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ABSTRACT OF THE DISSERTATION

Combining omics approaches 

to evaluate biomarkers for complex brain disorders

by 

Marcelo Ricardo Francia

Doctor of Philosophy in Neuroscience

University of California, Los Angeles, 2024

Professor Roel A. Ophoff, Chair

This dissertation is dedicated to enhancing the discovery of biologically relevant information for 

endophenotypes and biomarkers for complex brain disorders through the integration of data 

from multiple diverse omics domains, including genomics, transcriptomics, epigenomics, and 

metabolomics. Chapter 1 focuses on evaluating the functional genomic features captured by 

skin fibroblasts as an in vitro model for circadian studies, particularly within the context of 

Bipolar Disorder. This investigation utilizes longitudinal gene expression and chromatin 

accessibility data from six cell lines across thirteen timepoints. In Chapter 2, we delve into how 

distinct biological layers, including genetics and cerebrospinal fluid metabolites, contribute to 

understanding various aspects of Alzheimer's Disease pathology as reflected in established 

cerebrospinal fluid biomarkers, such as amyloid beta 42, total tau, and phosphorylated tau 

cerebrospinal fluid levels. Our findings underscore the utility of integrating functional genomics 

platforms to characterize the features that an in vitro model captures and assess their 

relevance for specific endophenotypes and disorders. Additionally, through CSF metabolomics 
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analysis, we identify novel metabolites associated with phosphorylated tau and total tau CSF 

levels, such as Anserine and Fucose. This work signifies another step forward in advancing our 

comprehension of the underlying biology of complex brain disorders. By leveraging current 

technological advancements and addressing the challenges of integrating omics approaches, 

we aim to unravel new insights and avenues for diagnosis, treatment, and management of 

these debilitating conditions.


  

iii



The dissertation of Marcelo Ricardo Francia is approved.

Christopher S. Colwell

Michael Gandal

Valerie A. Arboleda

Roel A. Ophoff, Committee Chair

University of California, Los Angeles

2024  

iv



DEDICATION

Por los que vendrán

For those that will come

 

v



TABLE OF CONTENTS

ABSTRACT OF THE DISSERTATION	 
.............................................................................................ii

DEDICATION	 
..................................................................................................................................v

TABLE OF CONTENTS	 
.................................................................................................................vi

LIST OF ABBREVIATIONS	 
...........................................................................................................viii

LIST OF FIGURES	 
.........................................................................................................................x

LIST OF TABLES	 
..........................................................................................................................xii

ACKNOWLEDGMENTS	 
...............................................................................................................xiii

CURRICULUM VITAE	 
...................................................................................................................xv

INTRODUCTION	 
............................................................................................................................1

Chapter 1: Fibroblasts as an in vitro model of circadian genetic and genomic studies: A 

temporal analysis	 
..........................................................................................................................8

INTRODUCTION	 
................................................................................................................8

RESULTS	 
.........................................................................................................................10

DISCUSSION	 
...................................................................................................................15

MATERIALS AND METHODS	 
..........................................................................................20

Chapter 1 Figures	 
............................................................................................................26

Chapter 1 Supplementary Figures	 
...................................................................................30

Chapter 2: The integrative analysis of Cerebrospinal Fluid biomarkers of Alzheimer’s Disease, 

Metabolomics, and Genetic risk reveals novel metabolite associations	 
.....................................50

INTRODUCTION	 
..............................................................................................................50

RESULTS	 
.........................................................................................................................52

DISCUSSION	 
...................................................................................................................56

METHODS	 
.......................................................................................................................61

Chapter 2 Tables	 
..............................................................................................................67

vi



Chapter 2 Supplementary table	 
.......................................................................................68

Chapter 2 Figures	 
............................................................................................................70

Chapter 2 Supplementary Figures	 
...................................................................................75

CONCLUSIONS	 
..........................................................................................................................80

REFERENCES	.............................................................................................................................85

vii



LIST OF ABBREVIATIONS 

ABBREVIATION DEFINITION 

AD	 	 	 Alzheimer’s Disease


ADC	 	 	 Amsterdam Dementia cohort


ADHD	 	 	 Attention-Deficit/HyperactivityDisorder


ALS	 	 	 Amyotrophic lateral sclerosis


ATN	 	 	 Amyloid, tau, and neurodegeneration


BD	 	 	 Bipolar Disorder


CPM	 	 	 Counts per million


CSF	 	 	 Cerebrospinal fluid


DSM	 	 	 Diagnostic and Statistical Manual of Mental Disorders


EHRs	 	 	 Electronic health records


FBS	 	 	 Fetal bovine serum


FDR	 	 	 False discovery rate


FTD	 	 	 Frontotemporal dementia


GO	 	 	 Gene ontology


GR	 	 	 Glucocorticoid receptor


GRE	 	 	 Glucocorticoid response element


GSA	 	 	 Global Screening Array 


GWAS		 	 Genome-wide association studies


HPA	 	 	 Hypothalamic-pituitary-adrenal axis


MAF	 	 	 Minor allele frequency


MCI	 	 	 Mild cognitive impairment


MDD	 	 	 Major depression disorder


meQTLs	 	 Metabolite quantitative trait loci


NC	 	 	 Normal cognition


viii



NFT	 	 	 Neurofibrillary tangles


NMF	 	 	 Non-negative matrix factorization


NRF	 	 	 Non-redundant Fraction


OCRs	 	 	 Open chromatin regions


P-Tau	 	 	 Phosphorylated tau


PBC	 	 	 PCR Bottlenecking Coefficients


PET	 	 	 Positron emission tomography


PGC	 	 	 Psychiatric Genomics Consortium


PRS	 	 	 Polygenic risk scores


PTSD	 	 	 Post-traumatic stress disorder


SCD	 	 	 Subjective cognitive decline


SCN 	 	 	 Suprachiasmatic nucleus


sLDSC		 	 Stratified Linkage Disequilibrium Score Regression


SNP	 	 	 Single nucleotide polymorphism


T-Tau	 	 	 Total tau


VUmc	 	 	 VU University Medical Center


WGCNA	 	 Weighted Gene Co-Expression Network Analysis


ix



LIST OF FIGURES 

Figure 1.1. Eigengene values for RNA-seq modules obtained from WGCNA.	 
............................26

Figure 1.2. Expression patterns and mixed non-linear modeling of circadian genes.	 
................26

Figure 1.3 Motif enrichment analysis of time significant peak regions.	 
......................................28

Figure 1.4 sLDSC enrichment results for psychiatric disorders and a circadian trait.	 
................29

Supplementary Figure S1.1 Principal component analysis of RNA-seq temporal dataset.	 
........30

Supplementary Figure S1.2 Circadian-bioluminescence transduction experiment results.	 
.......31

Supplementary Figure S1.3 WGCNA modules obtained from the RNA-seq temporal dataset.	 
.33

Supplementary figure S1.4 Mixed non-linear modeling of circadian genes.	 
...............................33

Supplemental Figure S1.5 Known interactions between circadian genes present identified in 

this dataset.	 
.................................................................................................................................42

Supplemental Figure S1.6 Quality Control for ATAC-seq data	 
....................................................43

Supplemental Figure S1.7 Eigengene values for ATAC-seq modules obtained from WGCNA.	 
..44

Supplementary Figure S1.8 Genomic annotation of the consensus peak regions and selected 

time significant regions.	 
..............................................................................................................46

Supplementary figure S1.9 Schematic of synchronization and collection times.	 
.......................49

Figure 2.1 Study Design Outline	 
..................................................................................................70

Figure 2.2 CSF metabolites correlations with CSF AD biomarkers	 
.............................................70

Figure 2.3 Prediction of P-Tau and T-Tau CSF levels using CSF metabolites.	 
............................73

Figure 2.4 Pathway analysis of metabolites correlated with P-Tau and T-Tau.	 
...........................74

x



Supplementary Figure S2.1 CSF metabolites and AD CSF Biomarkers correlations stratified by 

cofactors	 
.....................................................................................................................................75

Supplementary Figure S2.2 Pathway enrichment analysis results by MetaboAnalist	 
................76

Supplementary Figure S2.3 Effect of APOE alleles on the AD PRS	 
............................................77

Supplementary Figure S2.4 Associations between CSF metabolites and Polygenic Scores	.....78

xi



LIST OF TABLES

Table 2.1: Cohort characteristics	 
.................................................................................................67

Table 2.2 Summary of the strongest CSF metabolite correlations for T-Tau and P-Tau CSF 
levels	 
...........................................................................................................................................67

Table 2.3 AD Biomarkers prediction results	 
................................................................................68

Table S2.1 List of all consistent metabolite predictors and factors (Frequency > 800) for P-Tau 
and T-Tau CSF levels	...................................................................................................................68

xii



ACKNOWLEDGMENTS

“The Universe is made of stories, not atoms”, said Muriel Rukeyser. As scientists, we are 

fundamentally story tellers. We pursue life’s most beautiful mysteries, and weave narratives to 

understand them. Narratives that were built upon the work of those that came before us. Work 

across multiple generations, lessons learned through time. I would not be here if not for the 

support of many individuals, whose influence on the road so far cannot be overstated. Firstly, I 

am truly grateful to Dr. Roel A. Ophoff for his support and mentorship during my graduate 

experience. The trust he placed upon me allowed me to grow into the independent scientist that 

I am today. Thank you as well to Dr. Valerie Arboleda, Dr. Chistopher Colwell and Dr. Michael 

Gandal for their insightful feedback and encouraging advice over the past years on my doctoral 

committee. 

Thank you to all of the Ophoff lab, without whom this work would not have been 

possible. Merel, for her wet lab work that was used to generate the datasets used in this 

dissertation, and also for her great encouragement since the beginning. To Naren, who worked 

on analyzing the datasets presented in chapter two, and whose presence makes the laboratory 

a brighter space. To Toni, without whom I would not have succeeded in this line of work, and for 

her great work on all these projects. To Juan, for his guidance on statistics and thinking one step 

at a time, and for showing me that it can be done. Thank you to Lingyu, Carolinne, Lianne, 

Kevin and Artemis. It was great great working with you all.

Over the past five years, many incredible friendships have supported and stood beside 

me across this unknown road. Thank you Leo, for being the first friendship that I made in the 

West. Ari, for showing me how good people can be. Sarah, for all the wonderful adventures that 

we had. Thank you Gloria, Nataly, Nathaly, Paul for coming along in such long and rewarding 

trips. It has been a blessing being able to experience the wonders of nature with you all. Thank 

xiii



you Gil, for all those tunes and conversations. Thank you Ray, for being a true friend, and for 

giving me a home on this foreign land. And thank you to all the people that created a space for 

me, in which we can all be weird. Thank you Ward, Carolinne, Doug, Sara.

Thank you Agosto, for showing me how to be a scientist. And thank you, David, for 

telling me that I can be scientist. Without you, I would have probably been a physician. Thank 

you, from the bottom of my heart for being a brother. Thank you Nao, Helix and Rusty, for 

always being a call away. Thank you Mateo for all these years of friendship. 

And lastly, thank you to my family. To my father, for financially supporting me for the past 

years, and giving me the opportunity of a lifetime. To my mother, for all the challenges that we 

overcame, teaching me to be strong and to persevere. And to Del, for being a supportive friend. 

To Eduardo, for teaching me tenacity and to have an inquisitive nature about things. And to all 

others who have followed my journey so far, I promise to not disappoint your expectations. 

For chapter one, this study was supported by funding from the National Institutes of Health 

(NIH), research grants R01 MH090553, R01 MH115676, the NARSAD Distinguished 

Investigator Grant (to Roel A. Ophoff), and NS048004 T32 Training grant in Neurobehavioral 

genetics.

For chapter 2, I am greatly appreciative to those individuals who donated the CSF 

samples on which this study was based. This work has received support from the EU/EFPIA 

Innovative Medicines Initiative Joint Undertaking (EMIF grant number 115372) and Stichting 

Dioraphte. Genotyping of the Dutch case-control samples was performed in the context of 

EADB (European Alzheimer DNA biobank) funded by the JPco-fuND FP-829- 029 (ZonMW 

projectnumber 733051061). This project was funded by the NIH National Institute on Aging 

(NIA) grant RF1AG058484 and the National Institute of Mental Health (NIMH) grant 

R01MH115676 to Roel A. Ophoff. 

xiv



CURRICULUM VITAE

EDUCATION

2019 - Current PhD Candidate, Neuroscience

University of California, Los Angeles | Los Angeles, CA

2015 - 2019 BS, Cellular and Molecular Biology

University of Puerto Rico, Rio Piedras | San Juan, PR

PUBLICATIONS

Francia, Marcelo; Bot, Merel; Boltz Toni; De la Hoz, Juan; Boks, Marco; Kahn, Rene; Ophoff, 

Roel. (2023). Fibroblasts as an in vitro model of circadian genetic and genomic studies. 

bioRxiv : the preprint server for biology. 10.1101/2023.05.19.541494v2. Submitted and under 

review for publication.

Francia, Marcelo; Ramesh, Naren; Reus. Lianne M.; Boltz, Toni; van der Flier, Wiesje M.; 

Visser, Pieter Jelle; van der Lee, Sven; Teunissen, Charlotte E.; Pijnenburg, Yolande A.L.; den 

Braber, Anouk; Loohuis, Loes Olde; Tjims, Betty M.; Ophoff, Roel. (2024). The integrative 

analysis of Cerebrospinal Fluid biomarkers of Alzheimer’s Disease, Metabolomics, and Genetic 

risk reveals novel metabolite associations. Manuscript in preparation

Reus, Lianne; Boltz Toni; Francia, Marcelo; Bot, Merel; Ramesh, Naren; Koromina, Maria; van 

der Flier, Wiesje F.; Jelle Visser, Pieter; van der Lee, Sven; Tjims, Betty M.; Teunissen, Charlotte 

E.; Olde Loohuis, Loes; Ophoff, Roel. (2023). Quantitative trait loci mapping of circulating 

metabolites in cerebrospinal fluid to uncover biological mechanism involved in brain-related 

phenotypes. bioRxiv : the preprint server for biology. 10.1101/2023.09.26.559021. Submitted 

and under review for publication. 

xv



INTRODUCTION

Complex brain disorders, including Alzheimer’s disease (AD), other dementias, and mood 

disorders such as bipolar disorder (BD), are estimated to be the leading cause of overall 

disease burden worldwide, contributing significantly to the increase in disability-adjusted life-

years [1]. The profound impact of these conditions on global health underscores the pressing 

need for advancements in diagnosis and treatment. However, their heterogeneous etiology and 

diverse symptomatology present challenges in both accurate diagnosis and effective 

treatment. AD, as the foremost cause of dementia [2], is a neurodegenerative disorder 

characterized by available biomarkers and well-established genetic risk factors. In contrast, 

BD, a heritable but highly polygenic psychiatric disorder without known biomarkers. These 

disorders exemplify the broad spectrum of challenges inherent in researching the underlying 

biology of complex brain disorders.


	 Clinical diagnosis criteria for AD is based on the disease's progression stages, ranging 

from mild cognitive impairment to dementia [3]. Dementia manifests as a progressive cognitive 

decline, impairing an individual's ability to function independently [4]. Along this spectrum, 

various cognitive deficits emerge, primarily affecting learning and memory recall. Additionally, 

non-amnestic presentations include deficits in language, spatial cognition, object agnosia, and 

impaired face recognition [3]. Currently, there are no disease-modifying treatments for AD [5]. In 

the case of BD, it is categorized along a spectrum based on the severity and duration of mood 

fluctuations [6]. This spectrum includes bipolar type 2, characterized by depressive and 

hypomanic episodes, and bipolar type 1, marked by at least one manic episode [7]. Clinical 

assessment of a bipolar depressive episode employs the diagnostic and statistical manual of 

mental disorders (DSM) [8]. Symptoms may include hypersomnia, psychosis, catatonia, and 

psychomotor retardation [9,10]. On the other hand, a manic episode is defined by elevated 

mood, increased motor activity, and impaired social or occupational functioning, sometimes 

accompanied by psychotic symptoms. Screening for manic episodes can be conducted using 
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tools like the mood disorders questionnaire [11]. The primary distinction between manic and 

hypomanic episodes lies in their duration, with hypomania lasting at least four consecutive 

days and mania persisting for at least one week [7]. Some individuals may only experience a 

single mood episode, while others may undergo more than four within a year, a phenomenon 

known as rapid cycling [12]. Pharmacological treatment for BD depends on the patient’s 

current mood state [13]. For mania, treatment options include lithium, mood stabilizing 

anticonvulsants, and antipsychotic medications, while classic antidepressants are typically 

prescribed for depression [14]. The current assessment approaches for complex brain 

disorders often lead to diagnosis which may change over the course of the disorder, causing 

delays in proper treatment and worsening health outcomes. This issue is present in AD [15], 

and particularly in BD. BD frequently faces changes of diagnosis with other mental disorders 

such as depression, anxiety disorders, schizophrenia, and obsessive-compulsive disorders 

[16]. 


	 The identification of quantifiable biological features, known as biomarkers, holds 

promise for improving diagnostic criteria, categorizing disease subtypes, and guiding treatment 

selection. Biomarkers encompass various quantitative features like circulating proteins, gene 

variants, or combinations thereof, which may correlate with the underlying biology and predict 

different aspects of an illness [17]. The National Institutes of Health classifies biomarkers based 

on their representation of disease components or associated treatments [18]. These include 

diagnostic biomarkers, biomarkers for monitoring disease status, and biomarkers predicting or 

tracking treatment response, among others. It's important to note that while biomarkers may 

overlap in the features they capture, a diagnostic biomarker may not necessarily reflect 

treatment outcomes [19]. For instance, high-density lipoprotein serves as both a prognostic 

and susceptibility biomarker for atherosclerosis, yet it does not accurately track improvements 

after pharmacological treatment [20]. Additionally, endophenotypes, a subset of biomarkers, 

represent heritable, quantifiable biological traits reflecting genetically relevant aspects of a 

disease's heterogeneous pathophysiology [21]. Initially conceived as state-independent traits, 
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manifesting regardless of illness presence, endophenotypes have expanded to include 

developmental and environmental influences as well [22]. Biomarkers have proven particularly 

valuable in oncology, driving precision medicine approaches. In clinical practice, biomarkers 

are indispensable for assessing cancer risk, screening, early detection, accurate diagnosis, 

prognosis, and predicting treatment response [23]. For instance, in lung cancer, epidermal 

growth factor receptor (EGFR) mutations play a significant role in tumorigenesis. Genetic 

mutations of EGFR serve as biomarkers, facilitating the identification of patients likely to 

respond to EGFR inhibitors [24]. 


	 The application of biomarkers for complex brain disorders has faced limitations 

however, due to their diverse etiology and symptom presentations. Progress has been made in 

identifying biomarkers for AD, such as cerebrospinal fluid values for Amyloid Beta 42, total tau, 

and phosphorylated tau 181 [25]. These biomarkers can also be evaluated using positron 

emission tomography (PET) scans, revealing specific deposition patterns in the brain 

associated with disease progression, particularly with tau [26]. Despite advancements, a 

standardized biological definition for AD, known as the ATN framework (A stands for Amyloid, T 

for tau, and N for neurodegeneration) [27], which combines key biomarkers—beta Amyloid 

deposition, pathologic tau, and neurodegeneration—has not yet achieved successful clinical 

segregation of AD patients [28]. In contrast, identifying biomarkers for BD has proven more 

challenging due to the diverse mood episode presentations and high comorbidity rates with 

other psychiatric disorders [29]. While brain-derived neurotrophic factors [30] and 

measurements of cortical activity through neuroimaging have shown promise in specific clinical 

cohorts [31], their broader application in BD research still requires rigorous assessment and 

validation.


	 Another valuable avenue for gaining insight into complex brain disorders in the last 15 

years has been through the exploration of genetic variants [32]. Genome-wide association 

studies (GWAS), which analyze associations between traits and hundreds of thousands of 

genetic variants across the genome [32], offer a means to uncover the underlying biology of a 
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phenotype and infer potential causal relationships between risk factors and health outcomes. 

An illustrative example of GWAS's discovery potential is evident in the research by Zhang et al. 

[34]. Through genome-wide association analysis of more than 50,000 individuals, they 

identified a novel blood pressure locus. This locus encoded a previously uncharacterized 

thiamine transporter, SLC35F3, and the associated genetic variants were found to predict gene 

expression imbalances and disturbances in cardiac function.


	 AD is highly heritable, with twin studies estimating its heritability between 60% and 

80% [35,36]. The latest GWAS on AD, involving 111,326 clinically diagnosed and proxy cases, 

along with 677,663 controls, identified 75 risk loci encompassing 31 genes. These genes play 

roles in processes like innate immunity and microglial activation [37]. This study also identified 

an overlap between the risk loci associated with AD and other neurodegenerative diseases, 

such as Parkinson’s disease, frontotemporal dementia (FTD) and amyotrophic lateral sclerosis 

(ALS). Despite its polygenic nature, alleles of the APOE gene stand out as the strongest genetic 

risk factors for AD. This association has remained the most recognized common genetic risk 

factor for AD susceptibility since it was first identified in 1993 [38], fueling subsequent genetic 

association studies and highlighting the potential of genome-wide association studies for 

common disorders. While the main function of the APOE gene has been identified as lipid 

transport mediation [39], there are currently no FDA-approved therapies targeting the 

apolipoprotein E for AD treatment [40]. Similarly, BD is a highly heritable disorder, as twin 

studies have yielded heritability estimates between 60% and 85% [41,42]. The largest GWAS 

on BD to date, comprising 41,917 BD cases and 371,549 controls, identified 64 risk loci, 

associated with 161 genes significantly enriched for brain-specific expression and involvement 

in synaptic signaling pathways [43]. Interestingly, a number of the proteins encoded by these 

genes are also targets of medications such as antipsychotics and antidepressants. Moreover, 

this research revealed high genetic correlations between BD and schizophrenia, major 

depression, as well as moderate correlations with anorexia, attention deficit/hyperactivity 

disorder, and autism spectrum disorder.
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	 The findings from these GWAS have offered valuable insights into the pathophysiology 

of AD and BD, emphasizing their complex polygenic nature and genetic overlap with other 

complex brain disorders. However, while the identified genes and biological pathways provide 

crucial knowledge, their clinical validation is necessary to fully understand their impact on 

these conditions. Moreover, the majority of these genetic variant associations represent very 

small odds ratios, rendering them unsuitable as biomarkers for individual diagnosis. To 

navigate the genetic complexity and heterogeneity of these disorders, using endophenotypes, 

which leverage associated measurable phenotypes, proves to be a promising approach.


	 Various endophenotypes have been proposed for AD, particularly those linked with 

APOE allele status [44]. These include neuroimaging measures of regional hypometabolism, 

structural gray and white matter integrity, cerebral blood flow, as well as amyloid and 

neurofibrillary tangle load [45]. Similarly, for BD, proposed endophenotypes encompass altered 

neuroimmune states, indicated by pro- and anti-inflammatory cytokines, circadian rhythm 

instability, and neuroimaging measures of white matter abnormalities and fronto-limbic 

disconnection [46]. However, these endophenotypes are not unique to BD, as they are also 

found to be associated with schizophrenia and major depressive disorder [47–49]. Furthermore, 

GWAS results have revealed that the genetic basis of these endophenotypes can be as 

complex as the traits themselves [50,51]. While endophenotypes have not led to significant 

gene discoveries for disease risk, they still offer valuable insights into the development and 

prognosis of complex brain disorder. Additionally, they can contribute to understanding gene 

function and shared etiology across different diagnoses [52]. 


	 As part of my dissertation, my research focuses on enhancing the discovery of 

biologically relevant information for endophenotypes and potential biomarkers in both 

neurological and psychiatric disorders by integrating data from multiple layers of biology. Given 

the complexity and heterogeneity of these disorders, relying on a single biomarker 

measurement is not sufficient. Instead, an integrated approach combining various 

measurements from different biological layers could unveil biomarker patterns, identify 
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biological targets, and inform the development of new treatments [53,54]. For instance, the 

detection sensitivity of bladder cancer recurrence was significantly improved by integrating 

cytological markers and DNA probes [55]. Such integrative approaches have gained 

momentum in recent years, particularly with the advancement of high-throughput technologies 

[54]. Across various cancer types, new prognostic methods have emerged by combining 

mRNA expression data, methylation data, and genetic variation status of cancer risk genes 

[56]. The central dogma of biology underscores this intricate interplay across layers, wherein 

DNA is transcribed into RNA, translated into protein products [57], and the resulting biological 

pathways are reflected by metabolites. Therefore, by amalgamating omics information—such 

as genomics, transcriptomics, epigenomics, and metabolomics—representing different 

biological layers, there is a potential to uncover novel biological features and pathways 

implicated in complex brain disorders.


	 Chapter 1 delves into the assessment of functional genomic features observed in skin 

fibroblasts when utilized as an in vitro model for circadian studies. Fibroblasts are a well-

established in vitro model for measuring circadian patterns [58]. Despite initial studies on 

identifying circadian abnormalities associated with BD yielding inconclusive results [59], 

ongoing research continues to explore this approach [60–62]. Our objective was to investigate 

the underlying genetic architecture of circadian rhythm in skin fibroblasts, aiming to evaluate its 

contribution to the polygenic nature of BD risk. To accomplish this, we collected temporal 

functional genomic features over a 48-hour period from transcriptomic data (RNA-seq) and 

open chromatin data (ATAC-seq) obtained from primary cell lines of six healthy individuals. 

Subsequently, we characterized the biological pathways activated in this in vitro circadian 

model, assessing the relevance of these processes within the context of the genetic 

architecture of BD and other disorders. Additionally, we highlighted the limitations of this 

approach and discussed its potential future applications for circadian genomic studies and as 

a tool for studying circadian abnormalities.
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	 Chapter 2 investigates how distinct biological layers, including genetics and 

metabolites, contribute to capturing various aspects of AD pathology as reflected in its 

established cerebrospinal fluid (CSF) biomarkers. CSF serves as a unique source for studying 

ongoing biological pathways in the brains of patients with neurodegenerative disorders, such 

as AD. Notably, metabolites in the CSF can reflect intricate biological processes and hold the 

potential to assess the collective impact of a disease, identify biomarkers, and track the 

progression of AD. To achieve this objective, we gathered 5,543 CSF metabolite measurements 

and genotype data from a cohort of N=477 individuals, including subjects across the AD 

clinical spectrum, from the Amsterdam Dementia cohort (ADC). Additionally, we obtained CSF 

measurements for phosphorylated tau (P-Tau), total tau (T-Tau), and Amyloid Beta 1-42 levels. 

Utilizing the latest AD GWAS, we computed polygenic risk scores (PRS) for AD and examined 

their associations with CSF levels of P-Tau, T-Tau, and Amyloid Beta 1-42. Furthermore, we 

conducted correlation and elastic regression analyses between our panel of CSF metabolites 

and the CSF levels of the AD biomarkers. Through this approach, we identified novel 

metabolites that correlate with and can predict P-Tau and T-Tau levels. Results from pathway 

enrichment analysis further supported the involvement of these CSF metabolites in established 

biological pathways affected by AD. This study builds upon previous research in CSF 

metabolomics by confirming earlier findings and revealing novel associations between 

metabolites and AD. These findings offer promising avenues for further exploration of 

metabolic pathways affected by AD pathology.


	 In the final part of my thesis, I consider how the findings of these projects underscore 

the value of integrating various ‘omics technologies. Moreover, I explore the potential 

implications of applying these methodologies to other complex brain disorders with limited 

biomarker information or ongoing research efforts, the limitations of the current approaches 

and future directions that can address them. 
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Chapter 1: Fibroblasts as an in vitro model of circadian genetic and genomic studies: A 

temporal analysis

Authors: Marcelo Francia1, Merel Bot2, Toni Boltz3, Juan F. De la Hoz4, Marco Boks5, René 

Kahn5, Roel Ophoff2

1. Interdepartmental Program for Neuroscience, David Geffen School of Medicine, University of 

California Los Angeles, Los Angeles, CA, USA

2. Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, 

UCLA

3. Department of Human Genetics, David Geffen School of Medicine, University of California 

Los Angeles, Los Angeles, CA, USA

4. Bioinformatics Interdepartamental Program, University of California Los Angeles, Los 

Angeles, CA, USA

5. Brain Center University Medical Center Utrecht, Department Psychiatry, University Utrecht, 

Utrecht, The Netherlands.

INTRODUCTION

It is estimated that the lifetime worldwide prevalence of bipolar disorder (BD) is 1% [63], with an 

estimated heritability of 60-85% [42]; [41]. Genome-wide association  studies (GWAS) of BD are 

showing a highly polygenic genetic architecture of disease susceptibility with common genetic 

variants explaining 20% of the heritability [64]; [43]. BD is primarily characterized by shifts in 

mood, which result in manic or depressive episodes. Clinical studies have associated 

abnormalities of the circadian system in Bipolar disorder type 1 (BD1) patients as a hallmark 

component of its pathophysiology, with disturbed sleep quality being identified as an early 

symptom of manic episodes [65]. Furthermore, dysregulation of sleep and wake cycles during 
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manic episodes include sleep abnormalities such as decrease in total sleep time, delta sleep, 

and REM latency [66]. These abnormalities have also extended to other circadian regulated 

systems such as cortisol levels. Both differences at morning levels of cortisol within BD subjects 

when compared to controls [67], as well as higher cortisol levels prior to a manic episode [68] 

have been reported. Despite these findings, the precise mechanisms of altered circadian 

rhythms in BD remain unclear. 

The circadian rhythms synchronize physiological processes with the environment, 

creating and maintaining an internal 24 hour cycle. The main controller of the circadian cycle in 

mammals is the suprachiasmatic nucleus (SCN), a brain region located in the basal 

hypothalamus. It receives environmental cues, also called zeitgebers, such as light information 

from the retina which is relayed using synaptic and hormonal signaling [69] to the rest of the 

central nervous and peripheral systems. At the molecular level, the circadian machinery within 

every cell [70] consists of multiple transcriptional feedback loops, where core circadian genes 

BMAL1 and CLOCK induce the expression of their own repressors, PER1, PER2, PER3 and 

CRY1, CRY2. These genes modulate different layers of gene expression, from modifying the 

chromatin landscape to make certain regions of the genome more or less accessible [71], to 

post-transcriptional modifications altering the function of the associated proteins at specific 

times during the day [72]. Although disruptions in the circadian rhythms have been associated 

with neuropsychiatric traits, specifically in mood disorders [48], the direct interactions between 

them, as well as the contributions from genomic loci, are to be elucidated. 

The localization of the SCN makes direct interaction and collection in humans 

impossible, with researchers instead using peripheral fibroblast cells to study the molecular and 

genetic components of this system [73]. These cells receive cortisol as a circadian signal from 

the SCN, through the hypothalamic-pituitary-adrenal axis (HPA). In order to study circadian 

rhythms using cell cultures, the cells need to be synchronized. One approach for this is treating 
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the cells with dexamethasone, which elicits rhythm synchronization between the cells in a 

culture [73]. Dexamethasone binds to the glucocorticoid receptor, acting on the same pathways 

through which cortisol regulates circadian rhythms in vivo. This synchronization method has 

been used in conjunction with luciferase bioluminescence reporter assays to study the 

molecular dynamics of selected circadian genes in vitro [74]. Studies using these systems have 

been applied to both sleep disorders and BD. Although researchers were able to find differences 

in the period of expression of circadian genes in sleep disorders [75], similar studies using cells 

derived from BD1 patients were unable to detect significant [59] or replicable[76] differences.

Here we examine the genomic components of circadian related genetic regulation and  

general biology that this in vitro fibroblast model captures, and assess whether these features 

relate to the genetic architecture of BD susceptibility. For this, we collected longitudinal temporal 

sequencing data of both gene expression and accessible chromatin regions. The temporal gene 

expression was used to identify genes that display circadian oscillations and are under 

glucocorticoid control, as well as genes with distinct temporal patterns representing other 

biological pathways. The temporal accessible chromatin data was used to identify regions of the 

genome and associated transcription factor motifs that are implicated in the temporal regulation 

of gene expression. Finally, we examined whether the genomic regions showing temporal 

transcriptomic and epigenomic circadian profiles in primary cultures of fibroblasts were enriched 

in genetic association signals of BD or other related psychiatric and sleep-related phenotypes.

RESULTS 

Temporal RNA-seq captures genes with distinct longitudinal expression patterns

Outside of the subset of genes that compose the core circadian transcriptional feedback loop, 

most rhythmic genes are tissue specific [77]. Within fibroblasts, we aimed to identify the overall 

longitudinal patterns of all the genes that are temporally regulated and classify them based on 

10



their temporal features. For this purpose, we collected RNA-seq data every 4 hours for a 48-

hour period, from cell cultures of 6 human primary fibroblasts that were derived from a skin 

biopsy of subjects with no psychiatric disorders. To select these subjects, we confirmed that 

their cell lines displayed measurable circadian oscillations via a bioluminescence assay (Figure 

S1.2). After quality control, the temporal RNA-seq dataset consisted of n=11,004 genes. We 

used a cubic spline regression model to identify genes that had a significant effect of time in 

their expression ([78]; [79]; [80]). This approach identified n=2,767 (~25%) genes with significant 

evidence (False discovery rate (FDR) < 0.05) for temporal changes of gene expression levels. 

To cluster these genes according to distinct temporal patterns we applied the Weighted Gene 

Co-Expression Network Analysis (WGCNA)[81], which identifies genes with highly correlated 

expression levels. WGCNA produced 11 modules with eigengene values that captured the 

principal time patterns present in the expression of these genes (i.e: temporal modules; Figure 

S1.3). Gene ontology (GO) analysis of WGCNA modules with MetaScape [82] highlighted 

specific cell processes associated with distinct temporal patterns among 11 of these modules. 

Figure 1.1 depicts the eigengene values of 4 temporal modules with significant enrichment of 

GO terms (FDR adjusted by Benjamini-Hochberg method). Genes in the turquoise module, 

which show a linear decrease in expression over time, had GO terms for supramolecular fiber 

organization (p= 1e-15) and mRNA splicing via spliceosome (p= 2.5e-13). In compasion, genes 

in the blue module, which show a linear increase in expression, had a GO term for cellular 

response to hormone stimulus (p= 1.3e-9). The genes in the black module, which show an 

increase in expression that plateaus by the 16 hour time point (28 hours after dexamethasone 

treatment), were enriched for chromatin organization(p= 1e-12) and transcription elongation by 

RNA polymerase II (p= 7.9e-8) GO terms. The genes in the brown module, which show an 

expression pattern opposite of the black module, had a GO term for intracellular protein 

transport (p= 1e-18). Lastly, the purple module, which has genes with a peak expression at the 
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12 hour time point (24 hours after dexamethasone treatment), had GO terms for cell division (p= 

1e-67) and mitotic cell cycle (p= 1e-60). The complete results of GO analysis for all the WGCNA 

modules are available in Table S1.1. 

WGCNA results did not yield a module of co-expressed genes with eigengene values 

representative of oscillating 24 hrs cycles resembling a circadian rhythm, nor were circadian 

related functional enrichment of GO terms found in any of the modules. Next we focused on 

closely inspecting known circadian genes for skin fibroblasts, identified by a previous in vivo 

array-based gene-expression circadian study on human skin cells [83]. Out of the 1,439 

circadian genes reported in that study, we identified 267 genes in our dataset with significant 

changes in expression over time (Figure 1.2A). Using the circadian detection tools JTK Cycle 

[84], LS [85], ARSER [86], Metacycle [87] and RAIN [88], we aimed to detect significant 

oscillations within these putative circadian genes in the complete temporal RNA-seq dataset. 

Among these methods, only JTK and ARSER identified significant periodic expression patterns 

(after Benjamini-Hochberg correction of 0.05) for the circadian gene NR1D2, and further only 

ARSER identified significant oscillations for 73 genes. However, the predicted period differed 

between the methods. For example, JTK predicted a period of 27.6 hours for NR1D2, while 

ARSER predicted 24.7 hours (Table S1.2 and supplementary files). Therefore instead of using 

these circadian detection tools, we applied smoothing-splines mixed effect models using the R 

package "sme" [89] to model the temporal features of these circadian genes (Figure 1.2B and 

Figure S1.4). These models showed that for some of these circadian genes, such as CRY2 and 

NFIL3, the circadian expression pattern is only present in some of the cell cultures, whereas for 

genes such as NR1D2 and TEF, the circadian pattern is ubiquitous across cell cultures from 

different individuals. The fitted models for these circadian genes were then used in time warping 

analysis to group genes with known expression dynamics (Figure 1.2C and Figure S1.4). From 

these expression patterns, we corroborate that NR1D2 expression follows its inhibition effect on 

12



ARNTL and CRY1 [90]. Similarly, PER3 expression follows its inhibition effect with ARNTL. 

Despite observing similar expression patterns in PER2 and PER3, these were not consistent 

across individuals (Figure S1.4). While the expected inhibition relationship between CRY1 and 

ARNTL was not present (Figure S1.5), this pattern of expression was also reported in the 

circadian dataset that was used as reference [83]. 

Temporal open chromatin levels measured by ATAC-seq highlights potential regulatory 

regions and transcription factor binding sites

To identify regions of the genome associated with the regulation and downstream effects of 

circadian genes, we collected ATAC-seq data following the same temporal design as with the 

RNA-seq dataset. Quality control metrics such as fraction of reads in peaks and transcription 

starting site for these samples is available in the supplementary material. After removing a cell 

line that did not pass quality control, we merged all overlapping regions of open chromatin, also 

known as peaks, across samples and time points as described previously [91], to define a 

common set of ATAC-seq signals (n = 126,057). We then used cubic spline regression models 

to identify peaks that have a significant change in accessibility over time. This approach yielded 

n=7,568 (6%) time significant peaks, which were functionally annotated using ChipSeeker [92], 

a software that annotates peaks with the nearest gene and genomic regions (Figure S1.8B). 

Peaks with significant changes in accessibility over time showed a similar genomic distribution 

as the full dataset (Figure S1.8A). Following the approach for the RNA-seq data, we applied 

WGCNA to cluster peaks with similar temporal patterns of accessibility changes (Figure S1.7). 

WGCNA identified 4 different modules for the temporal patterns of chromatin 

accessibility, however the main pattern that characterizes these modules is an overall increase 

or decrease in accessibility. One module captured all the regions that were decreasing in 

accessibility (Figure 1.3A), comprising 4,435 peaks. The other 3 modules showed regions 

increasing in accessibility. Individual motif enrichment analysis conducted with HOMER [93], 
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showed similar enrichment across these modules, therefore we combined them into a single 

cluster of regions increasing in accessibility, in total 3,133 peaks. Regions that were decreasing 

in accessibility over time (Figure 1.3A) had motif sequences for Fos (p= 1e-1047), Fra1 (p= 

1e-1041), ATF3 (p= 1e-1034), BATF (p= 1e-1002), Fra2 (p= 1e-996), AP-1 (p= 1e-976), Jun-

AP1 (p= 1e-681), Bach2 (p= 1e-330) and JunB (p= 1e-1001). Most of these transcription factors 

are part of the AP-1 transcription complex. Regions that were increasing in accessibility over 

time (Figure 1.3B) had motif sequences for BHLHA15 (p= 1e-201), TCF4 (p= 1e-180), NeuroG2 

(p= 1e-160), Twist2 (p= 1e-160), Pitx1 (p= 1e-186), Atoh1 (p= 1e-162), Tcf21(p= 1e-147), Olig2 

(p= 1e-130), ZBTB18 (p= 1e-139) and NeuroD1 (p= 1e-123). These are dimerizing transcription 

factors that have the basic helix-loop-helix protein structural motif. In both types of regions 

HOMER identified the binding sequence of the glucocorticoid response element (GRE), 

although the rank for the GRE motif in regions that were decreasing in accessibility was higher. 

For the known circadian transcription factors, HOMER identified significant enrichment of the 

binding sequences for BMAL1 (p= 1e-29), NPAS2 (p= 1e-9), CLOCK (p= 1e-10), particularly 

within regions that had increasing accessibility over time. For the regions with decreasing 

accessibility over time, HOMER identified enrichment of NFIL3 (p= 1e-11).

Stratified Linkage Disequilibrium Score Regression (sLDSC) analysis

Functional annotation of the ATAC-seq dataset showed that approximately one third of the peak 

regions identified are located in distal intergenic regions, with unknown functions. Furthermore, 

it also showed that these regions displaying transient changes in chromatin state are located 

across the entire genome. To examine whether these open chromatin regions highlighted in our 

study are enriched for genetic susceptibility of BD and other neuropsychiatric traits, we used 

sLDSC (stratified linkage disequilibrium analysis)[94] to calculate the partitioned heritability of 

these features. For this approach we used published Psychiatric Genomics Consortium (PGC) 
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summary statistics for BD [43], ADHD (Attention-Deficit/HyperactivityDisorder) [95], 

schizophrenia [96], PTSD (Post-traumatic stress disorder) [97], MDD (Major depression 

disorder) [98], insomnia [99],   and the circadian trait of morningness [100]. We used the 

temporally significant ATAC-seq regions with 1 kilobases (kb) and 10 kb genomic windows in 

both downstream and upstream directions for each region. These ATAC-seq defined 

annotations were tested jointly with the baseline annotations included with sLDSC [94]. Figure 4 

shows the enrichment for the traits tested from the ATAC-seq regions annotations as well as the 

baseline annotations (Full enrichment results are provided in the Supplementary Material). 

Among these, only the ATAC-seq regions that were decreasing in accessibility had a nominally 

significant (p value = 0.00463) less than expected presence for ADHD, and this effect was not 

present when the regions are extended by either 1kb or 10kb. In comparison, baseline 

annotations such as conserved regions in mammals showed a significant enrichment for all the 

traits (ADHD p value = 7.88e-11, schizophrenia p value = 1.67e-23, BD p value = 1.14e-8, MDD 

p value = 5.92e-22, insomnia p value = 2.65e-15, morningness p value = 3.05e-29), except 

PTSD (p value = 0.073). We did not identify significant enrichment of ATAC-seq regions in the 

other psychiatric and behavioral traits tested, indicating that these genomic regions with 

temporal trends in cromatin accessibility do not play a major role to their genetic architecture.

DISCUSSION 

Cell cultures of peripheral tissues have been employed as models of in vitro circadian clock 

systems to study their molecular components [101] and the disorders in which they are 

disrupted [102]. For this particular model that uses primary cultures of fibroblasts derived from 

skin biopsies, we aimed to characterize the circadian features that are present at gene 

expression and chromatin accessibility levels, with the goal to identify the circadian genes that 

are engaged by this system as well as their associated regulatory genomic regions. From the 

longitudinal RNA-seq data we identified consistent circadian patterns of expression in a limited 
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amount of genes such as ARNTL, CRY1, PER3, NR1D2 (Rev-erbBeta) and TEF, but observed 

noticeable differences in the expression patterns between cell cultures. When compared to a 

recent in vivo circadian human skin dataset [83], we identified 267 out of the 1,439 circadian 

genes previously identified in this tissue to have a significant effect of time in their expression. 

This limited overlap could indicate that this in vitro model for studying circadian rhythms is 

constrained to the circadian genes that are directly activated by a glucocorticoid-like stimulus. 

Glucocorticoid response elements have been identified for circadian genes such as PER1, 

PER2, PER3, CRY1, CRY2, Rev-erbAlpha (NR1D1), Rev-erbBeta (NR1D2), DBP, NPAS2 and 

BMAL1 [103]. Consistent with these results we identified circadian rhythmicity in most of those 

genes that had previously been identified to have a glucocorticoid response element (GRE), 

with the exception of NR1D1. While we do identify expression levels from NR1D1, the lack of a 

significant circadian oscillation in comparison to the strong results from NR1D2 could be 

consistent with their known redundant function for circadian rhythms [104]. 

We found robust circadian expression patterns for NR1D2. However, differences in the 

lenght of the predicted periods across tools indicates that estimating period duration from 

longitudinal RNA-seq data is not a straightforward problem. This could be due to the the small 

number of subjects used, leading to insufficient power. Furthermore, while ARSER identified 73 

genes with significant periodic expression patterns, this software is known to have a high false 

positive rate in high resolution data [87]. Interestingly, while the expression pattern of CRY1 

follows the expected inhibition by NR1D2 [105], it does not reflect the expected inhibitory action 

on ARNTL, nor the similar phase pattern with its heterodimer partner PER3. For the relationship 

with PER3, CRY1 has been previously reported to have a known phase delay with the PER 

genes (PER1,2,3)[106], which could be attributed to the multiple binding sites that CRY1 has for 

different circadian modulators, resulting in stimulus and tissue specific temporal dynamics. 

Based on the time patterns, changes in the expression of CRY1 appear to precede the 
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expression of ARNTL by 4 to 8 hours. Similar expression patterns between these genes were 

reported in a previous in vivo study of human skin cells [83], indicating that this model was able 

to replicate some of the circadian temporal dynamics seen within tissue.

ATAC-seq data can provide an untargeted yet comprehensive view of chromatin 

accessibility changes over time. Within this fibroblast in vitro model, we mainly identified 

genomic regions with linear increases and decreases of chromatin accessibility. Although we did 

not found circadian temporal patterns in chromatin accessibility, previous studies conducted in 

vivo have reported such patterns [107]. Specifically, proteins such as CLOCK and BMAL1 have 

been found to associate and interact with chromatin remodeling and chromatin modifying 

enzymes [108], as well as act as pioneer factors by directly modifying chromatin accessibility 

[71]. The absence of anticipated oscillations in chromatin within our dataset, as opposed to our 

observations in genes, could be due to multiple reasons. One possibility is that the mechanisms 

governing oscillatory chromatin changes may be exclusive to in vivo conditions. Under a 

physiological setting, cells within a tissue are exposed to multiple stimuli that act as Zeitgebers, 

such as sunlight (exposure), metabolic signals, temperature, and hormones like cortisol [109]. 

The exposure to these signals is under a rhythmic control, with levels cycling throughout the day 

[110]. By using a single exposure to dexamethasone in this model, we are missing the cyclic 

aspect of cortisol response present in vivo, as well as other effects that could be due to the 

coupling of Zeitgebers. However, our ATAC-seq dataset does replicate previous findings on the 

broader role of glucocorticoids in the chromatin landscape. Within regions with decreasing 

accessibility post-dexamethasone, the motif enrichment analyses identified the motifs for the 

GRE as well as for members of the AP-1 transcriptional complex. These regions may have 

initially opened due to the dexamethasone treatment (for synchronization of the cells), but are 

closing without further continued exposure of dexamethasone. Regions with increasing 

accessibility may have initially closed due to the dexamethasone treatment, and this is 
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consistent with motif profiles that were unrelated to direct glucocorticoid receptor (GR) targets 

[111]. The dataset, however, lacks a Chip-seq analysis for GR occupancy, and we are limited to 

confirm if the identified regions are indeed due to GR activity. The strong glucocorticoid effects 

observed in our data underscore the need for further exploration of circadian influences on 

chromatin regulation in fibroblast cell culture models. Other methods for synchronizing these 

cells and studying the circadian rhythms, such as a switch to serum free media [73], Forskolin 

treatment [112], or temperature cycles [113], could result in different types of chromatin 

regulation and gene expression dynamics. This study raises questions about the context-

dependent nature of chromatin remodeling events and emphasizes the need to evaluate 

different synchronization methods to ascertain their implications for circadian rhythms.

The ATAC-seq data showed genome wide transient changes in chromatin conformation, 

with most of these changes occurring within regions of unknown functions. To evaluate the 

relevance of these genomic regions for BD and other psychiatric traits, we used partitioned 

sLDSC regression. This tool identifies genetic susceptibility enrichment for a particular trait 

across the whole genome and within specific genomic annotations. The partitioned sLDSC 

analysis mainly showed a significant deflation for the chromatin regions that were decreasing in 

accessibility over time with ADHD. Although not significant, it mirrored the enrichment for the 

regions that were increasing in accessibility. When expanding the genomic regions by either 1kb 

or 10kb both the magnitude and the significance of the enrichment are lost, indicating that this 

effect could be highly localized for these regions. For the other traits that we examined, the 

enrichment from the   ATAC-seq regions were also attenuated when the genomic region was 

extended. These results show that these regions with linear changes in chromatin accessibility 

identified here may not play a relevant role for these neuropsychiatric traits. However the 

attenuation observed when expanding the genomic window suggests that any relevant signal 

may be specific to those genomic positions. 
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The lack of an overlap between the temporal regulatory regions identified in this study 

and the known genetic architecture of BD could indicate four different interpretations. First, 

although peripheral tissues capture the genome of an individual, they don’t recapitulate brain 

molecular physiology, the main tissue implicated in the pathophysiology of BD. Second, it could 

be that the disruptions in the circadian rhythm are not under strong genetic control and are 

actually influenced by other downstream processes, such as post-translational modifications 

and differences at the protein level. Third, the specific circadian pathways that are engaged in 

this in vitro model by dexamethasone (i.e: glucocorticoids) are not part of the genetic 

architecture of BD. This however does not exclude other circadian pathways that could be 

engaged by a different synchronizing stimulus, such as serum [114], [115]. Furthermore, there 

are other stimuli that also act in different ways with the circadian system, such as temperature. 

Whereas dexamethasone acts through binding of the glucocorticoid receptor, temperature 

affects heat-shock proteins [113]. Lastly, the disrupted circadian phenotype is an episodic state 

in BD patients, not a constant trait. This could indicate that rather than the regular circadian 

system being affected by BD, it is the ability to deal with circadian stressors and disruptors that 

is implicated in BD disease susceptibility.

The circadian analysis of gene expression and chromatin accessibility data faced 

limitations that could be attributed to variability among cell lines from different subjects. Human 

skin cell studies, both in vivo [83] and in vitro [116], have demonstrated that genetic differences 

contribute to variations in circadian gene expression's phase and amplitude. The variability 

observed in this dataset was therefore not unexpected, but remains a factor to be considered for 

this kind of studies. Another potential source of variability was the data collection scheme, 

involving 13 separate cell cultures for each individual cell line. Distinctions in cell cycle state and 

growth rates among these cultures might have influenced the data. Previous research has 

shown that cell cycle and circadian rhythms are coupled processes([117], [118]), and that these 
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rhythms can be impacted by cell density [119]. Our approach, utilizing a 5% FBS culture that 

minimizes cell growth, aimed to control for both of these factors. Our lab's prior work also 

confirmed that the cell density used for our study allows for the production of rhythmic circadian 

cycles in these cells(Supplementary figure 2). Although various factors known to influence 

circadian rhythms could have contributed to the variability in this dataset, certain circadian 

genes appeared resilient, consistently producing rhythmic cycles across cultures and individual 

cell lines. This could highlight specific genes' resilience to various sources of variation in this 

kind of studies.

MATERIALS AND METHODS 

Cell lines and Culture

Fibroblasts were isolated by taking skin biopsies from the nether region from subjects without 

known psychiatric disorders.   Fibroblast cultures were established following standard 

procedures [120] and stored as frozen aliquots in liquid nitrogen. 6 fibroblast cell lines matched 

for sex, age and passage number were thawed out and grown to confluence in T75 culture 

flasks in standard culture media (DMEM containing 10% fetal bovine serum (FBS) and 1x 

Penicillin-Streptomycin). 

Upon reaching confluence, 5x10^4 cells were plated per line into 13 different 6 well 

plates (1 well per line per plate). All 6 lines were collected in the same experiment for the RNA-

seq experiment. Due to the labor-intensive nature of the ATAC protocol and the need to process 

cells fresh, the 6 lines were split into 2 batches, so 3 lines per batch were processed. 

Assessment of Circadian Expression in vitro
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In order to collect RNA or cells every 4 hours for 48 hours, cells were split into two batches, 

which were reset 12 hours apart (see supplementary figure 9). Cells were reset 12 hours before 

the first collection to exclude the acute effects of dexamethasone and variation in 

synchronization conditions [116]. 5 days after being plated the cells from batch one were 

synchronized by treatment with 100 nM Dexamethasone for 30 min.   Cells were then washed 

with PBS and switched to collection media (DMEM containing 5% FBS and 1x Penicillin-

Streptomycin). Lower concentration of FBS was used in this media to stop the cells from 

growing during the experiment, in order to keep all time points at approximately the same 

culture density. 12 hours later cells from batch 2 were synchronized and switched to collection 

media and the RNA/cell collection was started (from batch one). 

RNA and Cell collection

For the collection of RNA, cells were lysed using 350uL RLT lysis buffer from the Qiagen 

RNeasy mini kit. Lysed cells were then scraped off the plate, transferred to a Qiaschredder 

(Qiagen 79656) and centrifuged for 2 min at max speed to further homogenize. Cell lysates 

were kept in -80 until extraction. 

For the collection of cells for the ATAC protocol, cells were dissociated using 500uL of 

prewarmed TrypLE (ThermoFisher 12604013) and left for 5 min at 37℃. TrypLE was inactivated 

using 500uL of DMEM. Cells were then counted using the Logos Biosystems LUNA-FL 

automated cell counter, and 50x10^4 cells were used as input   for tagmentation. Tagmented 

DNA for library preparation was collected following the previously described protocol [121].

RNA extraction
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RNA from cell lysates was extracted using the Qiagen RNeasy mini kit (Qiagen 74106). Cell 

lysates were extracted in a randomized order to prevent batch effects in downstream analysis. 

In order to collect total RNA including small RNAs, the standard extraction protocol (Purification 

of Total RNA from Animal Cells using Spin Technology) was adjusted by making the following 

changes: (i) adding 1.5 volumes of 100% ethanol, instead of 70%, after the lysis step (step 4 in 

handbook protocol) and (ii) adding 700 mL of buffer RWT (Qiagen 1067933) instead of the 

provided RW1 (step 6 in handbook protocol).

RNA and ATAC sequencing

For the RNA sequencing, library preps were made using the Lexogen QuantSeq 3’ mRNA-Seq 

Library Prep Kit and sequenced with 65-base single end reads, and sequenced at a targeted 

depth of 3.8M reads per sample, which is well above the recommended minimum 1M reads per 

sample read depth for these types of libraries. ATAC seq libraries were generated following the 

previously described protocol [121] and sequenced with 75-base double end reads, and 

sequenced at a targeted depth of 61M reads per sample. Library preparation and sequencing 

was performed at the UCLA Neuroscience Genomics Core (https://www.semel.ucla.edu/ungc). 

All samples were sequenced on a Illumina HiSeq 4000 sequencer.

RNA-seq data processing and analysis

Fastqc [122] software was used to assess the quality of the read files. Low quality reads were 

trimmed using TrimGalore and Cutadapt.

Alignment of reads was performed with the STAR[122] software and to human gene 

ensembl version GrCh38. STAR was indexed to the genome using the –runMode 

genomeGenerate function. For aligning, STAR was run with the parameters –outFilterType 

BySJout –outFilterMultimapNmax 20 –alignSJoverhangMin 8 –alignSJDBoverhangMin 1 –
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outFilterMismatchNmax 999 --outFilterMismatchNoverLmax 0.1 --alignIntronMin 20 --

alignIntronMax 1000000 --alignMatesGapMax 1000000.

Samtools was used to index the aligned files from STAR.

Read counts were associated with genes using featureCounts software with the NCBI 

GRCh38 gene annotation file. 

Analysis of the RNA-seq data used the R packages limma, Glimma and edgeR, as 

previously described [123]. Genes with low read counts were removed and reads were 

normalized by CPM. GeneIDs were converted to Gene Symbols using the package 

Homo.sapiens.

WGCNA [81] software was used to classify genes with similar temporal expression 

patterns. WGCNA was run using a power value of 12 obtained from diagnostic plots and with 

the "signed" argument. MetaScape was used for Gene Ontology analysis of the resulting gene 

sets from WGCNA. 

Following the method described in [124], MetaCycle [87] was used to run circadian 

detection tools such as ARSER, JTK [84], LS and metacycle. In order to integrate results from 

the different individuals, the function meta3d was used from the Metacycle R package. RAIN 

[87] was run separately.

According to the EdgeR user guide, cubic splines were generated using the splines 

package in R, with the ns function and 5 degrees of freedom. Resulting p-values were corrected 

using a false discovery rate of 0.05. Significant genes were then compared to a previously 

published dataset of circadian human skin gene expression, resulting in 267 genes that were 

classified according to their time series using the “dtwclust” R package. The resulting clusters 

are available in the supplementary material. This analysis was also performed with only the 

known circadian clock genes that had consistent expression patterns across the cell-lines. 
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ATAC-seq data processing and analysis

Sequenced open chromatin data from the ATAC-seq assay followed the standard ENCODE 

Pipeline for the identification of open chromatin regions (OCRs) of the genome. The steps 

included using fastqc to evaluate the quality of the sequenced library. Followed by trimming of 

low quality reads with Trimgalore and Cutadapt. Alignment of the raw reads data to human gene 

Ensembl version GRCh38 was performed using bowtie2 [125] with a 2kb insert size and 

allowing up to 4 alignments. Reads within black-listed regions alongside PCR duplicates were 

removed with samtools. MACS2 [126] software was used to identify OCRs with parameters -g 

hs -q 0.01 –nomodel –shift -100 –extsize 200 –keep-dup all -B. PCR. Quality control metrics for 

the ATAC-seq dataset such as peak counts, PCR bottlenecking coefficients, fraction of reads in 

peaks and enrichment of transcription starting site are provided in the supplementary material. 

To compare the ATAC-seq signal across timepoints and subjects, we created a 

consensus bed file using the bedtools[127] function merge function, combining all the 

overlapping peak regions across timepoints and subjects into a single file. The Featurecounts 

software was then used to assign read counts to those regions. Read counts were normalized 

by RPM. 

WGCNA [81] software was used to classify peaks with similar temporal accessibility 

patterns. WGCNA was run using a power value of 12 obtained from diagnostic plots and with 

the "signed" argument, identifying 4 modules after merging. 

HOMER [93] findMotifsGenome.pllp program was used to identify enriched transcription 

factor motifs first individually in the peaks that belonged to the largest WGCNA modules, as well 

as in the resulting set of grouping all the modules that displayed a similar increasing or 

decreasing pattern of accessibility.

Stratified linkage disequilibrium score regression analysis
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Following the procedure described in [128], we applied an extension to sLDSR, a statistical 

method that partitions SNP-based heritability(h2) from GWAS summary statistics [93]. We ran 

sLDSR (ldsc.py –h2), using an ancestry-match 1000 Genomes Project phase 3 release 

reference panel, for each annotation of interest while accounting for the full baseline model, as 

recommended by the developers ([93]; [129]), and an extra annotation of all the ATAC-seq 

detected in our in vitro model (n=3126 for peaks that were decreasing in accessibility, n=4415 

for peaks increasing in accessibility), as well as extension of these regions by 1kb and 10kb 

genomic windows in both directions.
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CHAPTER 1 FIGURES

Figure 1.1. Eigengene values for RNA-seq modules obtained from WGCNA.

Eigengene modules from WGCNA of the longitudinal temporal expression patterns of RNA-seq 

data collected every 4 hours for a 48 hour period. Each color represents a fibroblast cell culture 

from a different individual. Module names were assigned by WGCNA. The number of genes 

assigned per module is indicated next to the module name.

Figure 1.2. Expression patterns and mixed non-linear modeling of circadian genes. 

(A) Overlap of the genes that were found to have a significant effect of time in their 

expression as well as being previously identified as circadian within the skin tissue [83]. In bold 

are those genes that displayed expression patterns consistent with circadian rhythms.
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(B) Example of smoothing-splines mixed-effect model of the genes that displayed 

circadian oscillations and their known redundant gene partners. The red area indicates the 95 

percent confidence interval. Gene expression values are presented as lCPM (log of counts per 

million)

(C) Dynamic time warp clustering results of the 9 circadian clock genes identified in this 

in vitro model. Due to the differences in magnitude of gene expression across circadian genes, 

expression values were z-scored. Clustering results for all 267 genes can be found in the 

supplementary File 1.3.
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Figure 1.3 Motif enrichment analysis of time significant peak regions. 

Motif enrichment analysis results after combining all open chromatin regions that followed a 

similar change in accessibility over time, including the top 10 motifs as well as motifs associated 

with circadian genes and glucocorticoid response. P-values were confirmed as significant after 

the Benjamini adjustment cutoff of 1% FDR. 

(A) Eigengene values for the Green WGCNA module and motif enrichment analysis of 

the associated decreasing in accessibility regions. 
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(B) Eigengene values for the Blue module and motif enrichment analysis of the 

associated peak regions, including HOMER results for all peak regions decreasing in 

accessibility.

Figure 1.4 sLDSC enrichment results for psychiatric disorders and a circadian trait. 

Results of partitioned sLDSC across 3 psychiatric disorders and morningness trait across 

different genomic annotations. Shown are the enrichment for both the temporal ATAC-seq 

regions and extended genome windows; as well as annotations part of the baseline model of 

sLDSC, such as baseline for all the annotations, histone markers H3K9ac, H3K4me1, and 

conserved regions in mammals. PTSD: Post-traumatic stress disorder; MDD: Major depressive 
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disorder; ADHD: Attention-Deficit / Hyperactivity Disorder. * indicates enrichment p-value below 

0.01.

CHAPTER 1 SUPPLEMENTARY FIGURES

Supplementary Figure S1.1 Principal component analysis of RNA-seq temporal dataset. 

Principal component component representation of RNA-seq data after CPM(counts per million) 

normalization. Colors indicate each individual cell line used in this study. Numbers in the plot 

indicate the corresponding time point for that cell line. 
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Supplementary Figure S1.2 Circadian-bioluminescence transduction experiment results. 

Example of circadian bioluminescence assay performed using transduced primary fibroblast cell 

lines with a Bmail1:luc construct, as described previously by Brown, et al. 2005 [116]. 

(A) Bioluminescence measurements of cell cultures following synchronization with 

dexamethasone. 

(B) Red lines indicate the time period during which RNA-seq and ATAC-seq data was 

collected from the cell lines.
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Supplementary Figure S1.3 WGCNA modules obtained from the RNA-seq temporal 

dataset.  

WGCNA modules obtained from n=2,767 genes identified as having a significant effect of time 

in their expression through cubic splines modeling. Expression values are represented here as 

eigengene values. Names of the modules were assigned by WGCNA. The number of genes 

assigned per module is next to the module name. 

Supplementary figure S1.4 Mixed non-linear modeling of circadian genes.  
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Smoothing-splines mixed-effect models of circadian gene expression across previously reported 

circadian genes in skin. Red line indicates the average fitted model across cell lines, with the 

red area representing a 95% confidence interval.
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Supplemental Figure S1.5 Known interactions between circadian genes present identified 

in this dataset.  

Known gene expression relationships of core circadian genes. Arrows indicate a gene inducing 

in the expression of another gene. The black bar indicates a gene repressing the expression of 

another gene.
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Supplemental Figure S1.6 Quality Control for ATAC-seq data 

Quality control metrics, using the thresholds provided by the standard ENCODE Pipeline for the 

identification of open chromatin regions (OCRs) of the genome. 

(A) shows distribution of all reads present in the peaks identified in the ATAC-seq 

dataset, as well as the distribution of all the reads by sample. 

(B) shows library complexity metrics of PCR Bottlenecking Coefficients (PBC), measured 

as PBC1 = [# of positions with exactly 1 read mapped] / [# of positions with 1 or more reads 

mapped ] and PBC2 = [# of positions with exactly 1 read mapped] / [# of positions with 2 reads 

mapped ]. Red cutoff color indicates severe PCR bottlenecking threshold (<0.7 for PBC1, <1 for 

PBC2), green cutoff corresponds to no PCR bottleneck (>0.9 for PBC1, >3 for PBC2). 

(C) shows the distribution of Non-redundant Fraction(NRF) scores. Values within 0.7 and 

0.9 are considered acceptable. The outlying samples across QC were from the 2014L00966 cell 

line, time points 20 and 0.

A

B
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Supplemental Figure S1.7 Eigengene values for ATAC-seq modules obtained from 

WGCNA. 
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Eigengene modules from WGCNA of the longitudinal chromatin accessibility patterns of ATAC-

seq data collected every 4 hours for a 48 hour period. Each color represents a fibroblast cell 

culture from a different individual. The number of chromatin accessible regions assigned per 

module is indicated next to the module name.
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Supplementary Figure S1.8 Genomic annotation of the consensus peak regions and 

selected time significant regions.  

Chipseeker annotations for peak regions. 

(A) Genomic annotations for all n=126,057 consensus peak regions.

(B) Genomic annotations for the n=7,568 peaks that had a significant change over time 

in their accessibility.

A. All consensus regions
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B. Time significant regions
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Supplementary figure S1.9 Schematic of synchronization and collection times.  

Collection scheme for both RNA-seq and ATA-seq fibroblast cell culture samples. Cells were 

reset 12 hours before the first collection. In order to collect RNA or cells every 4 hours for 48 

hours, cells were split into two batches, which were reset 12 hours apart.
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INTRODUCTION 

Cerebrospinal fluid (CSF) has emerged as a valuable source to study ongoing neurobiological 

processes due to its close proximity to the brain. Particularly, biomarkers for Alzheimer's 
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disease (AD) can be measured in vivo from CSF, with decreased β-amyloid1-42(AB) levels and 

increased levels of phosphorylated tau (P-Tau) and total tau (T-Tau) [130] associated with 

disease status and being used for diagnostic purposes [131]. These biomarkers are indicators 

for the presence of extracellular amyloid-beta plaques, intracellular tau tangles, and 

neurodegeneration in brains of patients with AD [132];[133]. It is therefore considered that CSF 

metabolomic studies enable the exploration of biological pathways linked to neurological 

disorders, such as AD. A few smaller and targeted studies have been published reporting an 

association between CSF metabolites and P-Tau and T-Tau levels [134];[135]. While both 

studies found metabolic pathways involved in Tau pathology and neurodegeneration [134];

[135], they did not observe a similar pattern for   CSF AB levels in AD patients. A more 

comprehensive approach (with many more metabolites and with an increased sample size) is 

required to more fully assess the connection between AD CSF biomarkers and in vivo 

metabolic pathways in the human central nervous system.


	 AD is a highly heritable disorder, with the APOE-e4 allele contributing the strongest 

genetic risk factor for AD [136]. Genome-wide association studies (GWAS) on AD have 

identified more than 80 genetic risk loci, each having a small association with the disease [37]. 

These genetic loci can be harnessed to construct polygenic risk scores (PRS), collecting the 

genetic effects of these regions to evaluate individuals' susceptibility to AD [137]. CSF AB, P-

Tau, and T-Tau levels are also heritable traits, as underscored by previous GWAS ([138];[133]). 

While the APOE locus predominantly predicts AB CSF levels, comparatively weaker prediction 

also exists for P-Tau and T-Tau at this locus, although other genetic loci associate with P-Tau 

and T-Tau more strongly [133]. Metabolomic profiling introduces an additional layer of 

biological information which may facilitate the deciphering of the genetic underpinnings of 

polygenic disorders. Metabolites can reflect intricate biological processes and hold the 

potential to gauge the collective impact of a disease, pinpoint biomarkers, as well as chart 

disease progression ([134][139]). Integrating PRS measurements with metabolites can highlight 

metabolism regulators intertwined with disease mechanisms [140]. We hypothesize that an 
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integrative analysis of known AD biomarkers, CSF metabolomic profiling and genetic risk 

(PRS), will reveal metabolic pathways associated with the genetic architecture of AD.


	 Our study leveraged the different layers of biology captured by genetic risk factors for 

disease (i.e. polygenic risk scores, PRS) and CSF metabolomics to uncover metabolic 

pathways involved in AD etiology and pathophysiology. . For this purpose, we collected 5,543 

CSF metabolite measurements from AD dementia patients, mild cognitive impairment (MCI) 

patients, and cognitively unimpaired subjects in three Alzheimer Amsterdam-related cohorts 

([141][142][143][144]), along with genome-wide genotype data. Through correlation and elastic 

net regression analyses, we examined which CSF metabolites are associated with P-Tau, T-

Tau, and AB CSF levels. Following an assessment of the contribution of APOE to AD PRS, we 

employed linear models to gauge the predictive capabilities of AD PRS for P-Tau, T-Tau, and 

AB CSF levels, and CSF metabolomics. Our study expands on past CSF metabolomics 

studies, and identifies novel associations that highlight   metabolic pathways impacted by AD 

pathology.


RESULTS 

Metabolome-wide correlation of AD Biomarkers 

Metabolites in the CSF can serve as indicators of a brain's physiological state [145]. To gauge 

how AD pathology influences physiological processes in vivo, we integrated CSF metabolites 

with P-Tau and T-Tau CSF levels, both well-established AD biomarkers known to be associated 

with disease progression. The study design is outlined in Figure 2.1. This analysis was also 

applied to AB CSF levels within our clinical cohort (Table 2.1). Untargeted metabolomic data 

were collected from three distinct platforms capturing metabolites across primary metabolism 

[146], complex lipids [147], and biogenic amines [148] (See Methods section for full details). 

Out of 5,262 metabolites (n = 678 named, n = 4,587 unnamed), 271 demonstrated significant 

correlations with T-Tau levels after Bonferroni multiple testing corrections (Figure 2.2A) of which 

121 (44.6%) were named metabolites. 262 of these metabolites exhibited positive correlations, 
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while 9 displayed negative correlations. Similarly, 271 metabolites (119 named) were correlated 

with P-Tau, with 258 showing positive correlations and 13 showing negative correlations 

(Figure 2.2B). 254 metabolites were found to be correlated with both P-Tau and T-Tau CSF 

levels, with 17 unique metabolites associated with each, respectively. (Full list available in 

supplementary files). Notably, no metabolites were found to be significantly correlated with 

CSF AB (Figure 2.2C). Table 2.2 summarizes the strongest positive and negative correlations 

for both CSF Total Tau and CSF Phosphorylated Tau. Furthermore, we stratified the cohort 

based on case (mild cognitive impairment (MCI) and Alzheimer’s disease dementia (AD) and 

control (normal cognition (NC) and subjective cognitive decline (SCD) status. Upon 

stratification, the correlations between CSF metabolites and AD biomarkers remained generally 

consistent irrespective of case-control status for metabolites with statistically significant 

correlations (T-Tau Pearson R = 0.888, P-Tau Pearson R = 0.915). This indicates that these 

metabolite associations with CSF T-Tau and P-Tau levels are independent of AD case-control 

status in this cohort. For non-significant correlations we identified large variations between 

cases and controls (T-Tau Pearson R = 0.261, P-Tau Pearson R = 0.281) (Supplementary Figure 

2.1).


CSF metabolites can predict AD biomarkers 

In our previous analysis, we identified CSF metabolites correlating with both CSF P-Tau and T-

Tau levels. To explore the potential of CSF metabolites as predictors for AD biomarkers, we 

employed an elastic net regression model. This model utilized CSF metabolites as predictors 

for P-Tau and T-Tau CSF levels. Base models using only age and sex as predictors were also 

built for comparison. Upon adjusting for age and sex, elastic net regression models 

incorporating CSF metabolites demonstrated an average R2 of 0.51 for P-Tau (Figure 2.3A) and 

0.46 for T-Tau (Figure 2.3C). In contrast, models using only age and sex as predictors had an 

R2 of 0.16 for P-Tau and 0.17 for T-Tau. Including CSF metabolite levels in the model provided 

additional predictive power. To identify consistently predictive CSF metabolites, we 
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constructed elastic net regression models over a thousand iterations of training and testing 

sets. In each iteration, 80% of the samples from our cohort were randomly selected to be used 

as a training set, while the remaining 20% were selected as a test set. Metabolites present in 

80% of these models were considered consistent predictors.  For models predicting P-Tau, 41 

metabolites were identified as consistent predictors, with 13 being named metabolites (Figure 

2.3B). For models predicting T-Tau, 33 metabolites were identified as consistent predictors, 

with 8 being named metabolites (Figure 2.3D) (Full list of metabolites are provided in 

Supplementary Table 2.1). With the exception of the SM d34:2 metabolite, a 

phosphosphingolipid, all consistent named metabolites that predicted T-Tau are also highly 

predictive of P-Tau CSF levels.


Pathway Analysis of CSF metabolites correlated with P-Tau and T-Tau 

Having identified metabolites that exhibited correlations and consistent predictions for P-Tau 

and T-Tau CSF levels, our next step was to identify which metabolic pathways are associated 

with these metabolites. Utilizing 288 unique metabolites that correlated with either P-Tau or T-

Tau, we conducted an overrepresentation analysis (See methods section for details). This 

analysis revealed several significantly enriched pathways (n = 3), including Pentose and 

Glucuronate Interconversions, Ascorbate and Aldarate Metabolism, and Amino Sugar and 

Nucleotide Sugar Metabolism (Supplementary Figure 2.4). To corroborate these findings, we 

employed PaIRKAT, a pathway integrated regression-based kernel association test that 

associates entire pathways with a phenotype. This alternative tool reaffirmed our results, 

identifying specific pathways significantly associated with both P-Tau (Figure 2.4A) and T-Tau 

(Figure 2.4B) levels. Notably, many of the highly enriched pathways exhibited overlap between 

the two, including Glycerophospholipid Metabolism, ABC Transporters, Linoleic Acid and 

Arachidonic Acid Metabolism, Retrograde Endocannabinoid Signaling, Alpha-Linoleic Acid 

Metabolism, and Choline Metabolism in Cancer (Full list of enriched metabolites in the 

supplementary files).
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Prediction of AD biomarkers and CSF metabolites using polygenic risk scores 

Previous GWAS have identified associations between AD biomarkers (P-Tau, T-Tau, and AB 

CSF levels) and the genetic architecture of AD [132]. To investigate similar associations in our 

clinical cohort, we constructed a PRS for AD based on the most recent GWAS [149]. Due to the 

significant impact of the APOE locus on the PRS (Supplementary figure 2.3), we used an 

approach that initially generates the AD PRS without the APOE locus and subsequently 

incorporates the effects of the APOE-e4 and -e2 alleles as a weighted sum [137]. After 

adjusting for age and sex, linear models revealed that the APOE-weighted AD PRS had a 

modest association with P-Tau (Adjusted R2 = 0.1368; p = 0.014) and T-Tau (Adjusted R2 = 

0.1438; p = 0.007) CSF levels, in comparison with the strong association found for AB CSF 

levels (Adjusted R2 = 0.2200; p = 9.11E-14). We then compared various models, incorporating 

different approaches to account for the effects of the APOE alleles. These approaches included 

using only the APOE-e4 allele counts, the AD PRS without the APOE region, and a weighted 

risk score for APOE based on autopsy-confirmed AD cases (APOE-npScore) [150]. The 

summarized results (Table 2.3) revealed that across all three biomarkers, the AD PRS without 

the APOE region yielded the lowest association (AB R2 = 0.1017, P-Tau R2 = 0.1294, and T-Tau 

R2 = 0.1340). Although the APOE-weighted AD PRS emerged as the best-performing model, 

its improvement over solely using the APOE e4 allele counts was marginal.


	 While metabolomics can offer dynamic insights into an individual’s physiological state 

and environmental exposures, it has also been shown that multiple CSF metabolites are under 

genetic control [151–153]. To uncover metabolic processes associated with the genetic 

architecture of AD, we applied linear models to predict the levels of our panel of 5,262 CSF 

metabolites using the APOE-weighted AD PRS, including age and sex as cofactors. This 

approach yielded 4 significant associations (FDR < 0.05) between CSF metabolites and the 

APOE-weighted AD PRS, although these were all among unnamed metabolites (Supplementary 

Figure 2.4 and supplementary files). Given that the strongest associations with the PRS were 
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found in unknown compounds, non-negative matrix factorization (NMF) [154] was employed as 

a dimensional reduction strategy. This approach aimed to capture broader metabolite signals 

that could potentially be linked to the PRS. In predicting NMF values, the strongest association 

with an adjusted R2 of 0.09 showed significance for age (adjusted p = 6.70E-10). The second 

strongest association, with an adjusted R2 of 0.07, had significance for sex (adjusted p = 

7.18E-6). Only for the third strongest association, with an adjusted R2 of 0.03, did the APOE-

weighted AD PRS show nominal significance (p = 0.008)(Full results in supplementary files).


	 To further elucidate the associations between the APOE-weighted AD PRS and CSF 

metabolites, we replicated our analysis on an unrelated, cognitively healthy cohort (n = 449) 

with the same panel of CSF metabolite measurements [151](Cohort description in Table 2.1). 

However, linear modeling in this cohort failed to reveal any significant associations between 

CSF metabolites and the APOE-weighted AD PRS, both nominal and after multiple testing 

corrections (Supplementary Figure 2.4 and supplementary files). Consistent with the AD cohort 

findings, metabolites with higher adjusted R2 (>0.2) displayed significance for both age and 

sex terms. Remarkably, only two named metabolites exhibited significance with age as a 

significant term: 1,7-Dimethyluric acid (adjusted p = 1.06E-25) and Quinic acid (adjusted p = 

1.32E-24). To investigate if the absence of associations was exclusive to the AD PRS, we 

expanded our analysis to include other brain disorders and traits such as Schizophrenia [96], 

Attention-deficit/hyperactivity disorder (ADHD) [95], Bipolar Disorder [43], Insomnia [99], 

Migraine [155], and Alcohol Use Disorder [156]. A summary of these associations can be 

viewed in supplementary Figure 2.4. None of these polygenic scores yielded significant 

associations with CSF metabolites in either the AD cohort or the cognitively healthy cohort.


DISCUSSION 

In this study, we leveraged genotype data, an extensive panel of 5,543 CSF metabolites and 

CSF AD biomarkers in a large cohort, to decipher impacted biological pathways by the 

disease. Our correlation and elastic net regression analyses revealed 288 unique CSF 
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metabolites linked with P-Tau and T-Tau CSF levels, yet no metabolites demonstrated 

associations with AB CSF levels. Among the CSF metabolites predictive of both P-Tau and T-

Tau levels found in this study, we identified Anserine and Fucose as novel associations. The 

pathway enrichment analysis of these CSF metabolites associated with P-Tau and T-Tau levels 

consistently highlighted glycerophospholipid metabolism and pentose and glucuronate 

interconversions as significant pathways for both AD biomarkers. By utilizing an AD PRS 

adjusted for the substantial effect size of APOE alleles, we observed a significant prediction for 

AB CSF levels in our cohort. This prediction extended to both P-Tau and T-Tau CSF levels, 

albeit to a moderate extent. Notably, the AD PRS without the APOE locus yielded the lowest 

performing predictions across all three biomarkers. Linear regression models did not identify 

consistent associations between CSF metabolites levels and the APOE-weighted AD PRS, nor 

for additional polygenic scores related to various brain traits and disorders.


	 Among the CSF metabolite associations with CSF P-Tau and T-Tau levels, we identified 

two novel CSF metabolites, Anserine and Fucose. Anserine is the methylated analogue of 

Carnosine, an endogenous dipeptide present in various mammalian tissues, including the brain 

[157]. Due to its antioxidant and anti-inflammatory functions, Carnosine could be a potential 

modulator of biological pathways affected by AD [158]. Supplementation with Anserine and 

Carnosine has demonstrated improvements of AD symptoms within both AD mouse models 

[159] and elderly healthy human subjects [160], particularly in alleviating memory deficits. The 

observed strong negative correlation between Anserine and P-Tau/T-Tau aligns with a potential 

protective mechanism, though further studies are essential to elucidate interactions of Anserine 

with these AD biomarkers. The other newly identified   metabolite, Fucose, is a sugar 

component of glycolipids and glycoproteins [161]. Fucose’s incorporation into glycolipids has 

been linked to effects on learning, long-term potentiation, and synapse formation in animal 

models [162,163]. Direct delivery of Fucose into the brain improved retention of learned 

behavior in rats [164] and mitigated neuroinflammation by inhibiting microglial cell activity in 

mice [165]. While these functions require validation in humans, a transcriptomic study of brain 

57



samples from an AD cohort identified the upregulation of the FUT8 gene in AD subjects [166]. 

The protein product of FUT8 catalyzes fucose transfer to glycolipids [167], highlighting a 

potential role of fucosylation in AD.


	 The pathway enrichment analysis of the CSF metabolites associated with P-Tau and T-

Tau levels consistently highlighted glycerophospholipid metabolism as a significant pathway for 

both AD biomarkers. Glycerophospholipids, major components of cellular membranes, play a 

diverse role in altering the functional properties of cells, including signal transduction, vesicle 

trafficking, and membrane fluidity [168]. In the brain, phospholipases actively catabolize 

glycerophospholipids through hydrolysis [169]. Abnormal lipid metabolism, particularly changes 

in glycerophospholipids, has been linked to AD pathogenic features such as amyloidogenesis, 

oxidative stress, and neuroinflammation [170]. A postmortem lipidomics study on brain tissue 

identified glycerophospholipids among the lipid subclasses significantly perturbed in AD cases 

[171]. The CSF metabolites enriched in glycerophospholipid metabolism identified in our study 

further highlights the importance of this biological pathway in   AD. Another enriched pathway 

was pentose and glucuronate interconversions, previously associated with metabolites linked 

to P-Tau/T-Tau in a different (much smaller) AD cohort [134]. Although dysregulation of glucose 

and pentose brain levels has been associated with AD pathology [172,173], the specific 

interactions of these pathways and associated metabolites with Tau in AD remain to be 

elucidated. The enrichment of these pathways in metabolites strongly correlated with P-Tau/T-

Tau suggests a potential association between elevated levels of these AD biomarkers and 

processes specifically impacting neuronal activity and viability. A prior study, integrating 

proteomic, genomic, and imaging data, demonstrated that distinct proteomic profiles and 

associated pathways were linked to varying levels of P-Tau/T-Tau within individuals with AD 

(Visser et al., 2022). Further exploration of the data generated in this study offers an 

opportunity to assess whether different metabolites and pathways are associated with diverse 

levels of these AD biomarkers.
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	 The absence of associations between CSF metabolites and AB levels may be attributed 

to the early accumulation of AB in the brain [130]. While AB serves as an AD biomarker, its 

accumulation has not been shown to mirror or predict disease progression, unlike P-Tau and T-

Tau levels [174,175]. Consistent with previous research on CSF metabolites, our study 

replicates this lack of associations with AB CSF levels [134,135]. Despite significantly 

expanding the scope of CSF metabolites in this study by ten fold in comparison to previous 

work in the field, the possibility of overlooking specific metabolites associated with AB remains. 

While this work stands as the largest CSF metabolites and AD biomarker study to date, it is 

possible that the impact of AB on CSF metabolites has a small effect size that will require 

further increases in cohort size to identify it. Future advancements in metabolomics and 

improvements in metabolite profiling technologies may hold promise for elucidating the 

intricate relationship between AB levels and CSF metabolites.


	 In our analysis of the APOE locus and the PRS of AD, we found that the e4 allele counts 

alone significantly predict these AD CSF biomarkers, corroborating findings from previous 

studies ([176]; [150]). The APOE gene, encoding a glycoprotein lipid transporter, exhibits 

isoform-specific impacts on its function [40]. These results align with the proposed relationship 

between AB and the APOE locus, with AB plaque levels shown to be influenced by different 

APOE alleles [177]. Regarding AB, it is hypothesized that the e4 allele may influence AB levels 

by promoting plaque formation [178] and hindering its clearance from the brain [179]. APOE 

alleles have also been implicated in Tau neurofibrillary tangles (NFT) CSF levels [180], although 

the precise association between APOE and Tau is still under investigation. Our findings align 

with these known interactions and support prior reports identifying the APOE locus as a major 

genetic risk factor for AB, T-Tau, and P-Tau CSF levels [132,133,138]. We did not observe 

consistent associations between CSF metabolites levels and the APOE-weighted AD PRS, nor 

for additional polygenic scores related to various brain traits or disorders. Notably, only four 

CSF metabolites exhibited significant associations with the APOE-weighted AD PRS in the 

clinical cohort. However, these were among unnamed metabolites, limiting the interpretability 
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of these findings. It is worth noting that metabolite levels can be heritable traits as 

demonstrated by prior QTL mapping studies [140,181,182]. Previously, it has been shown, for 

example for body mass index [183](fang et al), that polygenic scores of trait measures are 

associated with metabolite levels.  


	 One of the primary limitations of this study is the current inability to validate the strength 

of our predictors for P-Tau and T-Tau on an independent cohort. While other studies have 

investigated CSF metabolites in the context of these AD biomarkers, the lack of overlap in the 

panels of metabolites used presents a challenge for direct comparisons across cohorts. 

Another limitation is that the cohort utilized in this study comprises exclusively individuals of 

European ancestry, restricting the generalizability of the results to other ancestry groups.  Both 

the genetic architecture of AD and the performance of AD biomarkers exhibit variations across 

populations of different ancestries, such as in the case of African American populations. 

Although the number and size of GWAS studies on African American individuals with AD are 

limited [184], evidence suggests that, besides the APOE locus, the ABCA7 locus shows strong 

associations with AD in this population [185]. Similarly, the performance of T-Tau and P-Tau as 

biomarkers for AD is inconsistent in African American populations [186]. One study 

demonstrated significantly lower levels of these metabolites in African Americans compared to 

non-Hispanic white individuals [187]. Future AD studies should aim to broaden their cohorts to 

include diverse populations, enhancing our understanding of the disease across different 

ancestry groups.


	 In this study, our aim was to assess how distinct biological layers, including   genetic 

risk and metabolomic profiles, contribute to capturing various aspects of AD pathology 

associated with the established clinical biomarkers of disease. We successfully replicated 

previous findings regarding the impact of the APOE e4 allele on AB, P-Tau, and T-Tau CSF 

levels. Additionally, we compared the effectiveness of different approaches in modeling the 

genetic architecture of AD. Notably, we extended prior CSF metabolite investigations by 

substantially increasing the sample size of a well characterized cohort as well as by 
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significantly expanding the scope of the metabolomic measurements (with more than five 

thousand metabolites). This increased effort resulted in the identification of 288 unique CSF 

metabolites associated with CSF levels of P-Tau and T-Tau, but also highlighted the lack of any 

significant finding of an association with CSF metabolites and AB,. We identified novel 

associations between the CSF metabolites Anserine and Fucose, and P-Tau/T-Tau. Pathway 

analysis of these metabolites further supports their involvement in established biological 

pathways affected by AD. This makes these metabolites potential targets for studying and 

gaining a deeper understanding of how AD progression impacts brain physiology.


METHODS 

Sample information and processing 

Study Participants 

A total of 977 study samples (with an average age of 52.7±16.6 years and 35.9% female) were 

used in this analysis, drawn from both a memory clinic cohort and a group of cognitively 

healthy subjects in the Netherlands.


	 The memory clinic cohort comprised samples from three cohorts affiliated with the 

Alzheimer Center Amsterdam. These cohorts include the Amsterdam Dementia Cohort (ADC) 

[141], the 90+ Study [142], and the Twin Study [143,144]. The ADC, initiated in the year 2000, is 

an ongoing observational follow-up study of patients who visited the memory clinic at 

Amsterdam UMC, location VU University Medical Center (VUmc), with dementia diagnoses 

made according to established guidelines for neurodegenerative diseases [3,188–190]. The 

90+ Study, part of the Innovative Medicine Initiative European Information Framework for AD 

(EMIF-AD), focuses on cognitively healthy individuals aged 90 and above, aiming to identify 

factors associated with resilience to cognitive impairment in the old [142]. For the Twin Study, 

monozygotic twins (one subject per twin pair) were recruited from the Netherlands Twin 

Register [143] to participate in the PreclinAD study, a component of the EMIF-AD project 

(http://www.emif.eu/) [144]. Supplementary materials provide a comprehensive description of 

each cohort.
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	 Cohort of Cognitively Healthy Subjects: The recruitment of these neurotypical subjects 

is described before (see Luykx et al. 2014 [151]). In short,   inclusion   involved patients 

undergoing spinal anesthesia for minor elective surgical procedures, ages between 18 and 60, 

and with all four grandparents born in The Netherlands or other Northwestern European 

countries (Belgium, Germany, UK, France, and Denmark). Each potential participant underwent 

a telephone interview to screen for self-reported psychotic or major neurological disorders 

(such as stroke, brain tumors, or neurodegenerative diseases) and to document any use of 

psychotropic medication.


	 An overview of the characteristics for the memory clinic cohort (N=487) and the 

cognitively healthy subjects cohort (N=449, all cognitive healthy controls) can be found in Table 

2.1. The Amsterdam Dementia cohort samples comprises n=220 cognitively unimpaired 

subjects, n=87 subjects with mild cognitive impairment (MCI), and n=180 patients with AD-type 

dementia. As expected, patient groups in the Amsterdam sample differed from each other, with 

the AD-type dementia group having more APOE-ε4 carriers, fewer APOE-ε2 carriers, and 

exhibiting more abnormal AD CSF biomarkers compared to the MCI and cognitively 

unimpaired subjects. Cognitively healthy subjects, in comparison to memory clinic subjects, 

were less frequently female, younger, had a lower APOE-ε4 frequency, and a higher APOE-ε2 

frequency.


	 All participating studies received approval from their respective Medical Ethics 

Committees, and informed consent was obtained from all participants, either directly or from 

their legal representatives.


CSF data collection 

Memory clinic cohort: CSF samples were acquired through lumbar puncture using a 25-gauge 

needle and syringe. Amyloid-beta 42 (Aβ42), total tau (t-tau), and hyperphosphorylated 181 tau 

(p-tau) levels were assessed as part of the diagnostic work-up, employing enzyme-linked 

immunosorbent assays (ELISA) (Innotest: Fujirebio, Ghent, Belgium) [141]. In the ADC cohort, 
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CSF Aβ42 values were adjusted for drift over time, as detailed previously [191]. In this cohort, 

the biomarker abnormality cut-offs used were CSF Aβ42 < 813 pg/ml, CSF t-tau > 375 pg/ml, 

and CSF p-tau > 52 pg/ml.


Cognitively healthy subject cohort: Each subject provided a 6ml CSF sample through lumbar 

puncture, immediately stored in fractions of 0.5 and 1ml at −80°C, as previously described (see 

Luykx et al. 2014 [151]).


CSF metabolite processing 

A total of 5,543 CSF metabolites were assessed through three distinct metabolite assays at the 

West Coast Metabolomics Center at UC Davis, encompassing GC-TOF MS (primary 

metabolism), CSH-QTOF MS/MS (complex lipids), and HILIC-QTOF MS/MS (biogenic amines) 

(https://metabolomics.ucdavis.edu/). 


	 To address missingness, metabolite levels were initially examined across each cohort, 

and metabolites with missing data for over 20% of individuals were excluded. For the 

remaining metabolites, missing values were imputed to half the median value for the 

corresponding metabolite across the cohorts. This decision was based on the assumption that 

these metabolites likely exist in quantities too low to be detected in these individuals, a method 

consistent with previous approaches [134]. Subsequently, inverse-rank normalization was 

applied to all metabolites to ensure normality for downstream analysis.


Genotyping and imputation 

Memory clinic samples underwent genotyping using the Illumina Global Screening Array (GSA), 

while genotype data for cognitively healthy controls were obtained through the OmniExpress 

Exome array. Initial filtering of autosomal genotypes involved excluding SNPs with <2% SNP-

missingness and >5% minor allele frequency (MAF) using plink [192], performed separately per 

cohort. Individuals with a call rate below 98% were excluded. Following this, genotype VCF 
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files were uploaded to the TopMed server for imputation and liftover to hg38. Post-imputation 

quality was assessed by filtering variants with imputation R2>0.3, resulting in approximately 8 

million SNPs per cohort for subsequent analyses. Imputed genotypes were subsequently 

merged between the two cohorts, and once again filtered for variants with <2% SNP-

missingness and >5% MAF.


Statistical Analyses 

Polygenic risk scores calculation 

Polygenic risk scores for Alzheimer's Disease were calculated using PRScs software [193] and 

the latest Alzheimer’s GWAS that did not contain the cohort used in this study [149]. We used 

the European reference panel from 1000 Genomes Phase 3 to model LD in the polygenic risk 

score computation. To improve prediction accuracy of the AD PRS, we followed the approach 

suggested by [137], in which the APOE locus(Chr19 43.4M-47.5M) is removed prior to the 

calculation of the AD PRS, and then the APOE effect is added as a weighted sum to the AD 

PRS, with effect sizes of -0.47 for the e2 allele and 1.12 for the e4 allele. The region for the 

APOE locus was chosen after comparing multiple genetic windows and the resulting AD PRS 

across individuals with different APOE e4 allele counts. 


	 Polygenic scores for other brain disorders and traits such as Schizophrenia [96], 

Attention-deficit/hyperactivity disorder (ADHD) [95], Bipolar Disorder [43], Insomnia [99], 

Migraine [155], and Alcohol Use Disorder [156] were also calculated in both cohorts using 

PRScs and the respective GWAS summary statistics.


Association of AD PRS with CSF metabolites and AD biomarkers 

Linear regression was used to identify CSF metabolites that could be predicted with the AD 

PRS. Using the lm function from R we generated linear models predicting CSF metabolite 

levels using the weighted AD PRS and as cofactors age and sex. We also compared these 
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models to using the AD PRS calculated without the APOE regions, as well as including the 

APOE region. This approach was extended to associate Amyloid beta, phosphorylated tau and 

total tau levels with the AD PRS when available for the sample. AD biomarkers levels were log 

normalized for linear regression analyses. After correcting for PC and age outliers, we ended up 

with 461 individuals available for the analysis. 


Correlations between AD biomarkers and CSF metabolites 

In the Amsterdam cohort, individual metabolites were tested for Spearman correlation with 

CSF phosphorylated tau, total tau, and amyloid beta using the cor.test function in R. Any 

correlations that passed Bonferroni multiple testing correction were considered significant 

correlations.


 


Elastic Net Regression 

In order to restrict the number of metabolites to those most relevant to predicting Alzheimer’s 

disease biomarkers, elastic net regression was utilized using the train function from the caret 

package in R. Due to the lack of AD biomarker data in the Utrecht cohort, this analysis was 

limited to the Amsterdam cohort. This method was implemented to select the most important 

metabolites out of the (5000+) metabolites for predicting CSF phosphorylated tau, total tau, 

and amyloid beta. To account for the variability of predictions given the way the data is split 

between test and training sets, the data was split 80/20 in 1000 random ways. In each 

iteration, 80% of the data was used to train a model to predict AD biomarkers and 20% of the 

data was used to test the model’s prediction accuracy. In order to determine the added 

predictive value of CSF metabolites, base models were tested using only age and sex. If any 

metabolites were included in over 80% of the 1000 models, they were considered to be highly 

predictive and of importance. To verify the importance of these metabolites, the rest of the 

metabolites that were not considered highly predictive were corrected for the effects of the 
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highly predictive metabolites. Elastic net regression was then run using these metabolites to 

predict phosphorylated tau and total tau  in a similar manner described above.
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CHAPTER 2 TABLES 

Table 2.1: Cohort characteristics 

Controls include both individuals with normal cognition and subjective cognitive decline. 





Table 2.2 Summary of the strongest CSF metabolite correlations for T-Tau and P-Tau CSF 

levels 
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Table 2.3 AD Biomarkers prediction results 

Summary of results from linear regression models, after adjusting for age and sex, using 

different approaches to account for the APOE allele and genetic architecture of AD. R2 = R-

squared; AIC = Akaike information criterion; BIC = Bayesian information criterion.





CHAPTER 2 SUPPLEMENTARY TABLE 

Table S2.1 List of all consistent metabolite predictors and factors (Frequency > 800) for P-Tau 

and T-Tau CSF levels
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CHAPTER 2 FIGURES 

Figure 2.1 Study Design Outline 

Study Design Outline. Single nucleotide polymorphisms (SNPs), AD (Alzheimer’s Disease), CSF 

(Cerebrospinal Fluid), β-amyloid1-42 (AB42), Phosphorylated Tau (P-Tau).





Figure 2.2 CSF metabolites correlations with CSF AD biomarkers 

Correlation results between 5,261 CSF metabolites and CSF AD biomarkers. X-axis represents 

correlation values as an adjusted R. Y-axis represents log transformed p-values. Red dots 

indicate positive significantly correlated metabolites, blue dots indicate negative significantly 

correlated metabolites. Red line represents the Bonferroni adjusted significance threshold of 

-log(0.05).


	 (A) Shows results for CSF Total Tau 
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	 (B) Shows results for CSF Phosphorylated Tau  


	 (C) Shows results for CSF Amyloid-Beta 42 (Aβ42


A





B


71






C
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Figure 2.3 Prediction of P-Tau and T-Tau CSF levels using CSF metabolites.  

Elastic net prediction results using only age and sex, all the CSF metabolites (n = 5,543), and a 

combined model of both. X-axis represents R2 values for the models. *** indicates p-value 

below 0.0001 for ANOVA test.


(A) P-Tau CSF levels prediction results 


(B) All named CSF metabolites that consistently came up as predictors for P-Tau (n = 13)


(C) T-Tau CSF levels prediction results CSF levels B and D show all named CSF metabolites 
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(D) All named CSF metabolites that consistently came up as predictors for T-Tau (n = 8) 

respectively.


Figure 2.4 Pathway analysis of metabolites correlated with P-Tau and T-Tau.  

Results of pathway enrichment analysis for 288 metabolites. X-axis represents enrichment 

score, Y-axis represents log transformed p-values. Color indicates the amount of metabolites 

that were enriched for that particular pathway.


	 (A) Pathway enrichment results for P-Tau CSF levels


	 (B) Pathway enrichment results for T-Tau CSF levels. 
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CHAPTER 2 SUPPLEMENTARY FIGURES 

Supplementary Figure S2.1 CSF metabolites and AD CSF Biomarkers correlations 

stratified by cofactors 
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Stratification of CSF metabolites and AD CSF biomarkers total tau and phosphorylated tau, by 

Case/Control status. Red and blue colors represent those metabolites found to be significantly 

positively or negatively correlated in the whole clinical cohort.


	 (A) & (B) shows only the significant CSF metabolites correlations for CSF Total Tau and 

P-Tau respectively


	 (C) & (D) shows all the non-significant CSF metabolites correlations for CSF Total Tau 

and P-Tau respectively. 





Supplementary Figure S2.2 Pathway enrichment analysis results by MetaboAnalist 

Metabolite pathway enrichment analysis results by MetaboAnalist for CSF metabolites 

correlated with both CSF P-Tau and T-Tau levels (N = 288). Y-axis shows enriched metabolic 

pathways, x-axis indicates -log10 of the P-value. Color indicates P-value of the enrichment. 
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Supplementary Figure S2.3 Effect of APOE alleles on the AD PRS  

	 (A) & (B) show the distribution of the AD polygenic risk scores across APOE e4 allele 

counts, before and after removing the APOE locus region (Chr19: 44.4-46.5 mB). 


	 (C) & (D) show the distribution of the AD scores across APOE e2 allele counts, before 

and after removing the APOE locus.
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Supplementary Figure S2.4 Associations between CSF metabolites and Polygenic Scores  

Linear regression analysis results for polygenic scores and CSF metabolites (n = 5,543). Y axis 

represents -log P value of the CSF metabolites and polygenic score association. Each dot 

represents a metabolite. Red line indicates Bonferroni adjusted P-value (alpha = 0.05). ADHD = 

Attention-Deficit / Hyperactivity Disorder; AUDI = Alcohol Use Disorder Identification Test; BPD 

= Bipolar Disorder; AD = Alzheimer’s Disease; SCZ = Schizophrenia 


	 (A) Results for and the clinical cohort
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	 (B) Results for the cognitively healthy cohort


A

B
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CONCLUSIONS 

Current progress in precision medicine has been fueled by advancements in acquiring a 

broader range of individualized measurements, spanning electronic health records and 

biological data from various omics platforms [194,195]. While precision medicine approaches 

are currently being extensively utilized in oncology, particularly for selecting targeted therapies 

and assessing cancer risk [196], the accurate diagnosis and treatment of complex brain 

disorders remain challenging due to their heterogeneous and complex etiology. By leveraging 

their heritable component, genomic technologies, notably through GWAS [33], have identified 

candidate genes and deepened our understanding of the biological pathways underlying these 

disorders. Further advancements have stemmed from investigating how these genetic variants 

impact other biological layers. Transcriptome-wide association studies, for instance, identify 

trait-associated genes regulated by significant variants [197], while metabolome-wide 

association studies detect metabolites influenced by significant variants [198].


	 Another valuable resource for advancing research into the biology of complex brain 

disorders that has emerged in recent years involves the establishment of large biobanks. These 

repositories, which collect biological and clinical data from human subjects, offer opportunities 

to identify biomarkers for diagnosis and prognosis [199]. Notable examples of biobanks include 

the UK Biobank [200], which has amassed a wealth of biological features across thousands of 

illnesses from over half a million participants, and the Danish National Patient Registry [201], 

which has collected comprehensive information at a national scale. Some research work on the 

UK Biobank has focused on integrating measurements of multiple phenotypes to assess their 

contributions to mental health [202]. Electronic health records (EHRs) within these Biobanks 

serve as invaluable sources of clinical information and potential endophenotypes for 

psychiatric disorders [203]. They consolidate patient disease diagnoses, laboratory assay 

results, medication statuses, and longitudinal measurements [204]. The longitudinal aspect in 

particular holds potential to gain insight into the development of a disease and identified 
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associated risk factors. Ongoing research efforts are dedicated to redefining phenotype 

definitions currently employed in EHRs and leveraging them to predict diagnostic conversions 

between psychiatric disorders [205]. While further work is needed to fully integrate these 

endophenotypes into clinical practice, the linkage of EHRs, biological measures, and genomics 

underscores the potential of integrating information across clinical datasets and omics 

technologies.


	 To study endophenotypes for complex brain disorders, in vitro models utilizing patient-

derived cell lines offer a means to capture the genetic architecture of these conditions, serving 

as accessible and powerful tools for elucidating their biological underpinnings [206]. The 

results from our study on the in vitro circadian model employing skin cells, in which we 

examined transcriptomic and open-chromatin data, revealed that the amount of consistent 

cyclic genes was limited to only 7 core circadian genes. Additionally, accessible chromatin 

features captured by this model of the circadian system were primarily related to the 

glucocorticoid response. It was observed that these features are influenced by genetics, cell 

culture conditions, and, importantly, the method used for circadian cycle synchronization. This 

modeling approach may lead to a narrowing in the scope of studies of circadian rhythms in the 

context of complex brain traits. Although the biology captured by this model after circadian 

synchronization induced by dexamethasone treatment may not be directly involved in the 

known genetic architecture of BD or other complex brain disorders, it can still be applied to 

scientific questions that cannot be explored directly in human subjects. For example, this 

model could be utilized to characterize the specific biological pathways activated during 

circadian distress. Notably, the dysregulated circadian phenotype in BD patients is 

characterized by episodic events rather than a constant trait, highlighting the dynamic nature of 

the disorder [7]. Comparative analysis of responses to circadian distress between fibroblast cell 

lines derived from BD patients and healthy individuals could provide valuable insights. 

Furthermore, the accessibility offered by this in vitro model could facilitate investigations into 
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the effects of lithium, the most commonly prescribed drug treatment for BD [14], during 

circadian distress scenarios.


	 Metabolomics has emerged as a potent omics platform capable of complementing 

information from genomics, by capturing downstream effects of variations in the environment, 

genome, and other biological layers for an individual [207]. Particularly, metabolites from CSF 

can offer insights into biological processes related to complex brain traits [152]. In this 

dissertation, our aim was to assess how genetics and CSF metabolites contribute to capturing 

various aspects of the pathology of AD that is reflected by the clinical CSF biomarkers. We 

found that the APOE E4 alleles (in particular) have a major impact on AB CSF levels, and to a 

moderate degree on P-Tau, and T-Tau CSF levels. By analyzing 5,543 CSF metabolites, we 

identified 288 unique CSF metabolites associated with CSF levels of P-Tau and T-Tau, but not 

with AB. We discovered novel associations between the CSF metabolites Anserine and 

Fucose, and P-Tau/T-Tau CSF levels. Pathway analysis of these metabolites further supports 

their involvement in established biological pathways affected by AD, such as 

glycerophospholipid metabolism. These metabolites can be potential targets for studying and 

gaining a deeper understanding of how AD progression impacts brain physiology.


	 While this dissertation has uncovered novel associations with AD, further research is 

needed to fully grasp the relationship between the genetic architecture of AD and its 

pathophysiology. Notably, our investigation revealed a robust genetic link between APOE E4 

alleles and amyloid beta 42 CSF levels, a connection previously documented in multiple 

studies [44,208–210]. Despite the APOE locus being the most prominent genetic risk factor for 

AD, it does not encompass the entirety of the genetic risk. The most recent GWAS identified 

over 75 risk loci with 31 genes associated with AD [37]. The substantial effect size of the APOE 

locus in our study limited our ability to glean insights from other genetic regions, even with the 

integration of diverse omics approaches. Future investigations into AD must untangle the 

significant influence of APOE to evaluate the contribution of other genetic variants to AD 

pathology. One avenue for further exploration lies in examining cohorts of individuals with AD 
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who do not carry the APOE E4 allele. Research adopting this approach has uncovered 

differences in dementia risk factors between non-carriers and carriers of the APOE E4 allele, 

including variations in multimorbidity risk scores, elevated microalbumin levels in urine, and 

increased neutrophil counts [211]. Another promising strategy involves studying populations in 

which other genetic loci exhibit effect sizes comparable to APOE, such as African American 

populations with the ABCA7 locus [184]. Investigations focusing on non-European ancestry 

populations underscore the potential benefits of broadening current human genetic studies to 

encompass individuals from globally diverse ancestries.


	 In our analysis, we focused solely on common genetic variants, specifically single 

nucleotide polymorphisms (SNPs), which are single-base variations occurring in at least 1% of 

European ancestry populations [212]. While SNPs represent the most prevalent genetic 

variations, research has shown that rare variants, such as structural variants, are also 

implicated in complex brain disorders. These structural variants, characterized by duplications, 

insertions, or inversions of DNA segments, can identify specific genes, mutations, and 

downstream functional effects with high impact on a trait [213]. Preliminary investigations into 

AD have identified 16 structural variants, including deletions and duplications [214]. The first 

large-scale studies of these types of rare variants in BD suggest a limited contribution toward 

disease susceptibility. [215,216]. Despite the challenges posed by their low prevalence in 

current study populations, studying these rare variants could offer insights into shared disease 

pathways underlying complex brain disorders.


	 The solution to biomarker discovery does not solely rest upon a single measurement. 

When a single strong genetic locus predominantly influences biomarkers, it can obscure the 

exploration of additional biological mechanisms involving other genetic variants, as evidenced 

in our study of APOE and AD susceptibility. Conversely, in conditions like BD, where a diverse 

array of genetic variants each contribute small effects, the interpretability and identification of 

biologically relevant signals pose continuous challenges. This is compounded by the lack of 

biological features, such as inflammatory markers or circulating brain protein levels [31],   that 
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we can definitely associate with BD. To advance our understanding, we must develop 

strategies to investigate the broader genetic landscape of the disorder beyond a single, most 

significantly associated locus. Additionally, identifying the optimal combination of features that 

will yield the most informative insights into the disorder is imperative and remains as one of the 

hardest tasks ahead.


	 In conclusion, the identification of biomarkers to enhance the diagnosis, risk 

assessment, and treatment of complex brain disorders remains a significant challenge in the 

field of neurology and psychiatry. Integration of multiple omics technologies holds promise in 

addressing these challenges, however, driven by ongoing advancements in refining the 

integrative analysis between technologies and broadening the populations from which these 

datasets are collected. In this dissertation, we leveraged two layers of functional genomics 

information—transcriptomics and epigenomics—to assess the suitability of an in vitro model as 

a tool for studying endophenotypes in BD. Additionally, we investigated known biomarkers of 

AD by examining their associations with genomics and CSF metabolomics, identifying novel 

CSF metabolites and biological pathways linked to the disorder. This work represents another 

step forward in advancing our understanding of the underlying biology of complex brain 

disorders, utilizing current technological advancements, and addressing the challenges of 

combining omics approaches.
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