UC Berkeley
UC Berkeley Previously Published Works

Title

Microbial production of advanced biofuels

Permalink

Ihttps://escholarship.org/uc/item/25s902md

Journal

Nature Reviews Microbiology, 19(11)

ISSN
1740-1526

Authors
Keasling, Jay

Garcia Martin, Hector

Lee, Taek Soon

Publication Date
2021-11-01

DOI
10.1038/s41579-021-00577-w

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-

NonCommercial License, available at |https://creativecommons.orgé licenses/bv—nc/‘t.O/i

Peer reviewed

eScholarship.org Powered by the California Digital Library

University of California


https://escholarship.org/uc/item/25s902m0
https://escholarship.org/uc/item/25s902m0#author
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/

Microbial production of advanced biofuels
Jay Keasling'®, Hector Garcia Martin'*"8, Taek Soon Lee'?, Aindrila Mukhopadhyay'=?,
Steven W. Singer'?, Eric Sundstrom?*®

'Joint BioEnergy Institute, Emeryville, CA 94608

’Department of Chemical & Biomolecular Engineering and Department of
Bioengineering, University of California, Berkeley, Berkeley, CA 94720

®Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory
“*Center for Biosustainability, Danish Technical University, Lyngby, Denmark

°Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes
for Advanced Technologies, Shenzhen, China

®Advanced Biofuels and Bioproducts Process Development Unit, Emeryville, CA 94608
"DOE Agile BioFoundry, Emeryville, California 94608, United States

8BCAM, Basque Center for Applied Mathematics, 48009 Bilbao, Spain

°Environmental Genomics and Systems Biology Division, Lawrence Berkeley National
Laboratory

Abstract:

Concerns over climate change have necessitated a rethinking of our transportation
infrastructure. One possible alternative to carbon-polluting fossil fuels are biofuels
produced from a renewable carbon source using engineered microorganisms. Two
biofuels, ethanol and biodiesel, have been made inroads to displacing petroleum-based
fuels, but their penetration has been limited by the amounts that can be used in
conventional engines and by cost. Advanced biofuels that mimic petroleum-based fuels
are not limited by the amounts that can be used in existing transportation infrastructure,
but have had limited penetration due to costs. In this review, we will discuss the
advances in engineering microbial metabolism to produce advanced biofuels and
prospects for reducing their costs.

Introduction

The US consumes approximately 14 million barrels of oil equivalents every day in
transportation fuels or roughly 28 quadrillion BTUs of energy (Department of Energy
2020). In 2019, fossil resources supplied approximately 81% of total energy and 95%
of the transportation fuels used (Department of Energy 2020), with renewable resources
supplying 11% of total energy and only 5% of transportation fuels. By 2050, energy
use is projected to increase by 50%, with renewable resources accounting for only
25% of total use.
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In the United States, gasoline is the predominant fuel consumed (approximately 9.5
million barrels per day), diesel fuel is next (at approximately 4 million barrels per day),
and jet fuel is last (at approximately 2 million barrels per day). Worldwide, gasoline
accounts for 39% of energy used by the transportation sector, with diesel fuel
accounting for 36% and jet fuel 12%. Gasoline is a complex mixture of hydrocarbons
composed primarily of branched-chain alkanes and aromatics ranging from 4 to 12
carbons in length (Sawyer 1993). Diesel fuel is a mixture of generally linear
hydrocarbons ranging from 9 to 23 carbons in length, with an average length of 16
carbons. The types of hydrocarbons in gasoline and diesel have a strong impact on the
properties of the fuel. For example, branching and unsaturation leads to greater octane
numbers in gasoline (Ghosh et al. 2006) and lower cetane numbers in diesel (Ghosh
and Jaffe 2006). Conversely, n-alkanes have higher cetane numbers and lower octane
values. While significant branching is detrimental to the diesel cetane number,
branching is needed to prevent gelling of linear hydrocarbons at low temperatures.

Similar to gasoline and diesel fuel, jet fuel is a mixture of hydrocarbons. Most jet fuels
are based on kerosene and are designed to a specific performance criterion. In the US,
standards for fuel for civilian aircraft are set by ASTM International (ASTM 2020),
whereas the Department of Defense sets the standards for fuel for military aircraft. Jet
A or A-1 are used in most parts of the world except the far north where Jet B is used
and in Russia where Jet TS-1 is used.

Worldwide, transportation contributed about one quarter of the total greenhouse gas
emissions (Environmental Protection Agency 2020). There are two primary ways to
decarbonize transportation: electrification with renewable sources of electricity, and
fuels made from renewable resources, namely biofuels. While electrification of the
passenger and truck fleet is happening slowly, electrification of air travel is likely to lag
significantly, if it ever happens. The development of renewable biofuels and
bioproducts (to reduce the price of biofuels) that reduce our reliance on petroleum is
critical to energy, environmental, and economic security (Kircher 2015).

The two major biofuels that have been commercialized are ethanol from a variety of
sources and biodiesel made from hydrogenated plant oils. Their uses have been
limited due to a lack of infrastructure, limitations in the blend wall (e.g., amount of
ethanol that can be blended into gasoline, currently 10% in the United States) and the
number of flex-fuel automobiles (e.g., that can use more than 10% ethanol), quality of
the fuel (e.g., diesel made from vegetable oil), and cost of the fuel. The penetration of
biofuels could be deeper if 1) biofuels had similar properties to the fuels currently made
from petroleum and 2) if they were significantly less expensive.
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One of the only ways to significantly reduce price and the carbon footprint of biofuels is
to use renewable lignocellulosic biomass from non-food crops. It has been estimated
that there are approximately one billion dry tons of lignocellulosic biomass available
annually in the US (Langholtz et al. 2016). If that biomass were converted to biofuels,
those biofuels could replace approximately one-third of the petroleum-derived fuels.
There have been many important advances in improving bioenergy crops and
extracting intermediates from them that can be converted into biofuels (Baral et al.
2019; Lin and Eudes 2020). The other way to increase the penetration of biofuels is to
produce biofuels that mimic petroleum-based fuels so they can directly replace
petroleum fuels and therefore will not be subject to blend limits. In this article, we
review the progress on engineering microorganisms to produce advanced biofuels that
will directly replace petroleum-based fuels.

Advanced biofuels and their production pathways

As mentioned above, petroleum-based fuels are a mixture of linear, branched and
aromatic hydrocarbons. There are several hydrocarbon-producing pathways in living
systems that are capable of producing molecules similar to those found in gasoline,
diesel, and jet fuel: isoprenoid, fatty acid, and polyketide, to name a few. In addition to
these hydrocarbons, higher alcohols (hydrocarbon chains longer than ethanol) are
suitable replacements for gasoline and can be used to synthesize diesel and jet fuel
(Brooks et al. 2016) (Figure 1). We review these pathways and the engineering of these
pathways to produce advanced biofuels.
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Figure 1. Metabolic pathways for advanced biofuels. Blue circles represent key
metabolites, and red circles represent the type of biofuels.

Isoprenoids. Many isoprenoids are excellent biofuel candidates because they are
branched and/or cyclic, which prevents gelling at low temperatures and improves
octane (George, Alonso-Gutierrez, et al. 2015). Isoprenoids with fewer than 20 carbons
are usually considered as fuel targets or precursors to biofuels. Isopentenyl
diphosphate (IPP) and its isomer dimethylallyl diphosphate (DMAPP) are the two
five-carbon (C5) building blocks to isoprenoids, and they are synthesized mostly via
two routes: the 2-methyl-d-erythritol-4-phosphate (MEP) pathway and the mevalonate
(MVA) pathway (M. Li et al. 2020). Prenyltransferases condense IPP and prenyl
diphosphates to produce prenyl diphosphates with an additional five carbons: GPP
(C10), FPP (C15), and GGPP (C20) (Rodriguez-Concepcion 2014; Oldfield and Lin
2012). Elongated prenyl diphosphates are converted to specific terpenes by terpene
synthases or dephosphorylated to alcohols by phosphatases. The cyclization
mechanism differs from one terpene synthase to another, but they share common
mechanistic aspects such as the formation of a carbocation by diphosphate group
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removal (Gao et al. 2012). Both E. coli and S. cerevisiae have been engineered to
produce isoprenoid-based biofuels by co-expression of specific terpene synthases,
most of which have been derived from plants. Farnesene and bisabolene are two early
examples of isoprenoid biodiesel precursors (Wang et al. 2011; Zhu et al. 2014;
Meadows et al. 2016; Peralta-Yahya et al. 2011). Recently, industrial production of
farnesene has been reported at titers of 130 g/L by introducing novel pathways to
increase cytosolic acetyl-CoA levels in engineered S. cerevisiae (Meadows et al. 2016).
Multicyclic sesquiterpenes such as epi-isozizaene and pentalenene are highly energy
dense fuel precursors for aviation and missile fuels (Harrison and Harvey 2017) and
have been produced in engineered E. coli and S. cerevisiae (Liu et al. 2018).
Monoterpenes such as limonene, pinenes, linalool, and 1,8-cineole are precursors to
jet fuel and have been produced in E. coli and fungi by co-expression of C10-specific
prenyl transferase and terpene synthases (Zebec et al. 2016; Zhuang et al. 2019).

Isoprenoid-derived C5 alcohols are being considered for commercial scale production
due to their favorable properties as gasoline replacements and as precursors to jet fuel
and recent titer improvements (George, Thompson, et al. 2015a; Kang et al. 2019). C5
alcohol production was first demonstrated in E. coli by overexpressing nudF from
Bacillus subtilis (Withers et al. 2007). An E. coli ortholog (hudB) increased isoprenol
production further (Chou and Keasling 2012), and extensive engineering efforts
improved its yield (close to 70% of theoretical yield) and titer significantly (Zheng et al.
2013; George et al. 2014; George, Thompson, et al. 2015a). To address the toxicity of
accumulating IPP, an “IPP-bypass” pathway was developed by leveraging substrate
promiscuity of a phosphomevalonate decarboxylase to bypass one phosphorylation
step in the MVA pathway (Kang et al. 2016; Aram Kang et al. 2017), and recently, the
highest reported titer (10.8 g/L) of isoprenol was achieved via fed-batch fermentation
using this pathway (Kang et al. 2019).

Fatty acids. Long, linear hydrocarbons, which are excellent diesel and jet fuel
components, can be readily produced from fatty acids (Ruiz et al. 2006; Lennen and
Pfleger 2012). In nature, fatty acids form the core of the phospholipid membrane that
surrounds most cells (Walther and Farese 2012). Fatty acids have been used
traditionally as precursors to biodiesel, produced by trans-esterification of fats with
methanol (fatty acid methyl ester (FAME)) or ethanol (fatty acid ethyl ester (FAEE)). The
fatty acid synthase (FAS) is a multienzyme system composed of an iterative
decarboxylative condensation enzyme, acyl carrier protein (ACP), a series of reducing
and dehydrating enzymes, and a thioesterase (TesA) (JanBen and Steinblchel 2014).
Fatty acid biosynthesis is tightly regulated in the host as it is an essential function, and
a significant perturbation of this pathway results in altered membrane composition and
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severe growth defects (Lennen et al. 2011; Lennen and Pfleger 2013; Budin et al.
2018). There have been various engineering approaches to improve fatty acid
biosynthesis for biofuels production (Marella et al. 2018). Two early approaches
focused on diverting the pool of acetyl-CoA towards fatty acid biosynthesis or
decreasing the degradation of fatty acids. For example, overexpression of acetyl-CoA
carboxylase (ACC) led to increased malonyl-CoA levels and improved fatty acid
production (Chen et al. 2014; Qiao et al. 2015). Genes for acetate production were
knocked out or knocked down in E. coli to reduce the loss of acetyl-CoA (Wu et al.
2017). The deletion of B-oxidation genes in the fatty-acid degradation pathway also
improved fatty acid production (Steen et al. 2010). As S. cerevisiae does not produce
cytosolic acetyl-CoA naturally, the cytosolic acetyl-CoA level was increased by
overexpression of heterologous ATP:citrate lyase (ACL) (Zhou et al. 2016) and
circumventing the native pyruvate dehydrogenase reaction (Krivoruchko et al. 2015; de
Jong et al. 2014). As fatty acid biosynthesis demands significant NADPH, improving
NADPH supply by engineering the pentose phosphate pathway and/or engineering
metabolism to relieve cellular redox imbalances have become important approaches to
improve fatty acid biosynthesis (Qiao et al. 2017; Xu, Qiao, et al. 2017). Chain-length
control is one of the more recent engineering directions in fatty acids biofuel research
as it is directly related to the fuel properties, and several FAS engineering strategies
have been used to produce short and medium chain fatty acids (Xu et al. 2016; Zhu et
al. 2017).

The types of fatty acid-derived biofuels that have been proposed are numerous. Early
work mainly focused on free fatty acids and their esters. Alkanes were synthesized
using acyl-ACP reductase and aldehyde decarbonylase (Schirmer et al. 2010; Cao et
al. 2016; M.-K. Kang et al. 2017), and terminal alkenes were synthesized using a fatty
acid decarboxylase (OleT) or cyanobacterial elongase-decarboxylase (Ols) (Rude et al.
2011; Mendez-Perez et al. 2011; Chen et al. 2015). Fatty alcohols were produced either
from fatty acyl-CoA by fatty acyl-CoA reductase or from fatty acids by various
reductases (Xu et al. 2016; Youngquist et al. 2013; Akhtar et al. 2013; Cao et al. 2016).
Methyl ketones were produced via modification of the [-oxidation pathway and
spontaneous decarboxylation of B-keto acids (Goh et al. 2012; Goh et al. 2014). More
complex and higher energy products such as ladderanes, which contains linearly
concatenated cyclobutane rings (Javidpour et al. 2016), have been proposed as rocket
fuels, but the biosynthetic pathway is not known, making their overproduction
impossible at this time. Cyclopropane fatty acids and branched fatty acids also have
good cold weather properties and can be produced by various systems (Machida et al.
2016; Yu et al. 2014; Czerwiec et al. 2019).
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Advanced alcohols. Microbial production of higher alcohols (hydrocarbon chains
longer than ethanol) was discovered and explored in Clostridium via the acetyl-CoA
dependent fermentation pathway, e.g., acetone-butanol-ethanol (ABE) fermentation
(Jones and Woods 1986). Clostridium has been extensively studied for production of
higher alcohols (and acetone), but several inevitable drawbacks such as slow growth
and spore formation prevent it from being a major workhorse for higher alcohol
production (Rabinovitch-Deere et al. 2013). Among advanced alcohols, isobutanol and
n-butanol were the most studied fuel targets due to their high energy content and
properties similar to gasoline (Harvey and Meylemans 2011). Due to challenges in
engineering Clostridium to produce n-butanol, its production has been engineered into
E. coli and a variety of other hosts. Using NADH accumulation as a driving force, Shen
and coworkers were able to boost n-butanol production to 30 g/L (Shen et al. 2011).
Heterologous expression of an NADH-dependent CoA-reductase drove the high titer
production of n-butanol in an E. coli strain that had all other fermentative
NADH-consuming pathways deleted. This work also revealed the nature of bottlenecks
that affected n-butanol production (Bond-Watts et al. 2011; Bai et al. 2019).

Another important set of higher alcohols are the fusel alcohols derived by catabolism of
branched amino acids using the Ehrlich pathway, which is naturally found in yeast. To
enhance the productivity of many higher alcohols, this pathway has been engineered
into E. coli by introduction of a promiscuous 2-keto acid decarboxylase and an alcohol
dehydrogenase, enabling high yield production of various higher alcohols (Atsumi et al.
2008). Later it was engineered into cyanobacteria, Corynebacterium glutamicum, and
other bacterial hosts (Hazelwood et al. 2008; Atsumi et al. 2008; Atsumi et al. 2009;
Vogt et al. 2016). Among these alcohols, isobutanol has been engineered to near
commercial titers and yields. To expand the portfolio of products derived from alcohol,
esters have been produced via esterification of the alcohols with various acyl-CoAs by
co-expressing an alcohol O-acyltransferase (Rodriguez et al. 2014; Layton and Trinh
2014). These esters are broadly used as flavors, fragrances, and solvents, and maybe
one day as biofuels.

Polyketides. The polyketide biosynthetic pathway is one of the most versatile
pathways for production of hydrocarbons with diverse structures, but it has been
mostly studied for the complex products they naturally produce, namely therapeutics
and pest control agents (Yuzawa et al. 2012; Yuzawa, Keasling, et al. 2017; Yuzawa,
Backman, et al. 2018; Yuzawa et al. 2016). As the choice of domains and modules in
modular polyketide synthases (PKSs) can provide control of the product structure in a
designed manner (Cai and Zhang 2018), short chain hydrocarbons (e.g., fuel targets)
can be produced in a predictable manner by rationally recombining domains found
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within natural PKSs (Yuzawa et al. 2016). For example, some PKS modules known to
release terminal olefins and alcohols (Gehret et al. 2011) can be incorporated into
chimeric, multi-modular PKSs to demonstrate production of compounds such as
1-butene, 1-hexene, 1-pentanol and 1-hexanol, which can be oligomerized into jet and
diesel fuels (Harvey and Meylemans 2014). An iterative type | polyketide pathway was
used to produce an alkene with multiple double bonds that can be chemically
hydrogenated to an alkane (Liu et al. 2015). As mentioned above, methyl branching is
an important structural feature for gasoline and to prevent gelling of diesel and jet fuel
at cold temperatures. Branches in polyketides can be achieved, either through
incorporation of methylmalonyl-CoA as a substrate or through methylation using
S-adenosyl methionine (SAM) (Poust et al. 2015; Wagner et al. 2016). In one example,
fatty acids were multi-methylated using an iterative type | PKS from Mycobacterium
tuberculosis that accepts methylmalonyl-CoA as a substrate (Menendez-Bravo et al.
2014). Short-chain ketones have been reported as gasoline replacements and
produced in E. coli engineered with a promiscuous [-keto-thiolase, a CoA transferase,
and an acetoacetate decarboxylase from different organisms (Lan et al. 2013;
Srirangan et al. 2016; Yuzawa, Deng, et al. 2017). Recently, Streptomyces albus was
engineered to produce short-chain ketones in excess of 1 g/L from plant biomass
hydrolysates (Yuzawa, Mirsiaghi, et al. 2018). Even though there are a few examples of
high titer polyketide production and PKSs can be engineered to make biofuels with
nearly ideal properties, the reported titers and yields of potential biofuel precursors
from engineered PKSs are significantly lower than those from fatty acid or isoprenoid
pathways, which is a huge challenge in engineering PKSs to produce biofuels in an
economically viable manner (Zargar et al. 2017). Nevertheless, these synthases show
great potential to produce tailor-made fuels.

Microbial chassis and carbon source

To produce the desired advanced biofuel, the fuel synthesis pathway must be
incorporated into a microbial host. The choice of microbial host is generally dictated by
several factors, including the source of carbon (e.g., cellulose, lignin, methane, carbon
dioxide, etc.), the toxicity of the substrate (or anything in it) or the fuel itself, and the
processing conditions needed to transform the substrate and/or produce the fuel.
Heterologous pathways to produce advanced biofuels have been translated to a
variety of hosts, which has expanded the use of different substrates and cultivation
conditions. Isobutanol production has been engineered into a wide variety of hosts
beyond the foundational studies in E. coli and S. cerevisiae. The isobutanol pathway
has been engineered into Corynebacterium glutamicum, an industrial actinobacterium
that has higher tolerance to isobutanol and is a native high titer producer of branched
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chain amino acids, precursors to isobutanol ((Smith et al. 2010; Blombach et al. 2011).
These engineered C. glutamicum strains produced up to 4.9 g/L from glucose. The
isobutanol pathway has also been deployed into clostridia that use cellulosomes to
hydrolyze cellulose. A mesophile, Clostridium cellulolyticum, was engineered to
produce isobutanol at 660 mg/L and a thermophile, Clostridium thermocellum,
produced 5.4 g/L of isobutanol, representing a 45% yield from cellulose (Higashide et
al. 2011; Lin et al. 2015).

Fatty acid-derived biofuels have also been produced in a range of microbial hosts (Yan
and Pfleger 2020). Oleaginous yeasts, primarily Yarrowia lipolytica, which naturally
produce triacylglycerides under nitrogen limitation, have been engineered to produce a
suite of fatty-acid derived molecules, including, fatty acid ethyl esters and medium
chain methyl ketones (Hanko et al. 2018; Gao et al. 2018). These molecules may serve
as drop-in replacements or blendstocks for diesel engines. These molecules have
largely been produced using glucose or glycerol as a substrate; oleaginous yeasts R.
toruloides and Lipomyces starkeyii natively metabolize xylose, but strains of Y. lipolytica
have been engineered to metabolize xylose by the addition of heterologous pathways
(Li and Alper 2019). For bacteria, Pseudomonas putida has been engineered to
produce medium chain methyl ketones from both glucose and lignin-related aromatics,
and methyl ketone production from plant hydrolysates was shown to be enhanced by
the presence of biomass-derived amino acids, which are co-metabolized with the
sugar and aromatic substrates (Dong et al. 2019). Fuel range hydrocarbons have been
also produced indirectly by P putida from lignin-derived compounds through funneling
of intermediates from lignin depolymerization to medium-chain length
polyhydroxyalkanoates (mcl-PHAs), which are produced through fatty acid metabolism.
These mcl-PHAs were subjected to tandem thermal depolymerization of mcl-PHAs and
catalytic deoxygenation to produce C,-C,, hydrocarbons (Linger et al. 2014).

As mentioned above, terpenes produced by the isoprenoid pathway are versatile
molecules that can be used as drop-in replacements for gasoline, diesel and jet fuel.
Examples for all three of these fuels types have been demonstrated in non-model hosts
(Table 1). Isopentenol was produced in C. glutamicum (Sasaki et al. 2019). Titers of >1
g/L liter were achieved with glucose as substrate as well as sorghum hydrolysate
derived from ionic liquid pretreatment. C. glutamicum tolerated higher levels of both
isopentenol compared to E. coli. Bisabolene has been produced from glucose, xylose
and p-coumarate in an engineered strain of R. toruloides (Yaegashi et al. 2017). This
process has been scaled to a 20-L one-pot process at > 2 g/L using ionic-liquid
pretreated sorghum as a feedstock (Sundstrom et al. 2018). And monoterpenes, jet fuel
precursors, have also been produced by R. toruloides (Zhuang et al. 2019).
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Table 1. Advanced biofuel production by non-model hosts

Host Molecule (titer) References
Corynebacterium Isobutanol (4.9 g/L) (Blombach et al. 2011)
glutamicum Isopentenol (1.3 g/L) (Sasaki et al. 2019)
Clostridium Isobutanol (660 mg/L) (Higashide et al. 2011)

cellulolyticum
Clostridium Isobutanol (5.4 g/L) (Lin et al. 2015)
thermocellum

Yarrowia lipolytica

Methyl ketones (315 mg/L)
Fatty acid ethyl esters (1.2 g/L)

(Hanko et al. 2018; Gao
et al. 2018)

Pseudomonas putida Methyl ketones (1.1 g/L) (Dong et al. 2018)
Rhodosporidium bisabolene (2.2 g/L) (Sundstrom et al. 2018)
toruloides 1,8-cineole (35 mg/L) (Zhuang et al. 2019)

Biofuels from CO,. In addition to production from plant-derived sugars and aromatics,
advanced biofuels have been produced from CO, using photosynthetic and
non-photosynthetic autotrophic bacteria. Isobutanol has been produced in single cell
cyanobacteria Synechocystis PCC 6803 and Synechococcus elongatus PCC 7942 at ~
1 g/L and >40 mg/L/h (Li et al. 2014; Miao et al. 2018)) (Varman et al. 2013). As with
heterotrophic hosts, isobutanol toxicity limited production and UV mutagenesis was
employed to identify mutants that improved tolerance to isobutanol in S. elongatus
(Miao et al. 2018) Cupriavidus necator, a well-studied chemoautotroph capable of rapid
growth on H,/CO,, was engineered to produce isobutanol from H,/CO, and formate.
Formate was delivered exogenously and generated from CO, in a bioelectrochemical
reactor in the presence of C. necator (H. Li et al. 2012). C. necator has also been
engineered to produce medium chain methyl ketones from both sugars and H,/CO, by
the same strategies to impair native fatty acid beta-oxidation (Dong et al. 2018).

Product, intermediate, pathway toxicity. Another factor that greatly impacts the host
choice is the toxicity of the final product, intermediates in the production pathway, or
the pathway itself. Inhibitory aspects of the starting material or carbon source must
also be overcome.
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Biofuels are predominantly hydrocarbon based (Beller et al. 2015) and, as such, are
growth inhibitory (Mukhopadhyay 2015). For example, the bio-gasoline target
isopentenol is toxic to model microbes such as E. coli at concentrations > 2% (Foo et
al. 2014; Dunlop et al. 2011), as are the terpene-based jet-fuel targets and precursors
limonene (Chubukov et al. 2015), pinene (Niu et al. 2018) and cineole (Mendez-Perez et
al. 2017). lIsobutanol, another prominent biofuel target, is also toxic to many
microorganisms that have been engineered for its production (Minty et al. 2011; Chong
et al. 2014; Song et al. 2018; Ouellet et al. 2011). The partitioning of these compounds
into the cell-membrane is considered to be a prominent aspect dictating their toxicity
(Jin et al. 2014) (Zingaro et al. 2013; Chen et al. 2013).

Most starting materials, such as non-food plant biomass or agricultural waste, require
pretreatment to depolymerize and release the metabolizable components. A
well-reviewed topic (Pienkos and Zhang 2009; Ostadjoo et al. 2018; Mukhopadhyay et
al. 2012), pretreatment often results in the generation of toxic byproducts. Examples
are furfural and HMF that arise from the desiccation of sugars during acid pretreatment
of plant biomass. In other cases, residual reagents used in the pretreatment may also
be toxic to downstream enzymes and microbes. For instance, ionic liquids, a highly
efficient set of reagents for the depolymerization and deconstruction of a range of
feedstocks, can be inhibitory to both downstream enzymes (Park et al. 2012) and
microbes, even at residual levels (Ouellet et al. 2011; Yu et al. 2016).

For these challenges two main approaches have been used and have their own
strengths and weaknesses. One is the use of a model or highly genetically tractable
microbial host, and engineering into it the desired phenotypes, namely resistance to
the toxicity. The other is to use microbial strains that have native capability to tolerate
the inhibitory compound. In addition to strain improvements, removal of final products
or clean-up of the starting material is a powerful process strategy to address these
toxicities (Freeman et al. 1993; Li et al. 2016) - this approach is described below, under
Engineering for Scale-up.

Engineering model hosts. Both targeted and combinatorial approaches have been used
to engineer microbial systems to counter these toxicities. In a targeted approach,
specific genes known to enable tolerance are upregulated, downregulated, or deleted.
Predominantly, chaperones, cell wall components, transporters and regulators are
commonly discovered targets, and continue to be examined to engineer robust hosts
(Thorwall et al. 2020; Gong et al. 2017). The microbial cell wall also plays a critical role
in physiological response to many key stresses as well as core functions such as
respiration. Perturbation of the cell membrane can disrupt the efficiency of the electron
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transfer chain (Budin et al. 2018). The importance of cell wall engineering for biofuel
production has also been recently reviewed (Sandoval and Papoutsakis 2016). Recent
examples for other targeted studies are the systematic evaluation of chaperones to aid
in butanol production (Xu et al. 2019). Transporters have specifically been an attractive
target due to their ability to export the final product, and have been developed for
hemiterpenes (e.g. isopentenol, (Basler et al. 2018) ), monoterpenes (e.g. limonene,
(Dunlop et al. 2011)), isobutanol (He et al. 2019), fatty acids (Lennen and Pfleger 2013)
and other hydrocarbons (e.g. hexene (Mingardon et al. 2015) and decane (Chen et al.
2013)). However, genes of other functional categories have also been discovered using
broader approaches. One example is a CRISPR-based study that investigated 31 loci
and revealed the role of housekeeping genes such as recA and genes of unknown
function (yjj2) in enhancing biofuel production (Otoupal and Chatterjee 2018).

Engineering microbial systems to address substrate toxicity has also relied on
‘omics-guided discovery of targets that could be modulated to enhance tolerance.
Initial functional genomics studies were valuable in understanding gene targets that
could be used to generate more robust hosts. Furan compounds, such as furfural and
HMF, are well known side products in the renewable carbon use pipeline and toxic to
microorganisms (Glebes et al. 2014; Yang et al. 2018), and they remain a topic of
research to enable use of acid pretreated biomass (Kurgan et al. 2019; Jung et al.
2019). Several key studies explored the development of HMF-tolerant strains for
production of isobutanol, highlighting the requirement for strains to have multiple
non-native capabilities (Song et al. 2017). In the case of ionic liquids (ILs), both
IL-tolerant enzymes and microbes have been developed. Examples include the
development of an E. coli chassis that, via the deletion of the regulator RcdA, could be
made tolerant to ethyl methyl imidazolium acetate (EMIM), an IL. This chassis was then
used to express both IL-tolerant cellulases, as well as a biojet fuel target, limonene,
and was able to convert pretreated cellulose with toxic levels of EMIM directly to the
final product (Frederix et al. 2016). More recently, a laboratory evolution experiment led
to the discovery of the role of a cytochrome component for IL tolerance, resulting in
even superior production of limonene from IL-pretreated biomass (Eng et al. 2018).
Another study targeting a novel IL-responsive transporter in E. lignolyticus led to the
discovery of the transporter and also the corresponding regulator that is now the basis
of a new category of inducible promoters using crystal violet (Frederix et al. 2014;
Ruegg et al. 2018) Recent studies have also used salt tolerance as an enhancer for
both IL tolerance and biofuel production in the presence of such inhibitory reagents
and E. coli strains adapted for ionic liquid tolerance were used for the production of
isoprenol (Wang et al. 2019).
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Engineering naturally tolerant hosts. As tools for genetically modifying any microbe of
interest are becoming more available, a viable approach to develop robust biofuel
production hosts is the use of microbes that are natively tolerant to a common set of
inhibitors. Prior to work on biofuels, there has been significant work on solvent
tolerance for biodegradation and biocatalysis. Selection of microbial systems for these
applications provided some of the first examples of bacterial and fungal strains that are
highly tolerant to a range of hydrocarbons and aromatic compounds. Well reviewed
elsewhere, key examples are P putida strains that have both cellular export systems
and hydrocarbon catabolism systems that lead to this phenotype (Yang et al. 2016;
Ramos et al. 2002). Other microbial hosts, such as C. glutamicum and Zymomonas
mobilis, also show innate tolerance to certain key biofuel targets including isopentenol
(Sasaki et al. 2019) and ethanol (Yang et al. 2016; Ramos et al. 2002). These tolerances
have been further enhanced using evolution or targeted engineering (Stella et al. 2019;
Wang et al. 2020; Shui et al. 2015; Fuchino and Bruheim 2020). Gram positive
microbes, such as Rhodococcus opacus, are natively tolerant to many aromatic
compounds and hydrocarbons (Castro et al. 2016). And many fungi such as the
oleaginous yeast R. toruloides are natively tolerant to a wide range of ionic liquids and
other prepreatment reagents (Yaegashi et al. 2017). An interesting caveat in the use of
naturally tolerant hosts for final product tolerance is the case of P putida, which
contains degradative pathways for many desired final products (W.-J. Li et al. 2020;
Thompson et al. 2020). Degradation of the final product is not an economically viable
method for dealing with toxicity, and therefore additional studies of these phenotypes
are essential before they can be used in the design of microbial production systems.

In the context of both model and non-model hosts, recent progress in examining the
toxicity response is dominated by next-generation methods that leverage combinatorial
assays, massively parallel sequencing and automation. Among these, two approaches
are particularly suitable for tolerance engineering. Adaptive laboratory evolution (ALE)
has been used in several examples to evolve tolerance towards a range of inhibitory
compounds, substrates and reagents (Sandberg et al. 2019). ALE works by repeatedly
subculturing cells, which selects for the fastest growers (Conrad et al. 2011). As such,
it relies on the powerful tool of evolution to find genotypes that improve growth in a
systematic fashion. ALE was used to develop E. coli hosts with higher tolerance to
aromatics than native E. coli (McCloskey et al. 2018), resulting in recruitment of genes
that may not have been chosen in a targeted effort. Another uniquely powerful
approach is RB-TnSeq: random barcode transposon-site sequencing (Wetmore et al.
2015). RB-TnSeq conducts mutant fitness profiling in high throughput by incorporating
random DNA barcodes into transposons. Barcode sequencing is then used to assay
mutant fitness across very sets of conditions. Wetmore et al performed 387 successful
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genome-wide mutant fithess assays, representing 130 different microbe-carbon source
combinations, and identified 5,196 genes with significant phenotypes across the five
bacteria. Since then, RB-TnSeq has been used to discover new catabolism pathways
in P putida (Levulinic acid (Rand et al. 2017), I,4-butanediol (W.-J. Li et al. 2020), lysine
(Thompson et al. 2019), short-chain alcohols (Thompson et al. 2020) and valeric acid
(Thompson et al. 2019)), essential genes in Synechococcus elongatus PCC 7942
(Rubin et al. 2015), and the role of mutant phenotypes for 11,779 protein-coding genes
that had not been previously annotated with a specific function (Price et al. 2018). Both
ALE and RB-TnSeq resulted in identification of genes not easily intuited from prior
studies or even other ‘omics experiments, and provided valuable targets to design
robust microbial chassis. ALE data and fithess data from published studies are
available to the public via accessible databases (ALE db (Phaneuf et al. 2019) and fit
browser (Price et al. 2018)), making them valuable resources to be used by the
research community in general.

Pathway and pathway Intermediates. Pathways can impact the cell in two major ways
One is by creating an imbalance for energetics or redox of the cell, such as by overuse
of the pool of reducing cofactors or accumulation of a toxic intermediate, and the
second is due to the burden of protein production. Eliminating intermediate imbalance
and balancing redox is a key part of optimizing pathways (A Kang et al. 2017;
Meadows et al. 2016). However, in a few cases the toxicity of these intermediates itself
was used to develop the biodesign approach. An example is the accumulation of FPP
which was reduced by using a dynamic sensor responsive system (Dahl et al. 2013;
Zhang et al. 2012). Glven the specificity of an intermediate to a pathway, general
solutions are challenging to devise. However, innovative solutions to this problem could
be found in the development of synthetic organelles, such as carboxysomes where
reactions that produce toxic byproducts and intermediates can be sequestered
(DeLoache et al. 2016). Another way to solve this problem is to tether proteins together
(Ajikumar et al. 2010; Mitsuhashi and Abe 2018; Hu et al. 2020; Wang et al. 2011;
Dueber et al. 2009) or co-localize proteins (Jager et al. 2018) to minimize diffusion of
intermediates (Dueber et al. 2009). Laboratory evolution can also be used to select for
cells that do not accumulate toxic intermediates and have high flux to the final product.
For example, ALE was used to adapt E. coli strains to tolerate methylglyoxal, a
common toxic intermediate (McCloskey et al. 2018).

Growth inhibition due to protein expression or localization burden could be observed in
some cases, such as with the use of membrane associated proteins (Wagner et al.
2007) (Gubellini et al. 2011). Among other burdens, membrane protein overexpression
causes stresses due to titration of the cellular secretory system (Wagner et al. 2007)
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(Jensen et al. 2017) (Baumgarten et al. 2017; Baumgarten et al. 2018). However, there
have been several useful studies that have developed approaches to mitigate or
overcome these stresses. An interesting example is the use of toxicity from the
membrane protein expression itself to dynamically regulate its expression (Boyarskiy et
al. 2016).

Carbon efficient biofuel production

An important aspect of microbial production of biofuels is the conservation of carbon
converted from biomass substrates to fuel products. A challenge for reduced, long
chain molecules like fatty acids and terpenes is that the substantial amounts of carbon
are lost as CO,. As an example, conversion of glucose to limonene, a monoterpene
proposed as a jet fuel precursor, has a theoretical yield of 0.32 g/g of glucose (Baral et
al. 2019). This yield takes into account glucose converted to product as well as glucose
converted to CO, to provide ATP and NADPH for C-C formation and reduction.
Removing the requirement for glucose to provide energy and reducing equivalents
raises the theoretical yield to 0.45 g/g for the glucose limonene conversion. Two
strategies are required to achieve this increase in carbon conservation: 1) bypassing
the glycolytic pathway to avoid pyruvate dehydrogenase-mediated decarboxylation of
pyruvate to acetyl-CoA and, 2) compensating for this bypass by introducing external
reducing equivalents to generate ATP/NADPH. The phosphoketolase shunt, studied
most intensively in bifidobacterial species, produces acetyl phosphate from pentose
phosphate intermediates xylulose-5-phosphate or fructose- 6-phosphate (Henard et al.
2015). Acetyl phosphate is converted by acetyl-CoA synthetase to acetyl-CoA.This
shunt fulfills the requirement to bypass glycolysis to produce, in theory, three moles of
acetyl-CoA from one mole of glucose. This strategy, which has been referred to as
non-oxidative glycolysis, has been implemented in E. coli by expressing
phosphoketolase and impairing the native glycolytic pathway, improving the yield of
acetate from glucose from 66% to 83% under anaerobic conditions (Lin et al. 2018). In
principle, this non-oxidative glycolysis strategy could be combined with the
introduction of a source of external reducing equivalents, such as H,, to reduced
products with improved carbon conservation as described above for limonene
(Bogorad et al. 2013). In practice, a complete bypass to produce an
acetyl-CoA-derived product has not yet been reported; however, a phosphoketolase
shunt has been installed into a farnesene-producing strain of S. cerevisiae (Meadows et
al. 2016), leading to a 25% improvement in carbon conservation. The ability to express
phosphoketolase in a variety of hosts suggest this two step strategy to improve carbon
conservation for biofuel production has many avenues for success (Henard et al. 2015).
A promising host to implement the two step strategy is C. necator, since it has two
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native, oxygen tolerant hydrogenases to deliver external reducing equivalents and
phosphoketolase expression has been demonstrated in this host (Fleige et al. 2011).

Systematic approaches to improve titers, rates and yields (TRY)

A fundamental obstacle to produce commercially viable biofuels involves obtaining
high titers, rates and yields needed to make the fuel commercially viable (Van Dien
2013; Chubukov et al. 2016). Indeed, given the commodity nature of biofuels, at least
90% of theoretical yield, 300 g/L for titer and 5.0 g/L h for productivity are necessary
TRY targets for biofuels to be competitive with petroleum-based fuels. While rational
engineering approaches, which rely on a deep knowledge of pathway and host
metabolism, have proven successful in the past (Kang et al. 2019; Tian et al. 2019;
George, Thompson, et al. 2015b), less bespoke and more systematic methods are
desirable. These systematic methods have the advantage that they can be applied to
any host, pathway or metabolite, and do not require in-depth knowledge of
metabolism. This in-depth knowledge of metabolism takes years to obtain, and may
not even be available for non-model hosts.

Coupling production to growth. ALE has been successfully used to generate strains
with improved growth on suboptimal carbon sources (Strucko et al. 2018), or better
tolerance of high temperatures that might be necessary to maintain sterility, or for
downstream processing (Caspeta et al. 2014) or ionic liquids used to pretreat biomass
(Mohamed et al. 2017). At times, growth rate increases result in associated production
increases (Lennen et al. 2019), but this need not necessarily be the case. Making this
connection necessary (i.e., growth is necessarily linked to product synthesis) involves a
procedure called growth coupling (Shepelin et al. 2018), which typically relies on
making cell growth dependent on an intermediate of the desired product. The design of
the selection mechanisms that couple growth and production is mostly an art, rather
than a science, and relies on bespoke approaches that are not generalizable to many
products. Hence, although growth coupled strategies have been experimentally shown
for the production of lactic acid (Fong et al. 2005; Zhou et al. 2003), alanine (Zhang et
al. 2007), n-butanol (Shen et al. 2011), succinate (Machado et al. 2012), malate
(Machado et al. 2012), carotenoids (Reyes et al. 2014), and 1,4-butanediol (Tai et al.
2016), a systematic approach applicable to any product is desirable. Harder et al
(Harder et al. 2016) provided experimental proof that itaconic acid can be increased
through the use of minimal cut sets, a generalizable computation approach. Indeed,
theoretical studies using this approach suggest that growth coupling for most
metabolites can be obtained for E. coli and S. cerevisiae (von Kamp and Klamt 2017)
by knocking out enough genes (often on the order of ~10 or more). This surprising
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theoretical result awaits experimental verification, which appears to be underway
(Banerjee et al. 2020).

Computational approaches to increase TRY. A popular approach has been to leverage
Genome Scale metabolic Models (GSMs), which provide an exhaustive description of
metabolic reactions encoded in the genome (King et al. 2016; Thiele and Palsson
2010). Using GSMs as a basis, a multitude of computational algorithms have been
developed to predict the effect of genetic modifications or pinpoint the genetic
modifications that increase production of the desired metabolites (Maia et al. 2016;
Zomorrodi et al. 2012; Landon et al. 2019): e.g., OptKnock (Burgard et al. 2003),
OptForce (Ranganathan et al. 2010), OptCouple (Jensen et al. 2019), OptORF (Kim and
Reed 2010), k-OptForce (Chowdhury et al. 2014), CiED (Fowler et al. 2009), MOMA
(Segre et al. 2002), ROOM (Shlomi et al. 2005), RobustKnock (Tepper and Shlomi
2010), ReacKnock (Xu et al. 2013), FSEOF (Choi et al. 2010), EFMs (Zanghellini et al.
2013), EMILIO (Yang et al. 2011), OptReg (Pharkya and Maranas 2006), OptGene (Patil
et al. 2005), RegKnock (Xu 2018), FOCuS (Mutturi 2017), GACOFBA (Salleh et al. 2015),
OptStrain (Pharkya et al. 2004), GDLS (Lun et al. 2009), among others. However, only a
few of these methods have been experimentally shown to lead to improved TRY.
Optknock is among the first of these methods and it attempts to achieve growth
coupling as defined above. Optknock has been successfully used to increase lactate
production by 25-73% (Fong et al. 2005) and 1,4-butanediol by 300% (Yim et al. 2011)
in E. coli, to increase anaerobic production of 2,3-butanediol to a titer of 2.3 g/l and a
yield 0.113 g/g in S. cerevisiae (Ng et al. 2012), and to increase the respiratory rate in
G. sulfurreducens (Izallalen et al. 2008). Cipher of evolutionary design (CiED) has been
leveraged to increase flavanone yields by 600% in E. coli (Fowler et al. 2009) and
increase production of leucocyanidin and catechin by 400% and 200%, respectively, in
the same host (in conjunction with Metabolic Optimization of Metabolic Adjustment,
MOMA) (Chemler et al. 2010). MOMA has also been combined with OptGene to help
increase production of sesquiterpenes by 85% (Asadollahi et al. 2009) and vanillin by
500% (Brochado et al. 2010) in S. cerevisiae. Flux variability scanning based on
enforced objective flux (FSEOF) has been used to improve lycopene production in E.
coli by 320% (Choi et al. 2010). FluxDesign combined with (EMA) has provided insights
to increase production of lysine in C. glutamicum by 200% (Becker et al. 2011) and of
isobutanol in B. subtilis by 230% (S. Li et al. 2012). Optforce has been shown to
improve internal malonyl-CoA levels by 400% in E. coli, leading to record levels of
naringenin (Xu et al. 2011), and 20% yield increase of fatty acids in the same host
(Ranganathan et al. 2012). OptGene has been used by itself to increase succinate titer
by 3000% and succinate yield by 4300% in S. cerevisiae (Otero et al. 2013). GSMs
have also been used in conjunction with *C Metabolic Flux Analysis (*C MFA) to
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identify bottlenecks or imbalances in S. cerevisiae, and suggest engineering strategies
that improved fatty acid production by 70% (Ghosh et al. 2016) and helped produce
fatty alcohols at the level of 1.2 g/L (d’Espaux et al. 2017). These successes
underscore the utility of GSM in metabolic engineering, and highlight the need for more
experimental tests and comparisons between different approaches.

Machine Learning. Machine learning (ML) has recently emerged as a new approach to
improve TRY (Kim et al. 2019; Presnell and Alper 2019; Volk et al. 2020). ML provides
predictions by statistically learning patterns in experimental data, rather than
concentrating on the underlying biological mechanism. While the application of
machine learning to synthetic biology is still nascent, it has shown promise by
predicting translation initiation sites (Clauwaert et al. 2019), protein function (Ryu et al.
2019), biosynthetic pathways (Segler et al. 2018), the strength of regulatory elements
(Meng et al. 2013), enzyme kinetic parameters (Heckmann et al. 2018), CRISPR guide
efficacy (Chuai et al. 2018), optimal growth temperatures (Li et al. 2019) and pathway
intermediate concentration (Lee et al. 2013), to name a few. ML has also been applied
to systematically improve TRY. A precursor of ML, Principal Component Analysis
(PCA), has been used to guide metabolic engineering: by mMapping proteomics to
production. These threugh—PGA-led-te recommendations led to predueing a 40%
increase of limonene and 200% of bisabolene in E. coli by (Alonso-Gutierrez et al.
2015). Another example involves a 200% increase of n-butanol production in E. coli by
focusing on metabolomics data (Ohtake et al. 2017). Quadratic regressions have been
used in combination with Design of Experiments (DOE) models to predict violacein
production in E. coli and increase its production by 320% (Xu, Rizzoni, et al. 2017).
Violacein was also the product of choice to be optimized in S. cerevisiae through
artificial neural networks, leveraging the data generated through the systematic MiYA
YeastFab Assembly strategy, leading to a 240% increase in production (Zhou et al.
2018). Ensemble models have been used to relearn the Michaelis-Menten relationship
purely from data for limonene and isopentenol producing E. coli, enabling actionable
recommendations for their improvement (Costello and Martin 2018). Ensemble models
have also been used to improve by 21% dodecanol production in E. coli, showing also
some limitations of this data-driven approach (Opgenorth et al. 2019). Neural networks
and a support vector regressor (SVR) have been used to fine tune the translational
control of a limonene producing pathway in E. coli through the engineering of RBSs,
increasing production by 60% (Jervis et al. 2019). Promoter choice in pathway design
has been guided through the use of gaussian processes and ensemble models to
improve lycopene production in E. coli (HamediRad et al. 2019) and tryptophan
synthesis in S. cerevisiae (105% improvement in productivity) (Zhang et al. 2019). Given
the utility of machine learning in the field, new algorithms that quantify uncertainty
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prediction and are specially designed for synthetic biology use cases are being created
(Radivojevi¢ et al. 2019). In sum, machine learning shows a great potential for a more
systematic metabolic engineering (Yadav et al. 2012), especially if combined with
automation (Carbonell et al. 2019).

Engineering for scale-up

With the development of advanced robotics and molecular biology techniques, an
array of tools have enabled high-throughput metabolic engineering, significantly
reducing the time and effort required to achieve high flux to novel biofuel pathways
(Dietrich et al. 2010; Choi et al. 2019; Marcellin and Nielsen 2018). Fermentation
process development and scale-up have remained comparatively bespoke, creating a
significant bottleneck for commercial deployment of advanced biofuel technologies
(Crater and Lievense 2018; Wehrs et al. 2019). Due to the massive size of commercial
biofuel fermentors - up to 500 m® for aerobic processes and 4,000 m® for anaerobic
processes (Davis et al. 2018; Marcellin and Nielsen 2018) - overcoming scale-up
challenges is of paramount importance for successful commercialization. Achieving
consistently high yields and titers under production conditions necessitates precise
control of process parameters including pH, substrate feed rate, dissolved oxygen, and
in situ product removal. Such controls are not accommodated in simple batch
cultivation - effective evaluation of new strains therefore requires scale-down
cultivation in tightly controlled systems that effectively mimic industrial conditions to
ensure process robustness and scalability. While conventional bioreactors remain labor
intensive and low-throughput, improved robotics and low-cost sensors have enabled a
new generation of bioreactor systems with capabilities nearing those of their full-scale
counterparts, allowing automation and statistical design of experiments approaches to
interrogate non-intuitive interactions between process variables. Microplate growth
systems are now engineered to enable fed-batch operation, pH control, automated
sampling, and real-time monitoring of pH, DO, and culture density (Yang et al. 2016;
Cruz Bournazou et al. 2017; Gruber et al. 2017). Highly automated, disposable (Chang
et al. 1997) bioreactors offer additional functionalities, including precise dissolved
oxygen and feed control and continuous monitoring of process offgas (Tai et al. 2015).
High-throughput chemostat bioreactors can target phenotypic response to slight
variations in process conditions (Wong et al. 2018). When coupled with advanced
computational fluid dynamics modeling (Haringa et al. 2017; Bach et al. 2017; Anane et
al. 2019), such systems allow increasingly accurate scale-down testing and de-risking
of industrial biofuel fermentations, even before the commercial bioreactor design is
finalized.
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In addition to tight process controls, the production environment features pressures,
sheer rates, product titers, and spatial heterogeneities poorly reflected in small-batch
cultivation. Microbial contamination and genetic instability also threaten process
stability and robustness at scale, necessitating novel control mechanisms (Rugbjerg
and Sommer 2019; Brexd and Sant’Ana 2017). While conventional antibiotics and
antimicrobials are cost-prohibitive at scale, targeted application of sulfite (Shaw et al.
2016; Wang and Coates 2017; Chang et al. 1997), strain modification for chlorite
resistance (Shaw et al. 2016; Wang and Coates 2017; Chang et al. 1997), and genetic
modifications encoding affinity for xenobiotic nitrogen and phosphorus sources (Shaw
et al. 2016) could potentially enable low-cost bioreactor hygiene control. Genetic
stability can be enhanced by decoupling growth and production phases, eliminating
the metabolic incentive to increase production of biomass at the expense of biofuel. A
number of tools have emerged to facilitate this decoupling, utilizing nutrient limitation
or low-cost induction agents suitable for application at scale (Ruegg et al. 2018; Dahl
et al. 2013; Lo et al. 2016). High product titers often threaten productivity via toxicity
and feedback inhibition - in addition to tolerance engineering approaches, these
challenges may be overcome by process designs featuring in situ product removal
(Dafoe and Daugulis 2014; Woodley et al. 2008).

In situ product recovery has been a critical component of recent scale-up success
stories. Industrial production of farnesene has been facilitated by phase separation of
the hydrophobic fuel molecules in extractive fermentation (Tsuruta et al. 2009). For
bio-isobutanol, product toxicity was overcome at commercial scale via continuous
solvent or gas stripping of product in recirculating anaerobic bioreactors (Xue et al.
2014).

Future Perspectives

Fuel properties and bio-advantaged fuels. Given ongoing improvements in metabolic
engineering, host onboarding, and accelerated process development, we can now
envision a future in which feedstocks and products are increasingly fungible. While
earlier technologies targeted natural metabolites and high flux pathways to generate
high vyields and titers, reduced development costs could enable production of
bio-advantaged fuels - molecules which leverage the exquisite specificity of enzymatic
production to achieve favorable properties for production, separation, and optimal
combustion. Leveraging the natural advantages of enzymatic synthesis enables
deployment of fuel molecules with highly tunable properties unachievable via
petrochemical routes - enabling potential improvements in octane/cetane number,
melting point, energy density, and sooting tendency (Figure 2). A recent survey of
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bioblendstocks for light duty gasoline engines utilized a computational merit function
(Farrell et al. 2018) to generate a top 10 list of blendstocks likely to enable fuel
efficiency exceeding that of E10 premium gasoline, including seven alcohols,
cyclo-pentanone, di-isobutylene, and mixed furan derivatives (Gaspar 2019). These
bioblendstocks may generate additional value via synergistic blending with lower cost
fuel mixtures. For example, blending unsaturated C5 alcohols into base gasoline fuel
reveals that the research octane number of the blended fuel significantly exceeds that
of both neat components (Monroe et al. 2019). For diesel and jet fuels, the limited
number of biological pathways to highly reduced, long-chain molecules has previously
hindered efforts to create such bio-advantaged fuels. Straight-chain molecules
generated via the fatty acid synthase pathway tend to suffer from high melting points
and poor cold flow, while tuning of isoprenoid-derived fuels is limited to 5-carbon
increments. Ongoing development of more flexible metabolic pathways to long-chain,
highly reduced molecules, including polycyclic terpenes (Liu et al. 2018), non-canonical
terpenes (Ignea et al. 2018), polyketides (Yuzawa, Mirsiaghi, et al. 2018; Curran et al.
2018), and functionalized aromatics (Huccetogullari et al. 2019) is needed. An emerging
suite of modeling tools now enables precision targeting of both fuel properties and
metabolic pathways to target bio-advantaged molecules, as predicted a priori of strain
development by an emerging suite of modeling tools (Das et al. 2018; Whitmore et al.
2016; Saldana et al. 2011). This “fuel properties first” approach was recently
demonstrated for catalytic upgrading of volatile fatty acids to hydrocarbons, enabling
down-selection of prospective molecules to a branched C14 hydrocarbon that reduced
overall sooting tendency by over 10% when blended to 20% volume in a base
petroleum diesel (Huo et al. 2019).
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Figure 2. |dealized fuel-properties first approach for identification and screening of
bio-advantaged fuels. High throughput computational models are leveraged to
down-select candidate molecules for more resource intensive production and
validation trials.

Fuel costs and the integrated biorefinery. The high cost of producing biofuels and the
low cost of petroleum-based biofuels make biofuels a difficult sell. Besides
improvements to engineered microorganisms so that they use all components in
cellulosic biomass and lose as little carbon dioxide as possible (as outlined above),
other ways to reduce the cost of biofuels is through the production of co-products,
either in the plant that is the source of the lignocellulosic biomass for the biofuels (Yang
et al. 2020; Lin and Eudes 2020) or by the same engineered microorganism that is
producing the biofuel. Ideally, this co-product would somehow benefit biofuel
production in addition to reducing the cost. As the volume of fuels needed greatly
exceeds any one commodity chemical, it is likely that multiple co-products will be
needed.

More and better microbial hosts. Finally, the carbon source for the biofuel and the
process for producing the biofuel are highly integrated. Continued development of
microbial hosts for biofuel production will be necessary to utilize waste products, not
just from agriculture but also from municipalities, potentially including plastics, which
will reduce costs. Further reductions in costs will come from producing the fuels under
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non-sterile conditions, which will require engineered microorganisms that can
withstand extreme conditions that few others can survive. The development of tools
and pathways that will function in these hosts will keep microbial synthetic biologists
busy for years to come.
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