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ABSTRACT OF THE DISSERTATION

From instabilities to turbulence in rotating stratified flows with
horizontal and vertical shear

by

Eric Moore Arobone
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Professor Sutanu Sarkar, Chair

Two idealized rotating and stratified flows are explored using linear stabil-

ity analysis and three-dimensional direct numerical simulations. The first problem

explores barotropic mean flow containing horizontally-oriented shear flow in the

form of a mixing layer. The second problem explores a uniform baroclinic mean

flow in the form of a homogeneous density front in thermal wind balance with

uniform vertical shear. Both flows are explored using Richardson and Rossby

numbers appropriate for submesoscale shear flows, with lateral length scales of

roughly 1 to 20 kilometers. The horizontal shear flow results in simultaneous iner-

tial and barotropic instabilities provided the mixing layer vorticity is opposite in

sign and substantially greater in magnitude than the Coriolis parameter. When
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the vorticity of the mixing layer is opposite in sign and similar in magnitude to the

Coriolis parameter the barotropic instability is fundamentally altered. The vertical

wavenumber associated with this new instability increases by an order of magni-

tude destabilizing barotropic vortices leading to increased turbulence intensity well

outside of the inertially unstable regime.

Symmetric instability (fluctuations have no along-front variation and are

aligned with isopycnals) has been identified in the literature as a potential route to

turbulence at fronts as an alternative to wind-driven boundary layer mixing. Linear

analysis and simulations of a uniform baroclinic flow in initial geostrophic balance

performed here suggest that the instability responsible for initiating transition to

turbulence should be near-symmetric and not exactly symmetric as predicted for

asymptotically large time scales. Owing to near-symmetry, the instability fun-

damentally differs from the purely symmetric instability due to currents crossing

surfaces of constant density and tapping the reservoir of potential energy available

in the front. The presence of strong vertical shear only intensifies this effect as

time increases. A highly-resolved turbulent simulation demonstrates a pathway

to turbulence from quiescent flow via near-symmetric currents which succumb to

shear-convective instabilities which in turn act to destabilize vorticity fluctuations

aligned with the mean vorticity in the base flow. Once these fluctuations are suffi-

ciently strong enough, the flow three-dimensionalizes and rapidly breaks down into

turbulence throughout the domain.
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Chapter 1

Introduction

The submesoscale regime lies between the large anisotropic mesoscale, well

approximated by geostrophic and hydrostatic balance, and the nearly isotropic

microscale. Submesoscale turbulence is characterized by horizontal length scales

of L ∼ O (1− 10km), and by horizontal flow varying on times scales of U/L ∼
O (1day). Balanced dynamics (e.g. quasigeostrophy) are characterized by an in-

verse energy cascade and vanishing dissipation as Re = UL/ν →∞, as is the case

for two-dimensional turbulence. Submesoscale turbulence is the term used to col-

lectively refer to mechanisms which enable an energy cascade from nearly balanced

flow to dissipative scales. Several such pathways have been identified through ob-

servations and simulations over the last couple of decades (McWilliams, 2010).

It was long thought that the submesoscale regime was populated almost

exclusively by inertia-gravity waves, however this was called into question when

it was pointed out that vortical motions can coexist with waves on these scales

(Kunze & Sanford, 1993). Resolving submesoscale features within the mesoscale

upper-ocean field proved difficult until recent technological advances. A study in

1985 exploring the California Current (Flament et al., 1985) gave observational

evidence suggesting active submesoscale processes in the upper ocean. Here, sea

surface temperature plots were used to infer the evolution of an upwelling filament

with barotropic instabilities of horizontal scale ∼ 15 km. A front southwest of

Bermuda was explored in 1986 by towing a profiling CTD called SeaSoar and us-

ing a ship-mounted Doppler current profiler (Pollard & Regier, 1992). Here, rapid

1
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time scales and rapid changes in potential vorticity
(
Q = −ρ−1

0 (ωi + δi3f) ∂ρ/∂xi
)

were observed over 10 km scales along isopycnals. Also, small surface-trapped ed-

dies played an important role in mixing and transport across the thermocline. In

2004, the Subtropical Front in the north-east pacific was studied using an undu-

lating CTD system (Hosegood et al., 2006). Wavelet analysis showed that hori-

zontal density variability was significant down to 2 km scales, significantly smaller

than previously thought. In 2007, a front within the Kuroshio was explored using

freely-drifting and towed instruments for a matter of weeks resolving scales from

kilometers to millimeters (D’Asaro et al., 2011). Here, results indicated that un-

forced submesoscale instabilities were more important in the development of upper

ocean turbulence than fluxes of heat, moisture or momentum at the surface.

1.1 Submesoscale Horizontal Shear

Turbulent stratified flow with horizontal shear occurs in a wide variety of

geophysical scenarios. Boundary currents, topographical wakes, and flow from

river deltas can all result in strong horizontal shear subjected to nearly vertical

stratification. In many geophysical flows there is an abundance of horizontal ki-

netic energy organized into vortices and there is uncertainty regarding the fate of

this energy. In the 1980s, the POLYMODE Local Dynamics Experiment identi-

fied, in greater detail and quantity than previously studied, unusually long-lived

submesoscale coherent vortices (SCVs). SCVs are quite intermittent in compari-

son to inertia-gravity waves and submesoscale turbulence, but prove quite effective

in transporting chemicals and tracers from their origin. There is a strong anticy-

clone bias present in SCVs, posited as due to intense localized mixing events at

generation sites (McWilliams, 1985).

Spiral eddies on the sea surface have been observed at the ocean’s surface

since the Apollo Mission, being roughly 10 − 25 km wide and predominantly cy-

clonic (Munk et al., 2000). The spirals are noticeably absent within 6◦ of the

equator, and are highly concentrated in the Mediterranean Sea in Autumn. The

structure of many of the eddies is reminiscent of the prototypical “cat’s eye” pattern



3

associated with horizontal shear instability. The preference for cyclone formation

was suggested to be due to instabilities which target anticyclonic vortices and the

more rapid growth of cyclonic shear in frontal jets. It was later argued that oceanic

spirals were primarily due to ageostrophic baroclinic instability, with the observed

shear instability being a component of secondary circulations (Eldevik & Dysthe,

2002).

There are observations of asymmetry between cyclonic and anticyclonic

vortices in geophysical flows, e.g. figure 1 of Potylitsin & Peltier (1998) which shows

asymmetry of the von Karman vortex street in the lee of mountains on the island

of Jan Mayen. Flament et al. (2001) observed a horizontal shear layer, containing

anticylonic vortices having ω3 ∼ −f , forming in the westward North Equatorial

Current past the island of Hawaii. The shear layer grew in thickness owing to

paring of these anticylonic vortices. It was suggested that stronger vortices were

not observed due to inertial instability. Anticyclones are quite difficult to generate

in the laboratory in a homogeneous fluid, e.g. Kloosterziel & van Heijst (1991)

and Afanasyev & Peltier (1998).

The so-called balance equations are intermediate to the geostrophic and

primitive equations in accuracy, defined as to retain a global energy invariant

(Gent & McWilliams, 1983a). Three conditions resulting in singularity of the bal-

ance equations were identified, suggesting loss of geostrophic or hydrostatic balance

(Gent & McWilliams, 1983b). The first condition is the change of sign of absolute

vorticity (A = ω3 + f), which coincides with onset of the inertial instability. The

second condition is the change in sign of the vertical density gradient, which indi-

cates gravitational instability. The last condition coincides with change in sign of

the difference between absolute vorticity and strain rate (A− s), which gives rise

to the ageostrophic anticyclonic instability. This instability provides a mechanism

to generate unbalanced flow, albeit with slower growth rates than observed for the

largely balanced baroclinic instability. While the baroclinic instability can mani-

fest in the submesoscale regime it is more relevant to the slumping of fronts and

hence restratification than it is to the forward energy cascade (Molemaker et al.,

2005).
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1.2 Submesoscale Vertical Shear

Submesoscale frontogenesis is a well-known mechanism which enables a for-

ward cascade of energy from balanced to unbalanced flow. In frontogenesis, density

gradients are amplified through nonlinear interactions between horizontal flow and

horizontal density gradients in the presence of background larger-scale straining.

Frontogenesis results in frontal meanders which generate coherent vortices. This

mechanism is ubiquitous in the upper ocean due to the presence of lateral buoyancy

gradients and most visible when the mixed layer is deep. It is important to note

that while submesoscale fronts meander due to unbalanced submesoscale motions,

the fronts themselves are usually very nearly in balance (Thomas et al., 2008).

For Eady flow, a vertically sheared current u1 = Sx3 in balance with a sta-

bly stratified density field ρ = M2x2 + N2x3, unbalanced flow is due primarily to

frontogenesis and subsequent frontal instabilities (Molemaker et al., 2010). Hori-

zontal shear is the primary driver for the observed frontal instabilities. Because of

the lack of a surface mixed layer these simulations have a very large deformation

radius, effectively eliminating the submesoscale baroclinic instability, confining it

to larger length scales.

The symmetric instability (SI) is an instability of baroclinic zonal flows

where perturbations contain no longitudinal variation, and are thus two-dimensional.

The stability analysis of Stone (1966) explores a balanced zonal flow of the form

u(z) which is balanced by a temperature field of the form θ(y, z). The symmet-

ric instability dominates when the Richardson number (Ri = N2/S2) is between

0.25 and 0.95 for S = ||∂uh/∂x3||, while baroclinic and Kelvin-Helmholtz (K-

H) instabilities dominate at higher and lower Ri, respectively. In a more gen-

eral case, including horizontal shear, instability manifests when potential vorticity

(q = −ρ−1
0 (ωi + fδi3)∂ρ/∂xi) or PV is of opposite sign of the Coriolis parameter in

stably stratified regions of as noted in Hoskins (1974). These more general flows are

susceptible to inertial/centrifugal and symmetric instabilities which act on absolute

vertical vorticity opposing planetary rotation and vertical shear, respectively. In

general, balanced baroclinic zonal flows have PV given by q = −fS2 + (ω3 + f)N2

(Thomas et al., 2013).
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The symmetric instability occurs when potential vorticity and the Corio-

lis parameter have opposite signs, or fQ < 0. This instability can also yield a

forward cascade to energy dissipation. In the limit of pure symmetric instability,

fluctuations receive energy from the vertical shear production. A two-dimensional

simulation of an idealized front with negative fQ gave rise to slantwise motions

associated with symmetric instability, but significant fluctuation growth was only

observed once symmetric instability reached finite amplitude and a secondary shear

instability occurred (Taylor & Ferrari, 2009). Observations of the Gulf Stream show

that the energy injection to small scales via symmetric instability is the same order

of magnitude as energy removal via baroclinic instability (Thomas et al., 2013).

An exceptionally sharp (1km) front near the beginning of the Kurushio ex-

tension was investigated by D’Asaro et al. (2011). Shipboard measurements, a

Lagrangian float and a towed profiling vehicle allowed for measurements of turbu-

lence intensity (inferred from vertical motions of the float), temperature, salinity,

pressure, and velocity profiles. The front is less than 1km wide and about 20m

deep and contains vertical motion resulting from upper ocean turbulence. Dissi-

pation at the front is estimated to be 10−20 times stronger than outside the front

but surface winds and cooling are too weak to explain the observed turbulence.

The potential vorticity was found to take the opposite sign of f for 0.2 days while

the vessel passed through the front, strongly suggesting symmetric instability as

the relevant mechanism. These results suggest that in some regions of the upper

ocean, lateral density gradients and symmetric instability may be more important

than atmospheric forcing in setting turbulence intensity.



Chapter 2

Nonlinear Evolution of a

Stratified Shear Layer with

Horizontal Shear

2.1 Introduction

Turbulent stratified flow with horizontal shear occurs in a wide variety of

atmospheric and oceanographic scenarios. Boundary currents, wakes of towed or

self-propelled objects, and flow from river deltas can all result in strong horizontal

shear subjected to nearly vertical stratification. In geophysical flows there is an

abundance of horizontal kinetic energy organized into vortices whose vertical struc-

ture is of interest. While the effect of stratification on turbulent flow with vertical

mean shear has received considerable attention in the case of two streams with

uniform but different density (Thorpe, 1973; Koop & Browand, 1979; Smyth &

Moum, 2000b,a; Smyth et al., 2001; Strang & Fernando, 2001; W.R. & Caulfield,

2003) as well as in streams with ambient stratification (Tse et al., 2003; Pham

et al., 2009; Pham & Sarkar, 2010), the horizontal case has only been investigated

a handful of times (Jacobitz & Sarkar, 1998, 2000; Basak & Sarkar, 2006).

Systematic study of flows with horizontal shear started with linear theory

which was employed to study the effect of stratification on the stability of the

6
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mean flow profile. The instability of a two-dimensional shear flow, U(x2, x3) with

both vertical and horizontal shear, in a medium with uniform buoyancy frequency,

N , was investigated in Blumen (1971) under the assumptions of hydrostatic and

inviscid perturbations. A sufficient condition for stability in the general situation

of non-planar shear was not found. In the simplified case of one-dimensional shear,

U(x2), in a stratified fluid, instability was found to require an inflection point in

the flow profile and developed an additional dependence on the vertical mode

of oscillation. Three-dimensional instability of a horizontally oriented hyperbolic

tangent mixing layer, U(x2) = U0 tanh(x2/L), in a fluid with constant N was

explored by Deloncle et al. (2007) because Squire’s theorem does not apply to

this particular flow. While the most unstable modes remain two-dimensional with

(x1, x2) dependence, stratification was found to destabilize a broad range of three-

dimensional perturbations. Three-dimensional perturbations with k3L < 1/Frh,

where Frh = U0/LN , yielded growth rates very near those associated with two-

dimensional perturbations.

Subsequently, nonlinear simulations into the regime of turbulence were car-

ried out in the case of uniform shear flow. Linearized disturbances in flow with

uniform shear do not show exponential growth but algebraic growth is possible.

Nonlinearly evolving disturbances in unstratified flow with uniform shear develop

into turbulence with exponentially growing kinetic energy. The case of uniform

vertical mean shear, U = Sx3 in a stratified fluid has been studied extensively

and it is found that, for gradient Richardson number Rig = N2/S2 that exceeds a

critical value (0.18 to 0.25), turbulence is extinguished. The case of non-vertical

shear was studied by Jacobitz & Sarkar (1998) in a DNS study of stratified flow

with mean velocity, U = S sin(θ)x2 + S cos(θ)x3. The case with purely horizontal

shear, θ = π/2, showed significantly higher turbulence levels compared to purely

vertical shear. Nevertheless, for a sufficiently high stratification with N2/S2 ' 2,

turbulence was extinguished in the case with purely horizontal shear as well.

The next step was simulation of a turbulent flow with an inflectional mean

velocity that allows linear instabilities. A shear layer with velocity difference ∆U in

the horizontal (x2) direction and uniform stratification was investigated by Basak
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& Sarkar (2006), emphasizing the structure of the density and vorticity fields.

Although the vertical velocity was suppressed by stratification, inflectional shear

maintained horizontal velocity fluctuations preventing relaminarization. In the

stratified cases, Kelvin-Helmholtz (KH) rollers merged to form coherent vortical

structures which persisted for much longer times than in the unstratified case,

where KH rollers were short-lived due to secondary instabilities. Co-rotating co-

herent structures also emerge in simulations of unstratified mixing layers at mod-

erate Reynolds numbers (Winant & Browand, 1974), but buoyancy plays a greater

role in dynamics than inhibiting vertical motion and affects the evolution of co-

herent structures. A lattice of vortex cores, with vertical core height, l, such that

Fr = ∆U/Nl = O(1), emerged in the stratified cases (Basak & Sarkar, 2006)

resulting from the tilting and truncation of columnar vortical structures. Density

intrusions were found to propagate laterally from the shear layer owing to buoy-

ant parcels of fluid expelled from the coherent structures spreading laterally like

gravity currents.

Given the occurrence of coherent vortices with vertical structure in the

simulations (Basak & Sarkar, 2006) of turbulent flow with horizontal shear, it is

appropriate to review the literature on vertical structure of stratified vortices in

simpler configurations. A pair of counter-rotating vortices was shown experimen-

tally by Billant & Chomaz (2000a) to undergo a zigzag instability characterized

by a vertically modulated twisting and bending of the vortex pair. The accom-

panying theoretical analysis (Billant & Chomaz, 2000c) suggests that the vertical

wavelength l3 corresponds to Fr = uh/Nl3 ∼ O (1). Waite & Smolarkiewicz (2008)

performed simulations of a stratified counter-rotating vortex pair at a Reynolds

number higher than explored in the laboratory experiment. The early-time evolu-

tion agreed with linear analysis and experiments of the zigzag instability (Billant

& Chomaz, 2000a,c) while the late-time evolution was qualitatively different owing

to transition to turbulence. Deloncle et al. (2008) performed DNS of the zigzag

instability, similar to Waite & Smolarkiewicz (2008), and showed that the tran-

sition to turbulence occurs at large buoyancy Reynolds number. The instability

of a tilted Oseen-Lamb vortex was experimentally investigated by Meunier et al.
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(2007) for the case of small inclination angles. Thin strips along the edge of the

vortices showed strong shear and large density variation. Along the edges of the

vortex, shear layer and jet instabilities are observed. This instability was observed

at higher Froude numbers than the zigzag instability.

The current work, in contrast to the previous study of a horizontally-

oriented shear layer (Basak & Sarkar, 2006), focuses on the evolution of flow

statistics in the shear layer including examination of the role of coherent struc-

tures. Quantitative assessment of the role of coherent structures requires means

to isolate coherent vortical flow from the rest of the flow field. Since a universally

accepted definition of a vortex is currently unavailable, multiple methods of fea-

ture extraction were considered. Several commonly used vortex eduction criteria

using information contained in the rate of deformation tensor, ∇u, are introduced

in Chong et al. (1990) and Jeong & Hussain (1995), and assessed in Chakraborty

et al. (2005) and Haller (2005). For example, the Q criterion defines a vortex as

a region where the norm of the rate of rotation tensor, ‖Ω‖, exceeds the norm of

the rate of strain tensor, ‖S‖. The ∆ criterion defines vortices as the regions of

flow where ∇u has complex eigenvalues, implying locally swirling flow. λ2 iden-

tifies vortices as regions of the flow where the rotational rate exceeds strain rate

only in a specific plane. Coherent vortex extraction (Farge et al., 2001) separates

an incoherent (small-amplitude) component from a given field. Since wavelets are

isolated both with respect to length scale and physical location, they are especially

suitable for stratified flows that are dominated by sparse multiscale features. This

motivates an examination of wavelet-based decomposition of the vorticity field in

the present problem.

2.2 Problem Definition

A temporally evolving shear layer representing two streams with velocity

difference ∆U is subjected to uniform stable stratification in the vertical direction.

The streamwise velocity (u1) varies only in the transverse (x2) direction, where the

initial vorticity thickness (δω,0) characterizes the width of the region separating the



10

streams. The streamwise (x1) and vertical (x3) directions are assumed to be infinite

and homogeneous. Kinematic viscosity and thermal diffusion are denoted by ν and

κ, respectively. Figure 2.1 shows a detailed schematic.

Figure 2.1: Schematic of the mixing layer.

2.2.1 Initial Conditions

The initial mean flow field is given by a hyperbolic tangent velocity profile

of the following form,

〈u1〉 =
∆U

2
tanh

(
2x2

δω,0

)
, 〈u2〉 = 0, 〈u3〉 = 0. (2.1)

Flow variables are decomposed into mean and fluctuation quantities via the

Reynolds decomposition. Averaging is performed in the homogeneous directions,

x1 and x3. Quantities surrounded by angle brackets represent means and primed

variables represent fluctuations. The vorticity thickness of the mixing layer is given

by
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δω =
∆U

max {∂ 〈u1〉 /∂x2}
. (2.2)

The initial fluctuating field is prescribed with three dimensional fluctuations

having an energy spectrum, E(k) = Ck4e−2(k/k0)2 , which accelerates transition to

turbulence. The peak wavenumber, k0, is selected to correspond with a wavelength

of 1.7δω,0. The initial turbulent kinetic energy is

K0 (x2) = 0.029 (∆U)2 exp
[
− (x2/δω,0)2] , (2.3)

such that fluctuation energy peaks at the midplane of the shear layer.

2.2.2 Governing Equations

The dimensional equations for conservation of mass, momentum, and den-

sity of an incompressible fluid are given below (dimensional variables indicated by

*):

Continuity :

∂u∗i
∂x∗i

= 0 (2.4)

Momentum :

∂u∗i
∂t∗

+
∂
(
u∗iu

∗
j

)
∂x∗j

= −1

ρ

∂p∗

∂x∗i
+ ν

∂2u∗i
∂x∗j∂x

∗
j

− gδi3 (2.5)

Density :

∂ρ∗

∂t∗
+
∂
(
ρ∗u∗j

)
∂x∗j

= κ
∂2ρ∗

∂x∗j∂x
∗
j

(2.6)

The density and pressure fields are decomposed in the following manner,
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ρ∗ (xi, t) = ρ0 + ρ(x3) + ρ
′∗ (xi, t) , (2.7)

p∗ (xi, t) = p(x3) + p
′∗ (xi, t) , (2.8)

where ρ(x3) represents the background stratification and p (x3) represents

hydrostatic pressure balancing the initial density profile (ρ∗0 = ρ0 + ρ). The non

dimensional variables for this problem are given as

t =
t∗∆U

δω,0
, xi =

x∗i
δω,0

, ui =
u∗i

∆U
, (2.9)

ρ
′
=

−ρ′∗

δω,0 (dρ/dx3)
, p′ =

p
′∗

ρ0∆U2
. (2.10)

When Boussinesq approximations are assumed, the following non dimen-

sional equations are obtained,

Continuity :

∂ui
∂xi

= 0, (2.11)

Momentum :

∂ui
∂t

+
∂ (uiuj)

∂xj
= −∂p

′

∂xi
+

1

Re0

∂2ui
∂xj∂xj

−Rib,0ρ
′
δi3, (2.12)

Density :

∂ρ
′

∂t
+
∂
(
ρ
′
uj
)

∂xj
− ujδj3 =

1

Re0Pr

∂2ρ
′

∂xj∂xj
, (2.13)

where,
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Re0 =
∆Uδω,0
ν

, Rib,0 = − g

ρ0

dρ

dx3

δ2
ω,0

∆U2
=
N2δ2

ω,0

∆U2
,

P r =
ν

κ
.

Here, Pr is taken to be unity for the sake of reasonable computational

cost. Dirichlet boundary conditions are enforced for all flow variables at the trans-

verse boundaries where flow variables are fixed to the values given in Table 2.1.

Periodicity is enforced in the streamwise and vertical directions through Fourier

decomposition. Boundary influence increases with time as the shear layer grows

laterally.

Table 2.1: Boundary conditions at the transverse boundaries

u1 (x1,−L2/2, x3) = −0.5 u1 (x1, L2/2, x3) = 0.5
u2 (x1,−L2/2, x3) = 0 u2 (x1, L2/2, x3) = 0
u3 (x1,−L2/2, x3) = 0 u3 (x1, L2/2, x3) = 0
ρ
′
(x1,−L2/2, x3) = 0 ρ

′
(x1, L2/2, x3) = 0

p
′
(x1,−L2/2, x3) = 0 p

′
(x1, L2/2, x3) = 0

Table 2.2: Simulation parameters.

case Re0 Rib,0 Pr L1 L2 L3 N1 N2 N3

A0 680 0 1 43.0 25.8 12.9 640 384 192
A1 680 0.113 1 86.0 68.8 25.8 640 512 192
A2 680 0.358 1 86.0 68.8 25.8 640 512 192
A3 680 1.132 1 86.0 68.8 25.8 640 512 192
A3low 680 1.132 1 86.0 68.8 25.8 640 512 192
2D 680 - 1 3440 51.6 0 25,600 384 1

2.2.3 Computational Method

The numerical algorithm is different from Basak & Sarkar (2006) who em-

ployed a second-order finite difference method in all directions. Instead, we employ

spectral collocation in the streamwise and vertical directions and finite difference
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in the transverse direction. The transverse velocity is stored on a grid staggered

in the transverse direction. The Navier-Stokes and density equations are marched

using a third order mixed Runge-Kutta/Crank-Nicolson time scheme with viscous

terms treated implicitly. A Rayleigh damping function is used near the x2 = ±L2/2

boundaries, with a width of approximately 3δω,0, to prevent spurious reflections.

The Poisson equations for pressure and removal of velocity divergence are solved

using the Thomas algorithm. Parallelization is accomplished using MPI. Case

specific computational details are shown in Table 2.2.

2.2.4 Case Study

A total of six simulations were performed as listed in Table 2.2, five of

which used the initial conditions described in section 2.2.1. Case A0 investigates

the evolution of an unstratified mixing layer, while cases A1, A2, and A3 explore

the effect of various values of uniform stratification. For comparison, case 2D

investigates the evolution of a two dimensional mixing layer. Case A3low is identical

to case A3, however, initial velocity fluctuations have an amplitude smaller by a

factor of 10−3. This allows investigation of the effect of linearly evolving initial

conditions on statistical evolution and the formation of vortical structures. In case

2D, a very large value of L1 was used so that statistics would be reproducible, since

averaging is performed across pencils instead of planes as in the 3D simulations.

2.3 Effects of Buoyancy on Mean Flow and Tur-

bulent Stresses

The bulk Richardson number (Rib = N2δ2
ω (t) /∆U2) represents the ratio of

the stabilizing effect of buoyancy to the destabilizing effect of horizontal shear. N2

is varied between simulations to investigate the effect of stratification on dynamics.

In addition to an unstratified case, a two dimensional simulation was performed

for comparison against the limit of N2/S2 >> 1. Statistics from case A0 validated

well against the results of Pantano & Sarkar (2002) and Basak & Sarkar (2006).



15

Thickness growth rates, Rib(Nt), and visualizations of vorticity components agreed

well with the results of Basak & Sarkar (2006) for stratified runs. Growth rates for

the two dimensional and stratified cases are shown in figure 2.2(a). Here, growth

rate is defined using the momentum thickness, δθ =
∫ L2/2

−L2/2
1
4
−
(
〈u1〉(x2)

∆U

)2

dx2. Plots

of Rib(Nt) and Rib(t) for the stratified simulations are given in figure 2.2(b),(c).

Rib(Nt) is nearly proportional to (Nt)2, implying the eventual dominance of strat-

ification effects in all stratified cases. In case A3, the bulk Richardson number

reached values in excess of 80, while exhibiting substantial vertical variability.

2.3.1 Self-Similarity of Turbulence Statistics and the Large

Richardson Number Limit

The temporal evolution of turbulence intensities in cases with high stratifi-

cation, cases A3 and A2, show an approach to an asymptotic profile, indicative of

self-similar evolution. Figure 2.3(a) illustrates the evolution towards self-similarity

in profiles of the spanwise root mean square (rms) fluctuation for case A3. After

an initial transient, turbulence levels in stratified cases depend primarily on the

local value of Rib(t). This result is illustrated by figure 2.3(b) which compares pro-

files between the stratified cases at comparable values of Rib (t). The A0 case also

reaches self-similar energetic profiles after a much shorter initial transient process

due to its intense turbulent fluxes. Additionally, the 2D case reaches self-similar

behavior far more quickly than the stratified cases.

In the limit of Rib(t) � 1, turbulence statistics such as
〈
u
′
1u
′
1

〉
,
〈
u
′
2u
′
2

〉
,〈

u
′
1u
′
2

〉
, and

〈
ρ
′
u
′
3

〉
, lose their dependence on Rib(t) in the stratified simulations

and, therefore, self-similar evolution is observed. Case A3 exhibits self-similar

energetics over the longest range of time while case A2 exhibits self-similarity

briefly before experiencing strong boundary effects. Nevertheless, because Rib ∝
(Nt)2, eventually all flows with nonzero N will reach the Rib � 1 limit as suggested

in figure 2.2(c).

The influence of initial disturbance levels was also explored for the strat-

ification of case A3. Most second-order turbulence statistics showed agreement

between cases A3 and A3low after an initial adjustment period. Other statistics,
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such as
〈
u
′
3u
′
3

〉
and

〈
ρ
′
ρ
′〉

, showed some differences dependent upon the initial

turbulent kinetic energy.

According to Billant & Chomaz (2001) for a strongly stratified inviscid flow

with quasi-horizontal eddies that evolves self-similarly vertical velocity fluctuations

should scale like u′3 ∼ ∆URi
−1/2
b and scalar fluctuations should scale like ρ′ ∼

(dρ̄/dx3)δωRi
1/2
b . For cases A1 and A2 this type of scaling does not seem to hold in

the self-similar regime. Case A3 however appears to have a small enough horizontal

Froude number for the strongly stratified assumption to hold and a similar scaling

is observed.

Figure 2.2: (a) The evolution of momentum thickness of the shear layer. The
evolution of bulk Richardson number as a function of (b) t and (c)
Nt. To convert from t to Nt multiply by 0.336, 0.828, and 1.064 in
stratified cases A1, A2 and A3, respectively.

Figure 2.3: Profiles of transverse fluctuations. (a) Evolution in the strongly strat-
ified case (A3). (b) Cases A1 and A2 at different times but matching
Rib. Similarly, cases A2 and A3 at different times but matching Rib.
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2.3.2 Comparisons Among Unstratified, Stratified, and Two-

Dimensional Results

Comparisons are made among the statistics of unstratified, stratified, and

two-dimensional shear layers once self-similarity is attained. The stratified cases

show the emergence of coherent vortical structures as illustrated later in Figure

2.10. These coherent structures change turbulence profiles as discussed below.

Statistical quantities of interest are presented in Figure 2.4, showing key

similarities and differences. Profiles of
〈
u
′
1u
′
1

〉
and

〈
u
′
2u
′
2

〉
in the stratified cases

are very similar to those found in the two-dimensional shear layer. The agreement

is due to the coherent nature of the ω3 field associated with the columnar coherent

structures. Turbulent shear stress,
〈
u
′
1u
′
2

〉
, shows reasonable agreement between

the two-dimensional and stratified cases except outside of |x2| < δω where, for the

stratified case, shear stress takes much larger values than the two-dimensional case.

This is due to the formation of density intrusions which propagate laterally from

the shear region. These intrusions advect slower-than-ambient flow horizontally,

contributing to the increased levels of
∣∣〈u′1u′2〉∣∣ well outside of the region containing

vortical structures.

The profile of
〈
u
′
1u
′
1

〉
in cases A3 and 2D, figure 2.4(a), develops a profile

consisting of two distinct regions. The region close to the centerline (|x2| < δω/2)

we designate the ‘head’ of the profile while the surrounding region we identify as

the ‘shoulders’. The development of the ’head’ coincides with vortex staggering,

which would not emerge if vortices were centered about the centerline. In fact, for a

row of Rankine vortices
〈
u
′
1u
′
1

〉
would take the value of zero at the centerline. The

centerline value of transverse fluctuations,
〈
u
′
2u
′
2

〉
, show significant growth in the

stratified runs due to coherent structures with well organized ω3 fields, increasing

transverse momentum transfer in comparison to the weakly organized vorticity

field observed in case A0.
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Figure 2.4: Comparison of self-similar statistics of stratified, unstratified, and
two-dimensional simulations

Figure 2.5: Comparison of dissipation from stratified, unstratified, and two-
dimensional simulations
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2.4 Evolution of Dissipation Statistics

Irreversible viscous dissipation of fluctuating kinetic energy, ε, is defined

as ε = 2
Re0

〈
s
′
ijs
′
ij

〉
, where s

′
ij = 1

2

(
u
′
i,j + u

′
j,i

)
. Irreversible dissipation of scalar

variance due to diffusive effects, ερ, is defined as ερ = 2
Re0Pr

〈
ρ
′
,iρ
′
,i

〉
.

A substantial reduction in turbulent dissipation is observed in the presence

of stratification, as shown in Figure 2.5. Dissipation, however, does not decrease

to the levels found in two-dimensional simulations due to the large vertical gradi-

ents of velocity induced by buoyancy. Turbulent dissipation maintains integrated

values,
∫ L2/2

−L2/2
εdx2, at least two to three times larger in the stratified cases than

observed in the two-dimensional case. Thin dislocations of vorticity develop as

vertical shearing leads to pockets of vorticity subjected to strong vertical viscous

diffusion contributing greatly to energy dissipation. The vertical distance across

these dislocations, i.e. the dislocation thickness, is small compared to horizontal

thickness.

Time evolution of the integrated fluctuating viscous and scalar dissipations

as well as buoyancy Reynolds number, ReB = ε/νN2, are plotted for the stratified

cases in Figure 2.6. The reproducible results of self-similarity seen in the evolution

of turbulent stresses do not apply to turbulent and scalar dissipation until much

later in the simulations. These show significant variation between cases A1 - A3,

which is likely due to the differences in dislocation thickness. Dislocation thick-

ness, ld scales with
√
ν/N between cases which helps explains why the integrated

dissipation reaches its largest values in case A3. Case A1 shows higher values of

integrated dissipation initially due to the far greater presence of small scale tur-

bulence, but vertical gradients become so significant in the dislocations that case

A3 eventually dominates.

Initially there is a drop in viscous dissipation, seen in Figure 2.6(a), as

viscosity suppresses high wavenumber components of the initial fluctuations. The

subsequent drop in dissipation when 5 . t . 20 corresponds to the time when the

vorticity field organizes into large columnar vortices. It is plausible that the 2D

curve could represent the limit of N2/S2 →∞ during this process. The following

period over which dissipation increases, 20 . t . 80, is when dislocations form
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and grow as a result of vertical shearing and instabilities acting on the vortices.

The slope at which dissipation increases during this time period is proportional to

N in the stratified cases, implying that buoyancy plays a role in the small scale

dynamics of these cases.

The buoyancy Reynolds number shows a steep decrease initially in case

A1 which continues until boundary effects become significant.The increase in dis-

sipation due to dislocations is so significant in case A3 that the centerline value

of ε increases when 40 . Nt . 80. This intensification of centerline dissipation

could result in a reemergence of turbulent behavior at late time, provided dislo-

cations contain sufficiently strong vertical shear for Kelvin-Helmholtz instabilities

and turbulence to overcome stratification.

Slices of local R̃eB = ε̃/νN2 are shown in the x2 midplane for cases A1

and A3 in Figure 2.7. In both cases, localized patches of high R̃eB are seen,

which explains why turbulent behavior is observed in case A1 although the mean

value is ReB ≈ 1.28. In all three stratified cases, the ratio of εmax/ε̃ takes values

between 30 and 50 due to the localized nature of the dissipation field after the

formation of spatially sparse dislocations. Thus, although the mean buoyancy

Reynolds number is close to unity, the flow is far from laminar. The dissipation

is also highly anisotropic, i.e. the contribution of vertical gradients of horizontal

velocity dominate at large Rib. The values of ReB in all three stratified cases are

much smaller than those observed in the ocean (e.g. EUC system), which is due to

both physics and computational limitations. The lack of baroclinicity and mean

vertical shear keep dissipation relatively small and isolated. Additionally, since

DNS is used Re0 takes values much smaller than expected for a typical horizontal

shear flow in the ocean, which indirectly tends to reduce ReB values.

Local gradient Richardson numbers, Rig = N2/
(
u2

1,3 + u2
2,3

)
, of order one

are common within the coherent structures. This result is consistent with the

hypothesis of Lilly (1973) and results of Riley & de Bruyn Kops (2003). Vertical

shear is intense within the dislocations leading to local Richardson numbers of less

than a half in case A3. Visualizations of local Rig are nearly identical to local

ReB, especially in case A3, and hence not included.
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Figure 2.6: Evolution of (a) integrated viscous dissipation, (b) integrated scalar

dissipation and (c) the buoyancy Reynolds number, R̃eB = ε̃/νN2 at
the x2 midplane.

Figure 2.7: Vertical cuts of the x2 midplane with ε̃/νN2 from (a) the weakly
stratified case (A1) and (b) the strongly stratified case (A3) (bottom)
at times t = 84.2 and t = 82.2 respectively.
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2.5 Turbulent Kinetic Energy Budgets

The evolution equation for the fluctuating kinetic energy is

∂K

∂t
= P − ε+B − ∂T

∂x2

. (2.14)

Here, K represents turbulent kinetic energy (TKE) defined as

K =
1

2

〈
u
′

iu
′

i

〉
, (2.15)

P represents shear-generated production of turbulent kinetic energy defined

as

P = −
〈
u
′

1u
′

2

〉 ∂ 〈u1〉
∂x2

, (2.16)

B represents the buoyancy flux or rate of exchange between turbulent ki-

netic and potential energies defined as

B = −Rib,0
〈
ρ
′
u
′

3

〉
, (2.17)

and T represents the transport of turbulent kinetic energy through turbu-

lent motions (Tt), pressure correlations (Tp), and viscous diffusion (Tv) defined

as

T = Tt + Tp + Tv (2.18)

=
1

2

〈
u
′

iu
′

iu
′

2

〉
+
〈
p
′
u
′

2

〉
− 2

Re0

〈
u
′

is
′

i2

〉
. (2.19)

The TKE budgets for the cases A0, A3, and 2D are presented in Figure
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2.8(a),(b),(c) respectively. In the unstratified (A0) budget the production, trans-

port, and dissipation are all significant. Away from the centerline, turbulent pro-

duction and transport exceed dissipation leading to TKE generation, while at the

centerline there is an approximate balance. In the stratified (A3) budget the dom-

inant balance is between production and transport; the dissipation and buoyancy

flux have smaller values. The magnitude of integrated dissipation varies consider-

ably between stratified cases, but the relatively small influence of dissipation on the

energy budget helps explain why energetics, such as
〈
u
′
1u
′
1

〉
, do not vary between

cases for sufficiently large Rib, even though dissipation does vary. Lateral trans-

port is significantly more effective in the stratified cases than case A0, owing to

the well organized ω3 field associated with the coherent structures. The dominant

balance of the two-dimensional (2D) budget is also between turbulent production

and turbulent transport with production and transport varying very similarly to

A3 with repect to x2/δω. Dissipation plays an even less significant role in the 2D

budget as expected from the results in the previous section.

The buoyancy flux is a relatively small term in the energy budget at late

time. Shear instabilities in the mean flow do not directly contribute to the forma-

tion of ωh =
√
ω2

1 + ω2
2, which can only be generated through secondary instabili-

ties. Buoyancy flux is positive at the centerline, where vortical structures tend to

tilt away from the vertical due to baroclinic torque, resulting in an exchange from

potential to kinetic energy. The lattice of tilted vortical structures advects fluid

away from their equilibrium position as ambient flow is entrained, resulting in the

negative buoyancy flux away from the centerline.

While internal waves are present outside of the coherent structures in the

stratified cases, their amplitudes are small and they transport little energy away

from the shear layer. In case A3, the energy flux 〈p′u′2〉 evolves very similarly to

the internal wave free 2D case.
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Figure 2.8: Turbulent kinetic energy budgets for (a) the unstratified case (A0) at
time t = 21.29, (b) the strongly stratified case (A3) at time t = 70.66,
and (c) 2D at time t = 66.31. The terms have been normalized with
∆U3/δω (t).

Figure 2.9: Scalar variance budgets for (a) the unstratified case (A0) at time
t = 21.29 and (b) the strongly stratified case (A3) at time t = 70.66.
Each term is normalized with (dρ̄/dz)2∆Uδω (t)
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2.6 Scalar Variance Budgets

The evolution of scalar variance is examined to understand scalar transport

and mixing. The evolution equation for scalar variance is

∂
〈
ρ
′
ρ
′〉

∂t
= Pρ − ερ −

∂Tρ
∂x2

. (2.20)

Since N2 is uniform throughout the domain, turbulent potential energy, Kρ,

is directly proportional to scalar variance and has the following evolution equation,

∂Kρ

∂t
=
Rib
2

(
Pρ − ερ −

∂Tρ
∂x2

)
. (2.21)

Here, Pρ is the nondimensional production of scalar variance due to motion

in the vertical direction defined as

Pρ = 2
〈
ρ
′
u
′

3

〉
. (2.22)

Note that the dimensional production given by −2
〈
ρ∗
′
u∗
′

3

〉
d < ρ∗ > /dx∗3 takes

the above form owing to the nondimensionalization used here. The term Tρ or

scalar transport, which is split into turbulent scalar transport (Tρ,t) and viscous

scalar transport (Tρ,v), is defined as

Tρ = Tρ,t + Tρ,v (2.23)

=
〈
ρ
′
ρ
′
u
′

2

〉
− 2

Re0Pr

∂
〈
ρ
′
ρ
′〉

∂x2

. (2.24)

It should be noted that for the unstratified budget we assume that the

flow is actually vertically stratified, but density acts as a passive scalar since the

buoyancy term is neglected for Rib = 0. This is equivalent to investigating a

stratified fluid in the absence of a gravitational field.

Figure 2.9(a),(b) show distinct differences between the stratified and un-

stratified budgets. Greater lateral spread of profiles in the stratified cases is con-
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sistent with previous results, such as the profiles in Figure 2.3. While the terms

in the unstratified budget tend to subside where |x2| & 1
2
δω, the terms from the

stratified cases do not tend to zero until |x2| & δω indicating that shear induced

scalar stirring and mixing occur over significantly larger horizontal length scales.

The distinct differences between the two budgets are also observed in the

production and turbulent transport terms. In the unstratified case a relatively

small down-gradient transport is present in 2.9(a), while in the stratified case

larger counter-gradient transport is observed in 2.9(b). The difference in relative

magnitudes of the transport terms between the budgets is a direct result of more

effective lateral transport when coherent structures are present. Additionally, while

density variance is produced near the centerline in the passive scalar case, one

observes density variance destruction near the centerline and production outside

of the vortical structures in the stratified cases.

The behavior of the production term, Pρ in the scalar variance budget for

case A3 can be explained as follows. The positive value of Pρ at the flanks of the

shear layer can be understood from the following argument inspired by previous

investigation of a tilted columnar vortex (Meunier et al., 2007). In the stratified

cases, large quasi-vertical coherent structures emerge with tilt in both the stream-

wise and transverse directions resulting in small vertical velocities concentrated at

the edges of the vortices. As flow is entrained from the ambient it tends to be

displaced from its equilibrium position resulting in large positive Pρ away from the

structures. The negative value of Pρ in the central region of the shear layer occurs

because the fluid that has been stirred up at the peripheries and transported into

the central region cannot be maintained out of static equilibrium by the suppressed

vertical velocity. Thus Pρ acts to transfer energy from potential to kinetic modes

during the return of fluid particles to their equilibrium position.
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2.7 Role of Coherent Structures

2.7.1 Identification

The method of feature extraction utilized in the current study is the λ2 cri-

terion, due to minimal presence of noise, clear physical interpretation, and ability

to better isolate vortex cores and braid regions compared to both Q and ∆. λ2 is

considered a strong vortex identification scheme in the case of incompressible non-

rotating systems (Chakraborty et al., 2005; Haller, 2005). It is defined as the me-

dian eigenvalue of the symmetric tensor (SikSkj + ΩikΩkj), where Ωij and Sij rep-

resent the rate of strain and rate of rotation tensors defined as Sij = 1
2

(ui,j + uj,i)

and Ωij = 1
2

(ui,j − uj,i).

2.7.2 Evolution of Coherent Structures

Figure 2.10 shows several snapshots of λ2 isosurfaces to illustrate the evolu-

tion of coherent structures in the mixing layer. In Figure 2.10(a), at t = 0, the field

is incoherent because of the initial high wavenumber fluctuations, but stratification

quickly suppresses ωh and quasi vertical structures emerge as in Figure 2.10(b).

These structures experience strong vertical shear (∂u2/∂x3) due to buoyancy in-

duced instabilities such as the zigzag instabilty. The vertical shear distorts vortical

structures causing them to dislocate and then separate leading to the formation of

a field of dislocated vortex cores.

2.7.3 Zigzag Instability

Experiments performed by Billant & Chomaz (2000a) of a vertically ori-

ented pair of counter-rotating columnar vortices in the presence of various levels of

vertical stratification show the formation of the zigzag instability, which behaves

differently from the elliptical instability commonly observed in the absence of strat-

ification (Kerswell, 2002). An instability similar to the zigzag instability was also

observed in the stratified simulations, e.g. case A3, shown in Figure 2.11(a). This

instability plays an important role in introducing vertical variability and vertical
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Figure 2.10: λ2 = −0.01 isosurface contours from case A3 showing (a) initial
fluctuations at t = 0, (b) formation of vortical structures at t = 28.5,
(c) vertical shearing of the structures at t = 58.4, and finally (d) a
field of vortex cores at t = 121.6.
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Figure 2.11: (a) Coherent structure isolated using an isocontour of λ2 = −0.01 at
t = 58.4 and (b) experimental observations of the zigzag instability
(Billant & Chomaz, 2000a)

gradients into the flow field, by shearing apart columnar vortical structures.

The zigzag-like instability causes the transition of columnar vortices to pan-

cake vortices by tilting segments of the vortices in the transverse direction. The

segments of the vortices that have been displaced in the transverse direction then

are advected downstream by the mean flow shearing apart the vortices until pan-

cake vortices form. The vertical length scale associated with the instability, l3

similarly corresponds to the length scales associated with Fr ∼ O(1), as in prior

observations of the zigzag instability (Billant & Chomaz, 2000a; Waite & Smo-

larkiewicz, 2008).

A simulation was performed of a single quasi-vertically oriented Gaussian

vortex with similar size and circulation to the vortices present in the shear layer

and the coherent structures did not develop structure similar to that observed in

Figure 2.11(a). This suggested that the interaction of multiple vortices plays a

significant, if not necessary role in the development of the three-dimensional struc-

tures observed in the present case of horizontal, inflectional shear. Additionally,

the deformation of the coherent structures is likely driven by a process similar

to the zigzag instability or simply the growth of three-dimensional fluctuations

with wavelength k3 < N/U0 as predicted in Deloncle et al. (2007) via the kine-
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matic decorrelation mechanism of Lilly (1973). However, we conclude that the

initial quasi-vertical orientation of the vortices alone cannot explain the evolution

of coherent structures through mechanisms similar to those observed during the

instability of a quasi-vertical vortex(Meunier et al., 2007).

Figure 2.12: (a) Volume fraction of flow domain selected as coherent for vertical
slices centered at the given values of x2, where εth = −0.01 and
Nt = 87.45. (b) Area fraction of flow domain selected as coherent
for slices at given values of x2, where t = 49.46.

2.7.4 Statistics Conditioned on Vortical Structures

Statistics were computed on flow variables conditioned on the λ2 criterion to

determine the role of spatially sparse coherent structures in the statistical evolution

of the model problem. Figure 2.12 shows the volume fraction of the coherent

structures as a function of x2, showing that structures are primarily confined in

the region where |x2| < δω/2. A small negative threshold, εth = −0.01, was chosen

so that the regions of the flow field where λ2 < εth could confidently be labeled

coherent vortical structures. Case A3 was analyzed because of the high level of

coherence in the vorticity field in this case, limiting the role of fine scale turbulent

structure on dynamics. Figures 2.13, 2.15, and 2.16 show statistics computed on

full flow fields, coherent regions where λ2 < εth, and incoherent regions where

λ2 > εth.

Figure 2.13 shows the normal Reynolds stresses,
〈
u
′
1u
′
1

〉
and

〈
u
′
2u
′
2

〉
, have

greater magnitudes in the vortical structures than in the ambient surroundings.
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Figure 2.13: Conditioned energetics from the strongly stratified case (A3) at time
Nt = 87.45 showing statistics conditioned on vortical structures
(circles), full field statistics (solid lines), statistics for outside of
vortical structures (dashed lines)
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Figure 2.14: Conditioned energetics from the two dimensional case (2D) at time
t = 49.46 showing statistics conditioned on vortical structures (cir-
cles), full field statistics (solid lines), statistics conditioned on re-
gions outside of vortical structures (dashed lines)
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〈
u
′
1u
′
1

〉
takes large values around one vorticity thickness away from the center of the

shear layer, far outside of the region containing coherent vorticity. This is due the

the laterally propagating density intrusions which contain thin vortical structures

in the braid region, that are captured by λ2 as seen in 2.10(d). As the instrusions

propagate away from the region of strong shear their streamwise velocity becomes

relatively small compared to their surroundings giving rise to large deviations from

the average velocity.

Additionally, we observe large
〈
u
′
3u
′
3

〉
inside of the vortical structures, which

is due to the tilting of the segments of coherent structures away from vertical

orientation via baroclinic torque. Vertical velocities were more strongly confined

to the vortical structures in the small amplitude case A3low showing that the

structures are responsible for generating vertical velocities in the shear layer. The

change in sign of conditioned
〈
u
′
1u
′
2

〉
, where x2 = ±δω/2, corresponds to the regions

outside of the vortex cores containing only braid structures. Figure 2.14 shows the

conditioned Reynolds stresses and turbulent dissipation for the 2D case. Results

are similar to case A3 with the exception of the fact that conditioned
〈
u
′
1u
′
2

〉
does

not take large positive values, likely due to the fact that buoyancy does not affect

the braids which tend to possess significant TPE in case A3.

In Figure 2.15(a), dissipation of turbulent kinetic energy is significantly

larger within the vortical structures due to the large vertical gradients in the vor-

ticity fields at dislocations which are captured by λ2 as coherent regions of the flow

field. The buoyancy flux is large within the structures, consistent with the collapse

of tilting structures providing a mechanism for transfer from potential to kinetic

energy near the x2 midplane. Conditioned buoyancy flux has a similar shape to

the buoyancy flux of the whole field except with a larger amplitude. This illus-

trates the importance of vortex dynamics to the exchange of kinetic and potential

energies in this flow.

Figure 2.15(c) shows that lateral transport is large in the region outside of

the coherent vortices. An approximate balance of turbulent and pressure trans-

port is observed within the structures near the centerline. Conditioned transport

strongly suggests that there is net transport of TKE into the coherent structures
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from the ambient flow field, even when overall transport is directed away from the

structures.

In Figure 2.16(a), conditioned < ρ
′
ρ
′
> shows that density fluctuations, and

hence fluctuating potential energy, gather in the vortical structures. Density vari-

ance is large inside of the vortical structures largely due to the presence of pressure

minima at the center of the vortex cores which distort isopycnals vertically toward

the low pressure region along the center axis of the structures. In Figure 2.16(b),

greater values of scalar transport are observed in the coherent regions. Integrating

the difference between the scalar transport of the full field and regions outside of

the structures indicate that there is a net transfer of scalar fluctuations into the

structures from the ambient flow. Figure 2.16(c) shows that scalar gradients are

also concentrated within the coherent structures.

The coherent field occupies a small subset of the computational domain,

roughly 2% by volume in case A3 at Nt = 87.45. Because of this, statistics

conditioned on the incoherent field do not differ significantly from the statistics of

the full field. Nevertheless, the vortical structures carry significant fluxes, playing

an important role in the evolution of the shear layer.

In the interest of developing tractable models to describe the evolution of

geophysical flows dominated by coherent vortical structures, the importance of

vorticity contained within the coherent structures was quantified. Flow outside of

coherent regions was assumed irrotational and velocities were computed using the

Biot-Savart law. The resulting velocity field poorly matched the true field, yielding

large relative errors in energetic and mean profiles.

The coherent regions contained only 16.6% of the integrated vorticity mag-

nitude and 39.1% of the integrated enstrophy in the flow when εth = −0.01. Re-

laxing the threshold by a factor of 100 increased these values to 36.4% and 60.1%,

respectively. The vorticity outside of the structures is significant and dynamically

important, which does not bode well for the use of simple vortex-based models in

geophysical flows.
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Figure 2.15: Conditioned energy budget terms from the strongly stratified case
(A3) at time Nt = 87.45 showing statistics conditioned on vortical
structures (circles), full field statistics (solid lines), statistics outside
of vortical structures (dashed lines)

Figure 2.16: Conditioned scalar statistics from the strongly stratified case (A3)
at time Nt = 87.45 showing statistics conditioned on vortical struc-
tures (circles), full field statistics (solid lines), statistics outside of
vortical structures (dashed lines)
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Figure 2.17: Statistics from the strongly stratified case (A3) at time Nt = 76.76
showing statistics corresponding to full vorticity (solid dark), coher-
ent vorticity (dashed dark), and incoherent vorticity (solid light),
where εD = 0.262.
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2.7.5 Wavelet Analysis

Wavelet-based feature extraction was also used to separate the vorticity

field into a coherent field and random incoherent field. By coherent field, we do

not imply spatially coherent vortical structures as identified by vortex eduction,

but rather a denoised vorticity field. Coiflet wavelets were used with six vanish-

ing moments. The vorticity field was decomposed into coherent and incoherent

components as follows

ω̃i = ω̃C,i + ω̃I,i , (2.25)

where coherent vorticity contains all wavelets with coefficients greater than the

threshold εD, where εD =
√

2
3

〈
ω2
I,i

〉
ln Ñ . Here, Ñ represents the number of com-

putational points on which the wavelet transform is performed. This threshold is

used in Jacobitz et al. (2008) and motivated by theorems related to denoising the-

ory (Donoho & Johnstone, 1994). An iterative process is used in the computation

of εD, since ωI,i is dependent on εD and vice versa. Once the vorticity fields were

split, velocity fields were computed by solving the Poisson equation below

∂2ui
∂x2

j

= −εijk
∂ωk
∂xj

(2.26)

Figure 2.17 shows
〈
u
′
1u
′
1

〉
,
〈
u
′
2u
′
2

〉
, fluctuating transport, and fluctuating

dissipation as computed on velocity fields corresponding to the full, coherent, and

incoherent vorticity fields. The contribution of incoherent vorticity is negligible.

The incoherent vorticity field induces a velocity field with fluctuations two orders of

magnitude smaller than those induced by the full vorticity field, and peak turbulent

transport magnitude in the incoherent field is five orders of magnitude smaller than

the full field.

Prior investigations into homogeneous turbulence show that coherent vor-

ticity is typically captured with approximately 3% of the total wavelet coefficients
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(Jacobitz et al., 2008; Farge et al., 2001). In the inhomogeneous shear layer, a

considerably smaller fraction of wavelet coefficients is needed. The fraction scales

with δω to reflect the effect of shear layer growth on degrees of freedom. In case

A3 when δω = 5.48, only 0.346% of wavelet coefficients is required to represent

the coherent field. The fraction of coefficients deemed coherent decreases as strat-

ification increases, with case A0 having an order of magnitude greater coherent

coefficients than case A3 at comparable values of δω.

Vortex eduction was performed on the coherent field in case A3 using the λ2

criterion. The result was almost identical to that on the full field. The dissipation,

including the patches with high value, was also represented accurately with the

coherent field.

2.8 Conclusion

The statistical evolution of a horizontally oriented mixing layer where the

mean shear, ∂ 〈u1〉 /∂x2, is horizontal was investigated for a range of stratifications

and the role of coherent structures clarified. The statistics vary significantly be-

tween cases with different stratification. Many statistics could be collapsed between

cases when times corresponding the same Rib(t) were chosen. This dependence on

Rib(t) disappeared at late time in the strongly stratified cases where Rib � 1

leads to approximately self-similar evolution in some statistics such as turbulent

stresses. In the self-similar state, the turbulent stresses were similar to those in

two-dimensional shear layers. However, the turbulent dissipation rate was signifi-

cantly larger in the stratified shear layer in comparison with the two-dimensional

case. Buoyancy leads to important processes not observed in the unstratified and

two-dimensional simulations such as density intrusions, tilting and collapsing vor-

tical structures and the zigzag instability.

Stratification was found to decrease dissipation levels and increase lateral

spread of turbulence leading to higher shear layer growth rates. When density

behaved as an active scalar, significant counter-gradient transport of density was

observed in the central region, which was fundamentally different from the passive
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scalar case’s co-gradient transport.

While in a vertical stratified shear layer intense vertical mixing can be

accomplished during the mixing transition, which is short-lived, vertical mixing

can occur in the horizontal shear layer over longer time periods. Strong vertical

gradients are introduced through secondary instabilities that induce dislocations

in coherent structures with vertical vorticity. The zigzag instability, shown earlier

in the case of a counter-rotating vortex pair, occurs in the present problem with

horizontal shear after coherent vortices emerge from the initial turbulence.

Spatially coherent vortical structures were identified using the λ2 criterion.

The influence of these vortical structures on the evolution of the mixing layer was

discussed. Vortical structures play important roles in the coupling of scalar and

velocity fields and contain concentrations of kinetic and potential energies. The

exchange between coherent and ambient flow is significant and energy transport

is primarily accomplished by the ambient flow. Irreversible losses to viscous and

scalar dissipation are also concentrated within the coherent structures. However,

the domain outside the identified vortex structures also contains significant vortic-

ity. Therefore, statistics conditioned on the coherent structures do not agree with

the full statistics. The importance of the ambient vorticity on statistical evolution

is a surprising result of this work.

Wavelet analysis of the vorticity field shows that significant reduction in the

number of degrees of freedom is possible when modeling or simulating stratified

turbulence. The incoherent vorticity field is found to have negligible effect on the

statistics and the coherent vortical structures, even though it contains well over

99% of the wavelet modes. The incoherent field plays a less significant role in the

stratified cases then in the unstratified case.

The contents of this chapter are published in the Physics of Fluids Journal.

E. Arobone and S. Sarkar. “The statistical evolution of a stratified mixing layer

with horizontal shear invoking feature extraction”, Phys. Fluids, 22, 115108, 2010.
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Graduate Fellowship (for E.A.) and the National Science Foundation CDI program
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Chapter 3

Linear Evolution of a Stratified

Rotating Shear Layer with

Horizontal Shear

3.1 Introduction

The effects of strong stratification, where Frh = S/N . O (1), and mod-

erate rotation rates, where |Ro| = S/2|Ω| ∼ O (1), on shear flow is important for

basic understanding of submesoscale ocean dynamics. We concentrate our study on

a horizontally oriented hyperbolic tangent mixing layer including stratification and

rotation effects. Isolated horizontal shear is prevalent in boundary currents and in

the wake of isolated topography. Previous work has explored the three-dimensional

linear stability of a horizontally oriented shear layer subjected to rotation or strat-

ification alone, but not in combination. Figure 3.1 gives a schematic illustrating

the rotating stratified horizontal shear layer and relevant parameters.

Deloncle et al. (2007) explored the influence of uniform stable stratification

on the linear stability of a non-rotating horizontal hyperbolic tangent mixing layer

with shear concentrated in a region with characteristic length scale L. When

stratification was strong, with Frh . 1, self-similarity of growth rates with respect

to vertical wavenumber was realized with associated scale Frhk3L, as opposed

40
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Figure 3.1: Schematic of the rotating stratified horizontal shear layer. Relevant
parameters include the vorticity thickness, δω, kinematic viscosity ν,
mass diffusivity κ, and reference density ρ0.

to the unstratified k3L scale. This result is consistent with the self-similarity of

strongly stratified flows proposed by Billant & Chomaz (2001) and implies that a

wider range of vertical wavenumbers are unstable when stratification is strong.

Johnson (1963) explored the effects of vertical shear, U1 (x3), subjected to

coordinate system rotation about an axis oriented at an arbitrary angle, θ, with

respect to the streamwise direction. Neutral modes were computed for a hyperbolic

tangent mean velocity profile for various values of θ. A horizontally oriented shear

layer subjected to vertical rotation without stratification is equivalent to the θ =

±90◦ cases investigated in Johnson (1963). Rotation was found to stabilize the

flow, except for the anticyclonic case with 0 < 2Ω < dU1/dx3 where the effect of

rotation was destabilizing. This result is consistent with the Rayleigh criterion for

inertial instability, which states that 2Ω (2Ω + ω3) < 0 implies instability. Here, ω3

is the relative vertical vorticity and 2Ω + ω3 is the corresponding absolute vertical

vorticity.

The stability of a viscous hyperbolic tangent mixing layer subjected to rigid-

body rotation perpendicular to the plane of the mean flow was explored by Yanase

et al. (1993). Two distinct instability regimes were observed. The first region

corresponded to the barotropic (or Kelvin-Helmholtz) instability with its growth

rate peaking when k1 = 0.43 and k3 = 0. The second region corresponded to the
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inertial (or shear/Coriolis) instability with its growth rate peaking when k1 = 0

and k3 is large in comparison with barotropic modes. The neutral curves found in

Johnson (1963) were determined to be incorrect and did not capture the inertial

instability regime properly.

Smyth & Peltier (1994) explored the evolution of a rotating and unstratified

barotropic shear layer and the stability of the temporally evolving two-dimensional

flow with respect to three-dimensional perturbations. The evolution included

Kelvin-Helmholtz vortex formation and pairing. Slow rotation rates either sta-

bilized or destabilized the barotropic vortices depending on the sign of f , while

rapid rotation stabilized the flow. When the absolute vorticity was small in com-

parison to the relative vorticity, the vortex core was destabilized. Later, Smyth &

McWilliams (1998) explored the instability of a single columnar vortex in a rotating

and stratified fluid. In the case of rapid rotation and strong stratification, insta-

bility was restricted to a band of vertical wavenumbers such that k3L ∼ |N/f |,
consistent with quasi-geostrophy. A surprising result was that this scaling was

realized outside of the formal quasi-geostrophic regime, when coordinate system

rotation rates were only a few times faster than vortex core rotation rates. Inertial

instability was realized for moderate anticyclonic rotation rates.

Numerical simulations of the inertial instability for various wall-bounded

and free-shear flows were explored by Kloosterziel et al. (2007b). Simulations were

invariant in the stream-wise direction, so that the barotropic instability would

not influence evolution. It was observed that the inertial instability redistributes

linear momentum in a manner that yields a final state that is inertially stable,

suppressing regions of negative potential vorticity.

Plougonven & Zeitlin (2009) investigated the development of inertial in-

stability for a hyperbolic tangent mixing layer in a rotating stratified fluid. The

barotropic instability was ignored by exploring modes that were invariant in the

streamwise direction. Analytical solutions for the linear stability of the problem

were derived in addition to exploration of nonlinear evolution of inertial instability

and the fluctuating baroclinicity of the final state. An analytical expression was

derived for growth rate showing that growth rate tends towards maximal values
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when k3 →∞ for inviscid flow. The expression also allowed for easy computation

of the most unstable vertical wavenumber for inertially unstable viscous flows.

The three dimensional stability of a Kármán vortex sheet, symmetric double

row, and single row of vortices was explored in a stratified and rotating fluid by

Deloncle et al. (2011). For the non-rotating stratified Kármán vortex sheet, zigzag-

type instabilities were realized for sufficiently close vortex rows. When rotational

effects were included, cyclonic vortices were found have less bend than anticyclonic

vortices. In the rapid rotation regime, growth rates were found scale like Ro/(bFrh)

where b denotes spacing between adjacent vortices in the same row. The result is

consistent with quasi-geostrophic scaling laws.

In this chapter, the stability of the horizontal mixing layer will be explored

with the influence of both stratification and rotation for fully three-dimensional

perturbations. Section 3.2 will formulate the eigenvalue problem. Section 3.3 will

introduce theory related to horizontal vorticity fluctuations to aid in explaining

the stability of the shear layer. Section 3.4 will explore the effects of stratification

and rotation on eigenvalues to infer various asymptotic regimes of the flow. Lastly,

section 3.5 will explore the effects of stratification and rotation on eigenmodes and

their underlying vortex dynamics with a focus on buoyancy effects.

3.2 Formulation of Modal Stability Problem

The governing equations for Boussinesq incompressible flow in a rotating co-

ordinate system are given here with dimensional quantities denoted by superscript

∗ :

∂u∗i
∂t∗

+ u∗j
∂u∗i
∂x∗j

+ εi3k2Ω∗u∗k = − 1

ρ∗0

∂p∗

∂x∗i
− ρ∗g∗

ρ∗0
δi3 + ν∗

∂2u∗i
∂x∗j∂x

∗
j

, (3.1)

∂u∗i
∂x∗i

= 0, (3.2)

∂ρ∗

∂t∗
+ u∗j

∂ρ∗

∂x∗j
= κ∗

∂2ρ∗

∂x∗j∂x
∗
j

. (3.3)
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The base state of interest is a hyperbolic tangent mixing layer of the form

〈u∗1〉 =
∆U∗

2
tanh

(
2x∗2
δ∗ω

)
,

with linear vertical stratification d 〈ρ∗〉 /dx∗3, Coriolis parameter f ∗ = 2Ω∗,

vorticity thickness δ∗ω, and velocity difference ∆U∗ as seen in Figure 3.1. The mean

pressure field is chosen to exactly balance the effects of the mean Coriolis terms

and the mean buoyancy term from the momentum equations. The non-dimensional

governing equations and associated non-dimensional parameters are as follows :

∂ui
∂t

+ uj
∂ui
∂xj

+ εi3k2Ωuk = − ∂p

∂xi
−Ribρδi3 +

1

Re

∂2ui
∂xj∂xj

, (3.4)

∂ui
∂xi

= 0, (3.5)

∂ρ

∂t
+ uj

∂ρ

∂xj
=

1

RePr

∂2ρ

∂xj∂xj
, (3.6)

Rib = −g
∗

ρ∗0

d 〈ρ∗〉
dx∗3

δ∗ω
2

∆U∗2
=
N∗2δ∗ω

2

∆U∗2
= Fr−2

h , 2Ω = Ro−1 =
f ∗δ∗ω
∆U∗

, (3.7)

Re =
∆U∗δ∗ω
ν∗

, P r =
ν∗

κ∗
. (3.8)

Next, linearized evolution equations are derived for small amplitude per-

turbations and given here :

∂u′i
∂t

+ 〈u1〉
∂u′i
∂x1

+ u′2
d 〈ui〉
dx2

δi1 + εi3k2Ωu′k = − ∂p
′

∂xi
−Ribρ′δi3 +

1

Re

∂2u′i
∂xj∂xj

,(3.9)

∂u′i
∂xi

= 0, (3.10)

∂ρ′

∂t
+ 〈u1〉

∂ρ′

∂x1

− u′3 =
1

RePr

∂2ρ′

∂xj∂xj
. (3.11)

Solutions are assumed to be wavelike in the streamwise and vertical direc-

tions with the following functional form :
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[u′i, p
′, ρ′] (x2) exp (ik1x1 + ik3x3 + σt) .

Substituting into the linearized equations of motion and combining equa-

tions in a manner similar to Deloncle et al. (2007), we obtain a generalized eigen-

value problem of the form :

A


u′1

u′2

ρ′

 = σB


u′1

u′2

ρ′

 .

The matrices A and B are shown below where k2 = k2
1 + k2

3, D = d/dx2,

∆ = D2 − k2, U = 〈u1〉, ωa = −DU + 2Ω, ν = Re−1, and κ = (RePr)−1 are used

for compactness

A =
−2Ωk2 ik1(U∆ +Dωa) + ν∆ −ik3RibD

ik1 (UD − ωa)− ν∆D (D2 + k2
1)U − ωaD + νik1∆ 0

−ik1 −D k1k3U + κik3∆



B =


0 k2 −D2 0

−D ik1 0

0 0 ik3



Matrices A and B are discretized using rational Chebyshev basis functions.

The generalized eigenvalue problem is solved using the Intel MKL library and

Fortran. Since k3 appears in the equations only as k2
3 or k3ρ

′
(which can be

absorbed by definition into a new variable k3ρ
′
) it is clear that the sign of k3 does

not affect growth rate, σ. On the other hand, examining det (A− σB) = 0 shows

that changing the sign of k1 changes the sign of σ. Also, Johnson (1963) established
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that unstable modes cannot exist for |k1| > 1. These points imply that we may

study the stability of the flow field in the domain of k1 ∈ [0, 1] and k3 ∈ [0,∞)

without a loss of generality.

3.3 Evolution of Horizontal Vorticity Fluctua-

tions

The linearized inviscid fluctuating vorticity equations for the given base

flow are as follows :

D̄ω′i
D̄t

= −u′2
∂ 〈ωi〉
∂x2

δi3 + (ω′2δi1 + ω′1δi2) 〈s12〉+ (〈ω3〉+ 2Ω) s′i3

+εik3Ωω′k −Ribεij3
∂ρ′

∂xj
. (3.12)

The behavior of the inertial instability in either a strongly stratified or a

homogeneous fluid can be explained by looking at the inviscid linearized evolution

equations for the horizontal fluctuating vorticity components. They are given

below, letting S (x2) denote local mean shear, and noting that 〈ω3〉 (x2) = −S (x2)

:

D̄ω′1
D̄t

=
ω′2
2

(S (x2) + 2Ω) + (2Ω− S (x2)) s′13 −Rib
∂ρ′

∂x2

(3.13)

D̄ω′2
D̄t

=
ω′1
2

(S (x2)− 2Ω) + (2Ω− S (x2)) s′23 +Rib
∂ρ′

∂x1

(3.14)

The first term on the right hand side of both equations above physically rep-

resents the tilting of vorticity fluctuations by the mean velocity gradient combined

with the ’fictitious’ effect of coordinate system rotation on horizontal vorticity

components. The second term in both equations represents the tilting of mean

flow absolute vorticity by strain fluctuations. The third term represents vorticity

generation via baroclinic torque. The right hand side can also be expressed in a
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more mathematically convenient form in terms of fluctuating velocity gradients.

D̄ω′1
D̄t

= −S (x2)
∂u′3
∂x1

+ 2Ω
∂u′1
∂x3

−Rib
∂ρ′

∂x2

(3.15)

D̄ω′2
D̄t

= (2Ω− S (x2))
∂u′2
∂x3

+Rib
∂ρ′

∂x1

(3.16)

For small k1 (relative to k3) or nearly streamwise invariant modes we can

simplify these equations :

D̄ω′1
D̄t

≈ 2Ωω′2 −Rib
∂ρ′

∂x2

, (3.17)

D̄ω′2
D̄t

≈ − (2Ω− S (x2))ω′1 +Rib
∂ρ′

∂x1

. (3.18)

Taking the material derivative of both sides gives :

D̄2ω′1
D̄t2

≈ 2Ω
D̄ω′2
D̄t
−Rib

D̄

D̄t

[
∂ρ′

∂x2

]
, (3.19)

D̄2ω′2
D̄t2

≈ − (2Ω− S (x2))
D̄ω′1
D̄t

+Rib
D̄

D̄t

[
∂ρ′

∂x1

]
. (3.20)

Substituting the linearized evolution equations for horizontal density gra-

dient and vorticity we find :

D̄2ω′1
D̄t2

≈ −2Ω (2Ω− S (x2))ω′1 +Rib (2Ω + S (x2))
∂ρ′

∂x1

−Rib
∂u′3
∂x2

, (3.21)

D̄2ω′2
D̄t2

≈ −2Ω (2Ω− S (x2))ω′2 +Rib (2Ω− S (x2))
∂ρ′

∂x2

+Rib
∂u′3
∂x1

. (3.22)

The first terms on the right hand sides of equations (3.21) and (3.22) repre-

sent the inertial instability and give its maximal growth rate σ = [−2Ω (2Ω− S)]1/2.

The remaining terms correspond to buoyancy effects. In particular, the second

terms represent the shearing and rotation of vorticity induced by density gradi-
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(a) (b)

Figure 3.2: Plots of growth rate for the inviscid non-rotating homogeneous case
(a) and non-rotating strongly stratified case where Rib = 4 (b).

ents, and the third term represents the influence of isopycnal deformation.

3.4 Effect of Stratification on Growth Rates

The following analysis is inviscid. The effects of viscosity and diffusion

are included for reference in appendices A and B. Growth rates for a strongly

stratified non-rotating shear layer are shown in Figure 3.2 (b) and agree well with

figure 3 (b) of Deloncle et al. (2007) and their result that Ri
−1/2
b k3 = Frhk3 is

the appropriate vertical self-similar scaling. The growth rates for the homogenous

case are included in Figure 3.2 (a) for comparison. Weakly stratified cases, where

Rib < O (1), are found to be qualitatively similar to the unstratified cases as in

Deloncle et al. (2007) and will not be discussed.

3.4.1 Moderate Rotation Regime

Plots (b) and (c) from Figure 3.3 show the effect of stratification on growth

rates when 2Ω = 0.1. These plots suggest that for Rib & 1, self-similarity of the

form σ (k1, k3, Rib, 2Ω) = σ
(
k1, Ri

−1/2
b k3, 2Ω

)
is observed. This result is consistent

with the analysis of Billant & Chomaz (2001), which states that self-similarity of

strongly stratified flows holds in a rotating coordinate system. Similar collapse

when Rib > 1 was observed at all other values of 2Ω explored in this analysis.

In Figure 3.3, the inertial instability corresponds to the growth rates near
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(a) (b) (c)

Figure 3.3: Contour plots of growth rate for the Rib = 0, 2Ω = .1 case (a), the
Rib = 1, 2Ω = .1 case (b), and the Rib = 10, 2Ω = .1 case (c).

(a) (b)

Figure 3.4: Contour plots of growth rate for the Rib = 0, 2Ω = .9 case (a), and
the Rib = 10, 2Ω = .9 case (b).
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(a) (b)

Figure 3.5: Contour plots of growth rate for the Rib = 0, 2Ω = 1 case (a), and
the Rib = 10, 2Ω = 1 case (b).
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the k3 axis, but away from the k1 axis. In the limit of k3 → ∞, growth rates ap-

proach the maximal inertial growth rate of
√
−2Ω (2Ω− 1) = 0.3. Stratification

reduces the intensity of growth rates associated with the inertial instability for

moderate values of Ri
−1/2
b k3. In the limit of k3 →∞, the cases with and without

stratification are equivalent, but this limit is not realized until very large values

of Ri
−1/2
b k3, where the influence of stratification becomes negligible. Figures 3.4

(a) and (b) show growth rates for unstratified and strongly stratified cases, re-

spectively, with stronger anticyclonic rotation (2Ω = 0.9). In the unstratified case

there are distinct regions corresponding to the inertial and barotropic instabilities.

In the stratified case this distinction is far less apparent, with growth rates showing

little variation with respect to Ri
−1/2
b k3.

Stratification leads to a strong qualitative change in the zero absolute vor-

ticity case (2Ω = 1), a key result of this chapter. Figures 3.5 (a) and (b) show the

growth rates associated with unstratified and strongly stratified flow, respectively,

for 2Ω = 1. The zero absolute vorticity state tends to stabilize the unstratified

case, which can be seen through comparison of figures 3.2 (a) and 3.5 (a). The

inertial instability also disappears when 2Ω = 1. Even though the inertial insta-

bility is suppressed in the stratified case too as shown by Figure 3.5(b), rotation is

destabilizing in the sense that a far greater range of vertical wavenumbers is un-

stable than when there is no rotation. In the strongly stratified case, some modes

remain unstable even when Ri
−1/2
b k3 ≈ 20.

Looking at figures 3.3, 3.4, and 3.5 we see that increasing anticyclonic ro-

tation rates toward the zero absolute vorticity state increases the range of k1 val-

ues associated with inertial instability for both unstratified and strongly stratified

cases. In the strongly stratified cases, near the zero absolute vorticity state, the

barotropic instability is greatly modified. The distinction between growth rates

associated with intertial and barotropic modes are much less apparent for strongly

stratified flow.
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(a) (b)

(c) (d)

Figure 3.6: Contour plots of growth rate for the Rib = 0, 2Ω = −4 case (a), the
Rib = 0, 2Ω = 5 case (b), the Rib = 0, 2Ω = −2 case (c), and the
Rib = 0, 2Ω = 3 case (d).

(a) (b)

(c) (d)

Figure 3.7: Contour plots of growth rate for the Rib = 10, 2Ω = −14 case (a),
the Rib = 10, 2Ω = 15 case (b), the Rib = 10, 2Ω = −3 case (c), and
the Rib = 10, 2Ω = 4 case (d).
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3.4.2 Rapid Rotation Regime

Plots (a) - (d) in Figure 3.6 show growth rates for various rapid rotation

rates. Figures 3.6 (a) and (b) show well-collapsed growth rates with respect to

vertical scale 2|Ω̃|k3 = 2| (Ω− 1/4) |k3 when rotation rates are 2Ω = −4 and

2Ω = 5 respectively. While slight differences are seen in figures 3.6 (c) and (d)

at slower rotation rates, collapse is still reasonably good. Scaling was found to

be better when vertical wavenumbers were scaled using 2|Ω̃| instead of 2|Ω|. This

scaling is the difference in angular velocity with respect to Ω = 1/4, which is the

most destabilizing rotation rate as seen in equations (3.21) and (3.22) for S = 1.

Plots (a) - (d) in Figure 3.7 show similar collapse for strongly stratified flow,

although not realized until higher rotation rates than in the unstratified cases.

It is worth noting the associated vertical scale, 2|Ω̃|Ri−1/2
b k3 ∼ (f/N) k3, which

agrees with the results of Smyth & McWilliams (1998) when Ω̃ is large. Some

asymmetry with respect to the sign of Ω̃ is observed for the cyclonic case (c) and

anticyclonic case (d) from Figure 3.7. As the rapidly rotating regime is approached,

the anticyclonic case has a wider range of unstable vertical wavenumbers than the

cyclonic case with equivalent |Ω̃|. As in Smyth & McWilliams (1998), we find that

rotation rates do not have to be very rapid to be well approximated by the rapidly

rotating strongly stratified regime. Rapid rotation leads to equations (3.21) and

(3.22) taking the following form for small k1 modes :

D̄2ω′1
D̄t2

≈ −4Ω2ω′1 +Rib2Ω
∂ρ′

∂x1

−Rib
∂u′3
∂x2

, (3.23)

D̄2ω′2
D̄t2

≈ −4Ω2ω′2 +Rib2Ω
∂ρ′

∂x2

+Rib
∂u′3
∂x1

. (3.24)

Equations (3.23) and (3.24) imply that when stratification is negligible, hor-

izontal vorticity is attenuated and, correspondingly, Figure 3.6 shows that strong

stabilization is observed for modes with k1 . 2|Ω̃|k3 for a rapidly rotating homo-

geneous fluid. No such effect is observed in the presence of strong stratification as

seen in Figure 3.7 implying that the second and/or third terms in equations (3.23)

and (3.24) offset the strongly stabilizing effect of the first term.
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Figure 3.8: The phase variable s. Planes are displayed in a manner such that the
normal vector has a positive vertical component so that visualization
is more straightforward.

(a) (b)

(c)

Figure 3.9: Plots of ω′n (a), u′n (b), and velocity vectors (c) for an inertial mode
in a weak anticyclonic case without stratification, Rib = 0, 2Ω = 0.1,
k1 = 0.1, k3 = 4, and θ = 1.43◦.
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(a) (b)

(c) (d)

Figure 3.10: Plots of ω′n (a), u′n (b), ρ′ (c), and the normal component of the
baroclinic term from equation 3.12 (d) for an inertial mode in a
weak anticyclonic case with stratification, Rib = 10, 2Ω = 0.1,
k1 = 0.1, k3 = 25.3, and θ = 0.23◦.
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3.5 Eigenmodes

Figure 3.8 shows new variables n, s, and θ and their relationship to the

physical coordinate system presented in Figure 3.1. These variables simplify vi-

sualization of eigenmodes. Introducing characteristic variable Ks = k1x1 + k3x3

allows solutions to be represented in two-dimensional form where a flow variable

φ has the functional form φ (x2, s) = Re [φ (x2) exp (iKs)]. Solutions are wavelike

with wavenumber K =
√
k2

1 + k2
3 and oriented with an angle θ = tan−1 (k3/k1)

between the x3 direction and the wavenumber vector, s = k1e1 + k3e3, where e1

and e3 are unit vectors in x1 and x3 directions, respectively. Because k1 and k3

are non-negative, increasing s corresponds to increasing x1 and/or x3. The vector

normal to the wavenumber vector in the x1-x3 plane is denoted by n. Two new

flow variables, normal vorticity fluctuations, ω′n = ω′ini = −ω′1 cos θ + ω′3 sin θ, and

normal velocity fluctuations, u′n = u′ini = −u′1 cos θ + u′3 sin θ, are introduced to

visualize unstable modes in the new coordinates. For inertial modes, k1 is small in

comparison to k3, meaning n ∼ −e1 and s ∼ e3.

The base state contains no available potential energy, therefore the overall

effect of buoyancy on vertical fluctuations is stabilizing. However, certain physical

mechanisms, one example is the zigzag instability of Billant & Chomaz (2000b),

can result in faster growing modes than possible in an unstratified fluid. It is

worth noting that u′3 = u′s cos θ + u′n sin θ so that, for an inclination θ, the normal

velocity u′n leads to vertical motion. Even if ρ′ has the same sign as u′3, implying

that the buoyancy term in the vertical momentum equation has a stabilizing effect

on vertical fluctuations, ρ′ can have a different sign than u′s or u′n. Thus, buoyancy

may have a stabilizing effect on u′s and destabilizing effect on u′n or vice versa,

while still stabilizing vertical motion.

Figure 3.9 shows an inertial mode in a homogeneous fluid with fairly weak

anticyclonic rotation (2Ω = 0.1). Since θ = 1.43◦ the plane is quasi-vertical, there-

fore we can make the approximations ω′n ∼ −ω′1 and ∂u′n/∂s ∼ −ω′2 to infer

horizontal vorticity fluctuations from Figure 3.9 (a) and (b). Parcels of fluid with

like-signed ω′1 and ω′2 occupy the region where |x2| < 0.5. For 0 < 2Ω < S (x2),

the condition of inertial instability, equations (3.17) and (3.18) show that ω′1 and
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(a) (b)

Figure 3.11: Plots of ω′n (a) and u′n (b) for a near zero absolute vorticity case
without stratification, Rib = 0, 2Ω = 0.95, k1 = 0.444, k3 = 4, and
θ = 6.33◦.

ω′2 must have the same sign for growth of the instability, otherwise mean shear

cannot intensify horizontal vorticity fluctuations via vortex stretching. Figure 3.9

(c) shows velocity vectors corresponding to the ω′n field from 3.9 (a) to aid in

visualization. It is seen that positive (negative) ω′n corresponds to counterclock-

wise (clockwise) rotation in the (x2, s) plane. In later figures, velocity vectors are

included for eigenmodes when it is more difficult to infer velocities from ω′n plots.

Figure 3.10 shows an inertial mode with the same anticyclonic rotation rate

but in a strongly stratified fluid. The lateral spread of vorticity fluctuations has

increased considerably for inertial modes in a strongly stratified fluid compared to

the homogeneous case in Figure 3.9. Looking at the region of positive ω′n from

Figure 3.10 (a) and corresponding density fluctuations from Figure 3.10 (c) it is

clear that the vertical motion induced by ω′n has the same sign as the density

field such that buoyancy stabilizes ω′n fluctuations. The normal component of the

baroclinic term of equation 3.12 is shown in Figure 3.10 (d), further illustrating

the stabilizing effect of buoyancy on ω′n. Similarly, looking at regions of positive

u′n from Figure 3.10 (b) and corresponding density fluctuations from Figure 3.10

(c) the stabilizing effect of buoyancy on u′n can be deduced. Density fluctuations

are generated by both ω′n and u′n implying that buoyancy plays a stabilizing role,

inhibiting generation of horizontal vorticity fluctuations via baroclinic torque.

Figure 3.11 shows an inertial mode in a homogeneous fluid with nearly zero

absolute mean vorticity at the inflection point (2Ω = 0.95). As with the weak
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(a) (b)

(c)

Figure 3.12: Plots of ω′n (a), u′n (b), and ρ′ (c) for a barotropic mode from a
zero absolute vorticity case with stratification, Rib = 10, 2Ω = 1,
k1 = 0.444, k3 = 25.3, and θ = 1.0◦.
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anticyclonic cases presented in figures 3.9 and 3.10, we observe regions of like-

signed ω′1 and ω′2. The lateral spread of the vorticity fluctuations is small because

the local value of −2Ω (2Ω− S (x2)) has positive values only at x2 ∼ 0 where

S > 2Ω > 0. Figure 3.12 shows a large k3 mode from the strongly stratified case

with zero absolute mean vorticity at the inflection point. A dramatic difference in

dynamics is observed between this mode and the inertial mode from Figure 3.11.

Density fluctuations are generated by ω′n, but the u′n field in Figure 3.12 (b) has

the opposite sign of the ρ′ field in Figure 3.12 (c). Therefore, u′n fluctuations are

aligned with the buoyancy force rather than opposed to it for the inertial mode

in Figure 3.10. This destabilizing effect of buoyancy on u′n is in contrast to the

stabilizing effect seen earlier in the weak anticyclonic case. When 2Ω = S, the

linearized fluctuating vorticity equations take the following form at the inflection

point where U1 = 0,

∂ω′1
∂t

=

(
S

2
+ Ω

)
ω′2 −Rib

∂ρ′

∂x2

, (3.25)

∂ω′2
∂t

= Rib
∂ρ′

∂x1

. (3.26)

Thus, for this base state, unstratified flow with zero absolute vorticity contains no

mechanism to generate ω′2, which is why the zero absolute vorticity state tends to

stabilize barotropic modes in homogeneous fluids as noted in section 3.4.

The buoyancy-driven instability in the case of zero absolute vorticity can

be explained as follows. Quasi-streamwise vortices indicated by ω′n in Figure 3.12

(a) distort isopycnals such that positively buoyant fluid is on one side of the vor-

tices and negatively buoyant fluid is on the other, as observed in Figure 3.12 (c).

Slight inclination of the quasi-streamwise vortices in the vertical direction, due

to the small vertical component of n, leads to the associated density gradient

having a slight streamwise component, ∂ρ′/∂x1, which in turn leads to baroclinic

formation of lateral vorticity, ω′2. This is the only mechanism which can modify

ω′2 fluctuations as seen in equation (3.26). The formation of ω′2 is reflected by

∂u′n/∂s ∼ −∂u′1/∂x3 in Figure 3.12 (b). This lateral vorticity is then transferred

to the quasi-streamwise vortices via coordinate system rotation and strain-induced
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tilting according to equation (3.25).

For |x2| & 0.3 in figure 3.12, we see vertical shear (∂u′1/∂x3 ∼ −∂u′n/∂s)
correlating with lateral density variation in the opposite manner than predicted by

thermal wind balance, which is given below in equations (3.27) and (3.28). This is

somewhat surprising, considering local values of |Ro (x2) | = S (x2) /2|Ω| are small

away from the inflection point.

2Ω
∂u1

∂x3

= Rib
∂ρ′

∂x2

, (3.27)

−2Ω
∂u2

∂x3

= Rib
∂ρ′

∂x1

. (3.28)

Figure 3.13 shows the form of barotropic modes with non-zero k3 for a non-

rotating strongly stratified case. Figure 3.13 (c) shows quasi-streamwise parcels of

buoyant fluid with large lateral spread. Density fluctuations in these parcels are

maintained by vertical fluctuations due to jets of u′n in the shear region as seen in

Figure 3.13 (b). In is apparent that u′n and ρ′ are of the same sign so that the effect

of stratification is stabilizing on u′n fluctations. Figure 3.13 (a) and (d) show an

array of alternating jets that are oriented in the lateral direction (x2) outside of the

shear region, but inclined with respect to the vertical and streamwise directions

within the shear region. The physics driving this instability can be illustrated

through the following arguments. A flow field begins with alternating layers of

heavy and light fluid on top of one another that are not infinite, but spread far

beyond the shear region as observed in Figure 3.13 (c). Lateral variation in density

within the layers of buoyant fluid results in currents with u′2 directed towards and

away from the shear region as seen in Figure 3.13 (d). Heavy parcels approach the

shear region with slight negative vertical velocity, while light parcels approaches

the shear region with slight positive vertical velocity. As the currents induced

by ω′n enter the shear region they encounter buoyant quasi-streamwise currents

increasing their density anomaly, resulting in larger vertical velocity magnitudes

until exiting the shear region on the opposite side of the buoyant layer. These

quasi-lateral currents induce vertical shear (∂u′2/∂x3 ∼ ∂u′2/∂s), as seen in Figure
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3.13 (d), which then acts to generate ω′2 through tilting of mean vertical vorticity.

Tilting of the ω′1 contained in the currents by the mean shear also leads to ω′2

formation. The generated ω′2 coincides with the quasi-streamwise jets observed in

Figure 3.13 (b).

The density structures observed in Figure 3.13 are reminiscent of density

intrusions observed in the experiments of Browand et al. (1987), Thorpe (1982),

Liu et al. (1987), and Ivey & Corcos (1982) and the numerical simulations of

Basak & Sarkar (2006). The mechanism proposed in these works involves vertical

mixing that leads to tongues of downward propagating heavier fluid encountering

tongues of upward propagating lighter fluid and then spreading laterally similarly

to gravity currents. The arguments provided in the previous paragraph referring to

the eigenmode described in Figure 3.13 offer an illustration of a linear mechanism

that generates layers of buoyant fluid. These density structures could lead to a

periodic array of non-turbulent density intrusions outside of the shear region where

vertical mean vorticity is negligible.

Figure 3.14 shows modes from a rapidly rotating and strongly stratified

case. Thermal wind balance explains much of the differences between this case

and the non-rotating strongly stratified modes with horizontal density variations

correlating appropriately with the observed vertical shear. From Figure 3.14 (b)

and (d) we observe that regions of positive u′n (or negative u′n) correlate with

regions of negative u′s (or positive u′s) implying that associated regions contain

negative u′1 (or positive u′1). By examining Figure 3.14 (b) - (d), the signs of both

∂u′1/∂x3 and ∂ρ′/∂x2 can be determined near the inflection point. Positive values

of ∂u′1/∂x3 are found to correlate with negative values of ∂ρ′/∂x2 and vice versa

as expected from equation (3.27) for Ω < 0.

3.6 Conclusion

The three-dimensional instability of a stratified and rotating horizontally

oriented hyperbolic shear layer has been investigated. Rapid rotation and/or strong

stratification was found to result in self-similarity of growth rates with respect
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(a) (b)

(c) (d)

Figure 3.13: Plots of ω′n (a), u′n (b), ρ′ (c), and velocity vectors (d) for a
barotropic mode from a non-rotating case with strong stratification,
Rib = 10, 2Ω = 0, k1 = 0.3, k3 = 1.7, and θ = 10.0◦.
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(a) (b)

(c) (d)

Figure 3.14: Plots of ω′n (a), u′n (b), ρ′ (c), and velocity vectors (d) for a
barotropic mode from a rapidly rotating case with strong strati-
fication, Rib = 10, 2Ω = −2, k1 = 0.3, k3 = 0.4, and θ = 36.9◦.
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to vertical wavenumber of perturbations. For unstratified rapidly rotating cases,

vertical wavenumbers were found to scale as 2|Ω̃|k3L/S where 2Ω̃ = 2 (Ω− 1/4)

corresponds to the deviation with respect to the most destabilizing rotation rate.

While the difference between Ω and Ω̃ is not significant in geostrophic flows, the

difference is appreciable for less rapidly rotating cases such as submesoscale shear

flows where 2 |Ω| /S is not particularly large. This scaling is consistent with the

Taylor-Proudman theorem in the limit of |Ω| → ∞, where only k3 = 0 modes

are unstable. For strongly stratified rapidly rotating cases, vertical wavenumbers

were found to scale as 2|Ω̃|k3L/N . This result is consistent with quasi-geostrophy

for very large 2|Ω|/S and N/S, but the distinction between Ω and Ω̃ is still non-

negligible in the submesoscale regime.

For weak to moderate rotation rates, stratification was found to stabilize the

inertial instability. The distinction between growth rates associated with inertial

and barotropic modes lessened as the zero absolute vorticity state was approached.

Rapid rotation stabilizes low k1, high k3 modes in an unstratified fluid. Such

stabilization is not observed in the presence of strong stratification.

Analysis of eigenmodes provided insight regarding the underlying physics

of the inertial instability and barotropic instability in a rotating strongly stratified

fluid for small amplitude perturbations. Quasi-streamwise vortices associated with

the inertial instability were suppressed via baroclinic torque when stratification

was strong. Analysis of a non-rotating strongly stratified barotropic mode showed

a potential linear mechanism for generation of density intrusions. Adding rapid

rotation modified the barotropic mode in a manner consistent with thermal wind

balance.

For strongly stratified flow with zero absolute vorticity at the inflection

point, the vertical scale associated with barotropic instability was significantly

modified. Density anomalies generated by quasi-streamwise vortices with a small

vertical inclination led to baroclinic formation of lateral vorticity which, through

tilting by system rotation and strain, sustains the quasi-streamwise vortices. This

mechanism is fundamentally different than the mechanism driving barotropic modes

when only rotation or stratification effects are included. In chapter 4 the non-linear
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evolution of the stratified and rotating horizontal shear layer will be explored us-

ing direct numerical simulation and comparisons will be made between linear and

non-linear physics.

The contents of this chapter are published in the Journal of Fluid Mechan-

ics. E. Arobone and S. Sarkar. “Evolution of a stratified rotating shear layer

with horizontal shear. Part I. Linear stability”, J. Fluid Mech., 703, 29-48, 2012.
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Chapter 4

Nonlinear Evolution of a

Stratified Rotating Shear Layer

with Horizontal Shear

4.1 Introduction

The effects of strong stratification and moderate coordinate system rotation

rates, where Frh = S/N . O (1) and Ro = S/2Ω ∼ O (1), on shear flow is impor-

tant for basic understanding of submesoscale ocean dynamics. This study explores

a horizontally oriented hyperbolic tangent mixing layer including stratification and

rotation effects. Isolated horizontal shear is prevalent in boundary currents and in

the wake of isolated topography. Previous work has explored the nonlinear evo-

lution of horizontally oriented shear layers subjected to rotation (Métais et al.,

1995; Potylitsin & Peltier, 2003) or stratification (Basak & Sarkar, 2006; Arobone

& Sarkar, 2010) alone, but not in combination. Figure 4.1 gives a schematic il-

lustrating the rotating stratified horizontal shear layer and relevant dimensional

parameters.

In Arobone & Sarkar (2012) the effect of rotation and stratification on

growth rates for linear evolution of exponentially growing modes was explored

for a horizontal shear layer. The unstratified rotating shear layer is known to

66
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Figure 4.1: Schematic of the rotating stratified horizontal shear layer. Additional
relevant parameters include the vorticity thickness, δω, kinematic vis-
cosity ν, scalar diffusivity κ and reference density ρ0.

be susceptible to inertial (i.e. centrifugal) instability, that typically manifests

as overturning motions with low streamwise wave number, and the barotropic

instability associated with horizontal shear that is manifested as vortex trains such

as Kelvin-Helmholtz (KH) billows. Stratification acted to stabilize the inertial

instability for moderate values of Ri
−1/2
b k3, where Rib = N2/S2, and increased

the range of vertical wavenumbers associated with both inertial and barotropic

instability. When the absolute vertical vorticity, 〈ω3〉+ 2Ω = −S+ 2Ω, was nearly

zero at the centerline, a new instability was found to occur whereby a much larger

range of vertical scales was destabilized relative to the non-rotating case as seen

in Figure 4.2. Note that the inertial instability of rotating flows is inoperative for

−S + 2Ω ≥ 0. Lastly, self-similar regimes were observed when stratification was

strong (Rib ≥ 1) and/or the rotation rate was rapid (|2Ω/S| � 1). In this chapter,

we assess the role of buoyancy during the nonlinear evolution of the stratified,

rotating shear layer through direct numerical simulation (DNS).

The horizontally oriented shear layer under the influence of rotation alone

and without stratification was explored by Métais et al. (1995) using direct and

large-eddy simulations. The Reynolds number based on free stream velocity dif-

ference and initial vorticity thickness was Re = 100 and a 643 grid was used. In

cases with cyclonic rotation (and anticyclonic rotation when |Ro (t)| ≤ 1) three-

dimensionality was inhibited, consistent with the Taylor-Proudman theorem. For
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weaker anticyclonic rotation, the flow was strongly destabilized with maximum

destabilization achieved when Ro ≈ −2.5, consistent with the linear theory of

Yanase et al. (1993). In the strongly destabilized cases, the vorticity in the shear

layer evolved to a collection of strong longitudinal vortex tubes, slightly inclined

with respect to vertical. KH rollers were suppressed, yet more enstrophy resulted

than in the non-rotating case. The weak anticyclonic cases approached a state of

near constant shear with approximately zero absolute vorticity. Vertical vorticity

was proposed to be destroyed via the weak absolute vorticity stretching mechanism

of Lesieur et al. (1991).

The effect of stratification alone without system rotation on a horizontally

oriented shear layer was explored by Basak & Sarkar (2006) and Arobone & Sarkar

(2010) using DNS. The structural organization of vorticity and density fields was

the focus of Basak & Sarkar (2006). In strongly stratified cases, columnar vortex

cores emerged from an initially turbulent state and subsequently dislocated forming

a lattice of ’pancake’ eddies with large vertical shear and density gradients between

the pancakes. The vertical length of vortex cores was found to be proportional

to ∆U/N where ∆U denotes the imposed velocity difference and N the uniform

stratification. Density intrusions and internal gravity waves were observed away

from the sheared region. Arobone & Sarkar (2010) extended this work, focusing

on statistics and the role of coherent vortical structures. Many statistics, such as

turbulent stresses, approached self-similar profiles once Rib (t)� 1. For large Rib,

transport of density fluctuations was strongly counter-gradient in sharp contrast

with the co-gradient transport of a passive tracer observed in the unstratified case.

In strongly stratified cases coherent structure evolution exhibited vortical structure

reminiscent of the zigzag instability (Billant & Chomaz, 2000b).

There are observations of asymmetry between cyclonic and anticyclonic

vortices in geophysical flows, e.g. figure 1 of Potylitsin & Peltier (1998) which shows

asymmetry of the von Karman vortex street in the lee of mountains on the island

of Jan Mayen. Flament et al. (2001) observed a horizontal shear layer, containing

anticylonic vortices having ω3 ∼ −f , forming in the westward North Equatorial

Current past the island of Hawaii. The shear layer grew in thickness owing to
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paring of these anticylonic vortices. It was suggested that stronger vortices were

not observed due to inertial instability. Anticyclones are quite difficult to generate

in the laboratory in a homogeneous fluid, e.g. Kloosterziel & van Heijst (1991)

and Afanasyev & Peltier (1998). In the latter publication the inertial instability

was clearly demonstrated for various values of Ro through novel experimental

techniques.

Numerical experiments have also shown asymmetry between cyclones and

anticyclones at moderate rotation. Bartello et al. (1994) used numerical simu-

lation to examine the three-dimensionalization of initially quasi-two-dimensional

flow along with the two-dimensionalization of initially isotropic three-dimensional

flow in an unstratified background. Without rotation, three dimensionalization of

all initially quasi-two-dimensional vortices was observed. When the Coriolis pa-

rameter matched [ω2D]rms a rapid destabilization of anticyclones occurred, how-

ever both cyclones and anticyclones remained stable for more rapid rotation rates.

Forced three-dimensional rotating stratified isotropic turbulence was investigated

numerically by Smith & Waleffe (2002). Forcing was localized at a large wavenum-

ber. When Fr was less than a critical value, energy transferred from small to

large scales. For N/f � 2, large scale flow arose as vertically sheared horizontal

flow with PV modes playing a secondary role. For 1/2 ≤ N/f ≤ 2, PV modes

dominated and inertial-gravity waves were insignificant. Lastly, for N/f � 1/2

it was suggested, but not demonstrated, that flow would be dominated by large-

scale cyclonic vortices as in the unstratified rapidly rotating cases. Experiments

exploring grid turbulence in a rotating stratified tank were carried out by Praud

et al. (2006). For large magnitude of Ro, a significant decay of kinetic energy

was observed with respect to the lower Ro cases, irrespective of the stratification

strength. In the low Ro regime, the intense vortices were all cyclonic. At late

times, they took the form of lens-like eddies with an aspect ratio proportional to

f/N .

The final state of an initially inertially unstable distribution of vorticity is of

interest. Kloosterziel et al. (2007a) studied the unfolding of the inertial instability

in initially barotropic vortices in a uniformly stratified fluid. The simulations were
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(a) Rib = 4, 2Ω = 0 (b) Rib = 10, 2Ω = −1

Figure 4.2: Contours of growth rate for linear stability of the stratified horizon-
tal shear layer for the (a) non-rotating case and (b) zero absolute
vorticity case based on the results of Arobone & Sarkar (2012).

axisymmetric such that the effects of inertial instability were isolated. Barotropic

vortex dipoles emerged mixing momentum such that flow evolved to a state that

was no longer inertially unstable. A theoretical construction was also provided to

infer the final state of angular momentum at high Reynolds number given the initial

distribution. Interestingly, the arguments of Kloosterziel et al. (2007a) implied

that the inertial instability would mix the rotating shear layer to a state with nearly

zero absolute vorticity as was indeed found by Métais et al. (1995), Kloosterziel

et al. (2007b) and Plougonven & Zeitlin (2009) through DNS of anticyclonic cases

with weak system rotation rate. Carnevale et al. (2011) provided a method to

predict the aftermath of vortex breakup in unstratified rotating flow taking into

account both inertial and barotropic instability of vortices.

Observations of asymmetry between cyclonic and anticyclonic vortices in

nature as well as in laboratory/numerical experiments have prompted stability

analysis of barotropic vortices under the influence of stratification and rotation.

Potylitsin & Peltier (1998) explored the effect of stratification and rotation on

the three-dimensional stability of barotropic vortices with elliptic cross-sections

resulting from the KH instability of a hyperbolic tangent shear layer. Maximum

destabilization in the unstratified case was observed for anticyclonic rotation with
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Ro−1 = −Ω/S = −0.2, with the edge mode growth rate being dominant, and

the inertial instability mechanism underlying this instability being absent in the

non-rotating case. Stratification was found to suppress the stationary edge mode,

while only slightly attenuating the first harmonic edge mode. No additional modes

were found to emerge in the presence of stratification. The elliptical mode is

least influenced by stratification and is largely dominant for stronger anticyclonic

rotation, −0.5 < −Ω/S < −0.3. No modes were significantly unstable for Ro−1 ≥
0.5, but the stability of this regime was not explored for Fr−2 = N2/S2 > 0.2.

The effect of ellipticity on three-dimensional instabilities of Stuart vortices was

explored in Potylitsin & Peltier (1999). For low ellipticity the inertial instability

dominated, while for high ellipticity a rotation augmented elliptical instability was

most unstable. The nonlinear evolution of columnar vortices subject to rotational

effects alone was explored in Potylitsin & Peltier (2003). Here, the distinctions

between non-linear inertial and elliptical instabilities are clearly presented using

isosurfaces of perturbation vorticity.

The zigzag instability of a counter-rotating vertical vortex pair in a stratified

fluid introduced by Billant & Chomaz (2000b) was explored by Otheguy et al.

(2006b) for a co-rotating vortex pair, as emerge in a shear layer. Perturbations

changed from antisymmetric to symmetric when vortices were co-rotating, and

their wavelength depended on the separation distance rather than vortex radius

as was the case for counter-rotating vortices. The effect of planetary rotation

on the co-rotating zigzag instability was investigated by Otheguy et al. (2006a).

Anticyclonic rotation with Ro < −3.67 was found to decrease the vertical length

scale associated with zigzag instability, while weaker anticyclonic rotation rates

increased the length scale. For Ro → 0, the quasi-geostrophic scaling of vertical

length scale proportional to vortex spacing multiplied by f/N was observed.

In the present chapter, we follow up the linear stability analysis for a hori-

zontally oriented rotating and stratified shear layer from Part 1 with a DNS study

that includes a series of simulations with nearly 1 billion points simulating a shear

layer with an initial Reynolds number of 2400. Section 2 introduces and motivates

the mathematical model and simulation parameter regime. The overall evolution
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of the mean flow is summarized in section 3 and the approach towards a final

state of zero absolute vorticity is assessed for anticyclonic rotation. The preceding

literature survey shows that rotation influences the emergence of various instabili-

ties including the inertial instability, barotropic shear instability, zigzag instability

and the buoyancy-induced instability at zero absolute vorticity found in Part 1.

The manifestation of these instabilities in coherent vortex dynamics is discussed

in section 4 and the qualitative difference in the cases with moderate anticyclonic

rotation rates are highlighted. Visualizations of vorticity are presented in section

5 to illustrate how the vortical signature of the inertial instability differs from that

of the buoyancy instability which occurs when the flow passes through zero abso-

lute vorticity. Section 6 explores the fluctuating enstrophy budget terms, paying

particular attention to nonlinear vortex stretching and changes in the baroclinic

torque when centerline absolute vorticity is nearly zero. In section 7, statistics

to quantify the turbulent nature of fluctuations such as buoyancy Reynolds num-

ber, skewness of velocity derivative, spectra, and mixing efficiency are discussed.

Conclusions are drawn in section 8.

4.2 Formulation

The dimensional equations for conservation of mass, momentum, and den-

sity for a Boussinesq fluid in a frame of reference rotating about the vertical axis

are given below with dimensional variables denoted by ∗ (centrifugal acceleration

is neglected) :

∂u∗i
∂x∗i

= 0

∂u∗i
∂t∗

+
∂
(
u∗iu

∗
j

)
∂x∗j

+ εi3k2Ω∗u∗k = − 1

ρ∗0

∂p∗

∂x∗i
+ ν∗

∂2u∗i
∂x∗j∂x

∗
j

− g∗δi3

∂ρ∗

∂t∗
+
∂
(
ρ∗u∗j

)
∂x∗j

= κ∗
∂2ρ∗

∂x∗j∂x
∗
j

The density and pressure fields are decomposed in the following manner,
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ρ∗ (x∗i , t
∗) = ρ∗0 + ρ∗(x∗3) + ρ′

∗
(x∗i , t

∗) ,

p∗ (x∗i , t
∗) = p∗ (x∗2, x

∗
3) + p′

∗
(x∗i , t

∗) ,

where ρ∗ represents the background stratification and p∗ is in hydrostatic

and geostrophic balance with the initial density profile (ρ∗0 + ρ∗) and initial mean

velocity profile. The initial mean velocity corresponds to a barotropic hyperbolic

tangent mixing layer of the form

〈u∗1〉 =
∆U∗

2
tanh

(
2x∗2
δ∗ω

)
,

with linear vertical stratification d 〈ρ∗〉 /dx∗3, Coriolis parameter f ∗ = 2Ω∗,

vorticity thickness δ∗ω, and velocity difference ∆U∗ as introduced in Figure 4.1.

The non dimensional variables for this problem are given as

t =
t∗∆U∗

δ∗ω,0
, xi =

xi
∗

δ∗ω,0
, ui =

ui
∗

∆U∗
, ρ′ =

−ρ′∗

δ∗ω,0 (dρ∗/dx∗3)
, p′ =

p′∗

ρ∗0∆U∗2
.

The following non-dimensional equations for continuity, momentum conser-

vation, and density are obtained along with relevant non-dimensional parameters

∂ui
∂xi

= 0,

∂ui
∂t

+
∂ (uiuj)

∂xj
+ εi3k2Ωuk = − ∂p

′

∂xi
+

1

Re0

∂2ui
∂xj∂xj

−Rib,0ρ′δi3,

∂ρ′

∂t
+
∂ (ρ′uj)

∂xj
− u3 =

1

Re0Pr

∂2ρ′

∂xj∂xj
,

Re0 =
∆U∗δ∗ω,0
ν∗

, Rib,0 = −g
∗

ρ∗0

dρ∗

dx∗3

δ∗ω,0
2

∆U∗2
≈ N∗2

S∗2
, (4.1)

2Ω0 = Ro−1
0 = −

2Ω∗δ∗ω,0
∆U∗

, P r =
ν∗

κ∗
.



74

Table 4.1: Simulation parameters and case names. Li and Ni represent the length
of domain and number of computational points, respectively, in each
direction. In all cases Pr is set to unity.

case Re0 Rib,0 Ro0 2Ω0 L1 L2 L3 N1 N2 N3

Ri1A1 2400 1 -1 -1 100 50 50 1536 768 768
Ri1A2 2400 1 -2 -0.5 100 50 50 1536 768 768
Ri1A10 2400 1 -10 -0.1 100 50 50 1536 768 768
Ri1N 2400 1 ∞ 0 100 50 50 1536 768 768
Ri1C10 2400 1 10 0.1 100 50 50 1536 768 768
Ri1C2 2400 1 2 0.5 100 50 50 1536 768 768
Ri0A10 2400 0 -10 -0.1 100 50 50 1536 768 768
Ri0C10 2400 0 10 0.1 100 50 50 1536 768 768

Ri1A1Re600 600 1 -1 -1 80 40 40 512 256 256
Ri1A2Re600 600 1 -2 -0.5 80 40 40 512 256 256
Ri1A5Re600 600 1 -5 -0.2 80 40 40 512 256 256
Ri1A10Re600 600 1 -10 -0.1 80 40 40 512 256 256
Ri0A5Re600 600 0 -5 -0.2 80 40 40 512 256 256

Here, Pr is taken to be unity for the sake of reasonable computational cost.

2Ω is defined such that positive (negative) values imply cyclonic (anticyclonic) ro-

tation, note that this convention differs from part I. Dirichlet boundary conditions

are enforced for all flow variables at the transverse boundaries where flow variables

are set to zero except for streamwise velocity u1 which takes the value associated

with the mean velocity of the shear layer. Periodicity is enforced in the streamwise

and vertical directions through Fourier collocation. Boundary influence increases

with time as the shear layer grows laterally.

Initial conditions contain both two- and three-dimensional fluctuations.

The 2D fluctuations are invariant in the vertical direction, and both fluctuating

fields are triply-periodic with a prescribed spectrum. Fluctuations are confined to

the shear region through multiplication by a Gaussian curve. The 2D fluctuations

have a spectrum of the following form, E2D (k) ∝ k8 exp
[
−4 (k/k0)2]. 3D fluc-

tuations, on the other hand, have a shallower spectrum of the form E3D (k) ∝
k4 exp

[
−2 (k/k0)2]. The 2D fluctuations are approximately 20 times more ener-

getic than the 3D fluctuations and k0 = π. After initialization, 〈u′iu′i〉 = 0.021 at
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(a) (b)

Figure 4.3: Temporal evolution of (a) vorticity thickness δω and (b) non-
dimensional rotation rate 2Ω (t) = 2Ω∗δω (t) /∆U for each stratified
case at Re0 = 2400. Note that positive (negative) Ω0 corresponds to
cyclonic (anticyclonic) rotation.

the centerline.

4.2.1 Computational Method

The numerical algorithm is different from Arobone & Sarkar (2010) which

employed Fourier collocation in the streamwise and vertical directions and second-

order staggered finite differencing in the transverse direction. Here, instead, fourth-

order compact differencing on a collocated grid is performed in the transverse

direction. The following details are the same as in Arobone & Sarkar (2010) and

included for completeness. The Navier-Stokes and density equations are marched

using a third order Runge-Kutta time scheme. A Rayleigh damping function is used

near the x2 = ±L2/2 boundaries, with a width of approximately 3δω,0, to prevent

spurious reflections. The Poisson equations for pressure and removal of velocity

divergence are solved using the Thomas algorithm. Parallelization is accomplished

using MPI. Case specific computational details are shown in Table 4.1.
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4.2.2 Case Study

A total of eight computationally-intensive simulations at Re0 = 2400 were

performed as listed in Table 4.1. Six simulations included stable stratification,

while the other two were effectively unstratified with a vertical density gradient

but no gravitational force. Three anticyclonic rotation rates were explored in the

stratified cases, while one was explored in the unstratified cases. The Ri1A10,

Ri1A2, and RiA1 cases explore the inertially unstable regime and zero absolute

vorticity state with Ri1A10 running entirely in the inertially unstable regime, RiA1

starting with zero absolute vorticity, and Ri1A2 passing through both inertially

unstable and the zero absolute vorticity states. The selection of Rib,0 = 1 for the

stratified cases is motivated by the observation of statistics showing a strong depen-

dence on Rib (t) for Rib(t) & 1 and self-similar statistical behavior for Rib(t) & 10

in Arobone & Sarkar (2010). The value of Rib(t) increases by a factor of nearly 50

in our simulations owing to the almost sevenfold increase in shear layer thickness.

Therefore the choice of initial stratification corresponding to Rib,0 = 1 is likely

sufficient to explore the strongly stratified regime. Approximately, 1 billion points

are employed for the Re0 = 2400 cases leading to excellent resolution with at least

5 decades drop in energy spectra during the evolution of the flow. Five smaller

simulations with one third as many grid points in each direction were also per-

formed at lower Reynolds number. These cases are used to aid in understanding

the far more complex higher Re simulations.

4.3 Overall Evolution of the Mean Flow

Figure 4.3 (a) shows that the shear layer width, measured by the vorticity

thickness, grows with increasing time. The difference of shear layer width among

the various cases is not large but, as will be shown later in detail, the evolution

of the fluctuations differs qualitatively in many aspects. Figure 4.3 (b) shows

that the magnitude of non-dimensional rotation rate, 2Ω (t) = 2Ω∗δω (t) /∆U∗,

increases with time since δω (t) increases. Thus, rotation exerts increasing control

during the course of the simulations. The stratified case with 2Ω0 = −0.5 exhibits
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(a) 2Ω0 = −0.2 and Rib,0 = 0,
Ri0A5Re600

(b) 2Ω0 = −0.2 and Rib,0 = 1,
Ri1A5Re600

Figure 4.4: Figures showing the temporal evolution of the mean flow in the shear
layer (a) without and (b) with stratification for cases with Re0 = 600
and with weak anticyclonic rotation.

a reduction of growth rate at intermediate time, passes through the zero absolute

vorticity state, and continues to thicken.

Figure 4.4 shows the evolution of mean velocity in the shear layer for low

Re cases with 2Ω0 = −0.2 without and with stratification, respectively. Figure 4.4

(a) shows the mean flow in the case without stratification evolves to a quasi-steady

state, this state corresponds to 〈ω3〉 + 2Ω0 ≈ −0.04. The results are consistent

with the mixing of angular momentum to a zero absolute vorticity state found by

Métais et al. (1995) and suggested by Kloosterziel et al. (2007b) to be the high-Re

limit of inertially unstable flows. Correspondingly, the vorticity thickness stops

increasing at late time. In the stratified 2Ω0 = −0.2 case of Figure 4.4 (b), the

flow does not become quasi-steady. The value of δω shows a slight plateau near

zero absolute vorticity, but then exhibits unabated increase.

The reasons for the stratified flow to continue mixing momentum beyond the

zero mean value of absolute vorticity, ωa = ω3 + 2Ω0, are examined. An evolution

equation for mean absolute vertical enstrophy, 〈ωa〉2 /2, is given below in equation

(4.3) and its domain-integrated terms are plotted in Figure 4.5. Mean absolute

enstrophy is analyzed as opposed to mean relative enstrophy, 〈ω3〉2 /2, due to the

latter’s explicit dependence on rotation rate. The nonlinear stretching and tilting
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(a) 2Ω0 = −0.2 and Rib,0 = 0,
Ri0A5Re600

(b) 2Ω0 = −0.2 and Rib,0 = 1,
Ri1A5Re600

Figure 4.5: Figures showing the temporal evolution of integrated enstrophy bud-
get terms (a) without and (b) with stratification for cases with
Re0 = 600 and with weak anticyclonic rotation.

term, VS MV, is also present in the equation for fluctuating vertical enstrophy,

〈ω′23 〉 /2, evolving differently between stratified and unstratified cases. In strongly

turbulent flows, this term is a source of both mean and fluctuating enstrophy, but

in the presence of strong stratification 〈ω′ks′k3〉 is significantly suppressed as the

flow becomes quasi-two-dimensional. The PROD term is an exchange between

mean and fluctuating components of vertical enstrophy. Figure 4.5 (a) shows

that, in the unstratified case, an approximate balance between increase of 〈ωa〉2 by

VS MV and reduction by PROD is found for t > 50 leading to an asymptotic state

with DDT approximately zero. Quasi-two-dimensional flow also acts to increase

the magnitude of PROD through enhanced lateral stirring of vertical vorticity.

Additionally, the zero absolute vorticity instability of Arobone & Sarkar (2012)

only emerges in the presence of strong stratification and may be responsible for

the increase in magnitude of PROD when t ≈ 55 in Figure 4.5 (b). It is worth

nothing that 2Ω(t = 55) = −1.09 and the centerline absolute vorticity is zero when

t ≈ 46. As will be shown in section 6, the baroclinic production of lateral vorticity

(ω2) helps maintain fluctuating enstrophy beyond the zero absolute vorticity state.
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DDT︷ ︸︸ ︷
∂

∂t

[
1

2
〈ωa〉2

]
=

PROD︷ ︸︸ ︷
〈u′2ω′3〉

∂ 〈ωa〉
∂x2

− ∂

∂x2

[〈ωa〉 〈u′2ω′3〉] (4.2)

+

VS MV︷ ︸︸ ︷
〈ωa〉 〈ω′ks′k3〉 +

DISS︷ ︸︸ ︷
1

Re
〈ωa〉

∂2 〈ωa〉
∂x2∂x2

(4.3)

4.4 Dynamics of Coherent Structures

Coherent vortical structures are isolated using the λ2 criterion of Jeong

& Hussain (1995), defined as the median eigenvalue of the symmetric tensor

SikSkj + ΩikΩkj. Sij and Ωij are the rate of strain and rotation tensors, respec-

tively. λ2 enables straightforward three-dimensional visualization of coherent vor-

tex dynamics by rendering surfaces where λ2 = ε, with a small negative threshold

ε = −0.01 as in Arobone & Sarkar (2012). The authors have selected λ2 over ∆ or

Q, which from experience generate significant false positives in the shear layer, es-

pecially in the braid region. Due to the large size of datasets, Lagrangian methods

of coherent vortex extraction are prohibitively expensive and were not employed.

4.4.1 Non-Rotating Stratified Case

λ2 isocontours were used by Arobone & Sarkar (2010) to explore coher-

ent vortex dynamics in a stratified horizontal shear layer. A transition from

three-dimensional incoherent turbulence to coherent quasi-vertical structures to

dislocated vortex cores was observed in the strongly stratified case, A3, with

Rib,0 = 1.13. A mechanism qualitatively similar to the zigzag instability was

found to be responsible for slicing and breaking apart these quasi-vertical coher-

ent vortices that emerged from the soup of turbulence. Case A3low of Arobone

& Sarkar (2010) had very small amplitude initial fluctuations, did not develop

three-dimensional incoherent turbulence, but did result in quasi-vertical coherent
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vortices, the zigzag instability, and vertical slicing at late time similar to case A3.

The evolution of case Ri1NRe600 is similar to case A3low. This is likely due to

quasi-2D initial conditions used here that favor the early formation of coherent

structures as opposed to fully 3D as in Arobone & Sarkar (2010). In case Ri1N ,

with the same stratification but higher Re0 = 2400, coherent dynamics are quite

similar with vertical length scale associated with slicing remaining unchanged, but

with far greater fine-scale structure in the braid region.

4.4.2 Rotating Unstratified Cases

Both high Re unstratified simulations with weak rotation (Ri0A10 and

Ri0C10) exhibit a rapid transition to turbulence, with the anticyclonic case ap-

pearing considerably more unstable. The lower Re unstratified cases show clearer

qualitative differences between cyclonic and anticyclonic cases. The 2Ω0 = −0.1

case begins with quasi-vertical vortical structures, which shed coherent longitu-

dinal structures until being completely destroyed by turbulent fluctuations. For

2Ω0 = −0.2, the quasi-vertical vortices are almost immediately pinched off forming

longitudinal structures, as in Métais et al. (1995), which then go turbulent and the

flow gradually transitions into a fully turbulent state. The cyclonic 2Ω0 = 0.1 case

contains quasi-vertical structures that still shed longitudinal vortices, albeit they

are far less commonplace than in the anticyclonic cases. Most shedding and desta-

bilization in the cyclonic case occur later during vortex merging, perhaps indicative

of elliptic instability.

4.4.3 Anticyclonic Rotation with Stratification

The coherent structures evolve differently among the stratified anticyclonic

cases and even more so with respect to the non-rotating stratified case. Figure 4.6

shows a section of the coherent structures in four stratified cases with increasing

anticyclonic rotation. In all cases, the barotropic instability develops leading to

columnar vortex cores that subsequently deform. While (a) through (c) contain

snapshots from roughly the same time into the simulation, (d) has a much earlier
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(a) Non-rotating case Ri1N at t=12.3 (b) 2Ω0 = −0.1 case Ri1A10 shown where
2Ω (t = 12.9) = −0.19

(c) 2Ω0 = −0.5 case Ri1A2 shown where
2Ω (t = 12.6) = −0.96

(d) 2Ω0 = −1 case Ri1A1 shown where
2Ω (t = 6.85) = −1.31

Figure 4.6: Snapshots of vertical variation showing the early-time deformation
of coherent, columnar structures in the stratified non-rotating and
anticyclonic rotation cases. Isosurfaces of λ2 for the subdomain x1 ∈
[0, 25], x2 ∈ [−12.5, 12.5], x3 ∈ [0, 12.5].

snapshot due to the more rapid deformation of the barotropic modes in the 2Ω0 =

−1 case. The fact that the initial deformation is largest in the 2Ω0 = −1 case

points to the importance of the zero-absolute vorticity instability identified in Part

I. Figure 4.7 and 4.8 show coherent structures via horizontal and vertical snapshots,

respectively, from the end of each simulation whose early-time structures were

presented in Figure 4.6.

For Ri1A10, quasi-vertical structures form and quickly develop high vertical

wavenumber deformations (k3 ≈ 2.75) as seen in Figure 4.6(b). The corrugated

edges of the vortices, the so-called rib vortices of Kloosterziel et al. (2007a), interact
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with nearby vortex cores and are then shed off as coherent braid structures that

surround the quasi-vertical modes. The network of braid vortices grows throughout

the remainder of the simulation obfuscating extraction of the behavior underneath

from the λ2 visualizations. Figure 4.7(b) is a horizontal snapshot that reveals fine-

scale behavior throughout the coherent structures. In the lower Reynolds number

case, Ri1A10Re600, deformations of the vortex cores are also observed with a

similar wavenumber (k3 ≈ 2.67), but coherent braid structures do not emerge after

the vortex edges are shed. It is important to note that the k1 = 0.44 (dominant

KH wavelength) inertial mode isn’t excited until 2Ω (t) ≈ −0.2. This may explain

the low deformation of the vortices in Figure 4.6(b) compared to (c) and (d) which

have more rapid rotation rates. The range of unstable k1 values increases as the

anticyclonic rotation rate increases as shown in figure 3 (b) and (e) from part I.

Even though the k1 = 0 mode is unstable for −1 < 2Ω < 0, higher streamwise

wavenumbers (in the shear layer high k1 modes arise owing to the initial barotropic

instability or later vortex interactions) require more rapid rotation for vertical

destabilization.

The Ri1A2 case exhibits deformations in the quasi-vertical vortices, with a

higher wavenumber (k3 ≈ 4). These deformations distort the quasi-vertical modes

more than in the weaker anticyclonic rotation case, especially near the zero-

absolute vorticity state, after which incoherent vorticity fluctuations appear around

the ‘zigzagging’ vortex modes. Figure 4.6(c) shows the Ri1A2 case shortly before

the zero absolute vorticity state, when 2Ω (t) = −0.96. Interestingly, coherent lon-

gitudinal braid structures emerge in case Ri1A2 shortly later, although not nearly

as intensely as in Ri1A10, even though 2Ω (t) < −1 signifying that the flow is

globally inertially stable. This is surprising given the fact that these structures

have been traditionally associated with the inertial instability (Métais et al., 1995;

Kloosterziel et al., 2007a). Case Ri1A2Re600 shows similar behavior as the higher

Re case at early time, but incoherent fluctuations are less prevalent and the flow is

quickly stabilized without the formation of coherent braid vortices. The resulting

network of vortices interact minimally except when the separation distance is small

enough that local shear is of comparable order to the coordinate system rotation
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(a) Non-rotating case Ri1N at t=68.9 (b) 2Ω0 = −0.1 case Ri1A10 shown where
2Ω (t = 69.2) = −0.67

(c) 2Ω0 = −0.5 case Ri1A2 shown where
2Ω (t = 64.8) = −2.82

(d) 2Ω0 = −1 case Ri1A1 shown where
2Ω (t = 65.2) = −6.28

Figure 4.7: Isosurfaces of λ2 for the subdomain x1 ∈ [0, 25], x2 ∈ [−12.5, 12.5],
x3 ∈ [0, 12.5] show the final coherent structures viewed in the negative
x3 direction.
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rate.

High vertical wavenumber (k3 ≈ 2.5) deformations are also observed earlier

in the Rib1A1 case (figure 4.6(d)), which deform the quasi-vertical modes quickly

compared to the weaker anticyclonic cases. No significant small-scale incoherent

structure emerges and vortex evolution is similar to that of Ri1A2Re600 at late

time, where vortices advect passively and only interact significantly once they are

in very close proximity with one another. The qualitative similarities between

Ri1A1 (high rotation and high Re) and Ri1A2Re600 (moderate rotation and low

Re) cases are likely due to the fact that the increased destabilization owing to

moderate rotation in case Ri1A2Re600 is nearly offset by the increased stabiliza-

tion of viscosity. At higher initial rotation, 2Ω0 = −1, the coherent vortex cores

in the lower Re case, RibA1Re600, evolved similarly as at higher Re except with

smoother vorticity isocontours and less small scale content.

The structures tend to deform in the x1-x3 plane near the zero absolute

vorticity state, 2Ω(t) = −1, for both Ri1A2 and Ri1A1. This corresponds to for-

mation of small scale ω′2, consistent with the linearized inviscid evolution equations

at the centerline for the zero absolute vorticity state, given in equation (5.2) of

part I and here in equation (4.4). Streamwise density gradients efficiently gener-

ate ω′2 near this state due to the lack of influence of mean shear on the evolution

equation for lateral vorticity fluctuations. Alternating filaments of ω′2 surround the

columnar vortices and shear them rather quickly.

∂ω′1
∂t

=

(
〈s12〉

2
+ Ω0

)
ω′2 −Rib,0

∂ρ′

∂x2

∂ω′2
∂t

= Rib,0
∂ρ′

∂x1

(4.4)

Vertical sections at later times show that coherent structures in the weakly

and moderate anticyclonic cases RiA10 and Ri1A2 evolve quite differently from

one another, but with a few key similarities. Both cases result in a network of

thin coherent longitudinal vortices as seen in figures 4.8 (b) and (c), with the

network being more prevalent in the weaker anticyclonic case with 2Ω0 = −0.1.

Initially, in both cases, vortices deform in a similar manner with a small vertical

length scale. Later, however, the large quasi-vertical structures do not break apart
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(a) Non-rotating case Ri1N at t=68.9

(b) 2Ω0 = −0.1 case Ri1A10 shown where
2Ω (t = 69.2) = −0.67

(c) 2Ω0 = −0.5 case Ri1A2 shown where
2Ω (t = 64.8) = −2.82

(d) 2Ω0 = −1 case Ri1A1 shown where 2Ω (t = 65.2) =
−6.28

Figure 4.8: Isosurfaces of λ2 for the subdomain x1 ∈ [0, 25], x2 ∈ [−12.5, 12.5],
x3 ∈ [0, 12.5] showing coherent structures in the stratified cases
viewed in the positive x2 direction.
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(a) 2Ω0 = 0 case
Ri1N where
2Ω (t = 68.9) = 0

(b) 2Ω0 = 0.1 case
Ri1C10 where
2Ω (t = 69.1) = 0.65

(c) 2Ω0 = 0.5 case
Ri1C2 where
2Ω (t = 69.1) = 3.46

Figure 4.9: Isosurfaces of λ2 for the subdomain left of the x2-x3 midplane showing
the effect of cyclonic rotation on coherent structures in the stratified
cases.

in the weakly anticyclonic case, remaining columnar, while breaking apart in the

moderate anticyclonic case with 2Ω0 = −0.5.

4.4.4 Cyclonic Rotation with Stratification

The evolution of coherent vortices is very similar between the non-rotating

stratified case and the cyclonic stratified cases, and strongly contrast against the

anticyclonic cases. Vertical slicing is slightly less dramatic in the cyclonic cases

than in the non-rotating case, but there is a clear one-to-one matching of vorti-

cal structures between the three cases throughout the duration of the simulations.

Figure 4.9 (a), (b) and (c) illustrate these points, clearly showing coherent struc-

tures at the end of each simulation. The cleaner nature of the coherent structures

in the cyclonic cases is also noteworthy.

4.5 Vortical Signature of Instabilities

The linear analysis of part I suggests that the inertial instability and zero

absolute vorticity mechanism generate horizontal vorticity fluctuations in distinct
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(a) 2Ω0 = −0.1 case Ri1A10 where
2Ω (t = 21.89) = −0.26

(b) 2Ω0 = −0.5 case Ri1A2 where
2Ω (t = 13.6) = −1.01

Figure 4.10: Laplacian filtered ω2 fluctuations given for a segment of the x1-
x3 mid-plane illustrating differences between instabilities in the (a)
weak anticyclonic and (b) moderate anticyclonic cases.

manners. Figure 4.10 (a) and (b) illustrate the differences between the non-linear

evolution of the inertial instability and the zero absolute vorticity instability. Fig-

ure 4.10 (a) contains only thin sheet-like vortex structures associated with the

inertial instability, while 4.10 (b) contains both thin sheet-like structures and ar-

rays of alternating vorticity which are prevalent near the zero-absolute vorticity

state. The sheet-like structures take more time to induce local shear instability

than the vortex arrays which quickly overturn generating small-scale vorticity.

Case Ri1A10 experiences significant destabilization owing to the nonlinear

evolution of the inertial instability as illustrated in Figure 4.11. The inertial in-

stability manifests as coherent longitudinal vortices in the braid region, as seen

in the previous section, and thin sheet-like vortex structures in the core region.

These sheet-like vortex structures are susceptible to roll-up at later times as seen

in Figure 4.11, which shows the transition from sheet-like structures of ω2 to KH

billows in several locations, which are circled. Figure 4.11 (a) and (b) correspond

to 2Ω (t) = −0.43 and 2Ω (t) = −0.56, respectively, implying that rollup occurs

near the most linearly unstable state of 2Ω (t) = −0.5.

The horizontal vorticity components show dramatic differences with respect

to system rotation in the stratified simulations, and are by far the most active in

the Ri1A2 and Ri1A10 cases. Vertical layering is most dramatic in Ri1A2 at later
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(a) 2Ω (t = 48.94) = −0.40

(b) 2Ω (t = 61.22) = −0.56

Figure 4.11: Plots of Laplacian filtered ω2 from the Ri1A10 case with 2Ω0 =
−0.1 showing development of fine-scale KH instabilities and vortical
structure as the flow passes through the most inertially unstable
regime (2Ω (t) = −0.5).
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(a) (b)

(c)

Figure 4.12: Temporal evolution of integrated enstrophy components in stratified
cases where Rib,0 = 1 and Re0 = 2400.

times, even though the effect of rotation is stabilizing, while the vorticity fields

appear most disordered in Ri1A10.

4.6 Fluctuating Enstrophy Evolution

Figure 4.12 shows the evolution of fluctuating enstrophy components in

each of the high Re stratified cases. When 2Ω0 = 0.1, 0.5 and −1, enstrophy is

primarily vertical, while horizontal enstrophy dominates for 2Ω0 = −0.1 and −0.5.

In order to quantify the processes responsible for modifying enstrophy components,

fluctuating enstrophy budgets are computed. Equations are derived for the evo-
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lution of x1-x3 plane-averaged fluctuating enstrophy components and given below

for the horizontal shear layer (no summation over Greek indices).

∂ 〈ω′αω′α〉
∂t

= −2 〈ω′αu′2〉
∂ 〈ωα〉
∂x2

− ∂ 〈ω′αω′αu′2〉
∂x2

+ 2 (〈ω3〉+ 2Ω0) 〈ω′αs′α3〉

+2
〈
ω′αω

′
j

〉
〈sαj〉+ 2

〈
ω′αω

′
js
′
αj

〉
+ εαj32Ω0

〈
ω′αω

′
j

〉
+

1

Re

∂2 〈ω′αω′α〉
∂xj∂xj

− 2

Re

〈
∂ω′α
∂xj

∂ω′α
∂xj

〉
− εαj32Rib

〈
ω′α

∂ρ′

∂xj

〉
(4.5)

The physical meaning of each term is explained below.
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Rate of change of fluctuating enstrophy (DDT) :

∂〈ω′αω′α〉
∂t

Production of fluctuating enstrophy (PROD) :

−2 〈ω′αu′2〉
∂〈ωα〉
∂x2

Transport of fluctuating enstrophy by velocity fluctuations (TR) :

−∂〈ω′αω′αu′2〉
∂x2

Stretching/tilting of mean absolute vorticity by fluctuating strain (VS MV) :

2 (〈ω3〉+ 2Ω0) 〈ω′αs′α3〉

Stretching/tilting of fluctuating vorticity by mean strain (VS MS) :

2
〈
ω′αω

′
j

〉
〈sαj〉

Stretching/tilting of fluctuating vorticity by fluctuating strain (VS F) :

2
〈
ω′αω

′
js
′
αj

〉
Effect of coordinate system rotation (ROT) :

εαj32Ω0

〈
ω′αω

′
j

〉
Viscous diffusion of enstrophy fluctuations (DIFF) :

1
Re

∂2〈ω′αω′α〉
∂xj∂xj

Viscous dissipation of enstrophy fluctuations (DISS) :

− 2
Re

〈
∂ω′α
∂xj

∂ω′α
∂xj

〉
Fluctuating baroclinic term (BC) :

−εαj32Rib

〈
ω′α

∂ρ′

∂xj

〉
The transport of fluctuating enstrophy and viscous diffusion terms integrate

over the domain to zero when there are no boundary fluxes and are not discussed.

In our analysis we often combine the stretching of fluctuating vorticity by mean

strain term (VS MS) with the coordinate system rotation term (ROT) to reduce

clutter in the enstrophy component budgets. VS MS is a source term while ROT

transfers fluctuating enstrophy between horizontal components. In some cases the
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nonlinear vortex stretching (VS F) term is merged with DISS, also to reduce clut-

ter, this term can be thought of as the imbalance between dissipation and enstrophy

transfers from larger to smaller scales. Large magnitudes of VS F and DISS are

suggestive of strong non-linearity, a forward enstrophy cascade, and turbulence.

Initially, we focus our attention on vertical fluctuating enstrophy budgets,

which are not directly influenced by buoyancy. Vertical enstrophy budgets are

plotted in Figure 4.13 for stratified cases with 2Ω0 = 0, −0.1, −0.5 and −1.

Common features are observed at late time between the 2Ω0 = −1 case and the

non-rotating and cyclonic (not shown, but similar to non-rotating) cases. Here,

the dominant balance is between PROD and DISS. This partially explains why

snapshots of vertical vorticity (not shown) are significantly cleaner in these cases

than in the anticyclonic cases with weaker rotation. Nonlinear stretching and

tilting play a far greater role in the evolution of vertical enstrophy fluctuations

in the weak and moderate anticyclonic stratified cases, even at later time when

2Ω (t) < −1. Thus, for cases Ri1A10 and Ri1A2 there are time periods when the

budget is dominated by VS F and DISS terms, but in the Ri1A1, Ri1C10 and

Ri1N cases VS F never dominates.

The 2Ω0 = −0.5 case passes through 2Ω(t) = −1 corresponding to zero

absolute vorticity. Through figures 4.14-4.16 we demonstrate that the baroclinic

term (BC) plays an important role in maintaining vorticity fluctuations beyond

the zero absolute vorticity state despite the inertial stability of the flow during

this stage.

Figure 4.14 shows local lateral fluctuating enstrophy (〈ω′2ω′2〉) budgets from

the low and high Re0 stratified 2Ω0 = −0.5 cases at the inflection point, focusing

on early time evolution. Both plots show the BC term out of phase with the

linear VS MV and VS MS (actually VS MS + ROT) terms, transport advecting

enstrophy away from the centerline, and VS F (actually VS F + DISS) implying

a cascade of enstrophy from large scales to small. The zero absolute vorticity

state is reached in the high Re case (Figure 4.14 (b)) when t ≈ 13.4. Shortly

after, when t ≈ 14, baroclinic torque (BC) changes sign in the 〈ω′2ω′2〉 budget,

implying destabilization of lateral fluctuating enstrophy by density fluctuations.
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(a) 2Ω0 = 0 case Ri1N (b) 2Ω0 = −0.1 case Ri1A10

(c) 2Ω0 = −0.5 case Ri1A2 (d) 2Ω0 = −1 case Ri1A1

Figure 4.13: Temporal evolution of integrated vertical enstrophy budgets in
stratified cases where Rib,0 = 1. The 2Ω0 = 0.1 and 2Ω0 = 0.5
cases are very similar to (a) and not shown.
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This is consistent with the dynamics of the zero absolute vorticity mode in figure

11 of part I, where density gradients act against ω′1 while acting to strengthen

ω′2. Interestingly, we see the BC, VS MV and VS MS (actually VS MS + ROT

in Figure 4.14) terms change signs in the local 〈ω′2ω′2〉 budget at almost the same

time (t ≈ 13.4 in Figure 4.14 (b)). The VS MV and VS MS (VS MS + ROT in

Figure 4.14) terms are exactly zero when local absolute vorticity is zero because

〈s12〉 − Ω0 = −1
2

(〈ω3〉+ 2Ω0) = 0. The DDT term of Figure 4.14 (b) shows

a considerable delay in crossing the zero value relative to Figure 4.14 (a), i.e.,

stabilization of lateral enstrophy is delayed at higher Reynolds number. Perhaps

at still higher Re, destabilization could be delayed even further into the inertially

stable regime.

In Figure 4.15, lateral profiles of 〈ω′1ω′1〉 and 〈ω′2ω′2〉 budgets are shown

for the stratified 2Ω0 = −0.5 case shortly after the zero absolute vorticity state.

Although the nonlinear vortex stretching term (VS F) is dominant in the budget

for 〈ω′2ω′2〉, it is almost cancelled by the other non-baroclinic terms, particularly

the dissipation. Consequently, the rate of change curve (DDT) in Figure 4.15 for

lateral fluctuating enstrophy nearly follows the baroclinic (BC) term, which was

predicted by equation (4.4), which was derived assuming small horizontal gradients,

zero absolute vorticity, and neglected nonlinearity and viscosity.

Interestingly, in Figure 4.16 (a) and (b), nonlinear vortex stretching and

tilting are far more important in lateral enstrophy evolution than streamwise en-

strophy, where stretching and tilting is nearly zero around and before the zero

absolute vorticity state. For weak and moderate anticyclonic rotation rates there

are times when baroclinicity is a net source of horizontal enstrophy, specifically

throughout much of the 2Ω0 = −0.5 case. The DDT term in the lateral enstrophy

budget in Figure 4.16 (b) suggests peak destabilization occurring in the stratified

2Ω0 = −0.5 case when 35 . t . 40 or 2Ω (t) ∼ −1.75. In an attempt to bet-

ter understand why enstrophy fluctuations grow so far into the inertially stable

regime, equation (4.4) is manipulated to obtain the following evolution equation

for fluctuating lateral enstrophy, neglecting the influence of stratification :
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(a) Re0 = 600 case Ri1A2Re600 (b) Re0 = 2400 case Ri1A2

Figure 4.14: Temporal evolution of the 〈ω′2ω′2〉 budget from the anticyclonic cases
with 2Ω0 = −0.5, Rib,0 = 1. The budget is calculated at the center-
line and the plot zooms in on the early evolution.

(a) 〈ω′
1ω

′
1〉 budget (b) 〈ω′

2ω
′
2〉 budget

Figure 4.15: Enstrophy component budgets from the 2Ω0 = −0.5, Rib,0 = 1 case
Ri1A2 shown shortly after the zero absolute vorticity state. Here,
t = 18.08 and 2Ω (t) ≈ −1.12.
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(a) 〈ω′
1ω

′
1〉 budget (b) 〈ω′

2ω
′
2〉 budget

Figure 4.16: Temporal evolution of integrated horizontal enstrophy budgets for
the moderate anticyclonic case Ri1A2 with 2Ω0 = −0.5 and Rib,0 =
1. The rate of change and baroclinic torque terms have been filtered
to lessen the influence of N oscillations.

D̄2

D̄t2
[〈ω′2ω′2〉] = −4Ω0 (2Ω0 + 〈ω3〉) 〈ω′2ω′2〉 (4.6)

We concentrate on fluctuating lateral enstrophy because it begins to de-

cay before both the fluctuating streamwise enstrophy and the 〈ω′1ω′2〉 correlation.

Understanding the mechanism responsible for delayed decay of lateral fluctuating

enstrophy may explain why dissipation and nonlinearity remain strong so long after

passing through the absolute zero vorticity state. Based on the present simulation

data, mean centerline vorticity may be approximated by 〈ω3〉 (t) ≈ (t/13 + 1)−1,

and lateral fluctuating enstrophy may be approximated as growing linearly with

time. Integrating equation (4.6) from the beginning of the simulation until time

t∗ and setting the result equal to zero gives the time when 〈ω′2ω′2〉 reaches peak

magnitude.

∫ t∗

0

2

(
−1

2
+

1

t/13 + 1

)
tdt = 0 (4.7)
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(a) 〈ω′
1ω

′
1〉 budget (b) 〈ω′

2ω
′
2〉 budget

Figure 4.17: Temporal evolution of integrated horizontal enstrophy budgets in
the rapid anticyclonic case Ri1A1 where 2Ω0 = −1 and Rib,0 = 1.
The rate of change and baroclinic torque terms have been filtered
to lessen the influence of N oscillations.

Equation (4.7) is satisfied when t∗ ≈ 21.1, long before the t∗ ≈ 37 when

〈ω′2ω′2〉 is found to achieve its peak in case Ri1A2 as discerned by where the rate

of change curve crosses the time axis in Figure 4.14 (b). Thus, destabilization con-

tinues beyond the time predicted by linear, unstratified analysis. An interesting

point to note is that the baroclinic and rate of change terms in the lateral fluctu-

ating enstrophy budget in Figure 4.14 (b) cross when t ≈ 21, i.e., at this time, the

increase in horizontal enstrophy is entirely due to the production by baroclinicity

(BC). The BC term continues to be positive and grow after t = 21 while the sum

of all the other terms continues to be negative and a sink. Clearly, the generation

of ω2 via baroclinic torque once 2Ω (t) & −1 helps explain the delayed stabilization

of horizontal enstrophy.

4.6.1 Rapid Rotation Regime

Figure 4.17 shows the streamwise and lateral fluctuating enstrophy budgets

throughout the duration of caseRi1A1 with initial 2Ω0 = −1 . The nondimensional

rotation rate, 2Ω(t), increases by a factor of 7 during the simulation. Relative

to the moderate rotation rate case with initial 2Ω0 = −0.5, the terms in the
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enstrophy budget are smaller in this case by almost an order of magnitude. When

rotation is strong (2 |Ω (t)| � 1) the baroclinic terms are out of phase with the

terms corresponding to stretching by mean strain and coordinate rotation. This

is a consequence of flow in thermal wind (geostrophic and hydrostatic) balance,

which when applied to the momentum equations gives

2Ω0
∂u′1
∂x3

∼ Rib,0
∂ρ′

∂x2

, −2Ω0
∂u′2
∂x3

∼ Rib,0
∂ρ′

∂x1

,

2Ω0 (s′13 + r′13) ∼ Rib,0
∂ρ′

∂x2

, 2Ω0 (s′23 + r′23) ∼ −Rib,0
∂ρ′

∂x1

,

2Ω0ω
′
1s
′
13︸ ︷︷ ︸

A1

+ Ω0ω
′
1ω
′
2︸ ︷︷ ︸

B1

∼ Rib,0ω
′
1

∂ρ′

∂x2︸ ︷︷ ︸
C1

, 2Ω0ω
′
2s
′
23︸ ︷︷ ︸

A2

−Ω0ω
′
1ω
′
2︸ ︷︷ ︸

B2

∼ −Rib,0ω′2
∂ρ′

∂x1︸ ︷︷ ︸
C2

.

When rotation is rapid, the tilting of planetary vorticity terms (A1 and

A2) tend to be small relative to the coordinate system rotation terms (B1 and

B2). The rotation term acts to transfer enstrophy from one horizontal component

to another, but does not generate or destroy enstrophy. Due to balance with the

rotation term in rapidly rotating strongly stratified flow, baroclinic torque also acts

to transfer enstrophy from one horizontal component to the other. In the present

flow, ω′1ω
′
2 tends to be positive because mean strain increases horizontal enstrophy

via vortex stretching, as in term VS MS in equation (4.5). Baroclinicity therefore

should transfer from streamwise to lateral enstrophy as observed here, consistent

with figure 12 of part I with negative rotation rate.

4.7 Quantifying Fluctuations

The dynamics of the stratified cases differ greatly from one another owing

to differences in system rotation. Significant disorder is observed in the vorticity

and scalar (not shown) fields when rotation is moderate and anticyclonic. In

this section, the primary focus will be on quantitative differences between the

stratified high Re cases with an emphasis on metrics that quantify the nature of

turbulence. For the stratified cases, the centerline buoyancy Reynolds number,
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(a) (b)

Figure 4.18: Plot of (a) buoyancy Reynolds number and (b) the ratio of dissipa-
tion of potential energy to dissipation of both kinetic and potential
energies versus time for the stratified cases.

ReB = ε (x2 = 0) /νN2 where ε = 2ν
〈
s′ijs

′
ij

〉
, is plotted in Figure 4.18. The

2Ω0 = −0.1 and 2Ω0 = −0.5 cases are much more dissipative, but the buoyancy

Reynolds number does not exceed unity. The 2Ω0 = −1, 2Ω0 = 0.1 and 2Ω0 = 0

cases have similar magnitudes of ReB with the 2Ω0 = −1 and 2Ω0 = 0.1 cases being

remarkably similar. The low values of ReB in the weak and moderate anticyclonic

cases contrast with evidence presented in the prior sections that the flow in these

cases has a plethora of small scale activity and that nonlinear terms are very

important in enstrophy budgets.

Although values of ReB are quite low, in Figure 4.18 (b) we see that dis-

sipation of potential energy, ερ, is the same order as dissipation of kinetic energy,

ε, for the weak and moderate anticyclonic stratified cases. The high values are

suggestive of high mixing efficiency for these flows, while lower mixing efficiency

is expected for cyclonic and/or rapid rotation. The values for the non-rotating,

stratified case at Re0 = 2400 are greater than the lower Re0 stratified case of

Basak & Sarkar (2006) as well as case Ri1NRe600 with Re0 = 600 simulated here.

Evidently, strongly stratified non-rotating flows can also have strong vertical mix-

ing if the Reynolds number is sufficiently large as hypothesized previously (Riley

& de Bruyn Kops, 2003). We also explored the behavior of Sk, the skewness of
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∂u′1/∂x1, which gives information relating to vortex stretching and energy transfer

between scales. Note that isotropic, unstratified turbulence has Sk ∼ −0.45. For

Ri0A10 and Ri1A10 the skewness is observed to be −0.44 and −0.29, respectively,

at the end of the simulation. Skewness of Ri1N and Ri1A1 are very different tak-

ing the values 0.16 and 0.38, respectively. Therefore it is reasonable to conclude

from the specific metric of skewness of ∂u′1/∂x1 that, at the high stratifications

considered here, the high rotation cases are not turbulent in the sense of three-

dimensional turbulence in a homogenous fluid. The anticyclonic cases with weak

rotation, however, are most likely turbulent in that sense.

The quasi-two-component nature of the fluctuations in the stratified cases

is shown in Figure 4.19 (a)-(b). Vertical turbulent kinetic energy (TKE) is typ-

ically about two orders of magnitude smaller than horizontal TKE. The largest

vertical TKE is observed for the weakly and moderately anticyclonic cases, while

the rapidly rotating anticyclonic case exhibits the least vertical TKE. Other quan-

tities suggestive of turbulence are viscous dissipation and vortex stretching which

are not shown, but give a general trend of strong destabilization initially for the

anticyclonic cases with strong stabilization later in the 2Ω0 = −1 case.

Figure 4.20 shows the streamwise spectra at the end of each simulated

case. As stated in section 2, initial spectra are identical in all cases. In general,

the unstratified cases have the most energy at the smallest scales and the strati-

fied non-rotating, cyclonic and strongly anticyclonic cases contain the least. The

weaker anticyclonic stratified cases have small scale energy at levels between the

unstratified and other stratified cases. Case Ri1A2 shows less energy in the in-

termediate wavenumbers than the more stable cases while still having significant

energy in the smallest scales. This is likely due to the stabilizing effect of rota-

tion on larger scales once t & 13 and active fine scales maintaining energy at the

expense of the intermediate scales.
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(a) (b)

(c)

Figure 4.19: Plots showing integrated components of (a) horizontal and (b) ver-
tical turbulent kinetic energy in addition to (c) density variance.
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(a) (b)

Figure 4.20: Plots of streamwise spectra at the end of each high Re0 simulation.

4.8 Conclusion

Part 1 investigated the three-dimensional instability of a stratified and ro-

tating horizontally oriented shear layer with a hyperbolic tangent velocity profile.

Part 2 is an exploration of the nonlinear evolution of the shear layer for |2Ω| ∼ O (1)

focusing on strongly stratified flow with Rib(t) ≥ 1. The cases have a Reynolds

number based on vorticity thickness, initially at Re0 = 2400, that increases to

approximately Re = 16, 800 at the end of the simulations, and are simulated us-

ing nearly 1 billion grid points. Although, cases with a lower Re0 = 600 are also

simulated, the bulk of the presented results pertain to the higher-Re series.

Visualizations of coherent vortex dynamics demonstrated that the qualita-

tive differences between anticyclonic and cyclonic rotation at weak rotation persist

in cases with strong stratification and also showed the importance of the buoyancy-

induced instability, a modified barotropic mode at zero absolute vorticity, that was

found in Part I. During the initial evolution, the quasi-vertical vortices deform the

fastest in the state with zero absolute vorticity at the centerline, and next fastest

in the 2Ω0 = −0.5 case. This implied that the loss of cyclostrophic balance when

2Ω (t) = −1 is more destabilizing to vortex cores than the initial influence of

the inertial instability. The stratified 2Ω0 = −1 case shows deformation of the

barotropic modes along the x1-x3 plane, consistent with the formation of lateral
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vorticity, ω2, by baroclinic effects when the absolute vorticity is zero. Vorticity

dynamics show secondary KH shear instabilities during the evolution of the iner-

tial instability when 2Ω (t) ≈ −0.5. Also, the zero absolute vorticity instability

possesses a vorticity signature distinct from the inertial instability.

As the 2Ω0 = −0.1 and 2Ω0 = −0.5 cases progressed, a network of braid

vortices formed and remained throughout the duration of both cases, even though

2 |Ω (t)| attained values as large as 2.7. The cyclonic rotation cases with 2Ω0 = 0.1

and 2Ω0 = 0.5 did not show such braid vortices and, instead, exhibited behavior

very similar to the non-rotating case, but with vertical variability suppressed with

increasing cyclonic rotation. The simulations at Re0 = 600 and Rib,0 = 1 exhibit

initial deformation of the vortex cores similar to that at higher Re but, in strong

contrast, do not show development of a network of braid vortices.

The shear layer thickens in the cross-stream direction owing to barotropic

instabilities and turbulence. In the cases without stratification and with anticy-

clonic rotation, the thickening of the shear layer reduces to zero when the mean ab-

solute vorticity approaches zero, consistent with the finding of Métais et al. (1995)

and the arguments of Kloosterziel et al. (2007a). In contrast, the stratified case

continues to thicken beyond the zero absolute vorticity state. The enhanced hori-

zontal stirring by the quasi-2D dynamics in the stratified case combined with the

presence of the zero absolute vorticity instability and associated baroclinic genera-

tion of enstrophy fluctuations allows continued reduction of horizontal mean shear

by turbulent fluctuations.

Fluctuating enstrophy statistics elucidated dynamically distinct features

of the various rotation regimes. Horizontal enstrophy dominated in anticyclonic

cases with weak rotation (2Ω0 = −0.1, −0.5). Generation of horizontal enstrophy

by nonlinear vortex stretching was substantial relative to the other terms in all

cases, generation by vertical vortex stretching was only significant for intermediate

rotation rates (−0.5 & 2Ω (t) & −3). Baroclinic torque changed from a sink to

a source of ω′2 fluctuations immediately after passing through the zero-absolute

vorticity state, as expected from the behavior of linear barotropic modes in part

I. Examination of the balance of terms in the transport equation for ω′2 shows
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the important role of baroclinic production in allowing vorticity fluctuations to

intensify after passing into the inertially stable regime.

The simulations are diagnosed for the state of velocity fluctuations. While

the enstrophy budgets indicate that the flow is turbulent, buoyancy Reynolds num-

bers are very low, never exceeding unity even for the most unstable stratified cases.

Mixing efficiency, inferred from dissipation of TKE and TPE, tends towards values

on the order of 45% in the high Reynolds number, stratified series when rotation

is destabilizing, somewhat smaller values in the case without rotation, and signifi-

cantly lower values for stabilizing rotation. Skewness of velocity derivative is also

suggestive of nonlinearity associated with three-dimensional turbulence in the cases

with moderate anticyclonic rotation. All stratified cases with or without rotation

are in a high-stratification regime in the sense of being quasi-two-component, with

more than 95% of turbulent kinetic energy being horizontal. Lastly, streamwise

spectra show much shallower spectra for the inertially unstable cases, albeit not

nearly as shallow as the unstratified cases.

The contents of Chapter 4 are published in the Journal of Fluid Mechanics.
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Chapter 5

Effects of Three-Dimensionality

on Frontal Stability and

Turbulence

5.1 Introduction

The symmetric instability (SI) is an instability of baroclinic zonal flows

where perturbations contain no longitudinal variation, and are thus two-dimensional.

The stability analysis of Stone (1966) explores a balanced zonal flow of the form

u(z) which is balanced by a temperature field of the form θ(y, z). The symmet-

ric instability dominates when the Richardson number (Ri = N2/S2) between

0.25 and 0.95 for S = ||∂uh/∂x3||, while baroclinic and Kelvin-Helmholtz (K-

H) instabilities dominate at higher and lower Ri, respectively. In a more gen-

eral case, including horizontal shear, instability manifests when potential vorticity

(q = −ρ−1
0 (ωi+fδi3)∂ρ′/∂xi) or PV is of opposite sign of the Coriolis parameter in

stably stratified regions of as noted in Hoskins (1974). These more general flows are

susceptible to inertial/centrifugal and symmetric instabilities which act on absolute

vertical vorticity opposing planetary rotation and vertical shear, respectively. In

general, balanced baroclinic zonal flows have PV given by q = −fS2 + (ω3 + f)N2

(Thomas et al., 2013).
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An exceptionally sharp (1km) front near the beginning of the Kurushio ex-

tension was investigated by D’Asaro et al. (2011). Shipboard measurements, a

Lagrangian float and a towed profiling vehicle allowed for measurements of turbu-

lence intensity (inferred from vertical motions of the float), temperature, salinity,

pressure, and velocity profiles. The front is less than 1km wide and about 20m

deep and contains vertical motion resulting from upper ocean turbulence. Dissi-

pation at the front is estimated to be 10−20 times stronger than outside the front

but surface winds and cooling are too weak to explain the observed turbulence.

The potential vorticity was found to take the opposite sign of f for 0.2 days while

the vessel passed through the front, strongly suggesting symmetric instability as

the relevant mechanism. These results suggest that in some regions of the upper

ocean, lateral density gradients and symmetric instability may be more important

than atmospheric forcing in setting turbulence intensity.

Evolution of a symmetrically unstable density front is examined using lin-

ear stability theory and two-dimensional nonlinear numerical simulations in Taylor

& Ferrari (2009). The a priori assumption of symmetric (no along-front or x1

variation in Figure 5.1) allows for the two-dimensional (x2, x3) approximation of

simulations presented in Taylor & Ferrari (2009). Linear stability analysis demon-

strated that for large |N/f | viscous effects on the slope of symmetric currents is

negligible and that Ri < 0.25 is satisfied locally before the flow is fully nonlinear.

Once the instability reaches finite amplitude, a secondary K-H instability forms.

Following the secondary instability, small-scale turbulence injects positive PV into

the mixed layer from the thermocline and from the upper boundary, resulting in

a rapid equilibration of the flow as the PV approaches zero throughout the mixed

layer.

The analysis of Stone (1966) is greatly expanded to include the parameter

regime where perturbations are not nearly aligned with the spanwise or longitu-

dinal direction in Stone (1970). Growth rates of tilted modes depend only on the

amplitude of tilt and not the direction. Additionally, the strongest growth rates

never occur in the newly explored regime, instead occurring near the baroclinic

(spanwise) or symmetric (longitudinal) axes, depending on Ri.
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The three-dimensional counterpart (k1 6= 0) to symmetric instability is ex-

plored in greater detail in Jones & Thorpe (1992) using non-hydrostatic numerical

simulation. The basic flow is two-dimensional with velocity given by u1(x3) and

ρ(x2, x3) and Ri = 0.4. Linear evolution is explored with respect to three initially-

symmetric perturbation types : a streamfunction perturbation isolated in x2 direc-

tion, a density perturbation isolated in the x2 direction and a density perturbation

isolated in the x2 and x3 directions (parcel perturbation). Initially, the first and

second perturbations types loose symmetry developing a counter-clockwise angle

of horizontal tilt relative to the symmetric axis resulting in decreased 〈u′2u′3〉 slow-

ing perturbation growth. Later, both perturbations rotate in a clockwise manner

reducing tilt and increasing growth. The parcel perturbation leads to tilting only

in the clockwise direction. Analysis showed that off-symmetric modes grow fastest

for large perturbation length scales, while symmetric modes grow fastest for small-

scale disturbances.

Instabilities in a baroclinic zonal flow were explored in Molemaker et al.

(2010) using quasigeostrophic and Boussinesq nonlinear simulations. This study

explores the emergence of a forward energy cascade in a flow with Ro = |S/f | <
1 but not Ro � 1 and Ri = N2/S2 > 1. Turbulence in the Boussinesq case

emerged via the generation of sharp fronts (locally Ri < 1 and Ro > 1) and

subsequent frontal instabilities. Unbalanced motions represent only a small portion

of the total kinetic energy of the flow, yet they are essential in driving energy to

dissipative scales. Results suggest that total energy lost during spin-down of the

flow approaches a constant value for the Boussinesq cases while approaching zero

for quasigeostrophic cases as Re → ∞. The inference is that frontal instabilities

could play an important role in the extraction of energy from largely balanced

flows, even far away from ocean boundaries.

For homogeneous baroclinic flows, it is shown that even though symmetric

modes dominate as t → ∞, there exists the possibility for non-symmetric modes

to be favored over intermediate times when Ri ≤ 1 and Ro = |S/f | ≥ 1 (Mamat-

sashvili et al., 2010). Optimal growth was determined for Ri = 0.3, 0.6 and 0.9 and

Ro = 1, 3 and 10 at over the characteristic time period associated with symmetric
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instability (T = σ−1 ∼ O(f−1)). In the three Ro = 10 cases, the energy gained

by the optimal non-symmetric mode was over ten times greater than the growth

in the symmetric mode. In all simulated cases, the optimal growth occurred when

modes were significantly off-symmetric with −1.84k2 < k1 < −0.48k2.

Direct numerical simulations of a zonal baroclinic flow were explored in Pieri

et al. (2013). Here, Ri and M2/N2 were varied extensively and their effects on

homogeneous turbulence identified. Turbulence grew in the symmetrically unstable

range only when M2/N2 > 0.2. For Ri ∼ 0.1, potential vorticity PDFs are rather

symmetric but asymmetry increases with increasing Ri with asymmetry in favor of

negative potential vorticity. Results were from simulations at a fairly low Reynolds

number with Reλ,0 = 33 and simulations were only performed over short time

intervals (0 < St < 20) such that development of SI was limited.

This study seeks to explore the manifestation of frontal instabilities and ex-

pected secondary instabilities in a fully three-dimensional symmetrically-unstable

vertically-sheared flow. First the dependence on domain size is explored, then

non-modal linear stability analysis is used to explain flow behavior before sec-

ondary shear instabilities. The effect of off-symmetry is explored using simula-

tions of horizontally-tilted structures in both two- and three-dimensional flow.

Lastly, a scaled down version of the front is used to explore the progression from

off-symmetric currents to secondary shear instabilities to turbulence and its ener-

getics.

5.2 Formulation

The dimensional equations for conservation of mass, momentum, and den-

sity for a Boussinesq fluid in a frame of reference rotating about the vertical axis

are given below with dimensional variables denoted by ∗ (centrifugal acceleration

is neglected) :
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Figure 5.1: Schematic showing a stratified vertically-sheared flow in thermal wind
balance. Spatial gradients in velocity and buoyancy are shown along
with their respective time scales.

∂u∗i
∂x∗i

= 0

∂u∗i
∂t∗

+
∂
(
u∗iu

∗
j

)
∂x∗j

+ εi3kf
∗u∗k = − 1

ρ∗0

∂p∗

∂x∗i
+ ν∗

∂2u∗i
∂x∗j∂x

∗
j

− ρ′∗g∗

ρ∗0
δi3

∂ρ∗

∂t∗
+
∂
(
ρ∗u∗j

)
∂x∗j

= κ∗
∂2ρ∗

∂x∗j∂x
∗
j

The density and pressure fields are decomposed in the following manner for

uniform stratification,

ρ∗ (x∗i , t
∗) = ρ∗0 +

∂ρ̄∗

∂x∗2
x∗2 +

∂ρ̄∗

∂x∗3
x∗3 + ρ′

∗
(x∗i , t

∗) ,

p∗ (x∗i , t
∗) = p∗ (x∗2, x

∗
3) + p′

∗
(x∗i , t

∗) ,

where ρ∗ represents the background stratification and p∗ is in hydrostatic

and geostrophic balance with the initial density profile (ρ∗0 + ρ∗) and initial mean

velocity profile. The initial mean velocity corresponds to uniform vertical shear of

the form
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f ∗
∂ū∗1
∂x∗3

=
g∗

ρ∗0

∂ρ̄∗

∂x∗2
.

The mean vertical shear is allowed to evolve with time as dictated by the

conservation equations. Additionally we introduce variables M∗2 = −g∗/ρ∗0 ×
∂ρ̄∗/∂x∗2 and N∗2 = −g∗/ρ∗0 × ∂ρ̄∗/∂x∗3. This implies that ∂ū∗1/∂x

∗
3 = −M∗2/f ∗.

Note that M∗2 < 0 in the present problem. The physical problem of interest is

illustrated in Figure 5.1. The non dimensional variables for this problem are given

as

t = |M∗| t∗, xi =
xi
∗

L∗3
, ui =

ui
∗

|M∗|L∗3
, ρ′ =

−ρ′∗

L∗3 (∂ρ∗/∂x∗2)
, p′ =

p′∗

ρ∗0 |M∗2|L∗23

.

The following non-dimensional equations for mass conservation, momentum

conservation and density perturbation evolution are obtained along with relevant

non-dimensional parameters

∂ui
∂xi

= 0,

∂ui
∂t

+
∂ (uiuj)

∂xj
+ εi3kfuk = − ∂p

′

∂xi
+ Ekf

∂2ui
∂xj∂xj

− ρ′δi3,

∂ρ′

∂t
+
∂ (ρ′uj)

∂xj
+ u2 − βu3 =

Ekf

Pr

∂2ρ′

∂xj∂xj
,

Ek =
ν∗

f ∗L∗23

, f =
f ∗

|M∗|
, β =

N∗2

|M∗2|
, P r =

ν∗

κ∗
.

Based on these non-dimensional parameters the Richardson number for the

base flow is given by Ri = f 2β. Homogeneous Neumann boundary conditions are

used for u1, u2, and ρ′ implying free-slip and no mass flux conditions at vertical

boundaries. Homogeneous Dirichlet boundary conditions are used for u3 at vertical

boundaries implying no through-flow. Periodicity is enforced in the horizontal

directions for all variables.
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Table 5.1: Simulation parameters and case names. Li and Ni represent the length
of domain and number of computational points, respectively, in each
direction. Multiple grids are used in simulating the bottom four cases.
In all cases L3 = 1.

case Ek θ f β L1 L2 N1 N2 N3

L1 4 10−4 0◦ 0.152 21.4 4 8 64 256 128
L1 8 10−4 0◦ 0.152 21.4 8 8 128 256 128
L1 16 10−4 0◦ 0.152 21.4 16 8 256 256 128
L1 32 10−4 0◦ 0.152 21.4 32 8 512 256 128
L1 64 10−4 0◦ 0.152 21.4 64 8 1024 256 128
2D0 10−4 0◦ 0.152 21.4 ∞ 8 1 1024 128
2D-5 10−4 −5◦ 0.152 21.4 ∞ 8 1 1024 128
2D-10 10−4 −10◦ 0.152 21.4 ∞ 8 1 1024 128
3D0 2× 10−4 0◦ 0.152 21.4 8 8 256-1024 256-1024 128
3D-5 2× 10−4 −5◦ 0.152 21.4 8 8 256-1024 256-1024 128
3D-10 2× 10−4 −10◦ 0.152 21.4 8 8 256-1024 256-1024 128
Turb-10 2× 10−4 −10◦ 0.25 8 4 4 256-1024 256-1024 256

5.3 Effect of Domain Size

This study begins by performing three-dimensional simulations in the pa-

rameter regime of the two-dimensional simulations of Taylor & Ferrari (2009). Ini-

tial conditions contain three-dimensional fluctuations in addition to the uniform

shear and buoyancy gradient. The numerical algorithm uses either second-order

central differencing or sixth-order compact differencing on a grid that is staggered

in the x2 and x3 directions. A fourth-order (second-order for Turb-10) paral-

lelized multigrid Poisson solver is used to solve for non-hydrostatic pressure every

Runge-Kutta substep. The Navier-Stokes and density equations evolve using a

third-order Runge-Kutta time-marching scheme. Parallelization is accomplished

using MPI. Case specific computational details are shown in Table 5.1. Two di-

mensional simulations use a kinetic energy spectrum of E ∝ k8 exp (−4k2/k2
0),

while the three-dimensional cases include only those modes where 10k2
h ≤ k2

3 using

a spectrum of the form E ∝ k4 exp (−2k2/k2
0). The restriction is introduced to

prevent energy from going into large k1 modes which are quickly dissipated in the

three-dimensional cases.
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Due to the fact that dependence on along-front domain length (L1) is not

known a priori, a range of horizontal aspect rations (0.5 ≤ L1/L2 ≤ 8) were used.

In all simulations varying L1, vertical vorticity quickly organized into structures

primarily aligned along the horizontal axis tilted 45◦ off-symmetric in the clockwise

direction. As time progressed, vertical vorticity gradually reduced its degree of off-

symmetry and increased in horizontal scale as seen in Figure 5.2. In all L1 cases

but L1 64 the flow rapidly two-dimensionalized before the development of strong

nonlinearity. The time of two-dimensionalization increases with increasing L1,

until case L1 64 which develops strong nonlinearities before the flow can reach a

symmetric state.

The misalignment of ω1 structures (off-symmetric instability currents) with

respect to isopycnals throughout the simulation is seen in Figure 5.3. The misalign-

ment becomes less dramatic at later time as the flow becomes more nonlinear and

the vortical structure aligns more with the symmetric axis. The reason large L1 is

needed to capture near-symmetry is due to the periodic boundary conditions in the

x1 direction and the large horizontal scale (kh) of the instability modes. For struc-

tures with a lateral width of δ, periodicity implies that the smallest off-symmetric

angle possible is θ ∼ tan−1(δ/L1) implying that nearly symmetric modes require

L1 � δ. When L1 is not sufficiently large, then energy rapidly transfers from the

θ ∼ tan−1(δ/L1) currents to symmetric (θ = 0) currents rather than θ continuing

to decrease gradually. The rest of this study seeks to further explain the emer-

gence of nearly-symmetric flow and explore its subsequent evolution. In the 3D-5

and 3D-10 cases, the domain is rotated about the vertical axis to reduce the L1

required to capture currents with a small degree of off-symmetry.

5.4 Non-Modal Linear Stability Analysis

Linear stability analysis of the baroclinic flow may lead to insights regarding

the behavior of the coherent structures, specifically the decrease in off-symmetry

with time and lack of emergence of symmetric modes. Mamatsashvili et al. (2010)

explored the early transients (t ∼ f−1), but we are more interested in longer
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(a) (b)

Figure 5.2: Contours of vertical vorticity (ω3) from case L1 64 when (a) t =
2.17f−1 and (b) t = 7.09f−1. The cases with smaller L1 two-
dimensionalize (i.e. energy contained primarily in k1 = 0 modes)
well before t ∼ 7f−1.

(a) (b)

Figure 5.3: Contours of along-front vorticity (ω1) and isopycnals from case L1 64
when (a) t = 2.17f−1 and (b) t = 7.09f−1. The cases with L1 smaller
than 64 display far better alignment between ω1 and isopycnals when
t ∼ 7f−1.
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evolution times since secondary instability occurs when t� f−1 in this flow. The

base state corresponding to a balanced uniform front is given by

〈u1〉 = Sx3 = −M
2

f
x3 〈ρ〉 = ρ0 +∇2(〈ρ〉)x2 +∇3(〈ρ〉)x3

Assuming modes of the form φ(t) exp(ikjxj), one finds that dk3/dt = M2k1/f

as a direct consequence of flow homogeneity. Rotating the domain about the ver-

tical axis such that tan θ = −k1/k2 allows for new coordinates such that k̃1 = 0

and k̃2 = kh. Under this transformation the symmetric instability corresponds to

θ = 0, allowing exploration of the effect of off-symmetry by varying θ. The follow-

ing linear inviscid governing equations describe motion in the rotated coordinate

system.

du′1
dt

= fu′2 + cos θ
M2

f
u′3

du′2
dt

= −fu′1 − sin θ
M2

f
u′3 − ikhp′/ρ0

du′3
dt

= −ik3p
′/ρ0 − gρ′/ρ0

dρ′

dt
= − sin θ

∂ 〈ρ〉
∂x2

u′1 − cos θ
∂ 〈ρ〉
∂x2

u′2 −
∂ 〈ρ〉
∂x3

u′3

0 = ikhu
′
2 + ik3u

′
3

From continuity, the pressure and vertical velocity variables can be ex-

pressed as functions of the other variables. Normalizing all wavenumber com-

ponents by dividing by k and letting b′ = −gρ′/ρ0 gives the following evolution

equation of the form dφ′i/dt = Aijφ
′
j for perturbations

d

dt


u′1

u′2

b′

 =


0 (f − cos θM2kh/(fk3)) 0

−fk2
3 sin θkhk3M

2/f −khk3

− sin θM2 N2kh/k3 − cos θM2 0



u′1

u′2

b′


The sin terms above grow in influence as the modes become more off-

symmetric. Taking θ = 0, or for purely symmetric instability we obtain a charac-

teristic equation of the form
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σ2/k2
3 = M4/N2 − f 2 −N2

(
k2/k3 −M2/N2

)
,

agreeing with the relation given in Taylor & Ferrari (2009) for geophysical

modes (k3 ≈ 1). The time evolution of the normalized wavenumber components

and are given by

dk2
3/dt = −dk2

h/dt = 2M2 sin θk3
hk3/f. (5.1)

This implies that frontal strength, degree of off-symmetry, and initial align-

ment of the wavenumber vector affect how rapidly shear modifies k3. The non-

modal stability problem is solved through introduction of

Eij(t) =
√
δij + δi2δ2jk2

hk
−2
3 (t), D(t) =

(
dE(t)

dt
+E(t)A(t)

)
E−1(t)

and Φ(T ) = exp

(∫ T

0

D(t)dt

)
.

Perturbation energy is given by ‖D(t)φ(t)‖2 and perturbation energy growth

over period T is given by the square of the maximum real eigenvalue of Φ(T ). Fig-

ure 5.4 shows the eigenvalues of Φ(T ) normalized by f (for SI at Ri = 0.5 one

finds σ = f). As time increases, a trend of gradually decreasing off-symmetry is

observed, agreeing with the results of section 5.3. There are several important

subtleties which affect flow evolution. Even for small positive θ (the right half of

the circles not shown in 5.4) the stabilization of near-symmetric modes is dramatic,

with dk3/dt ∝ sin θ implying a change of sign at the symmetric axis. The modes,

initially with k3 < 0, become more vertical as time increases when θ > 0 and

dk3/dt > 0, implying stabilization of the currents by background stratification. It

is not surprising that it is difficult to generate purely symmetric modes in the limit

of L1/L2 � 1 (e.g. the L1 64 simulation) given that the symmetric axis is very

nearly the stability boundary for t ∼ f−1.
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Figure 5.4: Plots showing the maximum real eigenvalues (normalized by f).
Growth rates are shown over various periods given by T = f−1, 2f−1,
4f−1 and 8f−1 from left to right, respectively.

As f is decreased while preserving Ri the stability diagrams do not change

appreciably other than an increase in horizontal thickness due to change in β.

Reducing Ri to 0.3 results in modes which are less off-symmetric, but the general

trend in Figure 5.4 is still found. Three-dimensional fluctuations grow at near

or greater than the symmetric growth rate throughout the range of time scales

associated with development of SI without the strict requirement of k1 = 0. It is

because of the tendency for currents to become more aligned with the symmetric

axis as time increases that we shift our attention to understanding the development

of secondary shear instabilities in symmetric and nearly-symmetric flows.

5.5 Effect of Off-Symmetry

5.5.1 Two-Dimensional Simulations

To explore the more basic effects of off-symmetry, several two-dimensional

simulations were performed. The first simulation mimicked that of Taylor & Ferrari

(2009) with identical f , β and Ek. The other two simulations are identical except

that the computational domain is rotated clockwise about the vertical axis by

5◦ in case 2D-5 and 10◦ in case 2D-10 (i.e. θ = −5◦ and θ = −10◦). This is

similar to the rotation of the linear modes in the previous section. In the linear
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stability analysis, solutions were constant along planes of the form kixi = C and

therefore one-dimensional varying only in the direction of k. These nonlinear two-

dimensional simulations allow for fluctuations that are constant along horizontal

lines of the form k1x1 + k2x2 = C where tan θ = k1/k2.

The non-modal stability analysis of section 5.4 and simulation L1 64 il-

lustrate the tendency for large-scale currents to nearly align with the symmetric

axis when t � f−1. Based on the observation that case L1 64 goes strongly non-

linear when θ ∼ −5◦, one can compare the two-dimensional symmetric instability

growth of perturbations to that of the off-symmetric growth observed in L1 64 and

the tilted two dimensional simulation with θ ∼ −5◦. Figure 5.5 shows growth of

fluctuations in case L1 64 agreeing better with the off-symmetric two-dimensional

simulation than the symmetric simulations after the initial flow adjustment. The

reduction in growth is primarily due to vertical shearing of the off-symmetric in-

stability because the growth rate associated with infinitesimal time (maximal real

eigenvalue of A from section 5.4) only reduces to 99.3% of the symmetric value.

The initial decay of fluctuations in the two dimensional simulations is not observed

in three-dimensional cases owing to the fact that the three-dimensional instabili-

ties of Mamatsashvili et al. (2010) associated with growth over T ∼ f−1 (similarly

demonstrated in Figure 5.4) cannot manifest in the two dimensional nearly sym-

metric cases.

Snapshots of isopyncals and plane-normal vorticity are displayed from the

symmetric and θ = −10◦ cases in Figure 5.6 as the flow becomes nonlinear. The

primary distinctions between θ = 0 and θ = −10◦ are due to the linear prediction of

equation 5.1. Vertical shearing in the off-symmetric case (〈ωn〉 = sin θ/f = −1.14)

continually reduces the vertical inclination of currents resulting in currents which

are shallower than isopycnals. The increase of |k3| by vertical shearing suggests

the vertical scale in the off-symmetric cases should be lower than the symmetric

case, but this is not observed because of viscous effects. The viscous growth rate

for SI is given by
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Figure 5.5: Evolution of across-front fluctuations in two-dimensional simulations
with varying tilt and a three dimensional simulation (L1 64) with no
tilt and a large along-front domain length.

σ/f ∼
√
Ri−1 − 1− νk2

3/f =
√
Ri−1 − 1− 4π2Ek δ2

This implies that growth rates should rapidly drop off (for instance, decrease

by more than 25%) when the vertical scale is δ . 1/8 for Ri = 0.5 and Ek = 10−4.

The continual shearing due to non-zero 〈ωn〉 leads to merging of currents and

misalignment with respect to isopyncals, but shearing does not reduce the vertical

scale of currents due to currents forming at a scale already marginally influenced

by viscosity.

The turbulent kinetic energy (TKE) budgets are shown for cases 2D0 and

2D-10 in Figure 5.7 (a) and (b), respectively. The terms contain in the budgets are

shear production P = −
〈
u′iu
′
j

〉
∂ 〈ui〉 /∂xj, buoyancy flux B = −〈u′3ρ′〉 and viscous

dissipation ε = 2Ek
〈
s′ijs

′
ij

〉
. It takes considerably longer to develop off-symmetric

currents, as anticipated from the linear stability analysis for t → ∞. Buoyancy

flux plays a dramatically different role in the two cases, only contributing as a sink

after the symmetric case breaks down and being a significant energy source for the

off-symmetric case.
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(a) (b)

Figure 5.6: Contours of plane-normal vorticity from two dimensional simulations.
(a) θ = 0◦ and t = 6.84f−1 and (b) θ = −10◦ and t = 13.4f−1.
Isopycnals are also shown by thin solid curves.

(a) (b)

Figure 5.7: Volume integrated turbulent kinetic energy budgets from two-
dimensional simulations with (a) θ = 0◦ and (b) θ = −10◦.
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5.5.2 Three-Dimensional Simulations

In cases 3D0, 3D-5 and 3D-10 the spatial extent in the x1 direction is

set to 8 allowing for increased spatial resolution relative to the L1 64 case at

comparable computational cost. This reduced domain size allows for increased

resolution of the secondary K-H instability as first explored in two-dimensional

simulations of Taylor & Ferrari (2009). In two-dimensional frontal simulations

K-H rollers are forced to align with the x′1 direction unlike our three-dimensional

simulations. Figure 5.8 shows λ2 isocontours (Jeong & Hussain, 1995) capturing

coherent vortical structures emerging as a result of secondary K-H instability with

orientation substantially tilted with respect to the x′1 axis. The emergence of the K-

H rollers is most rapid in the symmetric cases while the wavelength associated with

instability decreases as off-symmetry increases. The faster growth rates associated

with SI are responsible for the more rapid attainment of Ri < 0.25 in localized

regions of the flow.

It appears counter-intuitive that positive ωn vortex sheets would roll up

before the stronger negative ones since K-H growth rates for mixing layers are

proportional to shear strength. It will be shown in the section 5.6.2 that this

preference is due to the these regions being unstable to gravitational instability.

The alignment of coherent secondary K-H rollers is explained by the fol-

lowing analysis. For symmetric instability (kh/k3 = β−1 and θ = 0) the modal

stability problem simplifies to an eigenvalue problem of the form λmaxφ = Aφ

with b′ = 0. Solving for the corresponding eigenvector gives


u′1

u′2

u′3

 =


√

(Ri−1 − 1)(1 + β−2)

−1

β−1

 exp
(
iβ−1k3x2 + ik3x3 + k3

√
Ri−1 − 1ft

)
,

which predicts that SI currents will flow at a horizontal angle significantly

tilted with respect to the across-front direction. In the case of Ri = 0.5 and

β−2 � 1 an angle of 45◦ is predicted. Cases 3D0, 3D-5 and 3D-10 were not able

to resolve the intense non-linearity observed after breakdown of the secondary
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(a)

Figure 5.8: Isosurface of λ2 during development of secondary instability for (a)
case 3D0 when t = 9.08f−1 and (b) case 3D-10 when t = 7.93f−1.

instability. Section 5.6.2 will explore the transition to turbulence of a similar

(Ri = 0.5) front on case Turb-10.

5.6 Frontal Turbulence

Computational exploration of turbulence in a strong submesoscale front

using direct numerical simulation is challenging owing largely to the wide range

of time scales (S∗ ∼ N∗ � M∗ � f ∗) influencing flow evolution. By increasing

f ∗/|M∗| from 0.152 to 0.25 and decreasing β = N∗2/|M∗2| from 21.4 to 8 in case

Turb-10 we are able to reduce S/f by a factor of almost three without significantly

violating the separation of time scales assumption. Increasing grid resolution by
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Figure 5.9: Vertical snapshots of density variation ρ − ρ0 = ρ′ + x2 − βx3 when
t = 9f−1 (left) and t = 9.23f−1 (right). Showing density fluctuations
immediately preceding and during secondary instability.

a factor of two helps fully resolve the shear-convective instabilities which will be

discussed in this section. In order to reduce computational complexity the size of

the domain in each of the horizontal directions is reduced by a factor of two to

focus on turbulence rather than the evolution of the currents.

5.6.1 Qualitative Features

The two major features of off-SI not observed in SI are the misalignment of

currents and isopycnals and the fact that buoyancy flux is a significant source of

fluctuating kinetic energy. These two features are related in the sense that vertical

shear drives misalignment which then drives motion across isopycnals leading to a

density variation very similar to that seen in the Turb-10 case in Figure 5.9. Unsta-

bly stratified regions appear throughout the domain as a result of these slantwise

currents. Eventually the shear and density anomaly grow strong enough to lead to

secondary instability. The vorticity signature associated with the development of

secondary instability is shown in Figure 5.10. At this time the two-dimensional as-

sumption appears very reasonable with ωn in the x1−x3 plane showing next to no

dependence on x1. The regions of the density field being strongly stirred in Figure

5.9 coincide with vortex sheets with positive vorticity in Figure 5.10. After this

point (i.e. ft > 9), the flow in the x1−x3 plane develops weak variability in the x1

direction as normal vorticity fluctuations grow due to secondary shear-convective

instability.



123

Figure 5.10: A vertical plane of ω1 at x1 = 2 (left) and a vertical plane of ω2

at x2 = 2 (right) showing horizontal vorticity during secondary
instability at t = 9.15f−1.

Eventually, the normal vorticity in the x1−x3 plane grows strong enough to

itself breakdown, quickly destabilizing the vertical vorticity field. Figure 5.11 shows

the development of tertiary shear instability once normal vorticity fluctuations in

the x1−x3 plane are strong enough to meander and extract energy from the vertical

shear. Prior to this point (ft = 10.7) mean vorticity was strong relative to vorticity

fluctuations such that the effect of shear was primarily the stabilization of vorticity

fluctuations in the x1 − x3 plane. The secondary shear-convective instability is

required to rapidly increase vorticity fluctuations in the x1 − x3 plane because

near-SI currents do not effectively augment ω2 fluctuations. The flow rapidly

three-dimensionalizes once the shearing plane destabilizes after the manifestation

of the tertiary instability. Figure 5.12 shows ω1 and ω2 vorticity fluctuations as

the domain rapidly fills with turbulence. By the end of the simulation, nearly the

whole computational domain appears turbulent.

5.6.2 Quantitative Analysis

The vorticity dynamics suggest a three-step process drives the transition

from linear perturbations to turbulence. First, the off-SI currents grow in a manner

consistent with the linear stability analysis. These modes correspond to vortex

sheets which are not aligned with isopycnals and contain primarily ω1 and to a

lesser extent ω2 with no x1 dependence. Next, these vortex sheets roll up rapidly

in the x2 − x3 plane, increasing ω2
2 until it is comparable to ω2

1. This is due to the
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Figure 5.11: A vertical plane of ω2 at x2 = 2 (bottom) and a horizontal plane
of ω3 at x3 = 0.5 (top) when t = 10.7f−1. Snapshots of hori-
zontal and vertical vorticity are shown when flow begins to three-
dimensionalize.

Figure 5.12: A vertical plane of ω1 at x1 = 2 (left) and a vertical plane of ω2 with
x2 = 2 (right) at t = 11.6f−1. Snapshots of horizontal vorticity are
taken when strong turbulence fills most of the domain.
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orientation of coherent vortices during secondary instability as shown in Figure

5.8. The secondary instability results in the generation of some vertical vorticity

fluctuations, but not until the destabilization of the strongly sheared plane can the

flow be called fully three-dimensional. This picture is reinforced quantitatively by

Figure 5.13 which shows the evolution of volume-averaged vorticity fluctuations

broken down by component. From this plot several regions of fundamental change

exist. When ft ∼ 9, the rate of change of ω2
2 and ω2

3 rapidly increases. Next, when

ft ∼ 11 the rate of change of ω2
1 and ω2

3 rapidly increases. Lastly, when ft ∼ 11.2

enstrophy shows a sudden decrease followed by a time of linear enstrophy growth

as the domain fills with turbulence. This reinforces the notion of three discrete

transitional events in the flow.

The bulk energetics of the flow are given via turbulent kinetic and potential

energy budgets in Figure 5.14. The turbulent kinetic energy budget shows discrete

events at tf ∼ 9 when shear production (P ) switches on as a source, tf ∼ 11

when buoyancy flux (B) switches becomes a sink, and tf = 11.2 when dissipation

suddenly jumps. All three are consistent with the observed vorticity dynamics

with P switching on due to secondary K-H instability, B switching off due to

the development of three-dimensionality and dissipation peaking when the three-

dimensional flow breaks down into turbulence. The turbulent potential energy

budget shows the rate of extraction of energy from potential energy in the front

(〈ρ′u′2〉), the negative buoyancy flux (−β 〈ρ′u′3〉) and potential energy dissipation

(ερ). Here 〈ρ′u′2〉 shows a drop following secondary instability and dissipation shows

a dramatic ramp-up after the tertiary instability and increases further once the flow

is turbulent. Mixing efficiency can be approximated by the ratio of time-integrated

ερ to time-integrated 〈ρ′u′2〉. The turbulent potential energy budget suggests very

high mixing efficiency under this definition and it appears that very efficient mixing

would continue in the turbulent regime. Comparing the magnitudes of ερ and ε+ερ

also suggests a high mixing efficiency, taking values of roughly 75% in the turbulent

regime.
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Figure 5.13: Evolution of volume averaged fluctuating enstrophy components
showing the development of near-SI followed by secondary insta-
bilities and finally three-dimensional turbulence.

Figure 5.14: Terms from the volume integrated turbulent kinetic energy (left)
and turbulent potential energy (right) budgets throughout the du-
ration of case Turb-10.
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5.7 Conclusion

This study explores the development of instability and turbulence in a sym-

metrically unstable variant of Eady’s model with Ri = 0.5. The novelty of the

approach is the simulation of fully three-dimensional turbulent transition in a flow

unstable to symmetric instability. Linear stability is also performed to under-

stand and interpret three-dimensional effects which are manifested not only in

transition to turbulence but also during the initial evolution of small-amplitude,

three-dimensional disturbances.

The initial vertical vorticity fluctuations organize into structures that are

inclined at approximately −45◦ in the x1−x2 plane and instability currents that are

misaligned with respect to the isopycnals. This behavior for ft = O(1) is consistent

with the results of Mamatsashvili et al. (2010). As time advances, the horizontal

scale of the flow continually increases, especially in the along-front direction, and

the flow tends towards two-dimensionality. However, for sufficiently large horizon-

tal domains, nonlinearity emerges for currents that, although near-symmetric (the

angle θ with the along-front direction is roughly 5◦ in the largest domain case)

are not exactly symmetric. In other words, it is the off-symmetric instability that

evolves nonlinearly rather than the pure symmetric (k1 = 0) instability.

Non-model linear stability analysis showed a tendency for flow to nearly

align with the symmetric axis once ft � 1. The vertical scale of observed off-

symmetric modes decreases with time resulting in misalignment of off-symmetric

currents and isopycnals. The net effect of strong vertical shear is to make |k3| �
|k2| � |k1| when ft� 1. The analysis shows that vertical shear stabilizes nearly-

symmetric modes tilted in the direction opposite to that observed in the simu-

lations which explains why these oppositely-tilted modes do not amplify in the

simulations. For these modes, the characteristic slope k2/k3 increases in magni-

tude with time leading to currents that are steeper than the isopycnals resulting

in rapid suppression. It is because of these issues that the analysis of purely sym-

metric instability through two-dimensional simulations may not be appropriate for

strongly-sheared fronts.

Computational domains are rotated about the vertical axis to capture near-



128

symmetric currents in both the linear stability analysis and numerical simulations.

A two-dimensional simulation rotated to be nearly aligned with off-symmetric cur-

rents found in the DNS displayed perturbation growth rates similar to those seen

in a three-dimensional simulation with similarly-oriented currents. Misalignment

of off-symmetric currents and isopycnals allow currents to be strengthened by both

the reservoir of kinetic energy in the vertical shear and the reservoir of potential

energy in the density front, simultaneously. The secondary shear instability is mis-

aligned with the symmetric axis, implying that two dimensional simulations are

unable to accurately capture secondary shear instabilities in both symmetric and

off-symmetric currents.

Finally, the forward cascade from balanced vertical shear to turbulence

is demonstrated using a high resolution simulation. The evolution from quiescent

flow to nearly two-dimensional off-symmetric currents followed by secondary shear-

convective instability is presented. Another important transitional event occurs

later when vorticity fluctuations in the vertical shearing plane grow large enough

for nonlinearity to overcome the stabilizing effect of stratified shear when Ri = 0.5

enhancing extraction of kinetic energy from the shear. This transition leads to fully

three-dimensional vortical flow which rapidly becomes more multiscale until three-

dimensional well-developed shear-driven turbulence emerges. Mixing is strong and

increases by a factor of three after the destabilization of the shearing plane.

The contents of this chapter are in the process of being submitted for pub-

lication in the Journal of Fluid Mechanics. The dissertation author is the primary

researcher and the research supervisor is the co-author of the paper. The authors

are grateful for computational resources through a research allocation through the

Extreme Science and Engineering Discovery Environment (XSEDE).



Chapter 6

Summary

Two idealized rotating and stratified flows are explored using linear stabil-

ity analysis and three-dimensional direct numerical simulations. The first problem

is a barotropic mean flow containing horizontally-oriented shear flow in the form

of a mixing layer. The second problem concerns a uniform baroclinic mean flow

in the form of a homogeneous density front in thermal wind balance with uniform

vertical shear. Both flows are studied in the regime of submesoscale shear flows,

with appropriate Richardson and Rossby numbers. This regime contains flows

with lateral length scales of roughly 1 to 20 kilometers. The horizontal shear flow

results in simultaneous inertial and barotropic instabilities provided the mixing

layer vorticity is opposite in sign and substantially greater in magnitude than the

Coriolis parameter. When the vorticity of the mixing layer is opposite in sign and

similar in magnitude to the Coriolis parameter the barotropic instability is fun-

damentally altered. The vertical wavenumber associated with this new instability

increases by an order of magnitude which destabilizes barotropic vortices leading to

increased turbulence intensity. The presence of strong vortical fluctuations persists

well outside of the inertially unstable regime is a novel result.

Symmetric instability (fluctuations have no along-front variation and are

aligned with isopycnals) has been identified in the literature as a potential route to

turbulence at fronts as an alternative to wind-driven boundary layer mixing. Linear

analysis and simulations of a uniform baroclinic flow in initial geostrophic balance

performed here suggest that the instability responsible for initiating transition to
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turbulence should be near-symmetric and not exactly symmetric as predicted for

asymptotically large time scales. Owing to near-symmetry, the instability fun-

damentally differs from the purely symmetric instability due to currents crossing

surfaces of constant density and tapping the reservoir of potential energy available

in the front. The presence of strong vertical shear only intensifies this effect as

time increases. A highly-resolved turbulent simulation demonstrates a pathway

to turbulence from quiescent flow via near-symmetric currents which succumb to

shear-convective instabilities which in turn act to destabilize vorticity fluctuations

aligned with the mean vorticity in the base flow. Once these fluctuations are suffi-

ciently strong enough, the flow three-dimensionalizes and rapidly breaks down into

turbulence throughout the domain.

In the future, a study investigating the development of turbulence from a

flow containing both vertical and horizontal shear could help answer the funda-

mental question of how energy cascades to turbulence in largely balanced flows

containing reservoirs of fluid with differing momentum and density. This case

would complete the forward cascade proposed by Molemaker et al. (2010) where

the largely balanced ocean interior drives local frontogenesis with strong horiztonal

shear leading to efficient energy extraction by the instability mechanisms discussed

throughout this thesis.



Appendix A

Modal Linear Stability Analysis

Derivation

This section complements the material in chapter 3 giving details about

the linear stability analysis performed in that chapter and corresponding journal

publication. The rotating Boussinesq equations of motion are stated here for 〈ρ〉 =

ρ0 + d〈ρ〉
dx3

x3 where d〈ρ〉
dx3

is constant.

Dui
Dt

+ εi3kfuk =
−1

ρ0

∂p

∂xi
− ρ′g

ρ0

δi3 + ν
∂2ui
∂xj∂xj

Dρ′

Dt
+ u3

d 〈ρ〉
dx3

= κ
∂2ρ′

∂xj∂xj

∂ui
∂xi

= 0

Letting b = −ρ
′∗gδω
∆U2 and using the non-dimensional parameters Re = ∆Uδω,0

ν
,

Pr = ν
κ
, Rib,0 = − g

ρ0

d〈ρ〉
dx3

δ2ω
∆U2 , and Ro = ∆U

fδω
one finds the following dimensionless

equations

Dui
Dt

+ εi3k
uk
Ro

= − ∂p

∂xi
+ bδi3 +

1

Re

∂2ui
∂x2

j

Db

Dt
+Ribu3 =

1

RePr

∂2b

∂x2
j

∂ui
∂xi

= 0
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Next the flow variables are decomposed into base and perturbation compo-

nents as follows

φ (x1, x2, x3, t) = φ̄ (x2) + φ′ (x1, x2, x3, t)

The base states we wish to investigate are those where f and N are constant

and

ū1 (x2) =
1

2
tanh

(
2x2

δω

)
ū2 (x2) = 0 ū3 (x2) = 0

∂p̄

∂xi
= εi3k

ūk
Ro
− b̄δi3 (hydrostatic and geostrophic balance)

Substituting into the governing equations and removing terms that are

quadratic one obtains

∂u′1
∂t

+ ū1
∂u′1
∂x1

+ u′2
d 〈u1〉
dx2

− u′2
Ro

= − ∂p
′

∂x1

+
1

Re

(
∂2u′1
∂x2

1

+
∂2u′1
∂x2

2

+
∂2u′1
∂x2

3

)
∂u′2
∂t

+ ū1
∂u′2
∂x1

+
u′1
Ro

= − ∂p
′

∂x2

+
1

Re

(
∂2u′2
∂x2

1

+
∂2u′2
∂x2

2

+
∂2u′2
∂x2

3

)
∂u′3
∂t

+ ū1
∂u′3
∂x1

= − ∂p
′

∂x3

+ b′ +
1

Re

(
∂2u′3
∂x2

1

+
∂2u′3
∂x2

2

+
∂2u′3
∂x2

3

)
∂u′1
∂x1

+
∂u′2
∂x1

+
∂u′3
∂x3

= 0

∂b′

∂t
+ ū1

∂b′

∂x1

+Ribu
′
3 =

1

Re

(
∂2b′

∂x2
1

+
∂2b′

∂x2
2

+
∂2b′

∂x2
3

)
Infinitesimal perturbations of the form φ′ (x2) exp (ik1x1 + ik3x3 + σt) are

considered. Substituting and simplifying gives
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(σ + ik1ū1)u′1 + u′2
dū1

dx2

− u′2
Ro

= −ik1p
′ +

1

Re

(
−
(
k2

1 + k2
3

)
+

d2

dx2
2

)
u′1

(σ + ik1ū1)u′2 +
u′1
Ro

= − dp
′

dx2

+
1

Re

(
−
(
k2

1 + k2
3

)
+

d2

dx2
2

)
u′2

(σ + ik1ū1)u′3 = −ik3p
′ + b′ +

1

Re

(
−
(
k2

1 + k2
3

)
+

d2

dx2
2

)
u′3

ik1u
′
1 +

du′2
dx2

+ ik3u
′
3 = 0

(σ + ik1ū1) b′ +Ribu
′
3 =

1

Re0Pr

(
−
(
k2

1 + k2
3

)
+

d2

dx2
2

)
b′

Taking ∂
∂x3

of the buoyancy equation and substituting continuity we find

[ik3b
′]σ = Ribik1u

′
1 +Rib

d

dx2

u′2 +

[
k1k3ū1 +

ik3

RePr

(
−
(
k2

1 + k2
3

)
+

d2

dx2
2

)]
b′

(A.1)

Subtracting ∂
∂x2

of the x1 momentum equation from ∂
∂x1

of the x2 momentum

equation drops out the pressure gradient term and gives

(
− d

dx2

u′1 + ik1u
′
2

)
σ =

[
ik1

(
dū1

dx2

+ ū1
d

dx2

− 1

Ro

)
+

(k2
1 + k2

3)

Re

d

dx2

− 1

Re

d3

dx3
2

]
u′1

+

[
dū1

dx2

d

dx2

+
d2ū1

dx2
2

− 1

Ro

d

dx2

− ik1 (k2
1 + k2

3)

Re
+
ik1

Re

d2

dx2
2

]
u′2

(A.2)

Taking ∂
∂x1

of the x1-momentum equation and adding it to ∂
∂x3

of the x3-

momentum equation gives

ik1 (σ + ik1ū1)u′1 + ik3 (σ + ik1ū1)u′3 + ik1u
′
2

dū1

dx2

− ik1
u′2
Ro
− ik3b

′

− 1

Re

(
−
(
k2

1 + k2
3

)
+

d2

dx2
2

)
[ik1u

′
1 + ik3u

′
3] =

(
k2

1 + k2
3

)
p′
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By continuity one finds

−σd
2u′2
dx2

2

− ik1
dū1

dx2

du′2
dx2

− ik1ū1
d2u′2
dx2

2

+ ik1
du′2
dx2

dū1

dx2

+ik1u
′
2

d2ū1

dx2
2

− ik1

Ro

du′2
dx2

− ik3
db′

dx2

+
1

Re

(
−
(
k2

1 + k2
3

)
+

d2

dx2
3

)
d2u′2
dx2

2

=
(
k2

1 + k2
3

) dp′
dx2

Substituting the x2 momentum equation gives

{[
k2

1 + k2
3 −

d2

dx2
2

]
u′2

}
σ =

[
k2

1 + k2
3

Ro

]
u′1 −

[
ik3

d

dx2

]
b′

+

{
ik1

[
−
(
k2

1 + k2
3

)
ū1 + ū1

d2

dx2
2

− d2ū1

dx2
2

+
1

Ro

d

dx2

]
+

1

Re

[
2
(
k2

1 + k2
3

) d2

dx2
2

−
(
k2

1 + k2
3

)2 − d4

dx4
2

]}
u′2

(A.3)

The equations from Deloncle et al. (2007) are given here, where D = d
dx2

,

U = ū1, and Rib,0F
2
h = 1. For a linear system of the form

A


u′1

u′2

b′

 = σB


u′1

u′2

b′


A and B follow

A =


0 ik1 {U (D2 − k2

1 − k2
3)−D2U} ik3D

ik1 (DU + UD) D2U + k2
1U +DUD 0

ik1Rib RibD k1k3U



B =


0 k2

1 + k2
3 −D2 0

−D ik1 0

0 0 ik3
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From equations A.1, A.2, and A.3 a more general A allowing for viscous

flow in a rotating frame of reference is found, where ∇2 = D2 − k2, f = Ro−1,

ωa = −DU + f , ν = Re−1, and κ = (RePr)−1 for compactness


−fk2 ik1 {U∇2 +Dωa}+ ν∇2 ik3D

ik1 (DU − ωa)− ν∇2D D2U + k2
1U − ωaD + νik1∇2 0

ik1Rib RibD k1k3U + κik3∇2





Appendix B

Horizontal Shear Layer Simulator

This flow solver evolves a three-dimensional flow field according to the in-

compressible Navier-Stokes equations in either a triply- or doubly-periodic domain

and is written using Fortan 95. Numerical integration is accomplished using a

low storage Runge-Kutta method which has 3rd order temporal accuracy. For the

channel solver (two periodic directions) Fourier collocation is used in the x1 and

x3 directions while 4th order compact difference approximations are used in the

x2 direction’s collocated grid. The FFTW3 library is used to compute Fourier

Transforms and MPI is used for parallelization.

B.1 Governing Equations

We wish to solve the following non-dimensional hyperbolic partial differen-

tial equations describing velocity and density fluctuation evolution

∂ui
∂t

= −∂ (uiuj)

∂xj
− εijk

δj3
Ro

uk −Ribδi3ρ′ +
1

Re0

∂2ui
∂xj∂xj

− ∂p

∂xi

∂ρ′

∂t
= u3 −

∂ (ρ′uj)

∂xj
+

1

Re0Pr

∂2ρ′

∂xj∂xj

The density evolution equation requires uniform vertical stratification and the

problem is non-dimensionalized such that d 〈ρ〉 /dx3 = 1. Additionally, we use a

dynamic pressure, pd, which represents the physical pressure neglecting contribu-
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tion of geostrophic (pg) and hydrostatic (ph) components as shown below.

p = pd + ph + pg, where
dph
dx3

= −〈ρ〉 g and
dpg
dx2

= −〈u1〉
Ro

There is no evolution equation for pressure in incompressible flows, therefore one

must solve a Poisson equation to enforce continuity via pressure forces. The diver-

gence of the Navier-Stokes equations can be expressed as

∂ui
∂t

= Hi −
∂pd
∂xi

∂

∂t

[
∂ui
∂xi

]
=

∂Hi

∂xi
− ∂2pd
∂xi∂xi

Where Hi represents the right hand side of the momentum equations excluding the

pressure gradient term. In order for the velocity field to remain divergence-free,

then the left hand side must be zero, giving

∂Hi

∂xi
=

∂2pd
∂xi∂xi

.

In order to ensure that the flow is divergence-free at the beginning of the simulation

another Poisson equation must be solved. Letting u∗i represent a divergence-free

field ‘near’ the current velocity field ui. Any vector field can be decomposed into

a solenoidal and irrotational component. Also, any irrotational vector field can

be expressed as the gradient of a scalar potential function. Therefore, for some

unknown scalar function φ one finds

ui = u∗i +
∂φ

∂xi
∂

∂xi
[ui] =

∂

∂xi

[
u∗i +

∂φ

∂xi

]
∂ui
∂xi

=
∂2φ

∂xi∂xi
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After solving the above Poisson equation, velocities are updated in the following

manner

ui −
∂φ

∂xi
=⇒ ui

B.2 Domain Decomposition

The domain decomposition and corresponding notation are shown for a flow

variable U in figure B.1. A pencil domain decomposition (split in two directions)

offers superior scalability of domain transposes in comparison to a slab decompo-

sition (split in one direction). MPI processes are grouped into rows and columns.

Figure B.2 shows the orientation of data with respect to rows and columns for each

configuration used in the channel solver. A transpose from x1 oriented pencils to

x3 oriented pencils (and vice versa) is not included in physical space because con-

tiguous data in the x3 direction is never needed in physical space. Also, there is no

complex transpose between x1 and x2 pencils because FFTs are always performed

first in the x1 direction, then the x3 direction, and finally in the x2 direction, when

necessary. The number of rows and columns do not have to be equal, but it is

recommended for optimal scalability. NX and NZ must be divisible by the number

of columns and all three grid dimensions must be divisible by the number of rows.

Two MPI routines are needed to perform domain transposes using pencil

decomposition, ALLTOALL and COMM SPLIT. ALLTOALL scatters data and

then gathers data to and from every process in a communicator. If process 0

contained the array {0, 1} and process 1 contained the array {2, 3} perfoming

ALLTOALL on integer elements would yield the array {0, 2} on process 0 and

{1, 3} on process 1. This is shown in Figure B.3. Here, ALLTOALL is used to

transform from being contiguous in the x1 direction to being contiguous in the

x3 direction. The domain is split into quadrants and the number centered in the

quadrant indicates which process will receive its data during the ALLTOALL call.

When using pencil decomposition, all processes do not need to communicate

with each other during transposing. Instead, only a single row or single column

of processes must communicate, meaning that the transpose operation can be
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Figure B.1: Domain decomposition, for a generic flow variable U . X indicates the
domain is contiguous in the x1 direction.Z indicates the domain is
contiguous in the x3 direction. Otherwise, the domain is contiguous
in the x2 direction.

Figure B.2: How data is stored across rows and columns of processes.
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parallelized across rows if only columns are communicating and vice versa. The

COMM SPLIT subroutine allows for the division of COMM WORLD into groups

of individual rows or columns of processes. Figure B.4 shows how processes are

split into colors (white and gray) allowing independent transpose operations to be

performed in parallel.

B.3 Temporal Integration

Our algorithm employs a low storage third order Runge-Kutta scheme

(Williamson, 1980), which approximates the solution for a system of ordinary

differential equations of the form

∂φi
∂t

= fi (φi) .

The method is given by

Fi = fi (φi) φi = φi + ∆tβ1Fi

Fi = ζ2Fi + fi (φi) φi = φi + ∆tβ2Fi

Fi = ζ3Fi + fi (φi) φi = φi + ∆tβ3Fi

Where β1 = 1/3, β2 = 15/16, β3 = 8/15, ζ2 = −5/9, and ζ3 = −153/128. As seen

above, there are two global variables required to march forward in time for every

flow variable. In our algorithm, ui and ρ′ store the values of the variables from the

previous RK substep and Fi and Fρ′ build the right hand side of the momentum

equations and fluctuating density advection-diffusion equation.

B.4 Channel Solver Algorithm

This algorithm is pseudo-spectral, meaning that non-linear terms are com-

puted in physical space, while derivatives are calculated in Fourier space. When

explaining the algorithm, a hat over a variable indicates that it is in Fourier space.

It is recommended that the number of points in the periodic directions be powers
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Figure B.3: ALLTOALL example : Originally domain is divided in the x3 di-
rection, but then the domain divided in x1. Numbers indicate sub-
domains while solid lines indicate processor boundaries and dashed
lines separate subdomains.

Figure B.4: When transposing using pencil decomposition parallelization can be
accomplished across different colored groups as shown for two dif-
ferent transposing operations. Numbers indicate ranks of processes
within rows or columns.
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of 2, but FFTW3 has efficient specialized algorithms for FFTs on vectors whose

length is of the form 2a3b5c7d11e13f where e+ f ≤ 1. Fourier and inverse Fourier

transforms are performed one direction at a time. The operations performed dur-

ing conversion the flow variables to and from Fourier space is given below where

the C prefix indicates complex arrays :

U
transpose⇐⇒ UX

FFT in x⇐⇒ CUX
transpose⇐⇒ CUZ

FFT in z⇐⇒ CUZ
transpose⇐⇒ CU.

(B.1)

Here, the channel solver algorith will be overviewed showing the details of

each Runga-Kutta substep. If rk > 1, where rk is the current Runge-Kutta substep

(1, 2 or 3), then multiply the F from the previous RK step by ζ, otherwise define

flow variables as zero.

F̂i = ζrkF̂i F̂ρ′ = ζrkF̂ρ′

Begin building right hand side of evolution equations, store buoyancy and Coriolis

terms in F̂i

F̂1 = F̂1 +
û2

Ro

F̂2 = F̂2 −
û1

Ro
F̂3 = F̂3 −Ribρ̂′

Add vertical velocity to right hand side in F̂ρ′ to force fluctuating scalar equation(s).

F̂ρ′ = F̂ρ′ + û3

Add viscous terms to right hand side for each flow variable, φi. Derivatives in the

x2 direction are computed using compact differencing (discussed in section B.5).

Ŝ1 =
δ2φ̂i
δx2δx2

, F̂1 = F̂i +
1

Re0

[
Ŝ1 −

(
k2

1 + k2
3

)
φ̂i

]
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Nonlinear terms are computed in physical space implying variables must be con-

verted to physical space. First, we transpose the domain from pencils in the x2

direction (φ̂i) to pencils in the x3 direction (φ̂zi ) and then perform inverse FFTs

in the z direction. Then transpose from pencils in the x3 direction to pencils in

the x1 direction (φ̂xi ) and convert to physical space using inverse FFTs (φxi ) before

computation of nonlinear terms. The term v2 is the contravariant velocity which

gives the value of velocity at locations halfway between collocated grid points.

ûi → ûzi → ûxi → uxi , v̂2 → v̂z2 → v̂x2 → vx2 , ρ̂′ → ρ̂′z → ρ̂′x → ρ′x

Add nonlinear terms located at collocated points to F̂

Sx1 = ux1u
x
1 , Sx1 → Ŝx1 → Ŝz1 → Ŝ1, F̂1 = F̂1 − ik1Ŝ1

Sx1 = ux3u
x
3 , Sx1 → Ŝx1 → Ŝz1 → Ŝ1, F̂3 = F̂3 − ik3Ŝ1

Sx1 = ux1u
x
2 , Sx1 → Ŝx1 → Ŝz1 → Ŝ1, F̂2 = F̂2 − ik1Ŝ1

Sx1 = ux1u
x
3 , Sx1 → Ŝx1 → Ŝz1 → Ŝ1, F̂1 = F̂1 − ik3Ŝ1,

F̂3 = F̂3 − ik1Ŝ1

Sx1 = ux2u
x
3 , Sx1 → Ŝx1 → Ŝz1 → Ŝ1, F̂2 = F̂2 − ik3Ŝ1

Sx1 = ux1ρ
′x, Sx1 → Ŝx1 → Ŝz1 → Ŝ1, F̂ρ′ = F̂ρ′ − ik1Ŝ1

Sx1 = ux2ρ
′x, Sx1 → Ŝx1 → Ŝz1 → Ŝ1, F̂ρ′ = F̂ρ′ −

δŜ1

δx2

Sx1 = ux3ρ
′x, Sx1 → Ŝx1 → Ŝz1 → Ŝ1, F̂ρ′ = F̂ρ′ − ik3Ŝ1

Nonlinear terms in the momentum equations requiring derivatives in the transverse

direction are calculated at face center points (halfway between collocated points).

Collocated variables are interpolated using cubic interpolation, but first transpos-

ing must be performed because variables are currently split across the x2 direction

and we wish to interpolate in that direction. Note that the compact differencing

stencil is modified for these lateral derivatives because the derivative of nonlinear
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products on face center points is desired at collocated points.

uxi → ui, vx2 → v2

S1 = v2ũ1, S1 → Sx1 → Ŝx1 → Ŝz1 → Ŝ1, F̂1 = F̂1 −
δŜ1

δx2

S1 = v2ũ2, S1 → Sx1 → Ŝx1 → Ŝz1 → Ŝ1, F̂2 = F̂2 −
δŜ1

δx2

S1 = v2ũ3, S1 → Sx1 → Ŝx1 → Ŝz1 → Ŝ1, F̂3 = F̂3 −
δŜ1

δx2

ui → uxi , v2 → vx2

Here, cubic interpolation is accomplished using the following stencil (for a uni-

form x2−grid) where integral indices indicate locations on the collocated grid and

fractional indices indicate locations on the contravariant grid.

φ̃j = − 1

16
φj−3/2 +

9

16
φj−1/2 +

9

16
φj+1/2 −

1

16
φj+3/2

Convert variables back to Fourier space

uxi → ûxi → ûzi → ûi, vx2 → v̂x2 → v̂z2 → v̂2, ρ′x → ρ̂′x → ρ̂′z → ρ̂′

Next pressure is computed and pressure gradient terms are added to F̂

−
(
k2
x + k2

z

)
p̂d +

δ2p̂d
δx2δx2

= ik1F̂1 +
δF̂2

δx2

+ ik3F̂3

Boundary conditions for pressure are Neumann with slope set to zero for all fluc-

tuating components. The mean pressure (k1 = 0, k3 = 0) is set to zero at both x2

boundaries.

F̂1 = F̂1 − ik1p̂d, F̂2 = F̂2 −
δp̂d
δx2

, F̂3 = F̂3 − ik3p̂d

Lastly, velocity and scalar fields are damped using a Rayleigh damping function

near x2 boundaries, note that the kx = 0 and kz = 0 component of F̂1 is treated

differently so that the mean û1 relaxes to ±1
2

as expected for the shear layer. This
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is performed after the pressure solve to minimize its impact on the rest of the flow

domain. Any divergence that may result in the flow field is then projected out in

the projection step after each RK substep.

F̂1 (0, 0, x2) = F̂1 (0, 0, x2)− σ (x2)

[
û1 (0, 0, x2)− x2

2‖x2‖

]

F̂i = F̂i − σ (x2) φ̂i

Where the Rayleigh damping function takes the following form for sponge thickness

a

σ (x2) =


(βrk∆t)

−1 exp [(a− x2 − L/2) /a] if − L
2
< x2 < −L

2
+ a

(βrk∆t)
−1 exp [(a+ x2 − L/2) /a] if L

2
− a < x2 <

L
2

0 otherwise

Update flow variables

φ̂i = φ̂i + βrk∆tF̂i

The contravariant velocity (v2) is calculated using cubic interpolation of u2. Diver-

gence is removed from the velocity field by solving the following implicit equation

−
(
k2
x + k2

z

)
φ̂+

δ2φ̂

δx2δx2

= ikxû1 +
δv̂2

δx2

+ ikzû3

Note that the contravariant velocity is used in place of the collocated value. Where

δv̂2/δx2 differentiates over ∆x2 instead of 2∆x2 because φ̂ takes values at cell

centers and v̂2 at face centers. Next the divergence is projected away from the

velocity field, including the contravariant velocity.

û1 = û1 − ikxφ̂, û3 = û3 − ikzφ̂, û2 = û2 −
δφ̂

δx2

, v̂2 = v̂2 −
δφ̂

δx2

Again, here the δφ̂/δx2 term used to update v̂2 differentiates over ∆x2. This way
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fluctuations in v̂2 with wavelength 2∆x2 affect φ̂ and vice versa. This prevents

artificial 2∆x2 wavelength oscillations from forming as are commonly an issue in

algorithms using collocated grids. There is also a triply periodic algorithm, but it

is not included here due to its lack of relevance to the work contained herein.

B.5 Differentiation

When 4th order compact finite differencing is applied to a uniform Cartesian

grid then the finite difference stencils are calculated as follows

1

6

(
δf̂

δx2

)
j+1

+
2

3

(
δf̂

δx2

)
j

+
1

6

(
δf̂

δx2

)
j−1

=
f̂j+1 − f̂j−1

2∆x2

1

24

(
δf̂

δx2

)
j+1

+
11

12

(
δf̂

δx2

)
j

+
1

24

(
δf̂

δx2

)
j−1

=
f̂j+1/2 − f̂j−1/2

∆x2

1

12

(
δ2f̂

δx2
2

)
j+1

+
5

6

(
δ2f̂

δx2
2

)
j

+
1

12

(
δ2f̂

δx2
2

)
j−1

=
f̂j+1 − 2f̂j + f̂j−1

∆x2
2

Where the second scheme is used when derivatives at cell centers are computed

using values at face centers or vice versa.

When solving a Poisson equation of the form ∇2φ = f with two periodic directions

one observes

−
(
k2
x + k2

z

)
φ̂j +

(
δ2φ̂

δx2
2

)
j

= f̂j (B.2)

Substituting the 4th order Pade formula gives

−
(
k2
x + k2

z

)
φ̂j −

1

10

(
δ2φ̂

δx2
2

)
j+1

− 1

10

(
δ2φ̂

δx2
2

)
j−1

+
6

5 (∆x2)2

(
φ̂j+1 − 2φ̂j + φ̂j−1

)
= f̂j
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Substituting equation B.2 and simplifying gives

−
[

1

10

(
k2
x + k2

z

)
− 6

5 (∆x2)2

]
φ̂j+1

−
[(
k2
x + k2

z

)
+

12

5 (∆x2)2

]
φ̂j

−
[

1

10

(
k2
x + k2

z

)
− 6

5 (∆x2)2

]
φ̂j−1 = 1

10
f̂j+1 + f̂j + 1

10
f̂j−1

B.6 Initial Conditions

Two dimensional initial conditions are prescribed in the following manner

for a prescribed energy spectrum, E (k). Here ∗ indicates a complex conjugate.

For a periodic two dimensional flow the following is observed

k1û1 (k1, k2) + k2û2 (k1, k2) = 0

E (k) =

∫
û1û

∗
1 (k1, k2) + û2û

∗
2 (k1, k2) dA (k)

E (k) =
∑

k≈
√
k21+k22

û1û
∗
1 (k1, k2) +

k2
1

k2
2

û1û
∗
1 (k1, k2) 4πk2

E (k) =
∑

k≈
√
k21+k22

[
1 +

k2
1

k2
2

]
û1û

∗
1 (k1, k2) 4πk2

Letting θ be a random number on the interval [0, 2π) and Nb represent the number

of discrete combinations of k1 and k2 values that approximately yield the discrete
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wavenumber value k. The following relation results for û1 = C (k1, k2) exp (iθ)

E (k) =
∑

k≈
√
k21+k22

[
1 +

k2
1

k2
2

]
C2 (k1, k2) 4πk2

C (k1, k2) =

√
E (k)

4πk2Nb

[
1 + k2

1k
−2
2

]
û1 = C (k1, k2) exp (iθ)

û2 = −k1C (k1, k2)

k2

exp (iθ)

Three dimensional initial conditions are prescribed in a similar manner following

Rogallo (1981). For random numbers θ1, θ2 and φ on the interval [0, 2π), kh =√
k2

1 + k2
2 and k =

√
k2
i

α =

(
E (k)

4πk2

)1/2

exp (iθ1) cosφ, β =

(
E (k)

4πk2

)1/2

exp (iθ2) sinφ

û1 =
αkk2 + βk1k3

kkh
, û2 =

βk2k3 − αkk1

kkh
, û3 =

βkh
k

B.7 Validation

Validation of the algorithm was performed though analysis of shear layer

statistics with and without stratification. The unstratified shear layer was simu-

lated at Re0 = 681 and various statistics were examined include growth rate and

turbulent kinetic energy (TKE) budget. The TKE budget is shown in Figure B.5

and compares well to the values shown in figure 5 of Brucker & Sarkar (2007) which

also contains values from TKE budgets of Rogers & Moser (1994) and Pantano &

Sarkar (2002). The budget very nearly closes, with the faint line with x symbols

near the ∂K/∂t term representing the sum of the right hand side terms from the

TKE evolution equation, P − ε− ∂T/∂x2.

Another simulation was performed with stratification (Rib,0 = 1.13) at the

same Reynolds number. Validation was more thorough in this case where qualita-
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tive agreement of vortical structures in addition to statistics was examined against

prior results for the horizontal shear layer (Basak & Sarkar, 2006; Arobone &

Sarkar, 2010). A similar vortical evolution from three dimensional turbulence to

quasi-vertical vortices then pancake vortices was observed. The TKE budgets (Fig-

ure B.6) closed very well for the stratified simulation and nearly matched figure 8

(b) of (Arobone & Sarkar, 2010).

Figure B.5: TKE budget for unstratified shear layer when centerline dk/dt ≈ 0.
Re0 = 681

Figure B.6: TKE budget for stratified shear layer at t = 50.43. Re0 = 681,
Rib = 1.132, and Pr = 1



Appendix C

Ocean Front Simulator

This flow solver evolves a three-dimensional flow field according to the in-

compressible Navier-Stokes equations in a domain which is periodic in either one

or two directions. The code is designed to evolve rotating Boussinesq flows on a

regular nearly isotropic grid as accurately and efficiently as possible and is writ-

ten using Fortran 95. Numerical integration is accomplished using a low storage

Runge-Kutta method which has third order temporal accuracy. Sixth order com-

pact difference approximations and interpolation are used in the x2 and x3 direc-

tions’ staggered grids. A two-dimensional parallelized fourth-order multigrid solver

is used to compute pressure and project away divergence. The FFTW3 library is

used to compute Fast Fourier Transforms and MPI is used for parallelization.

C.1 Governing Equations

We wish to solve the following non-dimensional hyperbolic partial differen-

tial equations describing velocity and density fluctuation evolution

∂ui
∂t

= fi = −∂ (uiuj)

∂xj
+
εij3
Ro

uj − δi3ρ+
1

RoEk

∂2ui
∂xj∂xj

− ∂p

∂xi

∂ρ

∂t
= fρ = −∂ (ρuj)

∂xj
+

1

RoEkPr

∂2ρ

∂xj∂xj

150
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There is no evolution equation for pressure in incompressible flows so instead a

Poisson equation must be solved. The divergence of the Navier-Stokes equations

can be expressed as

∂ui
∂t

= Hi −
∂p

∂xi
∂

∂t

[
∂ui
∂xi

]
=

∂Hi

∂xi
− ∂2p

∂xi∂xi

Where Hi represents the right hand side of the momentum equations excluding the

pressure gradient term. In order for the velocity field to remain divergence-free,

then the left hand side must be zero, giving

∂2p

∂xi∂xi
=
∂Hi

∂xi

In order to remove divergence from the flow field a different Poisson equation must

be solved. Any vector field can be decomposed into solenoidal (∇ · u = 0) and

irrotational (∇× u = 0) components. Also, any irrotational vector field can be

expressed as the gradient of a scalar potential function (φ). Therefore, for some

unknown scalar function φ one finds

ui = u∗i +
∂φ

∂xi

Where u∗i represents a divergence-free field ‘near’ the current velocity field ui. Tak-

ing the divergence of both sides gives the following process for removing divergence

∂2φ

∂xi∂xi
=
∂ui
∂xi

→ u∗i = ui −
∂φ

∂xi

C.2 Domain Decomposition

The domain decomposition and corresponding notation are shown for a flow

variable u in Figure C.1. The use of transposing allows for better scalability of

the parallel algorithm by greatly limiting the number of ghost cell data transfers

needed. Domain transposing allows data to be contiguous in the periodic direction
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Figure C.1: How data is stored across rows and columns of processes and what
routines are used to change domain decomposition.

during FFTs or contiguous in the direction of finite difference derivative calcula-

tions, as necessary. The multigrid scalability is not significantly inhibited because

one of the two directions is contiguous during multigrid iterations. When using

pencil decomposition, all processes do not need to communicate with each other

during transposing. Instead, only a single row or single column of processes must

communicate, meaning that the transpose can be parallelized across rows if only

columns are communicating and vice versa.

MPI processes are grouped into rows (NR) and columns (NC). Figure C.1

shows the orientation of data with respect to rows and columns for each configura-

tion used in the duct solver. Transposes are available to change between all three

data layouts for real or complex data. The number of rows (NR) and columns

(NC) do not have to be equal, but it is recommended for optimal scalability. NX

and NZ must be divisible by NC while NY and NZ must be divisible by NR.

Two MPI routines are needed to perform domain transposes using pencil

decomposition, ALLTOALL and COMM SPLIT. ALLTOALL scatters data and

then gathers data to and from every process in a communicator. If process 0

contained the array {0, 1} and process 1 contained the array {2, 3} perfoming

ALLTOALL on integer elements would yield the array {0, 2} on process 0 and

{1, 3} on process 1.



153

C.3 Temporal Integration

The algorithm employs a low storage third order Runge-Kutta scheme

(Williamson,1980), which approximates the solution for a system of ordinary dif-

ferential equations of the form

∂φi
∂t

= fi (φi) .

The method is given by

Fi = fi (φi) φi = φi + ∆tβ1Fi

Fi = ζ2Fi + fi (φi) φi = φi + ∆tβ2Fi

Fi = ζ3Fi + fi (φi) φi = φi + ∆tβ3Fi

Where β1 = 1/3, β2 = 15/16, β3 = 8/15, ζ2 = −5/9, and ζ3 = −153/128. As seen

above, there are two global variables required to march forward in time for every

flow variable. In our algorithm, ui and ρ′ store the values of the variables from the

previous RK substep and Fi and Fρ build the right hand side of the momentum

equations and fluctuating density evolution equation, respectively.

C.4 Duct Solver Algorithm

This algorithm is pseudo-spectral with non-linear terms and derivatives

in non-periodic directions computed in physical space, while derivatives in the

periodic direction are calculated in Fourier space. When explaining the algorithm,

a hat over a variable indicates that it is in Fourier space. It is recommended

that the number of points in the periodic directions be powers of 2, but FFTW3

has efficient specialized algorithms for FFTs on vectors whose length is of the

form 2a3b5c7d11e13f where e + f ≤ 1. Fourier and inverse Fourier transforms are

performed only when data is contiguous in the periodic direction (x1).

In this section the duct solver algorithm will be overviewed showing the

details of each Runga-Kutta substep.
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If (rk > 1) then multiply the F from the previous RK step by ζrk, otherwise

define as zero.

F x
i = ζrkF

x
i F x

ρ = ζrkF
x
ρ

Add nonlinear divergence terms involving x1 derivatives to F̂ x. First inter-

polate u1 to staggered points using R2 and R3.

Sx1 = ux1u
x
1 , Sx1 → Ŝx1 , F̂ x

1 = F̂ x
1 − ikxŜx1

Sx1 = ux1ρ
x, Sx1 → Ŝx1 , F̂ x

ρ = F̂ x
ρ − ikxŜx1

ux1 → uz1, Rz
3 =

δ0u1

δx0
3

, uz1 → u1, R2 =
δ0u1

δx0
2

Rz
3 → Rx

3 , R2 → Rz
2 → Rx

2 , u1 → uz1 → ux1

Sx1 = Rx
2v

x
2 , Sx1 → Ŝx1 , F̂ x

2 = F̂ x
2 − ikxŜx1

Sx1 = Rx
3v

x
3 , Sx1 → Ŝx1 , F̂ x

3 = F̂ x
3 − ikxŜx1

Transpose such that flow variables (and right hand side, F ) are contiguous in

the x2 direction then add ∂2/∂x2
2 viscous terms and nonlinear terms involving x2

derivatives to right hand side

uxi → uzi → ui, vx2 → vz2 → v2, ρx → ρz → ρ

F̂ x
i → F x

i → F z
i → Fi, F̂ x

ρ → F x
ρ → F z

ρ → Fρ

Boundary conditions should be enforced at x2 = 0 and x2 = Ly boundaries at this

point in the algorithm.

S1 =
δ2u1

δx2
2

, F1 = F1 +
S1

Re0

S1 =
δ2u2

δx2
2

, F2 = F2 +
S1

Re0

S1 =
δ2u3

δx2
2

, F3 = F3 +
S1

Re0

S1 =
δ2ρ

δx2
2

, Fρ = Fρ +
S1

Re0Pr
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R1 =
δ0u1

δx0
2

, R3 =
δ0v3

δx0
2

v2 → vz2, Rz
2 =

δ0vz2
δx0

3

, vz2 → v2, Rz
2 → R2

S1 = u2ρ, Fρ = Fρ −
δS1

δx2

S1 = v2R1, F1 = F1 −
δS1

δx2

S1 = u2
2, F2 = F2 −

δS1

δx2

S1 = R2R3, F3 = F3 −
δS1

δx2

Then flow variables (also Fi and Fρ) are transposed from pencils in the x2 direction

to pencils in the x3 direction to add contribution of ∂2/∂x2
3 viscous terms and

nonlinear terms involving x3 derivatives

ui → uzi , vx3 → vz3, ρ→ ρz, Fi → F z
i

Fρ → F z
ρ , R2 → Rz

2, R3 → Rz
3

Boundary conditions should be enforced at x3 = 0 and x3 = Lz boundaries at this

point in the algorithm.

Sz1 =
δ2uz1
δx2

3

, F z
1 = F z

1 +
Sz1

RoEk
Sz1 =

δ2uz2
δx2

3

, F z
2 = F z

2 +
Sz1

RoEk

Sz1 =
δ2uz3
δx2

3

, F z
3 = F z

3 +
Sz1

RoEk
Sz1 =

δ2ρz

δx2
3

, F z
ρ = F z

ρ +
Sz1

RoEkPr

Rz
1 =

δ0uz1
δx0

3

Sz1 = uz3ρ
z, F z

ρ = F z
ρ −

δSz1
δx3

Sz1 = vz3R
z
1, F z

1 = F z
1 −

δSz1
δx3

Sz1 = Rz
3R

z
2, F z

2 = F z
2 −

δSz1
δx3

Sz1 = (uz3)2 , F z
3 = F z

3 −
δSz1
δx3

Interpolate u1 to face center points in the x2 direction and also find its x1 − x3
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planar average

uz1 → u1, R1 =
δ0u1

δx0
2

, 〈u1〉 =
1

NxNz

∑
R1, u1 → uz1, R1 → Rz

1

Begin computation of horizontally filtered hydrostatic pressure

ρz → ρ, R2,j = ρj+1 + ρj−1, ρ→ ρz → ρx, R2 → Rx
2

Rx
3 = ρxi+1 + ρxi−1, ρx → ρz, Rx

3 → Rz
3

Rz
2 =

8ρz +Rz
2 +Rz

3

12
, Rz

4 =

(
δ

δx3

)−1

Rz
2

Rx
2 = ρx −Rx

2 , Rz
3 =

δ0Rz
2

δx0
3

Convert variables back to Fourier space and transpose

uzi → uxi → ûxi , v2 → vz2 → vx2 → v̂x2 , vz3 → vx3 → v̂x3

ρz → ρx → ρ̂x, F z
i → F x

i → F̂ x
i , F z

ρ → F x
ρ → F̂ x

ρ

Rz
1 → Rx

1 → R̂x
1 , Rz

3 → Rx
3 → R̂x

3 , Rz
4 → Rx

4 → R̂x
4

Add buoyancy and Coriolis terms to F̂ x
i

F̂ x
1 = F̂ x

1 +
ûx2
Ro

, F̂ x
2 = F̂ x

2 −
R̂x

1

Ro
, F̂ x

3 = F̂ x
3 − R̂x

3

Neglect the influence of 〈u1〉 on rotation

F̂ x
2 (kx = 0) = F̂ x

2 (kx = 0) +
〈u1〉
Ro

Add viscous terms to right hand side, beginning with ∂2/∂x2
1 terms

F̂ x
1 = F̂ x

1 −
k2
x

RoEk
ûx1 , F̂ x

2 = F̂ x
2 −

k2
x

RoEk
v̂x2

F̂ x
3 = F̂ x

3 −
k2
x

RoEk
v̂x3 , F̂ x

ρ = F̂ x
ρ −

k2
x

RoEk
ρ̂x

The right hand side terms of the momentum equations are then transposed
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such that the x2 direction is contiguous for multigrid. Next pressure is computed

(combined with velocity projection) and pressure gradient terms are added to F̂ .

R̂x
1 = ikx

(
F̂ x

1 + βrk∆tû
x
1

)
+ k2

xR̂
x
4 R̂x

1 → R̂z
1 R̂x

4 → R̂z
4 F̂ x

2 → F̂ z
2

F̂ x
3 → F̂ z

3 v̂xi → v̂zi

R̂z
1 = R̂z

1 +
δF̂ z

3

δx3

+ βrk∆t
δv̂z3
δx3

R̂z
1 → R̂1 R̂z

4 → R̂4

F̂ z
2 → F̂2 v̂z2 → v̂2

R̂1 = R̂1 +
δF̂2

δx2

+ βrk∆t
δv̂2

δx2

− δ2R̂4

δx2
2

−k2
xp̂+

δ2p̂

δx2
2

+
δ2p̂

δx2
3

= R̂1 R̂1 = p̂

F̂2 = F̂2 −
δR̂1

δx2

− δR̂4

δx2

R̂1 → R̂z
1 R̂4 → R̂z

4 F̂2 → F̂ z
2

F̂ z
3 = F̂ z

3 −
δR̂z

1

δx3

R̂z
1 → R̂x

1 R̂z
4 → R̂x

4

F̂ z
2 → F̂ x

2 F̂ z
3 → F̂ x

3

F̂ x
1 = F̂ x

1 − ikx
(
R̂x

1 + R̂x
4

)
Next convert to physical space using inverse FFTs and update flow variables

ûx1 → ux1 , v̂xi → vxi , ρ̂x → ρx

ux1 = ux1 + βrk∆tF
x
1 , vxi = vxi + βrk∆tF

x
i , ρx = ρx + βrk∆tF

x
ρ

The collocated velocities are calculated via 6th order interpolation

vx3 → vz3 vx2 → vz2 → v2 uz3 =
δ0vz3
δx0

3

u2 =
δ0v2

δx0
2

uz3 → ux3 vz3 → vx3 u2 → uz2 → ux2 v2 → vz2 → vx2
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C.5 Differentiation

When 6th order compact finite difference is used with a Cartesian grid then

the finite difference derivatives (including the zeroth) are calculated as follows

3

10
f̂j−1 + f̂j +

3

10
f̂j+1 =

3

4

(
f̂j−0.5 + f̂j+0.5

)
+

1

20

(
f̂j−1.5 + f̂j+1.5

)
9

62
f̂ ′j−1 + f̂ ′j +

9

62
f̂ ′j+1 =

63

62

f̂j+0.5 − f̂j−0.5

∆x
+

17

62

f̂j+1.5 − f̂j−1.5

3∆x

1

3
f̂ ′j−1 + f̂ ′j +

1

3
f̂ ′j+1 =

14

9

f̂j+1 − f̂j−1

2∆x
+

1

9

f̂j+2 − f̂j−2

4∆x

2

11
f̂ ′′j−1 + f̂ ′′j +

2

11
f̂ ′′j+1 =

12

11

f̂j+1 − 2f̂j + f̂j−1

∆x2
+

3

11

f̂j+2 − 2f̂j + f̂j−2

4∆x2

The terminating stencils are shown below

f̂j + f̂j+1 =
3

2
f̂j+0.5 +

1

4

(
f̂j−0.5 + f̂j+1.5

)
+O

(
∆x4

)
f̂ ′j − f̂ ′j+1 =

2f̂j+0.5 − f̂j−0.5 − f̂j+1.5

∆x
+O

(
∆x3

)
f̂ ′j + f̂ ′j+1 =

3

2

f̂j+1 − f̂j
∆x

+
1

2

f̂j+2 − f̂j−1

3∆x
+O

(
∆x4

)
f̂ ′′j − f̂ ′′j+1 =

f̂j+1 − 2f̂j + f̂j−1

∆x2
− f̂j+2 − 2f̂j+1 + f̂j

∆x2
+O

(
∆x3

)

C.6 Inhomogeneous Pressure Boundary Condi-

tions

Similar to Marshall et al. JGR (1997) we avoid inhomogeneous boundary

conditions during the multigrid pressure solve by defining hydrostatic and non-

hydrostatic pressure components
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p = pH + pN pH = −
∫ xref

x3

ρdx′3

Adding the influence of the hydrostatic pressure to the vertical momentum

equation has the effect of canceling the buoyancy term

∂u3

∂t
= − ∂

∂xj
(uju3)− ρ+Re−1∂

2u3

∂x2
j

− ∂pH
∂x3

− ∂pN
∂x3

= − ∂

∂xj
(uju3) +Re−1∂

2u3

∂x2
j

− ∂pN
∂x3

The full pressure solve becomes

∂2pN
∂x2

j

+
∂2pH
∂x2

j

=
∂2pN
∂x2

j

+
∂2pH
∂x2

h

− ∂ρ

∂x3

=
∂Fj
∂xj

→ ∂2pN
∂x2

j

=
∂Fj
∂xj
− ∂2pH

∂x2
h

Implying that the filtered buoyancy term is also dropped from the pressure

solve. To compute pH we integrate the expression using the trapezoidal rule

∫ x0+h

x0

f(x)dx =
h

2
[f(x0) + f(x0 + h)] +O(h3)

Boundary conditions on full pressure are then

∂p

∂x3

=
∂pH
∂x3

+
∂pN
∂x3

= −ρ provided
∂pN
∂x3

= 0

Giving homogeneous Neumann boundary conditions for pN , as desired.
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C.7 Validation : Taylor-Green Vortices

To assess implementation of the flow solver two-dimensional Taylor-Green

vortices are evolved. The velocity fields for a domain of [0, L1] × [−Ly/2, Ly/2] ×
[−Lz/2, Lz/2] and corresponding wavenumbers k2 and k3. The velocity fields are

given to be the following for k2 = k3

u2 = sin (kx2) cos (kx3) exp
(
−2νk2t

)
, u3 = − cos (kx2) sin (kx3) exp

(
−2νk2t

)
Average kinetic energy therefore is given by

1

2A

∫∫
u2

2 + u2
3dA =

exp (−4νk2t)

4

At time t = 59.90 the average kinetic energy is found to be 9.726 × 10−2

compared to the value of 9.708×10−2 obtained using the relation above. Similarly,

at time t = 252.6 the average kinetic energy is 4.630× 10−3 compared to the value

of 4.667× 10−3.

C.8 Validation : Shear Layer

The Rib,0 = 1.12 case of chapter 2 was simulated with free slip and no

through flow conditions at both vertical boundaries. Figure C.2 shows direction

comparisons between root mean square lateral velocity fluctuations and late-time

turbulent kinetic energy budgets from both cases. Agreement is very good, outside

of the dissipation term. This term differs because the initial conditions were not

matched.
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Figure C.2: Evolution of
√
< u′2u

′
2 > is shown (top) and turbulent kinetic energy

budgets are computed for t ≈ 71 (bottom). The left plots are from
the duct solver, while the right plots are from chapter 2.



Appendix D

Fourth-Order Parallel

Two-Dimensional Multigrid

D.1 Smoother

A fourth order compact finite difference stencil is used to approximate

∇2φ̂ = f̂ on a uniform two-dimensional grid with spacing ∆x

1

6∆x2


1 4 1

4 −20 4

1 4 1

 φ̂− 1

12


0 1 0

1 8 1

0 1 0

 k2φ̂ =
1

12


0 1 0

1 8 1

0 1 0

 f̂ (D.1)

From this and boundary conditions we can formulate a system of equations of the

form Ax = b. The above stencil is derived from the 2D Mehrstellen discretization

and its order of accuracy is demonstrated in appendix A. An iterative approach is

used to solve the system of equations, this approach also functions as a smoother.

Red-black Gauss-Seidel method is ideal for second order multigrid on uniform grids,

but not appropriate because of the nine-point stencil used on the left hand side

of equation (D.1). A four-color Gauss-Seidel method or red-black Jacobi method

can be used instead. We choose the latter method because it requires two as

opposed to four parallel communications per iteration with a similar convergence

rate (Trottenberg et al., 2001). The method is outlined below for a checkerboard

162
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Figure D.1: Fine grid (black) and corresponding coarse grid (red).

grid where D and H represent the diagonal and hallow matrix decomposition of

A, respectively,

updating half of checkerboard points : φ̂s+1/2 = D−1Hφ̂s

updating other checkerboard points : φ̂s+1 = D−1Hφ̂s+1/2

MPI send and receive calls are needed after each substep, but only in the x3

direction.

D.2 Restriction

When moving to a coarser grid equation (D.1) only changes in the sense that

∆x is modified. The residual on the other hand must be restricted from fine values

to coarse values. We use a cell-centered multigrid approach which is illustrated in

Figure D.1. For the simple uniform grid a simple bilinear interpolation scheme for

restricting residual r = b− Ax̂ follows

r′i,j =
1

4
(r2i−1,2j−1 + r2i,2j−1 + r2i−1,2j + r2i,2j)
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D.3 Prolongation

When moving to a finer grid the solution must be improved using the coarse

grid solution. Simple uniform grid bilinear interpolation gives

e2i,2j =
1

16

(
9e′i,j + 3e′i,j+1 + 3e′i+1,j + e′i+1,j+1

)
e2i+1,2j =

1

16

(
9e′i+1,j + 3e′i,j + 3e′i+1,j+1 + e′i,j+1

)
e2i,2j+1 =

1

16

(
9e′i,j+1 + 3e′i,j + 3e′i+1,j+1 + e′i+1,j

)
e2i+1,2j+1 =

1

16

(
9e′i+1,j+1 + 3e′i+1,j + 3e′i,j+1 + e′i,j

)

D.4 Parallelization

The domain is only split in one of the two multigrid directions allowing for

straightforward parallelization. Non-blocking sends are used to transfer one line

of data between processes with data first being sent left-to-right followed by right-

to-left. Serial multigrid is also available to increase the total number of multigrid

levels beyond the maximum number allowed by parallel multigrid. Coarse grids

of size NY/NR x NZ/NR and smaller are smoothed on the root process of each

column.

D.5 The Mehrstellen Discretization

Below is the Mehrstellen 4th order Laplacian operator for a isotropic uni-

form grid

1

6∆x2


1 4 1

4 −20 4

1 4 1

 x̂ =
1

12


0 1 0

1 8 1

0 1 0

 f̂
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We will derive the Laplacian operator for an anisotropic grid The 5th order Taylor

series expansions of x̂ (and similarly f̂) are given as (let α = ∆y/∆x and h = ∆x)

x̂0,0 = x̂0,0

x̂0,±1 = x̂0,0 ± hx̂,x +
h2

2
x̂,xx ±

h3

6
x̂,xxx +

h4

24
x̂,xxxx

x̂±1,0 = x̂0,0 ± ahx̂,y +
α2h2

2
x̂,yy ±

α3h3

6
x̂,yyy +

α4h4

24
x̂,yyyy

x̂±1,1 = x̂0,0 ± hx̂,x + αhx̂,y +
h2

2

[
x̂,xx ± 2αx̂,xy + α2x̂,yy

]
+
h3

6

[
±x̂,xxx + 3αx̂,xxy ± 3α2x̂,xyy + α3x̂,yyy

]
+
h4

24

[
x̂,xxxx ± 4αx̂,xxxy + 6α2x̂,xxyy ± 4α3x̂,xyyy + α4x̂,yyyy

]
x̂1,±1 = x̂0,0 + hx̂,x ± αhx̂,y +

h2

2

[
x̂,xx ± 2αx̂,xy + α2x̂,yy

]
+
h3

6

[
x̂,xxx ± 3αx̂,xxy + 3α2x̂,xyy ± α3x̂,yyy

]
+
h4

24

[
x̂,xxxx ± 4αx̂,xxxy + 6α2x̂,xxyy ± 4α3x̂,xyyy + α4x̂,yyyy

]

Assuming matrices of the form

A =


d b d

c a c

d b d

 B =


0 q 0

r p r

0 q 0


Ax̂ = Bf̂ satisfies Poisson’s equation to fourth order accuracy provided the fol-

lowing equations are satisfied (note that f̂ = x̂,xx + x̂,yy)

(a+ 2b+ 2c+ 4d)x̂ = 0 (α2h2c+ 2α2h2d)x̂yy − x̂yy = 0

α2h4dx̂,xxyy − (h2q + α2h2r)x̂,xxyy = 0 (p+ 2q + 2r)f̂ − f̂ = 0

(h4b+ 2h4d)x̂,xxxx − 12h2qx̂,xxxx = 0 (h2b+ 2h2d)x̂,xx − x̂,xx = 0

(α4h4c+ 2α4h4d)x̂,yyyy − 12α2h2rx̂,yyyy = 0
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Solving this system of equations gives A and B of the form

A =


α2 + 1 2(5α2 − 1) α2 + 1

−2(α2 − 5) −20(α2 + 1) −2(α2 − 5)

α2 + 1 2(5α2 − 1) α2 + 1

 B = α2h2


0 1 0

1 8 1

0 1 0


The three dimensional Poisson solve takes the form Ax̂ = B(f̂ +k2x̂), substitution

gives A of the form

A =


α2 + 1 2(5α2 − 1)− (αkh)2 α2 + 1

−2(α2 − 5)− (αkh)2 −20(α2 + 1)− 8(αkh)2 −2(α2 − 5)− (αkh)2

α2 + 1 2(5α2 − 1)− (αkh)2 α2 + 1


D.6 Validation

We wish to solve ∇2φ = f , using φ of the following forms over the domain

[0, 1]× [0, 1]

φ1 (xi) = exp
[
−σ2

(
x2

2 + x2
3

)]
sin (kx1) sin (kx2) sin (kx3)

φ2 (xi) =
(
x4

2 − x2
2/4
) (
x4

3 − x2
3/4
)

φ3 (xi) = sin (kx1) sin (kx2) sin (kx3)

φ4 (xi) = cos (kx1) cos (kx2) cos (kx3)

The three right hand sides given above are inputted as source terms into the Poisson

solver. Table D.1 gives a ’best case’ residual, R, which is computed by comparing

the exact right hand side values with values of Aφ (finite difference approximation

of ∇2φ). Additionally several errors are computed for different values of max resid-

ual r, where r‖f̂‖ = ‖Aφ̂− f̂‖ is less than 10−4, 10−6, or 10−10. Ideally we would

like the residual to be comparable to the errors in approximating f̂ using Aφ̂ for an

exact φ̂. Case 1 has gradients isolated from the x2 and x3 boundaries, while case

2 gradients are concentrated near the boundaries. Cases 3 and 4 are homogeneous

using Dirichlet and Neumann boundary conditions, respectively. For an unknown

reason for case 2 the errors outperform the ’best’ case value considerably. Table
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Table D.1: Normalized residuals for 2563 domain using 8-grid. Here R = ‖Aφ̂−
f̂‖‖f̂‖−1 and e = ‖φ̃ − φ̂‖‖φ̂‖−1. Errors are computed using three
different values of max residual.

case 1 1 1 2 3 3 3 4 4 4
k 8 32 64 8 32 64 8 32 64
σ 8 32 64
R 6e-7 2e-4 2e-3 2e-2 2e-7 4e-5 7e-4 3e-7 4e-5 7e-4
e−4 5e-5 2e-4 3e-3 2e-4 4e-5 5e-5 7e-4 4e-5 5e-5 7e-4
e−6 9e-7 2e-4 3e-3 2e-4 6e-7 5e-5 7e-4 5e-7 4e-5 7e-4
e−10 7e-7 2e-4 3e-3 2e-4 3e-7 4e-5 7e-4 3e-7 4e-5 7e-4

Table D.2: Verification of order of accuracy for k = 32π (σ = 32 for case 1) using
a residual of 10−10.

case 1 3 4
e(2563) 1.68e-4 4.44e-5 4.36e-5
e(5123) 1.04e-5 2.81e-6 2.75e-6
ratio 16.2 15.8 15.9

D.2 demonstrates the order of accuracy of the solver showing that increasing the

number of points in each direction results in approximately a factor of 16 reduction

in error.
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