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A variety of organisms have evolved mechanisms to detect and respond to light, in which the 

response is mediated by protein structural changes following photon absorption. The initial step is 

often the photo-isomerization of a conjugated chromophore. Isomerization occurs on ultrafast 

timescales, and is substantially influenced by the chromophore environment. Here we identify 

structural changes associated with the earliest steps in the trans to cis isomerization of the 

chromophore in photoactive yellow protein. Femtosecond, hard X-ray pulses emitted by the Linac 

Coherent Light Source were used to conduct time-resolved serial femtosecond crystallography on 

PYP microcrystals over the time range from 100 femtoseconds to 3 picoseconds to determine the 

structural dynamics of the photoisomerization reaction.

Trans-cis isomerization constitutes a major class of chemical reactions of critical importance 

to biology, where for example light-dependent isomerization of a retinal chromophore 

underlies vision (1). Since isomerization occurs on the femtosecond (fs) to picosecond (ps) 

time scale, ultrafast time-resolved methods are necessary to follow the reaction in real time. 

The spectral response after photon absorption reveals the dynamics of the molecules 

involved (2-5) but does not directly observe the associated structural changes, which have to 

be inferred by computational approaches (6). Until recently it has been impossible to 

directly determine the structure of molecules on ultrafast time scales. With the recent 

availability of hard X-ray pulses on the fs time scale emitted by free electron laser (FEL) 

sources such as the Linac Coherent Light Source (LCLS), the ultrafast fs to ps time scale has 

become experimentally accessible (7-11). Photochemical reactions (12) are initiated by 

photon absorption, which promotes electrons into the excited state. Thereafter, the nuclei 

experience - and the structure evolves on - the excited state potential energy surface (PES) 

(13, 14). The shape of the surface controls the subsequent nuclear dynamics. After returning 

to the ground state PES, the reaction continues and is driven thermally. Although structures 

of longer-lived excited state intermediates have been characterized with ~100 ps time 

resolution at synchrotrons (15-19), the fs structural dynamics of ultrafast photochemical 

reactions can only be investigated at an X-ray FEL (11). The photoactive yellow protein 

(PYP) is an ideal macromolecular system with which to investigate ultrafast trans to cis 
isomerization. Its chromophore, p-coumaric acid (pCA), can be photoexcited by absorbing a 

photon in the blue region of the spectrum. Upon photon absorption PYP enters a reversible 

photocycle involving numerous intermediates (Fig. 1A). The primary photochemical event 

that controls entry into the photocycle is isomerization of pCA about its C2=C3 double bond 

(see Fig. 1B for the pCA geometry). The pCA chromophore remains electronically excited 

for a few hundred fs (3, 5, 20). Excited state dynamics is thought to drive the configurational 

change from trans to cis (3, 21). The chromophore pocket within the PYP protein is 

sufficiently flexible to allow certain relatively large atomic displacements, but also imposes 

structural constraints that may affect the pathway and dynamics of isomerization (22, 23). In 

particular, the pCA chromophore is constrained by a covalent bond to the Cys69 side chain 

of PYP (Fig. 1B), by unusually short hydrogen bonds between its phenolate oxygen and 

nearby glutamate and tyrosine side chains (24), and by a hydrogen bond between the 

carbonyl oxygen of its tail and the main chain amide of Cys69.

Previously, we showed that time-resolved pump-probe serial femtosecond crystallography 

(TR-SFX) could be successfully carried out on PYP on the ns to microsecond (μs) time 
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scales. Difference electron density (DED) maps of very high quality, which compare the 

structures before (dark) and after (light) absorption of a photon (25), were obtained to near-

atomic (1.6 Å) resolution. These experiments used a nanosecond (ns) laser pulse to initiate 

isomerization and subsequent structural changes. An overall reaction yield as high as 40% 

(25) could be reached. However, achieving fs time resolution requires that a fs pump laser 

pulse be used, which restricts the reaction yield to the much lower value of the primary 

quantum yield (around 10%) and correspondingly reduces the structural signal. The energy 

of fs pulses i.e. the number of photons per pulse must also be limited to avoid damaging 

effects from their significantly higher peak power. Here, we present results of TR-SFX 

experiments covering the time range from 100 fs to 3 ps. We directly follow the trans-cis 
isomerization of the pCA chromophore and the concomitant structural changes in its protein 

environment in real time. Full details of the experiment and data analysis are provided in the 

Supplementary Materials (SM). Light-initiated structural changes in PYP were investigated 

at the Coherent X-ray Imaging (CXI) instrument of the LCLS (26). Electronic excitation was 

initiated in microcrystals of PYP by fs pump laser pulses (λ=450 nm). Permanent bleaching 

of the chromophore was avoided by limiting the laser pulse energy to 0.8 mJ/mm2 (5.7 

GW/mm2). Laser pulse duration, spectral distribution and phase were characterized by 

‘Second Harmonic Generation Frequency Resolved Optical Gating’ (SHG-FROG) (27). The 

pulse duration was 140±5 fs and had both positive group delay dispersion and third order 

dispersion to maximize the conversion to the excited state (28). Offline spectroscopic 

experiments on thin crushed crystals of PYP had established that photoexcitation with fs 

laser pulses under comparable conditions could be as high as 10% without inducing damage 

(SM). The structural changes induced by the laser pulse were probed with 40 fs X-ray FEL 

pulses at 9 keV (1.36 Å). Both the pump-probe and the reference X-ray diffraction data were 

collected at the full 120 Hz pulse repetition rate of the LCLS to a resolution of 1.6 Å and 1.5 

Å, respectively. To address concerns that the detector response might be influenced by the 

stray light of the intense fs laser pulse, the reference data were collected as a negative time 

delay, where the fs laser pulse arrived 1 ps after the X-ray pulse.

To assess whether fs laser pulses excited a sufficiently large number of molecules under 

these experimental conditions, we first performed a positive control experiment with a 200 

ns pump-probe time delay, where large structural differences between the light and dark 

states have been well characterized (25, 29). From the pump-probe TR-SFX data and the 

reference data, DED maps were calculated (SM). Fig. 1C shows that the fs laser pulses are 

able to initiate sufficient entry into the photocycle to produce strong, chemically meaningful 

features. The 200 ns DED map is essentially identical to maps determined earlier at both the 

LCLS (25) and at BioCARS (29) at a time delay of 1 μs, and can be interpreted with the 

same mixture of intermediates, pR1 and pR2. The extent of reaction initiation is 12.6 % as 

determined by fitting a calculated ‘pR1&pR2 minus pG’ difference map to the 200 ns DED 

map, a value which agrees with the maximum extent of excitation determined 

spectroscopically (7 – 10%). The fs time scale was explored by using nominal settings for 

the time delay of 300 fs and 600 fs. The timing jitter between the 140 fs laser pump and 40 

fs X-ray probe pulses is ~280 fs (8). The jitter was measured for every X-ray pulse by a 

timing tool (30, 31), which was combined with adjustments that take longer-term 

experimental drift into account (see SM). Thus, each individual diffraction pattern was 
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associated with a definite “time stamp”. However, due to the drift, the time stamps were 

non-uniformly distributed in time (Fig. S1). Since the quality of structure amplitudes and of 

the DED maps derived from them depends on the number of diffraction patterns, indexed, 

time-stamped diffraction patterns were binned into 8 different pump-probe delays with about 

the same number of patterns (40,000) in each bin , spanning the time range from 100 to 1000 

fs (Tab. S1B). A set of diffraction patterns at a time delay of 3 ps was also collected. Since 

the jitter and drift are much smaller than the delay, time stamping was not necessary for the 

3 ps or the 200 ns delays. The values of R-split for all datasets is 7.5 – 9.9% which indicates 

the high quality of the diffraction data, and results in DED maps of comparable, good 

quality for all delays. Maps at 7 time delays are shown in Fig. 2. Visual inspection of these 

maps reveals an important qualitative result. The features in all maps at delays less than 500 

fs are similar (compare Fig. 2, A-C); and features in all maps at delays greater than 700 fs 

are also similar (compare Fig. 2, D-G), but differ from those in the first set. Consequently, 

there must be a structural transition between the 455 fs and 799 fs time delays that gives rise 

to the two distinct sets of features. To identify with more precision the time delay at which 

this transition occurs, the time-stamped diffraction patterns were re-binned into 16 narrower 

time bins with about 20,000 patterns in each bin (Tab. S1A). The resultant time series of 16 

DED maps in the fs time range (together with the map for the 3 ps time delay) were 

subjected to singular value decomposition (SVD; Fig. S2B) (32). The volume occupied by 

the pCA chromophore, by the Cys69 sulfur and the Glu46 carboxyl was included in the 

analysis. When a time series exhibits a change, a corresponding change should be even more 

readily recognizable in the right singular vectors (rSVs). This change is evident in the 

magnitude of both the first and second rSVs around 550 fs (red arrow in Fig. S2B). The 

substantial increase in the magnitude of the first right singular vector after 155 fs (Fig. S2B) 

shows the earliest (fastest) evolution of the structure after excitation. We tentatively associate 

the structural transition at around 550 fs, qualitatively evident by inspection of the DED 

maps and more quantitatively in their SVD analysis, with the trans to cis isomerization of 

the pCA chromophore. The transition occurs within ~180 fs (Fig. S2B), but its exact 

duration needs to be further established. Rate kinetics would require that after a ~500 fs 

dwell time the transition time would be stretched beyond the bandwidth limited rate. Yet the 

observed transition time matches the experimental bandwidth of 3.15 THz. Therefore the 

ensemble phase relation imparted by the optical pulse appears to be maintained for the 

duration of the dwell time, which may be supported by coherent motion. Although no 

oscillatory motion was detected in the TR-SFX data (they may be masked by the non-

uniform data sampling), the time delay is however within the vibrational dephasing time of 

the PYP S1 state (3) and ground state modes in proteins (33). We further propose that at 

~550 fs the system lies at or very close to a conical intersection (20) (Fig. S8), a branch 

point from which molecules either continue towards the cis configuration and enter the 

photocycle, or revert to the trans configuration and return to the resting (dark) state.

To identify the isomerization, refined structures before and after the transition are required. 

Initially, date in bins with 40,000 indexed diffraction patterns each were used, and 

preliminary PYP structures refined against these data. Refinement details are in the SM. The 

3 bins with the shortest delays can be interpreted with chromophores in a twisted trans 
configuration (Fig. 2 A-C). After 700 fs the configuration is near cis (Fig. 2 D-E). The time-
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course of the refined ϕtail torsional angles can be fit with a transition time identical to that 

observed in the second rSV (Fig. 3). We took advantage of the similarity of the DED maps 

for extended time ranges before and after the transition to further increase the accuracy of 

the refined structures. We combined the diffraction patterns into two bins: the fast time scale 

(100-400 fs with 81,237 patterns) and a slower time scale (800-1200 fs with 157,082 

patterns) (Tab. S1C). We refined the structure denoted PYPfast against the 100-400 fs data, 

and that denoted PYPslow against the 800-1200 fs data. The refinement statistics are 

presented in Tab. S2. The DED maps are shown in Fig. 3, inserts (see also Fig. S9B,D), with 

the corresponding, refined structures of PYPfast and PYPslow in pink and light green, 

respectively. The 3ps DED map and the refined PYP3ps structure are shown in Fig. 2G. We 

used as many diffraction patterns as possible to refine PYPslow (Fig. S12 B,D) and PYP3ps 

because at the transition, roughly 30% of the excited molecules return directly to the dark 

state, no longer contribute to the DED maps and reduce the signal. We emphasize that 

refinement of transient structures populated on an ultrafast timescale is challenging, since 

these structures are very far from equilibrium and likely to be highly strained. Restraints in 

standard libraries are derived from structures at equilibrium and are therefore not applicable. 

In order to provide restraints more appropriate for this refinement, we employed excited 

state quantum mechanics/molecular mechanics (QM/MM) calculations on PYP (20, 34) 

(SM). In addition, we employed an iterative procedure, in which improved difference phases 

ϕΔF,calc were obtained and used with observed difference structure factor amplitudes during 

refinement (SM). The structural results of the refinement are summarized in Tab. 1. For the 

shortest time delays (up to about 450 fs), the PYP chromophore tail adopts a highly strained, 

twisted trans configuration, in which the C1-C2=C3-C1’ torsional angle ϕtail (shown by the 

red line spanning these four atoms in Fig. 1B) is ~140°. The position of the C2=C3 double 

bond in PYPfast is displaced by ~1Å behind the chromophore plane (loosely defined by the 

Cys69 sulfur, the tail carbonyl oxygen and the atoms of the phenyl ring; Fig. 2A-C). 

Hydrogen bonds to Glu46 and Tyr42, which are unusually short in the reference (dark) 

structure (24), are substantially elongated from 2.5 Å to 3.4 Å (Tab. 1). This structure is 

primed for the transition to cis. During the structural transition, substantial rotation about the 

double bond takes place. The head of the chromophore pivots about tail atom C2 and thereby 

aligns the C2=C3 bond along the tail axis. Simultaneously, the head rotates about the C3-C1’ 

single bond. (The complex motions can be effectively illustrated by using an educator’s stick 

model set, see Fig. S3). The phenolate oxygen (Fig. 1B, O4’) moves even further away (3.6 

Å, Tab. 1) from Glu46 (Fig. 2D-F and Fig. S9C-D), thereby breaking the hydrogen bond. At 

time delays longer than about 700 fs, ϕtail has decreased to ~50° (PYPslow, Fig. 3), which is 

characteristic of a cis configuration. PYPslow relaxes further towards the 3 ps structure 

(PYP3ps), in which the hydroxyl oxygen of the head re-establishes its hydrogen bond with 

Glu46 (Fig. 2G). ϕtail changes slightly to ~35°. The PYP3ps structure is already very similar 

to the early structures derived with 100 ps time resolution by independent, synchrotron-

based approaches (Tab. 1; PDB entries 4I38 and 4B90) (22, 23), and has evolved only 

slightly from PYPslow by establishing shorter hydrogen bonds to Tyr42 and Glu46.

The structures derived from the refinements confirm that the transition at around 550 fs is 

indeed associated with a trans to cis isomerization. Theoretical considerations (20) (Fig. S8) 

suggest that during isomerization the PYP chromophore relaxes through a conical 
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intersection between the electronically excited state PES and the ground state PES. 

Accordingly, structures between 100 and 400 fs can be identified as electronically excited, 

whereas the structures at time delays > 700 fs can be identified with the electronic ground 

state. In both the excited and ground states, structural changes i.e. translation of atoms may 

also have occurred. Our experiments identify the ultrafast dynamics of both the excited state 

structures and the ground state structures (Figs. 2-3). Since we restricted our pump laser 

pulses to moderate power, we avoid damaging nonlinear effects (e.g. two photon absorption) 

and most excited molecules populate the excited state surface S1 (5). Part of the stored 

energy is used to rapidly displace the chromophore by about 0.7 Å within the crowded 

molecular environment in the interior of PYP (Fig. 2A, Tab. 1). If this initial displacement is 

complete after 250fs the chromophore must have experienced an acceleration of ~2×1015 

m/s2 and attains a final velocity of 500 m/s (SM). Fig. 1B shows that 9 carbon atoms, two 

oxygens and 7 hydrogen atoms (molecular mass = 147 g/mol) are displaced. During the first 

few hundred fs the force on the chromophore is ~500 pN which is enormous compared to 

forces in single molecules at thermal equilibrium which are usually only a few pN (35). The 

origin of the force is due to the change of the potential energy surface when the 

chromophore is excited to the electronic excited state which affects the intra and 

intermolecular interactions of the chromophore as also inferred from ultrafast Raman 

spectroscopy(3). The energy required to displace the chromophore is ~0.2 eV which is ~10% 

of the blue photon energy (2.76 eV) that starts the reaction. It appears that by rapidly 

evolving down the excited state PES, part of the photon energy is initially converted into 

kinetic energy which is then released by collision of the chromophore atoms with the 

surrounding protein atoms comprising the chromophore pocket. The excited chromophore 

loses 0.12 eV energy by intramolecular vibrational energy redistribution on the sub-100 fs 

time scale (39) which can be roughly estimated from the Stokes shift by comparing 

absorption and fluorescence spectra(3). Accordingly,~85% of the photon energy remains 

stored as strain and electronic excitation in the chromophore before isomerization occurs. 

On passing through the conical intersection (20), the molecules either revert towards the 

initial dark state (30% of the excited molecules, Tab. 1, see also Tab. S3) or continue 

relaxing towards the cis isomer (70%), gradually releasing the excess energy as heat. 

Because the chromophore pocket tightly restricts the chromophore head displacements, 

further structural changes must be volume-conserving i.e. they minimize the volume swept 

out by the atoms as they move. Accordingly, the chromophore performs the complex 

motions described above (Fig. S3). Although the energy stored in the chromophore is 

sufficient to break the hydrogen bonds (~0.1 eV), the spatial constraints imposed by the 

chromophore pocket direct the reformation of the hydrogen bonding network at longer time 

delays (Tab. 1). This is a ‘macromolecular cage effect’ reminiscent of the ‘solvent cage 

effect’ in liquid chemical dynamics (36). The ‘macromolecular cage’ in PYP, however, is 

soft enough to allow certain specific, relatively large (up to 1.3 Å, Tab. 1) structural changes. 

This contrasts with crystals of small molecules, where the stronger crystal lattice constraints 

usually do not allow such large displacements. Hence, biological macromolecular 

crystallography aimed at elucidating biological function may also provide insight into the 

reaction mechanisms of small molecules.
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To assess global conformational changes of PYP on the fs time scale, we calculated the 

radius of gyration Rg from each refined structure (SM). Rg fluctuates by only 0.2% in all 

structures from 200 fs to 200 ns (Tab. 1). An increase of Rg by up to 1 Å determined by 

others using X-ray scattering in solution upon photo-dissociation of CO from CO-myoglobin 

in solution (9) is not observed in our PYP crystals. Concomitant, systematic large volume 

changes are also not apparent in PYP crystals over the first 3 ps that our data span. Our data 

show no evidence for a protein quake (9, 10, 37), characterized by an ultrafast and large 

change in Rg that occurs significantly before a large volume change. The reason for this is 

unclear and will require further experiments.

Ultrafast fluorescence and transient absorption spectroscopy of PYP has shown that excited 

state decay is multi-phasic (3, 5, 38). The fast (sub-ps) time constants are significantly more 

productive in creating the cis-like photoproduct than the slow (ps) time constants; the long-

lived excited state population primarily decays back to the ground state (5, 39). With 

excitation at 450 nm, at least 50% of the total isomerization yield is generated with a 

dominant ~600 fs time constant (5), which agrees with our observation of a transition at 

~550 fs. It should be noted that a ‘ground state intermediate’ with a 3-6 ps life time has been 

proposed by ultrafast spectroscopy (39). However under the conditions employed here, the 

peak concentration of this intermediate is expected to be small (5). In contrast to 

spectroscopic techniques that reported vibrational coherence with 50 cm−1 and 150 cm−1 

frequency (3, 40), we could not unambiguously detect oscillations in our data (see above). 

Intense femtosecond optical pumping of PYP crystals generates both excited state and 

ground state vibrational coherences within the 3.15 THz experimental bandwidth(41). It will 

be an important goal of future experiments to structurally characterize these coherences 

using fs TR-SFX. Nevertheless, our data show that before 400 fs there are large distortions 

corresponding to a Franck-Condon (FC) excited state (42). The nuclear dynamics of the FC 

excited state at 100-200 fs agrees with the conclusions from ultra-fast spectroscopy (3, 

42-45) that also suggest a distortion of the C2=C3 double bond on similar timescales, as in 

the PYPfast structure. The isomerization at 550 fs through the conical intersection between 

the excited state and ground state PES is in reasonable agreement with the timescales for 

isomerization reported by others (3, 5, 42, 46). After passing through the conical 

intersection, the chromophore is cis-like and still highly strained. The transiently-broken 

hydrogen bond is reestablished quickly as the structure relaxes, exemplified by the PYP3ps 

structure (Fig. 3). Further relaxation on the ground state PES completes the initial phase of 

the isomerization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A. The PYP photocycle from the perspective of a time-resolved crystallographer. 

Approximate time scales are given. The fs/ps time scale (in red) is structurally charted in this 

paper. B. The chemical structure of the pCA chromophore. The red line marks the four 

atoms that define the torsional angle ϕtail about the C2=C3 bond. C. Results of the positive 

control experiment at a 200 ns time delay. Reaction initiated by fs laser pulses. Negative 

(red) and positive (blue) DED features on the −3σ/3σ level. A mixture of the pR1 (magenta) 

and pR2 (red) structures is present. Main signature of pR1: features β1 and β2. Main 

signature for pR2: features γ1 and γ2. Structure of PYPref (dark) in
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Figure 2. 
Trans to Cis isomerization in PYP. Weighted DED maps in red (−3 σ) and blue (3σ); front 

(upper) and side view (lower). Each map is prepared from about the same number of 

diffraction patterns, except the 3 ps map (see Tab. S1 B-C). The reference, dark structure is 

shown in yellow throughout; structures before the transition and still on the electronic 

excited state PES are shown in pink; structures after the transition and on the electronic 

ground state PES are shown in light green. Important negative difference density features are 

denoted α, positive features as β in panels B and G. Pronounced structural changes are 

marked by arrows. A-C: time-delays before the transition. A. Twisted trans at 142 fs, ϕtail 

154°. B. Twisted trans at 269 fs, ϕtail 140° some important residues are marked; dotted lines 

in B: hydrogen bond of the ring hydroxyl to Glu46 and Tyr42. C. Twisted trans at 455 fs, 

ϕtail 144°; dotted line in C: direction of C2=C3 double bond. D-G: time delays and 

chromophore configuration after the transition. D. Early cis at 799 fs, ϕtail 50°. E. Early cis 
at 915 fs; dotted line in E: direction of C2=C3 double bond. F. Early cis at 1023 fs; for E and 

F ϕtail ~65°. G. 3 ps delay; dashed line: direction of C2=C3 double bond, feature β1; ϕtail is 

35°.
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Figure 3. 
Trans to cis isomerization in PYP. Pink: twisted trans on excited state PES; light green: cis 
on ground state PES. Torsional angle ϕtail (solid spheres) from structural refinement at 

various delays (see also Tab. S3). Gray region: not time-resolved. Dashed line: fit with eqn. 

S2, with a transition time of about 590 fs (see also Fig. S2). Inserts: structures of PYPfast 

(pink), PYPslow and PYP3ps (light green), and dark state structure PYPref in yellow. 

Difference electron density in red (−3σ) and blue (3σ).
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Table 1

Geometry of PYP structures. The PYPfast structure was refined using a data bin spanning 100-400 fs with 

81327 snapshots, and the PYPslow structure from a bin spanning 800 – 1200 fs with 157082 snapshots (Tab. 

S1b). Structures of IT, pR0 and pB1 from Protein Data Bank, code listed in brackets (22, 23, 47). Uncertainties 

of the torsional angles can be estimated to be +/− 20° by displacing the 4 atoms that define the angle with the 

coordinate error (0.2 Å).

PYPref
(dark)

PYPfast PYPslow PYP3ps PYP200ns
(fs-laser)
pR1/pR2

IT
(4I38)

pR0
(4B90)

pB1
(1TS0)

Time Delay 0 100-
400 fs

800 -
1200 fs

3 ps 200 ns 100
ps

100 ps ms

Torsional Angles [°]

C1-C2=C3-C1’
(ϕtail)

172 136 53 35 3/−8 90 33 −27

O1-C1-C2=C3 −15 −21 28 30 12/−6 11 29 −10

CB-S-C1-C2 −185 −171 −164 −137 163/−165 −136 −123 180

Hydrogen bonds [Å]

pCA-O4’ -
Glu46-Oε

2.50 3.40 3.60 2.94 4.97/2.88 2.73 2.73 8.03

pCA-O4’ -
Tyr42-Oη

2.54 2.92 2.63 2.88 2.97/2.66 2.57 2.59 5.19

pCA-O1 –
Cys69-N

2.77 3.11 2.50 3.12 3.37/4.29 3.04 3.05 2.88

others

<pCA>a [Å] 0 0.66 0.78 0.60 1.55/0.81 0.67 0.68 2.39

<global>b [Å] 0 0.20 0.19 0.24 0.13 0.13 0.19 0.17

Radius of
gyration c [Å]

13.32 13.33 13.30 13.34 13.29 - nd - - nd - - nd-

Volume [Å3] 17831 17856 17833 17838 17672 17830 17683 17807

ΔV to dark [Å3] 0 25 2 7 −159 −1 −148 −24

Photoactivation
Yield [%]d

- na - 15.2 9.6 10.1 12.5c (5%)e
(10%)e

(10%)e

a
Mean displacement of equivalent chromophore atoms relative to dark (SM).

b
Mean displacement of equivalent cα atoms relative to dark (SM).

c
See SM for the calculation.

d
Determined by by fitting calculated DED maps to the experimental DED maps in the chromophore region.

e
Estimate
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