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ABSTRACT 1 INTRODUCTION

As deep reinforcement learning (DRL) continues to gain interest in
the smart building research community, there is a transition from
simulation-based evaluations to deploying DRL control strategies
in actual buildings. While the efficacy of a solution could depend
on a particular implementation, there are common obstacles that
developers have to overcome to deliver an effective controller. Ad-
ditionally, a deployment in a physical building can invalidate some
of the assumptions made during the controller development. As-
sumptions on the sensor placement or on the equipment behavior
can quickly come undone. This paper presents some of the sig-
nificant assumptions made during the development of DRL based
controllers that could affect their operations in a physical building.
Furthermore, a preliminary evaluation revealed that controllers
developed with some of these assumptions can incur twice the
expected costs when they are deployed in a building.
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As researchers start to look beyond model predictive control (MPC)
to optimize the operation of building equipment, reinforcement
learning (RL) has been gaining traction. With advances in deep
learning, emerging infrastructure are increasingly using data driven
artificial intelligence based strategies to control, manage and also
optimize their usage [3]. Using deep neural networks to handle the
high dimensionality of complex systems like buildings, Deep Rein-
forcement Learning based control algorithms (DRL controllers) can
help in optimizing the operations of these systems. The ‘model-free’
nature of DRL and the adaptability to handle unknown conditions
are unique selling points that these solutions offer over MPC [7].
The term ‘model-free’, refers to a controller that uses a data-driven
approach to learn the optimal actions for each given state instead of
understanding the first principles involved in the transition between
the actions and new state [6]. Preliminary deployments in residen-
tial and small commercial buildings have already demonstrated
improvements in energy savings and in the indoor environmental
quality [7]. However, developing DRL is not without its challenges
and Wang and Hong (2020) [7] have discussed those in detail. They
are further compounded when the objective is to deploy such a
controller in an actual building.

This paper focuses on the implicit assumptions made during the
development of a DRL controller on the training processes and on
the building systems. For example, while the developers of con-
trollers usually account for the possibility of faulty equipment in
buildings, the adequacy of the sequence of operations programmed
in these equipment are often not questioned. Furthermore, develop-
ers expect the model-free nature of DRL based controllers to steer
through such discrepancies with ease. The main contributions are:

e A description of the significant implicit assumptions made
during the development of a DRL controller that no longer
hold true when it is deployed in a building.

e An evaluation of the impact of the assumptions on the ac-
tions generated by a DRL controller aiming to optimize the
operations of the equipment in a single zone building.

2 METHODOLOGY

Developing a DRL controller involves formulating an agent that is
in a partially observable environment and learning the best deci-
sions through interacting with the environment. The agent observes
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environment snapshots, and chooses an action, receiving a reward
value for this action in the current state. It continues to receive
feedback on its actions until a terminal state is reached. The objec-
tive is to maximize the cumulative reward over all actions in the
time the agent is active [5].

Nevertheless, permitting a DRL controller to train directly in an
actual building (on-policy learning) could result in discomfort to
the occupants and damage to the equipment. Hence, the agent is
trained using data from the building (off-policy learning). However,
as operational data from an existing building might be insufficient
to represent all possible system states, oftentimes simulation models
of the building (using MATLAB, EnergyPlus etc.) are used to train
the DRL controller [7].

The authors of this paper have used DRL controllers for the
supervisory control of a heating, ventilation and air conditioning
(HVAC) system and a battery storage in a single zone building
with on-site solar generation. The objective of the controller is to
minimize the total energy costs incurred while maintaining indoor
thermal comfort. More specifically, Deep Deterministic Policy Gra-
dient (DDPG) [2] has been used for developing the controller. DDPG
is an actor-critic DRL algorithm that can be used in continuous
action space. A training framework that uses a physics-based sim-
ulation component was implemented to learn end-to-end control
policies. Energyplus [4] was used to model the building and HVAC
system while Modelica [8] was used to simulate the battery and PV.

The following sections describe some of the significant assump-
tions made during the development phase and studies their impact
during operations, with the intention that the analyses conducted
in this paper can help other DRL practitioners who might’ve made
similar assumptions, accelerate their research and deployment stud-
ies.

3 IMPLICIT ASSUMPTIONS

This section discusses three assumptions made by the authors dur-
ing the development of the DRL controller, related to: 1) the random
seed used during training 2) data used for the training and 3) equip-
ment behavior in an existing building.

3.1 Impact of the Random Seed

During training of a DRL controller, a seed value is used to random-
ize the initialization and to ensure reproducibility. Two controllers
starting with the same seed would produce the identical actions
at each step and conversely, two controllers trained with differ-
ent seeds would generate slightly different actions at each state.
However, it was assumed that with extensive training, the variance
of the actions generated by differently-seeded controllers could
be minimized and hence choosing the seed value (often done at
random) had little repercussions. This was quickly disproved when
the authors identified a controller configuration that was able to
generate optimal actions after training using seed1, but was unable
to even converge when trained using seed2. Figure 1 shows the
distribution of reward values received at each step by four simi-
larly configured DRL controllers trained using different seeds. Even
though the median values of these distributions are quite similar,
the different heights of the box plots point to the different actions
generated.
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Figure 1: Varying reward distribution of similarly config-
ured DRL controllers trained with different seeds indicating
different actions

3.2 Training Data

Due to the adaptability of DRL controllers to new system states
and the possibility of online learning during the actual operations,
developers tend to assign less emphasis on the simulated building
representation and on the quality of the training data. Figure 2
illustrates two streams of power consumed by the supply air fan of
an air handler unit (AHU): one from a calibrated energy model and
the other from an uncalibrated energy model. Even though it was
obvious that training a DRL controller on a stream of data from
an uncalibrated source against a calibrated source would produce
different controllers, it was assumed that when the real system
state was fed as input, the actions generated by both the trained
controllers would be quite similar. This belief was reinforced by
the fact that the power consumed by the supply air fan was only a
small fraction of the total building load (median ratio of 8.52%).
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Figure 2: Different power consumption of supply air fan
(fancalibrated> faNuncalibrated) Used to train DRL controllers

3.3 Equipment Behavior

As the DRL controller was trained through interactions with a
simulated representation of the building, it was implicitly assumed
that an actuator would always meet the generated setpoint (or
the action). However, in a physical building, this is usually not
the case. Even without the setpoints being out of bounds or a
network interruption causing the control signal to be dropped, the
physical limitations or the capacity constraints on the building’s
control system could prevent it from successfully conditioning the
environment to meet its setpoint. Figure 3 illustrates an instance of
this assumption failing for an AHU’s supply air temperature when
despite the obvious lag in time, the actual values are different from
the requested setpoints.
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Figure 3: DRL generated supply air temperature setpoint v/s
the actual supply air temperature of an AHU

4 EVALUATION

The evaluation is conducted by deploying the DRL controllers in an
existing building (described below). The controller queries the state
of the system periodically (configured to run every fifteen minutes)
and generates certain actions. Based on the the objective of each
experiment, the controllers might be set up to operate in one of the
following modes:

e shadow-mode: While DRL generates setpoints based on the
actual state of the system, they are not applied to the actual
building equipment; an independent sequence of operation
would be controlling the equipment. This mode allows the
comparison of setpoints generated by multiple controllers
at the same system state.

o closed-loop-mode: Here the setpoints generated by the DRL
controller are actually set on the controller to trigger a
change in operation.

4.1 Experimental Set up

DRL controllers based on the DDPG algorithm have been used in
this evaluation. They have been deployed in a single zone build-
ing in FLEXLAB [1], an experimental building facility at Lawrence
Berkeley National Laboratory, with the objective to minimize en-
ergy costs incurred while maintaining a comfortable zone air tem-
perature band of 21C-24C during occupied hours (7AM-7PM). The
building is assumed to be enrolled in a time-of-use (TOU) elec-
tricity tariff, with peak prices from 4PM-9PM ($1.20/kWh more
than a base price of $0.13/kWh). It is conditioned by an AHU, with
on-site solar generation and battery storage to support the load.
Correspondingly, during each run (every fifteen minutes) the DRL
controllers generates three actions: 1) supply air temperature set-
point for the AHU 2) supply air flow rate setpoint for the AHU and
3) charge/discharge rate setpoint for the battery.

4.2 Experiments

Leveraging the test setup mentioned above, we conduct the follow-
ing experiments to study the impact of the assumptions discussed
in Section 3.

4.2.1 Different seeds. As shown in Figure 1, changing the initial
seed values used in the training of the DRL controller does produce
different controllers. The impact of using different seeds was quan-
tified by comparing the setpoints generated by a DRL controller
trained using seed1 (controllergeeqt) against those generated by
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a controller trained using seed2 (controllergeeqz). This compar-
ison was conducted in shadow-mode and Figure 4 visualizes the
supply air temperature setpoints generated by both the controllers.
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Figure 4: AHU supply air temperature (SAT) setpoints gen-
erated by two DRL controllers with the same configuration,
but trained using different seed values

4.2.2 Quality of training data. By comparing the setpoints gener-
ated by two similar DRL controllers, trained on different datasets
(controllercaliprated> controlleryncalibrated), both running in
shadow-mode, the impact of training data on a controller’s actions
were assessed (illustrated in Figure 5). The training data only dif-
fer in the power consumption of the supply air fan power and
correspond to the fancaiiprated and fanyncalibrated timeseries
illustrated in Figure 2.
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Figure 5: (a) Battery charge/discharge rate and (b) AHU sup-
ply air flow rate (SAF) setpoints generated by two DRL con-
trollers with the same configuration, but trained on slightly
different datasets

4.2.3 Meeting the setpoints. Supervisory DRL controllers affects
the building environment by generating setpoints for the equip-
ment that condition this environment. However, Figure 3 pro-
vides evidence that equipment do not always reach their setpoints.
In order to study the impact of inability of building equipment
to meet the target setpoint on DRL, a simulated battery model
(batterymode1) with the same specifications as the real battery
(batteryrea1) was constructed, with the key difference being the
ability of the batterypode1 to charge and discharge based on the



RLEM’20, November 17, 2020, Virtual Event, Japan

Prakash, et al.

Table 1: A table of Mean Absolute Error (MAE) between setpoints generated by the DRL set up under test and those generated

by the baseline DRL set up for each experiment

Experiment Test Controller Baseline Controller Affected Setpoint MAE
1. Different a DRL controller trained a DRL controller trained  supply air temperature 4.28C
seeds on seedp on seed supply air flow rate 0.06kg/s
battery charge/discharge rate 162.67W
2. Quality of =~ a DRL controller trained a DRL controller trained supply air temperature 3.87C
training data  on partly-calibrated on well-calibrated data  supply air flow rate 0.082kg/s
data battery charge/discharge rate  188.60W
3. Meeting the a DRL controller that a DRL controller that supply air temperature 0.72C
setpoints controls batterypodel controls batteryreal supply air flow rate 0.005kg/s
battery charge/discharge rate  169.62W

80

—— Battery SP using batterymoger (W)
Battery SP using batteryeas (W)

w
S
S
S

14 e batterymode SOC (%)
i < batteryes SOC (%)

3
o

g

2

s ~

o 2000 g

g ®

z 502

2

& 1000 S

4 40

g 0  Sdaaasand LRSI cemmmEEsTT P L, N 30 %
§ w

2 st 20

2 -1000 sttt A

3 'epastsasamacerd

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

Figure 6: The different SOC timeseries from batterypode1
and batteryre,1 and the DRL generated charge/discharge
rate setpoints for the respective batteries

exact setpoint generated by the DRL controller. This characteristic,
in turn creates a new state of charge (SOC) timeseries from the
batterypode1. For the evaluation, the setpoints generated by the a
DRL controller attached to this batterypode1 are compared to those
generated by the same DRL controller attached to the batteryreai,
both running in closed-loop-mode (as shown in Figure 6)).

4.3 Results and Discussion

Table 1 summarizes the results of all the experiments and quantifies
the impact of different assumptions on the actions generated by a
DRL controller. It can be seen that the largest impact across all three
setpoints was incurred when the DRL controller had been trained
on a dataset containing uncalibrated power data, even though the
uncalibrated part was only a small fraction of the total building
load. The minimum supply air fan flow rate throughout the day
(Figure 5(b)) also indicates a lack of actuation, resulting in inefficient
operations. Table 1 also provides evidence that in spite of training
using four years of weather and simulated building operational
data, controllers trained using different seeds behave differently.
Hence, a controller warrants multiple training cycles, at least to
ensure consistent behavior.

Meeting the setpoints experiment provides evidence of how unre-
alistic assumptions made on the behavior of physical equipment
could affect a controller. While the battery management was the
only noticeable difference, the controller using batterype,; in-
curred more than double the energy costs over the course of 24
hours than the controller using the ideal batterypyge1. Hence, by

modifying the training environments with adjusted rewards func-
tion and better state estimations to incorporate such behavior of
physical equipment, better controllers can be developed.

5 CONCLUSION

While the assumptions presented in this paper are neither algo-
rithm independent nor a complete and exhaustive list, the paper
shows that assumptions made during development can significantly
impact the performance of a DRL controller when it is deployed
in a physical building. Next steps in this work involves studying
the impacts of these assumptions on different DRL algorithms and
on identifying metrics to quantify the impact on the performance,
irrespective of the algorithm or the problem objective. The authors
are also looking at developing a better training environment (sim-
ulation, reward function etc.) that can incorporate and reflect the
negative impacts of these assumptions.
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