenty-two voxelized phantoms  with various 

organ sizes (11 Male and 11 Female) using the 4D extended 

cardiac-torso  phantom (XCAT Version 2.0) [30] following the 

same procedure described in [21]. The scales of the long- and 

short-axes and height were used to control the body size which 

scales the entire phantom in different regions of the body 

(training dataset: long axis scale: 0.99±0.02; short axis scale: 

1.02±0.12; height scale: 1.03±0.11). To better evaluate the 

generalization ability of our trained model in terms of the body 

size, we included a wider range variation in the testing dataset 

(long axis scale: 1.01±0.03; short axis scale: 1.18±0.18; height 

scale: 0.97±0.13) than in the training dataset to simulate 

outliers. Ten phantoms were used for training, one for 

validation and eleven for testing. The maximum displacement 

of the diaphragm was set to 4 cm during respiration with a 

period of 5 sec. For each phantom, we simulated 8 gated activity 

images with matched attenuation maps. To model the variations 

between subjects, activity parameters of different tissues 

included a 5% variation. We conducted our Monte-Carlo 

simulation using the SimSET package [31] and modeled a 

Canon Celesteion PET/CT scanner [32] (Canon Medical 

Corporation, Tochigi, Japan) geometry. A 20 min PET scan was 

simulated with 5.4 mCi 18F-FDG injection starting from 1 hour 

post-injection [33]. To focus on the comparison of motion 

compensation, only true coincidences were included in 

reconstruction by assuming perfect scatter and random 

Algorithm 1. Algorithm for DL-based joint PET reconstruction 

and motion estimation 

Input: Maximum iteration number: MaxIt; number of gates: K;  

penalty parameters: 𝜌𝑚, 𝜂𝑚, 𝜏𝑚, and 𝛿; image initialization: 

 𝒙𝑖𝑛𝑖
 , 𝒙𝑚

 , 𝒙𝑓
 . 

1. Initialize the auxiliary images and Lagrange multipliers:  

𝜶𝑚
1 = 𝑻∗(𝒙𝑖𝑛𝑖

 , 𝜽𝑚), 𝜷1 = 𝒙𝑖𝑛𝑖
 , 𝑬𝑚

1 = 𝑩𝑚
1 = 𝑪𝑚

1 = 𝑫 
1 = 0 

2. for 𝑛 = 1 to MaxIt do 

3.     Update image 𝒙𝑓
𝑛+1 by MAP-EM using (17) 

4.     for 𝑚 = 1 to K do 

5.         Update image 𝒙𝑚
𝑛+1 by MAP-EM using (16) 

6.         Update motion field 𝜽𝑚
𝑛+1 using (18) 

7.         Update auxiliary image  𝜶𝑚
𝑛+1 using (19) 

8.     end for 

9.     Update auxiliary image 𝜷𝑛+1 by (20) 

10.     Update the Lagrange multipliers 𝑬𝑚
𝑛+1, 𝑩𝑚

𝑛+1, 𝑪𝑚
𝑛+1, 𝑫 

𝑛+1  

 using (21-24) 

11. end for 

Output: 𝜷𝑛+1 

 

 

Table 1. List of the methods and pre-determined hyper-parameters for the reconstruction methods included in this study.  

Methods Regularizer on motion  Regularizer on 

image 

Hyperparameters 

DL-ADMM DL-based DL-based 

𝜌𝑚 =  𝜂𝑚 = 𝛿 = 1 and 𝜏𝑚 = 0 𝑜𝑟 0.4 

Simulation: 𝑙𝑟𝜃 = 0.1, 𝑙𝑟𝛼= 𝑙𝑟𝛽 = 0.5 

Real data: 𝑙𝑟𝜃 = 1𝑒−4, 𝑙𝑟𝛼= 𝑙𝑟𝛽 = 3𝑒−4 

Iterative joint estimation N/A N/A Simulation: 𝑙𝑟𝜃 = 0.1; Real data: 𝑙𝑟𝜃 = 1𝑒−4  
DL-MC recon Gradient of motion field N/A 𝜆 = 1 

Iterative-MC recon Local invertibility N/A 𝜆 = 4 
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corrections.  

To generate the training data for motion estimation, gated 

PET data were reconstructed using the ML-EM algorithm for 

30 iterations with a voxel size of 4.08×4.08×4.08 mm3. The 

reconstructed images were stored in a 128×128×48 matrix. The 

end-inspiration phase (Gate 4) was chosen as the fixed gate. To 

further improve the network performance, fixed-fixed training 

pairs (two identical images) were also included in the training 

datasets. A total of 80 (8 gates × 10 phantoms) 3D training pairs 

were generated. Moving-fixed image pairs were fed into the 

network for training and the network training ended after 1500 

epochs. The training process took a few days. After the training, 

deformation fields (𝜽 ) between any pair of images can be 

estimated by feeding a pair of moving and fixed images into the 

network, which takes only 8 s per image pair. 

For the DL-ADMM algorithm, 𝒙𝑚
  and 𝒙𝑓

  were initialized 

using 10 iteration gated ML-EM reconstructions (Fig. 3). We 

initialized 𝜽𝑚  by the deformation fields estimated by the 

pretrained network from the gated ML-EM reconstructed 

images. For 𝜶𝑚 and 𝜷 initialization, we first ran DL-MC recon 

for 10 iterations and used it as the initial image for 𝜷, in addition 

we warp 𝜷  using 𝜽𝑚 as the initial image for 𝜶𝑚. 

For quantitative assessment, we reconstructed the reference 

gate with 8x counts, which corresponds to the result with 

perfect motion compensation, and used it as the ground truth. 

The normalized root mean square error (NRMS) were 

calculated by (25) as a measure of the differences between 

reconstructions with and without motion compensation and the 

ground truth. We excluded the top and bottom three noisy slices 

which have low count statistics due to the low sensitivity at the 

axial edge of the scanner field of view. 

 

NRMS =  
𝟏

‖𝒙‖𝟐

√∑ |𝑥𝑖 − �̅�𝑖|2

𝑁

𝑖=1

, 

 

(25) 

where 𝒙 denotes the ungated image or a motion compensated 

reconstructed image,  𝒙  denotes the ground truth, and 𝑁 

denotes the number of voxels in the image. 

For ROI quantification, we calculated the bias versus 

background standard deviation (STD) trade off curves. The bias 

was computed in the left and right myocardium regions and the 

STD was calculated in the lung region.  

 

B. Real data study 

A real respiratory gated dataset was obtained from a Canon 

Celesteion TOF PET/CT scanner. A patient was injected with 

6.2 mCi 18F-FDG. List mode data were acquired for two bed 

positions sequentially, each with 14 min starting from 90 

minutes post-injection. Equal phase-based gating scheme based 

on an externally measured respiratory signal using an Anzai 

AZ-733V system (Anzai Medical Co, Ltd., Tokyo, Japan) was 

applied to divide the list mode data into 7 respiratory gates. 

Events in irregular breathing cycles were excluded. We found 

that the patient did not breathe in the same way for the two bed 

positions because there were more events rejected in the 2nd 

bed position than in the 1st bed position (bed 1: 9.9%, bed 2: 

22.0%). The resulting gated images from two bed positions also 

had different motion amplitude ranges which affected the lesion 

shape and contrast. Thus, the data from the two beds were 

reconstructed and analyzed separately.  

Gated PET data were first reconstructed using the ML-EM 

method for 10 iterations for DL-ADMM initialization. The 

voxel size was 4.08× 4.08×4.08 mm3 and the image array size 

is 152×152×48. The projection matrix used a simplified 

geometric projection matrix with an image blurring matrix 

estimated by point source measurements [34]. A uniform 

cylinder scan was used to obtain normalization factors and a co-

registered helical CT scan acquired at the reference gate was 

initially used to compute the attenuation factors. Scatters were 

 
Fig. 3. Sampled gated reconstructed PET images by the ML-EM algorithm (10 iteration) for DL-ADMM initialization. 

 

 
Fig. 4. Reconstructed gated PET images of the patient data (ML-EM 10 iteration) for DL-ADMM initialization. 
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estimated using the single scatter simulation algorithm and 

randoms were estimated using the delayed random sinogram. 

The reconstructed gated images are shown in Fig. 4. For the 

DL-ADMM algorithm, 𝒙𝑚
  and 𝒙𝑓

  were initialized using 10 

iteration gated ML-EM reconstruction. Due to the difference 

between the real data and simulation data, the network was fine-

tuned for 200 epochs using the patient data and its output was 

used to initialize the motion field 𝜽𝑚. The fine tunning took 20 

mins for all gated images for each bed position.  While the fine-

tuning is necessary here because we have only one set of real 

patient scan, we do not expect to fine-tune the network for every 

patient scan after we process a sufficient number of patient 

images. These estimated motion fields were then used to 

deform the CT image to each moving gate to obtain a phase-

matched attenuation map for attenuation correction. We ran 

DL-MC recon for 10 iterations for 𝜷 initialization and warped 

𝜷 using 𝜽𝑚 for 𝜶𝑚 initialization. 

A lesion ROI was drawn on the reference gate image (Gate 

3) for quantification. Due to the lack of the ground truth, a 

contrast-noise curve was used for comparison. The contrast was 

calculated by taking the ratio between the mean of the lesion 

ROI and the mean of a background ROI in the liver. The 

 
Fig.6. Bias-variance trade off curves for (a) the left myocardium ROI and (b) right myocardium ROI. The vertical line in (a) 

indicates the noise level of the images shown in Fig. 5. All methods were plotted for every 10 iterations except that the reference 

gate also included 1 to 9 iterations for better comparison. 

 

 
Fig. 5. The top two rows showed reconstructed images of the test data set selected at a matched STD level. The bottom two rows 

show the error maps of the reconstructed images. 



8 IEEE TRANSACTIONS ON MEDICAL IMAGING 

 

background noise was calculated as the standard deviation of 

the liver ROI over its mean. 

 

IV. RESULTS 

A. Simulation study 

The reconstructed images of the test phantom by different 

methods are shown in Fig. 5. The reconstructions were chosen 

at a matched STD level (see Fig. 6). It shows that the proposed 

DL-ADMM joint estimation method can generate images with 

sharper boundaries in the myocardium region compared with 

other methods. The error maps revealed that the iterative joint 

estimation and iterative-MC recon suffer from inaccurate 

motion estimation leading to high quantification errors near the 

myocardial boundary. Clearly, DL-ADMM joint estimation 

method reduced the motion artifacts. We also plotted the bias-

variance curves of the left and right myocardium ROIs in Fig.6. 

All the methods were plotted for every 10 iteration except the 

reference gate which also included 1 to 9 iterations for better 

comparison. The proposed DL-ADMM algorithm reduces the 

bias compared with the ungated image without increasing the 

noise level and outperforms the other methods, especially for 

the right ventricle myocardium region, which is more 

susceptible to motion blurring. Fig. 7 compares the line profiles 

through the myocardium. The yellow lines in Fig. 5 indicate the 

position of the vertical profile. The average FWHMs of the two 

peaks are 1.99, 2.01, 2.18, 2.11, 2.38, 5.35 and 1.95 (pixels) for 

the DL-ADMM 𝜏𝑚 =0.4, DL-ADMM 𝜏𝑚 =0, iterative joint 

estimation, DL-MC recon, iterative-MC recon, ungated and 

ground truth, respectively, which indicated that the profile from 

the proposed DL-ADMM is the closest to the ground truth. 

The algorithms were further evaluated based on their NRMS 

performance. The resulting NRMS calculated at a matched 

noise level were 26.5±2.2%, 33.2±0.9%, 30.3±2.9%, and 

34.6±1.3% for the DL-ADMM joint estimation, iterative joint 

estimation, DL-MC recon, and iterative-MC recon, 

respectively, and 42.1±2.8% for ungated reconstruction (Table 

2). Clearly the proposed DL-ADMM joint estimation achieved 

the best performance compared with all the other methods. We 

observed that the NRMS of the DL-ADMM increased from 

26.5±2.2% to 27.2±2.2% if we set 𝜏𝑚 = 0 , but the 

computational time could be reduced from about 8 mins to 1.5 

mins per iteration.  

 

B. Real data study 

The reconstructed images of the real patient data from 2 bed 

positions are shown in Fig. 8 and Fig.9. The contrast versus 

noise curves of a lung lesion (marked by the red circle) in 2 beds 

are plotted in Fig. 10. Visually, the proposed DL-ADMM 

method produced images with sharper boundary than the 

ungated image and other methods. A vertical line profile was 

drawn across the highlighted lesion and our proposed DL-

Table 2. NRMS of reconstructed images by different methods at the matched noise level. 

Testing 

Phantom # 

DL-

ADMM 

τm = 0.4 

DL-

ADMM 

τm = 0 

Iterative 

joint 

estimation 

DL-MC 

recon 

Iterative-

MC recon 
Ungated 

Reference 

gate 

#1 23.1% 23.9% 33.3% 26.2% 34.3% 42.8% 27.1% 

#2 27.4% 27.6% 31.3% 30.6% 31.8% 38.0% 28.9% 

#3 27.3% 28.3% 33.8% 35.5% 35.5% 45.7% 31.1% 

#4 23.3% 24.4% 34.0% 33.9% 33.9% 42.2% 27.5% 

#5 27.5% 28.3% 33.8% 28.1% 35.3% 46.1% 30.7% 

#6 25.2% 25.6% 32.4% 27.4% 33.4% 38.6% 28.2% 

#7 25.6% 26.2% 33.4% 27.7% 35.5% 42.1% 29.1% 

#8 29.1% 30.1% 34.2% 31.4% 36.9% 41.9% 31.7% 

#9 30.7% 31.3% 34.2% 33.5% 35.2% 45.7% 32.4% 

#10 26.8% 27.6% 32.3% 31.4% 34.1% 38.1% 29.0% 

#11 25.1% 25.4% 32.9% 28.0% 34.8% 41.7% 28.7% 

Mean 26.5% 27.2% 33.2% 30.3% 34.6% 42.1% 29.5% 

STD 2.2% 2.2% 0.9% 2.9% 1.3% 2.8% 1.7% 

 

 
Fig. 7. The image profiles of the reconstructions. The yellow 

lines in Fig. 5 indicate the position of the vertical image 

profile. 
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ADMM produced narrow peaks (Fig. 11). The lesion contrast 

vs. noise plots also show that the proposed method achieved the 

highest lesion contrast among all motion correction methods at 

any matched noise level.  

 

V. DISCUSSION 

  In this study, we proposed a robust joint estimation method 

that incorporates a DL-based image registration approach 

which leverages a cascaded network structure to estimate a 

coarse-to-fine motion field. To our knowledge, this is the first 

study incorporating a DL-based registration model into a joint 

estimation framework and demonstrating better performance 

than the iterative joint estimation approach. Also, our results are 

in accordance with reports in the literature that joint estimation 

framework yields better performance [9]–[11] compared with 

embedding pre-calculated motion estimation methods [21],[29] 

into motion compensated reconstruction frameworks. 

Compared with the DL-MC recon [21], motion field estimation 

in the proposed DL-ADMM motion estimation method is 

estimated using updated reconstructed images from MAP-EM  

with better image quality, which would lead to better motion 

estimation. To demonstrate this point, we show the deformation 

fields of the DL-ADMM initialization and the final outputs of 

DL-ADMM with 𝜏 = 0 and 𝜏 = 0.4  for the XCAT phantom 

simulation in Fig. 12. We also compute the average L2 norm of 

the residue error between the estimated deformation field and 

the ground truth as a function of DL-ADMM iteration. Fig. 

12(g) shows that the residue error decreases as the algorithm 

iterates and the residue error is lower with 𝜏 = 0.4  than with 

 
Fig. 9. Reconstructed images of the real patient data set selected at a matched STD level for bed#2. 

 

 

 
Fig. 10. Contrast versus noise curve for a lung lesion in 2 bed data. The vertical lines in (a) and (b) denote the noise level of 

the images shown in Fig. 7 and Fig 8, respectively. All methods were plotted for every 10 iterations. 

 

 
Fig. 8. Reconstructed images of the real patient data set selected at a matched STD level for bed#1. 
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𝜏 = 0.  From the difference deformation fields between the 

initialization and final outputs (Fig. 12 (e) and (f)), we can see 

the result from DL-ADMM 𝜏 = 0 is also noisier than that from 

DL-ADMM 𝜏 = 0.4. We note that the difference between the 

estimated deformation and the ground truth is large in regions 

with a uniform activity distribution because the network 

training relies on image registration based on the PET image 

activity and there no features available in a uniform region for 

the estimation of the deformation field. However, such 

difference has little impact on PET image reconstruction. To 

improve the motion estimation, Susenburger et al extended the 

VoxelMorph network to accommodate lung sliding motion 

[35]. The same network can be easily incorporated in the joint 

estimation framework.  

Although we can apply image denoising on the noisy gated 

images before motion estimation, it discards the temporal 

information provided by other gates. Our proposed joint 

estimation directly estimates the motion compensated image 

utilizing all gated sinograms which is more statistically 

efficient. For the iterative joint estimation [11], even though the 

OT algorithm is guaranteed to increase the objective function 

monotonically,  the cost function is nonconvex in the intensity-

based non-rigid image registration problems, so it can be easily 

trapped in local minima and also slow in convergence rate. In 

our proposed DL-ADMM method, the deep neural network is 

trained using an ensemble of image pairs, which improved the 

performance of the image registration.  

We note that Zhou et al. devised a unified motion correction 

and denoising adversarial network (MDPET) for low dose 

gated PET images [24], [25]. This study employed a recurrent 

layer for temporal motion feature learning and showed its 

ability to generate high-quality motion compensated PET 

images as a post-processing tool. Instead of post-processing the 

low count gated reconstructed images, we incorporate prior 

information from training pairs by embedding the pretrained 

network into a constrained image reconstruction algorithm 

which has been shown to be more robust and can provide better 

image quality [36], [37]. The DL-registration performance 

would also be affected by the mismatch in noise level, spatial 

resolution, and deformation magnitude between training and 

test datasets [38]. We observed that the STD is reduced when 

we include the network into joint estimation which indicates 

 
Fig. 11. The image profiles of the reconstructions for different method (a) bed 1 and (b) bed 2.  

 
Fig 12. Deformation fields along the z-direction for (a) DL-ADMM initialization, (b) DL-ADMM 𝜏 = 0.4 output, (c) DL-

ADMM 𝜏 = 0 output, (d) ground truth from XCAT program. Difference between the initialization and the output from (e) DL-

ADMM 𝜏=0.4 or (f) DL-ADMM 𝜏=0. (g) L2 norm of the difference between the motion vector estimated by DL-ADMM 

(𝜏=0.4 and 𝜏=0) and the ground truth as a function of DL-ADMM iteration. 
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that DL-ADMM can reduce the variations by adding 

constraints. Another difference is that our network is 

unsupervised and does not require ground truth for training the 

network, while MDPET requires high-dose gated PET images 

as training labels, which are not readily available, to train an 

image denoising network. 

In non-rigid image registration, the deformation field with 

high degrees of freedom can lead to unrealistic transformation 

on results such as folding and expanding in the absence of 

appropriate constraints. Thus, transformation using 

unconstraint motion fields is a large source of error in intensity-

based registration. There have been some methods proposed 

using constraints to encourage the invertibility [29]. However, 

most of these methods require very high memory or 

computation complexity, making them poorly suited for dealing 

with multiple images simultaneously in the motion-

compensated image reconstruction. Besides, for the heart 

sliding motion against the lungs throughout the cardiac cycle 

and respiration-induced sliding motion of the lungs against the 

chest wall, this constraint does not hold well. Large registration 

errors were observed at the region where the deformation fields 

were not continuous and they consistently appeared in all 

testing phantoms, which led to larger RMSE for the iterative 

based method. Therefore, the improved performance of the 

proposed DL-ADMM joint estimation method can be attributed 

to the aid of the constraint on the transformation from moving 

gated images to a fixed image via the deep neural network. 

Similar to our method, Öktem et al proposed a joint estimation 

method that incorporated a DL based on probabilistic 

diffeomorphic deformation model which is differentiable and 

invertible. However, their algorithm does not  find the 

maximum of a joint objective function and cannot guarantee the 

convergence [39]. 

Given the nonconvex nature of the problem, the different 

performances between the DL-ADMM and iterative joint 

estimation could be due to different initializations. To further 

study the effect of different joint estimation methods, we used 

the same motion estimation from DL-MC for initialization. The 

bias versus background STD trade off curves are shown in Fig. 

13. We found that the DL-MC based initialization did improve 

the performance of the iterative joint estimation, but the 

resulting bias is still greater than that of our proposed method. 

    One drawback of the proposed DL-ADMM algorithm is 

that there are number of hyperparameters. In theory, the 

hyperparameters only affect the convergence speed of the 

ADMM algorithm and do not affect the final solution. 

However, in practice, they still influence the reconstructed 

image as the algorithm is stopped with a finite number of 

iterations. As a proof of the concept, we did not optimize the 

choices of hyperparameters for each dataset. Further fine tuning 

those hyperparameters could improve the results. Better 

optimization methods and more effective initialization 

strategies also deserve further investigations. Moreover, due to 

the lack of gated patient data, we only validate our proposed 

method using one patient with 50% overlapped bed positions. 

Further investigation with systematic analysis on a large 

population of patients is needed to validate our proposed 

method.  

In this paper, we focused on incorporating DL-based motion 

estimation in the joint estimation framework. There are also 

other works on applying DL to PET image reconstruction or 

denoising [36], [37], [40], [41]. Although these DL techniques 

can generate PET images with good quality even at low-dose 

situations, the ability to utilize all counts from multiple gates is 

always beneficial. Therefore, the DL-denoising techniques are 

complementary to the motion compensation framework that we 

proposed here. The DL-ADMM algorithm can be combined 

with the DL-based denoising methods to further improve the 

PET image quality and it will be in our future work.  

VI. CONCLUSION 

In this work, we proposed a joint estimation framework 

incorporating deep learning-based image registration for 

motion estimation. We validated the proposed method using 

simulation and clinical data. The results showed that the 

proposed method can reduce motion artifacts while utilizing all 

gated PET data and outperform existing motion compensated 

reconstruction methods. Further validation using patient data 

will be performed in the future. 

 
Fig 13. Bias-variance trade off curves for (a) the left myocardium ROI and (b) right myocardium ROI. All methods were 

plotted for every 10 iterations. The iterative joint estimation is initialized using the DL estimated motion field. 
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