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Abstract

Gradient-based meta-learning methods have primarily been applied to classical machine learning 

tasks such as image classification. Recently, PDE-solving deep learning methods, such as neural 

operators, are starting to make an important impact on learning and predicting the response 

of a complex physical system directly from observational data. Taking the material modeling 

problems for example, the neural operator approach learns a surrogate mapping from the loading 

field to the corresponding material response field, which can be seen as learning the solution 

operator of a hidden PDE. The microstructure and mechanical parameters of each material 

specimen correspond to the (possibly heterogeneous) parameter field in this hidden PDE. Due 

to the limitation on experimental measurement techniques, the data acquisition for each material 

specimen is commonly challenging and costly. This fact calls for the utilization and transfer 

of existing knowledge to new and unseen material specimens, which corresponds to sampling 

efficient learning of the solution operator of a hidden PDE with a different parameter field. Herein, 

we propose a novel meta-learning approach for neural operators, which can be seen as transferring 

the knowledge of solution operators between governing (unknown) PDEs with varying parameter 

fields. Our approach is a provably universal solution operator for multiple PDE solving tasks, 

with a key theoretical observation that underlying parameter fields can be captured in the first 

layer of neural operator models, in contrast to typical final-layer transfer in existing meta-learning 

methods. As applications, we demonstrate the efficacy of our proposed approach on PDE-based 

datasets and a real-world material modeling problem, illustrating that our method can handle 
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complex and nonlinear physical response learning tasks while greatly improving the sampling 

efficiency in unseen tasks.

Keywords

Operator-Regression Neural Networks; Data-Driven Physics Modeling; Neural Operators; 
Transfer Learning; Meta-Learning; Scientific Machine Learning

1. Introduction

Few-shot learning is an important problem in machine learning, where new tasks are 

learned with a very limited number of labelled datapoints [1]. In recent years, significant 

progress has been made on few-shot learning using meta-learning approaches [2–12]. 

Broadly speaking, given a family of tasks, some of which are used for training and others 

for testing, meta-learning approaches aim to learn a shared multi-task representation that 

can generalize across the different training tasks, and result in fast adaptation to new and 

unseen testing tasks. Meta-learning learning algorithms have been successfully applied to 

conventional machine learning problems such as image classification, function regression, 

and reinforcement learning, but studies on few-shot learning approaches for complex 

physical system modeling problems have been limited. The call of developing a few-shot 

learning approach for complex physical system modeling problems, such as to learn the 

material response model from experimental measurements, is just as acute, while the typical 

understanding of how multi-task learning should be applied on this scenario is still nascent.

As a motivating example, we consider the scenario of new material discovery in the 

lab environment, where the material model is built based on experimental measurements 

of its responses subject to different loadings. Since the physical properties (such as the 

mechanical and structural parameters) in different material specimens vary, the model 

learnt from experimental measurements on one specimen would have large generalization 

errors on other specimens. As a result, the data-driven model has to be trained repeatedly 

with a large number of material specimens, which makes the learning process inefficient. 

Furthermore, experimental measurement acquisition of these specimens is often challenging 

and expensive. In some problems, a large amount of measurements are not even feasible. 

For example, in the design and testing of biosynthetic tissues, performing repeated 

loading would potentially induce the cross-linking and permanent set phenomenon, which 

notoriously alter the tissue durability [13]. As a result, it is critical to learn the physical 

response model of a new specimen with sample size as small as possible. Furthermore, since 

many characterization methods to obtain underlying material mechanistic and structural 

properties would require the use of destructive methods [14, 15], in practice many physical 

properties are not measured and can only be treated as hidden and unknown variables. 

Hence, we likely only have limited access to the measurements on the complex system 

responses caused by the change of these physical properties.

Supervised operator learning methods are typically used to address this class of problems. 

They take a number of observations on the loading field as input, and try to predict the 

corresponding physical system response field as output, corresponding to one underlying 
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PDE (as one task). Herein, we consider the meta-learning of multiple complex physical 

systems (as tasks), such that all these tasks are governed by a common PDE with different 

(hidden) physical property or parameter fields. Formally, assume that we have a distribution 

p T  over tasks, each task Tη p T  corresponds to a hidden physical property field 

bη x ∈ ℬ ℝdb  that contains the task-specific mechanistic and structural information in our 

material modeling example. On task Tη, we have a number of observations on the loading 

field gi
η x ∈ A ℝdg  and the corresponding physical system response field ui

η x ∈ U ℝdu

according to a hidden parameter field bη x . Here, i is the sample index, ℬ, A and U are 

Banach spaces of function taking values in ℝdb, ℝdg and ℝdu, respectively. For task Tη, our 

modeling goal is to learn the solution operator Gbηη :A U, such that the learnt model can 

predict the corresponding physical response field u x  for any loading field g x 1. Without 

transfer learning, one needs to learn a surrogate solution operator for each task only based 

on the data pairs on this task, and repeat the training for every task. The learning procedure 

would require a relatively large amount of observation pairs and training time for each task. 

Therefore, this physical-based modeling scenario raises a key question: Given data from a 
number of parametric PDE solving (training) tasks with different unknown parameters, how 
can one efficiently learn an accurate surrogate solution operator for a test task with new and 
unknown parameters, with few data on this task2 ?

To address this question, we introduce MetaNO, a novel meta-learning approach for 

transferring knowledge between neural operators, which can be seen as transferring the 

knowledge of solution operators between governing (potentially unknown) PDEs with 

varying hidden parameter fields. Our main contributions are:

• MetaNO is the first neural-operator-based meta-learning approach for multiple 

tasks, which not only preserves the generalizability to different resolutions and 

input functions from the integral neural operator architecture, but also improves 

sampling efficiency on new tasks – for comparable accuracy, MetaNO saves the 

number of measurements required by ~90%.

• With rigorous operator approximation analysis, we made the key observation 

that the hidden parameter field can be captured by adapting the first layer of 

the neural operator model. Therefore, our MetaNO is substantially different from 

existed popular meta-learning approaches [5, 10], since the later typically rely 

on the adaptation of their last layers [12]. By construction, MetaNO serves as a 

provably universal solution operator for multiple PDE solving tasks.

• On synthetic, benchmark, and real-world biological tissue datasets, the proposed 

method consistently outperforms existing non-meta transfer-learning baselines 

and other gradient-based meta-learning methods.

1Without ambiguity, in the following context we will neglect the subscript and denote Gbηη
 as Gη for notation simplicity.

2In some meta-learning literature, e.g., [16], these small sets of labelled data pairs on a new task (or any task) is called the context, and 
the learnt model will be evaluated on an additional set of unlabelled data pairs, i.e., the target.
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2. Background and Related Work

2.1. Hidden Physics Learning with Neural Networks

For many decades, physics-based PDEs have been commonly employed for predicting and 

monitoring complex system responses. Then traditional numerical methods were developed 

to solve these PDEs and provide predictions for desired system responses. However, 

three fundamental challenges usually present. First, the choice of governing PDE laws 

is often determined a priori and free parameters are often tuned to obtain agreement 

with experimental data, which makes the rigorous calibration and validation process 

challenging. Second, traditional numerical methods are solved for specific boundary and 

initial conditions, as well as loading or source terms. Therefore, they are not generalizable 

for other operating conditions and hence not effective for real-time prediction. Third, 

complex PDE systems such as turbulence flows and heterogeneous materials modeling 

problems usually require a very fine discretization, and are therefore very time-consuming 

for traditional solvers.

To provide an efficient surrogate model for physical responses, machine learning methods 

may hold the key. Recently, there has been significant progress in the development of 

deep neural networks (NNs) for learning the hidden physics of a complex system [17–25]. 

Among these methods, the neural operators show particular promises in resolving the above 

challenges, which aim to learn mappings between inputs of a dynamical system and its state, 

so that the network can serve as a surrogate for a solution operator [26–34].

Comparing with classical NNs, most notable advantages of neural operators are resolution 

independence and generalizability to different input instances. Moreover, comparing with 

the classical PDE modeling approaches, neural operators require only data with no 

knowledge of the underlying PDE. All these advantages make neural operators promising 

tools to PDE learning tasks. Examples include modeling the unknown physics law of real-

world problems [35, 36] and providing efficient solution operator for PDEs [26–28, 37, 38]. 

On the other hand, data in scientific applications are often scarce and incomplete. Utilization 

of other relevant data sources could alleviate such a problem, yet no existing work have 

addressed the transferability of neural operators. Through the meta-learning techniques, our 

work fulfills the demand of such a transfer setting, with the same type of PDE system but 

different (hidden) physical properties.

2.2. Base Model: Integral Neural Operators

We briefly introduce the integral neural operator model, which will be utilized as 

the base model of this work. The integral neural operators, first proposed in [26] 

and further developed in [27–29, 39] comprises of three building blocks. First, 

the input function, g x ∈ A, is lifted to a higher dimensional representation via 

h x, 0 = P g x := P x [x, g x ]T + p x .  P x ∈ ℝ s + dg × dℎ and p x ∈ ℝdℎ define an affine 

pointwise mapping, which are often taken as constant parameters, i.e., P x ≡ P  and 

p x ≡ p. Then, the feature vector function h x, 0  goes through an iterative layer block 

where the layer update is defined via the action of the sum of a local linear operator, 

a nonlocal integral kernel operator, and a bias function: h ⋅ , l + 1 = Jl + 1 h ⋅ , l . Here, 
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h ⋅ , l , l ∈ 0, ⋯, L , is a sequence of functions representing values of the network at each 

hidden layer, taking values in ℝdℎ . J1, ⋯, JL are nonlinear operator layers. In this work, we 

employ the implicit Fourier neural operator (IFNO) as the base model3 and take the iterative 

layers as J1 = ⋯ = JL = J, where

h x, l + 1 = J h x, l := h x, l + 1
Lσ W h x, l + ℱ−1 ℱ κ ⋅ ; v ⋅ ℱ h ⋅ , l ]] x + c x .

(2.1)

ℱ and ℱ−1 denote the Fourier transform and its inverse, respectively. c ∈ ℝdℎ

defines a constant bias, W ∈ ℝdℎ × dℎ is the weight matrix, and ℱ κ ⋅ ; v := R
is a circulant matrix that depends on the convolution kernel κ . σ is an 

activation function, which is often taken to be the popular rectified linear unit 

(ReLU) function. Finally, the output u ⋅ ∈ U is obtained through a projection 

layer, by mapping the last hidden layer representation h ⋅ , L  onto U as: 

u x = Q h ⋅ , L x := Q2 x σ Q1h x, L + q1 x + q2 x . Q1 x ∈ ℝdQ × dℎ, Q2 x ∈ ℝdu × dQ, q1 x
∈ ℝdQ

and q2 x ∈ ℝdu are appropriately sized matrices and vectors that are part of the parameter set 

that we aim to learn, which are often taken as constant parameters and will be denoted as 

Q1, Q2, q1 and q2, respectively. In the following, we denote the set of trainable parameters in 

the lifting layer as θP, the set from the iterative layer block as θI, and the set in the projection 

layer as θQ.

The neural operator can be employed to learn an approximation for the solution operator, G. 

Given D := gi, ui i = 1
N , a labelled (context) set of observations, where the input gi ⊂ A is a 

set of independent and identically distributed (i.i.d.) random fields from a known probability 

distribution μ on A, and ui x ∈ U is the observed but possibly noisy corresponding solution. 

Let Ω ⊂ ℝs be the domain of interest, we assume that all observations can be modeled with a 

parametric PDE form:

Kb x ui x = gi x ,  x ∈ Ω .

(2.2)

Kb is the operator representing the possibly unknown governing law, e.g., balance laws. 

Then, the system response can be learnt by constructing a surrogate solution operator 

of (2.2): G g; θ x := QθQ ∘ JθI
L ∘ PθP g x ≈ u x , where parameter set θ = θP, θI, θQ  is 

obtained by solving the optimization problem:

min 
θ ∈ Θ

ℒD θ := min 
θ ∈ Θ

∑
i = 1

N
C G gi; θ , ui .

3We also point out that the proposed multi-task strategy is generic and hence also applicable to other neural operators [26–29, 32].
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(2.3)

Here C denotes a properly defined cost functional which is often taken as the relative mean 

square error.

2.3. Gradient-Based Meta-Learning Methods

Traditionally, machine learning models are designed to address one single task by learning 

from the dataset corresponding to such a task. Hence, its efficacy relies on the quality and 

abundance of available data. To improve the learning efficacy in the small data regime, 

a significant body of work has tackled the challenge of few-shot learning using transfer-

learning or meta-learning approaches, with the basic idea of utilizing prior knowledge 

gained from related (source) tasks to improve the learning performance on the target task. 

Among these two types of approaches, the basic idea of transfer-learning is to train a 

model from the source task and then refine the pre-trained model in the target task [40]. 

In comparison, meta-learning approaches aim to learn a generalizable representations that 

shared across the different training tasks, which can accelerate learning of test tasks [5, 

41]. One of highly successful meta-learning algorithms is Model Agnostic Meta-Learning 

(MAML) [5], which led to the development of a series of related gradient-based meta-

learning (GBML) methods [7, 9, 10, 42]. Almost-No-Inner-Loop algorithm (ANIL) [10] 

modifies MAML by freezing the final layer representation during local adaptation. Recently, 

theoretical analysis [12] found that the driving force causing MAML and ANIL to recover 

the general representation is the adaptation of the final layer of their models, which 

harnesses the underlying task diversity to improve the representation in all directions of 

interest.

Beyond applications such as image classification and reinforcement learning, a few 

approaches have studied hidden-physics learning under meta [43–46] or even transfer setting 

[47, 48]. Among these meta-learning works, [43, 44] are designed for specific physical 

applications, while [45, 46] focus on on dynamics forecasting by learning the temporal 

evolution information directly [45] or learning time-invariant features [46]. Hence, none 

of these works have provided a generic approach nor theoretical understanding on how 

to transfer the multi-task knowledge between a series of complex physical systems, such 

that all these tasks are governed by a common parametric PDE with different physical 

parameters.

3. Meta-Learnt Neural Operator

To transfer the multi-task knowledge between a series of complex systems governed by 

different hidden physical parameters, we proposed to leverage the integral neural operator 

with a meta-learning setting. Before elaborating our novel meta-learnt neural operator 

architecture, MetaNO, we formally state the transfer-learning problem setting for PDE with 

different parameters.
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Assume that we have a set of training tasks Tη  such that Tη p T , and for each 

training task we have a set of observations of loading field/respond field data pairs 

Dη := gi
η x , ui

η x i = 1
Nη

. Each task can be modeled with a parametric PDE form

Kbη x ui
η x = gi

η x ,  x ∈ Ω,

(3.1)

where bη x  is the hidden task-specific physical parameter field for the common governing 

law. Given a new and unseen test task, Ttest , and a (usually small) context set of labelled 

samples Dtest  := gi
test  x , ui

test  x i = 1
Ntest 

 on it, our goal is to obtain the approximated solution 

operator model on the test task as G g; θtest  . To provide a quantitative metric of the 

performance for each method, we reserve a separate set of labelled samples on the test 

task as the target set, and measure averaged relative errors of u on this set. In the few-

shot learning context, we are particularly interested in the small-sample scenario where 

Ntest  ≪ Nη.

3.1. A Novel Meta-Learnt Neural Operator Architecture

We now propose MetaNO, which applies task-wise adaptation only to the first layer, i.e., 
the lifting layer, with the full algorithm outlined in Algorithm 1. We point out that MetaNO 

is substantially different from existed popular meta-learning approaches such as MAML 

and ANIL, since the later rely on the adaptation of their last layer, as shown in [12]. 

This property makes MetaNO more suitable for PDE solving tasks as will be discussed in 

theoretical analysis below and confirmed in empirical evaluations of Section 4.

Algorithm 1

MetaNO

Meta-Train Phase:

Input: a batch Tη
η = 1

H
 of training tasks and labelled data pairs Dη := gi

η x , ui
η x i = 1

Nη
 on each task.

Output: common parameters θI
*
 and θQ

*
 across all tasks.

1. Initialize θI, θQ, and θP
η

η = 1
H

.

2. Solve for θP
η, *

η = 1
H , θI

*, θQ
*

 from the optimization problem in (3.2).

Meta-Test Phase:

Input: a test task Ttest 
 and few labelled data pairs Dtest  := gi

test  x , ui
test  x i = 1

Ntest 
 on it.

Output: the task-wise parameter θP
test,* 

 and the corresponding surrogate PDE solution operator 

G g; θP
test * ,  , θI

*, θQ
* x  for the test task.

3. Solve for the lift layer parameter θP
test, *  

 from the optimization problem in (3.3).

4. (For cases with largeNtest and/or smallNη), fine tune all parameters on the test task.
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Similar as in other meta-learning approaches [49–52], the MetaNO algorithm consists of 

two phases: 1) a meta-train phase which learns shared iterative layers parameters θI and 

projection layer parameters θP from training tasks; 2) a meta-test phase which transfers 

the learned knowledge and rapidly learning surrogate solution operators for unseen test 

tasks with unknown physical parameter field, where only a few labelled samples are 

provided. In the meta-train phase, a batch Tη
η = 1

H
 of H tasks is drawn from the training 

tasks set, with a context set of Nη numbers of labelled loading field/response field data 

pairs, Dη := gi
η x , ui

η x i = 1
Nη

, provided on each task. Then, we seek the common iterative 

θI  and projection θQ  parameters, and the task-wise lifting parameters θP
η  by solving the 

optimization problem:

θP
η, *

η = 1
H , θI

*, θQ
* = argmin

θP
η

η = 1
H , θI, θQ

∑
η = 1

H
ℒDη θP

η , θI, θQ .

(3.2)

Then, in the meta-test phase, we adapt the knowledge to a new and unseen test task Ttest , 

with limited data on the context set Dtest  := gi
test  x , ui

test  x i = 1
Ntest 

 on this task. In particular, 

we fix the common parameters θI
* and θQ

* , then solve for the task-wise parameter θP
test  via:

θP
test , * = argmin 

θP
test 

ℒDtest  θP
test , θI

*, θQ
* .

(3.3)

One can then fine tune all test task parameters θP
test , θI, θQ  for further improvements. Finally, 

the surrogate PDE solution operator on the test task is obtained as:

G g; θP
test , * , θI

*, θQ
* x := QθQ* ∘ JθI*

L ∘ PθP
test , * g x .

and will be evaluated on a reserved target data set on the test task.

3.2. Universal Solution Operator

To see the inspiration of the proposed architecture, without loss of generality, we assume 

that the underlying task parameter field bη x , modeling the physical property field, is 

normalized and satisfying bη x − b x L2 Ω ≤ 1 for all η ∈ 1, ⋯, H , where b := ETη p T bη . 

Denoting ℱu b := Kb u  as a function from physical parameter fields ℬ to loading fields A, 

we take the Fréchet derivative of ℱ with respect to b − b and obtain:

Kbη u = ℱu b +Dℱu b bη − b + o bη − b L2 Ω .

Substituting the above formulation into (3.1) yields:
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ℱui
η b + Dℱui

η b bη − b ≈ gi
η .

Denoting F1 bη := 1, bη − b  and F2 ui
η := ℱui

η b , Dℱui
η b , we can reformulate (3.1) into a 

more generic form:

F1 bη x ⋅ F2 ui
η x = gi

η x ,  x ∈ Ω .

Note that this parametric PDE form is very general and applicable to many science and 

engineering applications – besides our motivating example on material modeling, other 

examples include the monitoring of tissue degeneration problems [13], the detection of 

subsurface flows [53], the nondestructive inspection in aviation [54], and the prediction of 

concrete structures deterioration [55], etc.

In the following, we show that MetaNOs are universal solution operators for the multi-task 

PDE solving problem in (3.4), in the sense that they can approximate a fixed point method 

to a desired accuracy. For simplicity, we consider a 1D domain Ω ⊂ ℝ, and scalar-valued 

functions F1 bη , F2 ui
η . These functions are assumed to be sufficiently smooth and measured 

at uniformly distributed nodes χ := x1, x2, …, xM , with F1 bη xj ≠ 0 for all η and j. Then, 

(3.4) can be formulated as an implicit system of equations:

ℋ Ui
η, * ; Gi

η :=
F2 ui

η x1 − gi
η x1 /F1 bη x1

⋮

F2 ui
η xM − gi

η xM /F1 bη xM

= 0,

(3.5)

where Ui
η, * := ui

η x1 , …, ui
η xM  is the solution we seek, 

Gi
η := gi

η x1 /F1 bη x1 , …, gi
η xM /F1 bη xM  is the reparameterized loading vector, and 

Gi
η := gi

η x1 , gi
η x2 , …, gi

η xM  is the original loading vector. Here, we notice that all task-

specific information is encoded in Gi
η
 and can be captured in the lifting layer parameter. 

Therefore, when seeing (3.5) as an implicit problem of Ui
η, *  and Gi

η
, it is actually independent 

of the task parameter field bη, i.e., this problem is task-independent. In the following, we 

refer to (3.5) without the task index, as ℋ U*; G , for notation simplicity.

To solve for U* from the nonlinear system ℋ U*; G = 0, a popular approach would be 

to use fixed-point iteration methods such as the Newton-Raphson method. With an initial 

guess of the solution (denoted as U0), the process is repeated to produce successively better 

approximations to the roots of (3.5), from the solution of iteration l (denoted as Ul  to that of 

l + 1 (denoted as Ul + 1  as:
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Ul + 1 = Ul − ∇ℋ Ul; G −1ℋ Ul; G := Ul + ℛ Ul, G ,

(3.6)

until a sufficiently precise value is reached. In the following, we show that as long as 

Assumptions 1 and 2 hold, i.e., there exists a converging fixed point method, then MetaNO 

can be seen as an resemblance of the fixed point method in (3.6) and hence acts as an 

universal approximator of the solution operator for (3.4).

Assumption 1. There exists a fixed point equation, U = U + ℛ U , G  for the implicit of 

problem (3.5), such that ℛ:ℝ2M ℝM is a continuous function satisfying ℛ U , G = 0 and 

∥ ℛ U , G − ℛ U , G ∥l2 ℝM ≤ m ∥ U − U ∥l2 ℝM  for any two vectors U , U ∈ ℝM. Here, m ≥ 0 is 

a constant independent of G.

Assumption 2. With the initial guess U0 := x1, ⋯, xM , the fixed-point iteration 

Ul + 1 = Ul + ℛ Ul, G  l = 0, 1, …  converges, i.e., for any given ε > 0, there exists an integer 

L such that

Ul − U* l2 ℝM ≤ ε,  ∀l > L,

for all possible input instances G ∈ ℝM and their corresponding solutions U*.

Intuitively, Assumptions 1 and 2 ensure the hidden PDEs to be numerically solvable with a 

converging iterative solver, which is a typical required condition of numerical PDE solving 

problems. Then, we have our universal approximation theorem as below. The main result of 

this theorem is to show that for any desired accuracy ε > 0, one can find a sufficiently large 

L > 0 and sets of parameters θη = θP
η , θI, θQ , such that the resultant MetaNO model acts as a 

fixed point method with the desired prediction for all tasks and samples.

Theorem 1 (Universal approximation). Given Assumptions 1–2, let the activation function σ
for all iterative kernel integration layers be the ReLU function, and the activation function in 

the projection layer be the identity function. Then for any ε > 0, there exist sufficiently large 

layer number L > 0 and feature dimension number dℎ > 0, such that one can find a parameter 

set for the multi-task problem, θη = θP
η , θI, θQ , such that the corresponding MetaNO model 

satisfies

QθQ ∘ JθI
L ∘ PθP

η U0, Gη T − Uη, * ≤ ε,

for all loading instance Gη ∈ ℝM and tasks.

We now provide the detailed proof for Theorem 1, based on Assumptions 1 and 2. 

Intuitively, these assumptions mean the underlying implicit problem is solvable with a 
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converging fixed point method. This condition is a basic requirement by numerical PDEs, 

and it generally holds true in many applications governed by nonlinear and complex PDEs, 

such as in our three experiments.

Here, we prove that the MetaNO is universal, i.e., given a fixed point method satisfying 

Assumptions 1 and 2, one can find parameter sets θη whose output approximates Uη, *  to a 

desired accuracy, ε > 0, for all η = 1, ⋯, H tasks. For the task-wise parameters, with a slight 

abuse of notation, we denote Pη ∈ ℝdℎM × dg + s M as the collection of the pointwise weight 

matrices at each discretization point in χ for the η-th task, and pη ∈ ℝdℎM for the bias in the 

lifting layer. Then, for the parameters shared among all tasks, in the iterative layer we denote 

C = c x1 , ⋯, c xM ∈ ℝdℎM as the collection of pointwise bias vectors c xi , W ∈ ℝdℎ × dℎ

for the local linear transformation, and R = ℱ κ ⋅ ; v ∈ ℂdℎ × dℎ × M ∈ ℂdℎ × dℎ × M for the 

Fourier coefficients of the kernel κ. For simplicity, here we have assumed that the 

Fourier coefficient is not truncated, and all available frequencies are used. Then, for the 

projection layer we seek Q1 ∈ ℝdQM × dℎM, Q2 ∈ ℝduM × dQM, q1 ∈ ℝdQM and q2 ∈ ℝduM. For 

the simplicity of notation, in this section we organize the feature vector H ∈ ℝdℎM in a 

way such that the components corresponding to each discretization point are adjacent, i.e., 

H = H x1 , ⋯, H xM  and H xi ∈ ℝdℎ.

We point out that under this circumstance, the (discretized) iterative layer can be written as

J H l = H l + 1
Lσ W H l + Re ℱΔx

−1 R ⋅ ℱΔx H l + C

= H l + 1
Lσ V H l + C ,

with

V := Re 

∑
n = 0

M − 1
Rn + 1 + W ∑

n = 0

M − 1
Rn + 1exp 2iπΔxn

M ⋯ ∑
n = 0

M − 1
Rn + 1exp 2iπ M − 1 Δxn

M

∑
n = 0

M − 1
Rn + 1exp 2iπΔxn

M ∑
n = 0

M − 1
Rn + 1 + W ⋯ ∑

n = 0

M − 1
Rn + 1exp 2iπ M − 2 Δxn

M

⋮ ⋮ ⋱ ⋮

∑
n = 0

M − 1
Rn + 1exp 2iπ M − 1 Δxn

M ∑
n = 0

M − 1
Rn + 1exp 2iπ M − 2 Δxn

M ⋯ ∑
n = 0

M − 1
Rn + 1 + W

.
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Here, R ∈ ℂM × dℎ × dℎ with Ri ∈ ℂdℎ × dℎ being the component associated with 

each discretization point xi ∈ χ, V ∈ ℝdℎM × dℎM, C ∈ ℝdℎM, W := W ⊕ W ⊕ ⋯ ⊕ W  is a 

dℎM × dℎM block diagonal matrix formed by W ∈ ℝdℎ × dℎ, ℱΔx and ℱΔx
−1 denote the discrete 

Fourier transform and its inverse, respectively. By further taking R2 = ⋯ = RM = W = 0, a 

dℎ × dℎ matrix with all its elements being zero, it suffices to show the universal approximation 

property for an iterative layer as follows:

J H l := H l + 1
Lσ V H l + C

where V := 1 M, M ⊗ V  with V ∈ ℝdℎ × dℎ and 1 m, n  being an m by n all-ones matrix.

For the proof of this main theorem, we need the following approximation property of a 

shallow neural network, with its detailed proof provided in [39]:

Lemma 1. Given a continuous function T:ℝ2M ℝM, and a non-polynomial and 

continuous activation function σ, for any constant ε > 0 there exists a shallow neural network 

model T
ˆ

:= Sσ BX + A  such that

T X − T
ˆ

X l2 ℝM ≤ ε,  ∀X ∈ ℝ2M,

for sufficiently large feature dimension d > 0. Here, S ∈ ℝM × dM, B ∈ ℝdM × 2M, and 

A ∈ ℝdM are matrices/vectors which are independent of X.

We now proceed to the proof of Theorem 1:

Proof. Since all Uη, *  satisfies Assumptions 1–2, for any ε > 0, we first pick a sufficiently 

large integer L such that the L-th layer iteration result of this fixed point formulation 

satisfies UL − Uη, *
l2 ℝM ≤ ε

2  for all tasks. By taking ε := mε
2(1 + m)L

 in Lemma 1, there exists 

a sufficiently large feature dimension d and one can find S ∈ ℝM × dM, B ∈ ℝdM × 2M, and 

A ∈ ℝdM, such that ℛ
ˆ

Uη, Gη := Sσ B Uη, Gη T
+ A  satisfies

ℛ Uη, Gη − ℛ
ˆ

Uη, Gη
l2 ℝM = ℛ Uη, Gη − Sσ B Uη, Gη T

+ A
l2 ℝM ≤ ε = mε

2(1 + m)L
,

where m is the contraction parameter of ℛ, as defined in Assumption 1. By this construction, 

we know that S has independent rows. Denoting d := d + 1 > 0, there exists the right inverse 

of S, which we denote as S+ ∈ ℝ d − 1 M × M, such that

SS+ = IM,  S+S := I d − 1 M,
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where IM is the M by M identity matrix, I d − 1 M is a d − 1 M by d − 1 M block matrix 

with each of its element being either 1 or 0. Hence, for any vector Z ∈ ℝ d − 1 M, we 

have σ I d − 1 MZ = I d − 1 Mσ Z . Moreover, we note that S has a very special structure: from 

the i − 1 d − 1 + 1 -th to the i d − 1 -th column of S, all nonzero elements are on its 

i-th row. Correspondingly, we can also choose S+ to have a special structure: from the 

i − 1 d − 1 + 1 -th to the i d − 1 -th row of S+, all nonzero elements are on its i-th 

column. Hence, when multiplying S+ with U, there will be no entanglement between 

different components of U. That means, S+ can be seen as a pointwise weight function.

We now construct the parameters of MetaNO as follows. In this construction, we choose the 

feature dimension as dℎ := dM. With the input U0, Gη ∈ ℝ2M, for the lift layer we set

Pη := 1[M, 1] ⊗ S+ 0

0 Dη = S+ 0 S+ 0 ⋯ S+ 0

0 Dη 0 Dη ⋯ 0 Dη

repeated for M times

T
∈ ℝdℎM × 2M,

and pη := 0 ∈ ℝdℎM. Here, Dη := diag 1/F1 bη x1 , ⋯, 1/F1 bη xM . As such, the initial layer 

of feature is then given by

H 0 = Pη U0, Gη T = 1 M, 1 ⊗ S+U0, DηGη T = 1 M, 1 ⊗ S+U0, Gη T
∈ ℝdM .

Here, we point out that Pη and pη can be seen as pointwise weight and bias functions, 

respectively.

Next we construct the shared iterative layer J, by setting

V := I d − 1 MB/M
0

LS 0
0 LIM

, V := 1 M, M ⊗ V ,  and C := 1 M, 1 ⊗ LI d − 1 MA
0

.

Note that V  is independent of η, and falls into the formulation of V , by letting R1 = V  and 

R2 = R2 = ⋯ = RM = W = 0. For the l + 1-th layer of feature vector, we then arrive at

H l + 1 = H l + 1
Lσ V H l + C = H l + IM ⊗ S+S 0

0 IM
σ

1 M, 1 ⊗ B/M
0 1 1, M ⊗

S 0
0 IM

H l + 1 M, 1 ⊗ A
0 ,

where H l = h1
l , h2

l , …, h2M − 1
l , h2M

l T
 denotes the (spatially discretized) hidden layer feature 

at the l −th iterative layer of the IFNO. Subsequently, we note that the second part of the 

feature vector, h2j
l ∈ ℝM, satisfies
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h2j
l + 1 = h2j

l = ⋯ = h2j
0 = Gη,  ∀l = 0, ⋯, L − 1, ∀j = 1, ⋯, M

Hence, the first part of the feature vector, h2j − 1
l ∈ ℝ d − 1 M, satisfies the following iterative 

rule:

h2j − 1
l + 1 = h2j − 1

l + S+Sσ B Sh2j − 1
l , Gη T

+ A ,  ∀l = 0, ⋯, L − 1, ∀j = 1, ⋯, M,

and

h1
l + 1 = h3

l + 1 = ⋯ = h2M − 1
l + 1 .

Finally, for the projection layer Q, we set the activation function in the 

projection layer as the identity function, Q1 := IdℎM (the identity matrix of size 

dℎM), Q2 := S, 0 ∈ ℝM × dℎM, q1 := 0 ∈ ℝdℎM, and q2 := 0 ∈ ℝM. Denoting the output 

Uη := QθQ ∘ JθI
L ∘ PθP

η U0, Gη T
, we now show that Uη can approximate Uη, *  with a desired 

accuracy ε:

Uη − Uη, * ≤ Uη − UL
l2 ℝM + UL − Uη, *

l2 ℝM

≤ Sh1
L − UL

l2 ℝM + ε
2   by Assumption 2

≤ Sh1
L − 1 − UL − 1

l2 ℝM + ℛ
ˆ

Sh1
L − 1, G − ℛ UL − 1, G l2 ℝM + ε

2

≤ Sh1
L − 1 − UL − 1

l2 ℝM + ℛ
ˆ

Sh1
L − 1, Gb − ℛ Sh1

L − 1, Gb l2 ℝM

+ ℛ Sh1
L − 1, Gb − ℛ UL − 1, Gb l2 ℝM + ε

2

≤ 1 + m Sh1
L − 1 − UL − 1

l2 ℝM + mε
2(1 + m)L

+ ε
2   by Lemma 1 and Assumption 1

≤ mε
2(1 + m)L

1 + 1 + m + (1 + m)2 + ⋯ + (1 + m)L − 1 + ε
2

≤ ε
2 + ε

2 = ε .

4. Empirical Evaluation

In this section, we demonstrate the empirical effectiveness of the proposed MetaNO 

approach. Specifically, we conduct experiments on a synthetic dataset from a nonlinear 

PDE solving problem, a benchmark dataset of heterogeneous materials subject to large 

deformation, and a real-world dataset from biological tissue mechanical testing. We 

compare the proposed method against competitive GBML methods as well as two non-

meta transfer-learning baselines. All of the experiments are implemented using PyTorch 

with Adam optimizer, and performed on a workstation with two 2.2 GHz 24-core CPUs 

and eight NVIDIA Tesla T4 GPUs. For a fair comparison, for each algorithm, we tune 

the hyperparameters, including the learning rate from {0.1, 0.01, 0.001, 0.0001, 0.00001, 

0.000001}, the decay rate from {0.5, 0.7, 0.9}, the weight decay parameter from {0.01, 
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0.001, 0.0001, 0.00001, 0.000001}, and the inner loop learning rate for the baseline GBML 

methods (MAML and ANIL) from {0.01, 0.001, 0.0001, 0.00001, 0.000001}, to minimize 

the error on a separate validation dataset. In all experiments we decrease the learning rate 

with a ratio of learning rate decay rate every 100 epochs. A detailed description of each 

baseline method is provided in Appendix A.

In all experiments, we considered the averaged relative error, ui, pred − ui L2 Ω / ui L2 Ω , as the 

error metric. We repeat each experiment for 5 times, and report the averaged relative errors 

and their standard errors.

4.1. Example 1: Synthetic Data Sets and Ablation Study

We first consider the PDE-solution-finding problem of the Holzapfel-Gasser-Odgen (HGO) 

model [56], which describes the deformation of hyperelastic, anisotropic, and fiber-

reinforced materials. In this example, the goal is to find its displacement field u: [0, 1]2 ℝ2

under different boundary loadings. The specimen is assumed to be subject to a uniaxial 

tension Ty x  on the top edge (see Figure 2(a)). Therefore, we take the input function g x  as 

the padded traction loading field, and the output function as the corresponding displacement 

field.

Data Generation.—To generate training and test samples, the Holzapfel-Gasser-Odgen 

(HGO) model [56] was employed to describe the constitutive behavior of the material in this 

example, with its strain energy density function given as:

η = E
4 1 + ν I1 − 2 − E

2 1 + ν ln J + k1
2k2

 exp  k2 S α 2 +  exp  k2 S −α 2 − 2

+ E
6 1 − 2ν

J2 − 1
2 −  ln J .

Here, 〈⋅〉 denotes the Macaulay bracket, and the fiber strain of the two fiber groups is 

defined as:

S α = I4 α − 1 + I4 α − 1
2 .

where k1 and k2 are fiber modulus and the exponential coefficient, respectively, E is the 

Young's modulus for the non-fibrous ground matrix, and ν is the Poisson ratio. Moreover, 

I1 = tr C  is the is the first invariant of the right Cauchy-Green tensor C = FTF, F is the 

deformation gradient, and J is related with F such that J = detF. For the fiber group with 

angle direction α from the reference direction, I4 α = nT α Cn α  is the fourth invariant 

of the right Cauchy-Green tensor C, where n α = [cos α , sin α ]T . To generate samples for 

different specimens, different specimens (tasks) correspond to different material parameter 

sets, k1, k2, E, ν, α .

To investigate the performance of MetaNO in few-shot learning, we generate 59 training, 

1 validation tasks, and 5 in-distribution (ID) test tasks by sampling different physical 
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parameters k1, k2, E, ν, α from the same uniform distribution. To further evaluate the 

generalizability when the physical parameters of test tasks are outside the training regime, 

we also generate 2 out-of-distribution (OOD) test tasks with physical parameters from 

different distributions. For the training tasks, the validation task, and the in-distribution 

(ID) test task, their physical parameters are sampled from: k1, k2 U 0.1, 1 , E U 0.55, 1.5 , 

ν U 0.01, 0.49 , and α U π/10, π/2 . For the two out-of-distribution (OOD) test tasks, we 

sample their parameters following k1, k2 U[1, 1.9 , E U 1.5, 2 ∪ U 0.5, 0.55 , ν U 0.01, 0.49]4, 

and α U π/2, 3π/4 ∪ 0, π/10 . To generate the high-fidelity (ground-truth) dataset, we 

sampled 500 different vertical traction conditions Ty x  on the top edge from a random 

field, following the algorithm in [36, 58]. Ty x  is taken as the restriction of a 2D random 

field, ϕ x = ℱ−1 γ1/2ℱ Γ x , on the top edge. Here, Γ x  is a Gaussian white noise 

random field on ℝ2, γ = w1
2 + w2

2 − 5
4  represents a correlation function, and w1, w2 are the wave 

numbers on x and y directions, respectively. Then, for each sampled traction loading, we 

solved the displacement field on the entire domain by minimizing potential energy using 

the finite element method implemented in FEniCS [59]. In particular, the displacement 

filed was approximated by continuous piecewise linear finite elements with triangular mesh, 

and the grid size was taken as 0.025. The finite element solution was interpolated onto 

χ, a structured 41 × 41 grid which will be employed as the discretization in our neural 

operators. The distribution of training and ID/OOD tasks are demonstrated in Figure 3, 

where one can see that the first OOD task (denoted as “OOD Task1”) corresponds to a stiffer 

material sample and smaller deformation for each given loading, while the second OOD task 

(denoted as “OOD Task2”) generates a softer material sample and larger deformation. For 

each training task, we generate 500 data pairs Dη := gi
η, ui

η
i = 1
500 , by sampling the vertical 

traction loading from a Gaussian random field. Then, the corresponding ground-truth 

displacement field is obtained using the finite element method implemented in FEniCS 

[59]. For test tasks, we train with Ntest  = 2, 4, 8, 12, 20, 100, 300  numbers of labelled data 

pairs (the context set), and evaluate the model on a reserved dataset with 200 data pairs (the 

target set) on each test task. An 8-layer IFNO is employed as the base model.

Ablation Study.—We first conduct an ablation study on 4 variants of the proposed 

algorithm: 1) to use the full meta-train and meta-test phases as in Algorithm 1 (denotes 

as “MetaNO”); 2) to perform steps 1–3 of Algorithm 1, such that only the lifting layer is 

adapted in the meta-test phase (denotes as “MetaNO-”); 3) to apply task-wise adaptation 

only to the iterative layers instead of the lift layer in both meta-train and meta-test phases 

(denoted as “MetaMid”); 4) to apply task-wise adaptation only to the projection layer 

instead of the lift layer in both meta-train and meta-test phases (denoted as “MetaLast”). 

We study if the successful “adapting last layers” strategy of MAML and ANIL in image 

classification problems would apply for our PDE solving problem. Besides these four 

settings, we also report the few-shot learning results with five baseline methods: 1) Learn 

a neural operator model only based on the context data set of the test task (denoted as 

4Here we sample both ID and OOD tasks from the same range of ν, due to the fact that [0.01, 0.49] is the range of Poisson ratio for 
common materials [57].
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“Single”); 2) Pretrain a neural operator model based on all training task data sets, then 

fine-tune it based on the context test task data set (denoted as “Pretrain1”); 3) Pretrain 

a single neural operator model based on the context data set of one training task, then 

fine-tune it based on the context test task data set (denoted as “Pretrain2”); To remove 

the possible dependency on the pre-training task, in this baseline we randomly select five 

training tasks for the purpose of pretraining and report the averaged results. 4) MAML, 

and 5) ANIL. For all experiments we use the full context data set on each training task 

Nη = 500 .

As shown in Figure 4, MetaNO- and MetaNO are both able to quickly adapt with few data 

pairs – to achieve a test error below 5%, “Single” and the two transfer-learning baselines 

(“Pretrain1”, “Pretrain2”) require 100+ data pairs, while MetaNO- and MetaNO requires 

only 4 data pairs. On the other hand, MetaMid, MetaLast, MAML and ANIL have similar 

performance. They all require 100 data pairs to achieve a < 5% test error. In particular, 

when using only 4 data pairs on the target task, “MetaNO-” has 2.91% ± 0.90% relative test 

error, while “MetaMid” and “MetaLast” have 58.41% ± 9.92% and 43.99% ± 11.36% relative 

test errors, respectively. This observation verifies our finding on the multi-task parametric 

PDE solution operator learning problem, where one should adapt the first layer, not the 

middle layers or the last ones. A detailed comparison on the computational time and test 

errors of these “MetaNO-” and “MetaNO” is provided in Table 1. Herein, the total time of 

MetaNO- includes the Meta-Train Phase (Steps 1 and 2) and the step of solving for θP
test in 

the Meta-Test Phase (Step 3) of Algorithm 1, and the total time of MetaNO includes all steps 

of both the Meta-Train and Meta-Test Phases (Steps 1–4). Since the Meta-Train Phase took 

the majority of training time (45612 seconds), although “MetaNO” requires an additional 

fine-tuning step, its computational cost is of a similar scale as “MetaNO-”. When comparing 

the test errors, we can see that the additional fine-tune step only improves the performance 

in the larger-sample regime (when Ntest  ≥ 100). This fact shows that when given sufficient 

training context sets, adapting the first layer can capture the underlying task diversity so 

further fine-tuning may not be needed, especially in the small data regime.

Effect of Varying Training Context Set Sizes.—In this study, we investigate the effect 

of different training task context sizes Nη = 50, 100, 200, 500  on four meta-learnt models: 

MetaNO, MetaNO-, MAML, and ANIL. The comparison on test errors are demonstrated in 

the top plot of Figure 5. Here, MetaNO- and MetaNO did not have any inner loop updates. 

All parameters from all training tasks are optimized together. In MAML and ANIL we 

use half of the context set for inner loop updates (support set) and the other half for outer 

loop updates (target set). One can see that when Ntest  ≤ 20, MetaNO- and MetaNO have 

similar performance and consistently beat MAML and ANIL for both context set sizes. With 

the increase of Ntest , the fine-tuning strategy on the test context set becomes more helpful 

where we see MetaNO becomes more accurate than MetaNO- and MAML beats ANIL. 

Such effect is more evident on small training context set cases. Perhaps unsurprisingly, 

with the training task context size varying from 50 to 500, all methods have improved 

performance with decreasing relative test errors (with the same colors for the same methods 

across different context dataset). In addition, as the context set size in the test task grows, 
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fine-tuning will gradually have better performance as MetaNO and MAML beats MetaNO- 

and ANIL, respectively. Overall, in all combinations of Nη and Ntest , MetaNO achieves the 

best performance among all models.

In-Distribution and Out-Of-Distribution Tests.—On bottom Figure 5, we demonstrate 

the relative test error of MetaNO against MAML in both ID and OOD tasks. We can see 

that test errors of these 3 tasks are in a similar scale as the error on training tasks. The error 

from OOD task1 is comparable to the averaged ID test task error, while the error from OOD 

task2 is much larger, as expected by the data property: due to the fact that the solutions in 

OOD task1 generally have smaller magnitude and hence its solution operator lies more in 

a linear regime, which makes the solution operator learning task easier. probably due to the 

fact that the solutions in OOD task1 generally have smaller magnitude and hence its solution 

operator lies more in a linear regime, which makes the solution operator learning task easier. 

In all three cases, MetaNO outperforms MAML, hence validating the good generalization 

performance of MetaNO.

4.2. Example 2: Benchmark Mechanical MNIST Datasets

We further test MetaNO and five baseline methods on benchmark Mechanical MNIST [60]. 

Mechanical MNIST is a benchmark dataset of heterogeneous material undergoing large 

deformation, modeled by the Neo-Hookean material with a varying modulus converted from 

the MNIST bitmap images [60]. It contains 70,000 heterogeneous material specimens, and 

each specimen is governed by the Neo-Hookean material with a varying modulus converted 

from the MNIST bitmap images. On each specimen, we have 32 loading/response data pairs 

on a structured 27 by 27 grid, under the uniaxial extension, shear, equibiaxial extension, and 

confined compression load scenarios, respectively5.

Data Generation and Settings.—Here in, we randomly select one specimen 

corresponding to hand-written number 0 and 2 – 9 respectively as training tasks. Then, 

among the specimens corresponding to 1, we randomly select six specimens: one for 

validation and the rest five as the test tasks. Visualization of the ground-truth solutions 

corresponding to one common loading from different tasks is provided in Figure 6(a), 

together with the underlying (hidden) microstructure pattern which determines the parameter 

set bη. On the meta-train phase, we use the full context data set of all 32 samples for 

each training task. On the meta-test phase, we reserve 20 data pairs on the test task as the 

target set for evaluation, then train each model under the few-shot learning setting with 

Ntest  = 2, 4, 8, 12  labelled data pairs as the context set. All approaches are developed based 

on an 32-layer IFNO model.

Results.—Besides the diversity of tasks as seen in Figure 6(a), notice that we also have 

a small number of training tasks H = 9 , and a relatively small training context set size 

Nη = 32 . All these facts make the transfer learning on this benchmark dataset challenging. 

We present the results in Figure 6(b) and (c). The neural operator model learned by 

5We have excluded small deformation samples with the maximum displacement magnitude ≤ 0.1.
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MetaNO again outperforms the baseline single/transfer learning models and the state-of-the-

art GBML models. Our MetaNO model achieves 15% error when using only 2 labelled 

data pair on the test task, while the Single model has high errors due to overfitting. This 

fact highlights the importance of learning across multi-tasks: when the total number of 

measurements on each specimen is limited, it is necessary to transfer the knowledge across 

specimens. Moreover, while MetaNO-, MAML, and ANIL all have a similar performance in 

this example, the fine-tuning step in MetaNO seems to substantially improve the accuracy, 

especially when Ntest  gets larger. This observation is consistent with previous finding on 

varying training task context sizes.

4.3. Example 3: Application on Real-World Data Sets

We now take a step further to demonstrate the performance of our method on a real-world 

physical response dataset, which is not generated by solving PDEs. We consider the problem 

of learning the mechanical response of multiple biological tissue specimens from DIC 

displacement tracking measurements. We measure the biaxial loading of tricuspid valve 

anterior leaflet (TVAL) specimens from a porcine heart, such that each specimen (as a task) 

corresponds to a different region of the leaflet. Due to material heterogeneity of biological 

tissues, these specimens contain different mechanical and structural properties. However, 

these properties are generally not observable without damaging the tissue. Therefore, this 

example provides a proof-of-principle demonstration that how MetaNO applies to learning 

tasks where the governing equations and physical properties are both unknown, and the 

dataset has unavoidable measurement noise.

Data Generation.—We now briefly provide the data generation procedure for the 

tricuspid valve anterior leaflet (TVAL) response modeling example. To generate the data, 

we firstly followed the established biaxial testing procedure, including acquisition of 

a healthy porcine heart and retrieval of the TVAL [61, 62]. Then, we sectioned the 

leaflet tissue and applied a speckling pattern to the tissue surface using an airbrush and 

black paint [63–65]. The painted specimen was then mounted to a biaxial testing device 

(BioTester, CellScale, Waterloo, ON, Canada). To generate samples for each specimen, we 

performed 7 protocols of displacement-controlled testing to target various biaxial stresses: 

P11:P22 = 1:1, 1:0.66, 1:0.33, 0.66:1, 0.33 :1, 0.05:1, 1:0.1 . Here, P11 and P22 denote the first 

Piola-Kirchhoff stresses in the x- and y-directions, respectively. Each stress ratio was 

performed for three loading/unloading cycles. Throughout the test, images of the specimen 

were captured by a CCD camera, and the load cell readings and actuator displacements were 

recorded at 5 Hz. After testing, the acquired images were analyzed using the digital image 

correlation (DIC) module of the BioTester’s software. The pixel coordinate locations of the 

DIC-tracked grid were then exported and extrapolated to a 21 by 21 uniform grid. In this 

example, we have the DIC measurements on 16 specimens, with 500 data pairs of loadings 

and material responses from the 7 protocols on each specimen. These specimens are divided 

into three groups: 12 for the purpose of meta-train, 1 for validation, and 3 for test. This 

reflects a common challenge in scientific applications, we not only have limited samples per 

task, the number of available training tasks is also limited. To demonstrate the diversity of 

these specimens due to the material heterogeneity in biological tissues, in Figure 7 we plot 
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the processed displacement field of two exemplar training specimens and the validation and 

test specimens. For each model, the results are reported as the average of all 3 test tasks.

Results.—Herein, we aim to model the tissue response by learning a neural operator 

mapping the boundary displacement loading to the interior displacement field on each tissue 

specimen. We use 13 specimens for training and validation with context size Nη = 500, and 

provide the test results as the average on the rest 3 specimens. With a 4-layer IFNO as 

the base model, we train each model based on Ntest  ∈ 2, 300  samples, and then evaluate 

the performance on another 200 samples. The results are provided in Figure 8. MetaNO 

performs the best among all the methods across all Ntest , beating MAML and ANIL by 

a significant margin. Interestingly, MAML and ANIL did not even beat the “Pretrain1” 

method, possibly due to the low efficacy of the adapting last layers strategy and the small 

number of training tasks.

5. Summary and Future Directions

In this paper we propose MetaNO, the first neural-operator-based meta-learning approach 

that is designed to achieve good transferability in learning complex physical system 

responses. In particular, we focus on the scenario that the physical responses of different 

systems can be modeled by a common parametric PDE, and the behavior of each system 

(specimen) is governed by a different underlying parameter field. Then, based on the 

observed data from several known systems, the goal is to efficiently learn a surrogate 

model, which acts as the surrogate solution operator for the hidden PDE, for a new and 

unseen system. Comparing with existed transfer-learning techniques, our MetaNO features 

a novel first layer adaption architecture, which is theoretically motivated and shown to be 

a universal solution operator for multiple parametric PDE solving tasks. We demonstrate 

the effectiveness of our proposed MetaNO algorithm on various synthetic, benchmark, and 

real-world datasets, showing promises with significant improvement in sample efficiency 

over baseline methods.

Although in this paper we focus on material modeling problems in experiments, the 

proposed approach is a machine learning model that can handle different PDEs with 

heterogeneous coefficients, which is common in physics problems and not limited in 

material modeling. For example, another suitable example is climate modeling, where cities 

responses, temperature exposures, and impacts are all heterogeneous, resulting in different 

parameters in the PDE model. Here we choose material as the application mainly due to the 

availability of data. For future work, we will investigate the applicability of the proposed 

approach to other scientific domains. Moreover, we point out that the universal approximator 

property of MetaNO relies on the assumption that all systems are governed by a common 

parametric PDE. As such, a set of common characteristic solution operator features can be 

obtained from the training tasks in the form of the common layer parameters, and then can 

be utilized to accelerate the learning efficacy in the test task. Therefore, we anticipate the 

method to suffer from performance deterioration when handling the transferability between 

different types of PDEs, e.g., when all training tasks are solving diffusion problems but the 

test task is on an advection problem. It would be an interesting future direction of extending 
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MetaNO to handle such a challenging scenario. In this paper, we employed the implicit 

Fourier neural operator [39] as the base model. As another natural extension, one might 

consider the proposed meta-learning approach based on other types of neural operators 

and neural networks, such as the graph neural operators [26, 29] and the general graph 

neural networks [66, 67]. As such, the model will be capable to handle measurements from 

unstructured grid points and domains, which be valuable for applications with complex and 

possibly evolving domain geometries.
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Appendix A.: Formulation of Baseline Methods

In this section, we discuss each baseline methods in details and how they are used in our 

experiments. A meta-learning baseline in our problem setting would be to apply MAML and 

ANIL to a neural operator architecture. Here we formally state the implementation of ANIL 

and MAML for the problem described above, and they will serve as the baselinebaseline 

meta-based methods in our empirical experiments.

MAML.

The MAML algorithm proposed in [5] aims to find an initialization, θ, across all tasks, so 

that new tasks can be learnt with very few gradient updates and examples. First, a batch 

Tη
η = 1

H
 of H tasks are drawn from the training task set. For each task Tη, the context set of 

loading field/response field data pairs Dη is split to a support set of samples, Sη, which will 

be used for inner loop updates, and a target set of samples, Zη, for outer loop updates. Then, 

for the inner loop, let θη, 0 := θ and θη, i be the task-wise parameter after i-th gradient update. 

During each inner loop update, the task-wise parameter is updated via

θη, i = θη, i − 1 − α∇θη, i − 1ℒSη θη, i − 1 ,  for η = 1, ⋯, H,

(A.1)

where ℒSη θη, i − 1  is the loss on the support set of the η-th task, and α is the step size. After 

m inner loop updates, the initial parameter θ is updated with a fixed step size β:

θ θ − β ∇θℒmeta  θ ,  where the meta‐loss ℒmeta  θ := ∑
η = 1

H
ℒZη θη, m .

(A.2)
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Then, on the test task, Ttest , an inner loop adaptation is performed based on few labelled 

samples Dtest  until convergence, and the approximated solution operator model is obtained 

on the test task as G g; θtest  .

ANIL.

In [10], ANIL was proposed as a modified version of MAML with inner loop updates only 

for the final layer. The inner loop update formulation of (A.1) is modified as

θQ
η, i = θQ

η, i − 1 − α∇θQ
η, i − 1ℒSη θQ

η, i − 1 ,  for η = 1, ⋯, H,

(A.3)

where θQ
η, i is the task-wise parameter on the final (projection) layer after ith gradient update. 

Then, the same outer loop updates are performed following (A.2).

Single/Pretrain1/Pretrain2.

We also implemented 3 non-meta-learning baseline approaches.

• Single: Learn a neural operator model only based on the context data set of the 

test task.

• Pretrain1: Pretrain a neural operator model based on all training task data sets, 

then fine-tune it based on the context test task data set.

• Pretrain2: Pretrain a single neural operator model based on the context data set 

of one training task, then fine-tune it based on the context test task data set. 

To remove the possible dependency on the pre-training task, in this baseline we 

randomly select five training tasks for the purpose of pretraining and report the 

averaged results.

Appendix B.: Training Details

In the following we briefly describe the hyperparameter settings employed in running of 

each algorithm. The code and the processed datasets will be publicly released at Github for 

readers to reproduce the experimental results.

Appendix B.1. Example 1: Synthetic Data Sets

Base model:

As the base model for all algorithms, we construct an architecture for IFNO [39] as 

follows. First, the input loading field instance g x ∈ A is lifted to a higher dimensional 

representation via lift layer P g x , which is parameterized as a 1-layer feed forward 

linear layer with width 3, 32 . Then for the iterative layer in (2.1), we implement 

ℱ−1 ℱ κ ⋅ ; v ⋅ ℱ h ⋅ , l ]] x  with 2D fast Fourier transform (FFT) with input channel and 

output channel widths both set as 32 and the truncated Fourier modes set as 8. The local 

linear transformation parameter, W , is parameterized as a 1-layer feed forward network with 
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width (32,32). In the projection layer, a 2-layer feed forward network with width (32,128,2) 

is employed. To accelerate the training procedure, we apply the shallow-to-deep training 

technique to initialize the optimization problem. In particular, we start from the NN model 

with depth L = 1, train until the loss function reaches a plateau, then use the resultant 

parameters to initialize the parameters for the next depth, with L = 2, L = 4, and L = 8. In the 

synthetic experiments, we set the layer depth as L = 8.

MetaNO:

During the meta-train phase, we train for the task-wise parameters θP
η  and the common 

parameters θI and θQ on all 59 training tasks, with the context set of 500 samples on each 

task. After meta-train phase, we load θI and θQ and the averaged θP
η  among all 59 tasks as 

initialization, then tune the hyperparameters based on the validation task. In particular, the 

500 samples on the validation task is split into two parts: 300 samples are reserved for the 

purpose of training (as the context set) and the rest 200 samples are used for evaluation (as 

the target set). Then we train for the lift layer on the validation task, and tune the learning 

rate, the decay rate, and the weight decay parameter for different context set sizes Ntest  , 

to minimize the loss on the target set. Based on the chosen hyperparameters, we perform 

the test on the test task by training for the lift layer on different numbers of samples on its 

context set, then evaluate and report the performance based on its target set. We repeat the 

procedure on the test task with selected hyperparameters with different 5 random seeds, and 

calculate means and standard errors for the resultant test errors on target set.

MAML&ANIL:

For MAML and ANIL, we use the same architecture as the base model, and also split the 

training tasks for the purpose of training (59 tasks) and validation (1 task) as in MetaNO. 

During the meta-train phase, for each task we randomly split the available 500 samples to 

two sets: 250 samples in the support set used for inner loop updates, and the rest in the 

target set for outer loop updates. During the inner loop update, we train for the task-wise 

parameter with one epoch, following the standard settings of MAML and ANIL [5, 10]. 

Then, the model hyperparameters, including the learning rate, weight decay, decay rate, and 

inner loop learning rate, are tuned. In the meta-test phase, we load the initial parameter 

and train for all parameters (in MAML) or the last-layer parameters (in ANIL) until the 

optimization algorithm converges. Similar as in MetaNO, we first tune the hyperparameters 

on the validation task, then evaluate the performance on the test task.

Appendix B.2. Example 2: Mechanical MNIST

Base model:

As the base model for all algorithms, we construct two IFNO architectures, for the 

prediction of ux and uy, the displacement fields in the x- and y-directions, respectively. 

On each architecture, the input loading field instance g x ∈ A is mapped to a higher 

dimensional representation via a lifting layer P g x  parameterized as a 1-layer feed 

forward linear layer with width (4,64). Then for the iterative layer in (2.1), we set the 

number of truncated Fourier mode as 13, and parameterize the local linear transformation 
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parameter, W , as a 1-layer feed forward network with width (64,64). In the projection layer, 

a 2-layer feed forward network with width (64,128,1) is employed. In this example we also 

apply the shallow-to-deep technique to accelerate the training, and set the layer depth as 

L = 32.

MetaNO:

During the meta-train phase, we train for the task-wise parameters θP
η  and the common 

parameters θI and θQ on all 9 training tasks, with the context set of 32 samples on each 

task. After the meta-train phase, we load θI and θQ and the averaged θP
η  among all 9 tasks 

as initialization, then train θP on the validation task. In particular, the 32 samples on the 

validation task is split into two parts: 12 samples are reserved for the purpose of training (as 

the context set) and the rest 20 samples are used for the purpose of evaluation (as the target 

set). Then we train the lift layer on the validation task, and tune the learning rate, the decay 

rate, and the weight decay parameter for different context set sizes Ntest  , to minimize the 

loss on the target set. Based on the chosen hyperparameters, we perform the meta-test phase 

on the test task by training for the lift layer on different numbers of samples on its context 

set, then evaluate and report the performance based on its target set. We repeat the procedure 

with different 5 random seeds on each of the 5 test tasks, and calculate means and standard 

errors for the resultant test errors on the target set.

MAML&ANIL:

For MAML and ANIL, we use the same architecture as the base model. During the meta-

train phase, for each task we randomly split the available 32 samples to two sets: 16 samples 

in the support set used for inner loop updates, and the rest in the target set for outer loop 

updates. During the inner loop update, we also follow the standard settings of MAML and 

ANIL [5, 10], and tune the hyperparameters following the same procedure as elaborated 

above for Example 1.

Appendix B.3. Example 3: Experimental Measurements on Biological 

Tissues

Base model:

As the base model, we first construct the lifting layer as a 1-layer feed forward linear layer 

with width (4,16). Then for the iterative layer in we keep 8 truncated Fourier modes and 

parameterize the local linear transformation parameter, W , a 1-layer feed forward network 

with width (16,16). In the projection layer, a 2-layer feed forward network with width 

(16,64,1) is employed. We construct two 4-layer IFNO architectures, for the prediction of ux

and uy, the displacement fields in the x - and y-directions, respectively.

MetaNO:

During the meta-train phase, we train for the task-wise parameters θP
η  and the common 

parameters θI and θQ on all 12 tasks, with the context set of 500 samples on each task. After 

meta-train phase, we load θI and θQ and the averaged θP
η  among all 12 tasks as initialization, 
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then tune the hyperparameters based on the validation task. In particular, the 500 samples 

on the validation task is divided into two parts: 300 samples are reserved for the purpose 

of training (as the context set) and the rest 200 samples are used for evaluation (as the 

target set). Based on the chosen hyperparameters, we perform the test on the test tasks by 

training for the lift layer on different numbers of samples on its context set, then evaluate the 

performance based on its target set.

MAML&ANIL:

For MAML and ANIL, we use the same architecture as the base model, and also split the 

training tasks for the purpose of training and validation as in MetaNO. During the meta-train 

phase, for each task we randomly split the available 500 samples to two sets: 250 samples 

in the support set used for inner loop updates, and the rest in the target set for outer loop 

updates. During the inner loop update, we train for the task-wise parameter with one epoch, 

following the standard settings of MAML and ANIL [5,10].
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Figure 1: 
The architecture of MetaNO based on an integral neural operator model.
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Figure 2: 
Problem setup of example 1: the synthetic data sets. (a) A unit square specimen subject 

to uniaxial tension with Neumann-type boundary condition. (b) & (c) Visualization of an 

instances of the loading field Ty x , and the corresponding ground-truth solutions uη x
from the in-distribution and out-of-distribution tasks, showing the solution diversity across 

different tasks, due to the change of underlying hidden material parameter set. □
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Figure 3: 
Distribution of physical parameters of different tasks in example 1, and the resultant 

magnitude of material response, uη x L2 Ω , on an exemplar loading instance shown in 

Figure 2(b).
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Figure 4: 
Results of the ablation study on example 1: the synthetic data set. Comparison on test errors 

in the in-distribution test, when using the full context set Nη = 500  on training tasks and 

different sizes of context set Ntest   on test tasks.
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Figure 5: 
Results on on example 1: the synthetic data set. Top: The relative test error results showing 

the effect of varying training task context set sizes Nη ∈ 50, 100, 200, 500 . Bottom: The 

relative error of MetaNO and MAML in in-distribution and out-of distribution tests.
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Figure 6: 
Results on example 2: the benchmark (Mechanical MNIST [60]) dataset. (a) The 

visualization of different tasks, their underlying microstructure field bη, and the 

corresponding ground-truth solution. (b) Prediction results based on few samples Ntest  = 2

and Ntest  = 8  on a test task. (c) Comparison of MetaNO and five baseline methods.
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Figure 7: 
Visualization of the processed dataset in example 3: learning the biological tissue responses. 

Subject to the same loading instance, different columns show the corresponding ground-

truth solutions uη x  from different tasks, showing the solution diversity across different 

tasks due to the change of underlying hidden material parameter field.
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Figure 8: 
Comparison of MetaNO and five baseline methods in example 3: learning the biological 

tissue responses. This example features measurement noise and a small number of available 

tasks.
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Table 1:

A comparison of the computational costs (in seconds) and test errors (in relative L2 norm) of MetaNO and 

MetaNO-, in the ablation study on example 1. Here, the total time of MetaNO- includes the Meta-Train Phase 

(Steps 1 and 2) and the step of solving for θP
test  in the Meta-Test Phase (Step 3), and the total time of MetaNO 

includes all steps of both the Meta-Train and Meta-Test Phases (Steps 1–4).

MetaNO- MetaNO

N test Step 3 Step 4 Total Time Test Error Total Time Test Error

2 24 25 45636 11.70%±14.01% 45661 11.72%±14.02%

4 48 49 45660 2.91%±0.90% 45709 2.93%±0.90%

8 93 98 45705 2.07%±0.53% 45803 2.08%±0.53%

12 141 147 45753 1.94%±0.56% 45900 1.92%±0.55%

20 223 247 45835 1.82%±0.41% 46082 1.80%±0.39%

100 976 1025 46588 1.56%±0.35% 47613 1.46%±0.26%

300 2116 2282 47728 1.53%±0.34% 50010 1.27%±0.15%
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