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Abstract

Rationale: Chronic obstructive pulmonary disease (COPD) is
variable in its development. Lung microbiota and metabolites
collectively may impact COPD pathophysiology, but relationships
to clinical outcomes in milder disease are unclear.

Objectives: Identify components of the lung microbiome and
metabolome collectively associated with clinical markers in
milder stage COPD.

Methods: We analyzed paired microbiome and metabolomic data
previously characterized from bronchoalveolar lavage fluid in 137
participants in the SPIROMICS (Subpopulations and Intermediate
Outcome Measures in COPD Study), or (GOLD [Global Initiative for
Chronic Obstructive Lung Disease Stage 0-2). Datasets used included
I) bacterial 16S rRNA gene sequencing; 2) untargeted metabolomics of
the hydrophobic fraction, largely comprising lipids; and 3) targeted
metabolomics for a panel of hydrophilic compounds previously
implicated in mucoinflammation. We applied an integrative approach
to select features and model 14 individual clinical variables
representative of known associations with COPD trajectory (lung
function, symptoms, and exacerbations).

Measurements and Main Results: The majority of clinical
measures associated with the lung microbiome and
metabolome collectively in overall models (classification
accuracies, >50%, P < 0.05 vs. chance). Lower lung function,
COPD diagnosis, and greater symptoms associated positively
with Streptococcus, Neisseria, and Veillonella, together with
compounds from several classes (glycosphingolipids,
glycerophospholipids, polyamines and xanthine, an adenosine
metabolite). In contrast, several Prevotella members, together
with adenosine, 5 -methylthioadenosine, sialic acid, tyrosine,
and glutathione, associated with better lung function, absence
of COPD, or less symptoms. Significant correlations were
observed between specific metabolites and bacteria

(Pog; < 0.05).

Conclusions: Components of the lung microbiome and
metabolome in combination relate to outcome measures in
milder COPD, highlighting their potential collaborative roles
in disease pathogenesis.

Keywords: bronchoscopy; chronic obstructive pulmonary disease;
metabolomics; lung function
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Chronic obstructive pulmonary disease
(COPD) is a smoking-associated lung disease
that is heterogeneous in its development and
phenotypes (1). Not all smokers develop
COPD, yet some without COPD, as defined
by spirometry, experience chronic
respiratory symptoms and exacerbation-like
events, as previously described in the
SubPopulations and InteRmediate Outcome
Measures in COPD Study (SPIROMICS) (2).
Airway infection has been hypothesized
to contribute to COPD pathogenesis, but
mechanisms remain unclear (3), including
potential relationships between bacteria and
the lung metabolic milieu. Existing evidence
on bacterial associations with COPD
outcomes derive mostly from cohorts with
more advanced disease or frequent
exacerbations (4-7). Also, many studies have
analyzed sputum which, although easier to
obtain, unavoidably represents an admixture
of upper and lower airway secretions.
Far fewer studies have examined the lung
microbiome in milder COPD or using
bronchoscopy (8-10), which allows for direct
lung sampling. In recent independent studies
from SPIROMICS, we reported significant
relationships between the lung metabolome
(untargeted metabolomics) and lung
function (11), and between the lung
microbiota, lung function, and symptom
burden (12). These reports, however, were
based on analyses of single-‘omic data, which
did not allow for examination of the
collective contribution of lung microbiota
and metabolites to these outcomes. Because
both may shape the lung environment,
integrative analysis of microbiome and
metabolomic data may yield new insights

into the role of lung cell and microbial
metabolism in COPD pathophysiology.

To address this gap, we utilized lung
microbiota and metabolomic data previously
generated from bronchoalveolar lavage fluid
(BAL) of SPIROMICS subjects who were
ever-smokers with or without mild-to-
moderate COPD. For this study, we used
metabolomics datasets from two independent
approaches: untargeted metabolomics of a
lipid-rich hydrophobic fraction and targeted
metabolomics of several hydrophilic
compounds implicated in airway
mucoinflammation (nucleosides and/or
nucleotides, amino acids, and
others) (13-16). We performed paired dataset
analyses (microbiome-untargeted
metabolomics, microbiome-targeted
metabolomics), using an integrative approach
to determine features collectively associated
with clinical endpoints representative of
known associations with COPD trajectory.
Some of these results have been previously
reported in the form of an abstract (17).

Methods

Please see the online supplement for
additional details.

Participants

Microbiome and metabolomic data were
generated from BAL collected in the
SPIROMICS bronchoscopy substudy
(NCT01969344; clinicaltrials.gov) (10, 18).
Institutional review boards at all participating
sites approved the study, and all subjects
provided written informed consent. A total of

215 subjects underwent bronchoscopy as
described elsewhere (10). “Ever-smoker” was
defined at SPIROMICS enrollment by
smoking history = 20 pack-years (18). To
identify subjects with available paired data,
we first excluded 46 healthy never-smokers,
given known effects of smoking on the
metabolome (11), and seven with severe
COPD, given our focus on milder COPD. Of
the remaining subjects (Global Initiative for
Chronic Obstructive Lung Disease [GOLD]
0-2), 137 had BAL microbiome data and at
least one of the metabolomics datasets. Of
these, 87 had paired microbiome-untargeted
metabolomic data, and 126 had paired
microbiome-targeted metabolomics data;
Table 1). Selection of variables for modeling
was informed by clinical relevance, known
associations with COPD outcomes or
progression (2, 3, 19), and prior reported
associations with either the lung
microbiome (12) or lung metabolome (11).
These included lung function measures,
bronchodilator response (BDR) (19), and
symptom burden (COPD Assessment Test
[CAT]; chronic bronchitis defined by

St. Georges Respiratory Questionnaire items)
(20), assessed at the annual visit most
proximal to bronchoscopy. We also modeled
the number of exacerbations in the year
before SPIROMICS enrollment,
exacerbations during SPIROMICS Year 1,
and exacerbations postbronchoscopy after

1 year of follow-up.

BAL Samples
BAL fluid was processed and stored at
—80°C as previously described (10). For
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At a Glance Commentary

Scientific Knowledge on the
Subject: Chronic airway infection
with specific bacteria has been linked
to more advanced chronic
obstructive pulmonary disease
(COPD), but recent studies have
implicated a broader range of
microbiota. It has been unclear,
however, whether airway microbiota
influences COPD pathogenesis or
outcomes in milder disease. Recent
independent analyses from the
SPIROMICS (Subpopulations and
Intermediate Outcome Measures in
COPD Study) found altered lung
bacterial composition to be
associated with measures of lung
function and symptom burden.
Separate analyses of the airway/lung
metabolome identified specific
metabolites related to these and
other outcomes. Rarely have the lung
microbiome and metabolome, or
their potential coassociations with
clinical markers in milder COPD,
been examined together.

What This Study Adds to the
Field: This study analyzed paired
lung microbiome and metabolomic
data from SPIROMICS ever-smokers
with or without mild-to-moderate
COPD, using an integrative analysis
approach to model several clinical
measures. Specific bacteria and
metabolites collectively were
associated, positively or negatively,
with COPD status, lung function,
symptom measures, and/or
exacerbation history or events.
Significantly correlated lung bacteria
and metabolites also were identified.
These findings suggest that
components from the lung
microbiome and metabolome may
together impact pathophysiologic
mechanisms in milder stage COPD.

bacterial profiling, total DNA was extracted

from cell pellets, and 16S rRNA gene
sequencing was performed on an lllumina
MiSeq targeting the V4 region (12). As
described previously, background and

negative control samples (e.g., reagents,
extraction controls) were sequenced and the
data processed together with the BAL-
derived data (12). To identify potential
contaminant sequences for removal, we used
decontam (12, 21). Separately stored,
unthawed aliquots of BAL supernatants were
processed for earlier metabolomics studies in
SPIROMICS. These included untargeted
metabolites profiled by liquid
chromatography-mass spectrometry
(LC-MS; University of Colorado) (11),
which yielded data from both the hydrophilic
and hydrophobic fractions. For this study,
only the hydrophobic fraction data (C18
reversed-phase chromatography MS) were
analyzed with the microbiome data. We also
used an unpublished targeted metabolomics
dataset (LC-tandem MS [LC-MS/MS];
University of North Carolina, Chapel Hill)
that measured several hydrophilic
compounds (Table E1) implicated in airway
inflammation, hydration, and/or with
reported associations with COPD

outcomes (13-16).

Data Analysis
Participants were analyzed in two groups:
Framework 1, those with both BAL
microbiome and untargeted metabolome
data (87 subjects; 1 E1A); and Framework 2,
those with both BAL microbiome and
targeted metabolome data (126 subjects; (1
E1B). Participant demographics and clinical
parameters did not differ between the
frameworks (Table 1). We did not analyze all
the datasets together in a single framework,
as even fewer subjects had all three available.
Statistical analyses were performed
using R (version 3.5.1) and the packages
mixOmics, caret, and vegan (22). The initial
set of operational taxonomic units (OTUs;
=97% similarity) (12) were filtered to those
with approximately nonzero variance,
resulting in 72 OTUs. OTU relative
abundances (RAs) were transformed using
centered log-ratio transformation.
Metabolomics data were log-transformed.
For the untargeted data, results were
corrected for dilution effects based on total
useful MS signal using the external scalar
algorithm (4), before log-transformation.
For feature selection, for each outcome,
a training set consisting of 70% of samples
with nonmissing data was randomly selected,
and the remaining samples (30%) were
placed in a testing set (1 E1). In Framework
1, t tests and Wilcoxon rank-sum tests were
used first to filter the initial set of metabolites

(7,689 compounds) and OTUs to only those
associated with a given outcome within the
training set (Benjamini-Hochberg

Pagj < 0.05; Table E3). This greatly reduced
the number of untargeted metabolites
(average number, 652) passed into the next
step for feature selection. Given the fewer
metabolites in Framework 2 (31
compounds), all were retained. For each
outcome, we then utilized DIABLO (Data
Integration Analysis for Biomarker
Discovery Using Latent Variable Approaches
for ‘Omics Studies) to identify initial
predictive features (22). DIABLO is a
supervised machine learning method to
model data from multiple ‘omics datasets,
using projection to latent structures and
generalized canonical correlation analysis to
select highly correlated features within and
across datasets. To fit its requirements
(categorical outcomes), clinical measures
were dichotomized by clinically accepted
thresholds or median values (Table E2).

DIABLO feature selection was followed
by tuning with 10-fold cross-validation to
determine which model produced the
highest model balanced accuracy rate (BAR)
out-of-sample. Selected features were then
inputted into multivariable elastic net logistic
regression models on the training data, plus
the following covariates: age, sex, race,
current smoking status, inhaled
corticosteroid use, and antibiotic use within
3 months before bronchoscopy. Models were
performed with 10-fold cross-validation and
automated tuning. The resulting elastic net
model with the highest BAR on the training
data was used to predict class labels on the
testing data. To ensure convergence of out-
of-sample accuracy and prevent overfitting,
the aforementioned steps (feature selection,
elastic net regression) were repeated with
new training and testing sets that were
resampled each iteration, creating
100 models for each outcome and calculation
of mean model statistics.

To determine microbial-metabolite
correlation networks, for each framework,
the most predictive microbial and metabolite
features were pooled across all outcomes.
Pearson correlations were calculated
between the features, and networks were
generated using a Euclidean distance matrix
of the Pearson correlations followed by
clustering of vertices using the fast-greedy
algorithm (23). Piphillin was used for
inferred metagenome analysis to identify
predicted bacterial genes and their
functional pathways (24). Pathway gene
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abundance count data were used to model
clinical measures using DESeq2 (25).

Results

Combined Features from the Lung
Microbiome and Metabolome
Associate with Clinical Endpoints in
SPIROMICS Subjects

For each framework, we modeled the clinical
outcomes to determine 1) whether the lung
microbiome and metabolome collectively
are predictive of the measures and, if so,

2) which specific bacterial OTUs and
metabolites, as analyzed in the context of
each other, are associated with these
outcomes. The main feature-outcome
associations observed, collated from both
frameworks, are highlighted in Table 2 and
are further detailed for each framework in

the following text.

Framework 1: Lung Microbiome-
Untargeted Metabolome (Hydrophobic
Fraction). In Framework 1, for which 87
subjects had available paired data, the mean
out-of-sample classification accuracy across
the iterative models exceeded 50% (P < 0.05)
for nearly all clinical measures, indicative of
better than chance performance (Figure 1A).
These overall model results indicated that, in
this cohort, features from the lung
microbiome and untargeted metabolome

collectively associated with lung function,
COPD status, symptom burden, and
exacerbations reported during SPIROMICS
Year 1 or postbronchoscopy after 1 year).
The covariates in these models (age, sex, race,
smoking status, recent antibiotic use, and
inhaled steroid use) were selected in an
average of 68%, 73%, 62%, 61%, 77%, and
79% of final elastic net models, respectively,
across all outcomes modeled, highlighting
their importance as predictors.

We next examined the specific features
identified by the models for their direction
and strength of association with each
outcome (Figure 1B). Median adjusted log
odds ratios (ORs) for each feature—outcome
pair ranged between —1 and 1
(0.36 < median adjusted OR < 2.72).
Bacteria associated with COPD status, lower
forced expiratory volume in 1 second
(FEV,), or a CAT score =10 included
Neisseria-Otu0018 (mean RA: 1.6% vs. 1.1%
for COPD vs. no COPD), Streptococcus-
Otu0005 (mean RA: 11.3% vs. 5.9% for FEV,
<80% vs. =80%; 10.6% vs. 3.8% for CAT
score =10 vs. <10), and Veillonella-Otu0002
(mean RA: 16% vs. 9% for CAT =10 vs.
<(10). We had previously culture-isolated
streptococci from BAL of subjects with
higher relative abundance of Streptococcus
OTUs (see Supplemental Methods in the
online supplement) (12). On the basis of
earlier generated sequence data from these

Table 1. Clinical Characteristics of Subjects Analyzed

isolates (rnpB locus plus full-length 16S
rRNA gene), we identified Otu0005 as

S. pneumoniae. In contrast, several bacteria
were associated with higher lung function,
non-COPD status, or fewer symptoms; most
notably, Prevotella-Otu0045, which
associated with all three.

As Framework 1 utilized data from the
hydrophobic fraction of BAL, compounds
from several lipid classes were found to
associate with the clinical measures. This
included several glycosphingolipids,
lysophospholipids, and glycerophospholipids
that associated with lower lung function
(e.g., FEV,, FEF,5_75), COPD status, or
occurrence of at least one exacerbation in
the year after bronchoscopy (Table 2).
Several of these also associated with
positive BDR, which has been linked
to indicators of worse COPD (19).
Additional metabolites positively associated
with BDR included the diglyceride
DG(42:3), 2,3-dinor thromboxane B1, and
2,3-dinor-8-iso prostaglandin F2alpha
(Figure 1B).

These data provided a unique
opportunity to explore connections between
microbes and metabolites in the same
compartment, about which little is known in
the lungs. Significant correlations
(Pagj < 0.01) were observed between specific
bacteria and metabolites (Figure 2). In
particular, we noted the following. Prevotella-

Microbiome and
Untargeted
Metabolomics

Variable All (137 subjects) (87 subjects)
Age, yrs 61.2 (8.8) 61.3 (8.5)
Sex, % male 56.2 50.6
Caucasian, % 69.3 78.2
Current smoker, % 43.2 34.1
Pack-years™ 38.2 (20) 37.8 (15.6)
Mild to moderate COPD, % 43.8 41.4
FEV4/FVC post-BD 0.69 (0.12) 0.70 (0.11)
FEV4, % predicted 89.5 (18.5) 92.7 (17.5)
FVC, % predicted 100 (13.7) 102 (14)
FEF25_75, L/s 2.00 (1.2) 2.1 (1.2)
FVC BDR, % change* 1.9 (7.4) 1.8 (6.9)
FEV,; BDR, % change 8.4 (7.8) 8.49 (7.3)
CAT score” 9 (12) 10 (12)
BAL neutrophil, %*T 1.2 (2.1) 1.1 (1.9)

Microbiome and
Targeted Metabolomics

(126 subjects) P Value
61 (8.9) 0.85
571 0.40
68.3 0.12
45.5 0.12

38.1 (30.2) 0.57
40.5 1.00
0.69 (0.12) 0.48
89.8 (18.6) 0.26
100 (13.7) 0.49
2.0 (1.2) 0.62
1.7 (7.4) 0.93
8.18 (7.9) 0.78
9 (12) 0.82
1.2 (1.9) 0.82

Definition of abbreviations: BD = bronchoscopy; BDR = bronchodilator response; CAT = COPD Assessment Test; COPD = chronic obstructive

pulmonary disease; FEF,5 75 = maximum midexpiratory flow.

For each row, data are either percentages with P values from Fisher’s exact tests between the two groups/frameworks, means (and SD) with
P values from t tests, or median (and interquartile range) with P values from Wilcoxon rank-sum tests (*).

TData available for N = 86, 59, and 77, respectively.
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Table 2. Summary of the Main Clinical Associations Observed for Specific Lung Bacteria and Metabolites and
Metabolite Classes

Bacteria or Metabolites Taxonomy: Phylum (Class) Clinical Measure

Bacteria

Neisseria.Otu0018 Proteobacteria (Betaproteobacteria) | FEV4, | FEF55_75, + COPD, | CAT, - CB

Streptococcus - Otu0005 or Otu0082
Veillonella.Otu0002
Actinomyces.Otu0086

Fusobacterium - Otu0023 or Otu0034
Capnocytophaga.Otu0054

Leptotrichia.Otu0038
Pasteurellaceae_unclassified.Otu0087
Prevotella.Otu003

Prevotella.Otu004
Prevotella.Otu0045
Pseudomonas.Otu0029

Firmicutes (Bacilli)
Firmicutes (Negativicutes)
Actinobacteria

Fusobacteria
Bacteroidetes (Flavobacteriia)

Fusobacteria

Proteobacteria (Gammaproteobacteria)

Bacteroidetes (Bacteroidia)

Bacteroidetes (Bacteroidia)
Bacteroidetes (Bacteroidia)

Proteobacteria (Gammaproteobacteria)

| FEV4:FVC, | FEV4, + COPD, 1 CAT, + CB

| FEV4, | BDR, 1 CAT, + CB

| FEV4, 1 BDR, + Exac past 12 mo at baseline, +
Exac in study Yr 1

+COPD, | BDR, + CB

1 FEV4, | BDR, — CB, — Exac past 12 mo at
baseline

1 FEV4, | BDR, — Exac past 12 mo at baseline

1 FEV4:FVC, 1 FEV4, 1 FEF25 75, | CAT

1 FEV4, 1 FEF25_75, — COPD, | BDR, + CAT,
+ CB, — Exac postbronch-Yr 1

1 FEV4, — Exac past 12 mo at baseline

1 FEV4, | FEF25_75, — COPD, | CAT

1 FEV4, — CB

Metabolite

Untargeted panel, hydrophobic fraction

DG(42:3)

Gala1-3(Fuca1-2)Galp1-4(Fucai-3)
GlcNAcB1-3GalB1-4GlcB-Cer(d18:1/16:0)
(“Class-Glycosphingolipid-1” in Figure 1B)

NeuAca2-3GalB1-4GIcNAcB1-3GalB1-4(Fuca1-3)
GlcNAcB1-3Galp1-4GIcNAcB1-3Galp1-4
GlcNAcB1-3GalB1-4GlcB-Cer(d18:1/24:0)
(“Class-Glycosphingolipid-2” in Figure 1B)

GalNAca1-3GalNAcB1-3Gala1-3GalB1-
4GilcB-Cer(d18:1/22:0) (“Class-Glycosphingolipid-
3” in Figure 1B)

LysoPC(17:0)

LysoPC(22:0)

LysoPE(22:0)

LysoPE(22:6)

PA(21:4)

PC(0-18:0_0-3:1)

PC(18:2_18:2)
PE(P-38:3)
PS(42:7)
PS(29:0) or PS(29:0)_isomer
PS(0-36:0)
Betaine aldehyde
2-amino-14,16-dimethyloctadecan-3-ol
3,11-dioxopregna-4,17(20)-dien-21-oic

acid methyl ester (“Class-Steroid Ester-1” in Figure 1B)
392.7607@6.112

Targeted panel
Adenine

Adenosine

AMP

Glutathione
Glutathione disulfide

Lactate

Leu-Pro
Methionine

5'-methylthioadenosine
Putrescine

Spermidine or spermine
Sialic acid

Tyrosine
Xanthine

Metabolite Class

Diglyceride (diacylglycerol)
Glycosphingolipid

Glycosphingolipid

Glycosphingolipid

Lysophospholipid
Lysophospholipid
Lysophospholipid
Lysophospholipid
Phosphatidic Acid
Phosphatidylcholine

Phosphatidylcholine
Phosphatidylethanolamine
Phosphatidylserine
Phosphatidylserine
Phosphatidylserine
Quaternary ammonium salts
Sphingolipid

Steroid Ester

NA

Purine

Purine metabolism
Purine metabolism
Glutathione metabolism
Gilutathione metabolism

Organic acid

Dipeptide
Amino acid

S-methyl derivative of adenosine

Polyamine
Polyamine
Acidic monosaccharide

Amino acid
Purine metabolism

Clinical Measure

1 BDR, | CAT, + CB
| FEV,, + CB

| FEV,

+ Exac postbronch-Yr 1

| FEV4,7 BDR

+ Exac postbronch-Yr 1

+ Exac postbronch-Yr 1

| FEV4

| FEV4:FVC, + COPD, 1 BDR

| FEV4, | FEF25.75 , + Exac study Yr 1,
+ Exac postbronch-Yr 1

1 FEFa5 75 | CAT

| FEVq4, | FEF25_75 , + COPD, 1 BDR

| FEV4, | FEVas 75, T BDR

1 FEV4, — Exac postbronch-Yr 1

1 FEV:FVC, 1 FEV | 1 FEF25_75

1 FEV4, 1 FEF25_75, — Exac postbronch-Yr 1

1 FEV4:FVC, 1 FEF2s75, | BDR

| FEV,4, + COPD, + CB

| FEV4:FVC, + COPD, | BDR,
+ Exac postbronch-Yr 1

| FEV4, 1 BDR, 1 CAT, + Exac past 12 mo at
baseline

1 FEV4:FVC, 1 FEV4, — COPD, | CAT, — CB,

1 FEV4:FVC, 17 FEV,4, — COPD, 1 BDR, 1 CAT, + CB

1 FEV4, — COPD, | BDR, | CAT

1 FEV4, + COPD, 1 BDR, 1 CAT,
+ Exac past 12 mo at baseline

1 FEV4:FVC, 1 FEV4, — COPD, | BDR, 1 CAT,
+ Exac in study Yr 1

| FEV4, + COPD, 1 BDR, + CB

1 FEV4, — COPD, | CAT, — Exac past 12 mo at
baseline, — Exac study Yr 1

1 FEV4:FVC, 1 FEV4, | CAT, — Exac study Yr 1

| FEV4:FVC, | FEV,, +COPD, 1 BDR, 1 CAT, + CB,
+ Exac past 12 mo at baseline, + Exac study Yr 1

| FEV,4, + COPD, 1 BDR, | CAT, + CB,
+ Exac past 12 mo at baseline

1 FEV4:FVC, 1 FEV4, — COPD, | BDR, | CAT

1 FEV4:FVC, 1 FEV4, — COPD, , | CAT, - CB

| FEV4:FVC, | FEV4, + COPD, 1 BDR, 1 CAT, +CB,
+ Exac past 12 mo at baseline, + Exac study Yr 1

Definition of abbreviations: BDR = bronchodilator response; CAT = COPD Assessment Test score; CB = chronic bronchitis; COPD = chronic
obstructive pulmonary disease; Exac = exacerbations; FEF,5_75 = maximum midexpiratory flow; NA =not applicable; Postbronch-Yr

1 =postbronchoscopy, Year 1.

This table highlights features with consistent association patterns across outcomes or categories from either framework.
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Figure 1. Classification accuracies and the lung bacteria and untargeted metabolomics features (hydrophobic fraction) most strongly
associated with each clinical outcome, as modeled in Framework 1. Results from DIABLO feature selection followed by elastic net models
adjusted for age, sex, race, current smoking, inhaled corticosteroid use, and recent antibiotic use. (A) Mean out-of-sample classification
accuracies. Red dashed line =50% accuracy (random chance). Asterisks indicate mean model performance >random chance (one-sided

t test). (B) Most predictive microbial and untargeted metabolomic features from adjusted elastic net models for outcomes whose classification
accuracy exceeded random chance. Bacterial OTUs are displayed alphabetically, and metabolites are displayed by class membership with
superclasses of interest indicated. See Table E5 for full IDs and class information. Metabolite names with >50 characters were relabeled as
“Class-Name-#". Superclasses are intended to highlight metabolite groups of interest; in particular, lipids. “Other” refers to compounds for which
the superclass was unknown or the metabolite name, as displayed, provides indication of metabolite class. BDR = bronchodilator response;
CAT =COPD Assessment Test; COPD = chronic obstructive pulmonary disease; FEF,5_75 = maximum midexpiratory flow; HCU+AB/

S = exacerbation requiring healthcare utilization and antibiotics/steroid treatment; ns = not significant; OTU = operational taxonomic unit;

SGRQ = St. George'’s Respiratory Questionnaire.
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Figure 2. Correlation heatmap between lung microbiota and untargeted metabolomics features that were most strongly associated with the
clinical measures. Only OTUs and metabolites having at least one significant correlation based on P.q;<0.01 (Benjamini-Hochberg corrected)

are shown. *0.01 =<

Otu0049, which associated with higher FEV},
strongly correlated with a ceramide—
Ceramide(t18:0/18:0(20H)—that itself was
associated with higher FEF,5 ;5 and no
COPD status (Figure 1B). Leptotrichia-
Otu0050 strongly correlated with the
lysophospholipid LysoPC (22:0), and both
were positively associated with exacerbations
postbronchoscopy after 1 year. Actinomyces-
0Otu0086, associated with exacerbations
during SPIROMICS Year 1, also displayed
multiple positive correlations with
metabolites, including the diglyceride
DG(42:3) and the phosphatidylserines
PS(P-29:0) and PS(35:4). These metabolites,
respectively, also associated with positive
BDR, lower FEV, and chronic bronchitis
(Figure 1B). In contrast, Corynebacterium-
Otu0121 correlated negatively with many
metabolites, including 2,3-dinor
thromboxane B1 and several unknown ones.
More bacteria-metabolite correlations were
evident when a higher significance threshold
was applied (p,q; < 0.05; Figure E2),
including additional bacteria and
compounds from the aforementioned
classes. Network-based cluster analysis
identified four clusters of connected bacteria
and metabolites, with the most connections

Madapoosi, Cruickshank-Quinn, Opron, et al.: Lung Microbiome-Metabolome in SPIROMICS

observed for the Actinomyces and

Corynebacterium OTUs (Figure E3A).
Framework 2: Lung Microbiota—

Targeted Metabolome (LC-MS/MS). In
Framework 2, for which 126 subjects had
available paired data, the mean out-of-
sample classification accuracy across 100
iterative models significantly exceeded 50%
(P < 0.05) for all the clinical measures except
exacerbations in the year postbronchoscopy
(Figure 3A). Across all outcomes modeled,
the included covariates (age, sex, race,
smoking status, recent antibiotic use, and
inhaled steroid use) were, on average,
selected in 76%, 62%, 44%, 46%, 56%, and
76% of the final elastic net models,
respectively.

We noted the following
feature—outcome associations, displayed
in Figure 3B and highlighted in Table 2.
Lung bacteria associated with COPD
status and/or lower FEV; included
Streptococcus-Otu0082, two
Fusobacterium members, and
Actinomyces-Otu0086. In contrast to these
low prevalence bacteria, Prevotella-
Otu0003 associated with non-COPD
status and higher FEV,; (mean RA: 9.5%
vs. 7.5% for no COPD vs. COPD; mean

Pagj<0.05, *0.001 < P,q;<0.01, and ***P,4;<0.001. OTU = operational taxonomic unit.

RA: 10.0% vs. 6.0% for FEV; =80% vs.
<80%). However, this Prevotella OTU
also associated positively with both CAT
score and chronic bronchitis, suggestive of
a possible role in symptomatic ever-
smokers with preserved lung function.

Among the targeted metabolites, COPD
status associated with glutathione disulfide,
polyamines (putrescine, spermidine or
spermine), leucine-proline, and xanthine.
These also associated with greater symptoms
(CAT score =10, chronic bronchitis, or
both). Putrescine, a polyamine breakdown
product of amino acid metabolism, was very
strongly predictive of BDR by both FEV; and
forced vital capacity (selected in 91 of 100
iterative models). In contrast, targeted
metabolites negatively associated with COPD
or symptoms, and positively related to FEV7,
included adenosine, 5 -methylthioadenosine
(MTA), glutathione, methionine, sialic acid,
and tyrosine. Notably, from the correlation
analyses (Figure 3C), Prevotella-Otu0003
displayed significant relationships with
adenosine, AMP, and MTA, congruent with
their individual associations with better lung
function and non-COPD status, and these
features constituted one main cluster in the
network analysis (Figure E3B).
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Figure 3. Classification accuracies and the lung bacterial and metabolites from targeted metabolomics most strongly associated with each
clinical outcome, as modeled in Framework 2. (A) Mean out-of-sample classification accuracies for each outcome. Asterisks indicate mean
model performance > random chance (one-sided t test). (B) The most predictive features from adjusted elastic net models for outcomes
whose classification accuracy exceeded random chance. (C) Correlation heatmap between lung microbiota and metabolites that were most
strongly associated with the clinical measures. Only OTUs and metabolites having at least one significant correlation based on P,q; < 0.05
(Benjamini-Hochberg correction) are shown. *0.01 < P,q; < 0.05, **0.001 < Paq;<0.01, and ***Py,q; < 0.001. For definition of abbreviations,
see Figure 1.
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Figure 3. (Continued).

Functional Potential of Lung Bacteria
by Inferred Metagenome Analysis
Metabolites derive from metabolism by the
host, microbes, or both (co-metabolism).
We therefore explored whether the
identified bacterial community might
possess predicted genes in pathways related
to the metabolites identified. We used
Piphillin (24) to infer bacterial
metagenomes and explored whether
predicted functional orthologues from the
Kyoto Encyclopedia of Genes and
Genomes Orthology Database (ko) related
with the clinical measures (Table ES4).
Negative relationships existed between
FEV, and several predicted bacterial
pathways, including for purine metabolism
(k000230), amino acids (ko00400, ko01230,
and ko00290), and pyruvate metabolism
(ko00620). Positive BDR was associated
with the phosphoenolpyruvate-dependent
phosphotransferase system (log, fold
difference = 0.50, poqj=0.017), a major
system by which bacteria uptake sugars for
energy. CAT score and predicted bacterial
genes in the sphingolipid signaling pathway
(ko04071) were negatively related.
Altogether, these results support the
possibility that lung bacteria harbor the
capacity to shape the metabolic
environment and potentially impact
pathophysiologic mechanisms in COPD.

Lung Microbiota and Metabolome
Features Are Predictive of BAL
Neutrophil Percentage

Neutrophilic inflammation, often observed
in COPD, has been associated with airway
metabolite biomarkers (13, 15). We
explored whether the profiled bacteria and

Madapoosi, Cruickshank-Quinn, Opron, et al.: Lung Microbiome-Metabolome in SPIROMICS
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metabolites may together predict BAL
neutrophil percentages ascertained
previously by flow cytometry (26).
Neutrophil percentages were overall low,
but modeling this per Framework 1 (above
or below median of 1.1%; 59 subjects)
yielded a mean out-of-sample accuracy of
59.2% (P < 0.05 vs. chance). BAL
neutrophil percentage was positively
associated with Streptococcus-Otu0005,
Leptotrichia-Otu0050, and several
glycerophospholipids and sphingolipids—
most notably, ganglioside GM3 (d18:0/20:0)
(Figure 4A). In contrast, BAL neutrophils
negatively associated with two Prevotella
members (Otus 0003 and 0045), noted
earlier to relate to better lung function.
Prevotella-Otu0003 also displayed negative
correlations with the phosphatidylinositol
PI(22:0_20:3) and the lysophospholipid
LysoPE(22:4) (Figure 4B), both metabolites
that were positively related to BAL
neutrophils (Figure 4A).

Modeling BAL neutrophil percentage
per Framework 2 (above or below median of
1.2%; 77 subjects) yielded a mean out-of-
sample accuracy of 52.5% (P < 0.05).
Targeted metabolites positively associated
with neutrophils included hypoxanthine,
inosine, lactate, leucine-proline,
phenylalanine, and uric acid, together with
Fusobacterium-Otu0034 and other bacteria
(Figure 4C). Features negatively associated
with lung neutrophils included ones
mentioned earlier (Prevotella-Otu0003,
glutathione, MTA, and tyrosine) that
associated with no COPD and better lung
function. Correlations between specific
bacterial and metabolites in this subset of
subjects are shown in Figure 4D.

Discussion

In this study from SPIROMICS, we provide
new evidence that components of both the
lung microbiome and lung metabolome
together are associated with clinical
endpoints in smokers with or without mild-
to-moderate COPD. These findings reflect
consideration of the lung microbiome and
metabolome from an ecological perspective
and emphasize their potential collaborative
roles in disease-shaping pathways. Our study
moves beyond single -‘omics analytical focus
of such data, which predominate in the
literature, to shed light on potential
microbial-metabolic contributions to COPD
pathogenesis. In addition to the new insights
related to clinical impairment in milder
disease, the findings motivate new
hypotheses about the likely bidirectional
relationships between metabolites and
microbes and their role in lung
inflammation.

Few studies of the lung microbiome
and metabolome in COPD exist, and to
our knowledge, this is the first to pursue
an integrative approach to their analysis,
which included untargeted and targeted
metabolomics data from BAL. There are
several novel observations. Specific
members of the Prevotella genus (e.g.,
Otu0003 or Otu0045) associated with
better lung function and lower likelihood
of COPD. A recent analysis of bronchial
brush data (9) from former smokers also
noted an overall abundance of Prevotella
associated negatively with indicators of
COPD severity and positively with
expression of genes involved in tight
junction promotion. We extend those
observations by including current smoking
as a covariate and identifying lung
metabolites possibly involved. Collectively,
our two studies suggest a potential
protective or homeostatic role for specific
Prevotella. As mentioned, Prevotella-
Otu0003 positively correlated with AMP
and adenosine, which play key roles
in regulating airway surface liquid
volume (27). Prevotella-Otu0003 also
correlated with MTA and spermine and
negatively associated with BAL neutrophils.
Although the species identity of Prevotella-
Otu0003 is currently unknown, pathways
for purine metabolism, methionine salvage,
and polyamines have been described in
bacteria, including Prevotella (28, 29). It is
also possible that metabolites create or
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Figure 4. Bacterial and metabolite features associated with BAL neutrophil percentages and correlations between these features per
Framework 1 (A and B) or Framework 2 (C and D). *0.01 < P,g;<0.05, **0.001 < P,q;<0.01, and ***P,q;<0.001.
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reflect a lung environment that promotes
Prevotella and other microbes. Interestingly,
compounds targeting methionine salvage
and polyamines have been investigated in
preclinical and clinical studies (30, 31).

In contrast, several lung bacteria and
correlated metabolites associated with lower
FEV, COPD status, or higher CAT score
and/or chronic bronchitis. This included two
Streptococcus members—notably, Otu0005,
which we identified as S. pneumoniae from
cultured BAL. A recent murine study found
that aspiration of oral commensal bacteria
activated Th17 responses, and pretreatment
with these commensals reduced susceptibility
to S. pneumoniae respiratory challenge (32).
We extend those findings with human
evidence that additional bacteria, together
with specific metabolites from different
classes, may further shape the inflammatory
and metabolic milieu in milder lung disease.
This includes other anaerobes or fastidious
bacteria (Veillonella, Neisseria, Actinomyces,
and Fusobacterium), lipids from several
superclasses, polyamines, and other
metabolites. Members of these bacterial
genera or metabolite classes have been
previously implicated in COPD, but in
studies that focused on only the microbial or
metabolite components alone (11, 12) or
assayed from other specimen types (15, 16,
33-35). We note that several of the BAL lipid
classes represented in the clinical associations
included metabolite pathways that have been
associated with COPD phenotype in prior
plasma-based metabolomic studies (e.g.,
glycosphingolipids, lysophospholipids)
(33-35), supporting the potential importance
of these pathways in the COPD lung
environment (33).

The bacteria-metabolite correlations
observed could reflect direct or indirect
interactions. Bacteria have well-documented
mechanisms for sphingolipid production or
manipulation and metabolism of amino
acids and nucleotides (24, 34-38). Specific
bacteria could also trigger lung inflammatory
responses that, by altering the metabolic
milieu, could, in turn, be reflected in the
correlations. We noted with interest that
specific members of the Actinobacteria
phylum displayed many strongly significant
lung metabolite correlations (Actinomycetes
and Corynebacterium OTUs). These are
representatives of a biologically diverse
phylum, inclusive of nonpathogenic species
known for their capacity to produce many
secondary metabolites (39, 40). Additional
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studies will be needed to understand
potential causal relationships and functional
mechanisms by which the identified bacteria
modulate the lung metabolic milieu.

Strengths of this study include the
multicenter nature of the well-characterized
SPIROMICS cohort, the focus on ever-
smokers with or without milder stage
disease, and the complementary tools used
to examine relationships between the
paired-omics data and clinical measures.
We applied a rigorous analytical workflow
to extract microbial and metabolite features
in the context of each other, coupled with
elastic net regression models that allowed
for covariate adjustment. We believe that
this approach, together with resampling,
greatly increased the probability of
identifying only those molecular features
most likely related to a given outcome.
Mean overall model performances did not
differ significantly between the two
frameworks, suggesting that the
metabolomic features, when examined
together with the microbiome were
similarly predictive of the outcomes in
those groups. We also explored potential
interactions between bacteria and
metabolites, including the potential for the
lung bacterial community to participate in
functional gene pathways intersecting with
some of the identified metabolites.

This study also has limitations. We
did not have full subject overlap across the
three datasets—a common challenge.
However, our approach allowed for
inclusion in each framework of the greatest
number of subjects whose clinical
characteristics did not differ significantly.
Although we split samples into training
and testing sets for feature selection and
modeling (repeated 100 times for each
outcome), there was no opportunity for
external validation. Validation studies in
independent cohorts would be ideal,
although identifying such with matching
characteristics and data types are known
challenges. The scope of a future study
could be to pursue such in a new cohort
and consider an integrated analysis using
the three types of -omics data
simultaneously. We observed consistent
classification accuracies between the
frameworks for each outcome, but the
specific features predictive for some
measures differed between frameworks.
In some cases, different OTUs from the
same bacterial genus associated with the

same outcome in either framework. Similar
patterns were observed within metabolite
classes. Because DIABLO evaluates features
in the context of the other paired dataset,
different OTUs might be selected because
of the difference in compound class
coverage between metabolomics datasets.
There were class imbalances for some
outcomes because of the dichotomization
need for DIABLO. Although this was
based on accepted clinical thresholds for
most outcomes, this may have killed
information analytically. Because of the
study’s cross-sectional nature, our findings,
although statistically predictive within this
cohort, remain associative. Last, speciation
of some features was not possible because
of known limitations of 16S rRNA gene
sequences or metabolite databases.
Confirmation of specific untargeted
metabolites (e.g., those marked “MSI 3” in
Table E5) by MS/MS was attempted, but
because of sample degradation in the years
since the untargeted data were generated,
we were unable to assign more confident
annotation. Nonetheless, we did affirm
several feature-outcome associations
observed in our prior analyses of either the
lung microbiome or metabolomic data
alone that used alternate statistical
methods (11, 12).

In summary, the results of this
integrative analysis of the lung microbiome
and metabolome highlight the ecological
context of microbial-metabolic interactions
in the lung and their potential collaborative
roles in COPD development or progression.
Further studies are needed to understand
how specific interactions may be targeted for
therapeutic or even preventative goals and
how clinical interventions potentially affect
these systems.
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